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1. Introduction

Philosophers, computer scientists and game theorists are all interested in the problem of co-

ordination. When and how can the behaviour of a collection of agents be successfully coordinated?

In all three ¯elds, researchers have found that in answering these questions, it is useful to intro-

duce formal ways of discussing what agents know. In particular, something is said to be common

knowledge among a group of agents if all know it, all know that all know it, and so on. Common

knowledge turns out to be necessary for perfect co-ordination. This conclusion is true whether the

\agents" be processors in a distributed system which must jointly execute a complex computer
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protocol [Fagin, Halpern, Moses and Vardi 1995]; or whether \agents" are people who must agree

on how to use language [Lewis 1969].

Given the importance of the implications of whether or not common knowledge exists, it is worth

starting with the basic question of how a set of individuals might achieve common knowledge of a

particular state of a®airs. In some limited contexts, the attainment of common knowledge rests on

¯rm foundations. For instance, if players are logically competent - in the sense that they are capable

of making logical deductions - and share the same state space, and hence share a common \theory"

of the world, then common knowledge of their environment, as described by those statements

which are true in every state of he world, follows in a straightforward way from the following type

of reasoning. A statement Á which is true at every state is known by all individuals at every state.

Hence, the statement \everyone knows Á" is true at every state, implying that everyone knows this

statement at every state. Proceeding in this way, any statement of the form \everyone knows that

everyone knows that ... everyone knows Á" is true at every state, so that Á is common knowledge.1

This type of reasoning is also involved in the so-called \¯xed point" characterization of common

knowledge (Clark and Marshall [1981], Barwise [1988]).

However, such a view of knowledge may be of limited use in many ¯elds in which beliefs are

derived from empirical sources, or at least, sources which are not infallible. We may often have

good evidence that a proposition is true, but usually there cannot be an iron-clad guarantee. If

coordination requires common knowledge concerning such empirical facts about the world, then

common knowledge seems to be an excessively strong requirement that will rarely be achieved in

practice. Indeed, the classic coordinated attack problem (discussed below) shows that if communi-

cation between agents is not perfectly reliable, common knowledge cannot be achieved. Of course,

this does not mean that distributed systems do not achieve any co-ordination and languages do not

exploit any common understandings. It does mean that often the most we can hope for is imper-

1 This reasoning has a logical counterpart in the \rule of necessitation" in modal logic, which states that if Á is a

theorem of the logic, then so is the statement \individual i knows Á". By iteration, any theorem Á of that logic is

common knowledge. See Hughes and Cresswell [1968] or Chellas [1980]. The formalization of knowledge in terms of

an epistemic logic is usually attributed to Hintikka [1962], who built on developments in modal logic (for instance,

Kripke [1959]). Epistemic logics in multi-person contexts have been discussed by Halpern and Moses [1990, 1992],

Aumann [1992], Shin [1993], Bonanno [1996] and Lismont and Mongin [1995].
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fect co-ordination. Thus one natural question for researchers in all the above-mentioned ¯elds to

ask is: what form of approximate common knowledge is su±cient to achieve a reasonable level of

co-ordination?

As a benchmark, consider one answer to this question provided by game theory. Say that

something is p-believed if everyone believes it with probability at least p. It is common p-belief

if it is p-believed, it is p-believed that it is p-believed, and so on. Common p-belief can also be

given a ¯xed point characterization. Now consider a game between a ¯nite number of players, each

with a ¯nite choice of actions. Game theoretic results surveyed below show that if co-ordination

is achievable in such a game when there is common knowledge of the structure of the game, then

approximate co-ordination is also achievable if there is only common p-belief, for some p su±ciently

close to one. Common p-belief is not only su±cient but also necessary for such approximate co-

ordination.

Similar questions can and have been asked in other literatures. In this paper, we wish to

highlight two issues which are raised by the game theoretic analysis. First, there is an important

di®erence between strategic problems, where agents act in their own interests, and non-strategic

problems, where agents can be relied upon to follow rules given to them. We will argue that

- at least from a Bayesian perspective - approximate co-ordination is relatively easy to achieve

in non-strategic problems. In particular, common p-belief is not required. This suggests that it

will typically be easier to achieve co-ordination in protocols in computer science (where processors

are typically not strategic) than it will be to achieve co-ordination in economic problems (where

individuals almost invariably have some di®erences in objectives).

Second, co-ordination becomes much harder to achieve when there are many possible outcomes

of co-ordination. Consider a game where each agent must choose one of a continuum of actions.

Each agent wants his action to be as close as possible to the actions of the others, i.e., they want to

co-ordinate on some convention. However, some conventions may be more socially desirable than

others. If there is common knowledge of the social desirability of alternative conventions, then

there is an equilibrium where each agent always chooses the socially optimal convention. On the

other hand, we will show that even if there is common p-belief, with p close to 1, of the social

desirability, the only equilibrium is a \simple convention" where the same action is taken whatever
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the social desirability. This is the case however close p is to 1. Philosophers' primary concern in

this area has been with conventions such as languages. Our analysis suggests that co-ordination

will be especially hard to achieve in such settings.

Two caveats are required. In providing a uni¯ed but informal discussion of a set of issues from

the game theory literature, we do not attempt to provide a comprehensive survey. In particular, we

provide our own interpretation of the game theory results without explaining the exact connection

to the original results; and we make no attempt to cover related work in other ¯elds. Beyond the

few articles mentioned in the text, relevant sources would include Geanakoplos [1994] and Dekel and

Gul [1996] for economics and game theory; Fagin, Halpern, Moses and Vardi [1995] for computer

science; and van Benthem and ter Meulen [1996] for the philosophy of conventions.

