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1. INTRODUCTION

It has long been recognized that community enforcement can make sellers behave
cooperatively even when they meet particular buyers only infrequently and have
a short term incentive to cheat, e.g., to supply low quality or to shirk in a labor
contract. For instance, Klein and Le²er (1981) study the problem of credibly
committing to o®er high quality in a model where a continuum of buyers are
randomly matched with several sellers and each seller has a short term incentive
to supply low quality at a lower cost. In their model community enforcement by
the buyers, through a coordinated boycott after observing low quality, provides
incentives for the seller to produce high quality. The results of Klein and Le²er
(1981), along with most of the existing literature on community enforcement,
depend upon the assumption that past quality choices of the seller are public
information.

When the number of sellers and buyers is large and particular sellers and
buyers meet only infrequently or only once, the assumption of public information
seems rather demanding. Recently this observation has led to a number of articles
looking at community enforcement with less stringent informational assumptions.
These papers include Milgrom et. al., (1990), Okuno-Fujiwara and Postlewaite
(1995), Kandori (1992) and Ellison (1994). However, partially due to the di±cul-
ties of dealing with private information, all of the above mentioned papers have
made extreme informational assumptions: either complete anonymity of players
together with the assumption that players observe only the actions chosen in their
own games, or alternatively, locally complete information, which allows a player
to perfectly observe the status of his current opponent, based on the opponents
past behavior. See also Greif (1993), Harrington (1995), Greif (1994) and Greif
et. al., (1994).

Kandori (1992) and Ellison (1994) study a repeated prisoners' dilemma in a
large but ¯nite-population random-matching setting, where players are unable
to recognize their opponents. They show that even then there exist sequential
equilibria where all players play cooperatively in every period. Cooperation is
supported by community enforcement based on contagious strategies: all players
who are cheated immediately start cheating their opponents, understanding that
the whole society is in a process of switching into non-cooperative actions. In the
equilibrium, players behave cooperatively to avoid initiating a general switch to
non-cooperative actions. An important factor underlying Kandori's and Ellison's
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results is that defection is a dominant strategy of the stage game. Whether
contagious strategies would work in a repeated random matching game that does
not share this property, such as the buyer seller game we are about to study, is
still unknown. In addition, at least under their informational assumptions, the
cooperative equilibria based on contagious strategies are unstable in the sense that
a single \insane" player who does not cooperate can destroy the good equilibrium
for all agents (Ellison, 1994).

Okuno-Fujiwara and Postlewaite (1995) and Kandori (1992) consider games
with local information processing: 1) Each player carries a label observable to
her opponent, 2) when two players are matched they observe each other's label
before choosing their actions, 3) a player and his partner's actions and labels
today determine their labels tomorrow. The information processing is \local" in
the sense that the actions chosen by a pair of players are based only on their labels,
not on the entire distribution of labels across the population, and the updating
of each player's label depends only on the previous labels and the outcome of the
stage game. When the population is large and players are randomly matched, the
observability of the current trading partner's label and the updating of the labels
require the existence of some e±cient information transmission and processing
mechanism. This could be a medieval law judge (Milgrom et. al., 1990) or
institutions like credit bureaus which track the transactions of every agent.

In many real life situations, however, social norms and informal information
transmission mechanisms can replace formal institutions and still facilitate co-
operation. In this paper, we present a model of community enforcement that is
based on word-of-mouth communication. The information transmission is highly
imperfect in the sense that information about each defection spreads only to
part of the player population and defectors can not always be immediately pun-
ished. Despite this, since players can be identi¯ed, private reputations evolve.
This allows equilibria where only defectors are punished; making our equilibria
more stable with respect to \insane" players, who do not cooperate, than those
based on contagious strategies. In fact, when information is privately costly, only
some of the sellers can cooperate in any equilibrium. Nonetheless, word-of-mouth
communication is shown to be surprisingly e±cient in facilitating cooperation.

We assume there are M sellers and M buyers, where M is large but ¯nite
number, and that in each time period t = 0; 1; 2; :::; the sellers and buyers are
randomly matched to play a stage game that contains an opportunity for a mutu-
ally bene¯cial trade. The sellers have a short-term incentive to supply low quality
and will supply high quality only if the gains from maintaining good reputation
outweigh the short-term loss. For simplicity, it is assumed that buyers would
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not knowingly purchase low quality at any price. We assume that buyers have
networks of communication that, roughly speaking, work in the following man-
ner: In each period each buyer observes N trades in addition to his own and N
buyers, called spectators, observe his trade and send him signals regarding his
current trading partner. We can think of these N spectators as friends of the
buyer or just people who happen to pass by. We assume that the identities of the
spectators can change from period to period.

Throughout the paper we consider two kinds of strategy pro¯les, which di®er
in the informativeness of the signals. The strategy pro¯le with the less informative
(actually totally uninformative) signals is equivalent to a model where signalling
is not allowed. For these two strategy pro¯les we provide su±cient conditions
on N and the discount factor for a sequential equilibrium where good quality
is supplied by all sellers in every period. Assuming the existence of a public
randomization device and high enough discount factor, these conditions can be
stated as N ¸ N¤ where N¤ is a constant determined by the population size,
discount factor and the payo® matrix. As one of our main results, we show that
with informative signalling N¤ is a diminishing fraction of the population size.

We then study a model where \networking" (i.e., setting up N connections)
is costly. In this case, when M is large, we show that there must be a positive
probability of sellers producing low quality goods in any equilibrium in order to
give buyers an incentive to network. When the costs of networking are below a
threshold value, we ¯nd a sequential equilibrium in which sellers initially random-
ize between high and low quality and continue to produce high quality if and only
if they produced high quality in the ¯rst period. In this equilibrium the prob-
ability of buying low quality goods increases in M and the cost of networking.
When the cost of networking reaches the threshold value, trade collapses because
the probability of low quality goods that would provide agents with su±cient
incentive to network is so large that each buyer no longer wishes to experiment
with an unknown seller.

In the existing literature on quality provision, it is assumed that agents in-
stantaneously learn about a seller's defection, see e.g. Klein and Le²er (1981)
and Allen (1984). In this paper we show that word-of-mouth communication
can spread information rather quickly and make such assumptions reasonable ap-
proximations in some settings. When the population is large and information
privately costly, our results suggest, however, that both high and low quality
would be produced in equilibrium. To further understand the role of institutions
in transmitting information, as in Milgrom et. al. (1990), we feel it is useful to
understand the workings of informal channels of information transmission. We
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hope that our formalization of word-of-mouth communication has interest on its
own.

The rest of the paper is organized as follows: Section 2 gives the formal
description of the model. Section 3 discusses players' strategies and presents
su±cient conditions for sequential equilibria with informative and uninformative
signalling, where high quality is produced by every seller in every period. Section
4 shows that with informative signalling as M goes to in¯nity, trade can be
sustained with buyers networking with a diminishing proportion of other buyers.
Section 5 studies costly networking and section 6 concludes the paper.

