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Abstract

A number of papers have shown that a strict Nash equilibrium action pro¯le of a game
may never be played if there is a small amount of incomplete information (see, for example,
Carlsson and van Damme (1993a)). We present a general approach to analyzing the robustness
of equilibria to a small amount of incomplete information. A Nash equilibrium of a complete
information game is said to be robust to incomplete information if every incomplete information
game with payo®s almost always given by the complete information game has an equilibrium
which generates behavior close to the Nash equilibrium. We show that an open set of games
has no robust equilibrium and examine why we get such di®erent results from the re¯nements
literature. We show that if a game has a unique correlated equilibrium, it is robust. Finally, a
natural many-player many-action generalization of risk dominance is shown to be a su±cient
condition for robustness.

¤ We are grateful to Eddie Dekel, Drew Fudenberg and George Mailath for valuable comments.



1. Introduction

Before Harsanyi's seminal contribution (Harsanyi (1967)), game theory was subject to the appar-
ently compelling criticism that all conclusions relied completely on the assumption that payo®s
were common knowledge. Harsanyi's formulation of games of incomplete information allowed
analysis of situations where payo®s are not common knowledge. In this paper, we return to the
classic question of how sensitive the conclusions of (complete information) game theory are to the
common knowledge of payo®s assumption.

Suppose we ¯x a Nash equilibrium of a complete information game. Say that it is robust
to incomplete information if behavior close to it is an equilibrium of every nearby incomplete
information game. By \nearby" incomplete information game, we mean that the sets of players

and actions are the same as in the complete information game and, with high probability, each
player knows that his payo®s are the same. By \behavior close to it", wemean that the distribution
over actions generated by the Nash equilibrium is close to the distribution over actions generated
by an equilibrium of the nearby incomplete information game.

Although this de¯nition has the °avor of the \re¯nements" literature, we show that it has very
di®erent properties. In particular, we show that there exists an open set of games which have
a unique (strict) Nash equilibrium that is not robust. The argument is based on an \infection
argument" similar to that of Rubinstein (1989): ¯x a complete information game and suppose that
payo®s of an incomplete information game are always the same as the complete information game,
except that at some information set of small probability, one player has a dominant strategy to
play an action which is not part of the unique Nash pro¯le. If there is an information set where a
second player attaches high probability to the ¯rst player's information set, we can guarantee that
the second player has a unique best response (not in the unique Nash pro¯le) at that information
set. We can iterate this argument to ensure that the unique Nash pro¯le of actions is never played
in any equilibrium of the incomplete information game. Since this can be done no matter how

small the probability of the information set of the ¯rst player, the Nash equilibrium is shown
not to be robust. We will discuss below why we get such di®erent results from the re¯nements
literature.

We present positive results which show two di®erent kinds of su±cient conditions for robust-
ness. The ¯rst comes from the observation that if an incomplete information game is near a
complete information game, then any equilibrium of the incomplete information game generates a
distribution over actions which is an approximate correlated equilibrium of the complete informa-
tion game (the payo® uncertainty allows correlation of actions). Thus if a complete information
game has a unique correlated equilibrium, then that equilibrium - which must be also a Nash equi-
librium - is robust (by the upper hemicontinuity of the correlated equilibrium correspondence).
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This is the ¯rst su±cient condition for robustness.
Our second, more interesting, su±cient condition works by showing a necessary connection

between the ex ante probability of an event and the probability that players have certain higher
order beliefs about that event. In order to develop this result, we ¯rst review some earlier work.

Following Morris, Rob and Shin (1995), say that an action pro¯le a ´ (a1; :::; aI) in an I player
game is a (p1; :::; pI )-dominant equilibrium if each action ai is a best response to any conjecture
putting probability at least pi on other players choosing a¡i. Write p ´ (p1; :::; pI) for such a
pro¯le of probabilities. Following Monderer and Samet (1989), say that an event is p-evident if
each individual i attaches probability at least pi to the event whenever it is true. These de¯nitions

can be related together to prove a result about the equilibria of incomplete information games.
Suppose that a complete information game has a p-dominant equilibrium a; suppose also that an
incomplete information game contains an event E which [1] is p-evident; and [2] has the property
that payo®s are given by the complete information game at all states in E. Then the incomplete
information game has an equilibrium where a is played at all states in E.

This result suggests a strategy for proving robustness. Suppose a complete information game
has a p-dominant equilibrium a. If we could show that every nearby incomplete information game
contains a high probability event E which satis̄ es the two properties cited above, we would be
done. In fact, Monderer and Samet (1989) have provided an algorithm which - for any given
information structure - ¯nds the largest probability event E satisfying those two properties. Say
that an event is p-believed if each individual i believes it with probability at least pi. Say that an
event is common p-belief if it is p-believed, it is p-believed that it is p-believed, etc... Then the
largest event E satisfying the two properties above will be the set of states where it is common
p-belief that payo®s are given by the complete information game.

But what is the connection between the probability of an event and the probability of the

set of states where that event is common p-belief? We show that if
IP
i=1

pi < 1, then as the

probability of an event tends to 1, the probability that the event is common p-belief tends to 1

uniformly across information systems. Conversely, if
IP
i=1

pi ¸ 1, then it is possible to construct

an information structure which has an event with probability arbitrarily close to 1, which is
never common p-belief. This result shows a surprising necessary connection between the ex ante
probability of an event and the ex ante probability of individuals having certain higher order
beliefs. As an immediate corollary, we have that if an action pro¯le a is a p-dominant equilibrium

with
IP
i=1

pi < 1, then a is robust.

These su±cient conditions are rather strong. However, they can be used to give a complete
characterization of robustness in one special but much studied class of games. In generic two
player, two action games, there is always exactly one robust equilibrium: if the game has a unique
pure strategy equilibrium, it is robust; if the game has two pure strategy equilibria, then the risk
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dominant equilibrium (Harsanyi and Selten (1988)) is robust; if the game has no pure strategy
equilibrium, then the unique mixed strategy equilibrium is robust.

What should we conclude about the robustness of game theoretic predictions to the common
knowledge of payo®s assumption? We have shown that, in some contexts, an arbitrarily small
probability that the analyst has mis-speci¯ed the payo®s of a game might imply very di®erent
behavior and outcomes from the game without the misspeci¯cation. In this sense, game theoretic
predictions are not robust to the common knowledge of payo®s assumption. On the other hand,
there are circumstances when there is a robust prediction.

These are the main results of the paper. We will now relate them back to the extensive

related literature. First, there is the \re¯nements" literature. In that literature, perturbations
have typically been either directly on players' action choices (the \trembles" approach) or on the
payo®s of a complete information game. We, on the other hand, perturb payo®s indirectly, via
the information structure. However, these qualitative di®erences do not account for why we get
such di®erent results - in particular, the result that even unique strict Nash equilibria need not be
robust. The di®erences arise because of the richness of the perturbed games which we consider.
Thus we show (in section 7) that if we restricted attention to nearby incomplete information games
with either bounded state spaces or independent signals about payo®s, then all strict equilibria
would be robust.

Our work follows Fudenberg, Kreps and Levine (1988) and Dekel and Fudenberg (1990) in
studying the robustness of game theoretic predictions (they considered, respectively, strict equi-
librium and iterated deletion of weakly dominated strategies) when there is a small amount of
incomplete information. Our technique of \embedding" a complete information game in \near-
by" incomplete information game closely follows theirs. But they tested whether an outcome
can be justi¯ed by some sequence of perturbed games, while we require robustness to all such

sequences. Thus our work relates to their work as stability type re¯nements relate to perfection
type re¯nements.1

Our work builds most strongly on a literature relating higher order beliefs to the equilibria
of incomplete information games, especially Monderer and Samet (1989) and Morris, Rob and
Shin (1995). While we use extensively techniques and results from those papers, we go one step
further. Instead of making assumptions about players' higher order beliefs about payo®s, we
make assumptions about the ex ante probabilities of payo®s and deduce the required properties
of players' higher order beliefs, which can then be used to characterize equilibria.

The robustness question which we study complements the main question previously studied

1Another di®erence is that ¯nite state space and independence assumptions in those papers ensure that allowing
only a small amount of ex ante uncertainty about payo®s implies that, with high probability, payo®s are common
p-belief in the sense of Monderer and Samet (1989), for some p close to 1 (thus BÄorgers (1994) establishes essentially
the same conclusion as Dekel and Fudenberg (1990) by directly assuming that payo®s are common p-belief, for p
close to 1). We will allow in¯nite state spaces and correlated signals where such equivalences do not work.
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in the higher order beliefs literature. Given that some Nash equilibria are not robust to the
inclusion of a small amount of incomplete information, there are two natural questions to ask.
First, which Nash equilibria of a complete information game can always be played in equilibria of
nearby incomplete information games. This is the question addressed in this paper. Second, how
must the notion of a \nearby" incomplete information games be strengthened in order to ensure
that, for every Nash equilibrium of a complete information game, similar behavior is generated
by an equilibrium of every nearby incomplete information game. This lower hemicontinuity ques-
tion has been studied in the literature.2 Say that an incomplete information game is nearby a
complete information game if, with high probability, it is common p-belief - with p close to 1 -

that payo®s are those of the complete information game. This notion is su±cient to ensure that
all Nash equilibria are robust in the sense described above. This result is implied by Monderer
and Samet (1989). Monderer and Samet (1990) and Kajii and Morris (1994b) can be interpreted
as showing (in di®erent settings) that this notion of closeness is necessary and su±cient for the
lower hemicontinuity.

Finally, Carlsson and van Damme (1993a) have considered a closely related robustness ques-
tion. They suppose that each player of a two player, two action game observes a noisy signal of
the payo®s. They show that as the noise goes to zero, the unique (Bayesian Nash) equilibrium
has the risk dominant (Nash) equilibrium of the complete information game being played. Similar
techniques also work in some many player settings - see Carlsson and van Damme (1993b) and
Kim (1993). There are many reasons why our results are not directly comparable; but our work
should be seen as replicating some of their results in a di®erent setting, as well as providing new
results. The key di®erence is that while Carlsson and van Damme consider a certain critical class
of payo® perturbations with continuous signals, we characterize robustness to all perturbations
with countable state spaces. The relation is discussed in more detail in the appendix (section

9.4).
The paper is organized as follows. In section 2, we present our approach to embedding complete

information games in nearby incomplete information games and de¯ne the notion of robustness.
In section 3, we show that a unique correlated equilibrium must be robust but that a (strict)
Nash equilibrium need not be. In section 4, we review results on belief operators and common
p-belief and present new results on ex ante probabilities and higher order beliefs. In section 5,
these results are applied to give further positive robustness results. In section 6, we provide a
complete characterization of robustness for two player, two action games. In section 7, we discuss
alternative notions of robustness and the relation to re¯nements. Section 8 concludes.

2For non-strict Nash equilibria, it is necessary to weaken the solution concept in the incomplete information
game to interim "-equilibrium; that is, each player's payo® conditional on each information set must be within " of
the best response.
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2. Framework

2.1. Complete Information Games

Throughout this analysis, we ¯x a complete information game G consisting of a ¯nite collection of
players I = f1; ::; Ig and, for each player i, a ¯nite action set Ai and payo® function gi : A ! <,
where A = A1 £ :: £ AI. Thus G =

©I;fAigi2I ; fgigi2I
ª
. We shall denote

Q
j 6=i

Aj by A¡i and

a generic element of A¡i by a¡i. Similar conventions will be used whenever it is clear from the

context.
For any ¯nite set S, denote by ¢(S) the set of all probability measures on S.

De¯nition 2.1. An action distribution, ¹ 2 ¢(A), is a correlated equilibrium of G if, for all i 2 I
and ai; a0i 2 Ai,

X

a¡i2A¡i
gi (ai; a¡i)¹ (ai; a¡i) ¸

X

a¡i2A¡i
gi

¡
a0i; a¡i

¢
¹ (ai; a¡i) :

An action distribution ¹ is a Nash equilibrium if it is a correlated equilibrium and, for all a 2 A,

¹ (a) =
Y

i2I
¹i (ai) ;

where ¹i 2 ¢ (Ai) is the marginal distribution of ¹ on Ai.

This indirect way of de¯ning (mixed strategy) Nash equilibrium is equivalent to the standard
one.

2.2. Embedding Complete Information Games in Incomplete Information Games

We will require a way of comparing complete and incomplete information games. An incomplete
information game is said to \embed" the complete information game G =

©I; fAigi2I ; fgigi2I
ª

if
it has the same sets of players and actions.

For our purposes, an incomplete information game U consists of (1) the collection of play-
ers, I = f1; ::; Ig; (2) their action sets, A1; :::;AI ; (3) a countable state space, ­; (4) a prob-
ability measure on the state space, P ; (5), for each player i, a partition of the state space,
Qi; and (6), for each player i, a state dependent payo® function, ui : A £ ­ ! <. Thus
U =

©I;fAigi2I ; ­; P;fQigi2I ; fuigi2I
ª
. We write P (!) for the probability of the singleton

event f!g and Qi (!) for the (unique) element of Qi containing !. Throughout the paper we will
restrict attention to incomplete information games where every information set of every player is
possible, that is P [Qi (!)] > 0 for all i 2 I and ! 2 ­. Under this assumption the conditional
probability of state ! given information set Qi (!), written P [!jQi (!)], is well-de¯ned by the
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rule P [!jQi (!)] = P (!)
P[Qi (!)]

. If U satis̄ es all the above properties, we say that U embeds G; we

write E (G) for the set of incomplete information games which embed G:
A (mixed) strategy for player i is a Qi-measurable function ¾i : ­ ! ¢(Ai). We denote by

¾i (aij!) the probability that action ai is chosen given ! under ¾i. A strategy pro¯le is a function
¾ = (¾i)i2I where ¾i is a strategy for player i. We write § for the collection of such strategy
pro¯les. We denote by ¾ (aj!) the probability that action pro¯le a is chosen given ! under ¾;
we write ¾¡i for (¾j)j 6=i; when no confusion arises, we extend the domain of each ui to mixed
strategies and thus write ui (¾ (!) ; !) for

P
a2A

ui (a;!)¾ (aj!). Now the payo® of strategy pro¯le

¾ to player i is given by the expected utility
P
!2­

P
a2A

ui (a;!)¾ (aj!)P (!) which can also be

written as
P
!2­

ui (¾ (!) ; !) P (!).

De¯nition 2.2. A strategy pro¯le ¾ is a Bayesian Nash equilibrium of U if, for all ai 2 Ai and
! 2 ­,

X

!02Qi(!)
ui

¡
¾

¡
!0

¢
;!0

¢
P

£
!0jQi (!)

¤ ¸
X

!02Qi(!)
ui

¡©
ai; ¾¡i

¡
!0

¢ª
; !0

¢
P

£
!0jQi (!)

