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Abstract

This paper analyzes statistical discrimination in a model with endogenous human capital
formation and a frictionless labor market. It is shown that in the presence of two distinguishable
but ex ante identical groups of workers discrimination is sustainable as an equilibrium outcome.
This is true irrespective of whether there are multiple equilibria when the groups have no
distinguishable characteristics. When an a±rmative action policy consisting of an employment
quota is introduced in the model it is shown that a±rmative action can \fail" in the sense that
there may still be equilibria where the groups are treated di®erently. However, the incentives
to invest for agents in the disadvantaged group are better in any equilibrium under a±rmative
action than in the most discriminatory equilibrium without the policy. Thus, the lower bound
on the fraction of agents from the disadvantaged group who invest in their human capital is
raised by the policy. The welfare e®ects are ambiguous. It is demonstrated that the policy may
increase the incentives to invest and reduce the expected payo®s for all agents in the target
group simultaneously. Indeed, the policy may hurt the intended bene¯ciaries even when the
initial equilibrium is the worst equilibrium for the targeted group.

1 Introduction

Since its introduction in the sixties, a±rmative action has been and remains one of the most
controversial policies to combat discrimination in the labor market. An economist has little to say
about issues on fairness and constitutionality, which are extensively discussed in the popular and
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political debate. However, there are important aspects of a±rmative action that can be analyzed
using economic theory and relatively little has been done.

In particular, the popular debate often focuses on the e®ects on incentives of the intended
bene¯ciaries. On the one hand side, opponents of a±rmative action often argue that a±rmative
action makes it easier for unquali¯ed members of the target groups to obtain relatively well paid
jobs. This, it is argued, reduces the incentives to invest in their skills for members of the target
groups, which means that the real problem, namely that skills are unevenly distributed across
groups, is only aggravated by a±rmative action. On the other side, proponents of a±rmative
action argue that minorities and in some cases women are at least partially excluded from the
more attractive parts of the labor market and that they for this reason simply do not have the
same incentives to make human capital investments. A±rmative action policies with numerical
goals for hirings of candidates from the discriminated groups helps overcome the situation by
forcing employers to hire people from the disadvantaged groups and therefore create incentives for
members of these groups to invest in their personal skills.

The purpose of this paper is to analyze what e®ects a±rmative action policies may have on
the incentives to invest, in particular for workers from the groups the policy is intended to help.
Furthermore, since opponents often claim that the policy only helps already well situated members
of the minority groups, we are also interested in identifying winners and losers of a±rmative action.
However, while our framework in principle allows us to do this, our understanding of the welfare
e®ects of a±rmative action is still very incomplete.

In order to study the e®ects of a±rmative action and other anti discriminatory policies we need
a model with discrimination as a possible equilibrium outcome. Here there are two main strands
in the literature. One approach, pioneered by Becker [3], explains discrimination from preferences.
In this class of models employers prefer to hire candidates from the same group, workers prefer to
work with coworkers from the same group or consumers are unwilling to buy products produced
by ¯rms' employing workers from other groups.

The main alternative to these taste based models is a statistical theory of discrimination, build-
ing on work by Arrow [2] and Phelps [12]. Here the main idea is that when worker skills are
imperfectly observable discrimination may occur although ¯rms maximize pro¯ts and workers have
no preferences about their coworkers' group identity: race, sex, religion etc... may serve as a proxy
for productivity if the distributions are di®erent across groups. When each worker can a®ect their
own productivity by human capital investments discrimination may occur in equilibrium even if
the groups are identical in terms of \intrinsic abilities" or costs of investment in human capital. In
this paper we consider the e®ects of a±rmative action within a model of statistical discrimination.

While there is a large theoretical literature on discrimination in general and discrimination on
the labor market in particular, surprisingly little attention has been paid to policy analysis. Notable
exceptions are Lundberg and Startz [9], Lundberg [8] and Coate and Loury [4]1. In Lundberg and

1All these papers are focusing on statistical discrimination. Welch [15] and Kahn [7] studies employment quotas
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Startz [9] it is shown that an equal opportunity policy prohibiting the ¯rms from making wages
dependent upon group identity may be an e±ciency enhancing policy in a model with statistical
discrimination. In Lundberg [8], it is noted that enforcement of this type of policy may be very
di±cult since there will be incentives for ¯rms to evade the policy by using other variables as proxies
for group identity. The main concern of the paper is to ¯nd regulatory policies that implement the
equal opportunity laws under di®erent informational assumptions.

The paper most closely related to our work is Coate and Loury [4] where the e®ects of em-
ployment quotas are studied in a setup where discrimination is in job assignments rather than in
wages. In their model, output can be produced using two di®erent technologies and workers face a
costly human capital investment, which if undertaken makes them productive in the more advanced
technology. The sole decision made by employers' is how to assign a number of randomly drawn
workers in jobs using either of the two technologies based on an imperfect signal of each workers'
productivity in the more advanced job. Whenever there are multiple equilibria in the model there
will be equilibria where groups are treated di®erently.

It is shown that there are circumstances under which all equilibria with the a±rmative action
policy are such that investment behavior is the same in both groups. However, under equally
plausible circumstances there are still equilibria where groups behave di®erently and the employers
(rationally) perceive members of one of the groups to be less capable. Indeed, it is shown that
group disparity of investment behavior may actually increase as a result of a±rmative action.

The intuition for this possible failure of a±rmative action is simple. Consider a situation where
the fraction of investors is lower in group a than in group b and make the thought experiment
that these fractions remains the same even after the introduction of a±rmative action. In order to
comply with the policy this means that employers must employ agents from group a in the more
advanced job who are (rationally) perceived to have a lower probability of being productive than
all agents from group b . Hence both agents who have invested and agents who have not invested
are more likely to be employed in the skilled job and whether this improves the incentives to invest
for agents in group a or not depends on particularities of the probability distributions of the noisy
signal.

While the logic may sound compelling the analysis in Coate and Loury [4] raises some questions.
Wages as well as the distribution of workers available for any ¯rm are ¯xed exogenously in their
model. In a world where ¯rms are competing with each other to attract workers these assump-
tions do not make much sense. Rather one would think that equilibrium wages would depend on
investment behavior of the workers and policy parameters, which means that the change in the
incentives to invest would also depend on how the policy a®ects wages. In particular, since the
expected marginal productivity is increasing in the signal for agents in the complex technology
one would think that wages would also be increasing in the signal. But then the expected wage
conditional on the agent being employed in the more advanced technology will be higher for agents

in models where discrimination is taste based.
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who undertake the investment and it seems that if ¯rms were forced to employ more workers from
the disadvantaged group in the advanced job this would indeed create better incentives to invest.

In our paper, human capital accumulation as well as the information technology is modeled as in
Coate and Loury [4]. Individual workers have to decide whether to undertake a costly investment in
human capital or not. This choice is unobservable to the ¯rms but there is a publicly observable test
available that contains information about the likelihood that a particular worker has undertaken
the investment.

Instead of randomly assigning workers between ¯rms we assume that the labor market works
without frictions. Firms compete in a Bertrand fashion by o®ering wage schedules, where the wage
is a function of the noisy signal. Apart from the fact that wages are endogenized our model departs
from that of Coate and Loury in that the production technology exhibits complementaries between
tasks. To be speci¯c we assume that production requires input of labor in two tasks, a complex
task and a simple task. It is assumed that only workers who have undertaken the investment are
productive in the complex task, whereas all workers can perform the simple task e®ectively. Output
is generated from the two types of labor input according to a standard neoclassical production
function.

When we introduce two groups of workers which only di®er by some payo® irrelevant but
observable characteristic we show that discrimination is possible due to self con¯rming expectations
about di®erences in behavior between the groups.

The complementarity in the production technology has several interesting consequences. Even
if there is a unique equilibrium in the model where there are no observable payo® irrelevant charac-
teristics there will, under mild conditions, be equilibria with discrimination. The intuition is that
groups can specialize as high quality and low quality workers respectively. While this hurts the
group that specializes as low quality workers and also creates ine±ciencies in investment behavior
it does reduce the informational problem for the ¯rms2. It should be noted in this context that in
models where discrimination is explained as di®erent groups coordinating on di®erent equilibria in
some \base model", as for example in Spence [14], Akerlof [1] and Coate and Loury [4], there are
no con°icts of interests between groups. The discriminated group is discriminated simply because
of coordination on a worse equilibrium than the other group and if this coordination failure could
be resolved the other group need not be a®ected at all. In our model on the other hand the group
with the higher fraction of investors unambiguously gains from discrimination since the supply of
quali¯ed workers is more scarce than otherwise.

The complementarity in production also has the consequence that group size matters in the
determination of equilibria with discrimination. We ¯nd that the larger the group is, the more
stringent are the conditions that must be satis¯ed in order to support a (particular type of) dis-

2It is indeed easy to visualize a version of our model where agents choose di®erent types of human capital investment
that enhances the productivity in di®erent types of jobs. In such a model, discrimination may be e±ciency enhancing.
However, contrary to our framework such a model may also have the property that discrimination is voluntary in the
sense that it may be incentive compatible to truthfully announce group identity if this would be unobservable.
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crimination and the smaller is the di®erences in average earnings between groups (given that dis-
crimination is still sustainable). In a loose sense, we interpret this to mean that in our model
discrimination of a smaller group is more likely than discrimination of a larger group. To us this
seems to conform with the stylized facts about discrimination: to our knowledge there is no other
model with this property.

Introducing an a±rmative action policy consisting of an employment quota in the model we
¯nd that we in general cannot rule out the possibility of discriminatory equilibria. Hence the policy
does not guarantee equal treatment across groups in equilibrium. However, this result alone should
not be interpreted as a \failure" of a±rmative action. While the ultimate goal of equality between
groups is not guaranteed by the policy, it may still be that the policy is successful in the sense that
the inequality is reduced. Indeed, we get some results in this direction.

In our model, the \direct e®ect" of a±rmative action, i.e. the e®ect on the bene¯ts of invest-
ment in human capital assuming that investment behavior is unchanged, is typically to increase
the returns of investment for the discriminated group and to decrease them for the other group.
However, we do not have a theory that predicts what particular equilibrium will occur after the
introduction of the policy. Due to multiplicity of equilibria with and without the policy we must
compare the full set of equilibria with and without a±rmative action. The only thing that can be
said in general is that the returns to investment and consequently also the fraction of agents who in-
vest in the most discriminatory equilibrium without the policy is lower than in any equilibrium with
a±rmative action. The welfare e®ects are inconclusive. Output may decrease or increase as a result
of the policy and by example we show that even if the starting point is the most discriminatory
equilibrium, it is possible that the discriminated group is worse o® with the policy.

The rest of the paper is structured as follows. Section 2 contains the description of the one-
group model and section 3 characterizes the equilibria of this model. In section 4 we extend the
model by introducing two identical groups of workers and in section 5 we analyze the consequences
of a±rmative action. The discussion in section 6 concludes the paper.

2 The Model

We assume that ¯rms need to employ workers performing two di®erent tasks to generate output.
These tasks will be referred to as the complex task and the simple task respectively. On the labor
market there are workers of two di®erent types. Some workers, called quali¯ed workers, are able to
perform the complex task and others are not. Let C be the e®ective input of labor in the complex
task for the ¯rm, i.e. C equals the number of quali¯ed workers employed in the skilled task. By
S we denote the number of workers employed in the simple task. The output of the ¯rm is then
given by y (C;S) where y : R2+ ! R+ satis¯es the standard neoclassical assumptions, i.e. it is a
twice continuously di®erentiable function, strictly concave in both arguments, and:

A1 y (¢; ¢) is homogeneous of degree one [constant returns to scale]
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A2 lim
C!0

y1(C;S) = 1 for any S > 0 and lim
S!0

y2(C;S) = 1 for any C > 03 [boundary

behavior]

A3 y (0; S) = y (C; 0) = 0 [both factors essential]

Since we make the extreme assumption that the additional output generated by unquali¯ed
workers in the complex task is zero only quali¯ed workers would be hired for this task in a perfect
information environment. However, in the model there will be some mismatch due to uncertainty
about worker quality.

2.1 The Game

The timing of events is as follows: In Stage 1 individual workers decide whether to invest or not
in their human capital. After the investment decisions (Stage 2) each worker is assigned a signal
µ by nature. In Stage 3 ¯rms simultaneously announce wage schedules (i.e. wages as functions of
the signal) and in Stage 4 workers choose which ¯rm to work for. Finally, in Stage 5 ¯rms decide
how to allocate the available workers between the two tasks.

For tractability we do not want the behavior of any individual worker to have any e®ect on
aggregate behavior so we will assume that the population of workers is large, represented by a
continuum.

The model will now be described in detail.

Stage 1. There is a continuum of agents with heterogeneous costs of investment. Each agent c
has to choose an action e 2 feq; eug, where e = eq means that the agent undertakes an investment
in his human capital (and becomes a quali¯ed worker) and e = eu that he does not. If agent c
undertakes the investment he incurs a cost of c while no cost is incurred if the investment is not
undertaken. The agents are distributed on the interval [c; c] µ R according to the continuous and
strictly increasing distribution function G. We assume that c · 0 and c > 0:

Stage 2. Each worker is assigned a noisy signal µ 2 [0; 1] . The signal µ is distributed
according to density fq for workers who invested in Stage 1 and fu for workers who did not invest.
It is assumed that fq and fu are continuously di®erentiable, bounded away from zero and satis¯es:

A4 fq(µ)
fu(µ)

> fq(µ0)
fu(µ0)

if µ > µ0 [strictly monotone likelihood ratio property]

This assumption implies that quali¯ed workers are more likely to get higher values of µ than
unquali¯ed workers. We let Fq and Fu denote the associated cumulative distributions.

3Subscripts are used to denote partial derivatives.
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Stage 3. There are two ¯rms, i = 1; 2. The ¯rms simultaneously announce wage schedules.
We allow wages to be dependent on the signal so that a (pure) action of ¯rm i in stage 3 is a
measurable function wi : [0; 1] ! R+: We assume that the ¯rms cannot observe the distribution of
signals when announcing wages4.

Stage 4. The workers observe w1 and w2 and decide which ¯rm to work for.

Stage 5. In the ¯nal stage of the game the ¯rms allocate the available workers by using a
task assignment rule which is a measurable function ti : [0; 1] ! f0; 1g5: The interpretation is that
ti (µ) = 1 (0) means that ¯rm i assigns all workers with signal µ to the complex (simple) task.

