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Abstract

In a model of exchange with price-taking individuals, the existence of non-
trivial underemployment equilibria with walrasian prices is proved for a generic
set of economies. The likelihood of the occurrence of these equilibria is higher
the farther the economy is from a Pareto optimal initial allocation, and the
larger the economy is, when considering log-linear preferences. Moreover, these
equilibria can be interpreted as the result of some self-ful¯lling beliefs. We show
how markets are vulnerable to psychological e®ects translating aggregate sig-
nals into bad expectations, which are nonetheless rational in the sense of being
con¯rmed in equilibrium. The possibility of distortions in market allocations is
essentially derived from: 1) myopic individual behavior preventing su±cient ex-
perimentation; 2) the timing of \production" decisions; 3) the absence of certain
¯nancial contracts; 4) the fear of government restrictions on supply.

1. Introduction

In competitive markets models it is usually assumed that agents believe they can buy
and sell any quantity they like at given prices. On the other hand, casual empiricism
suggests that individuals are not always bringing all their resources to the markets
for trade. This is particularly evident for the labor market, where the e®ect of the
inability to sell is usually called unemployment. Among the many answers provided
to explain this particular case of inability to sell, the most widely studied general
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equilibrium explanation is in terms of price rigidities. Prices are assumed to adjust
slowly, relative to quantity adjustments, or to be ¯xed. This literature, on rationing
schemes, was especially popular (in Europe, at least) in the 70's and early 80's. We
are referring to the work of, among others, B¶enassy [2], Drµeze [4], Grandmont [6],
Malinvaud [13] and Younµes [16]. Given their motivation for the existence of rationing
equilibria, these authors did not show that nonwalrasian equilibria exist also with
walrasian prices. Two exceptions are found in the literature: Hahn [7] and Silvestre
[14]. Nevertheless, they only have examples of existence of these equilibria, when the
rationing scheme is not speci¯ed. We will show that nonwalrasian equilibria with
walrasian prices exist generically, in the case of a proportional rationing scheme. Our
reason to study these equilibria is more in line with Hahn's [8] interpretation of non-
walrasian equilibria as the result of self-ful̄ lling beliefs, instead of actual existence
of quotas. These beliefs are not fully rational, if one insists that rationality of beliefs
implies that they cannot be systematically wrong even o® the equilibrium path. In
Hahn's language, conjectures are not necessarily rational, but only \reasonable". This
is a feature shared by our model. In more modern terminology, this is reminiscent
of the concept of \self-con¯rming" equilibrium of Fudenberg and Levine [5]: beliefs
cannot be systematically wrong only on the equilibrium path. Our model di®ers
from Hahn's in that: 1) Hahn's conjectures are monopolistic when agents perceive
quantity constraints, which are individualized, and give rise to kinked conjectured
demand curves; 2) in Hahn's framework walrasian prices imply full employment; 3)
¯nally, in Hahn's model agents are price takers when unconstrained, then some infor-
mational imperfections (unemployment statistics may be unavailable to consumers,
for instance) are needed to explain why prices are not adjusted to the walrasian level
by those agents who are not constrained (they cannot all be).1

We embed the static general equilibrium model into a (particular) dynamic spec-
ī cation, hence gain some insight into the conditions that allow the beliefs of under-
employment of resources2 to be con¯rmed in equilibrium: limited experimentation,
the timing of buy-sell decisions and the absence of certain ¯nancial contracts.

We have a pure exchange economy in which consumers think that they will be
unable to trade more then a certain percentage {common to everybody, but di®er-
ent across goods{ of their initial endowments, and then they end up consuming the

1Many macroeconomic models of unemployment can be reinterpreted as models of coordination
failures, due to externalities, or strategic complementarities. These arise when there are market
imperfections such as, for example, in the market structure (leading to noncompetitive behavior on
the product market, as in Hart [9] or Heller [10]), or in the trading process (search models, see
Diamond [3]). In this last case, an aggregate variable is also seen as a signal that agents perceive in
a totally decentralized way to compute their optimal choices. These choices then aggregate in such
a way that this macroeconomic variable r be eventually con¯rmed in its initial expected value. This
process of con¯rmation is an argument of rational expectations in a strict sense, though. We do not
use these kind of market imperfections to explain nonwalrasian equilibria, but we have to give up
the more stringent notion of equilibrium.

2For labor markets, underemployment sometimes refers to a situation when workers are still hired
but provide a less-than-optimal amount of labor. We apologize for using the same term, but with a
di®erent meaning.
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untraded part.3 They go to the market valuing their wealth at the current market
prices, and formulate their demands. Markets clear. The percentage that consumers
anticipated is con¯rmed in the long-run equilibrium: the ratio between e®ective ag-
gregate demand and ideal one {i.e., the one that would appear with full trading of
resources{ is eventually the percentage they had anticipated.

The inability to sell depends on the believed possibility that there is a mechanism
that restricts the supply. The mechanism which is believed to be possible to occur is
a proportional rationing scheme, administratively enforced and giving rise to a loss
in the value of resources supplied in excess. The argument in the paper does not
crucially depend on this particular form of administrative control, but more generally
on the fear that agents have of controls to be applied to them. Note that this is not
a monopolistic conjecture, and our agents do not control prices.

We prove that for a generic distribution of initial endowments e and preferences
u, given an initially bad conjecture or belief, there exists a one-dimensional (not nec-
essarily smooth) manifold of long-run underemployment equilibria. This manifold
contains a path joining the initial endowments e to the walrasian equilibrium allo-
cations. It also contains equilibria where prices are all walrasian. The fact that the
\right" prices appear does not rule out unemployment: underemployment equilibria
may exist due to the mere fact that agents | who are rational in their behavior as
well as in their expectations | don't believe in the ability of the market to allow them
to trade to the extent they would like to. Underemployment stems from the fear that
a government may interfere with the market clearing process. Market clearing prices
do not guarantee full employment as long as the government makes possible to believe
that it will intervene.

The model structure resembles that of Balasko and Royer[1]. The authors investi-
gate a dynamic model where the amount of labor unemployment reported the previous
day appears in the set of perceived constraints as a quantity limit. Their model allows
more general functional forms for the perceived constraints, but yields unemployment
only if prices are not walrasian. Moreover, our results somewhat contradict the one
obtained by Balasko and Royer, who establish that there is a \corridor" of initial
endowments around the contract curve for which unemployment equilibria do not
appear. In our model the \size" | i.e., merely the relative Lebesgue measure in
the cube [0; 1]l, l being the number of goods | of expected percentages of sellable
resources, for which the sales constraints are not binding, is a continuous function of
the initial endowments. It has full measure one for a Pareto-optimal distribution of
initial endowments. On the other hand, the more the economy is specialized | i.e.,
the consumers are basically endowed in only one good, and then we can expect to be
fairly far away from the contract curve | the smaller this size is.

Our results seem to suggest that markets are more vulnerable to underemploy-
ment crises exactly when they are more needed, that is when the initial allocation of

3It will be clear during the presentation of the model setup that one can read the model as a house-
hold production problem with linear production technology. We will not pursue this interpretation
explicitly in this paper, and leave it for further development in subsequent papers.

3



resources is farther away from e±ciency and \specialization of labor" requires more
dependency on trade.