¤
:

A strategy pro¯le ¾ speci¯es the probability of a given action pro¯le being played at a given
state. We will be interested in a reduced form representation of the strategy pro¯le, where we

only report the ex ante probability of certain actions being played.

De¯nition 2.3. An action distribution, ¹ 2 ¢ (A), is an equilibrium action distribution of U if
there exists a Bayesian Nash equilibrium ¾ of U such that ¹ (a) =

P
!2­

¾ (aj!)P (!).

2.3. Robustness

We want to formalize the idea that an incomplete information game U is close to a complete
information game G if the payo® structure under U is equal to that under G with high probability.
Thus, for each incomplete information game U 2 E (G), write ­U for the set of states where

payo®s are given by G, and every player knows his payo®s:

­U ´ ©
! : ui

¡
a; !0

¢
= gi (a) for all a 2 A, !0 2 Qi (!) , and i 2 Iª

:

De¯nition 2.4. The incomplete information game U is an "-elaboration of G if U 2 E (G) and
P [­U ] = 1 ¡ ". Let E (G; ") be the set of all "-elaborations of G.

To clarify the idea of "-elaborations, consider 0-elaborations. The degenerate 0-elaboration is
the game where ­ is a singleton set, and the original complete information game is played with
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probability 1. The set of equilibrium action distributions of the degenerate incomplete information
game is just the set of Nash equilibria of the complete information game. But 0-elaborations
can entail more complicated information structures that allow players to correlate their actions.
Indeed, an action distribution is an equilibrium action distribution of some 0-elaboration of G if
and only if it is correlated equilibrium of G (see Aumann (1987)). Thus while two 0-elaborations
may appear close to an outside observer, it should be clear that they are not close in any game
theoretic sense.

We will measure the distance between action distributions by the max norm:

k¹ ¡ ºk = Max
a2A

j¹ (a) ¡ º (a)j :

De¯nition 2.5. An action distribution ¹ is robust to incomplete information in G if, for every
± > 0, there exists ¹" > 0 such that, for all " · ¹", every U 2 E (G; ") has an equilibrium action
distribution º with k¹ ¡ ºk · ±.

In words, an action distribution ¹ is robust if every slightly perturbed game has an equilibrium
action distribution that is close to ¹. Notice that if ¹ is robust to incomplete information, it is a
Nash equilibrium since the degenerate 0-elaboration belongs to E (G; 0).

Remark 1. It is important that we allow payo®s under an "-elaboration U to be very di®erent
from G outside the set ­U . Quite di®erent results would follow if, in addition, we required the
payo®s outside ­U to be uniformly within " of G.

Remark 2. For simplicity, our de¯nition focuses on elaborations where, with high probability,
each player knows that his payo®s are given by G. Essentially the same results would follow if we
replaced \knows" by \believes with high probability," as long as we imposed a bound on payo®s

in the elaboration (see section 9.4.2 in the appendix). Players' uncertainty about their own payo®
function is orthogonal to the issues considered in this paper.

Remark 3. An alternative formulation would require every U 2 E (G; ") to have an equilibrium
¾ with ex ante payo®s within ± of payo®s under ¹. If, in addition, we bounded payo®s outside
­U, this would give the same results.

Remark 4. The de¯nition requires a property uniformly over "-elaborations, as we vary all char-
acteristics of the incomplete information games. It will be clear from the arguments which follow
that we could allow ¹" to depend on the state space and information partitions as long as we still
required uniformity with respect to probability distributions on that state space. There is further
discussion of this issue in the appendix (section 9.3).
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Remark 5. In the related work of Monderer and Samet (1989), allowing for interim "-equilibrium
in the incomplete information game makes a large di®erence to the result. We will note when we
give our non-existence example that this would not make a di®erence to our exercise.

Remark 6. We allow players to correlate their actions via information in the elaborations. Yet
we require (in our de¯nition of robustness) that an action distribution be (nearly) played in an
equilibrium of every nearby elaboration, including degenerate ones where no correlation is possible.
A more reasonable de¯nition might allow players access to payo®-irrelevant randomizing devices
with private signals, uncorrelated with the states of the elaborations (see Cotter (1991)). Thus
say that ¹ 2 ¢(A) is a correlated equilibrium action distribution of U if there exists a correlated
equilibrium » 2 ¢ (§) of U with

¹ (a) =
X

¾2§

X

!2­
» (¾) ¾ (aj!)P (!) :

and say that ¹ 2 ¢(A) is robust with correlation to incomplete information if it satis̄ es de¯nition

2.5 with \equilibrium action distribution" replaced by \correlated equilibrium action distribu-
tion". By de¯nition, any robust ¹ is also robust with correlation; thus our positive results would
continue to hold with this de¯nition. We will verify that our negative result also holds with this
de¯nition.

3. The Robustness of Unique Nash Equilibria

In this section, we consider complete information games which have a unique Nash equilibrium
and examine when it is robust. Intuitively, this should be the easiest setting in which demon-
strate robustness. However, we ¯rst provide an open class of games with a unique (strict) Nash
equilibrium which is not robust.

3.1. Non-existence

Example 3.1. The Cyclic Matching Pennies Game. Consider the following game G. There are
3 players and each player has three possible actions: Heads (H), Tails (T) and Safe (S). The
following tables of payo®s show 1's action on the row, 2's action on the column. Now if 3 chooses
Heads, payo®s are:-

H T S

H ¡1; ¡1; ¡1 ¡1;1;1 ¡1; 14; 0

T 1;1;¡1 1;¡1;1 1; 14;0
S 1

4 ;0; ¡1 1
4; 0;1

1
4;
1
4; 0
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if 3 chooses Tails, payo®s are:-

H T S
H 1;¡1;1 1;1;¡1 1; 1

4
;0

T ¡1; 1;1 ¡1; ¡1; ¡1 ¡1; 14; 0

S 1
4 ;0; 1

1
4 ;0; ¡1 1

4;
1
4; 0

if 3 chooses Safe payo®s are:-

H T S
H 0;¡1; 14 0; 1; 14 0; 14;

1
4

T 0;1; 14 0; ¡1; 14 0; 14;
1
4

S 1
4; 0;

1
4

1
4;0; 14

1
4;
1
4;
1
4

The game has the following interpretation. Each player's payo® depends only on his own action
and the action of his \adversary". Adversaries are determined by the cycle 1 ! 3 ! 2 ! 1::, so

that 3 is 1's adversary etc.. Thus, for example, 1's payo® is completely independent of 2's action.
Each player has a safe action under which he gets 14 (independent of his adversary's action). If he
does not play his safe action, then he is playing a cyclic matching pennies game, where he tries to
choose the face of the coin di®erent from his adversary's. Thus player 2 gets 1 if he doesn't match
1's choice, ¡1 otherwise. Player 3 gets 1 if he doesn't match 2's choice, ¡1 otherwise. Player 1
gets 1 if he doesn't match 3's choice, ¡1 otherwise. Each player gets 0 if his adversary chooses a
safe action and he does not.

Note for future reference that if any player puts probability strictly greater than 5
8 on his

adversary choosing H or T, he has a strict best response to do the opposite (and not play S).
Thus if 1 thinks that player 3 will play H with probability q > 5

8 his payo® to T is at least
q ¡ (1 ¡ q) = 2q ¡ 1 > 1

4 , while the payo® to H is at most ¡q +(1 ¡ q) = 1 ¡ 2q < ¡1
4 , while the

payo® to S is 1
4 .

This game has a unique Nash equilibrium where all players choose S. To see why, ¯rst suppose
that 1 plays H in equilibrium with positive probability, but not T. Then 2 never plays H. So 3
never plays T . So 1 never plays H, a contradiction. Suppose now that 1 plays both H and T in
equilibrium. Then 3 must play H and T with equal probability. So the payo® to 1 of playing H

and T is 0 which is strictly less than 1
4, the payo® to playing S. So we have another contradiction.

Now consider the following "-elaboration of G. Let ­ be the set of non-negative integers;

P (!) =
³
1 ¡ (1 ¡ ")

1
2

´
(1 ¡ ")

!
2 . Partitions are given by Q1 = (f0;1; 2g ;f3;4; 5g ; :::); Q2 =

(f0g ;f1;2;3g ; f4; 5;6g ; :::) and Q3 = (f0; 1g ;f2;3; 4g ;f5;6; 7g ; :::). Let ui (a; !) = gi (a) unless

either i = 3 and ! 2 f0;1g or i = 2 and ! = 0. Let u3 ((a1; a2;H) ;!) = 1, u3 ((a1; a2;T ) ;!) =
0 and u3 ((a1; a2;S) ; !) = 0 for all a1, a2 and ! 2 f0; 1g; and let u2 ((a1;T; a3) ;0) = 0,
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u2 ((a1; H; a3) ;0) = 0 and u3 ((a1; S;a3) ; 0) = 0 for all a1, a3. Thus player 3 has a dominant
strategy to play H at information set f0; 1g, player 2 has a dominant strategy to play T at in-
formation set f0g, and payo®s are given by G everywhere else. Note that ­U = f2; 3;4; :::g, so

P [­U ] = 1 ¡
³
1 ¡ (1 ¡ ")

1
2

´
¡

³
1 ¡ (1 ¡ ")

1
2

´
(1 ¡ ")

1
2 = 1 ¡ ".

Now at information set f0; 1; 2g, 1 assigns probability at least 2
3 to 3 playing H, so 1 must

play T . But by a similar argument, 2 must then play H at f1;2;3g, 3 must play T at f2;3; 4g, 1
must play H at f3;4; 5g and so on. Safe is played nowhere. Thus for any " > 0, we can construct
an "-elaboration where the unique Nash equilibrium is never played in the unique Bayesian Nash
equilibrium. The following table describes the actions in that unique Bayesian Nash equilibrium.

! 0 1 2 3 4 5 6 ...

1's action T T T H H H T ...
2's action T H H H T T T ...

3's action H H T T T H H ...

This negative example does, however, suggest a strategy for identifying robust equilibria in

other games. The unique Bayesian Nash equilibrium ¾" and the unique equilibrium action distri-
bution ¹" it implies are summarized in the following:

Action Pro¯le: a f! : ¾" (aj!) = 1g ¹" (a)

(T;T;H) f0;6;12; :::g 1

1+(1¡")12 +(1¡")+(1¡")32+(1¡")2+(1¡")52

(T;H;H) f1;7;13; :::g (1¡")12
1+(1¡")12 +(1¡")+(1¡")32+(1¡")2+(1¡")52

(T;H;T ) f2;8;14; :::g (1¡")
1+(1¡")

1
2 +(1¡")+(1¡")

3
2+(1¡")2+(1¡")

5
2

(H;H; T) f3;9;15; :::g (1¡")32
1+(1¡")12 +(1¡")+(1¡")32+(1¡")2+(1¡")52

(H;T;T ) f4;10;16; :::g (1¡")2
1+(1¡")12 +(1¡")+(1¡")32+(1¡")2+(1¡")52

(H;T;H) f5;11;17; :::g (1¡")52
1+(1¡")12 +(1¡")+(1¡")32+(1¡")2+(1¡")52

(H;H; H) ; 0

(T;T;T ) ; 0

As " ! 0 (and thus P [­U ] ! 1), the equilibrium action distribution converges to a correlated
equilibrium of G with each of fH; H; Tg, fH; T; Hg, fH;T; Tg, fT; H; Hg, fT; H; Tg, fT; T; Hg
played with probability 1

6 (thus the bad outcomes fH;H;Hg and fT; T;Tg are avoided). Each
player's expected payo® is 1

3 in this correlated equilibrium. We will see that convergence to
a correlated equilibrium is going to be a general property, which we will be able to exploit in
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providing our ¯rst positive robustness result in the next section. But ¯rst we will verify that the
selection of this equilibrium is robust to a number of features of the construction.

² In the above argument, each optimal action gives a payo® of at least 1
3, and thus gives

a payo® at least 1
12 higher than the next best action. Thus the table describes not only

the unique equilibrium but also the unique interim 1
12 -equilibrium. Thus allowing interim

"-equilibria in our de¯nition of robustness would not help in this example.

² The above argument also shows that the strategies identi¯ed are the unique (incomplete in-
formation game) strategies which survive iterated deletion of strictly dominated strategies.
This ensures that the unique correlated equilibrium of the incomplete information game
entails each player choosing those strategies with probability one. Thus if any action distri-
bution is going to be robust with correlation (see de¯nition in remark 6 on page 9), it must be
the correlated equilibrium identi¯ed above. But notice that we could easily alter the above
sequence of "-elaborations to ensure a di®erent limit. Suppose that (for each ") we increased
the probability of states 0, 6, 12, etc... by a small amount while decreasing the probability of
all other states. If the change was not too large, the same strategy pro¯le would remain the
unique one surviving iterated deletion. But the limit equilibrium action distribution would

put strictly higher probability on action pro¯le (T; T;H) and strictly lower probability on
the others. Thus the cyclic matching pennies game also has no correlated equilibrium which
is robust with correlation to incomplete information.

² If we perturbed payo®s slightly, the argument (relying as it does on iterated deletion of
strictly dominated strategies) would go through unchanged. Thus the set of complete infor-
mation games where there is no robust equilibrium is open in the set of payo® matrices.

3.2. A Su±cient Condition for Robustness

The previous discussion suggests that the limit of equilibrium action distributions of a sequence
of "-elaborations of a complete information game must be a correlated equilibrium. This gives
the following:

Proposition 3.2. (Unique Correlated Equilibrium). If G has a unique correlated equilibrium ¹¤,
then ¹¤ is robust.

A related result appears in Shin and Williamson (1994). The condition that there is a unique
correlated equilibrium is very strong but far from vacuous. If a two player, two action game
has no pure strategy Nash equilibrium, then the unique mixed strategy equilibrium is the unique
correlated equilibrium (see section 6). Dominance solvable games (where a unique action pro¯le
survives iterated deletion of strictly dominated strategies) have unique correlated equilibria; so do
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two player zero sum games with a unique Nash equilibrium (Aumann (1987) and Forges (1990)).
Neyman (1991) and Cripps (1994) give su±cient conditions for all correlated equilibria to be
convex combinations of Nash equilibria, and thus for uniqueness of Nash equilibrium to imply
uniqueness of correlated equilibrium.

The proof of proposition 3.2 requires some preliminary de¯nitions and lemmas.

De¯nition 3.3. Action distribution ¹ is an ´-correlated equilibrium of G if for all i 2 I and
f : Ai ! Ai, X

a2A
f(gi (a) ¡ gi (f (ai) ; a¡i))¹ (a)g ¸ ¡´:

Note that 0-correlated equilibrium is equivalent to the de¯nition of correlated equilibrium
(de¯nition 2.1) given on page 6.

Lemma 3.4. For any complete information game G and ´ > 0, there exists ¹" > 0 such that
every equilibrium action distribution of every "-elaboration of G with " · ¹" is an ´-correlated
equilibrium.