We assume that the risk neutral workers' payo®s are additively separable in money income and
the cost of investment and that workers do not care directly in which task they are employed.
Thus, once the investment cost is sunk, the worker will rationally choose the ¯rm that o®ers the
higher wage for his particular realization of µ: To save on notation we immediately impose optimal
behavior by workers in Stage 4 and write payo®s as

Eµ [max fw1 (µ) ; w2 (µ)g je ] ¡ c (e) ; (1)

where c(eq) = c and c(eu) = 0:
Next we want to express the ¯rms' pro¯ts as a function of the actions and to do this we need

frequency distributions over realized values of the signals. Intuitively one would want to appeal to
the strong law of large numbers and take these to be given by Fq and Fu; but as noted by Judd
[6] and Feldman and Gilles [5] this is problematic with a continuum of random variables. Feldman
and Gilles [5] discusses alternative ways to ensure that the individuals' probability distribution and
the frequency distribution coincides almost surely. The analysis in this paper relies only on this
property and not the particular way we make sure that the property holds. The simplest solution
is to use "aggregate shocks" rather than to assume that the signals are i.i.d. draws from Fq and Fu.
The investment decisions by the agents induce distributions of quali¯ed workers and unquali¯ed
workers on [c; c] : Call these distributions Hq and Hu: Now let the random variable x be uniformly
distributed on [0; 1] and let µc (x) denote the test-score for a quali¯ed agent c; where

µc (x) =

(
F¡1
q (Hq (c) + x) if Hq (c) + x · 1

F¡1
q (Hq (c) + x ¡ 1) if Hq (c) + x > 1

(2)

4The only role of this assumption is that it simpli¯es the description of the strategy sets. See the discussion in
the end of Section 3.

5This is not the most general way to describe a pure action, but it will be su±cient for our purposes. See footnote 7.
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It is straightforward, but somewhat tedious to verify that Pr [µc (x) · µ j eq] = Fq (µ) for all c 2 [c; c]
and all µ 2 [0; 1] and that

R
c2A(x;µ)

dHq (c) = Fq (µ) x 2 [0; 1] and all µ0 2 [0; 1] ; where A (x; µ) =

fc 2 [c; c] j µc (x) > µg : Clearly the construction can be applied to the unquali¯ed agents as well.
A single ¯rm does not care directly about the realized frequency distributions for the whole

population, but rather about the particular workers the ¯rm has available, which depends on the
decisions of the workers in Stage 4. Thus, to evaluate the pro¯ts of a single ¯rm we need to
aggregate the behavior of the workers in some way. In principle, we could derive the distributions
for a ¯rm given by arbitrary actions by workers, but we will immediately impose optimal behavior
by workers in Stage 4. To capture this we de¯ne

I1hw1;w2i (µ) =

8
><
>:

1 if w1 (µ) > w2 (µ)
1
2 if w1 (µ) = w2 (µ)
0 if w1 (µ) < w2 (µ)

(3)

and let I2hw1;w2i be de¯ned symmetrically. The interpretation is that Iihw1;w2i (µ) = 1 means that
all workers with signal µ choose to work for ¯rm i. Besides the fact that the tie-breaking rule is
arbitrary6 these functions aggregates the workers optimal responses to hw1; w2i in the obvious way.

Given that a fraction ¼ of the workers invests and wage schedules hw1; w2i we can now compute

the number of quali¯ed workers available for ¯rm i with a signal µ · µ as
R µ
0 Iihw1;w2i (µ)¼fq (µ)dµ

and the number of unquali¯ed workers can be computed symmetrically. The e®ective input of labor
in the two tasks given a pair of wage schedules hw1; w2i and task assignment rule ti are then given
by

Ci (w1; w2; ti) =
Z

Iihw1;w2i (µ) ti (µ)¼fq (µ) dµ (4)

Si (w1; w2; ti) =
Z

Iihw1;w2i (µ) (1 ¡ ti (µ)) (¼fq (µ) + (1 ¡ ¼) fu (µ)) dµ

respectively. The pro¯ts of ¯rm i can then be expressed as

¦i (¢) = y (Ci (w1; w2; ti) ; Si (w1; w2; ti)) ¡
Z

Iihw1;w2i (µ)wi (µ) (¼fq (µ) + (1 ¡ ¼) fu (µ))dµ: (5)

After the workers' decisions in Stage 4 have been replaced by the sequentially rational allocation
rule (3) a pure strategy for a worker is simply to decide to invest or not. We will summarize the
behavior of all workers as a map i : [c; c] ! feq; eug.7 A pure strategy for a ¯rm is a pair hwi; »ii

6However, one can show that there are no additional equilibrium outcomes that can be supported by changing
the tie-breaking rule.

7This assumes that all workers with the same investment costs choose the same strategy. More generally one could
model a pure strategy pro¯le in analogy with a \distributional strategy" in the sense of Milgrom and Weber[11], i.e.
as a joint distribution over [c; c]£ feq ; eug : In our model this generality is not necessary since if the best response of
agent c is to invest and c

0
< c; then the unique best response of agent c

0
is to invest.
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where wi is a measurable function from [0; 1] into R+, »i : M £ M ! T , M denotes the set of
measurable functions from [0; 1] into R+ and T denotes the set of measurable functions from [0; 1]
into f0; 1g : The interpretation is that if »i (w1; w2) (µ) = 1 then ¯rm i assigns workers with signal
µ to the complex task given that the pair of wage schedules o®ered in Stage 3 is (w1; w2) :

3 Characterization of Equilibria

In this section we characterize the set of equilibrium outcomes of the model. Although the model
is dynamic, standard re¯nements such as perfect Bayesian equilibrium will not give any sharper
predictions than Nash Equilibrium in terms of equilibrium outcomes8. Therefore we take Nash
equilibrium as our solution concept.

To ¯nd the equilibria of the game we will ¯rst characterize the ¯rms' equilibrium responses
given any investment behavior by the workers. These responses determine a unique wage schedule
consistent with any investment behavior by the workers and when we impose optimal behavior by
the workers in the initial stage we get a simple ¯xed point equation that characterizes the set of
equilibrium outcomes.

First we will argue that the wage schedules o®ered by the ¯rms must be identical almost
everywhere in any Nash equilibrium of the game. The reason is simple: If one ¯rm would o®er a
higher wage than the other to a set of workers with positive mass it could decrease the wage bill by
lowering wages slightly for all these workers. If the cut in wages is small enough the ¯rm still has
the same distribution of workers available and by keeping the task assignment rule on the outcome
path as before the deviation pro¯ts would increase9.

Next we consider the decision problem for the ¯rm in the ¯nal stage after a history when
an arbitrary fraction of agents ¼ 2 (0; 1]10 has chosen to invest and the ¯rms have o®ered wage
schedules hw1; w2i with w1 (µ) = w2 (µ) for almost all µ 2 [0; 1] : For an arbitrary µ, the quantity of
quali¯ed workers available for ¯rm i with realized signal less than µ is then simply 1

2Fq (µ) and the
quantity of unquali¯ed workers with signal less than µ is symmetrically 1

2Fu (µ) : By the monotone
likelihood ratio assumption any optimal task assignment rule for ¯rm i must be a cuto®-rule11 of
the form

ti (µ) =

(
0 if µ < eµi
1 if µ ¸ eµi

: (6)

Using the identities in (4) and observing that the ¯rms can do nothing about their wage costs in

8The reasons why any Nash equilibrium outcome can be supported as a perfect Bayesian equilibrium will be brie°y
discussed towards the end of the section.

9For a formal proof, see Lemma I in Appendix B.
10Given \worker strategy pro¯le" i this is computed as ¼ =

R
c2i¡1(feqg) dG (c) :

11For a formal argument, see Lemma II in appendix B.
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the ¯nal stage of the game the problem to maximize output can be written as

max
µi;Ci;Si

y (Ci; Si) (7)

subj. to 2Ci · ¼ (1 ¡ Fq (µi))

2Si · ¼Fq (µi) + (1 ¡ ¼)Fu (µi) :

Eliminating µi from the problem it is easy to show that the monotone likelihood ratio implies that
the constraint set is (strictly) convex12 . Furthermore, y is strictly increasing in both arguments

C: quali¯ed workers employed in the complex task

S: all workers employed in the simple task

S

1

C¼¼0

y

y0

Figure 1: The task-assignment problem

so the constraint must bind with equality and strict quasi-concavity of y guarantees that there is a
unique solution to (7). Finally, the boundary condition A2 guarantees that any solution must be
interior, so the problem can be depicted graphically as in Figure 1.

Since both ¯rms face a symmetric problem with a unique solution we drop the indices from now
on. Eliminating C and S from the problem and using constant returns to scale we can after some
algebra write the ¯rst order condition for (7) as

p (µ; ¼) y1 (¼ (1 ¡ Fq (µ)) ; F¼ (µ)) = y2 (¼ (1 ¡ Fq (µ)) ; F¼ (µ)) ; (8)

12See Lemma III in appendix A.
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where F¼ (µ) is shorthand notation for ¼Fq (µ) + (1 ¡ ¼)Fu (µ) and

p (µ; ¼) =
¼fq (µ)

¼fq (µ) + (1 ¡ ¼) fu (µ)
´ Pr [eqjµ] (9)

denotes the posterior probability that a randomly drawn agent with test score µ is quali¯ed given
prior probability ¼: The economic interpretation is that an agent with signal equal to the optimal
cuto® point determined by (8) has the same expected marginal productivity in both tasks. All
agents with a lower realization of the signal are more productive in the simple task and agents with
higher signals are more productive in the complex task.

For each ¼ > 0 we let the unique solution to (8) be denoted by eµ (¼) : It is shown in Appendix
C that eµ is continuously di®erentiable and therefore continuous on the open unit interval. To save
on notation we also de¯ne

r (¼) =
¼

³
1 ¡ Fq

³
eµ (¼)

´´

¼Fq
³

eµ (¼)
´

+ (1 ¡ ¼)Fu
³

eµ (¼)
´ ; (10)

which, for an arbitrary ¼ is the ratio of e®ective units of complex labor over units of simple labor
implied by the equilibrium task assignment rule (6).

Our next task is to determine the equilibrium wage schedules. The most natural guess is that
all agents are paid according to their respective expected marginal productivity in the task where
they are employed. Thus, given a fraction ¼ of investors we take the candidate \labor market
equilibrium" wage function to be given by w : [0; 1] ! R+ de¯ned as

w (µ) =

(
y2 (r (¼) ; 1) for µ < eµ (¼)

p (µ; ¼) y1 (r (¼) ; 1) for µ ¸ eµ (¼)
; (11)

where we have used the assumption of constant returns to scale13. Observe that the assumption of
(strict) monotone likelihood ratio implies that p (µ; ¼) is strictly increasing in µ given any ¼ > 0:

Hence the proposed wage schedule is strictly increasing on
h
eµ (¼) ; 1

i
:

Indeed, it can be shown that the intuition from Bertrand competition with constant returns to
scale carries over to our model. Formally:

Proposition 1. Let the fraction of agents who invest be given by ¼, let t : [0; 1] ! f0; 1g be a
cuto® rule with critical point eµ (¼) determined by (8) and let w : [0; 1] ! R be given by
(11). Furthermore, for any ¯rm strategy pro¯le hwi; »iii=1;2 let ti : [0; 1] ! f0; 1g be the task
assignment rule on the outcome path, i.e. ti (µ) = »i (wi; wj) (µ) for all µ: Then both ¯rms are
playing best responses if and only if wi (µ) = w (µ) and ti (µ) = t (µ) for i = 1; 2 and for all
almost all µ 2 [0; 1].

13I.e. yi

³
¼

³
1¡ Fq

³
eµ (¼)

´´
; F¼

³
eµ (¼)

´´
= yi (r (¼) ; 1)
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The proof is in the appendix. The intuition for the su±ciency part is that any deviating ¯rm has
to pay at least the expected marginal productivity (given task assignments according to candidate
equilibrium) for all workers and strictly more if it wants to attract any additional workers. The
only way this could be a pro¯table deviation in a constant returns to scale environment is if the
deviating ¯rm could allocate the workers more e±ciently between tasks, which is impossible since
the original task assignment rule maximizes output. Deviations on sets of measure zero will clearly
have no e®ect on pro¯ts and it has been argued above that both ¯rms must choose task assignment
rules identical to t almost everywhere.

So far we have considered the ¯rms' equilibrium responses for any ¯xed investment behavior
by the workers. In a Nash Equilibrium of the full model the additional condition that each worker
maximizes (1) given the wage schedules must hold as well. The workers only care about the maximal
o®er for each realization of µ , so we let w0 (µ) = max fw01 (µ) ; w02 (µ)g for any pair of wage schedules
hw01; w02i and write the set of pure best responses for agent c 2 [c; c] as

¯c
¡
w0

¢
=

8
><
>:

eq if
R

w0 (µ) fq (µ) dµ ¡ c >
R

w0 (µ) fu (µ)dµ
feq; eug if

R
w0 (µ) fq (µ) dµ ¡ c =

R
w0 (µ) fu (µ)dµ

eu if
R

w0 (µ) fq (µ) dµ ¡ c <
R

w0 (µ) fu (µ)dµ
: (12)

The unique fraction of investors consistent with all workers playing best responses is thus given by

¼ = G

µZ
w0 (µ) fq (µ) dµ ¡

Z
w0 (µ) fu (µ)dµ

¶
: (13)

Since Proposition 1 guarantees that wages must be given by marginal productivities in any Nash
equilibrium of the full model we can substitute the wage schedule (11) into (13) to obtain a ¯xed
point equation in ¼: We denote by H (¼) the gross bene¯ts of investment, i.e. the di®erence between
the expected earnings for an agent who invests and the expected earnings for an agent who does
not invest. By simple substitution we ¯nd that

H (¼) = y2 (r (¼) ; 1)
³
Fq

³
eµ (¼)

´
¡ Fu

³
eµ (¼)

´´
+ y1 (r (¼) ; 1)

1Z

eµ(¼)
p (µ; ¼) (fq (µ) ¡ fu (µ)) dµ: (14)

Since y1 (r (¼) ; 1) p
³

eµ (¼) ; ¼
´

= y2 (r (¼) ; 1) it is easy to see that H (¼) > 0 for all ¼ in the interior

of the unit interval. As discussed above optimal behavior of the workers implies that an agent
should invest if and only if the cost of doing so is less than the expected bene¯ts. The equilibria of
the model are thus fully characterized by the solutions to the equation

¼ = G (H (¼)) (15)

Summing up these observations we have:
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Proposition 2. Consider a strategy pro¯le
n
i; hwi; »iii=1;2

o
and let ¼¤ =

R
c2i¡1(feqg) dG (c) be

the fraction of investors implied by worker strategy pro¯le i: Furthermore, let w, t and ti be

de¯ned as in Proposition 1 (with ¼ = ¼¤). Then
n
i; hwi; »iii=1;2

o
is a Nash equilibrium if

and only if ¼¤ solves (15), i (c) = eq for all c < G¡1 (¼¤) and i (c) = eu for all c > G¡1 (¼¤)
and (wi (µ) ; ti (µ)) = (w (µ) ; t (µ)) for i = 1; 2 and for almost all µ 2 [0; 1] :

The proof follows from Proposition 1 and the discussion in the preceding paragraph and is
omitted.