2. Setup of the model.

We consider a pure exchange economy with m consumers and l goods, with m; l > 1.
We only allow for positive consumption, that is, the consumption set X is <l

++ .
Consumer h is characterized by a standard utility function, uh(xh), di®erentiably
strictly increasing, di®erentiably strictly concave, and whose indi®erence surfaces have
closures contained in the positive orthant. He is endowed with a vector eh 2 Rl

++ .
The space of endowments E = £h<l

++ is equipped with the natural topology, and
the space of utility functions U = £hUh is endowed with the C 2¡ compact open
topology. An economy is a pair (e; u) 2 E £ U:

We imagine that there is a sequence of trading dates t = 0; 1; 2:::. At each date
t, agents only maximize their utility of consumption at that date. In this sense, they
display myopic behavior. Since we are focusing on underemployment not stemming
from technological shocks, or other forms of uncertainty regarding fundamentals, we
will assume that both preferences and endowments do not change over time.

At the beginning of the trading date and upon having expectations on prices, pt ;
each consumer believes that at these prices there is rationing with probability ¼; or no
rationing with probability 1 ¡ ¼.4 This situation makes sense especially in economies
where supply has been constrained in the past. We assume that the rationing scheme
is proportional to the endowment. Also, we assume that consumers only think supply,
not demand, rationing is possible. This is because we are interested in explaining
situations where there is an excess supply of some sort, i.e. underemployment. Finally,
we assume that if rationing occurs, resources supplied in excess will be devalued, i.e.
they will fetch a lower price.5 Before knowing whether there is going to be rationing
or not, consumers decide how much of their endowment they are going to bring for
exchange, and how much they are going to consume without therefore trading it.
Denote this amount by rt

h 2 [0; 1]
l

for each consumer h: Then they make plans for
exchange given the value of their wealth; and contingent upon whether there is going
to be rationing or not. Let St = f0; 1g represent the space of states of the world at the
end of trading date t for each consumer, where s = 0 corresponds to \rationing". Then
their planned demand at time t will be denoted by y

s;t
h 2 <l

+ : Given commodity price
expectations, the probability distribution and the level of constraint of the previous

4Consumers do not have to assign the same probability, as long as they are close to one another,
as it will be clear after Lemma 1.

5This is not so unrealistic, if one thinks of some agricultural markets of the European Community,
for example. Usually output control and marketing quotas are enforced through a system of cash
payments to create the incentives to abide the restrictions. This generates an opportunity cost,
since the payments are not received if the quota is not observed. Sometimes, the government has
even stopped the payments and forced producers to observe the quotas without monetary payments.
In any case, one should take the rationing mechanism described as an abstraction of several more
complex schemes of administrative control.
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period (i.e., the level of proportional rationing at time t ¡ 1; if there was any), named
rt¡1; each consumer chooses

¡
rt

h; y
s;t
h

¢
to maximize his current utility. After receiving

communication of rh, a central authority decides whether or not to ration the markets.
Several reasons determine why this may occur. One may think that the markets may
not support too much activity, for example, or that { if really an auctioneer exists
and is not just a metaphor for decentralized exchange { , that the auctioneer can be
lazy, and does not want to call another price and try to adjust this way demand and
supply. Or, simply, it may be part of the government policy to manage the supply
of certain commodities. In any case, surpluses will be devalued by an amount c(pt)
if there is rationing. Given the announced state of the world, people submit their
contingent demands, and markets clear.

We assume that consumers believe that the probability ¼ is a function of rt
h and

of their expectations of rationing re ; which we take for simplicity to be equal to rt¡1;
with an adaptive scheme.

At the end of the day, when trade has taken place, consumers can compute the
extent to which the market felt constrained, or was actually constrained. This is rt ; the
proportion of unconstrained demand computed at current prices pt that corresponds
to the e®ective aggregate demand,

P
h y

s;t
h :

More formally, each consumer formulates a demand yt
h ´

¡
ys;t

h

¢
s

and a voluntary
constraint rt

h as solution to the following maximization program:

maxyt
h;rt

h
¼uh(y0;t

h + (1 ¡ rt
h)2eh) + (1 ¡ ¼)uh(y1;t

h + (1 ¡ rt
h)2eh)

s:t: ¼
n

p0;ty0;t
h ¡ p0;t

¡
rt¡1 ^ rt

h

¢
2eh ¡ (p0;t ¡ c(p0;t))

£
(rt

h ¡ rt¡1) _ 0
¤
2eh

o
= 0

(1 ¡ ¼)
h
p1;ty1;t

h ¡ p1;t (rt
h2eh)

i
= 0

yt
h ¸ 0 and rt

h 2 [0; 1]
l

(2.1)
where the symbol ^ denotes the coordinate-wise minimum of two vectors, and _
the coordinate-wise maximum. The consumer does not ask for a negative quantity
(yt

h ¸ 0), because it would be equivalent to trying to create endowments, which is
excluded by assumption. The equilibrium price at time t is a standard market-clearing
price.

De¯nition 1. An equilibrium price at time t associated with the economy (e;u) is a
vector pt 2 <2l

++ such that

¼

Ã
X

h

y0;t
h ¡ rt

h2eh

!
= 0 (2.2)

(1 ¡ ¼)

Ã
X

h

y1;t
h ¡ rt

h2eh

!
= 0 (2.3)
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At each date and state of the world, the amount of rationing or aggregate voluntary
constraint rs;t recorded in the economy is computed:

mX

h=1

y
s;t
h = rs;t

2

mX

h=1

x
s;t
h : (2.4)

where xs;t
h is calculated as follows. Under the price ps;t , xs;t

h is the unconstrained
demand coming from the following standard maximization program:

maxuh(xs;t
h ) s.t.

ps;txs;t
h = ps;teh

x
s;t
h À 0

(2.5)

The next period this percentage rs;t is used by individuals to gauge the level of supply
rationing that may occur, based on the belief that if demand is weak, sales will also
be lower.

We are interested in a particular short-run equilibrium of this economy, given by
particular beliefs ¼ on the possibility of rationing. We assume that consumers believe
that this probability is a function of rt

h and of rt¡1: Moreover, it is easily seen that if

¼(rt
h; rt¡1) =

½
0 rt

h · rt¡1

1 rt
h 6 ·rt¡1 (2.6)

then the sequence of trades has the following property.

Lemma 1. Given the initial beliefs (2:6) ; ps;t = pt for s = 0; 1, and c(pt) close enough
to pt the sequence of trades

¡
rt

h; ys;t
h

¢
is equivalently characterized by the following

short-run equilibrium:
1) consumers solve

maxyt
h; uh(y

1;t
h + [1 ¡

¡
rt¡1 ^ 1

¢
]2eh)

s:t: pty1;t
h = pt

¡
rt¡1 ^ 1

¢
2eh

yt
h ¸ 0

(2.7)

2) markets clear, i.e.

X

h

y1;t
h ¡ (rt¡1 ^ 1)2eh = 0 (2.8)

3) percentages are computed according to

mX

h=1

y
1;t
h = rt

2

mX

h=1

xt
h : (2.9)
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Proof. See the Appendix.
Notice that in these equilibria consumers choose not to sell more than rt¡1 vol-

untarily, even if they are price-takers. Also note that the equality of pt across states
of the world is trivially consistent with their beliefs, and that given this equality,
consumers don't learn from prices whether there is going to be rationing or not. We
want to insist on the fact that these beliefs are not irrational, since all along the
equilibrium path, no rationing is indeed observed, so ¼ is equal to zero as expected,
given the individual behavior. Beliefs need not be consistent o® the equilibrium path,
but consumers will never learn whether their beliefs about the possibility of rationing
are actually incorrect. This occurrence will remain a counterfactual and individuals
will never observe it because, given their initial beliefs, they have no incentive for ex-
perimentation (people are myopic). This structure is similar to the one in the notion
of self-con¯rming equilibria (see Fudenberg and Levine [5]) in strategic games.

We are interested in equilibria where the expected sellable percentage level is equal
to the realized one, motivating the following de¯nition.