Proof. Let U be an "-elaboration of G and let ¾ be any Bayesian Nash equilibrium of U.
Let M = Max

a2A
gi (a) ¡ Min

a2A
gi (a). Let ¹ be the induced action distribution; that is, ¹ (a) =

P
!2­

¾ (aj!)P (!). Fix f : Ai ! Ai and let ¾0i (aij!) =
P

fa0i:ai=f (a0i)g
¾i (a

0
ij!). By the assumption

that ¾ is an equilibrium, we have, for all ! 2 ­,

X

!02Qi(!)

X

a2A

¡
ui

¡
a; !0

¢
¾

¡
aj!0¢ ¡ ui

¡
a;!0

¢
¾0i (aij!)¾¡i

¡
a¡ij!0

¢¢
P

£
!0 jQi(!)

¤ ¸ 0: (3.1)

Let ­iU ´ f! 2 ­ jui (a;!0) = gi (a) for all a 2 A and !0 2 Qi (!)g. Since ­U µ ­iU, P [­iU]
¸ P [­U] = 1 ¡ ". Thus by equation (3.1) and the de¯nition of ­iU , we have, for all ! 2 ­iU ,

X

!02Qi(!)

X

a2A

¡
gi (a)¾

¡
aj!0¢ ¡ gi (a)¾0i (aij!)¾¡i

¡
a¡ij!0

¢¢
P

£
!0 jQi(!)

¤ ¸ 0; (3.2)

and so

X

!2­iU

X

a2A

¡
gi (a)¾ (aj!) ¡ gi (a)¾0i (aij!)¾¡i (a¡ij!)

¢
P (!) ¸ 0:

But X

!2­n­iU

X

a2A

¡
gi (a)¾ (aj!) ¡ gi (a)¾0i (aij!)¾¡i (a¡ij!)

¢
P (!) ¸ ¡"M:
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Thus X

!2­

X

a2A

¡
gi (a)¾ (aj!) ¡ gi (a)¾0i (aij!)¾¡i (a¡ij!)

¢
P (!) ¸ ¡"M;

or

X

a2A
f(gi (a) ¡ gi (f (ai) ; a¡i))¹ (a)g ¸ ¡"M;

and so for any ´, it is enough to set ¹" = ´
M . 2

Since ¢(A) is compact, an immediate implication of lemma 3.4 is:

Corollary 3.5. Suppose "k ! 0, each Uk is an "k-elaboration of G, and each ¹k is an equilibrium
action distribution of Uk. Then a sub-sequence of ¹k converges to some correlated equilibrium of
G.

Now the proof of proposition 3.2 is completed as follows. Suppose a unique correlated equilib-
rium ¹¤ is not robust. Then there exists ± > 0 and a sequence of "k-elaborations Uk where "k ! 0

such that for every equilibrium ¾k of Uk with induced action distribution ¹k,
¯̄
¯
¯̄
¯¹k ¡ ¹¤

¯̄
¯
¯̄
¯ > ±.

By corollary 3.5, ¹k must have a convergent subsequence whose limit is a correlated equilibrium,

which must be di®erent from ¹¤ since
¯̄
¯
¯̄
¯¹k ¡ ¹¤

¯̄
¯
¯̄
¯ > ±; this contradicts uniqueness. 2

We emphasize that proposition 3.2 is on the behavior of the equilibrium action distribution,
i.e., the average behavior across states. The following example shows that even under the very
strong assumption of a unique correlated equilibrium, there is no guarantee that equilibrium
behavior in the "-elaboration is close to the unique equilibrium behavior of G at any given state,
or even with high probability.

Example 3.6. Simple Matching Pennies. Let I = f1;2g; A1 = A2 = fH;Tg; payo®s are given
by

H T
H 1,-1 -1,1

T -1,1 1,-1

This game has a unique Nash equilibrium ¹¤ where each player randomizes
³
1
2;
1
2

´
and thus

¹¤ (a) = 1
4 for all a 2 A. It is straightforward to verify that there is no other correlated equilibrium

of this game (as also shown by lemma 9.4 on page 42). Thus by proposition 3.2, ¹¤ is robust.
Some intuition for both corollary 3.5 and proposition 3.2 comes from considering the following
"-elaboration U". Let ­ = Z+ (the set of non-negative integers); P (!) = " (1 ¡ ")!; Q1 =
(f0; 1g ;f2;3g ; :::) and Q2 = (f0g ;f1;2g ; :::). Suppose ui (a;!) = gi (a) for all i 2 I and a 2
A, except that 2 has a dominant strategy to play H at information set f0g. The incomplete
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information game U" has a unique Bayesian Nash equilibrium where player 1 plays H (with
probability 1) at information sets f0;1g, f4;5g, etc...; while he plays T at information sets f2; 3g,
f6;7g, etc...; similarly, player 2 plays H at information sets f0g, f3; 4g, etc...; and he plays T at
information sets f1; 2g, f5;6g, etc... Thus the unique equilibrium action distribution, ¹", of U"
has ¹" (H; H) = "

1¡(1¡")4 , ¹" (H;T ) = "(1¡")
1¡(1¡")4 , ¹" (T; T) = "(1¡")2

1¡(1¡")4 and ¹" (T;H) = "(1¡")3
1¡(1¡")4 .

We can verify that ¹" (a) ! ¹¤ (a) = 1
4 as " ! 0, for all a 2 A. This is also an implication of

corollary 3.5. But notice that for every " and at every state, the unique equilibrium behavior is
a pure strategy and thus very di®erent from the unique Nash equilibrium strategy.

4. p-Belief

As noted in the introduction, our second positive robustness result uses new results about the ex
ante probability of higher order belief events. Thus, in this section, we introduce belief operators
and common p-belief (in section 4.1) and report the critical path result which shows that for
su±cient small p, there is a connection between ex ante probability and statements about higher
order beliefs (in sections 4.2 and 4.3). In section 5, we will use this result in generating a positive
robustness result.

4.1. Common p-Belief

Fix the information system part of an incomplete information game, i.e.
©I;­;P;fQigi2I

ª
. We

maintain the assumption that P [Qi (!)] > 0, for all i 2 I and ! 2 ­. For any number pi 2 (0;1],
de¯ne

Bpi
i (E) ´ f! : P [EjQi(!)] ¸ pig :

That is, B
pi
i (E) is the set of states where player i believes E with probability at least pi. For

any row vector p =(p1; ::; pI ) 2 (0; 1]I, Bp
¤ (E) ´ \

i2I
Bpi
i (E); Bp

¤ (E) is the set of states where E is

p-believed, i.e. each player i believes E with probability at least pi. An event is said to be common

p-belief if it is p-believed, it is p-believed that it is p-believed, etc...; thus E is common p-belief
at state ! if ! 2 Cp(E) ´ \

n 1̧

£
Bp
¤
¤n

(E). Monderer and Samet (1989) introduced such belief

operators and characterized common p-belief for symmetric p, i.e. C(p;::;p)(E). Their results
remain true essentially as stated in the case of asymmetric p. This section reports the trivial
extension.

Write Fi for the ¾-¯eld generated by Qi and say that event E is simple if E = \
i2I

Ei, each

Ei 2 Fi. We will use the following straightforward properties of belief operators which we state
without proof.

Fact 1. If Ei 2 Fi, then Bpii (Ei) = Ei.
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Fact 2. For all events E µ F , Bpii (E) µ Bpi
i (F ).

Fact 3. For all events E, Bpi
i (E) 2 Fi.

Fact 4. For all events E, Bp
¤ (E) is simple.

Fact 5. If E is simple, then Bp
¤ (E) µ E.

Fact 6. If En is decreasing, then Bpi
i

µ
\
n¸1

En
¶

= \
n 1̧

Bpi
i (En).

De¯nition 4.1. E is p-evident if E µ Bp
¤ (E).

The following result follows Monderer and Samet (1989).

Theorem 4.2. (The Common p-Belief Theorem). E is common p-belief at ! (i.e. ! 2 Cp (E))
if and only if there is a p-evident event F with ! 2 F µ Bp¤ (E).

Proof. By properties 4 and 5,
£
Bp
¤
¤n

(E) is decreasing in n (for n ¸ 1). Now for each i 2 I and
n ¸ 1,

Cp(E) µ [Bp
¤ ]n+1 (E) µ Bpii ([Bp

¤ ]n (E)) .

Thus by fact 6,

Cp(E) µ \
n¸1

Bpi
i ([Bp

¤ ]n (E)) = Bpi
i

µ
\
n¸1

[Bp
¤ ]n (E)

¶
= Bpi

i (Cp(E)) .

Thus Cp(E) is p-evident; since Cp(E) µ Bp
¤ (E), the \only if" part of the proposition is

satis̄ ed setting F = Cp(E).

Conversely, suppose F is p-evident, ! 2 F and F µ B
p
¤ (E). By fact 2, we have for all n ¸ 0,

[Bp¤ ]
n (F) µ [Bp

¤ ]n+1 (E) :

By F p-evident and fact 2, we have for all n ¸ 1, F µ £
Bp
¤
¤n

(F). Thus we have

! 2 F µ \
n 0̧

[Bp
¤ ]n (F ) µ \

n 1̧
[Bp
¤ ]n (E) = Cp(E): 2
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4.2. The Critical Path Result

What is the connection between the (ex ante) probability of an event E and the ex ante probability
of the event Cp (E)? The following proposition shows that if

P
i2I

pi < 1, then P [Cp (E)] is close

to 1 whenever P [E] is close to 1, regardless of the state space.

Proposition 4.3. (The Critical Path Result). If
P
i2I

pi < 1, then in any information system
©I;­;P;fQigi2I

ª
, all simple events E satisfy:

P [Cp (E)] ¸ 1 ¡ (1 ¡ P [E])

0
B@

1¡ min
i2I

(pi)

1 ¡ P
i2I

pi

1
CA :

This result is tight in the following two senses3:

² If
P
i2I

pi < 1 and "

0
@
1¡min

i2I
(pi)

1¡
P
i2I

pi

1
A · 1, then there exists an information system

©
I; ­; P; fQigi2I

ª

and a simple event E, with 1¡P [E] = " and P [Cp (E)] arbitrarily close to 1¡"

0
@
1¡min

i2I
(pi)

1¡
P
i2I

pi

1
A.

² If
P
i2I

pi ¸ 1 and q < 1, then there exists an information system
©I;­;P; fQigi2I

ª
and a

simple event E, with P [E] = q and Cp (E) = ;.

Proposition 4.3 is of some interest beyond its use in this paper, so before giving a proof, let us
make a few observations about the proposition. First, as Monderer and Samet (1989) observed,
the characterization of common p-belief described in the previous sub-section was independent
of the common prior assumption. That is, if we endowed each individual with a di®erent prior
measure Pi, and de¯ned belief operators by Bpi

i (E) ´ f! : Pi [E jQi (!)] ¸ pig, theorem 4.2 and
its proof would remain unchanged. Indeed, the game theoretic results which Monderer and Samet
prove using common p-belief would also be unchanged. By contrast, proposition 4.3 relies on the
common prior assumption. Suppose I = f1; 2g; ­ = f1;2; :::; 2Ng;

P1 (!) =

(
1¡"
N , if ! is odd
"
N , if ! is even

; P2 (!) =

(
"
N , if ! is odd
1¡"
N , if ! is even

;

3This can be shown by construction; example 9.9 on page 44 in the appendix shows the second form of tightness.
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Q1 = (f1;2g ; f3; 4g ; :::; f2N ¡ 1;2Ng) and Q2 = (f1g f2; 3g ; :::; f2Ng). Consider the event E =
f3;4; ::::;2Ng; P1 [E] = P2 [E] = N¡1

N , so we can make both ex ante probabilities of event E
arbitrarily close to 1 by choosing N su±ciently large. But Cp (E) = ;, for all p with p1 > " and
p2 > ".

Second, note that while proposition 4.3 concerns the ex ante probability of events, it can be
used to prove results about the existence of certain events as follows; write #Qi for the (perhaps
in¯nite) number of elements of i's information partition.

Corollary 4.4. Fix any information system
©I;­;P;fQigi2I

ª
. If

P
i2I

pi < 1 and #Qj >

0
@
1¡min

i2I
(pi)

1¡
P
i2I

pi

1
Afor

some j 2 I, then there exists an event E such that Cp (E) =2 f;;­g.

Proof. Since #Qj >

0
@
1¡min

i2I
(pi)

1¡
P
i2I

pi

1
A and each element of Qj has positive probability, some el-

ement F 2 Qj has 0 < P [F ] <

0
@

1¡
P
i2I

pi

1¡min
i2I

(pi )

1
A. Now Cp (­nF) µ B

pj
j (­nF ) = ­nF , so

Cp (­nF ) 6= ­. But by proposition 4.3, P [Cp (­nF)] ¸ 1 ¡ (1 ¡ P [­nF ])

0
@
1¡min

i2I
(pi)

1¡
P
i2I

pi

1
A >

1 ¡
0
@

1¡
P
i2I

pi

1¡min
i2I

(pi)

1
A

0
@
1¡min

i2I
(pi )

1¡
P
i2I

pi

1
A = 0. But P [Cp (­nF )] > 0 ) Cp (­nF) 6= ;. 2

Morris (1993) showed the same conclusion with an independent argument under the assump-
tions that all Qi ¯nite are ¯nite, I = 2 and p1 = p2 = 1

2. This case was critical in the results of
Morris, Rob and Shin (1995).

Finally, let us note that if we did not restrict attention to simple events, a version of proposition
4.3 would still hold with a weaker bound.

Corollary 4.5. In any information system
©I;­;P;fQigi2I

ª
, if

P
i2I

pi < 1, then for all events E,

P [Cp (E)] ¸ 1 ¡ (1 ¡P [E])

Ã
X

i2I

1

1 ¡ pi

! 0
B@

1¡ min
i2I

(pi)

1 ¡ P
i2I

pi

1
CA :

Since Bp
¤ (E) is a simple event and Cp

¡
Bp¤ (E)

¢
= Cp (E), the corollary is a straightforward

consequence of proposition 4.3 and lemma 4.7 (which will be proved in the next section).
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4.3. Proof of the Critical Path Result

We prove the critical path result in this sub-section. Because the argument is somewhat intricate
and - we believe - of more general interest, we present a proof which - while long - clari¯es

the basic logic. The argument is structured as follows. In section 4.3.1, we provide some basic
inequalities which relate together the ex ante probability of an event and the ex ante probability
of ¯rst order beliefs about that event. In section 4.3.2, we provide an inequality relating the
ex ante probability of an event (i.e. P [E]) and the ex ante probability that that event is Kth

order p-belief (i.e. P
h
[Bp]K (E)

i
). Finally, in section 4.3.3, we examine what happens to that

inequality as K becomes large. If
P
i2I

pi ¸ 1, the inequality provides no useful bound. But if
P
i2I

pi < 1, the limit of the K-inequality provides a proof of the critical path result (proposition

4.3).