¼

¼

G(H(¼))

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡¼

G(H(¼))

1e¼

G(0)

Figure 2: An example with a unique interior equilibrium

Note that Proposition 2 implies that the question of existence of equilibria reduces to the
question of existence of a ¯xed point of the map G ± H: This gives us a relatively easy proof of
existence of equilibria, which is the next result:

Proposition 3 If G (0) > 014, then there exists a non-trivial equilibrium of the model.

14Under the additional assumption that limC!0
y11(C;S)y(C;S)

(y1(C;S))
2 > ¡1 the result holds even when G (0) = 0 or,

equivalently, when the lower bound on the support of the cost distribution c = 0: In this case the model also has a
trivial equilibrium where nobody invests, which is not the case when c < 0:While not easy to interpret, the condition
holds for several common parametric production functions (for example in the Cobb-Douglas case). The proof, in
which it is shown that the slope of G ±H is unbouded at ¼ = 0 is available on request from the authors.
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The proof is the appendix, but the idea can be understood from Figure 2. While (8) is not
de¯ned at ¼ = 0 it follows directly from the constraint that the only feasible input of complex
labor is zero when nobody invests. Since by assumption A3 both tasks are needed in production,
output must be zero. Hence w (µ) = 0 for all µ which implies H (0) = 0: When ¼ = 1 we have
that p (µ; 1) = 1 for all µ and since this means that the signal does not provide any additional
information the wage schedule is a constant function of µ; so H (1) = 0: As has already been argued
H (¼) > 0 for all intermediate values of ¼ and after verifying that H (¼) is continuous on [0; 1]
existence is established by use of the intermediate value theorem.

3.1 Why Use a Strategic Model?

In our model, it is very important that workers respond to wage schedules when choosing what
¯rm to work for. We capture this by the assumption that workers are allocated between ¯rms in
accordance to (3). This makes the model extremely \competitive" in a strategic sense and, as we
have seen, the equilibrium conditions have an obvious °avor of competitive equilibrium. One may
therefore conjecture that the model could be formalized as a model with price taking agents, but
doing this one runs into technical as well as conceptual di±culties15. The game-theoretic modelling
helps overcome these di±culties and also makes the policy analysis easier to handle.

Note that the "reduced game" obtained by assuming that each ¯rm's distribution of available
workers is determined by (3) is still a dynamic game and we have nevertheless been able to ignore
unreached information sets: propositions 1 and 2 do not even specify what ¯rms are supposed to do
when choosing task assignment rules at information sets where the wage schedules di®er on a set
of points with positive measure. The reader may therefore be worried that we consider equilibria
supported by non-credible threats o® the equilibrium path, but this is not the case. The intuitive
explanation is that the last stage of the game is non strategic, in the sense that the task assignments
by the other ¯rm has no impact on the best responses in Stage 3. Hence it is impossible to enlarge
the set of equilibrium outcomes compared to the set of perfect Bayesian equilibrium outcomes by
committing to task assignment rules that are suboptimal o® the equilibrium path16.

In the discussion above we derived the ¯xed point equation (15) by working from the end of the
game as if we were using backwards induction. However, since we are working with a continuum

15The problem is that when maximizing over "quantities" the decision variable of the ¯rm is to choose a distribution
on the support of the noisy signal. In order to write down sensible market clearing conditions it turns out that a
strong law of large numbers is needed. The technical problem is that to guarantee such a strong law of large numbers
in an environment with uncountably many independent random variables one has to rely on somewhat arbitrary
probability measures (see Judd [6] and Feldman and Gillles [5]). While we also have to deal with this problem in our
model it is much easier to circumvent in our framework. The conceptual problem is that even with such a strong law
of large numbers it is not clear how the ¯rms should evaluate pro¯ts out of equilibrium.
16Since it would not a®ect the set of equilibrium outcomes the reader may wonder why we did not model the wage

and task assignment decisions as simultaneous. The reason is that when introducing the a±rmative action policy we
need task assignments to be done after the ¯rm knows what distribution of workers it has available.
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of workers no single worker can a®ect aggregate variables and the function (14) therefore plays the
same role in the analysis as the best response correspondence in a static game.

4 The Model with Two Identi¯able Groups of Workers

We now extend the basic model and assume that each worker belongs to one of two identi¯able
groups, indexed by a and b respectively. The purpose of the section is to demonstrate the existence
of equilibria with discrimination. Under the assumption that not too many agents will invest when
there are no monetary incentives, we show existence of discriminatory equilibria by construction.

4.1 The Extended Model

We now assume that a fraction ¸a of the workers belongs to group a and a fraction ¸b = 1 ¡ ¸a

to group b: It is assumed that the distribution of investment costs is given by G in each group and
that the probability density over signals is given by fq for any worker (from group a or b) who
invests and by fu for any worker who does not. These two assumptions means that the groups are
ex ante identical in terms of investment costs and that the signals are unbiased.

As in the single group model we assume that the realized frequency distributions of signals
coincides with the probability distributions Fq and Fu: This can be derived using the obvious
generalization of the exact stochastic model described in Section 2.1.

The game is the same as in Section 2.1, except that wage schedules are now allowed to depend on

\group identity". Hence, a strategy for ¯rm i is a quadruple
D
wai ; w

b
i ; »

a
i ; »

b
i

E
where wji : [0; 1] ! R+

is the wage schedule and »ji maps pairs of wage schedules to task assignment rules for group j: For
the same reason as in the single group model, the speci¯cation of the task assignment rule o® the
equilibrium path will be irrelevant and we can think of the ¯rm as choosing a pair of wage schedules
and task assignment rules tji : [0; 1] ! f0; 1g :

We maintain the assumption that workers from each group allocate themselves between ¯rms
according to (3), now evaluated using the relevant wage schedules for each group. Hence if the

fractions of agents who invest are given by ¼ =
³
¼a; ¼b

´
; the e®ective input of labor in respective

task in ¯rm i is given by

Ci (¢;¼) =
X

j=a;b

¸j
Z

I ihwj1;wj2i (µ) tji (µ)¼jfq (µ)dµ (16)

Si (¢;¼) =
X

j=a;b

¸j
Z

I ihwj1;wj2i (µ)
³
1 ¡ tji (µ)

´ ³
¼jfq (µ) +

³
1 ¡ ¼j

´
fu (µ)

´
dµ

It should be clear how the ¯rms' pro¯t functions should be generalized from (5).
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4.2 Equilibrium in the Extended Model

Analogous to the procedure in Section 3 we begin by considering the problem of maximizing output
over task-assignment rules with the cuto®-property. This problem can be written as;

max
(µa;µb)2[0;1]2

y

0
@ X

j=a;b

¸j¼j
³
1 ¡ Fq

³
µj

´´
;

X

j=a;b

¸jF¼j
³
µj

´
1
A : (17)

The program is qualitatively very similar to (7), the task assignment problem in the basic model, but
(partial) corner solutions may now be possible. By similar arguments as in the single group model
one shows that there exists a unique solution to (17) for any ¼ 6=(0; 0) and that the solution satis¯es
the Kuhn-Tucker conditions. We let °j be the multiplier associated with the constraint µj ¸ 0 and
´j be associated with 1 ¡ µj ¸ 0: The Kuhn-Tucker conditions are, after some rearranging, given
by

¡p
³
µj; ¼j

´
y1 (¢) + y2 (¢) +

°j ¡ ´j
f¼j (µj)

= 0; for j = a; b (18)

together with the complementary slackness conditions. We let the solution be denoted by eµ (¼) =³
eµa (¼) ; eµb (¼)

´
. As in the basic model, continuity of eµ follows from the implicit function theorem.

To economize on notation we will let er (¼) denote the factor ratio implied by eµ (¼) ; that is

er (¼) =

P
j=a;b

¸j¼j
³
1 ¡ Fq

³
eµ (¼)

´´

P
j=a;b

¸j
³
¼jFq

³
eµ (¼)

´
+ (1 ¡ ¼j)Fu

³
eµ (¼)

´´ (19)

As in the basic model each worker is paid according to his expected marginal productivity in
equilibrium, and by the assumption of constant returns the wage schedules can be written as:

wj (µ) =

(
y2 (er (¼) ; 1) for µ < eµj (¼)

p
¡
µ; ¼j

¢
y1 (er (¼) ; 1) for µ ¸ eµj (¼)

(20)

Finally, the fraction of agents in group j who invest can be found in the same way as before. Given
a wage schedule wj for group j the fraction of agents who optimally decides to invest is given by
(13). The gross bene¯ts of investment given any investment behavior ¼ is

Bj (¼) = y2 (er (¼) ; 1)
³
Fq

³
eµj (¼)

´
¡ Fu

³
eµj (¼)

´´
+ (21)

+y1 (er (¼) ; 1)

1Z

eµj(¼)
p

³
µ; ¼j

´
(fq (µ) ¡ fu (µ)) dµ
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and the relevant system of ¯xed-point equations is

¼j = G
³
Bj (¼)

´
; for j = a; b: (22)

The characterization results from the single group model generalize in a straightforward way, so
the equilibrium set will be fully characterized as the solutions to (22). For expositional convenience
we will therefore work directly with the reduced form equations. Given any solution to (22) we can
always use (17) and (20) to construct the implied equilibrium wage schedules and task assignment
rules.

We will say that an equilibrium is discriminatory if eµa (¼) 6= eµb (¼) or wa 6= wb and non-
discriminatory otherwise. Here it is important to realize that eµj (¼) as well as the wage schedule for
group j depends on investment behavior in both groups. The reason is that the fraction of investors
in the other group a®ects how scarce a resource quali¯ed workers are and ¯rms will therefore take
investment behavior in both groups into consideration when deciding on the task assignments for
any of the groups. This implies that the fraction of investors in the other group a®ects the bene¯ts
of investors, both by the e®ect on the cuto® signal and by a®ecting the factor ratio. In fact one
can show that an increase in the fraction of investors in the other group monotonically decreases
the incentives to invest, so investment in the two groups are \aggregate strategic substitutes". As
a consequence of these interdependencies the set of equilibria of the extended model will not be
the set of possible permutations of the equilibria of the single group model.

The set of non-discriminatory equilibria corresponds one to one with the set of equilibria of the
single group model: the equilibrium conditions of the extended model reduces to the equilibrium
conditions of the single group model when it is imposed that both groups are treated symmetrically.
Combining this simple observation with Proposition 3, it follows that there exists at least one non-
trivial non-discriminatory equilibrium in the extended model.

We are mainly interested in discriminatory equilibria and as the next proposition shows at least
one such equilibrium will exist under the assumption that not too many workers derive positive
utility from investment in human capital.

Proposition 4 Let y be a given production function and let fq; fu be some ¯xed densities, where

y; fq and fu satis¯es the assumptions stated in Section 2.1 and let
³
¸a; ¸b

´
2 int

¡
¢2

¢
. Then,

there exists G0 > 0 such that if G (0) · G0; then there exists an equilibrium where no
workers from one of the groups are assigned to the complex task and a positive fraction of the
agents from the other group are assigned to the complex task. Moreover, in this equilibrium
the wage schedule for the group where all workers are assigned to the simple task is uniformly
below the wage schedule for the other group.

The construction is in the appendix. Assuming that all agents in, say, group a; are assigned
to the simple task the equilibrium conditions for the other group are qualitatively as in the single
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group model. Hence, applying the same steps as in the proof of Proposition 3 we have that there is
an equilibrium where a fraction ¼b > G (0) of the agents in the other group invests and a positive
fraction of these are assigned to the complex task, assuming that no agents from the discriminated
group are assigned to the complex task. Let the implied cuto® for group b be given by eµb. In
order to check that this is an equilibrium of the model with two groups we just have to check that³
1; eµb

´
satis¯es the Kuhn-Tucker conditions for the problem (17) when ¼b is given as above and

¼a = G (0). This is indeed the case given that a su±ciently small fraction of agents have negative
costs of investment.

Observe that for µa = 1 to satisfy (18) it must be that p (1; ¼a) · y2 (¢) =y1 (¢) : Since an increase
in ¸a decreases the factor ratio the right hand of this inequality is decreasing in ¸a and it follows
that G0 is strictly decreasing in ¸a. Thus, the larger the group is the more di±cult it is to sustain
this extreme form of discrimination against its members.

An alternative su±cient condition for existence of discriminatory equilibria is existence of mul-
tiple equilibria in the single group model. As a general property of discriminatory equilibria, it can
be shown that there exists some equilibrium in the single group model such that any agent is better
o® than an agent in the disadvantaged group with the same investment costs c: The discriminated
group is thus always better o® in some "autarchic equilibrium".

5 A±rmative Action

In this section we will use our framework to analyze the e®ects of a±rmative action, which we model
as a quota forcing the employers to ful¯ll certain requirements on the representation of workers
from the disadvantaged group in both tasks.

A more natural intervention would perhaps be an equal opportunities law requiring ¯rms to
o®er wages that do not depend on group identity. In our simple framework this would mean that
the ¯rms would be constrained to o®er identical wage schedules to both groups. Since the incentives
to invest would be the same for both groups this would eliminate discrimination in our model.

The problem with this type of equal opportunity law is that the regulator must observe all
information the employer has available in order to implement such a policy. In a more realistic
setup where there are other variables than a one-dimensional signal, this type of policy would also
be possible to evade by using other variables as proxies for group identity. Moreover, in reality
hiring decisions are based on several factors that may or may not be an indicator of the expected
productivity of the worker. In particular if there are other variables correlated both with group
identity and intrinsic productivity it may be impossible for the regulatory authorities to disentangle
what part of the correlation is \real" and what is due to statistical discrimination17.

17See Lundberg [8] for a discussion on these issues and some interesting suggestions on statistical procedures the
regulator could use in order to implement equal opportunities laws when there is asymmetric information between
the ¯rms and the regulator
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Also observe that if the principle of \equal pay for equal work" is interpreted to mean that
the average wage for workers performing a particular task cannot di®er across groups then the
discriminatory equilibrium constructed in the proof of Proposition 6 satis¯es this principle. All
workers in the simple task are paid the same wage and no workers in the discriminated group are
assigned to the complex task, so \wage equality" in what seems to us to be the standard operational
sense holds.

5.1 The Model with A±rmative Action

For simplicity we will model a±rmative action as a requirement for each ¯rm to hire workers for
each task in accordance with the population fractions18. The quantity of workers (quali¯ed and
unquali¯ed) from group j employed in the complex task by ¯rm i given that a fraction ¼j has

invested and the actions A =
D
wai ; w

b
i ; t

a
i ; t

b
i

E
i=1;2

is given by

ªji (A) =
Z

I1D
wji ;w

j

i
0

E (µ) tji (µ)¸jf¼j (µ) dµ (23)

There is no distinction between the quantity of j¡workers and the input of labor in the simple
task. This quantity, Sji (A) ; is therefore computed according to equation (16) in Section 4 and the
a±rmative action requirement is

ªa
i (A)

ªb
i (A)

=
¸a

¸b
and

Sai (A)

Sbi (A)
=

¸a

¸b
(24)

The payo®s as functions of actions and the timing of the actions are as before and the only di®erence
compared to the model in Section 4 is that the task assignment rule chosen in the ¯nal stage of
the game must satisfy the a±rmative action constraint19. Since we think of the a±rmative action
policy as a constraint on the available actions we should in principle allow the task assignments to
be contingent on ¼a and ¼b and adjust the strategy sets accordingly. However, for the same reasons
as earlier we can focus on Nash equilibria without any risk of analyzing equilibria supported by non
credible threats. In particular, since no worker can a®ect the fraction of investors it is immaterial
if we view the "equilibrium responses" as dynamic reactions to the behavior of the workers or
¯ctitious best responses.