2. THE MODEL

There are two ¯nite sets of players Mk = f1; 2; :::; Mg; k = S; B: Denote by MS

the set of sellers and by MB the set of buyers. We envisage the sellers as being
positioned at ¯xed locations around a circle, where the locations are numbered
clockwise from 1 to M . We refer to seller i as the seller at location i: It is assumed
the buyers can identify the sellers by the number of their location, but the sellers
can not recognize the identities of the buyers.1

Let £ be the set of all permutations of MB. In each period t = 0; 1; 2; :::, a
permutation µt 2 £ is chosen with uniform probability, independent of previous
realizations. Buyer µt(i) 2 MB is placed at location i to play with seller i 2 MS

the following simultaneous move \trade" game:

Buyer µt(i)
B NB

Seller i H 1; 1 0; 0
L 1 + g;¡` 0; 0

;

where both g and ` are taken to be strictly positive numbers. The ¯rst (second)
number in each entry indicates the seller's (buyer's) payo®. Seller's actions H
and L refer to providing \high-quality" and \low-quality" while buyer's action B
refers to \buy" and NB to \not buy". With g and ` strictly positive, L is the
dominant strategy for the seller and (L;NB) is the only Nash equilibrium of the
trade game. The sellers and buyers have a common discount factor ± 2 (0; 1) and
their overall payo®s are the discounted sum of payo®s from the trade games.

1The more general assumption that sellers can also recognize the identities of buyers does
not change our results. The two strategy pro¯les that we consider would be equilibria of such a
game under conditions slightly di®erent from ours.
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In each period t = 0; 1; 2; :::; there is preplay communication among neigh-
boring buyers before the trade games. To be precise, the stage game proceeds as
follows:

1. After µt is realized, buyer j observes µt; recognizes the identity of his
opponent, µ¡1t (j); as well as the identities of his \neighboring" sellers,
µ¡1t (j) + 1; µ¡1t (j) + 2; :::; µ¡1t (j) + N; where N · M=2 ¡ 1:2;3;4 Let us
denote by Sj(µt) = fµ¡1t (j) + kg1·k·N the subset of neighboring sellers,
whom buyer j observes at period t; and by Nj(µt) = fµt(µ¡1t (j) + k)g

1·k·N
their period t matches. We call Nj(µt) buyer j's neighboring buyers at pe-
riod t. Also, let us denote by Ns

j (µt) = fµt(µ¡1t (j)¡k)g1·k·N the subset of

buyers, who observe the interaction between j and µ¡1t (j) at period t. We
call Ns

j (µt) the spectators to buyer j's game at period t. Notice that the
identities of the spectators, neighboring sellers and buyers depend on µt:

2. Buyer j sends a payo®-irrelevant signal to each of his neighboring buyers
n 2 Nj(µt) and receives a message from each spectator in Ns

j (µt): Let us
introduce the following notation.

² C = f°; ¯g : the set of possible signals. We can interpret a signal ° or
¯ as meaning respectively \Good" or \Bad":

² mj
t(`) 2 f°; ¯g : the signal from buyer j to buyer ` 2 Nj(µt).

² mj
t 2 f°; ¯gN : the N-tuple of the signals from j to each of his neigh-

boring buyers in Nj(µt).

² mt(j) 2 f°; ¯gN : the N-tuple of the signals from j's spectators,
Ns
j (µt); to buyer j:

3. Seller µ¡1t (j) and buyer j play the 2 £ 2 simultaneous move trade game
described above. Denote the outcome (or the realized action pro¯le) of that
game by (aSt (µ¡1t (j)); aBt (j)); where aSt (µ

¡1
t (j)) 2 AS = fH; Lg; aBt (j) 2

AB = fB;NBg.
2The assumption that buyers observe µt is made to ease the notation. An alternative as-

sumption that does not change our results would be that buyer j is able to recognize only the
identities of his opponent µ¡1t (j) as well as his neighboring sellers in period t.
We also make the assumption that N · M=2 ¡ 1: The extension of our analysis to M=2 ·

N · M ¡ 1 is trivial. The case N = M ¡ 1 would then correspond to the game with perfect
observability, while the case N = 0 to the game where each buyer observes only the outcome of
his trade game and the identity of his opponent.

3Sellers are female and buyers are male.
4These locations are of Mod M:
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4. In addition to his own outcome, buyer j observes the realized action pro¯les
of the period t trade games played by the sellers i 2 Sj(µt) and buyers n 2
Nj(µt): Denote this observation by ot(j) =

³
(aSt (i); aBt (µt(i)))

´
i2Sj(µt)[fµ¡1t (j)g

2
(AS £ AB)N+1:

The information that buyer j receives in period t can now be written as
(µt;mt(j); ot(j)): We denote with Ht(j) the set of all possible histories for buyer
j up to but not including period t. By convention, let H0(j) = ;: An element
ht(j) 2 Ht(j) includes all past realizations of µs; all past messages to player j,
ms(j); all past messages from player j, mj

s; and all past observations of player j;
os(j); where 0 · s < t. Hence ht(j) is:

ht(j) =
¡
µ¿ ;m¿ (j);m

j
¿ ; o¿ (j)

¢t¡1
¿=0 :

A pure strategy for buyer j is then a sequence f bmj
t ;

bbjtg1t=0, where

bmj
t : £ £ Ht(j) ! f°; ¯gN

bbjt : ££ Ht(j) £ f°; ¯gN ! fB;NBg.

bmj
t(µt; h

t(j)) speci¯es the N-tuple of signals that buyer j with private history
ht(j) sends to his neighboring buyers n 2 Nj(µt) in period t. bbjt (µt; ht(j); mt(j))
speci¯es the choice of action for buyer j in the period t trade game against
seller µ¡1t (j), when j has private history ht(j) and he receives signals mt(j) in
the period t communication stage. Correspondingly, let fb¹jt ; b̄j

t g1t=0 denote a
behavioral strategy for buyer j, where

b¹jt : £ £ Ht(j) ! ¢f°; ¯gN
b̄j
t : ££ Ht(j) £ f°; ¯gN ! ¢fB;NBg.

For seller i we de¯ne pure and behavioral strategies as sequences of maps
fbsitg1t=0 and fb¾itg1t=0; where

bsit : (fH; Lg £ fB;NBg)t ! fH;Lg:

b¾it : (fH; Lg £ fB;NBg)t ! ¢fH;Lg:

Note that the assumption that a seller does not recognize the identity of a buyer
is implicit in this notation.

Because of the private histories that players have, the equilibrium concept that
we apply is sequential equilibrium. Sequential equilibrium requires that after any
history player's equilibrium strategy maximize his (her) expected payo®, taking
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as given all other player's strategies and his beliefs about the signals and actions
taken by all other players in all previous periods. Furthermore, his beliefs should
be \consistent" with the equilibrium strategy pro¯le and private history, in the
sense of Kreps and Wilson (1982).5 A trivial sequential equilibrium is one where
sellers play L and buyers NB after any history: the repetition of the only Nash
equilibrium of the trade game. We are interested, however, in sequential equilibria
that support the e±cient outcome where (H; B) is played by all players in every
period.