De¯nition 2. The expected sellable percentage rt¡1 is a self-ful¯lling percentage if
the ratio between the aggregate constrained demand and the aggregate unconstrained
demand, rt , is equal to rt¡1, i.e. rt = rt¡1:

As a remark, notice that rt may not be smaller than 1 at any time t: In terms of
expectations, though, Lemma 1 implies that rt¡1 or 1 ^ rt¡1 cannot be distinguished
as far as rationing is concerned. rj;t¡1 ¸ 1 means that agents do not expect any
constraint on the sale of commodity j; and no di®erence on behavior results from
assuming that the expected rj for time t is exactly one. But De¯nition 2 implies that
rt¡1 ^ 1 =rt ^ 1:

We will look at particular steady states of the process, or long-run equilibria,
de¯ned as follows.

De¯nition 3. A pair (p; r) is a ¤¡long-run equilibrium for an economy (e; u) if rt =
r · 1; pt = p for all t; and X

h

yh ¡ r2eh = 0

mX

h=1

yh ¡ r2

mX

h=1

xh = 0:

We call r an equilibrium sellable percentage.

Notice that there may be other long-run equilibria where r 6 ·1: The reason we
are interested in equilibria of De¯nition 3 appears from the following proposition.

Proposition 1. For any economy (e; u) ; we have:
1) if p is a ¤¡long-run equilibrium price, then it is walrasian;
2) given a walrasian equilibrium price p, there exists a sellable percentage ¹r(e; u; p)

such that all sellable percentages r ¸ ¹r(e; u; p) are nonbinding equilibrium sellable
percentages, i.e., such that the associated equilibrium allocations are walrasian.

7



Proof. 1) Considering equations (2.8) and (2.9), one obtains that p is an equilibrium
price if and only if (rj being di®erent from zero, for all 1 · j · l)

mX

h=1

xh =
mX

h=1

eh : (2.10)

which means p is walrasian.
2) Denote (xh)1·h·m the walrasian equilibrium allocations associated to (e; u; p).

De¯ne for all goods j , 1 · j · l,

¹rj(e; u; p) = Max 1·h·m

Ã
1 ¡ x

j
h

ej
h

!
:

Take r ¸ ¹r(e; u; p). It means that for all j, 1 · j · l, and for all h, 1 · h · m,
xj

h ¸ (1 ¡ rj)ej
h. In other terms, no consumer is compelled to consume more than

what he would like to if he were not constrained at all. So none of the constraints
of type (b) is binding since for all h, yh can be equal to xj

h ¡ (1 ¡ rj )ej
h which is

positive then satis¯es both (a) and (b), and the constrained demand is the same as
the unconstrained one for each agent.

It is a property of the model and an easy corollary of Proposition 1 that Pareto
e±cient endowments do not give rise to underemployment equilibria. If (e;u) is such
that e belongs to the set of Pareto optimal allocations for utilities u; then ¹r(e; u; p) = 0:
This is a trivial consequence of the de¯nition of ¹r(e; u; p) and of Pareto optimality.
The farther away from Pareto e±cient initial allocations, the higher the value of
¹r(e; u; p).

We will use the fact that the ¤¡long-run equilibrium price clears both the con-
strained and unconstrained markets, by replacing equation (2.9) by equation (2.10) in
the system of equilibrium equations. We write the system of equations and inequali-
ties de¯ning an equilibrium for our economy as follows. Set bh = yh +[1¡ (r^1)]2eh:
Then (2.7) and (2.8) become

maxuh(bh) s.t.
a) pbh = peh

b) bh ¸ [1 ¡ (r ^ 1)]2eh

(2.11)

and

mX

h=1

bh =

mX

h=1

eh : (2.12)

So the de¯nition of equilibrium is completed by appending the maximization prob-
lem (2.5) and the associated condition (2.10). Note that all we are trying to show now
is whether it is possible to have walrasian equilibrium prices which clear markets in
two economies: one with quantity constraints, and the other without them. In both
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economies the budget constraints and all but one market clearing equations imply the
last one, that is, Walras law applies. We can therefore drop the ¯rst equation in both
(2.12) and (2.10).

We will need the following useful de¯nition as given in Proposition 1. For any
economy (e; u) ; given a walrasian price p; let

S(e;u; p) = fr j r ¸ r(e; u; p)g

and also let

S(e; u) = [pS(e; u; p)

Finally, de¯ne for all j

r¤j (e; u) = min
p

rj (e; u; p)

Proposition 1 raises an important point: even if walrasian prices appear, this does not
guarantee that agents will end up with a Pareto-optimal walrasian allocations through
market exchange. The latter depends also on the con¯dence consumers have on the
ability of the market to allow trading of the whole initial resources. When consumers
cannot bring to the market their whole initial endowment, they are forced to consume
it in a distorted way. We call this situation underemployment of resources, in the
sense that endowments cannot be brought to the market for trade and this creates
distortions in the consumer's behavior. From now on we will refer to the ¤¡long-run
equilibrium simply as an equilibrium of our economy.

De¯nition 4. Given an economy (e;u) ; an underemployment equilibrium is a pair
(p;r) of equilibrium prices and sellable percentages such that r 6 2S(e;u; p):

It is clear from Proposition 1 that equilibria exist for our economy with full em-
ployment of resources. It is also clear that for all economies (e; u) we have trivial
equilibria where no exchange of resources occurs, i.e. where r = 0 in equilibrium.
In the next section we will address the issue of existence of other, and maybe more
plausible, underemployment equilibria.

3. Existence of underemployment equilibria

Our strategy of proof will follow a degree argument, and therefore will be built around
the construction of a special, well-behaved economy for which we can show the exis-
tence of a unique, regular equilibrium. This strategy essentially follows a framework
developed by Smale [15]. Our analysis of continuous functions adapts results from
Lloyd [12].

As a ¯rst step, we introduce the function describing the ¯rst order and market
clearing conditions:
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F (»; r1; e; u) =

8
>>>>>>>>><
>>>>>>>>>:

Duh(xh) ¡ ¸hp
¡p(xh ¡ eh)P

h x
n
h ¡ e

n
h

Duh(bh) ¡ ¹hp + ®h

¡p(bh ¡ eh)

min
³
®

j
h; b

j
h ¡ [1 ¡ min(1;rj)]e

j
h

´

P
h b

n
h ¡ e

n
h

where » = (x; ¸; p; b; ¹; ®; rn) is the vector of \endogenous" variables, and the super-
script backslash on a vector means that the ¯rst component of the vector has been
dropped. We can also normalize the ¯rst commodity price, p1 = 1: This function is
de¯ned as F : ¥ £ R1 £ E £ U ! <n ; where n is the dimension of the manifold ¥;
and

¥ = <lm
++ £ <m

++ £ <l¡1
++ £ <lm

++ £ <m
++ £ <lm £ Rl¡1

with R l¡1 = (¡1; 1 + ´)l¡1; and ´ > 0; and where R1 = (0; 1]: Note that the zeros
of this function represent the equilibria of our economies (e; u) : This is because the
¯rst order conditions for the inequality program are known to be representable by
the minimum function as we write it, and the only di®erence between our previous
de¯nition of equilibrium and the function F is that its domain is restricted to the Rj

's: This is without loss of generality, since if rj > 1; then

bj
h ¸ (1 ¡ rj)ej

h and bj
h ¸

£
1 ¡ min(1; rj)

¤
ej

h

are equivalent, provided that b
j
h > 0; which is true by assumption on the utility

function. By the same token, one can see that if » satis¯es F (»; r1; e; u) = 0 for some¡
r1; e; u