As in the single group model the ¯rst step in the equilibrium characterization is to note that
both ¯rms must o®er wage schedules that are identical almost everywhere in any equilibrium of

18We can handle quotas with other numerical goals, but as we will discuss later it is important to have a quota for
both tasks.
19One could alternatively keep the strategy sets as before and impose a±rmative action by charging penalties to

any ¯rm that violates the numerical goals on employment stipulated by the policymaker. If the penalty for a violation
is su±ciently costly the two approaches are equivalent.
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the model. By the monotone likelihood ratio property, the task assignment rules must be a pair of
cuto® rules. Using this fact we can characterize the optimal task assignment rule after any history
where both ¯rms have o®ered (essentially) the same wage schedules by solving the problem

max
µa;µb

y

Ã
P
j=a;b

¸j¼j
¡
1 ¡ Fq

¡
µj

¢¢
;

P
j=a;b

¸j
¡
¼jFq

¡
µj

¢
+

¡
1 ¡ ¼j

¢
Fu

¡
µj

¢¢
!

s.t ¼aFq (µa) + (1 ¡ ¼a)Fu (µa) = ¼bFq
³
µb

´
+

³
1 ¡ ¼b

´
Fu

³
µb

´ : (25)

This problem is just adding a constraint to the task assignment problem (17) in Section 4. As is
easily veri¯ed this constraint is the a±rmative action requirement (24) for the special case when the
wage schedules are the same and the task-assignment rules are taken to have the cuto® property,
which as we have argued must be properties of equilibrium.

The ¯rst-order conditions20 for this problem can after some rearranging be written as21;

¡y1 (¢) p (µa; ¼a) + y2 (¢) ¡ ¹
¸a = 0

¡y1 (¢) p
³
µb; ¼b

´
+ y2 (¢) + ¹

¸b
= 0

(26)

where ¹ > 0 if ¼a < ¼b (see Footnote 21). Using the constraint, the multiplier and one of the
decision variables can be eliminated and the remaining equation has all the qualitative properties
of (8). By arguments more or less identical to the ones used in the single group model one can

show that for each ¼ =
³
¼a; ¼b

´
such that either ¼a or ¼b is strictly positive there is a unique

bµ (¼) =
³

bµa
³
¼a; ¼b

´
; bµb

³
¼a; ¼b

´´
>> 0 that solves (25) and that the implicit function theorem

applies22. The solution will consequently be a smooth function of ¼: To write things down more
compactly below will introduce one additional piece of notation. For each ¼, we denote by br (¼)
the unique factor ratio implied by the ¯rms optimal choice of task assignment rules, that is

br (¼) =

P
j=a;b ¸

j¼j
³
1 ¡ Fq

³
bµj (¼)

´´

P
j=a;b ¸

j
³
¼jFq

³
bµj (¼)

´
+ (1 ¡ ¼j)Fu

³
bµ (¼)

´´ : (27)

While the characterization of equilibrium task-assignment rules is not signi¯cantly harder than
in the single group model the determination of wages is somewhat counterintuitive. It is tempting

20It is straightforward to show that the ¯rst-order conditions are su±cient and that there is a unique solution to
the program (25).
21It is useful to note that the solution(s) to the problem with the a±rmative action restriction formulated as an

equality constraint must also be solution(s) to the problem with the same objective and the inequality constraint
¼aFq (µ

a)+(1¡ ¼a)Fu (µa) · ¼bFq
¡
µb

¢
+

¡
1¡ ¼b

¢
Fu

¡
µb

¢
if ¼a < ¼b and the reverse inequality if ¼a > ¼b: Hence, if

the multiplier is taken to be positive it enters with a negative sign for the group with the smaller number of investors
and a positive sign for the other group.
22The proofs follows the proofs of Lemma I and Lemma II in appendix B step by step.
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µ

y2

y1p(µ; ¼
b)

eµb

Figure 3: Not an equilibrium

to guess that wages still are given by expected marginal productivities, that is to take (20) as the
candidate equilibrium wage function, using the unique cut-o® points determined above. This is
however not consistent with equilibrium since (assuming ¼a 6= ¼b) some agents of the discriminated
group employed in the complex tasks would be paid less than other agents from the same group
who are in the simple task (see Figure 3). Hence a ¯rm could deviate and attract all these workers
and replace some of the workers previously in the simple task by the additional workers the ¯rm
attracts. If the a±rmative action constraint was satis¯ed prior to the deviation it will be satis¯ed
after the deviation as well and output is unchanged. Since the wage bill has decreased this is a
pro¯table deviation.

The unique wage schedules consistent with equilibrium are depicted in Figure 4, which is drawn
under the assumption that ¼a < ¼b: As can be seen from the graph the wage in the simple task is now
determined by the marginal agent's productivity in the complex task rather than the productivity
in the simple task. Intuitively, there is no incentive to deviate in order to change the allocation of
workers in the complex task for any of the ¯rms: all workers already employed in the complex task
are paid their expected marginal productivities and all workers employed in the simple task are
paid more than their expected marginal productivity would be if in the complex task.Furthermore,
by the a±rmative action constraint the ¯rms cannot change the ratio of a¡workers to b¡workers
in the simple task. This means that what is left to show in order to demonstrate that the proposed
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Figure 4: Equilibrium wage schedules under a±rmative action

wage schedules are consistent with equilibrium is that the average wage in the simple task equals
the marginal productivity. To realize this it is useful to note that by combining the two equations
in (26) we see that for the optimal choice of bµ the weighted average of the expected marginal
productivities in the complex task for the critical agents' in respective group equals the marginal
productivity in the simple task. That is, eliminating the multiplier from (26) we have

y1 (br (¼) ; 1)
X

j=a;b

¸jp
³

bµj (¼) ; ¼j
´

= y2 (br (¼) ; 1) (28)

At this point it is simply to note that F¼a
³

bµa (¼)
´

= F¼b
³

bµb (¼)
´

by the a±rmative action con-

straint, so the left hand side of (28) is also the average wage in the simple task, which gives the
result.

In terms of the notation introduced above we can write the proposed labor market equilibrium
wage schedules depicted in Figure 4 as

wj (µ) =

(
y1 (br (¼) ; 1) p

³
bµj (¼) ; ¼j

´
for µ < bµj (¼)

y1 (br (¼) ; 1) p
¡
µ; ¼j

¢
for µ ¸ bµj (¼)

: (29)

for j = a; b: Note that if ¼a < ¼b then bµa (¼) < bµb (¼) ; since otherwise the a±rmative action

constraint can not be satis¯ed. Hence p
³

bµa (¼) ; ¼a
´

< p
³

bµb (¼) ; ¼b
´

and by inspection of (26) we
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see that wa (µ) < y2 (br (¼) ; 1) for µ < bµa (¼) and wb (µ) > y2 (br (¼) ; 1) for µ < bµb (¼) : That is,
workers in the simple task from group a are paid less than their marginal productivity in the task
and workers from group b are paid more.

Summing up the discussion above as a proposition:

Proposition 5. Let the fractions of agents who invest in each group be given by ¼ =
³
¼a; ¼b

´
and

let bµ (¼) =
³

bµa (¼) ; bµb (¼)
´

be the unique solution to (26). Furthermore, for j = a; b let wj (¢)
be given by (29) and tj (¢) be the cuto® task assignment rule with critical value bµj (¼) : Finally,

for an arbitrary ¯rm strategy pro¯le
D
wai ; w

b
i ; »

a
i ; »

b
i

E
i=a;b

let tai and tbi be the task assignment

rules on the outcome path for ¯rm i = 1; 2: Then, both ¯rms are playing best responses if and
only if wji (µ) = wj (µ) and tji (µ) = tj (µ) for i = 1; 2 and j = a; b and for almost all µ 2 [0; 1].

The proof in the appendix ¯lls in some of the details missing in the paragraphs above
One may believe that when we impose a±rmative action as a constraint in both tasks, one

constraint is really redundant. The reason for this would be that if the a±rmative action constraint
is satis¯ed in one of the tasks and if the market clears, which must be the case in equilibrium, then
the a±rmative action constraint must be satis¯ed in the other task as well. This is indeed true and
it is also true that in order to characterize the equilibrium task assignment rules we need only one of
the constraints. The problem is that if there is a±rmative action in the complex task only and if the
groups behave di®erently there is no "labor market equilibrium" in the continuation game. To see
this it useful to consider Figure 4, where it is easy to see that any deviation where a ¯rm reduces
the number of workers from group b is pro¯table. Hence, since only non-discriminatory (Nash)
equilibria remains in the full game one could in principle interpret this as saying that a±rmative
action works. However, we think that this is taking the notion of equilibrium too far23.

Since for each ¼ there is a unique wage function consistent with the ¯rms playing mutual best
responses we can proceed as in the single group model and characterize the equilibrium set as ¯xed
points of a function from [0; 1]2 to [0; 1]2 : The interpretation of this function is as simple as in the
single group model. The function computes the fractions of agents in each group who invests as a
best response to the wage function implied by any given investment behavior.

Using the wage schedules (29) we can express the expected gross bene¯ts from undertaking the

investment for an agent in group j when ¼ =
³
¼a; ¼b

´
as

Hj (¼) = y1 (br (¼) ; 1) p
³

bµj (¼) ; ¼j
´ ³

Fq
³

bµj (¼)
´

¡ Fu
³

bµj (¼)
´´

(30)

+y1 (br (¼) ; 1)

Z 1

bµj(¼)
p

³
µ; ¼j

´
(fq (µ) ¡ fu (µ)) dµ:

23It has been suggested to us to consider a quota in the complex task together with a \civil rights law" prohibiting
wage discrimination in the simple task. However, the same nonexistence problem remains under this policy.
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Arguing as in the single group model we see easily that ¼ =
³
¼a; ¼b

´
is an equilibrium if and only

if
¼j = G

³
Hj (¼)

´
for j = 1; 2 (31)

From these expressions it is easily seen that any non-discriminatory equilibrium in the extended
model is an equilibrium under a±rmative action. This should be fairly obvious since if the groups
behave the same way then the employers voluntarily treat the groups identically. To see it formally
we observe that the multiplier in the conditions (26) is zero when ¼a = ¼b; so both equations in
(31) reduces to the ¯xed point equation for the single group model.

If there are asymmetric equilibria under a±rmative action, inspection of (29) reveals that the
wage schedule for the group with the lower fraction of agents who invests will be uniformly below
the wage schedule for the other group. Hence, wage discrimination persists in our model unless the
policy forces the economy to an equilibrium where the fractions of agents who invest are the same
in both groups. For this reason we will say that an equilibrium is discriminatory unless ¼a = ¼b

and although one could potentially think of alternatives, we say that the most discriminatory

equilibrium is the equilibrium for which the di®erence
¯̄
¯¼a ¡ ¼b

¯̄
¯ is the largest. We observe:

Observation If 0 < G (0) < G0 (with G0 de¯ned as in Proposition 4) so that the most discrimi-

natory equilibrium
³
¼a; ¼b

´
is such that ¼a = G (0) and if

³
b¼a; b¼b

´
is the most discriminatory

equilibrium under a±rmative action with b¼a < b¼b. Then b¼a > ¼a:

To see this, observe that if G (0) > 0 there must clearly be a positive fraction of agents from
both groups who invest in any equilibrium. Hence the wage schedule for both groups will be strictly
increasing and there will consequently be some (possibly very small) monetary incentives to invest
for agents in both groups in any equilibrium under a±rmative action.

The fact that a±rmative action provides a lower bound on the fraction of investors in the
discriminated group that is higher than in the "worst" equilibrium without a±rmative action does
not help us if we want to analyze the consequences of introducing a±rmative action in general. In
particular, it provides no guidance at all if we want to say something about the e®ects of a±rmative
action starting from a situation where there is discrimination, but where some agents from both
groups are employed in both tasks.

If all equilibria under a±rmative action would be non-discriminatory the situation would be
di®erent. Hence, it would be desirable to have some su±cient conditions under which a±rmative
action always eliminates the possibility of discriminatory equilibria. Intuitively, a±rmative action
makes it harder to sustain discrimination since it pushes up wages in the simple task for workers
from the group with the higher fraction of investors and pushes down wages in the simple task for
the discriminated group. However, as we show next, any such su±cient conditions must involve
stringent restrictions on the distribution of investment costs.
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Proposition 6 Let y be a given production function and let fq; fu be some ¯xed densities, where

y; fq and fu satis¯es the assumptions stated in Section 2.1. Furthermore ¯x any
³
¸a; ¸b

´
2

int
¡
¢2

¢
: Then there exists some strictly increasing distribution function G with G (0) > 0

such that the model with a±rmative action has an equilibrium
³
b¼a; b¼b

´
with b¼a < b¼b:

Proof. Suppose ¼a = 0 and 0 < ¼b < 1: Then optimality conditions for the problem (25) can in
this case be written as

y2 (¢) ¡ ¹
¸a = 0

¡y1 (¢) p
³
µb; ¼b

´
+ y2 (¢) + ¹

¸b
= 0

(32)

we observe that the unique solution
³

bµa; bµb
´

must still be interior. Using (30) we also see that

Ha
³
0; ¼b

´
= 0 < Hb

³
0; ¼b

´
: It is straightforward to verify that Hj is continuous at

³
0; ¼b

´
for

j = a; b and it follows that there must exist some
³
b¼a; b¼b

´
where 0 < b¼a < b¼b and, since Ha

is initially increasing, 0 < Ha
³
b¼a; b¼b

´
< Hb

³
b¼a; b¼b

´
: There must therefore exist some strictly

increasing function G such that G (0) > 0 , G
³
Ha

³
b¼a; b¼b

´´
= b¼a and G

³
Hb

³
b¼a; b¼b

´´
= b¼b; i.e.³

b¼a; b¼b
´

is an equilibrium in the economy with fundamentals
n
y; fq; fu;

³
¸a; ¸b

´
;G

o
:

The result can be strengthened in several directions. First, it should be clear that we get
multiplicity for a generic set of distribution functions. To see this one notes that we can always

¯nd an open set U containing
³
b¼a; b¼b

´
such that the expected bene¯ts of investment for members

in group b exceeds the bene¯ts for members in group a for all ¼ 2U . Also, the argument only
relies on existence of a function G that takes on particular values at a few points which means that
assumptions about its curvature will not be enough to get any su±cient conditions for ruling out
discriminatory equilibria. For example, one can show that there always exist uniform distributions
such that there are discriminatory equilibria in the model. The idea should be clear from the proof
above, but a slightly more complicated argument is needed to assure that G (0) ¸ 0:

5.2 Welfare E®ects of A±rmative Action

The purpose of this section is to illustrate that even if starting from the most extreme form of
discrimination, the disadvantaged group may or may not be hurt by a±rmative action. To show
this we will consider simple distribution functions of the form:

G (c) =

(
¼a if c · c
¼b if c > c

(33)

It is not di±cult to extend the examples to strictly increasing distribution functions, but for ana-
lytical simplicity we will not do so.
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¼

c

¼b

¼a

Ba Ha
Hb Bb

G(c)

Figure 5:

In the ¯rst example it is demonstrated that even if we start from the most extreme form of
discrimination introduction of a±rmative action may make the disadvantaged group may be worse
o®. The construction is illustrated in Figure 5.