4.3.1. Basic Ex Ante Probability Properties of Belief Operators

The proof will use the following results which relate the ex ante probabilities of event E and the
events Bpi

i (E). The basic insight is that if pi is small and event E has high probability, then
there will be a high probability that i pi-believes event E. For purposes of this sub-section, allow
P [EjF ] to take any value in [0;1] if P [F ] = 0. The following result appears in Fudenberg and
Tirole (1991).

Lemma 4.6. For all events E, (1) P [E] ¸ piP [Bpi
i (E)] and (2) P [Bpi

i (E)] ¸ P[E]¡pi
1¡pi .

Proof. By the de¯nition of conditional probability, we have

P [E] = P [E jBpii (E) ]P [Bpi
i (E)] +P [E j­nBpi

i (E)] P [­nBpi
i (E)] : (4.1)

Since P [E jQi (!)] ¸ pi if ! 2 Bpi
i (E), we have P [E jBpi

i (E)] ¸ pi if Bpi
i (E) 6= ; and thus

(by (4.1))

P [E] ¸ piP [Bpi
i (E)] ;

which gives (1). Since P [E jQi (!) ] < pi if ! 2 ­ n Bpi
i (E), we have P [E j­nBpi

i (E)] < pi if
­nBpi

i (E) 6= ;; since P [E jBpi
i (E) ] · 1 by de¯nition, we have (by (4.1)):

P [E] · P [Bpi
i (E)] + piP [­ n Bpi

i (E)] :

Noting that P [­ n Bpii (E)] = 1 ¡ P [Bpii (E)], we have

P [E] · (1 ¡ pi)P [Bpi
i (E)] + pi;

which gives (2). 2
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Lemma 4.7. For all events E, 1 ¡ P
£
Bp
¤ (E)

¤ ·
Ã

P
i2I

1
1¡pi

!
(1 ¡P [E]) :

Proof. By lemma 4.6, P [Bpii (E)] ¸ P [E]¡pi
1¡pi ; thus

P [­nB
pi
i (E)] · 1 ¡ P [E] ¡ pi

1 ¡ pi
=

1 ¡ P [E]

1 ¡ pi
:

Taking the union gives:

P

·
[
i2I

­nBpi
i (E)

¸
· (1 ¡P [E])

X

i2I

1

1 ¡ pi
:

So

1 ¡ P [Bp
¤ (E)] · (1 ¡ P [E])

X

i2I

1

1 ¡ pi
: 2

Lemma 4.8. (1) For all events E, P [E nBpi
i (E)] · piP [­nBpii (E)].

(2) If F 2 Fi and F µ ­nBpi
i (E) then P [E \ F ] · pi

1¡piP [FnE] :

Proof. Note that P [E \ F jQi (!)] = P [E jQi (!)] if ! 2 F and F is Fi-measurable. Let F 2 Fi
and F µ ­nBpi

i (E). Then since P [E jQi (!)] < pi if ! 2 F and P [EjF ] < pi if P [F ] > 0,

P [E \ F ] = P [EjF ] P [F ] · piP [F ] :

So (1) follows by setting F = ­nBpi
i (E); (2) follows since P [F ] = P [E \ F ] +P [F n E]. 2

4.3.2. The Kth order belief inequality

SinceP [Cp (E)] = lim
K!1

P
h£

Bp¤
¤K

(E)
i
, we would like to provide a upper bound for 1¡P

h£
Bp¤

¤K
(E)

i

as a function of 1 ¡ P [E]. Iterated application of lemma 4.7 gives us that

1 ¡ P
h
[Bp
¤ ]K (E)

i
·

Ã
X

i2I

1

1 ¡ pi

!K
(1 ¡P [E])

This implies that for any given p 2 (0; 1)I and K, we can guarantee (uniformly across in-

formation systems) that P
h£

Bp
¤
¤K (E)

i
is large by setting P [E] su±ciently close to 1. But for

any p 2 (0;1)I ,

Ã
P
i2I

1
1¡pi

!K
! 1 as K ! 1, so this inequality will be of no use in bounding
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P [Cp (E)]. We need a tighter bound. The bound is constructed from the following I £ I matrix
R:

R =

0
BBBBBB@

0 p2
1¡p2

p3
1¡p3 :: pI

1¡pI
p1
1¡p1 0 p3

1¡p3 :: pI
1¡pI

p1
1¡p1

p2
1¡p2 0 :: pI

1¡pI
:: :: :: :: ::
p1
1¡p1

p2
1¡p2

p3
1¡p3 :: pI

1¡pI

1
CCCCCCA

; (4.2)

note that R depends onp. Writing [x0]i for the ith element of column vector x0, let »¤ (p;K) =

max
i2I

³h³
I +R + :: +RK

´
10

i
i

´
.

Lemma 4.9. In any information system
©I; ­; P; fQigi2I

ª
, for any simple event E,

1 ¡ P
h
[Bp¤ ]

K (E)
i

· (1 ¡ P [E]) »¤ (p;K) :

Intuitively, we want to maximize (over all information systems and all simple events) the value

of 1 ¡ P
h£

Bp
¤

¤K
(E)

i
, subject to the constraint that P [E] ¸ 1 ¡ ", and show that the maximand

of this problem is "»¤ (p; K). For the remainder of this sub-section, we will be considering this
maximization problem, which is (implicitly) parameterized by p, K and ".

But how can we formalize the idea of maximizing over information systems? The trick is to
observe that we are not interested in the whole structure of the information system, but only
in the ex ante probability of certain events. Thus we may, without loss of generality, focus on

the probability of events which concern us. But the de¯nitions of those events impose certain
linear inequalities on their ex ante probabilities (such as those of the previous sub-section). Our
maximization problem \over all information systems" can thus be reduced to a linear programming
problem. This is most easily explained by considering special cases. First, let I = 2 and K = 1.
Fix any

©I; ­; P; fQigi2I
ª

and any simple event E = E1 \ E2, where each Ei is measurable with
respect to Qi. Now Bpii (E) µ Ei, so the state space ­ can be represented by the following box:

¼ (0; 0) ¼ (0;1) ¼ (0; 2)

¼ (1; 0) ¼ (1;1) ¼ (1; 2)
¼ (2; 0) ¼ (2;1)

where ¼ (i; j) is the probability of the corresponding event (i; j); thus, for example, ¼ (2; 1) =
P (Bp1

1 (E) \ E2nBp2
2 (E)). Notice that although ¼ (:; :) depends on the choice of information
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system and event E, the relevant relationship between the events E1; E2;B
p1
1 (E) and Bp22 (E) is

completely captured by this box representation. Thus our problem reduces to maximizing:

1 ¡ P [Bp¤ (E)] =

(
¼ (0; 0) +¼ (0;1) + ¼ (0;2) +¼ (1; 0)

+¼ (1;1) +¼ (1; 2) +¼ (2;0) + ¼ (2;1)

)
(4.3)

subject to

1 ¡ P [E] =

(
¼ (0; 0) +¼ (0; 1) + ¼ (0;2)

+¼ (1; 0) + ¼ (2;0)

)
· " (4.4)

But there are addition restrictions on the ¼ implicit in the above construction. In particular,
P [E2jQ1 (!)] < p1 if ! 2 E1nBp1

1 (E2). Thus P [E1nBp1
1 (E2) \E2] · p1P [E1nBp11 (E2)] and so

¼ (1; 1) + ¼ (1;2) · p1 (¼ (1; 0) + ¼ (1;1) + ¼ (1; 2))

Re-arranging gives:

¼ (1;1) + ¼ (1;2) · p1
1 ¡ p1

¼ (1;0) (4.5)

By a symmetric argument:

¼ (1;1) + ¼ (2;1) · p2
1 ¡ p2

¼ (0;1) (4.6)

Suppose (without loss of generality) that p1 ¸ p2. Then the maximum possible value of (4.3)

subject to (4.4), (4.5) and (4.6) is "
³
1 + p1

1¡p1
´
. One choice of ¼ attaining that maximum is:

0 0 0
" 0 " p1

1¡p1
0 0

Intuitively, we want to distribute the " outside event E in such a way that it can be used to
\knock out" the maximum probability when the belief operators are applied once. Given that
p1 ¸ p2, " p1

1¡p1 is the most probability that can be knocked out at the next round.
Now let K = 2; the relevant division of the state space ­ becomes:

¼ (0;0) ¼ (0; 1) ¼ (0;2) ¼ (0; 3)
¼ (1;0) ¼ (1; 1) ¼ (1;2) ¼ (1; 3)

¼ (2;0) ¼ (2; 1) ¼ (2;2) ¼ (2; 3)

¼ (3;0) ¼ (3; 1) ¼ (3;2)
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We seek to maximize

1 ¡ P
h
[Bp
¤ ]2 (E)

i
=

8
>>><
>>>:

¼ (0;0) + ¼ (0;1) +¼ (0; 2) +¼ (0;3)
¼ (1;0) + ¼ (1;1) +¼ (1; 2) +¼ (1;3)
¼ (2;0) + ¼ (2;1) +¼ (2; 2) +¼ (2;3)

+¼ (3;0) +¼ (3; 1) +¼ (3;2)

9
>>>=
>>>;

(4.7)

subject to

1 ¡P [E] =

(
¼ (0; 0) + ¼ (0;1)+ ¼ (0; 2) +¼ (0; 3)

+¼ (1;0) + ¼ (2; 0) +¼ (3; 0)

)
· " (4.8)

¼ (1;1)+ ¼ (1; 2) +¼ (1;3) · p1
1 ¡ p1

¼ (1; 0) (4.9)

¼ (2;2) +¼ (2; 3) · p1
1 ¡ p1

(¼ (2; 0) +¼ (2;1)) (4.10)

¼ (1;1)+ ¼ (2; 1) +¼ (3;1) · p2
1 ¡ p2

¼ (0; 1) (4.11)

¼ (2;2) +¼ (3; 2) · p2
1 ¡ p2

(¼ (0; 2) +¼ (1;2)) (4.12)

This programming problem has solution "
³
1 + p1

1¡p1 +
³

p1
1¡p1

´ ³
p2
1¡p2

´´
. One choice of ¼ at-

taining that maximum is:

0 0 0 0
" 0 " p1

1¡p1 0

0 0 0 0

0 0 "
³

p1
1¡p1

´ ³
p2
1¡p2

´

Intuitively, there is a \critical path" which is the optimal way to use the " to knock out
probability in all future rounds; we use this intuition in the following general formulation.

The General Linear Programming Formulation. We now formalize the above approach for
arbitrary I and K . Fix

©I;­;P;fQigi2I
ª

and, for each i, E1
i 2 Fi. Thus E1 = \

i2I
E1i is a simple

event. De¯ne inductively fEn
1 ; ::;E

n
I ; E

ngK+1n=1 as follows: En = \
i2I

En
i and En+1i = Bpi

i (En).

Thus E2i = B
pi
i

¡
E1

¢
and Eni = B

pi
i

³£
B
p
¤

¤n¡2 ¡
E1

¢´
for all n ¸ 2. By convention, let E0i = ­,

for all i. Let Dn
i = En

i nEn+1i for all n = 0;K and DK+1
i = EK+1

i . Observe that by fact 6, the

sets fDn
i gK+1n=0 partition ­ for each i. In particular, fDn

i gK+1n=0 is a courser partition than Qi. Let
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n = (n1; ::; nI) be a typical element of f0;1; ::;K +1gI. We shall denote by min (n) the smallest
number in fn1; :::;nIg. De¯ne L (n) ´ \

i2I
Dni
i and ¼ (n) ´ P [L (n)] for all n 2 f0; ::;K +1gI.

This notation allows us to characterize every relevant region of the state space by an \address"
n 2 f0; ::;K + 1gI ; note that the L(n) are disjoint. With two individuals, we can represent the
state space by the following box:

L (0; 0) L (0;1) ¢ ¢ ¢¢ L (0;n2) ¢ ¢ ¢¢ L(0;K +1) Ã D0
1

L (1; 0) L(1; 1) L(1; n2) L(1;K +1) Ã D1
1

¢ ¢ ¢¢ .. .

L(n1;0) L(n1;1) L (n1; n2) L(n2;K +1) Ã Dn1
1

¢ ¢ ¢¢ . . .

L(K + 1; 0) L(K +1; 1) L(K +1; n2) L (K +1; K +1) Ã DK+1
1

"
D0
2

"
D1
2

"
Dn2
2

"
DK+1
2

Thus for all n = 1; K + 1 and i 2 I,

Dn
i = [

fn2f0;::;K+1gI : ni=ng
L (n) ; (4.13)

En = [
fn2f0;::;K+1gI: min(n)¸ng

L (n) ; (4.14)

Now for all n = 1;K and i 2 I, Dn
i µ ­nEn+1

i = ­nBpi
i (En); so we have by lemma 4.8,

P [Dn
i \ En] · pi

1 ¡ pi
P [Dn

i nEn] : (4.15)

Combining (4.13), (4.14) and (4.15), gives, for all n = 1; K and i 2 I,

X

fn2f0;::;K+1gI : ni=n and min(n)=ng
¼ (n) · pi

1 ¡ pi

0
B@

X

fn2f0;::;K+1gI: ni=n and min(n)<ng
¼ (n)

1
CA : (4.16)

These inequalities follow from the construction of the events. Now our maintained hypothesis
that P [E] ¸ 1 ¡ " implies: X

fn2f1;::;K+1gI: min(n)=0g
¼ (n) · ": (4.17)
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Observe that
£
Bp
¤

¤K ¡
E1

¢
= EK+1, so 1 ¡ P

h£
Bp¤

¤K ¡
E1

¢i
=

P

fn2f0;:::;K+1gI :min(n)·Kg
¼ (n).

Thus we are interested in the following linear programming problem (P )4:

max
X

fn2f0;::;K+1gI: min(n)·Kg
¼ (n) (4.18)

subject to ¼ (n) ¸ 0, (4.16) and (4.17).

Thus the statement of lemma 4.9 has been re-interpreted as a linear programming problem.
It remains only to show that the maximand is "»¤ (p;K).

We can guess the form of the solution to P from the I = 2 and K = 1;2 cases outlined above.
The solutions had the property that only certain critical locations had positive probability and
this property generalizes. Write c (i; n) for the location where all components are equal to n + 1
except the ith which is n, i.e. c(i; n) = (n +1; :::;n + 1; n; n +1; :::; n +1), and say that n is a
critical location if it can be written in this form. The critical path constraint requires:

¼ (n) = 0, if n is not a critical location. (4.19)

The critical path intuition suggests that the following problem (P 0) has the same value as
problem (P ).

max
X

fn2f0;::;K+1gI: min(n)·Kg
¼ (n)

subject to ¼ (n) ¸ 0, (4.16), (4.17) and (4.19). (4.20)

We will prove this by looking at the dual problems of (P) and (P 0).