For the most part we con¯ne our analysis on a particular class of strategy
pro¯les, which we call \unforgiving". These strategy pro¯les require sellers to
sell high quality in period zero (in section 5 with some probability), and sell
high quality thereafter if and only if 1) they have always done so, and 2) buyers
have always purchased their goods. Under the unforgiving strategy pro¯le buyers
play B, except to punish a seller by playing NB when they are informed of her
defection. The strategy pro¯les are unforgiving in the sense that informed buyers
punish a defector whenever they meet her.

There are two reasons for focusing on these strategy pro¯les. First, they
are simple: In fact, because of the private information that players have, it is
di±cult to imagine other strategies that could support the e±cient outcome as
a sequential equilibrium in this game. For instance, it is not obvious whether
contagious strategy pro¯les, where a seller's defection a®ects how buyers treat
other sellers, would be equilibria in this game. Checking the incentives of a buyer
to follow such a strategy on o®-the-equilibrium paths is very complicated, because
his incentives depend on his belief about the previous plays, which in turn depend
on his private history.6 Strategies with less severe, ¯nite punishments are also
di±cult to implement because buyers typically do not know the time of the ¯rst
defection and therefore cannot synchronize the last period of a punishment phase.
Unforgiving strategies avoid these problems and the buyers incentives are easily
shown to be satis¯ed. The second reason for focusing on these strategy pro¯les
is that, in the class of non-contagious strategy pro¯les (i.e., where one sellers
action does not a®ect how the other sellers are treated), these strategy pro¯les
provide the maximum punishment for the seller. This is important because the
conditions for the e±cient outcome that we derive then characterize the minimum

5In Kreps and Wilson (1982), the de¯nition of sequential equilibrium requires the speci¯cation
of beliefs system as well as a strategy pro¯le. Because the beliefs system which is consistent with
our strategy pro¯les is simple, we refer only to the strategy pro¯le when describing a sequential
equilibrium.

6See Kandori (1992) for a discussion on the di±culties of private information.
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N that is necessary for the e±cient outcome in any sequential equilibrium based
on non-contagious strategy pro¯les.

3. EXOGENOUS CONNECTIONS AND TRADE

In this section we provide su±cient conditions in terms of N for a sequential
equilibrium where (H;B) is played by all players in every period. In our model
information about sellers' behavior may spread through two possible sources, the
e®ectiveness of which depends on the number of spectators, N: First, by observing
the outcomes of N + 1 trade games in each period, a buyer receives information
about N +1 sellers: he observes their current actions and may infer knowledge of
their past defections from the actions of their opponents. Second, the information
can be transmitted through direct communication among neighboring buyers.
The e®ectiveness of direct communication depends, however, on the information
content of the signals.

We now introduce two unforgiving strategy pro¯les that di®er with respect
to the informativeness of the buyer's signals. For obvious reasons we refer to the
¯rst as the Uninformative Strategy Pro¯le and to the second as the Informative
Strategy Pro¯le. In all periods t = 0; 1; 2::::, after µt is realized:

The strategy for seller i is same under both strategy pro¯les and is:

(I) In the ¯rst period play H. After that, if the outcome in seller i's past
games was always (H; B), play H.

(II) Play L otherwise.

The Uninformative Strategy for buyer j is:

(III) Signal randomly ° or ¯ with equal probabilities to all n 2 Nj(µt),
irrespective of the private history ht(j):

(IV) If j has ever observed µ¡1t (j) play L or someone (including himself)
play NB against her, play NB regardless of the messages mt(j):

(V) Play B otherwise.

The Informative Strategy for buyer j is:

(III)' If j has ever observed µ¡1t (n); where n 2 Nj(µt); play L or someone
(including himself) play NB against her, signal ¯: Signal ° otherwise.
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(IV)' If j previously observed µ¡1t (j) play L or someone play NB against
her, or if he received a message ¯ from any of his current spectators,
h 2 Ns

j (µt), play NB:

(V)' Play B otherwise.

Under both strategies, in the beginning of each period t each buyer j catego-
rizes sellers into two di®erent status groups based on his private history Ht(j): If
he has observed a seller play L or someone (including himself) play NB against
her by period t ¡ 1 , he gives her the \Bad" status ¯: Otherwise, he gives her
the \Good" status °: During the communication stage in period t (phase 2 of the
stage game), buyer j is given the opportunity to signal to his neighboring buyers
n 2 Nj(µt) the statuses that he has assigned to their opponents µ¡1t (n); and to
revise the status that he assigns to his current opponent by taking into account
the signals that he receives from the period t spectators to his game h 2 Ns

j (µt).
As can be seen from the conditions (III), (IV) and (V), under the Uninfor-

mative Strategy Pro¯le buyers merely "babble", disregard their neighbors' signals
and base their choices of action against their period t opponents on the statuses
that they assigned to them after the period t ¡ 1. So the communication stage
is totally uninformative. Under the Informative Strategy Pro¯le, on the other
hand, signalling reveals all the relevant information (about receiver's opponent)
of the senders, given the seller's strategy. Under this pro¯le each buyer j sends
a signal ° or ¯ to each of his neighboring buyers n 2 Nj(µt), depending on the
statuses that he assigned to their opponents µ¡1t (n) after period t ¡ 1. He also
fully respects the messages that his spectators h 2 Ns

j (µt) send to him before the
period t trade game, and revises the status that he has assigned to his current
opponent µ¡1t (j) accordingly, basing his period t trade game choice of action on
the revised status of µ¡1t (j). Both strategy pro¯les are unforgiving since once a
buyer assigns a particular seller a status ¯; he never upgrades her status to °:

Before proceeding it is convenient to introduce some additional notation. Take
any two time periods t0 and t; where t0 < t: Under the Uninformative Strategy
Pro¯le denote by b the probability that µt(i) was among the N + 1 buyers who
observed seller i at period t0. That is, let b denote the probability

Pr
n
i 2 Sµt(i)(µt0)

[
fµ¡1
t
0 (µt(i))g

o
:

Correspondingly, under the Informative Strategy Pro¯le denote by b the proba-
bility that either µt(i) or some of the N µt(i)'s time t spectators, h 2 Ns

µt(i)
(µt);

were among the N + 1 buyers who observed i at period t0: In this case, b is the
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probability

Pr

(
i 2 [

j2fµt(i)g[Ns
µt(i)

(µt)
[Sj(µt0)

[
fµ¡1
t0

(j)g]

)
:

It is straightforward to check that

b =

8
>>>>>>>>>><
>>>>>>>>>>:

N + 1

M
with the Uninformative Strategy Pro¯le, and

1 ¡

Ã
M ¡ N ¡ 1

N + 1

!