The idea is to choose
³
¼a; ¼b

´
so that an there is an equilibrium with nobody in group a employed

in the complex task. Using the notation from Section 4 we let Bj (¼) denote the expected gross
bene¯ts of investment in the model without a±rmative action. Now, if we ¯x ¼b > 0 and ¼a is
su±ciently small the solution to the task assignment problem for the ¯rm is to assign all workers
from group a to the simple task, while some workers from group b will be assigned to the complex

task. Hence Ba
³
¼a; ¼b

´
= 0 < Bb

³
¼a; ¼b

´
for ¼a su±ciently small. Thus, if c in (33) is in between

0 and Bb
³
¼a; ¼b

´
we have that

³
¼a; ¼b

´
is an equilibrium in the model without a±rmative action.

Next we proceed in the spirit of the argument of the proof of Proposition 6 and argue that for ¼a

small enough and for the right choice of c this will also be an equilibrium with a±rmative action.

To see this we note that Ha
³
¼a; ¼b

´
! 0 as ¼a ! 0 while Hb

³
¼a; ¼b

´
! Hb

³
0; ¼b

´
> 0 as ¼a ! 0:

Hence there exists some ¼a > 0 such that

min
³
Bb

³
¼a; ¼b

´
;Hb

³
¼a; ¼b

´´
> Ha

³
¼a; ¼b

´
> Ba

³
¼a; ¼b

´
= 0: (34)

The desired result follows: choosing c in (33) between Ha
³
¼a; ¼b

´
and the minimum of Bb

³
¼a; ¼b

´

and Hb
³
¼a; ¼b

´
we have that

³
¼a; ¼b

´
is an equilibrium both with and without the policy. It is
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now obvious that output decreases when a±rmative action is introduced in this case. This follows
since the set of feasible production plans with the policy is a strict subset of the feasible plans
without the policy and the unique solution without the restriction is not in this subset.

The change in expected utility for an agent of group j who invests24 is given by the di®erence
in expectation of the wage schedules with respect to fq:

¢W j
INV = y2 (er (¼) ; 1)Fq

³
eµj (¼)

´
+

Z 1

eµj(¼)
y1 (er (¼) ; 1) p

³
µ; ¼j

´
fq (µ)dµ ¡ (35)

¡
"
p

³
bµj (¼) ; ¼j

´
y1 (br (¼) ; 1)Fq

³
bµ (¼)

´
+

Z 1

bµj(¼)
y1 (br (¼) ; 1) p

³
µ; ¼j

´
fq (µ) dµ

#

The change in expected utility for agents who do not invest is derived symmetrically. Note that
the factor ratio in general changes when the policy is introduced. This e®ect may go either way
depending on the choice of production function and of distribution functions for µ: However, given
the way this example is constructed this creates no di±culties. If the factor ratio increases when
the policy is introduced we can use (35) directly to show that the expected bene¯ts for any agent
in group a decreases with the policy. On the other hand, if the factor ratio decreases we cannot
say anything in general since the wage under a±rmative action for high realizations of µ now
may be higher than the (constant) wage in the original discriminatory equilibrium. However, no
matter what happens to the factor ratio we can always rely on the fact that under a±rmative
action wa (µ) · y1 (br (¼) ; 1) p (1; ¼a) for all µ; so for ¼a small enough the policy must decrease the
expected utility for all agents in group a: The welfare e®ect for the other group is ambiguous.

It is also possible to construct examples where the discriminated group gains even if an equi-
librium occurs that leaves the group discriminated. To illustrate the point we want to make it is
however more straightforward to show that introduction of a±rmative action may imply that a
symmetric equilibrium is the only possibility.

Consider the bene¯ts of investment if a fraction ¼b would invest in both groups, Bj
³
¼b; ¼b

´
in

the model without the quota and Hj
³
¼b; ¼b

´
in the model with; both which equals the bene¯ts of

investment in the single group model if a fraction ¼b invests, H
³
¼b

´
: It is straightforward to show

that the bene¯ts of investment for agents in one of the groups is monotonically decreasing in the
fraction of investors in the other group, so

Ba
³
¼a; ¼b

´
< Ba

³
¼b; ¼b

´
= H

³
¼b

´
< Bb

³
¼a; ¼b

´

As we argued above Ba
³
¼a; ¼b

´
= 0 for some small enough ¼a > 0; so for c chosen in between 0

and Bb
³
¼a; ¼b

´
and ¼a small enough

³
¼a; ¼b

´
is an equilibrium. But if c is chosen in the interval

24Since we constructed the equilibria so that the fraction of investors remains the same we do not need to worry
about agents who change their behaviour when the policy is introduced.
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³
0;Ha

³
¼a; ¼b

´´
then

³
¼a; ¼b

´
is not an equilibrium when a±rmative action is introduced. Thus

(assuming a is the smaller group we cannot switch to discrimination of the other group) the only
remaining equilibrium candidate is one where a fraction of ¼b invests in both groups. Since c can

be chosen so that it is smaller than H
³
¼b

´
there is a range of parameter values so that this is

indeed an equilibrium. One can show that the wage for agents employed in the simple task will be
higher in the symmetric equilibrium and this means that all agents in group a bene¯ts from the
policy. Since production increases the other group may or may not be made worse o®.

By relatively standard continuity arguments both examples can be extended to some strictly
increasing distribution functions as well.

We also conjecture that there are circumstances where a±rmative action is necessarily a Pareto
improvement and other circumstances where removing a±rmative action is a Pareto improvement,
but we have not been able to show this yet.

6 Discussion

We believe that our model captures important aspects of how discrimination may be sustained in
the real world: when few workers of a particular group invest in their skills, the ¯rms will tend
not to promote these workers to higher paid more quali¯ed jobs. This in turn suggests that the
incentives to invest in human capital should be lower for agents from a group where few workers
invest in their skills than for agents from a group where more workers invest. Hence discrimination
as a consequence of self-ful¯lling expectations seems like a plausible explanation for di®erences in
labor market performance between groups.

Multiple equilibrium explanations of discrimination (as well as of other economic phenomena)
are often criticized on the grounds that the model gives no prediction. Our model is also vulnerable
to this type of criticism since it does not give a unique prediction for any ¯xed fundamentals.
However, when we combine the logic of self-con¯rming expectations with factor complementarity
this problem becomes less severe since the model has some implications about the relation between
relative group size and possibilities for discrimination. In this context we again want to stress
that since group size matters in the determination of discriminatory equilibria we cannot take an
arbitrary discriminatory equilibrium and construct a new equilibrium by reversing the roles of the
groups.

Since we are explicitly taking competitive forces on the labor market into consideration our
model is a natural framework to analyze the consequences of anti-discriminatory policies. In this
paper, we focus on a±rmative action. The speci¯c way we model it is subject to criticism since one
would more naturally require quotas only on the skilled job, rather than in both jobs. Unfortunately,
a quota in the skilled job only implies non-existence of "labor market equilibria" in continuation
games where the two groups behave di®erently. Besides this technical aspect, we do not think
that modelling a±rmative action as a quota is particularly problematic. We already pointed out
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that we could as well impose a penalty on employers not conforming to a speci¯c requirement and
that a su±ciently sti® penalty would give the same results as our policy gives. The quotas we are
considering also have the attractive feature that they are possible to implement under rather weak
assumptions about what is observable to the policymaker.

One can think of alternative anti-discriminatory policies, such as di®erent kinds of subsidies,
that are feasible under the same informational assumptions that are needed in order to implement
employment quotas. In a sequel to this paper we intend to compare the e®ects of quotas of the
type considered in this paper and di®erent subsidies and to analyze optimal policies under di®erent
informational assumptions.

A Appendix: Proof of Proposition 1

(su±ciency) Suppose that one of the ¯rms would deviate from the proposed equilibrium strategies and play some
arbitrary strategy hw0i; »0ii so that the actions on the implied outcome path hw0i; t0ii is di®erent from hw; ti given by (11)
and (6) on a set of positive measure (in principle both ¯rms could be playing according to the characterization and one
¯rm could deviate by o®ering a wage schedule di®erent only on a ¯nite set of points and this way trigger the other ¯rm
to react by changing the task assignment rule. However, such a deviation would not change pro¯ts for the deviator,
which is why we without loss of generality can assume that the actions by the deviator is changed on a set of positive
measure). De¯ne the following sets: £h = fµ : w0 (µ) > w (µ)g ; £l = fµ : w0 (µ) < w (µ)g ; £e = fµ : w0 (µ) = w (µ)g :
For ease of notation let C0 and S0 denote the implied factor inputs for the deviating ¯rm given that the other ¯rm
plays according to the proposed equilibrium strategies: Using (4) we see that these quantities can be expressed as:

C0 =

Z

µ2£h

t0 (µ)¼fq (µ) dµ +
1

2

Z

µ2£e

t0 (µ)¼fq (µ) dµ (36)

S0 =

Z

µ2£h

¡
1¡ t0 (µ)

¢
f¼ (µ) dµ +

1

2

Z

µ2£e

¡
1¡ t0 (µ)

¢
f¼ (µ) dµ

where f¼ (¢) denotes the density where f¼ (µ) = ¼fq (µ)+ (1¡ ¼) fu (µ) for each µ 2 [0; 1] . Using the de¯nition of the
pro¯t function (5) and the allocation rule (3) we can express the pro¯ts for the deviating ¯rm as;

¦idev = y
¡
C0; S0

¢
¡

Z

µ2£h

w0 (µ) f¼ (µ) dµ ¡ 1

2

Z

µ2£e

w (µ) f¼ (µ) dµ (37)

Let C;S > 0 be the implied factor inputs if both ¯rms are playing according to the equilibrium strategies. By
concavity of y and Euler's theorem it follows that

¦idev · y1 (C;S)C0 + y2 (C;S)S0¡
Z

µ2£h

w0 (µ) f¼ (µ) dµ ¡ 1

2

Z

µ2£e

w (µ) f¼ (µ) dµ (38)

From the de¯nition of p (µ; ¼) we have that ¼fq (µ) = p (µ; ¼) f¼ (µ) : Furthermore we have from the de¯nition of the
proposed equilibrium wage schedule (11) that w (µ) = max fy1 (C;S) p (µ; ¼) ; y2 (C;S)g : Some algebraic manipula-
tions using these equalities gives;

y1 (C;S)C
0 ·

Z

µ2£h

t0 (µ) y1 (C;S) p (µ; ¼) f¼ (µ) dµ +
1

2

Z

µ2£e

t0 (µ) y1 (C;S) p (µ; ¼) f¼ (µ) dµ (39)
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y2 (C;S)S
0 ·

Z

µ2£h

¡
1¡ t0 (µ)

¢
w (µ) f¼ (µ) dµ +

1

2

Z

µ2£e

¡
1¡ t0 (µ)

¢
w (µ) f¼ (µ) dµ (40)

Summing over these inequalities we see that

y1 (C;S)C
0 + y2 (C; S)S

0 ·
Z

µ2£h

w (µ) f¼ (µ) dµ +
1

2

Z

µ2£e

w (µ) f¼ (µ) dµ; (41)

and by substituting this into (38) we get

¦idev ·
Z

µ2£h

¡
w (µ)¡ w0 (µ)

¢
f¼ (µ) dµ; (42)

and since w0 (µ) > w (µ) for all µ 2 £h this means that no deviation earns positive pro¯ts (we can not conclude that
a deviation leaves the deviator strictly worse o® since there are deviations that "scale down" production that also
gives zero pro¯ts). Since the deviation was arbitrary this completes the proof of the su±ciency part of Proposition
1.

The necessity part of Proposition 1 will be proved by using a sequence of intermediate results:

Lemma I Suppose hwi; »iii=1;2 is a pair of best responses. Then w1 (µ) = w2 (µ) for almost all µ 2 [0; 1]
Proof. Suppose hwi; »iii=1;2 are best responses and that there exists a set £ µ [0; 1] positive measure such that

wi (µ) ¡ wj (µ) > 0 for all µ 2 £. Consider a deviation hw0i; »0ii such that »0i (w0i; wj) (µ) = »i (wi; wj) (µ) for all µ;
w0i (µ) = wi (µ) for µ 2 [0; 1] n£ and w0i (µ) = (wi (µ) + wj (µ))=2 for µ 2 £. We notice that the deviation leaves the
distribution of available workers unchanged and since the task assignment rule on the outcome path also is unchanged
this means that output is unchanged. The di®erence in expected pro¯ts is then simply the di®erence in the total
wage bill, i.e.