The Dual Problem. First, the dual problem (D) of (P ) is as follows. Call the constraint
corresponding to individual i and n in (4.16) (i; n), and denote by ¸ (i;n) the shadow price of
the constraint. Similarly, denote by » the shadow price of the constraint in (4.17). Consider any
n = (n1; :::;nI) with 0 < min (n) · K. Then ¼ (n) appears in the left hand side of (4.16) if and
only if ni = min (n), i.e., ¼ (n) appears in all inequalities (i; n) with n = min(n); ¼ (n) appears
in the right hand side of every inequality (i; n) with ni = n > min (n). If k = 0, then ¼ (n) also
appears in inequality in (4.17). Thus the dual problem has the following constraints:

for each n =(n1; :::;nI ) with min (n) = 0;

» ¡
X

fi:ni>0g

pi
1 ¡ pi

¸ (i; ni) ¸ 1; (4.21)

4Note that equation (4.16) must hold as a strict inequality unless both sides of the equation are identically equal
to zero. Thus the maximum of the programming problem P will be the supremum of the achievable values of
1¡ P

£
[Bp

¤ ]
K

¡
E1

¢¤
, but may not be attainable.
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for n with 0 < min(n) < K;

X

fi:ni=min(n)g
¸ (i;ni) ¡

X

fi:ni>min(n)g

pi
1 ¡ pi

¸ (i;ni) ¸ 1; (4.22)

and for n with min(n) = K; X

fi:ni=Kg
¸ (i; K) ¸ 1: (4.23)

Thus the dual problem (D) of (P ) is:

min" ¢ » (4.24)

subject to ¸ (i;n) ¸ 0, » ¸ 0, (4.21), (4.22) and (4.23).

Next, let us construct the dual (D0) of the constrained primal problem (P 0). Look at the
constraints corresponding critical addresses, which will give us the dual form of the critical path:

for c (i; 0), from (4.21), we have:

» ¡
X

j 6=i

pj
1 ¡ pj

¸ (j;1) ¸ 1 for each i; (4.25)

for c (i;n), n < K, from (4.22), we have:

¸ (i; n) ¡
X

j 6=i

pj
1 ¡ pj

¸ (j; n +1) ¸ 1 for each i and n; (4.26)

and for c(i;n), n = K, from (4.23), we have:

¸ (i;K) ¸ 1: (4.27)

Thus the dual problem (D0) is:

min" ¢ » (4.28)

subject to ¸ (i;n) ¸ 0; » ¸ 0, and (4.25), (4.26) and (4.27).

By construction, the minimum of (D0) is no larger than (D) since (D0) has less constraints.

Now let ¸¤ (i;k) =
h³

I+ R + ::: +RK¡k
´
10

i
i

and »¤ = max
i2I

¸¤ (i; 0). This implies that

¸¤ (i;K) = 1 for all i 2 I, ¸¤ (i;k) = 1 +
P
j 6=i

pj
1¡pj ¸

¤ (j;k + 1) and for all i 2 I and 0 · k < K;

and »¤ = 1+ max
i2I

(
P
j 6=i

pj
1¡pj ¸

¤ (j;1)

)
.
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Lemma 4.10. (¸¤; »¤) is a solution to (D0).

Proof. Note that given any ,̧ » = 1+ max
i2I

(
P
j 6=i

pj
1¡pj ¸ (j;1)

)
is clearly optimal since » ¸ 1 +

P
j 6=i

pj
1¡pj ¸ (j; 1) for all i. Since ¸ (i;1) ¸ 1+

P
j 6=i

pj
1¡pj ¸ (j; 2) from (4.26) and max

i2I

(
P
j 6=i

pj
1¡pj ¸ (j; 1)

)

is a weakly increasing function of vector (¸ (i; 1))i2I, the minimum is attained at ¸ (i;1) = 1 +P
j 6=i

pj
1¡pj ¸ (j; 2) for any given ¸ (j;2). The iterative argument shows ¸ (i; k) = 1+

P
j 6=i

pj
1¡pj ¸ (j; k +1)

and thus the statement of the lemma. 2

Lemma 4.11. (¸¤; »¤) is a solution to (D).

Proof. Since problem (D) includes all constraints of (D0), by lemma 4.10 it su±ces to show that
(¸¤; »¤) satisfy (4.21), (4.22) and (4.23). (4.21) is clear by construction. Note that for any k,
¸¤ (i;k) ¸ ¸¤ (i; k + 1) holds for every i: it is straightforward to check that this is true for K ¡ 1,
and if it is true for k, then ¸¤ (i; k ¡ 1) = 1+

P
j 6=i

pj
1¡pj ¸

¤ (j;k) ¸ 1+
P
j 6=i

pj
1¡pj ¸

¤ (j;k + 1) = ¸¤ (i; k),

thus it is true for k ¡ 1.
Now for any n with min (n) = 0, »¤ ¡ P

fi:ni>0g
pi
1¡pi¸

¤ (i;ni) ¸ »¤ ¡ P
fi:ni>0g

¸¤ (i;1) ¸ »¤ ¡
P
j 6=i

pj
1¡pj ¸

¤ (j;1) ¸ 1, where the ¯rst inequality holds due to the monotonic property of ¸¤ shown

above. Thus (4.21) is satis̄ ed. Similarly, for n with 0 < min(n) = n < K ,
P

fi:ni=ng
¸¤ (i;ni) ¡

P
fi:ni>ng

pi
1¡pi¸

¤ (i;ni) ¸ P
fi:ni=ng

¸¤ (i;n)¡ P
fi:ni>ng

pi
1¡pi¸

¤ (i;n + 1) ¸ ¸¤ (i¤; n)¡ P
j 6=i¤

pj
1¡pj ¸

¤ (j;n + 1) =

0, where i¤ can be any i with ni = n. Therefore (4.23) holds. 2
By the duality theorem of linear programming, the value of problem (D) is the same as

the value of problem P , completing the proof of lemma 4.9, since »¤ (p; K) = »¤ (making the

dependence on p and K explicit).

4.3.3. Evaluating »¤

It remains only to consider what happens to »¤ (p; K) as K ! 1. First we establish some
properties of the matrix R. We will use the following decomposition of R. Write I for the

identity matrix. Write D for the diagonal matrix with ith diagonal element pi. Write X for the
matrix of 1's.
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I =

0
BBBBB@

1 0 0 :: 0
0 1 0 :: 0
0 0 1 :: 0
:: :: :: :: ::
0 0 0 :: 1

1
CCCCCA

, D =

0
BBBBB@

p1 0 0 :: 0
0 p2 0 :: 0
0 0 p3 :: 0
:: :: :: :: ::
0 0 0 :: pI

1
CCCCCA

, X =

0
BBBBB@

1 1 1 :: 1
1 1 1 :: 1
1 1 1 :: 1
:: :: :: :: ::
1 1 1 :: 1

1
CCCCCA

Observe that R = (X¡ I)D (I ¡D)¡1.

Lemma 4.12. I +R +R2 + ::: is bounded if
P
i2I

pi < 1.

Proof.
P
j2I

pj < 1 )
Ã

P
j2I

pj

!
¡ pi < 1 ¡ pi for all i ) ® = max

i2I

0
BB@

µP
j2I

pj

¶
¡pi

(1¡pi)

1
CCA < 1.

Write 1 for the column vector on 1's. So R (10 ¡p0) =

Ã
P
i2I

pi

!
10 ¡ p0 · ® (10 ¡ p0) and thus

¡
I +R + R2 + :::

¢
(10 ¡p0) · ¡

1 + ®+ ®2 + :::
¢
(10 ¡p0) = 1

1¡® (10 ¡p0). 2
Write ± = 1 ¡ P

i2I
pi.

Lemma 4.13. [I ¡R]¡1 =
h
I ¡ (X ¡ I)D (I ¡D)¡1

i¡1
= (I ¡D)

³
I + 1

±XD
´
.

Proof. First observe that XD =

0
BBBBB@

p1 p2 p3 :: pI
p1 p2 p3 :: pI
p1 p2 p3 :: pI
:: :: :: :: ::

p1 p2 p3 :: pI

1
CCCCCA

and so

XDXD = (1 ¡ ±)XD (4.29)

Now:

h
I¡ (X¡ I)D (I ¡D)¡1

i
(I ¡ D)

³
I + 1

±XD
´

=

8
<
:

(I ¡D)
³
I + 1

±XD
´

¡ (X ¡ I)D
³
I + 1

±XD
´

9
=
;

=

(
I+ 1

±XD ¡ D ¡ 1
±DXD

¡XD ¡ 1
±XDXD + D + 1

±DXD

)

= 1
±XD + I¡ 1

± (1 ¡ ±)XD ¡XD, by (4.29)
= I 2

These two lemmas imply that:
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Corollary 4.14. If
P
i2I

pi < 1, then »¤ (p;K) !
0
@
1¡min

i2I
(pi)

1¡
P
i2I

pi

1
A as K ! 1.

Proof. Recall that »¤ (p;K) = max
i2I

³h³
I+ R + :: + RK

´
10

i

i

´
. Lemma 4.12 implies that

»¤ (p;K) ! max
i2I

³h
[I¡ R]¡1 10

i
i

´
as K ! 1. Lemma 4.13 shows that the (i; i)th co-ordinate

of [I ¡R]¡1 is

0
@ 1¡pi
1¡

P
k2I

pk

1
A

Ã
1 ¡ P

j 6=i
pj

!
and the (i; j)th element is

0
@ 1¡pi
1¡

P
k2I

pk

1
A pj if i 6= j. Thus

[I ¡R]¡110 is a column vector with ith coordinate

0
@ 1¡pi
1¡

P
k2I

pk

1
A. Thus lim

K!1
»¤ (p;K) = max

i2I
0
@ 1¡pi
1¡

P
k2I

pk

1
A =

0
@
1¡min

i2I
(pi)

1¡
P
i2I

pi

1
A. 2

Now proposition 4.3 follows from corollary 4.14 and lemma 4.9.

5. Robustness and p-Dominance

5.1. The Robustness of p-Dominant Equilibria

It is an implication of the work of Monderer and Samet (1989) that any strict Nash equilibrium
action pro¯le will be played with high probability in some equilibrium action distribution if there
is common p-belief of payo®s, for p close to 1, with high ex ante probability. But what if we have
common p-belief of payo®s for some p which is not close to 1? We will extend earlier results of
Morris, Rob and Shin (1995) to answer this question.

De¯nition 5.1. Action pro¯le a¤ is a p-dominant equilibrium of G if for all i 2 I, ai 2 Ai and

all ¸ 2 ¢ (A¡i) with ¸(a¤¡i) ¸ pi,

X

a¡i2A¡i
¸(a¡i)gi(a¤i ; a¡i) ¸

X

a¡i2A¡i
¸(a¡i)gi(ai; a¡i):

(This de¯nition extends the de¯nition in Morris, Rob and Shin (1995) to the many player case
with asymmetric p; we have also replaced strict inequalities by weak inequalities). Note that a
dominant strategies equilibrium is a (0; :::; 0)-dominant equilibrium, and that any pure strategy
Nash equilibrium is a 1-dominant equilibrium. It is easy to see if a¤ is a p-dominant equilibrium
and p0¸ p (with the usual vector ordering), then a¤ is a p0-dominant equilibrium. So for any
pure strategy equilibrium a¤, we are interested in the smallest p for which a¤ is a p-dominant
equilibrium.
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The following result uses the core idea of Monderer and Samet's (1989) main result.

Lemma 5.2. Suppose action pro¯le a¤ is a p-dominant equilibrium of G. Consider any U 2 E (G)
and let F be a p-evident event such that F µ ­U . Then U has a Bayesian Nash equilibrium where
¾i(a¤i j!) = 1 for all i 2 I and ! 2 F .

Proof. Let Fi = Bpii (F), so F µ \
i2I

Fi by assumption. Consider the modi¯ed incomplete game

U 0 where each player's strategy must satisfy ¾i (a
¤
i j!0 ) = 1, for all !0 2 Fi and i 2 I. There

exists an equilibrium ¾ of the modi¯ed game. We shall show that ¾ is in fact an equilibrium of
U . By construction, for every i, at any !=2Fi, ¾i is a best response to ¾¡i. Let ! 2 Fi. Then
by de¯nition, P [F jQi (!)] ¸ pi, thus by the construction of ¾, the conditional probability of a¤¡i
being played is at least pi, so a¤i is a best response against ¾¡i. Thus ¾ is also an equilibrium of
the original game. 2

Thus a p-dominant equilibrium is robust if we can ¯nd a large p-evident F contained in ­U
for any U which is near G. When can we ¯nd such an event? Consider the cyclic matching pennies

game (example 3.1). The unique (strict) Nash equilibrium in that example is in fact
³
4
5;
4
5;
4
5

´
-

dominant. If there was a high probability
³
4
5 ;
4
5;
4
5

´
-evident event contained in ­U in every nearby

incomplete information game, we could prove robustness. In this case, there was not. However,
this strategy may work for some values of p.

Observe that Cp(­U) is the largest set which is p-evident and contained in ­U (by theorem
4.2). Thus we need to show that there is ± > 0 such that P [Cp(­U)] ¸ 1¡± for any "-elaboration
U where " is small enough. But this is what proposition 4.3 provides. In particular:

Proposition 5.3. Suppose a¤ is p-dominant with
P
i2I

pi < 1. Then a¤ is robust to incomplete

information.

Proof. Write ¹¤ for the distribution putting probability 1 on a¤. Fix any ± > 0. By proposition
4.3, we can choose " > 0, such that P [E] > 1¡" implies P [Cp (E)] > 1¡±. Thus by construction
of ", for any U 2 E (G; "), we have P [Cp (­U)] > 1 ¡ ±. By lemma 5.2, there exists a Bayesian
Nash equilibrium of U with ¾i (a

¤
i j!) = 1, for all ! 2 Cp (­U). Thus there exists an equilibrium

action distribution of U with ¹ (a¤) ¸ P [Cp (­U)] > 1 ¡ ±. Therefore, j¹ (a) ¡¹¤ (a)j < ± for all

a 2 A, so ¹¤ is robust. 2

Example 5.4. Co-ordination Game. Let Ai =
n
a1; :::; aN

o
for each i 2 I. Let

gi (a) =

(
xni , if aj = an, for all j 2 I
0, otherwise

:

where xni > 0 for all i 2 I and n = 1; ::;N.
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This game has N symmetric pure strategy strict Nash equilibria. Equilibrium a = (an; :::; an)

is p-dominant if pixni ¸ (1 ¡ pi)xmi for all m 6= n and i 2 I, i.e. if pi ¸ Max
m6=n

xmi
xmi +x

n
i

for all i 2 I.