In this paper we attempt to describe a large number of game theoretic results using examples.

Precision is valued in game theory and game theorists have very speci¯c ideas in mind when they

discuss games, strategies, rationality, equilibrium and other such concepts. It is unfortunately

beyond the scope of this paper to provide an introduction to game theory. Therefore it should

be understood that all the examples, arguments and results reported are intended to illustrate

examples, arguments and results which can be made precise in the language of game theory. The

textbook of Osborne and Rubinstein [1994] provides a meticulous introduction to game theory;

chapter 5 of their book describes how economists model knowledge and common knowledge, and

their applications to game theory.

2. The Co-ordinated Attack Problem: A Common Knowledge Paradox

The following is a slightly altered version of the co-ordinated attack problem described by Halpern

and Moses (1990).

Two divisions of an army, each commanded by a general, are camped on two hilltops

overlooking a valley. In the valley awaits the enemy. The commanding general of the

¯rst division has received a highly accurate intelligence report informing him of the

state of readiness of the enemy. It is clear that if the enemy is unprepared and both

divisions attack the enemy simultaneously at dawn, they will win the battle, while if
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either the enemy is prepared or only one division attacks it will be defeated. If the ¯rst

division general is informed that the enemy is unprepared, he will want to coordinate a

simultaneous attack. But the generals can communicate only by means of messengers

and, unfortunately, it is possible that a messenger will get lost or, worse yet, be captured

by the enemy.

The crucial feature of this story is that it is necessary for at least one message to be delivered

from the ¯rst division general to the second division general in order for an attack to occur. In

this version, the reason is that the second division general must be informed that the enemy

is unprepared. In the Halpern and Moses version, the reason is that they do not have a prior

agreement on the time to attack. For the arguments in this section, this distinction is unimportant.

But in later sections, it is useful to appeal to the former more concrete reason why at least one

message is required.

Is co-ordinated attack possible in this environment? Let us ¯rst de¯ne co-ordinated attack. We

would like to design both a communication protocol, specifying which general sends which message

to the other in which circumstances, and an action protocol specifying which general attacks in

which circumstances. These two protocols achieve co-ordinated attack if [1] it is never the case

that an attack occurs when the enemy is prepared, [2] it is never the case that one division attacks

alone, and [3] both divisions sometimes successfully co-ordinate an attack. But remarkably, it has

been shown that:

² Co-ordinated attack is not possible under any communication protocol with unreliable com-

munication.

We can illustrate why this is the case by considering the following \naive communication pro-

tocol." If the ¯rst division general hears that the enemy is unprepared, he sends a message to

the second division general with the instruction \attack". If that ¯rst message arrives, the second

division general sends a messenger with a con¯rmation that the ¯rst message was safely received.

If the con¯rmation is delivered without mishap, the ¯rst division general sends another message to

the second division general informing him of this fact. And so on.
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Now if the second division general never receives an instruction to attack, he cannot attack

under any co-ordinated attack action protocol: it is possible that the ¯rst division general knows

that the enemy is actually prepared and has not sent any messenger. Thus if the ¯rst division

general never receives any con¯rmation of an instruction to attack, he will not attack: he thinks

it possible that the second division general never received his message, and thus is not attacking.

We can proceed in this manner and verify that no matter how many messages are successfully

delivered, co-ordinated attack cannot occur.

The naive communication protocol was just an example of a communication system. The result

is quite general: as long as all messages may be lost with some probability, and as long as perfect

co-ordination is required, there is no co-ordinated attack. But the naive communication protocol

illustrates the apparent fragility of common knowledge; if n messages have been successfully sent

and received, one might say that they have approximate common knowledge of the fact that the

enemy is unprepared. Yet their behaviour remains unco-ordinated.

3. The Probabilistic Co-ordinated Attack Problem: A Paradox Resolved

From a decision theoretic point of view, the above analysis seems intriguing but su®ers from the

°aw that perfect co-ordination is required. If we could design a protocol where co-ordinated attack

almost always occurred when the enemy was unprepared and it was very unlikely that only one

division attacked, decision theorists would be satis¯ed. In a Bayesian view of the world, bad

outcomes do not matter if they occur at su±ciently small probability events. In order to analyse

this question, we will present a probabilistic version of the co-ordinated attack problem.2

Suppose now that with probability ± > 0 the enemy is prepared, while with probability 1¡± the

enemy is unprepared. Recall that the ¯rst division general knows which of these two contingencies

is true, while the second division general does not. We will consider the same communication

protocol outlined above, except now we assume that each messenger gets lost with independent

probability ² > 0. We will be focusing on the case where ² is small and in particular is smaller

than ±. We will make the unrealistic assumption that there is no upper bound on the number

2Halpern and Tuttle [1993] discuss probabilistic versions of the co-ordinated attack problem.
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of messages that might be successfully sent (although with probability one a message will be lost

eventually). Now the environment can be described by a state space as follows.

State Enemy's Preparedness Probability

(0,0) Prepared ±

(1,0) Unprepared (1 ¡ ±) ²

(1,1) Unprepared (1 ¡ ±) (1 ¡ ²) ²

(2,1) Unprepared (1 ¡ ±) (1 ¡ ²)2 ²

.. .. ..