¢
; then r ¸ 0. To prove this, suppose not, and rj < 0: Then b

j
h > e

j
h for all h;

which implies
P

h bj
h >

P
h ej

h; a contradiction.
We have excluded the trivial equilibria with r = 0: We are going to consider the

space of (continuous) functions Á(») = F (»; r1; e; u): Since the space £ = R1£E£U is
arcwise connected (see Smale [15]), it is possible to construct a continuous homotopy
between two functions Á which are associated to di®erent economies, or to possibly
di®erent sellable percentages for the same economy. In fact, it is a linear homotopy
H : ¥ £ T ! <n; with T = [0; 1] ; of the form

H(»; t) =

8
>>>>>>>>><
>>>>>>>>>:

Dvh(xh) ¡ ¸hp
¡p(xh ¡ ²h)P

h x
n
h ¡ ²

n
h

Dvh(bh) ¡ ¹hp + ®h

¡p(bh ¡ ²h)

min
³
®j

h; bj
h ¡ [1 ¡ min(1; ½j)]²j

h

´

P
h b

n
h ¡ ²

n
h
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where vh = (1 ¡ t)uh + tu0
h; ²h = (1 ¡ t)eh + te 0

h and ½1 = (1 ¡ t)r1 + tr10
; ½j = rj ;

for j > 1; for two elements
¡
e; u; r1

¢
and

³
e 0; u0; r10

´
in £; that is, two functions Á

and Á0: The degree of these functions is well-de¯ned, since their domain and range
are smooth boundaryless manifolds of the same dimension, the range <n is connected
and the projection

¼ : H¡1(0) ! £

is proper, as we establish in the following lemma.

Lemma 2. The projection ¼ is proper.

Proof. Take a converging sequence
¡
en; un; r1n

¢
!

¡
e; u; r1

¢
: Then tnk ! t; ob-

viously for some nk: The convergence of (xnk; ¸nk ; pnk ) ; for some nk follows from a
standard argument. From

X
ejn

h ¸ bjn
h0 ¸ 0

for all n and the convergence of
©
ej

ªn
;
n

bj
h0

on

lies in a compact set, hence without

loss of generality converges to bj
h0; for all h0 and all j: Note that bj

h > 0; using the
boundary condition. Then Duh(bh) À 0; for all h: Now note that for j > 1

0 · rjn · 1 + ´

for all n; and there is a convergent subsequence indexed by nk (the same only for ease
of notation), to rj . Consider two possible cases: for each h;

1. b
j
h ¡ (1 ¡ min(1; r j ))e

j
h > 0 for some j;

2. b
j
h = (1 ¡ min(1; rj ))e

j
h; for all j:

In case 1), equation min(®j
h; b

j
h ¡ (1 ¡ min(1; rj ))²j

h) = 0 implies ®j
h = 0 for that

j: From the ¯rst order conditions of the constrained problem, ¹n
h ! ¹h > 0; since

®j
h = 0: Finally, ®jn

h ! ®j
h; for all other j0s:

Case 2) cannot occur, as we now show. Indeed, 2) implies rj = 0 for all j; otherwise
bh = (1 ¡ r)2eh < eh; and the consumer would be in the interior of the constraint
set, violating monotonicity. But r1 2 (0; 1]:

Since (modulo 2) degree is a homotopy invariant, all we have to exhibit is an
example of a function Á; say Á0; which is smooth6 and with deg Á0 = 1: We ¯rst
consider economies with m ¸ l: Pick the economy µ = (e; u; r1) with

ej
h =

½
² > 0 if j 6= h

1 j = h

for h · l ; and e
j
h = 1 for all j and all h > l;

6All we need is that the function be locally continuously di®erentiable around an equilibrium.
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uh(xh) =
1

l

X

j

log x
j
h

and

r1 = °

with ° 2
¡
0; l¡1

l
(1 ¡ ²)

¢
: It is well-known that any of these economies has a unique

walrasian equilibrium price. Moreover, the following is true given the particular sym-
metry of the endowments.

Lemma 3. The walrasian equilibrium price for the above-described economies is p =
1; independently of ²:

Proof. See the Appendix.

Once ² is chosen appropriately, the optimal constrained choice bh for consumer
h · l satis¯es two key properties.

Lemma 4. i) There exists a su±ciently small ² such that the optimal constrained
choice bh satis¯es b

j
h > (1 ¡ rj)² , for all j 6= h; and for all h · l:

ii) For the above economy, b
j
h = 1 ¡ rj for j = h, all h · l; when rj < rj(e; u; p):

Proof. See the Appendix.

We are now ready to show existence of equilibrium for our test economy Á0; given
a ¯xed ² such that Lemma 4 holds and any ¯xed ° as above (i.e., any ¯xed r1).

Lemma 5. For the economy Á0, there is a unique regular equilibrium.

Proof. See the Appendix.

We now complete the argument on existence for any economy Á.

Theorem 3.1. For all economies (e; u) 2 E £ U; there is an equilibrium for each r1:
Moreover, for at least a generic set of economies E¤ £U; r¤1 is positive, and there are
underemployment equilibria for all r1 2 [0; r¤1):

Proof. Take ¯rst m ¸ l : Consider any economy (e; u) : De¯ne the function F :
¥ £ R1 £ E £ U ! <n as above, and the continuous function Á(») = F (»; r1; e;u)
for this economy and a particular choice of r1: Construct the homotopy between Á
and Á0. By Lemma 2 and Lemma 5, the degree of Á0 is well-de¯ned, and is equal
to 1. Then the degree of this Á is also well-de¯ned and odd, proving existence of
an equilibrium. Note that this can be done for any r1 2 (0; 1]: Consider the space
of endowments for which every household trades in each commodity market at the

12



walrasian equilibrium. This set is generic in E . By construction, r¤1 is well-de¯ned
and positive on this set. Since any r1 < r¤1 corresponds to an equilibrium (p; r) with
r 6 2S(e; u); this implies r 6 2S(e; u; p);that is, there are nontrivial underemployment
equilibria.

Finally, the existence of underemployment equilibria in economies where m < l
is established in the following way. First take an economy in the set with m < l
individuals, and replicate the economy N times, so that N m ¸ l: By the statement
of the previous paragraph, there is an equilibrium for this economy for all r1: Two
identical agents will get the same allocation, as they are maximizing the same utility
function over the same constraint set, and the argmax is unique. So we can go back
to the economy with m agents without changing the equilibrium. To complete the
argument, once again one can ¯nd a generic subset of E; call it E¤ using the argument
of the beginning of the proof.

4. Nonexistence at a ¯xed walrasian price: an example

The test economy used to prove Theorem 3.1 may suggest that the walrasian and
constrained systems are independent. This conjecture is reinforced by a theorem by
Laroque and Polemarchakis [11], showing that for any given rationing mechanism
and any given price (not necessarily walrasian) there is an equilibrium with rationing.
Notice that, besides the fact that our rationing scheme may not directly belong to
their general class, their theorem does not say that for a given p and any r1 there
is an rn yielding an equilibrium. Therefore it doesn't say that the equilibrium is
with underemployment, if the price is walrasian. In this sense our result is stronger
than previous existence theorems with rationing (not necessarily more general). The
question is open regarding whether our theorem can be strengthened, showing that
for any given walrasian price p and any r1there is an equilibrium (with underemploy-
ment). We give a counterexample. Consider an economy with two households and
three goods. Assuming r 5 1, household h maximization problem is (2:11) with the
inequality changed into bh ¸ (1 ¡ r) 2eh:

For each household, the budget set at a walrasian price p,without the inequality
constraints, forms a triangle in <3

++: At the walrasian allocation, there is an indi®er-
ence surface tangent to this triangle. Any lower indi®erence surface cuts the triangle
in a (deformed) circular fashion. Taking into account the inequality constraints, ob-
serve that the line associated with the constraint b1

1 ¸ (1¡ r1)e1
1 is parallel to the axis

of good 2. The lower r1; the farther away this line from the axis. A similar situation
occurs for the constraint on good 2, which is parallel to the axis of good 1. For good
3, the constraint line is parallel to the base of the triangle.