Ã
M

N + 1

! with the Informative Strategy Pro¯le

For both strategies, note that since µt is i.i.d., b is time independent and does
not depend on t and t0: Note also that for both strategies b increases in the
number of spectators, N: In the proofs of Propositions 1 and 2 we need the
unconditional probability of µt(i) assigning the seller i a status ° after the period
t communication stage, given that seller i has defected in every period t0 2 f
tD; ::: t ¡ 1g: With our notation, this probability can be written as (1 ¡ b)t¡tD :

We are now ready to state our ¯rst two propositions. These propositions pro-
vide the conditions under which the Uninformative and the Informative Strategy
Pro¯les are sequential equilibria of the random matching game. Notice that un-
der both strategy pro¯les (H;B) is played in every period at each location along
the equilibrium path.

Proposition 1: De¯ne two constants ±¤ and b¤ as follows:

±¤ =

0
BB@1 +

(
M + g

M
)2

4(1 + g)g(
M ¡ 1

M
)

1
CCA

¡1

;

b¤ =
g(1 ¡ ±)

±
:

i) If g
1+g · ± · ±¤; the Uninformative Strategy Pro¯le is a sequential equilibrium
of the above random matching game if b ¸ b¤:
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ii) If ± ¸ max[ g
1+g ; ±

¤]; there exists constants bL and bH ; where b¤ · bL · bH < 1;
such that the Uninformative Strategy Pro¯le is a sequential equilibrium of
the above random matching game if either b¤ · b · bL or b ¸ bH : The
constants bL and bH are given by

bL =

M + g

M
¡

s
(
M + g

M
)2 ¡ 4(1 + g)

g(1 ¡ ±)

±
(
M ¡ 1

M
)

2(1 + g)

and

bH =

M + g

M
+

s
(
M + g

M
)2 ¡ 4(1 + g)

g(1 ¡ ±)

±
(
M ¡ 1

M
)

2(1 + g)
:

The condition ± ¸ g=(1 + g) is necessary because with ± less than this, the
e±cient outcome could not be sustained by any equilibrium even with M = 1.7

Buyers' incentives to follow the unforgiving strategy pro¯les are easily sat-
is¯ed: A buyer should expect his current opponent with status ¯ to play L,
regardless of his beliefs about the outcomes of her previous games, in which case
NB is his best choice of action. If, on the other hand, he assigns her a status
°, playing B is optimal both on and o® the equilibrium path given the consis-
tent belief that she has never defected and will play H: Also the incentives for
signalling are trivially satis¯ed.

Sellers' incentives to follow the uninformative strategy pro¯le are characterized
by two conditions: one preventing her from playing L on the equilibrium path and
one that guarantees that sellers who have defected keep defecting irrespective of
their private history. To give a seller an incentive to play H along the equilibrium
path, the short-term gain from cheating, g; must be outweighed by the long-term
loss resulting from the gradual loss of reputation among buyers. Given the buyers'
strategies, this occurs if b (N) is su±ciently large that information about a seller's
defection spreads quickly enough among the buyers. This results in the condition
that b ¸ b¤: On o®-the-equilibrium paths, the strategy pro¯le requires sellers to

7When M = 1, our random matching game is equivalent to a two-player standard repeated
game with observable actions. In this case, the Uninformative Strategy Pro¯le, which is identical
with the Informative Strategy Pro¯le, provides the maximum punishment for defection. This
pro¯le supports the e±cient outcome as a Nash and a subgame perfect equilibrium if and only
if ± ¸ g=(1 + g).
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keep defecting rather than play H in an attempt to slow down the deterioration
of her reputation. This o®-the-equilibrium path constraint is satis¯ed when ±
is small, ± · ±¤; since the short term gain g from selling low quality will then
outweigh the future reward from trying to maintain a good reputation. When
± > ±¤; the condition is satis¯ed if either b is very large or b is small enough.
If b is very large, b ¸ bH ; it does not pay to slow down the deterioration of
one's reputation, since with several informed buyers already playing NB against
the seller, all buyers are soon likely to learn about seller's bad status anyway.
On the contrary, if b is small enough, b · bL; playing L is better than playing H
simply because the information about her defections is not spreading very quickly.
It can be shown that the o®-the-equilibrium path constraint is always satis¯ed
when b = b¤; implying that bL ¸ b¤:

This strategy pro¯le is not a sequential equilibrium when b 2 (bL; bH): In
proposition 3, however, by using a public randomization device we construct a
sequential equilibrium which supports the e±cient outcome for any b greater than
b¤:

Proof. When (II) holds a seller has incentive to follow (I) if and only if the
following inequality holds:

1

1 ¡ ±
¸ 1 + g

1 ¡ (1 ¡ b)±
: (3.1)

The left-hand side is the payo® from playing H in every period whereas the right-
hand side is the payo® from playing L in every period. Since b must be less than
one, the inequality can hold only when ± ¸ g=(1 + g): In that case equation (3.1)
can be written as:

b ¸ b¤: (3.2)

By the principle of dynamic programming to verify that (II) is optimal, it is
enough to check that a one time switch to H is not pro¯table after any history
in which the seller has obtained a bad status, i.e., she has played L or some
buyer has played NB against her. We can show that the seller's incentives to
follow (II) increase in the number of buyers who are aware of her bad status.
Since consistency requires this number to be at least N + 1 (in states that (II) is
concerned with), it will be su±cient for us to show that a seller has incentive to
follow (II) when exactly N + 1 players assign her a bad status.
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De¯ne Ps(K) as the probability that K + s buyers know about i's bad status
after period t if i plays H in period t and K players knew about i's bad status
after the period t ¡ 1. Let ® = K=M: It is straightforward to show that:

P0(K) = (1 ¡ ®) +

®

Ã
K ¡ 1

N

!

Ã
M ¡ 1

N

!

and for ® < 1;

Ps(K) =

®

Ã
K ¡ 1

N ¡ s

!Ã
M ¡ K

s

!

Ã
M ¡ 1

N

! ; 8 1 · s · min[N;M ¡ K]:

Denote with us(K) = 1 ¡ (K + s)=M the associated conditional probability that
seller i's period t+ 1 match µt+1(i) does not know about i's bad status (after the
period t + 1 communication stage), given that K + s buyers know about i's bad
status after the period t.