Table 1: The Naive Communication Protocol State Space

Thus state (n;m) refers to a situation where the ¯rst division general has sent n messages (but

does not know whether his last message arrived or not), while the second division general has sent

m messages (and similarly does not know whether his last message arrived or not). Note that the

in¯nite sum of the probabilities is naturally equal to one.

To complete our analysis, we must specify payo®s for the di®erent outcomes. Suppose that

a successful attack has a payo® of 1 for the generals, while an attack that is unsuccessful (either

because the enemy is prepared or only one division attacks) has a payo® of ¡M , where M is

a very large number. Both generals not attacking has a payo® of 0. These payo®s capture the

qualitative feature underlying the non-probabilistic co-ordinated attack problem that the cost of

an unco-ordinated attack is much larger that the bene¯t from a successful attack (otherwise, why

would we be interested in perfect co-ordination?)

Let us ¯x the naive communication protocol; say that an action protocol for the generals is

optimal, given the communication protocol, if it maximizes the generals' expected payo®.

² If the communication system is su±ciently reliable, then the optimal action protocol has

co-ordinated attack almost always occurring when the enemy is unprepared.

The optimal action protocol, given the naive communication protocol and ² su±ciently small,

has the ¯rst division general attacking whenever the enemy is unprepared (even if he has not

received any message con¯rmation from the second division general); while the second division
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general attacks even if he has received only one message from the ¯rst division general.3 Thus

co-ordinated attack occurs with probability (1 ¡ ±) (1 ¡ ²). In fact, this can be achieved under any

communication protocol where at least one message is sent to the second division general informing

him that the enemy is unprepared.

Thus continuity is restored and the paradox is resolved, at least for a Bayesian decision maker

who is interested maximizing expected payo®s. If the communication system is su±ciently reliable

(i.e., ² is su±ciently small), there exists a protocol which gives an expected payo® that is arbitrarily

close to what it would be with perfect communication.

Implications for Computer Science. If it not possible to achieve perfect co-ordination in

a computer protocol, it seems reasonable that the objective should be to maximize the probability

of successful co-ordination, while minimizing the probability of an unsuccessful attempt to co-

ordinate. The \optimal protocol" for the generals does just that in this example. The analysis of

this section showed that if the objective is only to achieve \co-ordination with high probability"

and agents are not strategic, then it is enough that the communication system is usually accurate.

Halpern and Tuttle [1993] discuss various alternative notions of \approximate common knowl-

edge" that are su±cient to achieve various notions of \approximate co-ordination".4 Our point is

that - assuming computer science applications are non-strategic - co-ordination with high probability

is achievable without strong notions of approximate common knowledge.5 However, we will see that

3To illustrate this claim, consider three action protocols. [1] If the ¯rst division general attacks whenever the enemy

is unprepared and the second division general always attacks, the expected payo® is ± (¡M)+(1¡ ±) (1) = 1¡(M+1)±.
[2] If the ¯rst division general attacks whenever the enemy is unprepared, and the second division general attacks if he

has received at least one message, the expected payo® is (1¡ ±) ² (¡M)+ (1¡ ±) (1¡ ²) (1) = (1¡ ±) (1¡ (M + 1)²).

[3] If each general attacks if he has received at least one message, the expected payo® is (1¡ ±) (1¡ ²) (1¡ (M + 1)²).

Protocol [2] is better than protocol [3] if ² < 1
M+1 . Protocol [2] is better than protocol [1] if ² <

¡
±

1¡±
¢ ¡

M
M+1

¢
. Thus

protocol [2] is better than protocols [1] and [3] for all ² su±ciently small. Similar arguments show that protocol [2]

is better than all alternative protocols.

4See also chapter 11 of Fagin, Halpern, Moses and Vardi [1995].
5There are at least two reasons why computer scientists are nonetheless interested in the strong notions of ap-

proximate common knowledge. First, the objective of protocol design is typically not maximization of expected

payo®s, but rather uniform lower bounds on performance. Second, computer scientists are concerned with the actual
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strong approximate common knowledge notions (with ¯xed point characterizations) are necessary

for co-ordination with high probability in strategic environments.

4. The Strategic Co-ordinated Attack Problem: Paradox Redux

A probabilistic perspective seems to have made the co-ordinated attack problem go away. A

remaining di±culty is that the optimal action protocol turns out to be sensitive to strategic concerns.

The optimal action protocol described is optimal as long as the generals can be relied on to choose

to follow it. Perhaps their battle orders instruct them to follow that protocol and generals always

follow their battle orders. But suppose that the ¯rst division general knows that the enemy is

unprepared, sends a message to the second division general, but receives no con¯rmation. He then

believes with probability 1
2¡² that his own message never arrived, and thus that the second division

general will not attack. For all ², this probability is more than 1=2. Perhaps he would be tempted

not to commit his division to the battle in these circumstances. Anticipating this possibility, the

second division general may hesitate to attack if he has not received a re-con¯rmation from the

¯rst division general. The unraveling argument may start all over again.

To understand this argument formally, we must treat the situation as an \incomplete infor-

mation game" played between the two generals.6 It is a game because each general, in seeking

to maximize his expected payo®, must take into account the action of the other general. There

is incomplete information because under the naive communication protocol, each general does not

know the exact information held by the other general.