The Edgeworth box in this economy is represented by the intersection of a paral-
lelepiped and a plane (which contains the two triangular budget sets of each con-
sumer). This intersection will in general have the shape of an irregular convex
hexagon, with parallel opposite sides, corresponding to the area common to the trian-
gles. Observe that in the Edgeworth box a given r cuts the budget set from opposite

13



Figure 4.1:

sides for the two households. Graphically, it is therefore convenient to use rj
h to label

the line corresponding to rj for household h:
We now construct an example of nonexistence of equilibrium which is robust in

e; u; r1. Choose a Walrasian allocation xW (which is inside the hexagon) and an
endowment e as in Figure 4.1. At this walrasian equilibrium, household 1 is selling
good 1 and buying goods 2 and 3, and viceversa for household 2. Corresponding
to xW ; there exist a vector r(e; u; p) of nonbinding constraints and related lines r

j
h:

Note that this vector can be computed without completely specifying the degree of
convexity of u: Choose r1 < r1(e; u; p); so xW is not feasible for household 1: In Figure
4.1, we are now on the line r1

1 : We are forcing household 1 to consume more of good
1. Intuitively, if goods 1 and 2 are complement, this household may want to consume
a lot more of good 2 as well, say. This is represented by the shape of household 1's
indi®erence ellipsoids, H1.

The optimal choice for household 1 is then shown at point A. We have to show
that there are r2 and r3 less than 1 that yield an equilibrium. Graphically, this means
that the optimal choice B for household 2 should coincide with A. Choose any r2

2

and r3
2 : If xW

2 is attainable for household 2, B = xW
2 and trivially there will be no

equilibrium. If A is not attainable for 2, than again there is no equilibrium. If xW

is not attainable for household 2, but A is, we can ¯nd u2 that leads to indi®erence
ellipsoids H2: Again, B 6= A; and no equilibrium obtains. Small changes in e (in the

14



¯ber given by p); u;r1 do not alter the results, and in this sense the example is robust.

5. Some results in specialized economies

The goal of this section is to study some properties of the equilibria when economies
are specialized, according to the de¯nition given below. Moreover, we only consider
preferences represented by log-linear utility functions.

Consumer h's (1 · h · m) utility function is de¯ned by an element (aj
h)1·j·l

taken in the open l-simplex:

So
l =

8
<
:(aj )1·j·l 2 Rl

++ j
j=lX

j=1

aj = 1

9
=
; :

The utility function has the following expression:

uh(xh) =

j=lX

j=1

aj
h log(xj

h) :

We focus on economies which are specialized in the sense that, for each good, there
are some agents in the economy who are endowed only with this good. Let L =
f1; 2; : : : ; lg and H = f1; 2; : : : ; mg denote the sets of goods and agents respectively.
In this section we won't exclude the case where some consumers have no initial en-
dowments in some commodities. To each vector of endowments e = (eh)1·h·m 2
Rlm

+ n f0g we associate the nonempty correspondence ¡e : H ! L where ¡e(h) is the
set of goods in which consumer h has non-trivial endowments. In other words:

8j 2 L; j 2 ¡e(h) () ej
h > 0 :

An economy is fully described by a vector

((eh)1·h·m; (ah)1·h·m) 2 Rlm
+ n f0g £ Rlm

++ :

De¯nition 5. The economy (e; a) is specialized if the associated correspondence ¡e

has the following property: for all j 2 L, there exists some consumer h(j) 2 H such
that ¡e(h(j)) = fjg (consumer h(j) is only endowed in good j).

In the next two subsections, we will present two properties of equilibria in this
setup.

5.1. Underemployment versus employment equilibria

In this part we will try to compute the relative size of underemployment equilibria
versus employment equilibria. Since we do not have an explanation of why an equi-
librium occurs, we may as well assume that all equilibria are equally likely. This
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leads to considering the relative (Lebesgue) measure of the two types of equilibria as
a notion of likelihood of occurrence of underemployment equilibria. From Theorem
3.1 we know that there is a generic set of economies that display underemployment
equilibria when r1 < r¤1: Still, we don't know how small this r¤1 may be. We will ¯nd
out a relationship between the size of r¤1 (hence, the likelihood of underemployment
equilibria) and that of an economy, in terms of the number of traded commodities.
We will content ourselves with computing this likelihood only for a restricted class
of economies. We consider economies where the number of agents is bigger than the
number of goods: m ¸ l .

We know that any economy in this class has a unique walrasian equilibrium price
p, and we have r¤j (e; a) = ¹rj (e; a; p).

Lemma 6. Given an economy (e; a); for all good j 2 L,

r¤j (e; a) ¸ 1 ¡ a
j
h(j) :

Proof. See the Appendix.

The question we are interested in is the following. Fix l and m, m ¸ l, ¯x a rate
½ 2 (0; 1), arbitrarily close to 1 and assume that the economy (e;a) is chosen \at
random". What are the chances that there exists an underemployment equilibrium
(r;p) such that for all j 2 L, r¤j (e; a) ¸ ½, i.e., an underemployment equilibrium that
involves beliefs r which are arbitrarily close to one?

We must ¯rst make clear what we mean by a random economy (e; a). The result
we are going to prove does not depend on the choice of e. But as for utility functions,
we assume that they are uniformly distributed over the simplex So

l : a consumer's
utility function is characterized by an a priori equally-likely vector a. Therefore the

event S
¸®
j =

n
a 2 So

l j a
j
h(j) ¸ ®

o
; for all j; has a probability equal to its relative

Lebesgue measure in the simplex, i.e.

P
n

a 2 So
l j a

j
h(j) ¸ ®

o
´ P

n
S¸®

j

o
= ¹

n
S¸®

j

o
=¹ fSo

l g

where ¹ stands for the Lebesgue measure.

Lemma 7. Take any threshold ® 2 (0; 1). Then for all j ,

P
n

S¸®
j

o
· (1 ¡ ®)l¡1 :

Proof. See the Appendix.

The main step towards our result is provided by the following lemma.

Lemma 8. Take a ° 2 (0; 1) and a random economy (e; a). The probability that
there exists an underemployment equilibrium (p; r) such that for all j 2 L,

r¤j(e; a) > 1 ¡ 1

(l ¡ 1)°
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is greater than

1 ¡ l

µ
1

e

¶(l¡1)1¡°

:

with e the Neperian number.

Proof. We only need to show that

P
n

S¸®
j

o
·

µ
1

e

¶(l¡1)1¡°

for all j, where ® = 1=(l¡1)° : Indeed, by Lemma 7 a
j
h(j) < 1

(l¡1)° implies r¤j (e; a) ¸
1 ¡ aj

h(j)
> 1 ¡ 1

(l¡1)° , and

P
n
[jS

¸®
j

o
· l

µ
1

e

¶( l¡1)1¡°

in turn, implies the result:

P
n

\j

³
S¸®

j

´co
> 1 ¡ l

µ
1

e

¶(l¡1)1¡°

Take the threshold value ® in Lemma 7 equal to ®(l) = 1=(l ¡ 1)° . We have

P
n

S¸®
j

o
·

µ
1 ¡ 1

(l ¡ 1)°

¶l¡1

=

(µ
1 ¡ 1

(l ¡ 1)°

¶(l¡1)° )(l¡1)1¡°

but we know that the sequence
µ

1 ¡ 1

(l ¡ 1)°

¶( l¡1)°

is increasing and tends towards 1=e. Hence the lemma.
We can conclude this section with the result we were looking for.