Then, assuming that K buyers are aware of a seller's bad reputation before
the current period, a seller has incentive to follow (II) if and only if:

(1 + g)(1 ¡ ®)

1 ¡ (1 ¡ b)±
¸ (1 ¡ ®) +

±(1 + g)

1 ¡ (1 ¡ b)±

min[N;M¡K]X

s=0

Ps(K)us(K): (3.3)

The left hand side is the payo® from playing L in each of the remaining periods,
whereas the right hand side is the payo® for playing H in one period and then
L thereafter. Realizing that s follows a hypergeometric distribution for s =
1; 2; :::N , it can be shown that

min[N;M¡K]X

s=0

Ps(K)us(K) = (1 ¡ ®)2 + ®(1 ¡ ®)(1 ¡ b)

µ
M

M ¡ 1

¶
:

It is now easy to see that equation (3.3) is relaxed as ® is increased. The intuition
for this result is quite simple: A seller who is matched with a buyer that is not
aware of his bad status may by playing H keep his reputation among at most
N +1 players and bene¯t from this reputation later. When ® is large many of her
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current spectators are likely to know about his defection already, which reduces
the bene¯t to playing H. Since ® ¸ b by consistency, it is su±cient to check that
equation (3.3) holds when ® = b: Setting ® = b and rearranging, equation (3.3)
can be written:

b2 ¡
µ

M + g

(1 + g)M

¶
b +

(1 ¡ ±)g

(1 + g)±

M ¡ 1

M
¸ 0:

This quadratic inequality holds if either ± · ±¤ or if ± ¸ ±¤ and either 0 · b · bL
or bH · b · 1. Combined with equation (3.2) this result implies the equilibrium
conditions stated in proposition 1.

(III) is trivially satis¯ed given (IV) and (V). It is also easy to see that (IV) and
(V) are satis¯ed given (I),(II) and (III). If buyer j observed his current match,
µ¡1t (j); play L in the past or some buyer play NB against her, he should believe
she will play L by (II); so playing NB is his best response. If he has never
observed µ¡1t (j) play L; nor some buyer play NB against her, then given (I),
(II) and (III), he should believe she will play according to (I) regardless of the
messages he has received. This being the case, B is his optimal choice of action.
This establishes (IV) and (V) and completes the proof.

As one would expect, the equilibrium conditions are very similar for the In-
formative Strategy Pro¯le. In this case, however, it is not possible to state the
o®-the-equilibrium path conditions in terms of b as was true for the Uninformative
Strategy Pro¯le.

Proposition 2: For ± ¸ g=(1 + g); the Informative Strategy Pro¯le is a
sequential equilibrium of the above random matching game if

1 ¡

Ã
M ¡ N ¡ 1

N + 1

!

Ã
M

N + 1

! ¸ g(1 ¡ ±)

±
(3.4)

and
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g

±(1 + g)
¸

µ
1 + 2g

1 + g

¶
Ã

M ¡ N ¡ 1

N + 1

!

Ã
M

N + 1

! ¡ If3(N+1)·Mg

Ã
M ¡ 2N ¡ 2

N + 1

!

Ã
M

N + 1

! ; (3.5)

where IA is a function that takes value 1 if A is true and 0 otherwise.

Equation (3.4) concerns on-the-equilibrium path behavior and can be written
as b ¸ b¤: Equation (3.5) is the constraint for o®-the-equilibrium path behavior.
As before, it is always satis¯ed when ± is small enough and when ± is large it is
satis¯ed when b is either very large or b is small enough. Although the intuition for
both conditions is exactly the same as under the Uninformative Strategy Pro¯le,
the second condition is not exactly the same in terms of b under the two strategy
pro¯les. This constraint concerns a seller's possible deviation to H when playing
on o®-the-equilibrium paths, and is di®erent for the two strategy pro¯les because
the dissemination of a seller's bad reputation when playing H is di®erent in terms
of b under the two strategy pro¯les.

Proof. As was shown in the proof of proposition 1, assuming that (II) holds, a
seller has incentive to follow (I) if and only if b ¸ b¤: This is stated in equation
(3.4).

Showing that she has incentive to follow (II) when equation (3.5) holds pro-
ceeds much as the proof of proposition 1. Denote with ® the probability that
seller i's period t opponent µt(i) is aware of i's bad status after the period t com-
munication stage, if K buyers are aware of sellers i's bad status after the period
t ¡ 1. Correspondingly, denote with » the probability that µt(i) is aware of i's
bad status after the period t communication stage, if K +N +1 buyers are aware
of sellers i's bad status after period t ¡ 1. Then

® = 1 ¡ If(N+1)·M¡Kg

Ã
M ¡ K

N + 1

!

Ã
M

N + 1

!

and
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» = 1 ¡ If2(N+1)·M¡Kg

Ã
M ¡ K ¡ N ¡ 1

N + 1

!

Ã
M

N + 1

! :

Let Ps and us represent the same probabilities as in the proof of proposition 1.
Seller i has an incentive to follow (II) if and only if:

(1 + g)

0
BBB@(1 ¡ ®) +

±((1 ¡ ®)(1 ¡ ») ¡ (1 ¡ ®)2+
min[N;M¡K]P

s=0
Psus)

1 ¡ (1 ¡ b)±

1
CCCA ¸

(1 ¡ ®) + (1 + g)

0
BBB@

±
min[N;M¡K]P

s=0
Psus

1 ¡ (1 ¡ b)±

1
CCCA (3.6)

The left hand side is the payo® from playing L in each of the remaining periods,
whereas the right hand side is the payo® from playing H in one period and then
L thereafter. Seller i's action makes a di®erence only when neither i's opponent
µt(i) nor any of the spectators to i's game have assigned the bad status to i. This
happens with probability (1¡®): In that case, playing L results in a larger payo®
by g, but N + 1 new buyers learn about i's bad status, reducing the probability
that i receives (1 + g) in the next period from (1 ¡ ®) to (1 ¡ »): If µt(i) or some
of the spectators to i's game know about i's bad status, which happens with
probability ®; i receives nothing in that period and her reputation deteriorates
similarly irrespective of the action that he takes.

This inequality can be written as:

g(1 ¡ (1 ¡ b)±)

±(1 + g)
¸ » ¡ ®: (3.7)

It is now straightforward to check that equation (3.6) is relaxed as K increases.
Since K ¸ N by consistency, it is su±cient to check that equation (3.6) holds
when K = N or ® = b: Setting ® = b and rearranging gives equation (3.5).

If a buyer j has ever observed a seller i 2 Sj(µt) play L or her opponent
play NB against her, j is indi®erent between signalling ° or ¯ to µt(i), since
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given (II) he expects i to play L in all his future games, including those with
j himself, irrespective of the signal that he sends. So we may assume that he
sends a truthful signal ¯ in this case. If j has never observed i's game or if j has
observed i but the outcome in i's games were always (H; B) he strictly prefers
to send the message ° instead of ¯. Sending the message ¯ would result in µt(i)
playing NB against seller i, giving her a bad status and making her play L in
the future. This would reduce buyer j's future payo®s from games where he is
matched with seller i. This establishes condition (III)'. Given (I), (II) and (III)'
conditions (IV)' and (V)' are trivial.

In order to create sequential equilibria that support trade for all b ¸ b¤; let
us now extend our basic model to include a public randomization device. The
idea of using a public randomization device to adjust the severity of punishments
is borrowed from Ellison (1994). In particular, we assume that before players
choose their actions in period t, they observe a public random variable ft which
is drawn independently from a uniform distribution on [0; 1]. Let f 2 [0; 1] and
consider adjusting the Uninformative and Informative Strategy Pro¯les as follows:
In period t; sellers play according to the original strategies as long as ft · f , but
return immediately to the equilibrium path of the original strategies if ft > f ;
buyers play according to the original strategies, except whenever ft > f , at
which point they forget all past actions of sellers and assign each seller status °:
Assuming that such a public randomization device is available, we can state the
following proposition.