¢¦idev =

Z

µ2£

wi (µ)¡ wj (µ)
2

(¼fq (µ) + (1¡ ¼) fu (µ)) dµ > 0 (43)

which contradicts the hypothesis that hwi; »iii=1;2 is a pair of best responses.
Lemma II Let ti denote the implied task assignment rule on the equilibrium path for ¯rms i = 1; 2. Then there

exists some eµi 2 (0; 1) such that ti (µ) = 1 for almost all µ > eµi and ti (µ) = 0 for almost all µ < eµi and for
i = 1; 2:

Proof. By Lemma I, wi (µ) = wj (µ) for almost all µ; so I
i
hw1;w2i (µ) =

1
2
for almost all µ. It follows that if ti must

satisfy:

ti (¢) 2 argmax
t(¢)

y (ci; si)

subj. to Ci =
R
t (µ)¼fq (µ) dµ

Si =
R
(1¡ t (µ)) f¼ (µ) dµ

: (44)

For a contradiction, suppose that the claim is false. Then there are sets £h;£l µ [0; 1] with positive measure such
that µh > µl for all µh; µl 2 £h £ £l , but ti

¡
µh

¢
= 0 for all µh 2 £h and ti

¡
µl

¢
= 1 for all µl 2 £l. Since fq and

fu are continuous the mixture f¼ is continuous as well and we may therefore without loss of generality assume thatR
µ2£h f¼ (µ) dµ =

R
µ2£l f¼ (µ) dµ > 0. Consider the alternative task-assignment rule,

tai (µ) =

8
<
:

1 if µ 2 £h
0 if µ 2 £l

ti (µ) otherwise
(45)
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Let Sai and Cai be the factor inputs implied by tai and let Si and Ci be the inputs given the rule ti. SinceR
µ2£h f¼ (µ) dµ =

R
µ2£l f¼ (µ) dµ it follows that S

a
i = Si; the input of simple labor is unchanged. Since the de-

viation assigns to the complex task workers who are productive with a higher probability it is rather obvious that
Cai > Ci: To see this formally we note that

Cai =
¼

2

·Z

µ2£h

fq (µ) dµ ¡
Z

µ2£l

fq (µ) dµ

¸
+ Ci: (46)

Suppose Ca
i · Ci; which by (46) implies

R
µ2£h fq (µ) dµ ·

R
µ2£l fq (µ) dµ: Let l (µ) denote the likelihood ratio

fq (µ) =fu (µ) and rewrite this inequality as

Z

µ2£h

l (µ) fu (µ) dµ ·
Z

µ2£l

l (µ) fu (µ) dµ; (47)

which since l
¡
µh

¢
> l

¡
µl

¢
for all µh; µl implies that

R
µ2£h fu (µ) dµ ·

R
µ2£l fu (µ) dµ: But then

Z

µ2£h

f¼ (µ) dµ = ¼

Z

µ2£h

fq (µ) dµ + (1¡ ¼)
Z

µ2£h

fu (µ) dµ < (48)

< ¼

Z

µ2£l

fq (µ) dµ + (1¡ ¼)
Z

µ2£l

fu (µ) dµ =

Z

µ2£l

f¼ (µ) dµ

which contradicts our original assumption. Hence Cai > Ci and since S
a
i = Si this means that output is higher under

tai ; so ti could not solve (44).

Lemma III Let ti denote the implied task assignment rule on the equilibrium path for ¯rms i = 1; 2 and let t be
de¯ned by (6). Then ti (µ) = t (µ) almost everywhere.

Proof. By Lemma II the problem of ¯nding an optimal task assignment rule reduces to ¯nding an optimal solution
to the programing problem (7) in the main text. Since ¯rms are facing symmetric problems we drop indices and
perform a change in variables by de¯ning C = ¼ (1¡ Fq (µ)) and S = ¼Fq (µ)+ (1¡ ¼)Fu (µ) : The problem can then
be restated as

max
c;s

y (C;S)

subj. to g (C;S) ´ ¼ ¡ C ¡ S + (1¡ ¼)Fu
¡
F¡1q

¡
¼¡C
¼

¢¢
¸ 0

(49)

It is veri¯ed that
@g (C;S)

@C
= ¡1¡ 1¡ ¼

¼

fu
¡
F¡1q

¡
¼¡C
¼

¢¢

fq
¡
F¡1q

¡
¼¡C
¼

¢¢ = ¡1¡ 1¡ ¼
¼

1

Ã
¡
F¡1q

¡
¼¡C
¼

¢¢ (50)

and taking second derivatives we ¯nd that @2g=@C2 < 0 while all other elements of the Hessian matrix is zero
by the linearity in S: Hence g is concave (one can actually see that @2g=@C2 < 0 without explicitly performing
the di®erentiation since Ã and F¡1q are both strictly increasing). Since y is concave the Kuhn-Tucker conditions
are su±cient conditions for a solution to (49) and necessity follows since concavity of g is su±cient for constraint
quali¯cation. Invoking the boundary conditions we easily see that any solution to the Kuhn-Tucker conditions must
be interior. Since the programs (8) and (49) are equivalent this completes the proof.

Lemma IV Suppose hw1; w2i is a pair of equilibrium wage schedules and let eµ (¼) be the solution to (6). Then there
is a pair (ks; kc) such that wi (µ) = ks for i = 1; 2 and for almost all µ < eµ (¼) and wi (µ) = p (µ; ¼) kc for

i = 1; 2 and for almost all µ > eµ (¼) .
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Proof. We will begin by showing that wi (µ) = ks for almost all µ < eµ . For contradiction assume that there exists
sets £a;£b µ

h
0; eµ (¼)

i
with strictly positive measure such that wi (µ) < k for all µ 2 £a and wi (µ) ¸ k for all

µ 2 £b: By continuity of f¼ we may without loss of generality assume that
R
µ2£a f¼ (µ) dµ =

R
µ2£b f¼ (µ) dµ > 0: To

show that this is inconsistent with equilibrium we will construct a deviation where the ¯rm replace get rid of some
workers that are paid above k and attracts some workers that are being paid a lower wage. Intuitively it is rather
clear that this deviation will be pro¯table as long as the total input of workers in both tasks constant. To show this
formally consider the following deviation by ¯rm i

w0i (µ) =

Ã
wi (µ) + ² for µ 2 £a
0 for µ 2 £b
wi (µ) otherwise

(51)

Since input of both factors remains constant under the deviation (given that the task assignment rule is unchanged,
which we assume) the di®erence in payo®s for the deviating ¯rm is just the di®erence in wage payments, i.e.

¢ (²) =
1

2

2
4

Z

µ2£b

wi (µ) f¼ (µ) dµ¡
Z

µ2£a

(wi (µ) + ²) f¼ (µ) dµ

3
5 (52)

Since lim²!0¢(²) > 0 there exists ² > 0 such that ¢ (²) > 0: Hence, for ² small enough the deviation is pro¯table.

Symmetrically, suppose there are sets £a;£b µ
h
eµ (¼) ; 1

i
with strictly positive measure (where we again w.l.o.g.

may assume
R
µ2£a fq (µ) dµ =

R
µ2£b fq (µ) dµ) such that (wi (µ) =p (µ; ¼)) < k for all µ 2 £a and (wi (µ) =p (µ; ¼)) ¸ k

for all µ 2 £b: Again we consider a deviation according to (51). Noting that p (µ; ¼) = (¼fq (µ) =f¼ (µ)) we ¯nd that
output is unchanged in this case as well and it is easy to verify by a similar argument as above that the deviation is
pro¯table for ² small enough.

We now collect the pieces together and prove the necessity part of Proposition 1:
Proof. (necessity). By Lemma III it follows that the task assignment rule on any equilibrium path must satisfy
ti (µ) = t (µ) for i = 1; 2 and almost all µ: Using the notation from the main text and constant returns to scale we
have from Lemma IV that in any equilibrium of the model both ¯rms must o®er almost identical wage schedules
(disregarding sets of measure zero) of the form:

w (µ) =

½
ks
p (µ; ¼) kc

(53)

It remains to be shown that ks = y2 (C;S) and kc = y1 (C; S) : By straightforward calculations it can be shown that
if ks < y2 (C;S) and kc < y1 (C; S) then both ¯rms are making positive pro¯ts and a uniform deviation where ¯rm
i o®ers w0i (µ) = wi (µ) + ² for all µ would be pro¯table for ² small enough. Also, if both inequalities would go the
other way and the wages would be uniformly above the candidate equilibrium wage schedule both ¯rms would make
strictly negative pro¯ts and a deviation to wi (µ) = 0 for all µ would be pro¯table. The cases that requires a little
work are when the inequalities work in opposite directions.

The two cases can be taken care of with perfectly symmetric arguments we will only consider the case with
ks > y2 (C;S) and kc < y1 (C;S) : The idea behind the construction is illustrated in Figure 6.

Recall that y1 (C;S) p
³
eµ (¼) ; ¼

´
= y2 (C; S) by (8):Hence if ks > y2 (C;S) and kc < y1 (C;S) then kcp

³
eµ (¼) ; ¼

´
<

ks and there is an interval
³
eµ (¼) ; µ¤

´
such that wi (µ) = p (µ; ¼) kc < ks for all µ in this interval. The idea behind the

construction (see Figure 6) is now simply to demonstrate that it is better to dispose of some of the workers being paid

ks and replace them by cheaper workers from
³
eµ (¼) ; µ¤

´
: While this logic is perfectly simple the formal argument
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y2

ks

kcp(µ)

y1p(µ)

µeµ µ¤µ00µ0

w

candidate equilibrium wages

deviation

Figure 6: A pro¯table deviation

below is rather messy. The reason for this being that we need to keep track of the changes in the e®ective factor
inputs as well as changes in the wage bill.

Let µ0 solve F¼ (µ0) = F¼ (µ
¤) ¡ F¼

³
eµ (¼)

´
and de¯ne µ00 as the solution to F¼ (µ00) ¡ F¼

³
eµ (¼)

´
= (F¼ (µ

¤) ¡
F¼(eµ (¼)))=2: Consider the following deviation for ¯rm i :

w0i (µ) =

8
<
:

0 for µ 2 [0; µ0)
wi (µ) + ² for µ 2 [eµ (¼) ; µ¤)
wi (µ) for µ 2 [µ¤; 1) [ [µ0; eµ)

(54)

t0i (µ) =

½
0 for µ 2 [0; µ00)
1 for µ 2 [µ00; 1) (55)

By construction, the input of simple labor is unchanged (i.e. 1=2F¼

³
eµ (¼)

´
is the input of simple labor before the

deviation and since the workers on [0; µ0) will go to the other ¯rm and since all workers on [eµ (¼) ; µ00
) will be in thee ¯rm

after the deviation a quantity of F¼ (µ
00)¡F¼

³
eµ (¼)

´
+ 1=2

³
F¼

³
eµ (¼)

´
¡ F¼ (µ0)

´
will be in the simple task after the

deviation). The change in e®ective units of complex labor is given by C0 ¡C = ¼
2

³
Fq (µ

¤)¡ 2Fq (µ00) + Fq
³
eµ
´´
and

using that F¼ (µ
¤) ¡ 2F¼ (µ00) + F¼

³
eµ
´
= 0 it is not hard to show that C0 ¡ C > 0: This should be fairly obvious

since the mass of workers assigned to the complex task is unchanged but the average value of µ has increased (the
formal argument will be similar to the one used in Lemma II ). Thus, output increases under the deviation so the
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di®erence in payo®s must be larger than the di®erence in the wage bill, that is:

¢ (²) > 1
2

1R
0

wi (µ) f¼ (µ) dµ ¡ 1
2

eµR
µ0
wi (µ) f¼ (µ) dµ¡

µ¤R

eµ
(wi (µ)¡ ²) f¼ (µ) dµ ¡ 1

2

1R
µ¤
wi (µ) f¼ (µ) dµ =

= 1
2ksF¼ (µ

0)¡ 1
2

µ¤R

eµ
p (µ; ¼) kcf¼ (µ) dµ¡

µ¤R

eµ
²f¼ (µ) dµ

(56)

Recall that p (µ; ¼) kc < ks for µ 2
³
eµ; µ¤

´
and that F¼ (µ

0) = F¼ (µ
¤)¡ F¼

³
eµ
´
so that:

1

2
ksF¼

¡
µ0

¢
=
1

2

µ¤Z

eµ
ksf¼ (µ) dµ >

1

2

µ¤Z

eµ
p (µ; ¼) kcf¼ (µ) dµ: (57)

Hence, lim²!0¢(²) > 0 and there exists ² > 0 such that the deviation is pro¯table. The case with ks < y2 (C;S)

and kc > y1 (C;S) can be treated symmetrically and Proposition 2 follows.

B Appendix: Proof of Proposition 3

Lemma I Suppose that y : R2+ ! R is strictly concave in both arguments and homogenous of degree 1. Then for

each ¼ 2 (0; 1] there exists a unique eµ (¼) 2 (0; 1) such that (8) is satis¯ed.

Proof. De¯ne ½ : (0; 1)£ (0; 1]! R+ by ½ (µ; ¼) =
¼(1¡Fq(µ))

¼Fq(µ)+(1¡¼)Fu(µ)
for all (µ; ¼) 2 (0; 1)£ (0; 1] and let the function

D : (0; 1)£ (0; 1]! R be de¯ned as

D (µ; ¼) = p (µ; ¼)¡ y2 (½ (µ; ¼) ; 1)

y1 (½ (µ; ¼) ; 1)
: (58)

Since y is homogenous of degree one eµ (¼) solves the ¯rst order condition for the task assignment problem (equation

(8) in Section 3) if and only if D(eµ (¼) ; ¼) = 0: It follows the (strict) monotone likelihood ratio property that p (µ; ¼)
is strictly increasing in µ for any ¼ > 0: Fixing S , y1 (C;S) is strictly decreasing in C while y2 (C;S) is strictly
increasing in C. Since Fq and Fu are strictly increasing ½ (µ; ¼) is strictly decreasing in µ: Consequently y1 (½ (µ; ¼) ; 1)
is strictly increasing and y2 (½ (µ; ¼) ; 1) is strictly decreasing in µ: Hence, the ratio y2 (½ (µ; ¼) ; 1) =y1 (½ (µ; ¼) ; 1) is
strictly decreasing which implies that D (µ; ¼) is strictly increasing in µ: Thus, there can be at most one solution

D(eµ (¼) ; ¼) = 0 and the next task is to show that a solution exists for any ¼ > 0:We note that 0 < p (0; ¼) < p (1; ¼) <
1 for any ¼ > 0. Since Fq and Fu are cdfs it is easy to check that lim¼!0 ½ (µ; ¼) =1 and lim¼!1 ½ (µ; ¼) = 0. Using
the boundary conditions A2, constant returns to scale and standard limit laws

lim
µ!0

y2 (½ (µ; ¼) ; 1)

y1 (½ (µ; ¼) ; 1)
=lim
µ!0

y2

³
1; 1

½(µ;¼)

´

y1 (½ (µ; ¼) ; 1)
=
lim
x!0

y2 (1; x)

lim
z!1

y1 (z; 1)
=1: (59)

where the ¯rst equality follows from constant returns. Symmetrically we have that limµ!1 y2 (½ (µ; ¼) ; 1) =y1 (½ (µ; ¼) ; 1) =
0. Combining these facts we see that limµ!0D (µ; ¼) = ¡1 and that limµ!1D (µ; ¼) = p (1; ¼) > 0: Hence there

exists a unique eµ (¼) 2 (0; 1) satisfying D(eµ (¼) ; ¼) = 0 for each ¼ > 0
Lemma II eµ and r satisfy the following properties:
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1. eµ is continuously di®erentiable on (0; 1) :
2. lim¼!0+ r (¼) = 0

3. r is monotonically increasing in ¼

Proof. 1) It is easy to check that D1 (µ; ¼) > 0 for each ¼ > 0 which means that the hypotheses of the implicit

function theorem is satis¯ed for each eµ (¼).
2) The equation D

³
eµ (¼) ; ¼

´
= p

³
eµ (¼) ; ¼

´
¡ y2(r(¼);1)

y1(r(¼);1)
= 0 must be satis¯ed for each ¼ > 0. But lim¼!0

p
³
eµ (¼) ; ¼

´
· lim¼!0 p (1; ¼) = 0 so lim¼!0

y2(r(¼);1)
y1(r(¼);1)

= 0; which implies that lim¼!0 r (¼) = 0:

3) For a contradiction suppose r (¼) < r (¼0) for ¼ > ¼0: Since (8) must be satis¯ed for both ¼ and ¼0 and since the

¯rst derivatives of y are decreasing in its own argument it follows that p
³
eµ (¼) ; ¼

´
< p

³
eµ(¼0); ¼0

´
: But since p (µ; ¼)

is increasing in the second argument (that is, the posterior is increasing in the prior) this means that eµ (¼) < eµ (¼0) :
Plugging this into the de¯nition of r it follows that r (¼) > r (¼0) which is a contradiction.
Proof. (Proposition 3) By Proposition 2 the set of all equilibria of the model are fully characterized as ¯xed points of
the map G ±H : [0; 1]! [0; 1] ; where H is de¯ned by (14) in Section 3 (Proposition 2 says how equilibrium strategies
consistent with a particular ¯xed point can be constructed).