Thus, by proposition 5.3, a = (an; :::; an) is robust if
P
i2I

µ
Max
m6=n

xmi
xmi +x

n
i

¶
< 1. Thus there is a sense

in which the condition
P
i2I

pi < 1 becomes increasingly severe as the number of players increases.

5.2. Non-robustness of p-Dominated Action Pro¯les

Actions which survive iterated deletion of strictly dominated actions are never played in any
Nash equilibrium. In this section, we provide an analogous, stronger, condition on a set of actions
su±cient to ensure that they are never played in any robust equilibrium.

An action subset A¤ is a subset of A of the form A¤ = A¤1 £ A¤2 £ ::: £ A¤I where A¤i µ Ai for
each i 2 I.

De¯nition 5.5. Action subset A¤ is p-dominated in G if, for all i 2 I and all ¸ 2 ¢ (A¡i) with
¸

£
A¤¡i

¤
< pi,

A¤i \
8
<
:arg max

ai2Ai

X

a¡i2A¡i
¸(a¡i)gi(ai; a¡i)

9
=
; = ;:

That is, A¤ is p-dominated if for every i, taking an action ai in A¤i is not a best response
unless he assigns probability at least pi on the others playing some actions in A¤¡i.

Proposition 5.6. If ¹ is robust in G and A¤ is p-dominated in G with
P
i2I

pi ¸ 1, then ¹ (a) = 0

if ai 2 A¤i for some i 2 I.

The proposition is an immediate consequence of the following lemma.

Lemma 5.7. If A¤ is p-dominated in G with
P
i2I

pi ¸ 1, then, for all " > 0, there exists U 2
E (G; ") such that in any equilibrium action distribution ¹ of U , ¹ (a) = 0 if ai 2 A¤i for some
i 2 I.

Thus actions in the p-dominated action subset are never played in any equilibrium of the
"-elaboration.
Proof. The proof is by construction of U . Note that if A¤ is p-dominated in G with

P
i2I

pi ¸ 1,

then there exists q with
P
i2I

qi = 1 such that A¤ is q-dominated in G. Now let ­ = I £ Z+. Let
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P (i; k) = " (1 ¡ ")k qi. Let each Qi consist of (1) the singleton event f(i; 0)g; and (2) all events

of the form
n
(j;k)j 6=i ; (i;k + 1)

o
, for each integer k ¸ 0. Let

ui (a;!) =

8
><
>:

gi (a) , if ! 6= (i; 0)
1, if ! = (i; 0) and ai =2 A¤i
0, if ! = (i; 0) and ai 2 A¤i

9
>=
>;

;

and let ¾ be any equilibrium of U. Write ¹
¡
A0¡ij!

¢
for the probability i attaches to action set

A0¡i given strategy pro¯le ¾¡i, i.e.

¹
¡
A0¡ij!

¢
=

X

!02Qi(!)
P [!0jQi (!)]

8
><
>:

X

a¡i2A0¡i

8
<
:

Y

j 6=i
¾j

¡
aj j!0

¢
9
=
;

9
>=
>;

:

By construction, ¾i (aij (i; 0)) = 0 if ai 2 A¤i (any such ai is strictly dominated). If ! = (i;1),
then P [f(j; 0) : j 6= ig jQi (!)] > 1 ¡ qi, so ¹

¡
A¤¡ij!

¢
< qi. Since A¤ is q-dominated, this shows

that ¾i (aij!) = 0 if ai 2 A¤i and ! = (i;1). The argument iterates to establish the result. 2
The following example shows how this result can be used even when our earlier results have

no bite.

Example 5.8.

H T X
H 12; 10 10;12 0;0

T 10; 12 12;10 0;0

X 0;0 0; 0 1;1

Since the game has multiple Nash equilibria, proposition 3.2 has no implications here. The only
pure strategy equilibrium is (X;X), but since this is a p-dominant equilibrium only if p1 ¸ 12

13
and p2 ¸ 12

13 , proposition 5.3 also has no implications here. But consider the singleton action

subset f(X;X)g; f(X;X)g is p-dominated if p1 < 11
12 and p2 < 11

12 . Thus by proposition 5.6, X is
never played by either player in any robust equilibrium.

5.3. Strong p-dominant equilibria and unique robust equilibria

The following stronger concept of p-dominance will help clarify the notions introduced so far.

De¯nition 5.9. Action pro¯le a¤ is a strong p-dominant equilibrium of G if for all i 2 I, ai 2 Ai
and all ¸ 2 ¢(A¡i) with ¸

hn
a¡i : aj = a¤j for some j 6=i

oi
> pi,

X

a¡i2A¡i
¸(a¡i)gi(a¤i ; a¡i) >

X

a¡i2A¡i
¸(a¡i)gi(ai; a¡i):
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That is, playing a¤i is a unique best response if i believes that the probability of some player
j choosing a¤j is greater than pi. By continuity, a strong p-dominant equilibrium must be p-

dominant, since ¸
hn

a¡i : aj = a¤j for some j 6=i
oi

¸ ¸ (a¤i ). The converse does not hold, since

typically we will have ¸
hn

a¡i : aj = a¤j for some j 6=i
oi

> ¸ (a¤i ). The two player case is special,

because then
n
a¡i : aj = a¤j for some j 6=i

o
=

©
a¤¡i

ª
. In the two player case, for a generic choice

of payo®s, a p-dominant equilibrium must be a strong p-dominant equilibrium. We will use this
almost equivalence for the two player case in the next section. However, consider a game with
non-generic payo®s where all players are indi®erent between all actions. Every action pro¯le will
be a p-dominant equilibrium, and no action pro¯le will be a strong p-dominant equilibrium, for
any number of players.

Recall that 1 ¡p is the row vector with ith component 1 ¡ pi. Now we have:

Lemma 5.10. Action pro¯le a¤ is a strong p-dominant equilibrium if and only if A1nfa¤1g £
A2n fa¤2g £ ::: £AIn fa¤Ig is (1¡ p)-dominated.

Proof. Let A¤ = A¤1£ ::£A¤I = A1nfa¤1g£A2nfa¤2g£ :::£AIn fa¤Ig. Suppose ¸ 2 ¢(A¡i). Now

¸
£
A¤¡i

¤
< 1 ¡ pi , ¸

³n
a¡i : aj =2 A¤j for some j6=i

o´
> pi

, ¸
³n

a¡i : aj = a¤j for some j 6=i
o´

> pi;

So A¤ is (1 ¡p)-dominated if and only if,

A¤i \
8
<
:arg max

ai2Ai

X

a¡i2A¡i
¸(a¡i)gi(ai; a¡i)

9
=
; = ;;

for all i 2 I and all ¸ 2 ¢(A¡i) with ¸
³n

a¡i : aj = a¤j for some j6=i
o´

> pi, which holds

if and only if argmax
ai2Ai

P
a¡i2A¡i

¸(a¡i)gi(ai; a¡i) = fa¤i g for all i 2 I and all ¸ 2 ¢(A¡i) with

¸
³n

a¡i : aj = a¤j for some j 6=i
o´

> pi, i.e. a¤ is a strong p-dominant equilibrium.2

This immediately implies:

Corollary 5.11. (Uniqueness). If a¤ is a strong p-dominant equilibrium with
P
i2I

pi < 1, then a¤

is the unique robust equilibrium of the game.2

Proof. If a¤ is strong p-dominant, then a¤ is p-dominant, so a¤ is robust by proposition 5.3.
But by lemma 5.10 and proposition 5.6, no action pro¯le other than a¤ is played in any robust
equilibrium.

In appendix 9.1, we show how our new results on p-belief can be used to address related
questions.
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6. Two Player, Two Action Games

Two player games are special because p-dominant equilibria are - generically - strong p-dominant
equilibria. We will exploit this in the analysis that follows. We will give a complete characteri-

zation of robust equilibria for generic two player, two action games. Recall that, except for some
non-generic cases, a two player, two action game has (1) a unique (strict) pure strategy equilib-
rium; (2) two (strict) pure strategy equilibria; or (3) no pure strategy equilibrium and a unique
mixed strategy equilibrium. Let us consider each case in turn.

² If there is a unique pure strategy equilibrium, then at least one player has a dominant
strategy to play his action in that equilibrium. Say that it is player 1. Then the unique
equilibrium is (0; p)-dominant for some p < 1. Thus the unique Nash equilibrium is robust
by proposition 5.3.

² If there are two pure strategy equilibria, then (generically) exactly one of them is risk
dominant in the sense of Harsanyi and Selten (1988). In a two player, two action game, an
equilibrium is risk dominant exactly if it is strong (p1; p2)-dominant equilibrium for some
(p1; p2) with p1+p2 < 1. Now by corollary 5.11, the risk dominant equilibrium is the unique
robust equilibrium.

² If a generic two player two action game has no pure strategy Nash equilibrium, then the
(unique) mixed strategy equilibrium is the unique correlated equilibrium. So that unique
equilibrium must be robust by proposition 3.2.

Proofs and more detailed discussion of these results is provided in the appendix (section 9.2).

7. Alternative Formulations of Robustness

In this section we present a framework for understanding the relation between our notion of
robustness and the existing \re¯nements" literature. In section 2.2, we constructed the set E (G)

of incomplete information games \embedding" G and the subset E (G; ") with P [­U ] = 1¡ ". We
were extremely liberal in what we allowed to occur in constructing the perturbed games, and thus
our concept of robustness is very strong: we allowed unbounded state spaces, correlated signals
and more. One might wish to know whether an equilibrium is robust to a more restrictive class
of elaborations, and this is what we study in this section.

Consider a mapping with F (G) µ E (G) and write F (G; ") = F (G) \ E (G; ").

De¯nition 7.1. Action distribution ¹ is robust under F if for every ± > 0, there exists ¹" > 0,
such that every U 2 F (G; ")with " · ¹" has an equilibrium action distribution º with k¹ ¡ ºk · ±.
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Thus our notion of \robust to incomplete information" corresponds to \robustness under E."
As we put shrink F , \robust under F" becomes a weaker requirement. In the following, we
consider various examples of mapping F and their implications.

7.1. Bounded Elaborations

Let EF (G) be the set of incomplete information games embedding G where the state space is
¯nite. There would be no change in our results if we replaced E by EF in our de¯nition. Our
positive results would go through with identical proofs. The required "-elaborations in the cyclic
pennies matching game (example 3.1) could be generated in a ¯nite state space: for any given
" > 0, choose N > 2

" , let ­ = f0;1; :::; Ng, let P be uniform on the state space, let payo®s and
partitions be essentially as before. Now for each " > 0, we have a ¯nite "-elaboration where the
unique strict Nash equilibrium action pro¯le is never played. Note, however, that as " ! 0, a
larger and larger state space would be required in the construction of the example.

Consider, then, a set of bounded elaborations. Let EM (G) be the set of incomplete information
games embedding G where the state space has at most M elements. Now we have the following
result:

Lemma 7.2. For ¯xed M , if a¤ is a strict equilibrium of G, then a¤ is robust under EM.

Proof. In any information system,
£
Bp¤

¤n (E) is decreasing in n for n ¸ 1 (by belief operator

properties 4 and 5). So in any information system with at most M states, Cp (E) =
£
Bp
¤

¤M
(E)

for all events E. By lemma 4.9,

1 ¡P
h
[Bp¤ ]

M (E)
i

· (1 ¡ P [E]) »¤ (p;M) ;

and so

P [Cp (E)] = P
h
[Bp
¤ ]M (E)

i
¸ 1 ¡ (1 ¡P [E]) »¤ (p;M) : (7.1)

Now since a¤ is a strict equilibrium of game G, there exists p < 1 such that a¤ is p-dominant.
Write ¹¤ for the probability distribution in ¢ (A) putting probability 1 on a¤. Fix any ± > 0. By

(7.1), we can choose " > 0 such that P [E] > 1¡ " implies P [Cp (E)] > 1¡ ±. Then in particular,
for any "-elaboration U of G, we have P [Cp (­U)] > 1 ¡ ±. By lemma 5.2, there exists a Bayesian
Nash equilibrium of U with ¾i (a

¤
i j!) = 1, for all ! 2 Cp (­U). Thus there exists an equilibrium

action distribution of U with ¹ (a¤) ¸ P [­U] > 1¡±. Therefore, j¹ (a) ¡ ¹¤ (a)j < ± for all a 2 A,
so ¹¤ is robust. 2

Equation 7.1 is related to theorem 14.5 in Fudenberg and Tirole (1991, page 567): they
show that, for a ¯xed ¯nite state space, if Pk [E] ! 1, then there exists pk ! 1 such that

Pk
h
C(p

k;::;pk) (E)
i

! 1. They use this result to make essentially the same point.
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Strictness is by no means a necessary condition for even a pure strategy equilibrium to be
robust under EM . In particular, by the argument above, any equilibrium which is p-dominant
for some p < 1 will be robust under EM . An action pro¯le a¤ is a p-dominant equilibrium
for some p < 1 if and only if for each i 2 I and ai 2 Ai, either gi

¡
a¤i ; a

¤
¡i

¢
> gi

¡
ai; a¤¡i

¢
or

gi (a¤i ; a¡i) ¸ gi (ai; a¡i) for all a¡i 2 A¡i. In fact, pure strategy equilibria which are not p-
dominant for any p < 1 may be robust under EM. But a necessary condition for robustness
under EM is strict perfection in the sense of Okada (1981) (an equilibrium is strictly perfect if it
is stable in the sense of Kohlberg and Mertens (1986) as a singleton set). Since strictly perfect
equilibria need not exist, equilibria robust under EM need not exist.

Lemma 7.2 shows that our claim that many strict Nash equilibria are not robust relies on
unbounded state space elaborations. However, we would argue that if the de¯nition of robustness
is altered to consider only state spaces with number of elements bounded by M, it would be
reasonable to change the de¯nition of \su±ciently small" ". The logic of our arguments suggests
that if we replaced the requirement \for all " > 0" with the requirement \for all " of the order of
1
M", essentially the same results would continue to hold.

7.2. Independent Elaborations

Write EI (G) for the set of games embedding G where P [E¡ijQi (!)] = P [E¡i] for all ! 2 ­,
i 2 I and all events E¡i = \

j 6=i
Ej , each Ej 2 Fj . Thus EI (G) is the set of games embedding G

where players have independent types.
Now we have:

Lemma 7.3. If a¤ is a strict Nash equilibrium of G, then a¤ is robust under EI.

Proof. Again, a¤ is a p-dominant equilibrium for some p < 1. Now choose " > 0 but su±ciently

small such that 1¡
Ã

P
j2I

1
1¡pj

!
" ¸ pi for all i 2 I. Suppose event E has probability at least 1¡ ".