We have already described the state space capturing the relevant uncertainty, so now we must

specify the generals' payo®s. Suppose that each general gets a payo® of 0 if his division does

not attack. If his division participates in a successful attack, he gets a payo® of 1; if his division

participates in an unsuccessful attack (either because the enemy is prepared or the other division

does not attack), he gets a payo® of ¡M . Thus if the enemy is in fact prepared (i.e., the state is

(0,0)), the payo®s can be represented by the following matrix:

construction of protocols in environments where it is typically not possible to compute optimal protocols.

6This section is based on Rubinstein [1989].
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Attack Don't Attack

Attack -M,-M -M,0

Don't Attack 0,-M 0,0

Table 2: Payo®s if the enemy is prepared

In this table, the row speci¯es the action of the ¯rst division general, the column speci¯es the

action of the second division general. In each box, the ¯rst number speci¯es the payo® to the ¯rst

division general; the second number speci¯es the payo® to the second division general.

If the enemy is unprepared (i.e. the state is anything other than (0,0)), the payo®s are:

Attack Don't Attack

Attack 1,1 -M,0

Don't Attack 0,-M 0,0

Table 3: Payo®s if the enemy is unprepared

² In the strategic co-ordinated attack problem with the naive communication protocol, both

generals never attack if the communication system is su±ciently reliable.

The argument is as follows. Clearly the ¯rst division general will never attack if he knows the

enemy is prepared. Now suppose ² < ± and the second division general never receives a message.

He believes that with probability ±
±+(1¡±)² > 1=2, the enemy is prepared. Whatever he believes

the ¯rst division general will do if the enemy were unprepared, his optimal action must be not

to attack: not attacking gives a payo® of 0, while attacking gives an expected payo® of at most

(1=2)(¡M) + (1=2)(1) = ¡(M ¡ 1)/ 2 (recall that M is very large, and in particular greater than

1).

Now the ¯rst division general knows that the second division general will never attack if he does

not receive any messages (i.e., in states (0,0) and (1,0)). Suppose that the ¯rst division general

knows that the enemy is unprepared (and so sends a message) but never receives a con¯rmation

from the second division general. Thus the ¯rst division general believes the true state is either

(1,0) or (1,1). He believes that with probability (1¡±)²
(1¡±)²+(1¡±)²(1¡²) = 1

2¡² > 1=2, the second division
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general did not receive any message (i.e., the true state is (1,0)) and so will not attack. By the

same argument as before, this ensures that the ¯rst division general will not attack even if he knows

the enemy is unprepared, but has received any con¯rmation. An unraveling argument ensures that

attack never occurs. This argument holds no matter how small the ex ante probability that the

enemy is prepared (±) is, as long as the communication system is su±ciently reliable (i.e., ² is

su±ciently small).

Despite the resemblance to the argument for the non-probabilistic co-ordinated attack problem,

notice that the conclusion is much stronger. As in the non-probabilistic version, we have no attack

occurring despite the fact that when many messages have been sent, both generals know that both

generals know.., up to an arbitrary number of levels, that attack is desirable. But in the strategic

case studied in this section (unlike in the non-probabilistic version) each general would attack if he

assigned high probability to the enemy being unprepared and the other division attacking.

It is important to realize that the strategic scenario contains two changes from the probabilistic

scenario of the previous section. First, instead of evaluating action protocols ex ante, we required

that each general must have an incentive to attack once he was actually called upon to do so.

In game theoretic language, we did not allow the generals to commit to strategies before the

communication stage. Second, we allowed the generals to have di®erent objectives. That is, the

¯rst division general would much rather that the second division attacked alone, than that the

¯rst division attacked alone. Both these features are necessary for the strategic version of the

co-ordinated attack paradox to hold. If the generals just had di®erent objectives, but they could

commit ex ante to following a particular action protocol, high probability co-ordinated attack is

possible. We will see in section 6 that high probability co-ordinated attack is also possible if the

generals have the same objectives.

5. Approximate Common Knowledge

The strong conclusion of the previous section, that co-ordinated attack never occurs, is not robust

to the communication protocol. The generals would indeed be exceptionally foolish to attempt to

co-ordinate their attack using the naive communication protocol. Consider the following \simple
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communication protocol." Suppose that if the enemy is unprepared, the ¯rst division general sends

one message to the second division general informing him of this state of a®airs. The second division

general sends no con¯rmation. This communication protocol gives rise to the following state space.

State Enemy's Preparedness Probability

No message Prepared ±

Message sent but not recieved Unprepared (1 ¡ ±) ²

Message sent and received Unprepared (1 ¡ ±) (1 ¡ ²)

Table 4: The simple communication protocol state space

Suppose the payo®s of di®erent actions depend as before on the enemy's preparedness, i.e.,

tables 2 and 3. The payo®s and state space together de¯ne another incomplete information game.

An action protocol for the two generals is said to be an equilibrium if each general's action is

optimal, given his payo®s and information, and given that the other general follows the protocol.

² For su±ciently small ², there exists an equilibrium of the strategic co-ordinated attack problem

with the simple communication protocol where co-ordinated attack almost always occurs

whenever the enemy is unprepared.

The equilibrium is described in the following table:

State Enemy's Preparedness Probability
First Division

General's Action

Second Division

General's Action

No message Prepared ± Don't Attack Don't Attack

Message sent

but not recieved
Unprepared (1 ¡ ±) ² Attack Don't Attack

Message sent

and received
Unprepared (1 ¡ ±) (1 ¡ ²) Attack Attack

Table 5: An equilibrium action protocol under the simple communication protocol.