Proposition 3: For ± ¸ g=(1 + g) there exists a function f(±) such that
the adjusted Informative and Uninformative Strategy Pro¯les with f = f(±) are
a sequential equilibrium of the random matching game if b ¸ b¤; where b¤ ´
g(1 ¡ ±)=±.

The idea in the proof is that whenever b ¸ b¤; we can by an appropriate
choice of f adjust the severity of punishment for a seller so that she becomes
indi®erent between playing H (following (I)) and deviating on the equilibrium
path. Because at o®-the-equilibrium paths a seller has less incentive to protect
her reputation than on-the-equilibrium path, as her reputation is deteriorating
anyway, this indi®erence can be shown to imply that the o®-the-equilibrium path
condition always holds.

18



Proof. For any ft; a seller has incentive to follow (I) if and only if

1

1 ¡ ±
¸ 1 + g

1 ¡ (1 ¡ b)f±
+

1X

t=1

f t¡1(1 ¡ f)
±t

1 ¡ ±

or

1

1 ¡ ±f
¸ 1 + g

1 ¡ (1 ¡ b)f±
(3.8)

The left-hand side of the ¯rst inequality is the seller's payo® from following (I),
while the right-hand side is her payo® from deviating and following (II), as long
as f¿ · f; and following (I) thereafter. For all ± ¸ g=(1 + g) and b ¸ b¤; there
exists f(±) 2 [0; 1] such that equation (3.8) holds as an equality when f = f(±).
From now on, let us assume that f = f(±).

A seller who is playing on the equilibrium path is now indi®erent between
playing H in every period and deviating. She is also indi®erent between playing
H in the current period and then deviating and deviating right away. By playing
H in the current period she can keep her good reputation among N + 1 buyers,
until they, in some way, learn about her defections in the future. Now consider a
seller who is following (II). If her opponent and all the N spectators to her game
happen to assign her a good status, she also can keep her good reputation among
N + 1 buyers by playing H: This reputation, however, is worth less to her than
if she were on the equilibrium path because, with some buyers already assigning
her a bad status, these N +1 buyers are more likely to learn about her bad status
before playing against her in the future. Since the short term gain from deviating
is same in both cases, we conclude that playing L is optimal o® the equilibrium
path.

More formally, consider the sellers incentives to follow (II) in period t when
ft · f(±): By the principle of dynamic programming, it is su±cient to show that
a single-period deviation to H is unpro¯table. Let ®;Ps(K); and us(K) denote
the same probabilities as in the proof of proposition 1. A seller has an incentive
to follow (II) if and only if:

(1 + g)(1 ¡ ®)

1 ¡ (1 ¡ b)f(±)±
+

1X

t=1

f(±)t¡1(1 ¡ f(±))
±t

1 ¡ ±
¸

(1¡®)+

±f(±)(1 + g)(
min[N;M¡K]P

s=0
Psus)

1 ¡ (1 ¡ b)f(±)±
+

1X

t=1

f(±)t¡1(1¡f(±))
±t

1 ¡ ±
(3.9)
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or

(1 + g)(1 ¡ ®)

1 ¡ (1 ¡ b)f(±)±
¸ (1 ¡ ®) +

±f(±)(1 + g)(
min[N;M¡K]P

s=0
Psus)

1 ¡ (1 ¡ b)f(±)±
: (3.10)

We can show that this inequality holds as follows:

(1 + g)(1 ¡ ®)

1 ¡ (1 ¡ b)f(±)±
=

(1 ¡ ®)

1 ¡ ±f(±)
=

(1 ¡ ®) +
(1 + g)±f(±)(1 ¡ ®)

1 ¡ (1 ¡ b)f(±)±
¸

(1 ¡ ®) +

(1 + g)±f(±)(
min[N;M¡K]P

s=0
Psus)

1 ¡ (1 ¡ b)f(±)±
:

The ¯rst two equalities come from the fact that (3.8) holds as an equality with
f = f(±): The inequality follows since

min[N;M¡K]X

s=0

Psus ·
min[N;M¡K]X

s=0

Psu0 = u0 = 1 ¡ ®:

When ft · f(±) a buyer's problem is similar to that in propositions 1 and 2
so he is better o® following the original strategies. On the other hand, given that
a past defector plays H after ft > f(±) it is optimal for the buyer to assign her a
status ° and treat her like the seller who never defected.

4. LARGE POPULATION RESULTS

In this section we study how fast N must grow in relation to M in order to sustain
(H;B) as the outcome of the trade game for our strategies. If we denote N¤(M)
as the smallest integer N that satis¯es the constraint b ¸ g(1¡ ±)=± (i.e., b ¸ b¤);
then given propositions 1,2 and 3, the question can be reformulated as how fast
N¤(M) grows in relation to M .
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If seller i has defected in the previous period, the N + 1 buyers who observed
the defection are the only ones who are informed of the defection before the
current period's trade game starts. Then b, the probability that seller i meets a
buyer who is informed of her previous defection, is simply (N + 1)=M under the
Uninformative Strategy Pro¯le. With this strategy pro¯le it is clear that N¤ and
M must grow at the same rate in the limit.

This is not true, however, with the Informative Strategy Pro¯le. In this strat-
egy pro¯le i0s current opponent µt(i) assigns her a bad status if he observed this
defection or he received an informative signal based on this defection during the
current period's communication stage. With N spectators to µt(i)

0s game each of
whom observes N +1 games, µt(i) obtains information from N2+2N +1 possibly
overlapping games and assigns i a bad status if any of these games was played at
location i: This suggests that N¤ may grow more slowly than M . Below we show
that in order to sustain trade, N¤ must grow only at a rate

p
M . To prove this

result formally we need the following lemma.

Lemma 1: Under the Informative Strategy Pro¯le lim
M!1

N¤(M)

M
= 0:

Proof. By the de¯nition of N¤(M) we have the following inequalities

Ã
M ¡ N¤(M) ¡ 1

N¤(M) + 1

!

Ã
M

N¤(M) + 1

! · (1 ¡ b¤) <

Ã
M ¡ N¤(M)

N¤(M)

!

Ã
M

N¤(M)

! (4.1)

First note lim supM!1N¤(M)=M < 1=2. For the subsequences of N¤(M)=M
whose limits are 1=2, the numerator of the right-hand side of the strict inequality
in (4.1) approaches 1 and the denominator goes to the in¯nity, leading to a
contradiction since b¤ is assumed to be strictly less than one.