By Lemma II, eµ is continuously di®erentiable on (0; 1) and since it follows that r and H are compositions of
continuously di®erentiable functions these are also continuously di®erentiable on (0; 1) : This implies that H is a
continuous function of ¼ on (0; 1) : By constant returns to scale the ¯rst derivatives of y are homogenous of degree 0

and since eµ (¼) must satisfy the ¯rst order condition (8) we have that eµ (¼) ; r (¼) must satisfy

p
³
eµ (¼) ; ¼

´
y1 (r (¼) ; 1) = y2 (r (¼) ; 1) (60)

for every ¼ 2 (0; 1) : For ¼ = 1 we have that p (µ; 1) = 1 for all µ; so it does not really matter what workers are
assigned to the respective tasks. However, r (1) must nevertheless satisfy y1 (r (1) ; 1) = y2 (r (¼) ; 1) (one particular
way of achieving this is by a cuto® rule). Since the workers are all equally productive in both tasks we get that
w (µ) = y1 (r (¼) ; 1) = y2 (r (¼) ; 1) for all µ and it follows that the bene¯ts of investment is given by H (1) = 0: It
is easy to verify that lim¼!1 r (¼) = r (1) by use of (60) and using (14) it follows that lim¼!1H (¼) = H (1) : The
case with ¼ = 0 is taken care of in the same way. No matter how workers are allocated between tasks output is zero,
which implies that w (µ) = 0 for all µ: Hence H(0) = 0: Furthermore from (60) we have that

0 = lim
¼!0

p
³
eµ (¼) ; ¼

´
= lim

¼!0

y2 (r (¼) ; 1)

y1 (r (¼) ; 1)
: (61)

and using the boundary conditions we see that the only possibility for this to be satis¯ed is if lim¼!0 r (¼) = 0 ;

lim¼!0 y2 (r (¼) ; 1) = 0 and lim¼!0 y1 (r (¼) ; 1) p(eµ(¼); ¼) = 0. Since Fq (µ)¡Fu (µ) and
R 1

eµ(¼) p (µ; ¼) (fq (µ)¡ fu (µ)) dµ
are bounded below and above it follows from (14)that lim¼!0H (¼) = 0 = H (0) establishing continuity of G ±H on
the whole interval [0; 1] :

Consider any ¼ 2 (0; 1) : Inspection of (60) shows that 0 < r (¼) < r where r is the unique value satisfying

y1 (r; 1) = y2 (r; 1) : Hence 0 < eµ (¼) < 1 and since p (µ; ¼) is strictly increasing in µ for any 0 < ¼ < 1 by the
assumption of strictly monotone likelihood ratio it follows that

1Z

eµ(¼)
p (µ; ¼) (fq (µ)¡ fu (µ)) dµ > p

³
eµ (¼) ; ¼

´h
Fu

³
eµ (¼)

´
¡ Fq

³
eµ (¼)

´i
: (62)
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Hence H (¼) > 0 for all ¼ 2 (0; 1) : Since G (0) > 0 it follows as a simple application of the intermediate value theorem
that there exists at least one ¯xed point of G ±H: It follows directly from the assumption that G (0) > 0 that any

¯xed point must be in the open interval (0; 1) : Hence there exists at least one non trivial equilibrium

C Appendix: Proof of Proposition 4

Assume that there is an equilibrium such that all agents in group a are assigned to the complex task. Such an
equilibrium exist if and only if there is a

¡
¼a; ¼b

¢
solving ¼j = G

¡
Hj

¡
¼a; ¼b

¢¢
for j = a; b such that eµa (¼) =

eµa ¡
¼a; ¼b

¢
= 1. Note that in any such equilibrium we have that w (µ) = y2 (r (¼) ; 1) for all µ; implying that

¼a = G (0) : The cuto® rules for the task assignments must satisfy the Kuhn-Tucker conditions for the problem (17),
in particular

p
³
eµb (¼) ; ¼b

´
y1 (r (¼) ; 1) = y2 (r (¼) ; 1) + (°b ¡ ´b) =f¼b

³
eµb (¼)

´
; (63)

where °b is the multiplier associated with the constraint that µ
b ¸ 0 and ´b with the constraint that 1¡ µb ¸ 0: Note

that eµb (¼) < 1 if eµa (¼) since it follows from the de¯nition of r that r (¼) = 0 if
³
eµa (¼) ; eµb (¼)

´
= (1; 1) : But then

the left hand side of (63) is less than or equal to zero and the right hand side is unbounded, so this could not be the
case in equilibrium.

Imposing eµa (¼) = 1 the condition (63) together with the complementary slackness conditions is indeed necessary
and su±cient conditions for optimality. Proceeding step by step as in the proof of Lemma I in appendix B one shows
that there is a unique solution to these conditions (which may or may not involve assigning all workers in group b to
the complex task) for any ¼b 2 (0; 1] : Let this solution be given by µb

¡
¼b

¢
(observe that so for all we know so far this

need not coincide with eµb ¡G (0) ; ¼b¢). Fixing exogenously both the investment behavior and the task assignments
for group a the model is qualitatively the same as the single group model (with some unexplained input of labor in
the simple task) and we can establish that µb

¡
¼b

¢
is continuous in ¼b by use of the implicit function theorem, exactly

as in the single group model (the possibility of corner solutions where all b workers are assigned to the complex task
does not create any discontinuities). De¯ne rd : (0; 1] ! R+ as the ratio of factor inputs function of ¼b; assuming
that all agents from group a are assigned to the simple task, i.e.:

rd
¡
¼b

¢
=
¸b¼b

³
1¡ Fq

³
eµb ¡¼b¢

´´

¸a + ¸b¼bF¼b

³
eµb

´ (64)

In order for ¼b to be consistent with equilibrium we have to have that ¼b = G
¡
Hb

¡
G (0) ; ¼b

¢¢
. But this is equivalent

to ¯nding a ¯xed point of (15) with H(¼) de¯ned as in 14 but with eµ replaced by µb and r replaced by rd: It is easily
checked that µb and rd has all the properties of eµ and r that were used in the proof of Proposition 5 (i.e. Lemma I
and Lemma II still holds). It then remains to check that it is optimal for the ¯rms to assign all workers in group a
to the simple task. From the (full) Kuhn-Tucker conditions it follows that this is the case if and only if

p (1; G (0)) ·
y2

¡
rd

¡
¼b

¢
; 1

¢

y1 (rd (¼b) ; 1)
= p

¡
µb

¡
¼b

¢
; ¼b

¢
´ p(1; G0) (65)

limG(0)!0 p (1; G (0)) = 0 and y2
¡
rd

¡
¼b

¢
; 1

¢
=y1

¡
rd

¡
¼b

¢
; 1

¢
> 0 this shows that if G (0) is small enough the solution

to the task assignment problem is indeed
³
eµa (¼) ; eµb (¼)

´
=

¡
1; µb

¡
¼b

¢¢
if ¼ =

¡
G (0) ; ¼b

¢
: Hence rd (¼) = r (¼) and

¡
G (0) ; ¼b

¢
is an equilibrium of the model. The fact that all agents in group b are paid a higher wage than any agent

from group a follows directly from the wage schedules.
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D Appendix: Proof of Proposition 5

The proof of the su±ciency part of the proposition uses the following intermediate result.

Lemma Suppose both ¯rms choose the proposed equilibrium strategy

wa; wb; »a; »b

®
: Then both ¯rms are earning

zero pro¯ts.

Proof. Using the proposed wage schedules (29) the total wage bill can be expressed as:

W =
X

j=a;b

¸j
Z
wj (µ) f¼j (µ) dµ = (66)

= y1 (¢)
X

j=a;b

¸jp
³
bµj ; ¼j

´
F¼j

³
bµj

´
+ y1 (¢)

X

j=a;b

¸j¼j
h
1¡ Fq

³
bµj

´i

where the omitted arguments of y1 are the implied factor inputs, C and S. But F¼a

³
bµa

´
= F¼b

³
bµb

´
due to

the a±rmative action constraint and using the fact that the weighted average of the marginal productivities in the
complex task for the critical workers equals the marginal productivity in the simple task (equation 28) we get

W = y2 (¢)F¼a

³
bµa

´
+

P
j=a;b

¸j¼j
h
1¡ Fq

³
bµj

´i
y1 (¢) (67)

Since
P
j=a;b

¸j¼j
h
1¡ Fq

³
bµj

´i
= C and, by the a±rmative action constraint, F¼a

³
bµa

´
= ¸aF¼a

³
bµa

´
+¸bF¼b

³
bµb

´
=

S the result follows from (67) and Euler's theorem.

Proof of proposition 5 (su±ciency). The proof parallels the proof of Proposition 1, but since the a±rmative
action constraint has to be used in a non-obvious way we give a rather detailed version of the proof. Suppose one
¯rm should deviate from the candidate equilibrium strategies and play

©
wadev; w

b
dev; »

a
dev ; »

b
dev

ª
so that the actions

implied on the outcome path are

wadev; w

b
dev; t

a
dev; t

b
dev

®
. De¯ne the following sets: £hj = fµ : bwa (¢) > wa (¢)g ;£lj =

fµ : bwa (¢) < wa (¢)g ;£ej = fµ : bwa (¢) = wa (¢)g for j = a; b: Let C and S the implied factor inputs employed in the
candidate equilibrium and Cdev, Sdev be the implied factor inputs for the deviating ¯rm i given that the other ¯rm
still plays according to the proposed equilibrium strategies (all these quantities are computed in analogy to (36). The
pro¯ts for the deviating ¯rm, ¦idev; can be expressed as ;

¦idev = y (Cdev; Sdev)¡
X

j=a;b

¸j

2
64

Z

µ2£h
j

wjdev (µ) f¼ (µ) dµ +
1

2

Z

µ2£e
j

wj (µ) f¼ (µ) dµ

3
75 (68)

Using concavity and constant returns to scale as in the derivation of the inequality (38) in the proof of Proposition 1:

¦idev · y1 (C;S)Cdev + y2 (C;S)Sdev¡
X

j=a;b

2
64

Z

µ2£h
j

wjdev (µ) f¼ (µ) dµ +
1

2

Z

µ2£e
j

wj (µ) f¼ (µ) dµ

3
75 (69)
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Using ¼jfq(µ) = p(µ; ¼
j)f¼j (µ); and manipulating, we have:

y1 (C;S)Cdev =
X

j=a;b

¸j

2
64

Z

µ2£h
j

tjdev (µ) y1 (C;S) p
¡
µ; ¼j

¢
f¼j (µ) dµ +

1

2

Z

µ2£e
j

tjdev (µ) y1 (C;S) p
¡
µ; ¼j

¢
f¼j (µ) dµ

3
75

(70)

But by de¯nition of (29) we have that wj (µ) = y1 (C;S) p
¡
µ; ¼j

¢
for µ ¸ bµj and wj (µ) > y1 (C;S) p

¡
µ; ¼j

¢
for

µ < bµj :Hence

y1 (C;S)Cdev ·
X

j=a;b

¸j

2
64

Z

µ2£h
j

tjdev (µ)w
j (µ) f¼j (µ) dµ +

1

2

Z

µ2£e
j

tjdev (µ)w
j (µ) f¼j (µ) dµ

3
75 (71)

Symmetrically, note that wj (µ) = y1 (C;S) p
³
bµj ; ¼j

´
for µ · bµj and wj (µ) > y1 (C;S) p

³
bµj ; ¼j

´
for µ > bµj . Note

that

y1 (C;S) p
³
bµj ; ¼j

´ Sjdev
¸j

·
Z

µ2£h
j

wj (µ)
¡
1¡ tjdev (µ)

¢
f¼j (µ) dµ +

1

2

Z

µ2£e
j

wj (µ)
¡
1¡ tjdev (µ)

¢
f¼j (µ) dµ (72)

Making use of a±rmative action constraint it follows that:

y2 (C; S)Sdev = y2 (C;S)

µ
¸aSadev
¸a

+
¸bSbdev
¸b

¶
= y2 (C;S)

¡
¸a + ¸b

¢ Sbdev
¸b

(73)

and combining with (72) and (28) we get:

y2 (C; S)Sdev ·
X

j=a;b

¸j

2
64

Z

µ2£h
j

wj (µ)
¡
1¡ tjdev (µ)

¢
f¼j (µ) dµ +

1

2

Z

µ2£e
j

wj (µ)
¡
1¡ tjdev (µ)

¢
f¼j (µ) dµ

3
75 (74)

Summing over (71) and (74) we get:

y1 (C;S)Cdev + y2 (C;S)Sdev ·
X

j=a;b

¸j

2
64

Z

µ2£h
j

wj (µ) f¼j (µ) dµ +
1

2

Z

µ2£e
j

wj (µ) f¼j (µ) dµ

3
75 (75)

The last steps of the argument is exactly as in the proof of Proposition 1. Substituting (75) into the expression for the
pro¯ts and noting that the deviator must pay higher wages than the candidate equilibrium wages over the relevant
ranges gives the result.

The necessity part is proved using the following steps.