Co-ordinated attack occurs with probability (1 ¡ ±) (1 ¡ ²), i.e., almost always when the enemy

is unprepared, if communication is very reliable (i.e., ² is small). Note that this does not violate the

non-probabilistic co-ordinated attack result, since the ¯rst division general is required to attack with
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no con¯rmation that his message was received. Thus he attaches positive probability to attacking

alone. But he attaches probability 1 ¡ ² to the message being successfully received, and thus is

prepared to attack (if ² < 1
M+1).

Why is attack possible under the simple communication protocol but not under the naive

communication protocol? We know that attack is possible if there is common knowledge that the

enemy is unprepared. How close to common knowledge do the simple and naive communication

protocols get? To answer this question, we need an appropriate notion of approximate common

knowledge. We have already observed that a high number of levels of knowledge does not generate

outcomes close to common knowledge in strategic environments. Consider the following alternative

notion. Let p be some probability. Say that an event is \common p-belief" if everyone believes

it with probability at least p; everyone believes with probability at least p that everyone believes

it with probability at least p; and so on. In standard probabilistic settings, common knowledge

is equivalent to common 1-belief. Common p-belief has a ¯xed point characterization analogous

to that of common knowledge (Monderer and Samet 1989). In particular, if an event is common

p-belief, then everyone believes with probability at least p that it is common p-belief. An action

protocol is a strict equilibrium if every player's equilibrium action gives a strictly higher payo® than

any alternative action, as long as other players follow the protocol.

² Suppose an action protocol is a strict equilibrium if the payo®s of a (¯nite) game are common

knowledge; then there exists p < 1 such that that action protocol is a strict equilibrium when

the payo®s are common p-belief.

A general statement or proof of this claim is beyond the scope of this paper.7 But we can

illustrate with our example. Consider the payo®s which result if the enemy is unprepared (i.e.,

table 3). If it were common knowledge that the enemy was unprepared, this game would have two

equilibria: both generals attack and both generals don't attack. Consider the attack equilibrium.

7Monderer and Samet [1989] introduced the version of common p-belief discussed here and ¯rst studied the

connection between common p-belief and game theory, for p close to 1. The above result can be seen as a special case

of their results. Morris, Rob and Shin [1995] have elaborated the mechanism underlying the unravelling argument of

the previous section and its relation to the absence of common p-belief.
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The action \attack" is optimal for either of the two generals exactly if he assigns probability at

least M
M+1 to the other general attacking.

If it is common
³

M
M+1

´
-belief among the two generals that the enemy is unprepared, there is

an equilibrium where both attack. A constructive argument shows why: if each general always

attacks exactly when it is common
³

M
M+1

´
-belief that the enemy is unprepared, each general has

an incentive to do so. Thus to understand the di®erence between the naive communication protocol

and the simple communication protocol, we must examine when there is common p-belief that the

enemy is unprepared, under the two protocols.

² In the naive communication protocol, for any p ¸ 1=2, it is never common p-belief that the

enemy is unprepared.

We can show this by explicitly identifying the states where it is p-believed that the enemy is

unprepared, up to di®erent levels. First, both generals p-believe that the enemy is unprepared if

at least one message has been sent and received, i.e., at those states (n;m) with n ¸ 1 and m ¸ 1.

When do both generals p-believe that both generals p-believe that the enemy is unprepared? If

the ¯rst division general has received no con¯rmation (i.e., n < 2), then he assigns probability less

than 1=2 (and thus less than p) to the second division general having received the ¯rst message.

Thus both generals p-believe that both generals p-believe that the enemy is unprepared if and only

if at least one con¯rmation has been sent and received, i.e., at those states (n;m) with n ¸ 2 and

m ¸ 1. To get one more level of belief, we must have one more message sent. Thus however many

messages are successfully sent, there is never common p-belief that the enemy is unprepared.

² In the simple communication protocol, it is common (1¡²)-belief that the enemy is unprepared

if the one message is sent and received.

Suppose the one message is sent and received. In this state, both generals attach probability 1

to the enemy being unprepared. This implies both generals 1-believe, and thus (1¡ ²)-believe, that

the enemy is unprepared. In fact, this is the only state where they (1¡ ²)-believe that the enemy is

unprepared. But at this state, the ¯rst division general attaches probability (1¡ ²) to being at this

state, while the second division general attaches probability 1. Thus both generals (1 ¡ ²)-believe
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that both (1 ¡ ²)-believe that the enemy is unprepared. This argument iterates to ensure that it is

common (1 ¡ ²)-belief that the enemy is unprepared.

Implications for Game Theory and Economics. The strategic co-ordinated attack para-

dox appears to be an artifact of an arti¯cial and foolish communication system: it is quite simple to

achieve the appropriate approximate common knowledge in an unreliable communication system.

Does the strategic co-ordinated attack problem have any practical interest, then? It does suggest

two natural lines of future research.

First, if you could design the communication system, subject to unavoidable communication

errors, that would be used by players in a strategic environment, how would you do it (see, for

example, Chwe 1995)? Not like the naive communication protocol, clearly. But the approximate

common knowledge results provide hints about how it should be designed.