Theorem 5.1. For any ½ arbitrarily close to 1, there is an l large enough such that
½ < 1 ¡ 1

(l¡1)° and

P

½
\j

½
r¤j (e; a) > 1 ¡ 1

(l ¡ 1)°

¾¾
> 1 ¡ l

µ
1

e

¶(l¡1)1¡°

Proof. Obvious from Lemma 8.
In words, the theorem says that for su±ciently large economies, with a number

of households not less than the number of traded commodities, and with some spe-
cialization, it is likely that an equilibrium will display underemployment. Note that
underemployment obtains even if agents are con¯dent they can sell almost all their
endowment. We conjecture that this result can be generalized to preferences other
than log-linear.
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5.2. Dynamic properties of equilibria

We now consider economies where the number of agents is equal to the number of
commodities, or m = l . We focus on economies which are specialized in the sense of
the previous subsection. Let L = f1; 2; : : : ; lg denote the set of goods. A vector of

endowments is e = (eh)1·h·l 2 Rl2

+ such that eh = (0; : : : ; 0; eh; 0; : : : ; 0) 2 Rl
+ .

Although so far we have considered only homogeneous expectations of rationing
across agents, we could examine heterogenous expectations as well. This is natural in
the context of specialized economies. In this setup, at date t agent h has expectations
rh;t¡1 of his ability to sell his endowment of only good h. Sellable percentages asso-
ciated with other goods don't matter, because the agent is not endowed with those
goods. Then the distinction between heterogenous and homogenous expectations be-
comes irrelevant.

We are going to look at the stability properties of the equilibrium de¯ned by
equations (2.8) and (2.9). Note that these two equations de¯ne a dynamic process
in r; taking rt¡1 to rt : Any long-run equilibrium sellable percentage r < r can be
perturbed and we study whether it will converge back to an equilibrium, even if
not the same. The perturbation can be thought as a change in the expectations of
rationing each agent has at time t, rh;t¡1:

As a preliminary step, de¯ne the two square matrices A = (aj
h)1·h;j·l and A0 =

(a
0j
h )1·h;j·l, where a

0j
h = a

j
h=(1¡ah

h) for h 6= j, and a0h
h = ¡1. It is immediate to check

that A is a Markov matrix and 1 is an eigenvalue of A associated to a one-dimensional
characteristic subspace. Then A0 has rank l¡1. To see this, denote by ~A the diagonal
matrix Diag(1¡a1

1; 1¡a2
2; : : : ; 1 ¡al

l). We straightforwardly have A0 ~A = A ¡ I , where

I is the identity matrix. Then A0 = (A ¡ I) ~A¡1. Let q = (q1; : : : ; ql) be a vector in
the kernel of A0 and with ¯rst component equal to one and let v = (v1; : : : ;vl) 2 Rl

++

be an eigenvector of A associated with the unit eigenvalue. Then v and the vector
((1 ¡ a1

1)
¡1q1; : : : ; (1 ¡ al

l)
¡1q l) are linearly dependent, and q is in the kernel of A0 if

and only if (A ¡ I)( ~A¡1q) = 0: This is equivalent to saying that the vector v = ~A¡1q
is an eigenvector of A associated with the unit eigenvalue.

Theorem 5.2. Consider the dynamic process given by equations (2.8) and (2.9),
where the initial expectation of agent h is rh;0. Then the sequence

©
rh;t

ª1
t=0

converges

to an equilibrium vector of sellable percentage (r1; r2; : : : ; r l) such that:

lX

j=1

qj

rj
=

lX

j=1

qj

rj;0
(5.1)

with q1 = 1 and q À 0:

Proof. See the Appendix.
The point of the preceding proposition is that the hypersurface RK , in Rl

++
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de¯ned by the equation
lX

j=1

qj

xj
= K

is a set of initial beliefs that lead to the same outcome, i.e., the same equilibrium sell-
able percentage. Choose any equilibrium sellable percentage vector r < r. RK being
a strictly convex hypersurface, the size of the set of \perturbed" sellable percentages
vectors r0 lying in a neighborhood of r which leads to worse underemployment is
greater than the size of those perturbed beliefs leading to more optimistic outcomes.
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6. Appendix

Proof of Lemma 1

We will drop the superscript t unless it is not obvious from the context. We will prove the result

for c(pt) = pt: First notice that, if r ¸ 1; there is nothing to prove. The statement of the Lemma
will then follow by continuity. For each consumer h, given that rh · r; the maximization problem
(2:1) is now

maxyt
h
;rt

h
uh(y

1
h +(1¡ rh)2eh)

s:t: py1h = p (rh2eh)
y1h ¸ 0

Note that y0h can be ¯xed arbitrarily. We claim that r¤
h = r ^ 1 is always an optimal choice in

this range: Indeed, suppose that
¡
~y1h ; ~rh

¢
is optimal and ~rh < r ^ 1: Consider the bundle zh =

~y1h + (r ^ 1¡ ~rh)2eh : It is feasible with respect to the constraint set

py1h = p(r ^ 1)2eh and y1h ¸ 0

Consider the optimal choice ŷ1h associated with r^ 1: Then either ŷ1h = zh; or

uh(ŷ
1
h +(1¡ r^ 1)2eh) > uh(zh + (1¡ r ^ 1)2eh) = uh(~y1h + (1¡ ~rh)2eh)

a contradiction to the optimality of
¡
~y1h ; ~rh

¢
.

Given that rh 6 ·r; the maximization problem (2:1) is now

maxyt
h;r

t
h
uh(y1h +(1¡ rh)2eh)

s:t: py0h = p(r^ rh)2eh
y0h ¸ 0

with y1h arbitrary. We claim that the choice of rh in this range always gives lower utility than

r¤h = r ^ 1: Assume that instead r0
h is such that

r ^ r 0
h =

µ
r

0(1)
h

r(2)

¶

This means that r 0
h is partly above, and partly below the rationing rule r: We have assumed

that the ¯rst part of the vector is below, without loss of generality. Let ŷ0
h be the optimal choice

associated with this choice of rh: Let zh = ŷ0h +(r^ 1¡ r^ r0h)2eh : It is easy to observe that zh is

feasible with respect to the constraint set

pyh = p(r ^ 1)2eh and yh ¸ 0

and, we observe that

uh(~yh +(1¡ r ^ 1)2eh) ¸ uh(zh + (1¡ r ^ 1)2eh) = uh(ŷ0h + (1¡ r ^ r0h)2eh)

but then by monotonicity

uh(ŷ
0
h +(1¡ r ^ r0h)2eh)> uh(ŷ0h +(1¡ r0h)2eh)
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Hence the result stated in the lemma.

Proof of Lemma 3.

We compute the walrasian equilibrium associated with this economy. From problem (2.5), we

¯nd that the demand function is given by

xjh =
1

l
(
²
P
j 6=h p

j + ph

pj
) (6.1)

and the associated multiplier is

¸h =1=(²
X

j6=h
pj + ph): (6.2)

Using condition (2.10), we get

lX

h=1

[²(
X

j 6=h
pj )+ ph ] ¡ l(1 + (l¡ 1)²)pj + (m¡ l)

X

i

pi ¡ (m¡ l) = 0 (6.3)

which can be written as

Apn = ¡1 (6.4)

with pn =
¡
pj

¢
j 6=1 and

A=

2
666664

1¡ l 1 ¢ ¢ ¢ 1

1 1¡ l
..
.