Now by the independence assumption and lemma 4.7, we have that for all i 2 I and ! 2 ­:

P

·
\
j 6=i

B
pj
j (E)

¯̄
¯̄ Qi (!)

¸
= P

·
\
j 6=i

B
pj
j (E)

¸
¸ P [Bp

¤ (E)] ¸ 1 ¡
0
@

X

j2I

1

1 ¡ pj

1
A " ¸ pi,

so that P
£
Bp
¤ (E)

¯̄
Qi (!)

¤ ¸ pi if ! 2 Bpi
i (E). Since P

£
Bp¤ (E)

¯̄
Qi (!)

¤
= 0 if ! =2 Bpii (E), we

have that Bp
¤

¡
Bp¤ (E)

¢
= Bp¤ (E), so

£
Bp
¤

¤n (E) = Bp
¤ (E) for all n ¸ 1, Cp (E) = Bp

¤ (E) and so

P [Cp (E)] ¸ 1 ¡
Ã

P
j2I

1
1¡pj

!
". Now a similar argument to lemma 7.2 completes the proof. 2

Again, this result is far from tight. Strict perfection is a necessary condition for robustness
under EI; we conjecture that it is su±cient.

36



Lemma 7.3 shows that our results rely on the correlation of signals. Is this reasonable? Let us
just emphasize why independence matters so much. It is a consequence of independence of signals

that Bpi
i

³
B
pj
j (E)

´
2 f;;­g for all events E and i 6= j and thus that Bpi

i

³
B
pj
j

¡
Bpk
k (E)

¢´
=

B
pj
j

¡
Bpk
k (E)

¢
for all events E and i; j; k 2 I with j 6= k. In other words, independence rules out

any interesting questions about higher order beliefs.

8. Conclusion

The technical contribution of the paper is threefold. First, we have introduced a general notion
of the robustness of an equilibrium to a small amount of incomplete information. While closely
related to a number of approaches, certain subtle details of our approach ensure that we get
very di®erent results. Second, we have demonstrated the existence of games where no robust
equilibrium exists. There is an open set of such games. Third, we have provided two di®erent

kinds of positive results. The correlated equilibrium result is straightforward. The common
p-belief results utilize new work showing the existence of a surprising amount of structure in
arbitrary belief hierarchies with common priors. We believe that this \hidden content" of the
common prior is an important area of future work.

We certainly do not wish to interpret this work as a new re¯nement. We have shown that
some equilibria of some games have the property that they can be played in equilibria of nearby
incomplete information games. As economists, we can be relatively con¯dent in those predictions.
But in other games, there is no robust equilibrium. This tells us that the equilibrium outcome
must be sensitive to changes in the information structure which are small when measured in terms
of the ex ante probability of payo® relevant events. The correct way to analyze this sensitivity
appears to involve paying attention to \higher order beliefs". The importance of \higher order
beliefs" emerges mathematically in our analysis.

Rubinstein (1989) and others have argued that \boundedly rational" players might ignore
subtleties of higher order beliefs and - in certain circumstances - behave as if there was com-
mon knowledge of payo®s even when the underlying information structure does not justify this

presumption. This may be true in some circumstances. But we would like to argue against a
presumption that bounded rationality should imply a systematic bias in favor of playing \as if"
there is common knowledge. A reasonable boundedly rational rule for playing games might be
the following. If there really is common knowledge of payo®s - say, because payo®s are publicly
announced - play according to a Pareto-e±cient or otherwise focal Nash equilibrium. If there is
not common knowledge of payo®s, and there is some action which is an equilibrium action what-
ever the ¯ne details of the situation, play that. This leaves open the question of how a boundedly
rational player should play in a game with no robust equilibrium. Consider the cyclic match-
ing pennies game (example 3.1). What is reasonable play in that game when it is not common
knowledge, with probability one, that the payo®s are correct? For fully rational players, iterated
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deletion of dominated strategies alone ensures extreme sensitivity to the information structure.
Boundedly rational players might not be able to perform the required iterated deletion. But there
is every reason to believe that actual reasonable play - like fully rational play - will involve players
trying to outguess others' choices in ways that are highly sensitive to the information structure.
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9. Appendix

9.1. A Generalization of Morris, Rob and Shin (1995)

Here we report a generalization of a result of Morris, Rob and Shin (1995). That result was for two
player symmetric games with a ¯nite state space. We give a result for many player asymmetric
games with an in¯nite state space.

Fix an incomplete information game U =
©I;fAigi2I ;­;P;fQigi2I ;fuigi2I

ª
. For any given

!, G¤ (!) ´ ©I;fAigi2I ;fui (:; !)gi2I
ª

is a complete information game.

Proposition 9.1. Suppose that [1] Players knowtheir own payo®s, so !0 2 Qi (!) =) ui (a;!0) =

ui (a;!) for all a 2 A; [2] a¤ is a strong p-dominant equilibrium of G¤ (!), for all ! 2 ­; [3] a¤j is a
strictly dominant strategy for some player j at some state !; [4] C1¡p(E) 2 f;;­g for all simple
events E. Then ¾i (a

¤
i j!) = 1 for all ! 2 ­ and i 2 I is the unique Bayesian Nash equilibrium.

Proof. Suppose ¾ is a Bayesian Nash equilibrium. Write F ¤
i = f! : ¾i (a¤i j!) 6= 1g and F¤ =

\
i2I

F ¤
i . Let us consider two cases. [i] Suppose ¯rst that F¤ = ;; if ! 2 F ¤

i , then for every

!0 2 Qi (!), there exists j 6= i such that !0 =2 F¤j . Thus player i assigns probability 1 to
states where some other player j is playing a¤j with probability 1, so by [1] and [2], he has a
strict best response to play a¤i , so ! =2 F¤i , a contradiction. Thus F ¤

i = ; for all i 2 I and
the proposition is proved. [ii] Suppose that F ¤ 6= ;. By [3], we know that F¤j 6= ­ for some
player j and, by construction, we have F¤j 2 Fj . Thus C1¡p (F¤) µ F ¤ and in particular
C1¡p (F¤) 6= ­. Thus by [4], C1¡p (F ¤) = ;. Since F¤ 6= ;, we cannot have F¤ µ C1¡p (F¤).
Thus there exists a player k 2 I and a state !¤ 2 F ¤

k such that P [F¤jQk (!¤)] < 1 ¡ pk. So

P
hn

! : ¾j
³
a¤j j!

´
= 1 for some j 6= k

o¯̄
¯Qk (!¤)

i
¸ P [­nF¤jQk (!¤)] > pk. Thus by [1] and [2],

¾k (a¤kj!¤) = 1 =) !¤ =2 F ¤
k , a contradiction. Thus F¤ = ;, which is impossible by [ii]. 2

It is straightforward to show that in fact always playing a¤ is the unique behavior surviving it-
erated deletion of dominated strategies. This result will obviously only be of interest if there exist
information systems with property [4] of the proposition. In Morris, Rob and Shin (1995), the belief

potential of an information system was the smallest number p such that C(1¡p;1¡p) (E) 2 f;; ­g for
all simple events E. The belief potential was shown (in a ¯nite setting) to be less than 1

2. The anal-
ogous belief potential in our setting would be multidimensional: for any given information system,

we would be interested in the set B =
n
p 2 [0; 1]I : C1¡p(E) 2 f;; ­g for all simple events E

o
.

If some individual's partition has an in¯nite number of elements, it is a consequence of corollary
4.4 (on page 18) that if C1¡p(E) 2 f;;­g for all simple events E, we must have

P
i2I

pi < 1. Thus

proposition 9.1 is vacuous if a¤ is not strong p-dominant for some p with
P
i2I

pi < 1.
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9.2. Two Player, Two Action Games

Here we prove more formally the assertions of section 6 and provide some further discussion. We
will give a complete characterization of robust equilibria for generic two player, two action games.

Thus we consider games of the form

L R

L a,b c,d

R e,f g,h

Let us consider each of three generic cases in turn.

9.2.1. Unique Pure Strategy Equilibrium

Suppose (without loss of generality) that (L;L) is the unique (strict) Nash equilibrium. Then at
least one player has a dominant strategy to play L (if not, (R; R) would be a Nash equilibrium).
Thus (L; L) is either (p;0)-dominant or (0; p)-dominant for some p < 1. Thus (L; L) is robust by
proposition 5.3.

Lemma 9.2. If a generic two player, two action game has a unique pure strategy Nash equilib-
rium, then that equilibrium is robust.

9.2.2. Two Pure Strategy Equilibria

Without loss of generality, assume (L; L) and (R; R) are strict Nash equilibria, so a > e, g > c,
b > d and h > f . Harsanyi and Selten (1988) said that (L;L) ((R; R)) is risk dominant if
(a ¡ e) (b ¡ d) > (<) (g ¡ c) (h ¡ f). For a generic game with two pure strategy equilibria, exactly
one will be risk dominant.

Lemma 9.3. If a generic two player, two action game has two pure strategy Nash equilibria,
then the risk dominant equilibrium is robust while the risk dominated equilibrium and the mixed
strategy equilibrium are not robust.

Proof. Suppose (without loss of generality) that (L; L) is risk dominant (and so (g ¡ c) (h¡ f) <

(a ¡ e) (b ¡ d)). Now if we set p1 = (g¡c)
(g¡c)+(a¡e) and p2 = (h¡f )

(h¡f)+(b¡d) , we have p1 + p2 < 1,

p1a + (1 ¡ p1) c ¸ p1e + (1 ¡ p1) g and p2b + (1 ¡ p2)f ¸ p2d + (1 ¡ p2)h. So (L;L) is a strong
p-dominant equilibrium for some p with p1 + p2 < 1 and thus is the unique robust equilibrium,
by corollary 5.11.
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9.2.3. No Pure Strategy Equilibrium

Lemma 9.4. If a generic two player two action game has no pure strategy Nash equilibrium,
then the (unique) mixed strategy equilibrium is the unique correlated equilibrium.

Proof. Suppose (without loss of generality) that a > e, g > c, d > b and f > h. This game has

a unique Nash equilibrium where 1 plays L with probability ¼1 = (g¡c)
(g¡c)+(a¡e) 2 (0; 1) and 2 plays

L with probability ¼2 = (f¡h)
(f¡h)+(d¡b) 2 (0; 1). Suppose there were a correlated equilibrium where

(L;L) was played with probability ¹1, (L; R) with probability ¹2, (R;R) with probability ¹3 and
(R;L) with probability ¹4, i.e.

L R
L ¹1 ¹2
R ¹4 ¹3

Suppose ¹1 = 0. Then if ¹2 > 0, 1's optimal best response is to play R when he is supposed to
play L. Thus ¹2 = 0. Analogous arguments show that ¹2 = 0 =) ¹3 = 0, ¹3 = 0 =) ¹4 = 0 and
¹4 = 0 =) ¹1 = 0. Thus we must have ¹i > 0 for all i = 1; 2; 3;4. But now optimality requires
that ¹1

¹2
¸ ¼2

1¡¼2 ,
¹4
¹3

¸ 1¡¼2
¼2

, ¹3
¹1

¸ 1¡¼1
¼1

and ¹2
¹4

¸ ¼1
1¡¼1 . If any of these inequalities were strict

inequalities, then multiplying inequalities together would give 1 > 1. Thus they are all equalities
and ¹1 = ¼1¼2, ¹2 = ¼1 (1 ¡¼2), ¹3 = (1 ¡¼1) (1 ¡ ¼2) and ¹4 = (1 ¡¼1)¼2. This is the original
Nash equilibrium.

Lemma 9.5. If a generic two player two action game has no pure strategy Nash equilibrium,
then the (unique) mixed strategy equilibrium is robust.

Proof. Follows immediately from lemma 9.4 and proposition 3.2.

9.2.4. The Non-Generic Case

For non-generic payo®s, a robust equilibrium need not exist. Consider the following example.

Example 9.6. Simple Co-ordination Game.

L R

L 1,1 0,0
R 0,0 1,1

No equilibrium is robust to incomplete information. Consider the following "-elaboration: I =
f1;2g; ­ = f0;1;2; :::g; P (!) = " (1 ¡ ")!; Q1 = (f0; 1g ; f2; 3g ; :::) and Q2 = (f0g f1; 2g ;f3;4g ; :::);
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ui (a;!) = gi (a) for all i 2 I and a 2 A except that at state 0, player 2 has a dominant strategy
to play L. The unique equilibrium of this "-elaboration has L played everywhere by both play-
ers. Thus (R;R) and the mixed strategy equilibrium are not robust to incomplete information.
However, a symmetric argument implies that (L; L) is not robust to incomplete information.

9.3. Changing Probability Distributions

We have been allowing the whole state space to vary as we perturb the game. Thus in particular,
the set of elaborations does not have a good topological structure, and so the reader may wonder
if this is the cause of our non-robustness results. We study this issue in this subsection.

Endow the set of all probability measures with the weak topology, which is metrizable; let d be
a metric. Write EX

¡G;
©
­; fQigi2I ; P¤

ª¢
for the set of incomplete information games embedding

G, with state space structure
¡
­;fQigi2I

¢
and indexed by a \limit probability distribution" P¤

with P¤ [­U ] = 1. Now introduce a more restrictive notion of elaborations; let

EX
¡G;

©
­;fQigi2I ;P ¤ª ; "

¢
=

©U 2 EX
¡G;

©
­; fQigi2I ;P ¤ª¢

: d (P; P¤) · "
ª

;

that is, it is required that not only P assigns a high probability on ­U but also P is close to P¤

weakly. So if Uk 2 EX
³
G;

©
­;fQigi2I ;P ¤ª ; "k

´
, k = 1; 2; :: and "k ! 0, then the corresponding

Pk converges to P¤ weakly. Note that weak convergence is equivalent to pointwise convergence
under our assumptions.

De¯nition 9.7. Action distribution ¹ is robust against elaboration sequences if, for every
©
­;fQigi2I ;P¤

ª

and ± > 0, there exists ¹" > 0, such that every U 2 EX
¡G;

©
­; fQigi2I ; P¤

ª
;"

¢
with " · ¹" has an

equilibrium action distribution º with k¹ ¡ ºk · ±.

It is clear from the de¯nitions that if ¹ is robust to incomplete information, then it is robust
against elaboration sequences. How important is the strengthening? Notice that there are two
parts to this strengthening. First, we ¯xed the state space structure

©
­;fQigi2I

ª
and allowed

the ¹" to depend on it. Second, we speci¯ed a limit distribution P¤ on ­ and used a stricter
notion of closeness. The ¯rst strengthening does not change any of our arguments: we nowhere
use the fact that ¹" is chosen independently of

©
­; fQigi2I

ª
. The second is more important:

consider, for example, the cyclic matching pennies game (example 3.1). There we generated a
class of incomplete information games indexed by " > 0. As " ! 0, the sequence of probability

measures do not converge, so there is no
©
­; fQigi2I ;P ¤ª such that each "-elaboration belongs

to EX
¡G;

©
­; fQigi2I ; P¤

ª
;"

¢
. As it happens, the example can be altered to show that the strict

Nash equilibrium is not robust against elaboration sequences. But a somewhat more complex
sequence of "-elaborations must be constructed.
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How big is the di®erence between the two notions? To understand the di®erence, it is useful
to state proposition 4.3 in terms of sequences. Given a sequence Pk of probability distributions,
write Bpi;k

i , Bp;k¤ and Cp;k for the p-belief and common p-belief operators generated by Pk.