However, there are many economic environments where the communication system, or infor-

mation structure, is exogenously given to decision makers. If those decision makers must then

make strategic decisions, the issues raised by the naive communication protocol are of the utmost

importance. The messengers story is of course a little contrived. Rubinstein [1989] used a more

contemporary story about the same formal information structure, where players communicate with

electronic mail messages which may get lost. But Carlsson and van Damme [1993] have considered

an information structure where two players each receive a noisy signal of the true state of payo®s.

It turns out that this simple and natural information structure has all the same implications as

the naive communication protocol. So the second question for future research is: given that such

unfortunate information structures are exogenously given, how should institutions be designed to

deal with them (see, for example, Shin 1996)?

6. Achieving Approximate Common Knowledge

The naive communication protocol revealed a remarkable fact about common p-belief. Suppose

that the probability that the enemy is unprepared (±) is very small, and the communication is very

reliable (² < ±). Then we have an event E (\the enemy is unprepared") that has probability very

close to one (1 ¡ ±), while the probability that it is common 1=2-belief is zero. This suggests that
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there need be no connection between the ex ante probability that the enemy is unprepared and the

possibility of equilibrium co-ordinated attack (as long as the communication protocol is su±ciently

bad).

It turns out that the situation is not quite so bad, at least as long as players' beliefs are

generated by the \common prior assumption" [Morris 1995a]. That is, there is a commonly agreed

prior probability distribution on the set of possible states and players' beliefs are generated by

updating by Bayes rule on that state space (this assumption is standard in game theory).

² Suppose that p < 1=2 and the probability of event E is 1¡±. Then the probability that event

E is common p-belief is at least 1 ¡ ±
³
1¡p
1¡2p

´
.8

Remarkably, it is possible to deduce properties of players' higher order beliefs from ex ante prob-

abilities. This result can be combined with the earlier common p-belief result to prove equilibrium

results. Suppose that we altered the payo®s of the generals in the strategic co-ordinated attack

problem so that there was no con°ict of interest. In particular, suppose now that each general gets

a payo® of ¡M if his division does not attack, but the other division does. Thus the con°ict of

interest is removed. The new payo® matrix is:

Attack Don't Attack

Attack 1,1 -M,-M

Don't Attack -M,-M 0,0

Table 6: Payo®s if the enemy is unprepared (symmetric case)

The key game theoretic change is that now the both attack equilibrium is \risk dominant": that

is, there is a probability p less than 1=2 such that if one general assigns probability p to the other's

division attacking, his best response is to attack. This p is M
2M+1 . Thus there is an equilibrium

where attack occurs as long as it is common
³

M
2M+1

´
-belief that the enemy is unprepared. But we

know that this is true with probability at least

1 ¡ ±

µ
1 ¡ p

1 ¡ 2p

¶
= 1 ¡ ±

Ã
1 ¡ M

2M+1

1 ¡ 2M
2M+1

!
= 1 ¡ ± (M + 1) :

This is true under any communication protocol. Thus we have:

8This result is due Kajii and Morris [1995].
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² Under any communication protocol, if the enemy is unprepared with su±ciently high proba-

bility, then there is an equilibrium of the symmetric strategic co-ordinated attack game where

co-ordinated attack occurs with probability close to one.

7. Common Knowledge and Timing

Let us give one last example illustrating the importance of strategic issues. Common knowledge is

fragile in many dimensions. Consider the following variation of the co-ordinated attack problem.

Suppose now that messages are perfectly reliable - they arrive with probability one - but the length

of time they take is uncertain. For simplicity, suppose that a message arrives either instantaneously

or after ² seconds.9

At some point in time, the ¯rst division general will receive his intelligence about the prepared-

ness of the enemy, and immediately send a message to the second division general. This is the only

message sent. If the enemy is unprepared, the generals would like to co-ordinate a simultaneous

attack. Unfortunately, the generals do not have synchronized clocks and they do not know (we

assume) whether the message took 0 seconds or ² seconds to arrive. For future reference, let us

assume that each outcome occurs with probability 1=2 and ² is small.

It never becomes common knowledge that the enemy is unprepared. The ¯rst division general

knows that the second general has received his message ² seconds after he sent it. Since the second

division general thinks that the message may have taken only 0 seconds, he knows that the ¯rst

division general knows that he has received the message only ² seconds after receiving it. Thus the

¯rst division general knows that the second division general knows that the ¯rst division general

knows that the message has arrived only 2² seconds after the message is sent. This argument iterates

to ensure that it never becomes common knowledge. Thus co-ordinated attack is impossible.

But suppose that it is enough to ensure that the length of time when only one general is

attacking is short. Such approximate co-ordination is easy to achieve with non-strategic generals if

the delay ² is small. Consider the action protocol where the ¯rst division general attacks as soon as

he knows that the enemy is unprepared (simultaneously sending a message to the second division

9This example is due to Halpern and Moses [1990].
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general). The second general attacks as soon as he receives the message. Thus unco-ordinated

attack occurs for at most ² seconds.

But consider the following strategic version of the problem.10 Suppose that the payo®s of table

2 and 3 represent the generals' instantaneous payo®s at any moment in time. Thus each general

gets a °ow payo® of ¡M each second that his division is attacking alone, but a °ow payo® of 1

whenever both divisions are attacking and the enemy is unprepared. An action protocol speci¯es

when each general starts attacking, as a function of when he receives a signal (remember, there are

no synchronized clocks). For example, the ¯rst division general might plan on attacking x seconds

after he hears that the enemy is unprepared while the second division general might plan to attack

y seconds after he receives the message from the ¯rst division general. Thus an action protocol is

described by the two numbers, (x; y).