Using Stirling's formula

p
2¼nnne¡n · n! ·

p
2¼nnne¡ne

1
12n

the second inequality in (4.1) implies that

(1 ¡ b¤) <

21



(M ¡ N¤)2(M¡N
¤)+1

MM+ 1
2 (M ¡ 2N¤)M¡2N

¤+ 1
2

e
1

6(M¡N¤) (4.2)

Given that lim supM!1N¤=M < 1=2; it is easy to see that the exponential
term that appears at the right-hand side of (4.2) goes to 1 as M approaches
in¯nity. The nonexponential term then has to be bounded away from zero for
large M . In what follows we show this implies limM!1N¤=M = 0:

Let q = N¤=M: The nonexponential terms in the right hand side of (4.2) can
now be written as:

Ã
(1 ¡ q)2¡2q

(1 ¡ 2q)1¡2q

!M
(1 ¡ q)

(1 ¡ 2q)1=2
:

Since 0 < q < 1=2 and lim supM!1 q < 1=2 the second term of the above expres-
sion is bounded. Furthermore, we can show the ¯rst term is strictly decreasing
with respect to q for 0 · q · 1=2 and for that range of q it is one if and only
if q = 0: Thus if limM!1 q 6= 0, the ¯rst term is very close to zero for large M;
which is a contradiction. Hence it must be that limM!1N¤=M = 0:

Proposition 4: Under the Informative Strategy Pro¯le 0 < lim
M!1

N¤(M)2

M
<

1:

Proof. If we rewrite the inequalities (4.1) using Stirling's formula we get

(M ¡ N¤ ¡ 1)2(M¡N
¤)

MM(M ¡ 2N¤ ¡ 2)M¡2N¤

Ã
(M ¡ 2N¤ ¡ 2)3

M(M ¡ N¤ ¡ 1)2

! 1
2

e
¡ 1
12(M¡2N¤¡2)¡

1
12M

· (1 ¡ b¤) <

(M ¡ N¤)2(M¡N
¤)

MM(M ¡ 2N¤)M¡2N¤

Ã
(M ¡ N¤)2

M(M ¡ 2N¤)

! 1
2

e
1

6(M¡N¤) (4.3)
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Since the last two terms of both sides of the inequalities (4.3) approach one as
M ! 1 by lemma 1 and both of the ¯rst terms exhibit the same behavior in the
limit, we must have

(M ¡ N¤)2(M¡N
¤)

MM(M ¡ 2N¤)M¡2N¤ ! (1 ¡ b¤) as M ! 1: (4.4)

Next we show that 0 < lim
M!1

N¤2=M < 1 in order for (4.4) to hold.

First of all, note that we can write

(M ¡ N¤)2(M¡N
¤)

MM(M ¡ 2N¤)M¡2N¤ =

2
664

Ã
1 ¡

µ
N¤

M ¡ N¤

¶2!¡
³
M¡N¤
N¤

´23
775

N¤2
M¡N¤ 2

4
µ
1 ¡ 2N¤

M

¶¡M
2N¤

3
5
¡2N¤2
M

=

(e + ®M)
N¤2

M¡N¤ (e + ¯M)
¡2N¤2
M

where

®M =

Ã
1 ¡

µ
N¤

M ¡ N¤

¶2!¡
³
M¡N¤
N¤

´2

¡ e;

¯M =

µ
1 ¡ 2N¤

M

¶¡M
2N¤

¡ e:

Since limM!1N¤=M = 0; both sequences f®Mg; f¯Mg converge to zero from
above. Now de¯ne new sequences faMg; fbMg such that eaM = e + ®M ; ebM =
e + ¯M : We can then write

(M ¡ N¤)2(M¡N
¤)

MM(M ¡ 2N¤)M¡2N¤ = eaM
N¤2

M¡N¤¡bM
2N¤2
M : (4.5)

Given (4.4) and (4.5), all that remains to show is that fN¤2=Mg must con-
verge to some positive number in order for faMN¤2=(M ¡ N¤)¡ bM2N¤2=Mg to
converge to ln(1¡ b¤): If limM!1N¤2=M = 1, aMN¤2=(M ¡N¤)¡ bM2N¤2=M
approaches minus in¯nity as M goes to in¯nity. This can be easily shown using the
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fact that faMg and fbMg converge to one from above. If limM!1N
¤2=M = 0, we

obtain another contradiction since aMN¤2=(M ¡N¤)¡ bM2N¤2=M ! 0 as M !
1: Since fN¤2=Mg is bounded, it is straightforward to show limM!1N¤2=M =
¡ ln(1 ¡ b¤):

5. ENDOGENOUS CONNECTIONS

In this section we extend our model by assuming that networking is costly. Let us
say that strategies are non-contagious when only the sellers who have produced
low-quality are punished. When either inviting spectators, Ns

j (µt) ; observing
neighboring buyers, Nj (µt) ; or both are costly to buyer j, the following result
holds:

Proposition 5: In any Nash equilibrium of the random matching game with
costly networking that uses non-contagious strategies, low quality is produced
with positive probability when M > ±=[g(1 ¡ ±)]:8

Proof. The proposition is proved by contradiction. Assume that there is a
Nash equilibrium with non-contagious strategies in which every seller produces
high quality with probability one in every period. Buyers then do not have
any incentive to network and the optimal Nj must be zero for all buyers j. If,
however, Nj is zero for all buyers and M > ±=[g(1 ¡ ±)] all sellers have incentive
to unilaterally deviate and produce low-quality. Contradiction.

There clearly exists the equilibrium where Nj = 0 for all buyers and every
seller produces low quality. More interestingly, we show that if the costs of net-
working are small enough, there exist sequential equilibria with strictly positive
probability of trade.

Let us concentrate on the case where observing neighboring buyers n 2 Nj (µt)
is costly to buyer j and where buyers are unable to a®ect the number of spectators
to their game. This assumption corresponds to the idea that buyers network to
gather information about their trading environment. An alternative - that leads
to similar results - would be that buyers invited other buyers to their games in
an attempt to obtain information regarding their current opponents. Clearly the

8A similar proposition could be stated allowing for contagious strategies for M > M(±; g; `),
where M <1:
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second alternative would make sense only under the Informative Strategy Pro¯le.
More speci¯cally, let us extend our basic model by assuming that in period zero,
before µ0 is realized, all buyers j can invest in Nj connections that allow them to
observe the games in Nj consecutive locations to their own in every future period.
To obtain Nj connections j must pay Njc, where c > 0; in period zero:

With these assumptions, whenever the costs of networking are less than some
threshold value c(M), we can ¯nd sequential equilibria with slightly modi¯ed
Informative and Uninformative Strategy Pro¯les such that the sellers initially
randomize between high and low quality and produce that level of quality in
the future. A positive probability of low quality goods is necessary to provide
buyers with an incentive to network. This probability tends to increase with M .
When the costs of networking exceed the threshold value c(M); trade collapses
because the probability of low quality goods that would provide buyers su±cient
incentives to network is so high that buyers are unwilling to buy from unknown
sellers. For simplicity, let us con¯ne our analysis to the Uninformative Strategy
Pro¯le.