Lemma I Suppose

wai ; w

b
i ; »

a
i ; »

b
i

®
i=1;2

is a pair of best responses. Then, (1) wj1(µ) = w
j
2 (µ) for almost all µ 2 [0; 1];

j = a; b. (2) Firms earn zero pro¯ts. (3) »j1(w
j
1; w

j
1) = »j2(w

j
2; w

j
2) = tj (µ) ; j = a; b; for almost all µ 2 [0; 1];

where tj (¢) is the cuto® task assignment rule with critical value bµj : (3) Let tji denote the task assignment rule
on the equilibrium path for ¯rm group j = a; b and ¯rm i = 1; 2: Then, there exists bµa and bµb such that the
optimal task assignment rule for group i has the cuto® property with critical value bµi:
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Proof. (1) Equality of wages follows easily observing that if one ¯rm o®er higher wages to a positive mass of workers,
it could pro¯tably deviate by reducing it. (2) Given constant returns to scale, if ¯rms earned positive pro¯ts, one
could pro¯tably deviate by reducing the entire wage schedule by a small amount so as to capture the entire labor
supply and double pro¯ts. (3) Finally, given that ¯rms o®er the same wage schedule, an argument similar to the one

used in the proof of Proposition 1, Lemma II and III shows that (26) has a unique solution bµ = (bµa; bµb); and the
optimal task assignment rule is the cuto® rule tj(¢) with critical value bµj ; j = a; b.
Lemma II Suppose


wj1; w

j
2

®
j=a;b

is a pair of equilibrium wage schedules and bµ = (bµa; bµb) is the solution to (26).
Then there is a pair


kjc ; k

j
s

®
for each group j = a; b such that wji (µ) = kjs for almost all µ · bµj and

wji (µ) = k
j
cp(µ; ¼

j) for almost all µ > bµj ; j = a; b:
Proof. wji (µ) = k

j
s for almost all µ · bµj , j = a; b follows from the same argument used in the proof of Proposition

1, Lemma IV (see Appendix A). To prove that wji (µ) = k
j
cp(µ; ¼

j) for almost all µ > bµj the argument is slightly more
cumbersome, since now we have to make sure that deviations don't a®ect the a±rmative action constraint. Suppose
by contradiction that in the candidate best response wages the ratio wji (µ)=p(µ; ¼

j) is not constant in µ for at least

one group, without loss of generality say group a. Then we can ¯nd a positive measure set £a ½ [bµa; 1] such that
wai (µ)=p(µ; ¼

a) > wai (µ
0)=p(µ0; ¼a) for all µ 2 £a; µ0 2 [bµa; 1]n£a: It is always possible to choose £a small enough so

that there exists £b ½ [bµb; 1] such that ¸a R
µ2£a f¼a(µ)dµ = ¸b

R
µ2£b f¼b(µ)dµ (i.e. the mass of workers in the two sets

is the same) and wbi (µ)=p(µ; ¼
b) ¸ wbi (µ0)=p(µ0; ¼b) for almost all µ 2 £b, µ0 2 [bµb; 1]n£b. Now, suppose one ¯rm posts

zero wage to workers belonging to sets £a and £b: By construction, a±rmative action constraint remains satis¯ed
and quali¯ed workers have been reduced by RC =

P
i=a;b

¸i
R
µ2£i ¼

ifq(µ)dµ. The proposed deviation consists in

"¯ring" workers belonging to sets £a and £b while reducing proportionally workers in the simple task to keep the
factor ratio at the same level of the candidate equilibrium. Any candidate equilibrium must involve zero pro¯ts, but
since wage bill per unit of production is lower, pro¯ts must be positive after the deviation so that the deviation is
pro¯table. Formally, let C and S be the total factor inputs respectively in the complex and simple task. To keep
the factor ratio constant, the deviation must reduce workers in the simple task by RS = S ¢ Rc=C: Because of the
a±rmative action constraint, reduction of workers in the simple task must be proportionally distributed between
groups. Compute then µadev and µ

b
dev to satisfy

R
[0;µj

dev
]
f¼j (µ)dµ = ¸jRs; j = a; b (we also have to make sure that

µjdev <
bµj ; j = a; b which is guaranteed by choosing £a small enough). Consider the following deviation from the

candidate equilibrium wage pro¯le wj(µ); j = a; b:

wjdev(µ) =

½
0 if µ 2 £j [ [0; µjdev];
wj(µ) otherwise

j = a; b (76)

By construction, the factor ratio remains constant. Using constant returns to scale, production decreases by
Rc=C = Rs=S: It is now intuitive but cumbersome to show that average wage per unit of production decrease,
so that the deviation is pro¯table. In the simple task average wage per worker is constant by the ¯rst part of
this lemma. In the complex task, de¯ne the average wage per quali¯ed worker in the candidate equilibrium as

k
j
c =

R
µ2[bµj ;1]

w(µ)f¼j (µ)dµ=[¼j(1¡ Fq(bµj)]:
Similarly, de¯ne the same average wage in the proposed deviation as k

j
dev =

R
µ2[bµj ;1]n£j w

j
dev(µ)f¼j (µ)dµ=

R
µ2[bµj ;1]n£i ¼

jfq(µ)dµ:

Using w(µ)f¼i(µ) = ¼ifq(µ) ¢ w(µ)=p(µ; ¼j) and wjdev(¢) = wji (¢) for µ 2 [bµj ; 1]n£j ; j = a; b we can rewrite average
wages and derive the following inequality from the fact that the ratio w(¢)=p(¢; ¼j) is higher for µ 2 £j , j = a; b

R
µ2[bµj ;1]n£j ¼

jfq(µ)
w(µ)
p(µ) dµ +

R
µ2£j ¼

jfq(µ)
w(µ)
p(µ) dµR

µ2[bµj ;1]n£j ¼
jfq(µ)dµ +

R
µ2£j ¼

jfq(µ)dµ
>

R
µ2[bµj ;1]n£j ¼

jfq(µ)
w(µ)
p(µ) dµR

µ2[bµj ;1]n£j ¼
jfq(µ)dµ

(77)
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i.e. k
j
> k

j
dev; j = a; b: But then the total wage bill payed to the complex task workers is equal to Wdev =P

i
k
i
dev

R
µ2[bµi;1]n£i ¼fq(µ)dµ < (1¡Rc)

P
i
k
i R

µ2[bµi;1]
¼fq(µ)dµ: Since wages decrease proportionally more than pro-

duction, wjdev(¢) implies positive pro¯ts, and the deviation is pro¯table.
Lemma III The equilibrium wage schedules


wj1; w

j
2

®
j=a;b

are continuous at almost all µ 2 [0; 1]:

Proof. In Lemma II we established that wji (µ) = kjs for almost all µ · bµj and wji (µ) = kjcp(µ; ¼
j) for almost all

µ > bµj ; j = a; b. All we need to show is that kjs = kjcp(bµj ; ¼j); j = a; b: The proof is by contradiction and consists of
two parts: either there is a group with kjs > kjcp(bµj ; ¼j), or ks · kjcp(bµj ; ¼j) for both groups, with strict inequality
for at least one group.

Consider the ¯rst case. Then, there exists a positive measure interval [bµj ; µ¤] such that ks > kjcp(µ; ¼j) = wji (µ)
for almost all µ 2 [bµj ; µ¤]: In the proof of the necessity part of Proposition 1 we have already shown that there exists a
pro¯table deviation from such a wage schedule. The deviation consists in o®ering a slightly higher wage to workers in
the interval [bµj ; µ¤], and use them to replace an equal mass of workers in the simple task who receive an higher wage
ks: Notice that his deviation does not a®ect the a±rmative action constraint since the deviation ¯rm is replacing
expensive simple task workers with an equal mass cheaper workers stolen from the other ¯rm.

Suppose instead kjs · kjcp(bµj ; ¼j) for j = a; b with strict inequality for at least one group, say group a. We
propose a deviation on wages of both groups that keeps production constant and maintains the a±rmative action
constraint satis¯ed. Take and de¯ne µa00 2 (µa0 ; bµa) as the value that divides the mass of workers with µ 2 [µa0; bµa] in
two equal parts, i. e. µa00 is the solution of the following equation: [F¼a(bµa)¡F¼a(µa0)]=2 = [F¼a(µa00)¡F¼a(µa0)]: In

the proposed deviation, workers with µ 2 [µa0; µa00
) will be assigned to the simple task, and workers with µ 2 [µa00; bµa]

to the complex task. We want to keep mass of productive workers in the complex task constant. For this purpose,

compute µa¤ > bµa so that Rbµa

µa00 fq(µ)dµ =
³R µa¤

bµa fq(µ)dµ
´
=2 and consider the following deviation:

wadev(µ) =

8
<
:

kas + ² for µ 2 [µa0; bµa]
0 for µ 2 [bµa; µa¤]
wai otherwise

(78)

tadev(µ) =

½
0 for µ 2 [0; µa00]
1 for µ 2 (µa00; 1]

By construction, the mass of workers employed in the simple task and the mass of quali¯ed workers employed
in the complex task are unchanged. On the other hand, if we consider this deviation alone, the a±rmative action
constraint will not be satis¯ed because the mass of workers employed in the complex task is increased by the following
amount (a formal argument is omitted, but it will be symmetric to the argument used in Proposition I, Lemma II
showing that employing the same mass of workers with higher average µ increases the mass of quali¯ed workers):

ª0 ¡ª = ¸a
ÃZ bµa

µa00
f¼a(µ)dµ ¡

R µa¤

bµa f¼a(µ)dµ

2

!
(79)

To keep the a±rmative action constraint unchanged we have to deviate also on wages o®ered to group b: The idea
is to compute µb

0
and µb¤ with bµb < µb

0
< µb¤ < 1 to attract from the other ¯rm workers with µ 2 [ bµb; µb0

), get
rid of workers with µ 2 [µb¤; 1] so as to keep the mass of productive workers employed in the complex task constant
(equation (80)) and to satisfy the a±rmative action constraint (equation (81)). Formally, compute µb

0
and µb¤ in

order to satisfy the following set of equations:

Z µb0

bµb

fq(µ)dµ =

Z 1

µb¤
fq(µ)dµ (80)
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Z µb0

bµb

f¼b(µ)dµ ¡
Z 1

µb¤
f¼b(µ)dµ =

ª0 ¡ª
¸a

(81)

(choosing µa0 close enough to bµa guarantees existence of µb0
and µb¤ solving the system of equations). Consider

deviation hwadev; tadevi together with the following deviation:

wbdev (µ) =

8
<
:

kbs + ² for µ 2 [bµb; µb0]
0 for µ 2 [µb¤; 1]
wbi otherwise

(82)

Since the proposed deviations make sure that production remain constant, change in pro¯ts will depend only on
change in wages. Letting ² terms go to zero, we have:

lim
²#0
¢wdev =

1

2

bµaZ

µa0

wai (µ)f¼a(µ)dµ ¡ 1

2

µa¤Z

bµa

wai (µ)f¼a(µ)dµ +
1

2

µb0Z

bµb

wbi (µ)f¼b(µ)dµ ¡ 1

2

1Z

µb¤

wbi (µ)f¼b(µ)dµ

Observe now that if µa0 is close enough to bµa there is h < kac satisfying kas + ² < hp(µ; ¼a) for every µ 2 [µa0; bµa]. We
can then conclude using the usual relation f¼j (¢) = ¼jfq(¢):

lim
²#0
¢wdev(²) <

1

2

bµaZ

µa0

h¼afq(µ)dµ ¡ 1

2

µa¤Z

bµa

kac¼
afq(µ)dµ +

1

2
kbc¼

b

0
B@
µb0Z

bµb

fq(µ)dµ¡
1Z

µb¤

fq(µ)dµ

1
CA (83)

The last term on the right hand side is equal to zero by construction, so the expression reduces to 2 lim²#0¢wdev(²) <

¼a(h¡ kac )
R bµa

µa0 fq(µ)dµ < 0

We can then choose ² small enough so that the change in wages is negative and the deviation is pro¯table.

Proof of Proposition 5 (necessity) Using the result shown in Lemma III, the total wage bill paid to workers

of group j is equal to kjc = [p(bµj ; ¼j)F¼j (bµj) + 1 ¡ Fq(bµj)] and it is strict increasing in kjc: As shown in the proof
of su±ciency part of this proposition, kac = kbc = y1(C;S) implies zero pro¯ts. To show that a wage schedule with
kjc 6= y1(C;S) cannot be an equilibrium, suppose for example that kac > y1(C;S). Then zero pro¯ts condition implies
kbc < y1(C;S): Then we can construct a pro¯table deviation that deals only with workers assigned to the complex
task. The idea of the deviation comes from the observation that the cost of labor per productive worker is higher
in group a than in group b: We substitute high test result workers in group a with low test result workers of the
same group, taking care of keeping the number of workers employed in the skilled task constant this will reduce the
number of quali¯ed workers of group a; if we construct a symmetric deviation for group b in order to restore the
original mass of quali¯ed workers, then the total wage bill will be lower than in the candidate equilibrium without
changing total production and keeping the a±rmative action constraint satis¯ed. Formally, de¯ne µa0 and µa¤ with
bµa < µa0 < µa¤ < 1 as the solution of the following equation:

F¼a(µa0)¡ F¼a(bµa) = 1¡ F¼a(µa¤) (84)

Consider the following deviation of the wage function for group a:

wadev(µ) =

8
<
:

wai (µ) + ² for µ 2 [bµa; µa0
]

0 for µ 2 [µa¤; 1]
wai (µ) otherwise
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The mass of quali¯ed workers of workers that belong to group a decrease since we substitute workers with high test
result with an equal mass of workers with low test result (the formal proof is similar to the one used in Propo-
sition 1, Lemma II. We can quantify the loss in productive workers employed in the complex task as C0 ¡ C =
¸a

2

³R 1

µa¤ ¼
afq(µ)¡

R µa0

bµa ¼afq(µ)
´
: Next, consider the following deviation for group b:

wbdev(µ) =

8
<
:

0 for µ 2 [bµb; µb0]
wbi (µ) + ² for µ 2 [µb¤; 1]
wbi (µ) otherwise

With µb0 and µb¤ satisfying the following two equations:

F¼b(µ
b0)¡ F¼b(bµb) = 1¡ F¼b(µ

b¤) (85)

1Z

µb¤

¼bfq(µ)¡
µa0Z

bµb

¼bfq(µ) =
2

¸b
(C0 ¡C) (86)

Notice that if µa0 is chosen to be close enough to bµa (which implies C0¡C close enough to zero) then a solution to the
system of equations speci¯ed above exists). Equation (85) guarantees that the number of employed workers remains
constant, and (86) that the gain in productive workers employed in the complex task obtained with deviation wb0i (¢) is
equal to the loss due to wa0i (¢): Under the proposed deviations, productions remains constant, so di®erence in pro¯ts
depends uniquely on di®erence in wage bill:

w(²)¡ w =
¸a

2

Z µa0

bµa

(wai (µ) + 2²) f¼a(µ)dµ ¡ ¸a

2

Z 1

µa¤
wai (µ)f¼a(µ)dµ

¡¸
b

2

Z µb0

bµb

wbi (µ)f¼b(µ)dµ +
¸b

2

Z 1

µb¤

¡
wbi (µ) + 2²

¢
f¼b(µ)dµ

= kac (C
0 ¡ C)¡ kbc(C 0 ¡ C) + ²

"
¸a

Z µa0

bµa

¼afq(µ)dµ + ¸
b

Z 1

µb¤
¼bfq(µ)dµ

#

Since kbc < y1(C;S) < k
a
c and by construction C

0 ¡ C < 0, then there is an ² small enough such that the di®erence
in wage bill is negative and the deviation is pro¯table.
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