For what values of x and y is this action protocol an equilibrium? That is, when is it the

case that each general would actually want to follow this plan if he expected the other general to

follow that plan? Suppose the ¯rst division general expects the second division to attack y seconds

after receiving message: y seconds after sending his message, the ¯rst division general attaches

probability 1=2 to the second division general attacking, and 1=2 to his waiting another ² seconds.

Thus his °ow payo® from attacking (over the next ² seconds) is (1=2)(¡M) + (1=2)(1) < 0. So he

waits until y+² to attack. Thus if (x¤; y¤) is an equilibrium, we must have x¤ = y¤+². On the other

hand, suppose the second division general expects the ¯rst division general to attack x seconds after

sending his message: x¡ ² seconds after receiving his message, the second division general attaches

probability 1=2 to the ¯rst division general attacking, and 1=2 to him waiting another ² seconds.

Thus his °ow payo® from attacking (over the next ² seconds) is (1=2)(¡M) + (1=2)(1) < 0. So he

waits until x seconds after receiving his message to attack. Thus if (x¤; y¤) is an equilibrium, we

must have y¤ = x¤. But we earlier showed that x¤ = y¤+², a contradiction. So the only equilibrium

action protocol has each general never attacking.

Thus we see again that strategic problems require a stringent form of approximate common

knowledge in order to attain approximate co-ordination, while non-strategic problems do not. We

10Morris [1995b].
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showed this ¯rst in section 4, where common knowledge failed because of communication errors. We

showed a similar conclusion in this section, where common knowledge failed because of asynchronous

communication.

8. Approximate Common Knowledge does not allow Intricate Conventions

Our discussion of the su±ciency of common p-belief in securing coordination needs a caveat. So far,

the actions taken by the participants have been binary (to attack or not to attack), and in general

¯nite. If, however, the participants are choosing from a continuum, quali¯cations are necessary. As

many interesting coordination problems belong to this class, this is a potentially important point

to bear in mind, and we can also draw some conclusions on what sorts of conventions might emerge

in such situations.

Imagine that the two generals are now back home in peace time. They live in neighbouring

towns, and meet regularly every weekend in the ¯rst general's town. This town has a long Main

Street, which is represented by the unit interval [0; 1]. At one end of Main Street (at point 0) is an

open air bar, while at the other end (at point 1), there is an indoor restaurant. The two generals

prefer to meet at the open air bar if the weather is dry, and prefer the indoor restaurant if the

weather is wet. In any case, they aim to meet at the same point on Main Street, but have to choose

a spot somewhere on Main Street to turn up. Denote by x the point on Main Street chosen by the

home town general, and denote by y the point chosen by the out-of-town general. The coordination

problem of the generals is implicit in their payo®s, which are:

Home town general's payo® when dry ¡(x ¡ y)2 ¡ y

Out-of-town general's payo® when dry ¡(x ¡ y)2 ¡ x

Home town general's payo® when wet ¡(x ¡ y)2 + y

Out-of-town general's payo® when wet ¡(x ¡ y)2 + x

Table 7

Clearly, the best outcome would be if they could coordinate a convention in which they both turn

up at the open air bar (point 0) if the weather is dry, and they both turn up at the indoor restaurant

(point 1) if the weather is wet.
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The home town general can observe the weather in his own town perfectly. If the other general

could also observe the weather situation perfectly, then such coordination could be achieved. There

would then be common 1-belief of the weather in the ¯rst general's town. However, suppose that

the out-of-town general only has a noisy signal of the true weather situation in his friend's town.

The out-of-town general receives a forecast which is very accurate, but not perfectly so. The joint

distribution over the true weather situation and the forecast is

Dry forecast Wet forecast

Dry (1 ¡ ²) =2 ²=2

Wet ²=2 (1 ¡ ²) =2

Table 8

where ² is a small positive number. Notice that there is common (1 ¡ ²)-belief of the true weather

situation, so that when the noise is small, there is common p-belief with a high p. If we were to

extrapolate the results discussed so far, we might venture to speculate that when ² is small enough

the generals can achieve full coordination. However, this is not the case. However small ² is, the

best that they can do is to ignore their information completely and turn up at some point on Main

Street whether the weather is dry or whether the weather is wet.

To see this, denote by xd the spot chosen by the home town general when the weather is dry,

and by xw the spot chosen when the weather is wet; yd and yw are de¯ned analogously for the

out-of-town general. When the weather is dry, the home town general puts probability (1 ¡ ²) to

his friend having the accurate forecast, and probability ² to his having an inaccurate forecast. In

the former, the out-of-town general takes action yd, and in the latter, he takes action yw. So, the

home town general's expected payo® is given by

¡(1 ¡ ²)
³
(xd ¡ yd)

2 ¡ yd
´

¡ ²
³
(xd ¡ yw)2 ¡ yw

´
:

This is maximized when the home town general chooses

xd = (1 ¡ ²)yd + ²yw:

Proceeding in this way, we can derive the following pair of matrix equations as necessary conditions
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for any convention.