Proposition 9.8. Fix a state space structure
©
­; fQigi2I

ª
and consider a sequence of probability

distributions Pk and event E such that Pk [E] ! 1. (1) If
P
i2I

pi < 1, then Pk
h
Cp;k (E)

i
! 1.

(2) Conversely, if
P
i2I

pi ¸ 1, it is possible to construct a state space structure
©
­;fQigi2I

ª
, a

sequence of probability distributions Pk and event E such that P k [E] ! 1 but Cp;k (E) = ; for
all k.

(1) follows immediately from proposition 4.3; the following example shows (2) for the (hardest)
case where

P
i2I

pi = 1.

Example 9.9. Fix "k ! 0 and p such that
P
i2I

pi = 1. Let ­ = I £ Z+. Let Pk (i; m) =

"k
³
1 ¡ "k

´m
pi. Let each Qi consist of (1) the singleton event f(i; 0)g; and (2) all events of

the form
n
(j;m)j 6=i ; (i;m + 1)

o
, for each m ¸ 0. Consider the event E = ­

²©
(i; 0)i2I

ª
. By

construction P [E] = 1 ¡ "k. Observe that
h
Bp;k
¤

in
(E) = ­

/n
(i; m)i2I; m·n

o
. The proof is by

induction. This is obviously true for n = 0. Suppose it is true for n ¡ 1. Now

Pk[­nf(j;m)j2I; m·n¡1g\f(j;n¡1)j6=i;(i;n)g]
P [f(j;n¡1)j6=i;(i;n)g] =

"k(1¡"k)npi
"k(1¡"k)npi+"k(1¡"k)n¡1(1¡pi)

=
(1¡"k)pi

(1¡"k)pi+1¡pi
< pi:

Thus (i; n) =2 Bpi ;k
i

³
­

/n
(j; m)j2I; m·n¡1

o ´
= Bpi;k

i

µh
Bp;k
¤

in¡1
(E)

¶
. This is true for each i, so

h
Bp;k
¤

in
(E) = ­

/n
(i;m)i2I; m·n

o
and so Cp;k (E) = ;.

Proposition 9.8 didn't require that P k converged pointwise to some limit distribution. What
happens if we add this requirement?

Proposition 9.10. Fix a state space structure
©
­;fQigi2I

ª
and consider a sequence of prob-

ability distributions Pk and event E such that P k ! P1 pointwise and P1 [E] = 1. (1) If
P
i2I

pi · 1, then Pk
h
Cp;k (E)

i
! 1. (2) Conversely, if

P
i2I

pi > 1, it is possible to construct a state

space structure
©
­;fQigi2I

ª
, a sequence of probability distributions Pk and an event E such that

Pk ! P1 pointwise and P1 [E] = 1 but Cp;k (E) = ; for all k.
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Note that (1) follows from proposition 4.3 except in the critical case where
P
i2I

pi = 1. To

see what is so special about
P
i2I

pi = 1, consider again example 9.9. We had Pk [E] ! 1 and

Cp;k (E) = ; for all k. But the sequence Pk did not have a well-de¯ned limit. It is not possible
to modify the example to have a well de¯ned limit and still have Cp;k (E) = ;. We can prove (2)
by the following construction.

Example 9.11. Suppose
P
i2I

pi > 1. Let ­ = (I [ f0g)£Z+. Let Q1 consist of f(0; k) : k 2 Z+g;
n
(j;0)j=2f0;1g

o
; and all information sets of the form

n
(1;m) ; (j; m +1)j =2f0;1g

o
, for m 2 Z+. For

i 6= 1, let Qi consist of
n
(j; 0)j 6=i

o
; and all information sets of the form

n
(i;m) ; (j; m +1)j 6=i

o
,

for m 2 Z+.

P k (i;m) =

8
>>>>>>><
>>>>>>>:

(1¡q)qmpiµ
cqk+

P
j2I

pj

¶ , if i 2 I

(1¡q)qmcµ
cqk+

P
j2I

pj

¶ , if i = 0 and m > k

0, if i = 0 and m · k

where

1
P
j2I

pj
< q < 1 (9.1)

c > max
i2I

µ
1 ¡ pi

pi

¶ 0
@

X

j2I
pj

1
A
2

(9.2)

Pk converges pointwise to P1, where

Pk (i; m) =

8
>><
>>:

(1¡q)qmpiµ P
j2I

pj

¶ , if i 2 I

0, if i = 0

Let E = f(i; k) : i 2 I and k 2 Z+g; now P1 [E] = 1; E is simple; and Bp1
1 (E) = E. Consider

information set
n
(i;m) ; (j; m +1)j 6=i

o
of some player i 6= 1; i's posterior probability of event E

at this information set is 1, if m ¸ k; otherwise, it is

µ
qmpi+q

m+1
P
j6=i

pj

¶

µ
qmpi+qm+1

P
j 6=i

pj+qm+1c

¶ , which, by (9.1)
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and (9.2), is strictly less than pi. Thus Bp
¤ (E) = f(1; k)g [ f(i;m) : m < kg. Now consider

information set
n
(1; k) ; (j; k + 1)j=2f0;1g

o
of player 1; player 1's posterior probability of event

Bp
¤ (E) is qkp1

qkp1+qk+1
P
j 6=1

pj
, which is less than pi, by (9.1). Now an iterative argument establishes

that Cp (E) = ;.
Thus to prove proposition 9.10, it remains only to show that (1) holds when

P
i2I

pi = 1. To

do this, we will require three lemmas. The ¯rst concerns the matrix R (see equation 4.2 on page
21).

Lemma 9.12. If
P
i2I

pi · 1, Rk10· 1
1¡max

j2I
(pj )

(10 ¡ p0) for k = 0;1::.

Proof. By the argument of lemma 4.12, R (10 ¡ p0) · (10 ¡p0) and thus Rk (10 ¡p0) · (10 ¡ p0)
for all k = 0; 1; ::. Now Rk10· 1

1¡max
j2I

(pj)
Rk (10 ¡p0) · 1

1¡max
j2I

(pj)
(10 ¡ p0) for all k = 0; 1; ::.2

Lemma 9.13. In any information system, any simple event E satis¯es:

P
h
[Bp
¤ ]K¡1 (E)

/
[Bp
¤ ]K (E)

i
· (1 ¡ P [E])

0
@

1 ¡ min
i2I

(pi)

1 ¡ max
i2I

(pi)

1
A

Sketch of Proof: The proof follows that of lemma 4.10. Now we seek to maximize

P
h
[Bp
¤ ]K¡1 (E)

/
[Bp¤ ]

K (E)
i

´
X

fn2@I j min(n)=Kg
¼ (n)

instead of
1 ¡P

h
[Bp
¤ ]K (E)

i
´

X

fn2@I j min(n)·Kg
¼ (n)

Essentially the same critical path argument goes through, and we see that

P
h
[Bp
¤ ]K¡1 (E)

/
[Bp
¤ ]K (E)

i
· (1 ¡ P [E]) ³¤ (p;K)

where ³¤ (p;K) = max
i2I

³h
RK10

i
i

´
. By lemma 9.12, this is no more than

1¡min
i2I

(pi)

1¡max
i2I

(pi)
. 2

Lemma 9.14. Suppose Pk ! P1 pointwise. Then for all ± > 0, there exists " > 0 such that for

all k su±ciently large, Pk
hn

! : Pk (!) < "
oi

< ±.
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Proof. Fix any ± > 0. Since ­ is countable, there is a ¯nite set ­¤ such that P1 [­¤] > 1 ¡ ±
2

and P1 (!) > 0 for all ! 2 ­¤. Since ­¤ is ¯nite, Pk converges uniformly to P1 on ­¤, so
Pk [­¤] > 1 ¡ ±, for all k su±ciently large. Also, we can choose " > 0 such that, for all ! 2 ­¤,
P1 (!) > " and Pk (!) > " for all su±ciently large k. But now

n
! : Pk (!) < "

o
µ ­n­¤ for all

su±ciently large k, hence Pk
hn

! : P k (!) < "
oi

< 1 ¡P k [­¤] < ±. 2

Proof of ¯nal step of Proposition 9.10: Fix the sequence Pk ! P1 with P1 [E] =
1. Fix q < 1. By lemma 9.14, there exists " > 0 such that for all k su±ciently large,

Pk
hn

! : P k (!) < "
oi

< 1¡q. SinceP k ! P1 and P1 [E] = 1, then (1 ¡P1 [E])

Ã
1¡min

i2I
(pi)

1¡ max
i2I

(pi)

!
<

" for all k su±ciently large. This implies (by lemma 9.13) that ­nE µ
n
! : P k (!) < "

o
and

h
Bp;k
¤

in¡1
(E)

/h
Bp;k
¤

in
(E) µ

n
! : Pk (!) < "

o
for all n ¸ 1. Thus ­nCp;k

¤ (E) µ
n
! : Pk (!) < "

o
.

So Pk
h
Cp;k¤ (E)

i
= 1 ¡Pk

h
­nCp;k¤ (E)

i
¸ 1 ¡P k

hn
! : Pk (!) < "

oi
> q for all su±ciently large

k. Thus Pk
h
C
p;k
¤ (E)

i
! 1, and the robustness of p-dominant equilibria, for

P
i2I

pi · 1, is proved

by the standard argument using lemma 5.2. 2

This small di®erence in the common p-belief result gives a small di®erence between the notions
of robustness. Consider the symmetric simple coordination game (example 9.6 on page 42).
Neither of the two pure strategy equilibria is robust to incomplete information. But the sequence
of "-elaborations used to prove this did not have a well-de¯ned limit probability distribution. In

fact, both pure strategy equilibria are robust to elaboration sequences, since Pk
h
C(12 ;

1
2 ) (­U)

i
! 1

if P k ! P1 pointwise and P1 [­U ] = 1.

9.4. Extensions and the relation to Carlsson and van Damme (1993a)

In this section, we will speculate rather loosely on the relation on our results to the work of
Carlsson and van Damme (1993a). To do this, we will ¯rst speculate how our results would
change under certain assumptions.

9.4.1. Uncountable State Spaces

First of all, notice that we have no problem dealing with uncountable state spaces as long as each
player has at most a countable number of possible signals. Complications arise with uncountable
signals for two reasons.

First, the indeterminacy of conditional probability on zero probability information sets implies
that belief operators de¯ned on sets will not be well de¯ned. However, we have shown elsewhere
(Kajii and Morris (1994b)) that if belief operators are de¯ned in a natural measure theoretic way
(so that they operate on equivalence classes of events), it is possible to replicate (as probability 1
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statements) all the main results from the countable case; and the proof of proposition 4.3, relying
on the division of the state space into countable boxes, would presumably go through essentially
unchanged.

Second, existence of equilibrium in incomplete information games with correlated uncountable
signals remains an open question. Of course, we could still develop characterizations conditional
on existence.

9.4.2. Knowing your own Payo®s

We required an "-elaboration to have the property that P [­U] = 1 ¡ ". This entailed the as-
sumption that not only is there a high probability that payo®s are given by G, but also there
is a high probability that everyone knows their own payo®s. A weaker assumption would let
­0U = f! 2 ­jui (a; !) = gi (a) for all a 2 A, i 2 Ig and require an "-elaboration to have the prop-
erty that P [­0U ] = 1¡". Clearly, ­U µ ­0U , so P [­U ] = 1¡" ) P [­0U ] ¸ 1¡". With this change,
it would be necessary to bound the size of the payo®s in the elaborations: otherwise, larger and

larger payo®s outside ­0U could dominate the results. But with the bound on elaboration pay-
o®s, we believe our main results would continue to hold (although the change in de¯nition would
presumably change signi¯cantly which non-strict Nash equilibria were robust).

9.4.3. Local Robustness

If we give our results a sequence interpretation and index information systems by the probability
distribution P k, then we consider sequences of incomplete information games embedding G with
Pk ! P1 (see appendix section 9.3). For any sequence of strategy pro¯les ¾k, write ¹kE for the
probability distribution over actions contingent on event E being true, given Pk and ¾k. Write
C1;1 (­U) for the set of states where ­U is common 1-belief under probability distribution P1.

Now say that action distribution ¹¤ is locally robust if, for every sequence of elaborations,
there is a sequence of equilibria ¾k, with ¹kC1;1(­U ) ! ¹¤. Our original de¯nition of robustness

requires local robustness under the additional restriction that P1 [­U] = 1 (which guarantees
that C1;1 (­U) = ­). Presumably our su±cient conditions for robustness would also be su±cient
for local robustness.

9.4.4. Relation to Carlsson and van Damme (1993a)

Putting the above results together, we conjecture - leaving aside existence problems - a result of
the following form.

Fix a complete information game G =
©I;fAigi2I ; fgigi2I

ª
and consider any sequence of in-

complete information games embedding G, Uk =
n
I; fAigi2I ; ­; Pk;F, fFigi2I ;fuigi2I

o
, where
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³
­; Pk; F

´
is a measure space and Fi is the sub ¾-¯eld representing i's information; write

U1 =
©I;fAigi2I ; ­; P1; F,fFigi2I ;fuigi2I

ª
, for the limit of the incomplete information games

where P k ! P1 weakly. Kajii and Morris (1994a) provides a de¯nition for common 1-belief in
this setting.

Conjecture 9.15. Suppose that ¹¤ is either a p-dominant equilibrium of G for some p withP
i2I

pi < 1 or the unique correlated equilibrium of G. Then it is possible to ¯nd a sequence of

equilibria ¾k such that ¹k
C1;1(­0U )

! ¹¤.

Now we are in a position to compare our result with Carlsson and van Damme (1993a). They
show that if an equilibrium of a two player, two action game is risk dominant then, for every

sequence of incomplete information games satisfying their \global uncertainty" property, every
sequence of equilibria ¾k has ¹k

C1;1(­0U ) ! ¹¤, where ¹¤ puts probability 1 on the risk dominant

equilibrium.

Thus our result implies the existence of a sequence of equilibria which have the risk dominant
outcome played as global uncertainty disappears. Carlsson and van Damme also obtain unique-
ness. Intuitively, the reason they obtain uniqueness is because they have restricted attention to a
class of critical perturbations (i.e. those satisfying \global uncertainty").
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