...
. .. 1

1 ¢ ¢ ¢ 1 1¡ l

3
777775

an l ¡ 1¡ square matrix. One can easily check that A has full rank, given l > 1: Therefore, the

solution to system Apn = ¡1 is unique. In fact, as it is easy to verify, pn = 1 is the solution. Observe
that the full rankness of A implies that the Walrasian equilibrium is regular in the usual sense.

Proof of Lemma 4.

i) Take ² = 0 and consider problem (2.11). We will consider the function argmax bjh(²) with

domain <l+; as opposed to <l++; but the two coincide on this last domain. By assumption on u,
the optimal constrained choice bh must satisfy b

j
h (0) > 0 = ²; for all j 6= h: It is easy to check

that bjh(²) is continuous in ²: Hence there exists an ² > 0 small enough so that bjh(²)¡ ² > 0: Then
bjh(²) > (1¡ rj)²; for all rj · 1:

ii) Suppose not. Consider ¯rst the case when l = 2: Then bhh > 1 ¡ rh ; and the indi®erence
curve is not tangent to the budget line and there is a feasible point b0h such that uh(b

0
h) > uh(bh); a

contradiction. More generally, if l > 2; and bhh > 1¡ rh ;by point i) bh lies in the relative interior of
the constraint set. Take an open set O; relative to the constraint set, around bh; and consider the

intersection of an indi®erence surface going through bh with O: Then we can ¯nd another feasible

point b0h such that uh(b
0
h) =uh(bh): By strict convexity of preferences, there is another feasible point

b00h = abh + (1¡ a)b0h in this open set O such that uh(b00h) > uh(bh); contradicting the optimality of
bh:

Proof of Lemma 5:

We are going to show that the following is the unique regular equilibrium
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x
j
h =

½ (l¡1)²+1
l for h · l

1 h > l

¸h =

½
1=[(l¡ 1)²+1] for h · l
1=l h > l

p = 1

b
j
h·l =

½
1 ¡ ° if j = h

²+ °=(l¡ 1) j 6= h
bjh>l = 1

¹h =

½
(l¡ 1)=l[(l¡ 1)²+ °)] for h· l
1=l h > l

®jh =

8
><
>:

(l¡1)(1¡²)¡l°
l(1¡°)[(l¡1)²+°] if j = h

0 j 6= h; and h · l
0 h> l; all j

rn = °1:

We need to distinguish between two cases.

Case a. rj · rj(e; u; p) = (l¡1)(1¡²)
l

; for j 6= 1:
Case b. There exists j such that rj >rj(e; u; p):

We will show that there is only an equilibrium in case a).

Case a. Going back to the demand functions (6.1) of Lemma 3 we can now compute the demand

at a walrasian equilibrium of the ¯rst l consumers:

x
j
h =

²(l¡ 1) + 1
l

(6.5)

and the corresponding rj(e; u; p) = l¡1
l
(1¡ ²) > 0 for all j: Then our choice of r1 = ° < r1(e; u; p)

makes the equilibrium we are going to ¯nd an underemployment equilibrium.

From Lemma 4.ii, we know that bjh = 1¡ rj for j = h; all h · l and rj < rj(e; u; p): Moreover,
we know from Lemma 4.i that, assuming our choice of ² is su±ciently small, bjh > (1 ¡ rj)² for
j 6= h; again for all h · l and rj < rj (e; u; p): If h > l; then b

j
h = x

j
h , for all j: Assuming that

r < r(e; u; p); the constrained maximization problem (2.11) can be written as

max 1l
P
j6=h logb

j
h +

1
l log(1 ¡ rh); s.t.P

j6=h(b
j
h ¡ ²) = rh

bjh > (1¡ rj)²; for j 6= h
or equivalently

max 1
l

P
j6=h log b

j
h; s.t.P

j 6=h b
j
h = (l¡ 1)²+ rh

bjh > (1¡ rj)²; for j 6= h
The ¯rst order conditions give

b
j
h =

rh + ²(l¡ 1)
l¡ 1

which is greater than (1 ¡ rj)²; and multipliers
¹h = (l¡ 1)=l[(l¡ 1)²+ rh]:
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One can check that the above values satisfy the Kuhn-Tucker conditions of the true problem for

the appropriate choice of the multipliers ® for the nonnegativity constraints:

Once again, using the market clearing conditions (2.12) we solve for rn :
X

h 6=j
[rh + ²(l¡ 1)]+ (1¡ l)rj = (l¡ 1)2²

These can be rewritten as
£
1 A

¤
r = 0

or as

Arn = ¡1r1 (6.6)

Since A has full rank, we get a unique solution for each r1 < r1: It is easy to check that the solution

here is rn = °1 when r1 = °:

Note that this establishes \regularity" of equilibrium. Consider the aggregate excess demand

function Á̂(p; r) = 0 de¯ned by (6:4) and (6:6). We show that DÁ̂ has full rank, since after a simple

computation we see that

pn rn

l¡ 1 A 0
l¡ 1 ¤ A

and this clearly has full rank.

Case b.

We are to show that there is no equilibrium corresponding to this case. Without loss of generality,

assume that

rj

(
<

(l¡1)(1¡")
l if j = 1; ::; l1

¸ (l¡1)(1¡")
l if j = l1 +1; :::; l1 + l2 ´ l

Observe that household 1 is one of the ¯rst l1 households, because we chose an economywith r1 < r1:

Given the above assumption on rj; for each h = l1 + 1; :::; l

bjh =

(
"(l¡1)+°

l¡1 if j 6= h;
1¡ ° if j = h

is not a solution to the household's maximization problem anymore. Intuitively, the walrasian solu-

tion should work for this \unconstrained" household. This is in fact the case.

For h = l1 +1; :::; l;

¹h =
1

" (l¡ 1) + 1

bjh =
" (l¡ 1) + 1

l

®jh = 0; for j = 1; ::; l

is the solution to the Kuhn-Tucker conditions:
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1

lbj
h

¡¹hpj +®jh = 0 for j = 1; :::; l (k1)

¡Pl
h=1 b

j
h + " (l¡ 1) + 1= 0 (2)

®jh ¸ 0 for j 6= h (k2)

bjh ¡
¡
1¡ rj¢ "¸ 0 for j 6= h (k3)

®
j
h(b

j
h¡

¡
1¡ rj

¢
") = 0 for j 6= h (k4)

®hh ¸ 0 (i2)
bhh ¡

¡
1¡ rh

¢
¸ 0 (i3)

®hh(b
h
h¡

¡
1¡ rh

¢
) = 0 (i4) :

In particular, note that equation (k3) holds since we have assumed ²2 (0; 1) ; and equation (i3) holds
since

"(l¡1)+1
l ¡

¡
1¡ ri

¢
¸ 0

"l¡ "+1¡ l+ lrj = " (l¡ 1)¡ (l¡ 1) + lrj =
= ¡ (1¡ ") (l¡ 1) + lrk ¸ 0, rk ¸ (l¡1)(1¡")

l

as we assumed.

Summarizing, we have that for h= 1; :::; l1;

b
j
h =

(
"(l¡1)+rh

l¡1 = "+ rh

l¡1 if j 6= h;
1 ¡ rh if j = h

and for h = l1 +1; :::; l;

bjh =
" (l¡ 1) + 1

l
= "+

1¡ "
l
:

We will show that the market clearing conditions do not have a solution.