2
64

xd

xw

3
75 =

2
64

1 ¡ ² ²

² 1 ¡ ²

3
75

2
64

yd

yw

3
75

2
64

yd

yw

3
75 =

2
64

1 ¡ ² ²

² 1 ¡ ²

3
75

2
64

xd

xw

3
75

from which we get 2
64

xd

xw

3
75 =

2
64

1 ¡ ² ²

² 1 ¡ ²

3
75

2 2
64

xd

xw

3
75 :

As long as ² is positive, any solution of this equation satis¯es xd = xw, so that any convention has

xd = xw = yd = yw. The best the two generals can do is to ignore their information altogether.

The lesson to be drawn from this example is that when coordination is to be achieved over a

large set of possible outcomes, common p-belief of the underlying circumstances will not be enough.

What is necessary is common 1-belief, or what amounts to the same thing, common knowledge.

Shin and Williamson [1996] show that this argument holds generally, and that any convention in

which participants choose from a continuum can only rely on events which are common knowledge

whenever they occur.

An Implication for the Philosophy of Language. If the players, taken individually, are

capable of making ¯ne distinctions across the states of the world, and the players were able to

utilize this information in their convention, we could regard such a convention as being `intricate'

relative to the information of individual players. In contrast, if an equilibrium involves strategies

which do not utilize to any great extent the private information of individual players, then we

may informally dub such an equilibrium `simple', relative to the information of individual players.

We have seen that for coordination problems with large action sets, the latter is the case with a

vengeance. Any information is useless, unless it is commonly shared by all.

This conclusion is intriguing, since many of the conventions around us tend to be simple relative

to the set of signals on which we could condition our actions. For example, it could be argued that

our conventions concerning appropriate dress are too rigid relative to rules which are superior.
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Why isn't there a convention that jackets and ties should be worn by men to dinner unless the

temperature is above a threshold level, in which case all the men turn up in T shirts? On a

less frivolous note, the archetypal convention is that of language, and the meaning we associate

with sentences. Lewis's [1969] account of the use of language as an equilibrium in a coordination

game has been very in°uential among philosophers.11 In this context, it is an intuitively appealing

principle that the meaning of sentences should not vary with, say, the season or day of the week.

For example, it is di±cult for us to picture a language in which the sentence \the cat is on the

mat", means that the cat is on the mat, on weekdays but means that the cherry is on the tree, on

weekends. However, if we take at face value the claim that language is merely a coordination device,

we are hard put to give a quick rebuttal to such oddities. Why are such perverse languages not

observed in practice? We have provided one possible answer. We have shown that for coordination

problems over large sets (and indeed, the set of possible languages is rather large), the optimizing

behaviour of individuals eliminate all rules of action except those which rely only on the signals

shared commonly by all. Our beliefs of the empirical features of the world will often fail this test

of commonality. Conventions de¯ned over large action sets cannot rely on information which is

only available to a strict subset of the participants, however large his subset might be, and however

small the possibility of error might be.

The argument we outlined above concerned a static or \one-shot" strategic situation. However,

similar issues will arise in studies of the evolution of conventions through time. In the simple

story outlined above, the best-reply structure generates a stochastic process on actions which

ensures convergence to the simple convention, and Shin and Williamson's argument relies on the

construction of a martingale on the set of actions, and on its convergence. Explicit modeling of

learning and other dynamic aspects of conventions can be expected to strengthen the presumption

in favour of simple conventions.

11Although the strategic analysis of language and conventions has a long history, it is not a feature emphasized

in modern logical semantics. But see the chapter by Hintikka on game-theoretic semantics in van Benthem and ter

Meulen [1996].
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9. Conclusion

The signi¯cance of the results outlined in our paper depend, to a large extent, on what notions

of knowledge and belief are applicable to a particular situation. If knowledge is interpreted as a

logical notion - as something which is implied logically by more basic propositions - then common

knowledge could be regarded as being easily attained, since it is merely the consequence of the

logical competence of agents. However, such a view of knowledge is of limited use in many ¯elds

in which beliefs are derived from empirical sources, or at least, sources which are not infallible.

We may often have good evidence that a proposition is true, but almost invariably, this is not a

watertight guarantee. If coordination requires common knowledge concerning such empirical facts

about the world, then common knowledge seems to be an excessively strong requirement that will

rarely be achieved in practice.

Thus, although we have the benchmark result that perfect coordination requires common knowl-

edge, this need not be very informative to researchers in the ¯eld if common knowledge is unlikely

to be attainable in practice, or if perfect coordination can be supplanted by some notion of \suf-

¯cient" coordination which would su±ce for most purposes. Our goal in this paper has been to

outline some of the ways in which the two notions (common knowledge and perfect coordination)

can be relaxed, and how the relaxed notions can be related to one another.

Recent developments in game theory have o®ered several insights which may be of relevance to

neighbouring disciplines which employ the notion of common knowledge. Firstly, if agents behave

strategically, coordination may be di±cult to achieve, even if coordination in the corresponding

non-strategic situation is easy to attain. Secondly, the appropriate notion of \almost common

knowledge" in strategic situations involving a ¯nite number of actions is that of common p-belief,

rather than large numbers of iterations of knowledge among the participants. We have also alluded

to how the notion of common p-belief interacts with the idea of a common prior over the space of

uncertainty to impose bounds on how much coordination might be achievable on average. Finally,

we have ended on a cautionary note that when coordination is to take place over a continuum, full

common knowledge (rather than its approximate cousin) is required. In this extreme case, only the

most stringent notion of common knowledge will achieve coordination, and it serves as a benchmark
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on how far common knowledge can be relaxed.
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