Consider the following modi¯ed Uninformative Strategies:

For the seller i, in all periods t = 0; 1; 2::::, after µt is realized:

(I) In the ¯rst period play H with probability 1¡p and L with probability
p. After that, if the outcome in all the trade games where seller i
played was (H; B), play H.

(II) Play L otherwise.

For the buyer j:

(III) In period 0, before µ0 is realized, invest in N¤ ¡ 1 connections with
probability r and in N¤ connections with probability 1 ¡ r;

and in all periods t = 0; 1; 2::::, after µt is realized:

(IV) Signal randomly ° or ¯ with equal probabilities to all n 2 Nj(µt),
irrespective of the private history ht(j):

(V) If j has ever observed µ¡1t (j) play L or someone (including himself)
play NB against her, play NB regardless of the messages mt(j):

(VI) Play B otherwise.
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Before proceeding, we need some additional notation. If buyer j invested in
Nj connections, the probability that he observed µ¡1t (j) at period t0, where t0 < t;
is (Nj + 1)=M . Let us denote this probability by be(Nj).

9 Then the probability
that buyer j has never observed µ¡1t (j) until period t is simply (1 ¡ be(Nj))

t.

Proposition 6: The modi¯ed Uninformative Strategy Pro¯le is a sequential
equilibrium of the above random matching game with

p = cM

µ
(1 ¡ ±(1 ¡ be(N¤ ¡ 1))) (1 ¡ ±(1 ¡ be(N¤)))

`±

¶
;

where

c · c ´ 1

M

µ
`± (M(1 ¡ ±) + ±)

(1 ¡ ±(1 ¡ be(N¤ ¡ 1)) (1 ¡ ±(1 ¡ be(N¤))) ((` + 1)M(1 ¡ ±) + ±)

¶
:

Proof. To have a sequential equilibrium in this extended game for our strategies,
the following three equations must hold:

1

1 ¡ ±
=

r(1 + g)

1 ¡ (1 ¡ be(N¤ ¡ 1))±
+

(1 ¡ r)(1 + g)

1 ¡ (1 ¡ be(N¤))±
(5.1)

N¤;N¤ ¡ 1 2 argmax
Nj

1 ¡ p

1 ¡ ±
¡ p`

1 ¡ ±(1 ¡ be(Nj))
¡ Njc; (5.2)

(1 ¡ p) +
±(1 ¡ p)

M(1 ¡ ±)
¸ p`: (5.3)

A seller is willing to randomize in the initial period between providing high
quality goods forever and providing low quality goods forever if and only if equa-
tion (5.1) holds. The left-hand side of (5.1) is the payo® from providing high
quality goods forever and the right-hand side is the expected payo® from provid-
ing low quality goods forever. To see this, note that the probability that µt(i)
has never observed i is just (1 ¡ be(Nµt(i)))

t: Given this indi®erence in the initial
period, the seller who once provided low quality good can be shown to keep on
providing low quality goods; the proof is exactly the same as that of proposition
3. So (I) and (II) are established.

9More precisely, be(Nj) = Pr[µ
¡1
t (j) 2 Sj(µt0 ) [ fµ¡1t0 (j)g]

26



Equation (5.2) requires that buyers are willing to randomize between N¤ and
N¤ ¡ 1 connections. We can show that the right hand side of equation (5.2) has
a single peak if Nj is treated as a positive real number. Hence if the expected
payo® to buyer j is the same with N¤ and N¤ ¡ 1; then N¤ and N¤ ¡ 1 both
solve j's maximization problem. Equation (5.2) is therefore satis¯ed if

p`

(1 ¡ ±(1 ¡ be(N¤)))
=

p`

(1 ¡ ±(1 ¡ be(N¤ ¡ 1)))
+ c;

or

p = cM

µ
(1 ¡ ±(1 ¡ be(N¤ ¡ 1))) (1 ¡ ±(1 ¡ be(N¤)))

`±

¶
(5.4)

Given that other buyer's actions do not depend on the messages, (IV) is
obvious. If a buyer has observed his current opponent play L or someone play NB
against her, he should play NB against her given (II). And if a buyer has observed
his current opponent and the outcomes have always been (H;B), he should believe
she will play H and he should play B. If the buyer has never observed his current
opponent, he should believe that she will play H with probability (1 ¡ p): For a
buyer to play B against her rather than give her a bad status by playing NB,
equation (5.3) has to be satis¯ed. This equation can be rewritten as

p · M(1 ¡ ±) + ±

(` + 1)M(1 ¡ ±) + ±
: (5.5)

Therefore the modi¯ed Uninformative Strategy Pro¯le with p de¯ned by equa-
tion (5.4) is a sequential equilibrium if p satis¯es equation (5.5). This happens
when c · c:

Several interesting results now follow: First, for c > 0 equation (5.4) requires
that p is strictly positive as was shown in proposition 5. L has to be played with
positive probability to provide buyers with the incentive to network. Secondly,
this probability is increasing in M: Under the Uninformative Strategy Pro¯le
approximately proportionally and with Informative Strategy Pro¯le (it can be
shown) less than proportionally. More striking result is the knife edge property
of our equilibria: If even one more buyer invested in one more connection there
would be no low quality at all (increasing the utility of all buyers and sellers
discontinuously). But networking to reduce production of low quality is a public
good and, as usual, everyone wants to free ride in its production. Because of this,
the economy is stuck in an ine±cient equilibrium.
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Another interesting observation is that when equation (5.5) fails, trade col-
lapses even when it might be bene¯cial for buyers to keep trading. This occurs
because a buyer, who considers whether to trade with an unknown seller or to
give her a bad status by playing NB, does not take into account the future trad-
ing opportunities of other buyers with her. With the Informative Strategy Pro¯le
there would still be another externality because of the informative signalling to
neighbors. When choosing the number of locations to observe the buyers would
not take into account the learning by their neighbors, but would only be interested
in their own learning.

6. CONCLUSION

In many real life situations particular sellers and buyers trade with each other
infrequently, or only once. In such instances, when one or both parties have short-
term incentives to cheat, community enforcement may be needed to facilitate
cooperation and trade. This paper studied community enforcement in the absence
of institutions to transmit information.

We studied a large population, random matching game between buyers and
sellers, where the sellers have a short-term incentive to cheat and supply low
quality. We studied informal networks of communication as the mechanism that
spreads information about sellers' behavior and facilitates trade. We looked at
both informative and uninformative signalling and for the latter we showed that
high quality can be sold in a sequential equilibrium with population M where
each buyer networks with only N¤(M) players with limM!1N¤=M = 0:

We studied the case of costly networking and showed that in this case, when
M is large, low-quality goods must be supplied with positive probability in any
equilibrium to provide buyers with an incentive to network. When the costs of
networking were below a threshold value, we found a sequential equilibrium in
which sellers initially randomize between high and low quality with probabilities
(1 ¡ p) and p respectively and then continue to produce high quality if and only
if they did so in the ¯rst period. In this equilibrium p is strictly positive and
increasing in both M and the costs of networking.
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