For goods j = 1; :::; l1 we have:

(1¡ l)rj +
X

i=1;:::;l1 ;i 6=j
ri =

(1¡ l) (1¡ ") l2
l

:

And for goods j = l1 + 1; :::; l :

X

i=1;:: :;l1

µ
"+

ri

l¡ 1

¶
+ l2

µ
"+

1¡ "
l

¶
¡ 1 ¡ (l¡ 1) "= 0

is

X

i=1;:::;l1

ri = ¡(1¡ l) (1 ¡ ") l1
l

:

Note that all these equations are equal, and we can keep only one of them. To sum up, we get

2
6664

1 1 ::: 1
1¡ l 1 ::: 1
::: ::: ::: :::
1 1 ::: 1¡ l
1 1 ::: 1

3
7775

(l1+1)(l1¡1)

0
BB@

r2

r3

:::
rl1

1
CCA =

0
BBB@

¯
°
:::
°
±

1
CCCA (6.7)

with
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¯ ´ (1¡ l) (1¡ ") l2
l

¡ (1¡ l)r1

° ´ (1¡ l) (1¡ ") l2
l

¡ r1

± ´ ¡(1¡ l) (1¡ ") l1
l

¡ r1

since r1 is a parameter. (6:7) is a system of l1 +1 equations in l1 ¡ 1 unknowns, that we denote by
Brn = ´: We can show that rank B 6= rank [Bj´] : Indeed, rankB = l1 ¡ 1: On the other hand,

rank [Bj´] = rank

2
66666664

1 1 1 ::: 1 ¯
1 ¡ l 1 1 ::: 1 °
1 1¡ l 1 ::: 1 °
1 1 1¡ l ::: 1 °
::: ::: ::: ::: ::: :::
1 1 1 ::: 1¡ l °
1 1 1 ::: 1 ±

3
77777775

(l1+1)¢l1

¸

= rank

2
666664

¡l 0 0 ::: 1 °
0 ¡l 0 ::: 1 °
0 0 ¡l ::: 1 °
::: ::: ::: ::: ::: :::
0 0 0 ::: ¡l2 ¡ 1 (l1 ¡ 1)°
0 0 0 ::: 1 ±

3
777775

l1¢l1

=

= l1 ¡ 2+ rank
µ
¡l2 ¡ 1 (l1 ¡ 1)°
1 ±

¶

after some matrix manipulation and using Walras' law to erase the ¯rst row. Finally,

rank

µ ¡l2 ¡ 1 (l1 ¡ 1)°
1 ±

¶
= 2 i® (l2 +1)± +(l1 ¡ 1)° 6= 0

but (l2 + 1)
³
¡ (1¡l)(1¡")l1

l ¡ r1
´
+(l1 ¡ 1)

³
(1¡l)(1¡")l2

l ¡ r1
´
< 0 given our choice of r1 :

Proof of Lemma 6.
Fix a good j 2 L. From the ¯rst order conditions of consumer h(j)'s maximization program we

have, for all k 2 L:

xkh(j) =
akh(j)

¸h(j)pk

where ¸h(j) is consumer h(j)'s Lagrange multiplier. From his budget constraint we have

¸h(j)p
j ej
h(j)

= 1

We then obtain
xjh(j)

ejh(j)
=

ajh(j)

¸h(j)pje
j
h(j)

= a
j
h(j)

By de¯nition of r¤j(e; a) = ¹rj(e; a; p),

r¤j(e; a) = 1 ¡ min
1·h·m

xjh

ejh
¸ 1¡

xjh(j)

ejh(j)
= 1¡ ajh(j)
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as we were supposed to prove.

Proof of Lemma 7.

Let S
¸®
j =

n
a 2 Sol j a

j
h(j) ¸®

o
. We consider the orthogonal projection ¦l on the hyperplane

xl = 0. The probability P
³
S¸®

j

´
is the ratio between the Lebesgue measures of the sets ¦l(S

¸®
j )

and ¦l(S
o
l ) respectively.

The sets ¦l(Sol ) is de¯ned in the (positive orthant of the) hyperplane xl = 0 by the inequalityPl¡1
k=1 a

k
h(j)

· 1. Its subset ¦l(S¸®j ) is de¯ned by the inequality

l¡1X

k=1;k6=j
akh(j) + ~a

j
h(j) · 1¡ ®

where ~ajh(j) = a
j
h(j) ¡ ®¸ 0.

It is a simple exercise to check that the Lebesgue measure (in Rl
+) of the subset de¯ned by the

inequality
l¡1X

k=1

xk · y

is yl¡1=(l¡ 1)!. Hence the lemma.
Proof of Theorem 5.2

Consider the case where, for all h, 1 · h · l, agent h expects at date t a sellable percentage

rh;t¡1 which is actually binding; i.e., yhh = 0. We know that a necessary and su±cient condition

for rh;t¡1 to be binding is rh;t¡1 < 1 ¡ ahh . And if the initial expectations are binding for each
agent, then they are binding at all steps of the dynamic process. Then problem (2.7) for each agent

becomes

maxyh

Pl
j=1;j 6=h a

j
h log(y

j
h) s:t:

Pl
j=1;j 6=h pj;ty

j
h = ph;trh;t¡1eh

Its solution is, for j 6= h,
y
j
h =

ajhp
h;trh;t¡1eh

pj;t(1¡ ahh)
and then equation (2.8) for good j is

lX

h=1

yjh =
1

pj;t

lX

h=1;h 6=j

ajh
1¡ ahh

ph;trh;t¡1eh = rj;t¡1ej

for all j . Let qh;t = ph;trh;t¡1eh, for all h, 1 · h· l. Then the above market clearing equation can
be written as

A0qt = 0
qt de¯nes the market clearing price pt . With the normalization p1;t = 1=r1;t¡1e1, such that
pj;t = qj;t=(rj;t¡1ej); q1;t = 1 and q t À 0: Since all the vectors in the kernel of A0 are colinear,
and we have normalized each q t; we have q t = q: At the market clearing price pt, the aggregate
walrasian demand of good j is

lX

h=1

xjh =
lX

h=1

ajh
ph;t

pj;t
eh =

lX

h=1

ajh
qhrj;t¡1ej

qjrh;t¡1eh
eh = rj;t¡1ej

lX

h=1

ajh
qh

qj;trh;t¡1

Then equation (2.9) is, for all j, 1 · j · l,

rj;t =
rj;t¡1ej

rj;t¡1ej
Pl
h=1 a

j
h

qh

qjrh;t¡1
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which is equivalent to

qj

rj;t
=

lX

h=1

ajh
qh

rh;t¡1

such that, if vj;t denotes qj=rj;t, we obtain for all j, 1 · j · l,

vj;t =
lX

h=1

ajhv
h;t¡1

which can be rewritten as vt = Avt¡1 .
We ¯rst have to prove that if rh;t¡1 is binding then so is rh;t; in other words, we have to prove

that if rh;t¡1 < 1¡ ahh, for all h, then rh;t < 1¡ ahh, for all h. Suppose rh;t¡1 < 1¡ ahh, for all h.
Then we have, for all j,

1

rj;t
=

lX

h=1

ajh
qh

qjrh;t¡1
>

lX

h=1

ajh
qh

qj (1¡ ahh)
=
1

qj

lX

h=1

ajh
1¡ ahh

qh ;

but we know that
lX

h=1;h 6=j

a
j
h

1¡ ahh
qh = qj

so that we obtain, for all j,

1

rj;t
>
1

qj

µ
qj +

aj

1¡ aj
qj

¶
=

1

1¡ aj

It is a standard result of dynamic systems that the sequence fvtg converges toward the vector
v = (vj )1·j·l of the characteristic space associated with the eigenvalue 1 of A whose components
satisfy

lX

j=1

vj =

lX

j=1

vj;t
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