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1. Introduction

Kalai and Lehrer (93a, b) have shown that if players' beliefs about the future
evolution of play is absolutely continuous with respect to play induced by optimal

strategies then players' predictions over play paths are eventually \accurate."
Furthermore, outcomes induced by players' strategies are \close" to an almost
Nash equilibrium play.1 It is well known, however, that while absolute continuity
is a su±cient condition for convergence to Nash equilibrium, it is not a necessary
condition.

Let us ¯rst consider a simple example motivated by statistical inference. Sup-
pose a coin is tossed repeatedly and independently. Nature selects the probability
µ 2 [0; 1] of heads which is then ¯xed for each toss. If the player has a prior over µ
that assigns positive probability to every neighborhood of µ then Bayesian updat-
ing eventually leads to precise predictions over outcomes. This is true even in the
case that the player's prior assigns zero probability to µ in which case the player
assigns probability zero to the event that the asymptotic frequency of heads is
exactly µ: Note that, in fact, the true probability of this event is one. This is a
simple example where Bayesian updating eventually leads to accurate predictions
and absolute continuity does not hold.

Lehrer and Smorodinsky (94) have studied coordination assumptions over
beliefs and best responses that are weaker than absolute continuity, but yet suf-
¯cient for convergence to Nash equilibrium. They consider a case where players
may not assign positive probability to \the truth," but every player assign posi-
tive probability to \neighborhoods of the truth."2 Their assumption is, of course,
inspired by the example above. I return to their paper in the concluding section.
In this paper, I consider the following questions: Is it possible to ¯nd coordina-
tion assumptions over beliefs and best responses that are necessary and su±cient
for convergence to Nash equilibrium? To what extent is absolute continuity an
unnecessarily strong assumption? Does absolute continuity rule out observable
behavior that is asymptotically consistent with Nash equilibrium? When and
why is it the case that absolute continuity can be relaxed but yet convergence to
Nash equilibrium obtains?

In the example above, if players assign positive probability to every neighbor-
hood of µ then a prior that assigns arbitrarily small but strictly positive prob-

ability to µ induces predictions over outcomes that are almost always (not only

1The absolute continuity assumption requires that if an event occurs with positive probability
then all players also assign positive probability to this event.

2In this case, beliefs accommodate the truth.
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in the limit) \arbitrarily close", to predictions under the original prior.3 Clearly,
the modi¯ed prior satis¯es absolute continuity. On the other hand, if there exists
a modi¯ed prior that always induces predictions over outcomes that are simi-
lar to original prior's predictions and satis¯es absolute continuity, then Bayesian
updating will eventually lead to accurate predictions because absolute continu-
ity implies that modi¯ed beliefs' predictions will be eventually accurate and by
assumption modi¯ed beliefs' predictions are always similar to original predictions.

Bayesian updating leads to accurate predictions if there exist prior beliefs
that are absolutely continuous with respect to the truth and always induce pre-

dictions over outcomes that are similar to predictions under the original prior.
In particular, priors can assign zero probability to µ and still lead to accurate
predictions because these priors assign positive probability to neighborhoods of µ
and therefore these priors always induces similar predictions to some prior that
assigns strictly positive probability to µ: This suggests that predictions are even-
tually accurate if and only if there exists beliefs that satis̄ es absolute continuity
and induce predictions that are always similar to original beliefs' predictions.
However, it is not clear, a priori, if this intuition is correct in more complex envi-
ronments where both players' beliefs and the true play may follow a non-stationary
stochastic process.

In the next section, I analyze the following example: Two players are engaged
in an in¯nitely repeated coordination game. There is a sequence of beliefs and
optimal strategies such that:

1. For each term in the sequence, outcomes induced by players' strategies are
a Nash equilibrium play.

2. For each term in the sequence, players' beliefs over outcomes eventually
converge, in the weak topology, to the true probability distribution induced

by players' strategies.

3. For terms in the tail of the sequence, in almost all subgames players' be-
liefs over outcomes are arbitrarily close, in the weak topology, to the true
probability distribution induced by players' strategies.

4. For each term in the sequence, both players assign zero probability to a set
that has, in fact, full measure.

3This is not exactly correct. Later in the paper, we explain the precise meaning of \almost
always."
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This example also shows that although absolute continuity is a less demanding
coordination assumption than Nash equilibrium, after arbitrarily small perturba-
tions on beliefs, absolute continuity may no longer hold even if beliefs and optimal
strategies were originally a Nash equilibrium. In particular, absolute continuity
may not hold even if outcomes induced by players' strategies are a Nash equilib-
rium play and players' beliefs are \accurate."

Kalai and Lehrer (93a, c) observed that absolute continuity implies that play-
ers' predictions over outcomes are eventually accurate, even with respect to events
that occurs in the distant future. That is, under absolute continuity, convergence

occurs in the strong topology. If players' predictions over outcomes are eventu-
ally accurate, except with respect to events that occurs in the distant future, then
players' predictions converge in the weak topology to the true probability distribu-
tion of outcomes induced by optimal strategies. In this case, I show that outcomes
induced by players' optimal strategies are eventually close, in the weak topology,
to an exact Nash equilibrium play. So, absolute continuity implies convergence in
the strong topology, but convergence in the weak topology su±ces.

Absolute continuity is a necessary condition for convergence in the strong
topology (see Kalai and Lehrer (93c) and below). That is, players' predictions
over outcomes are eventually accurate, even with respect to events that occurs
in the distant future, if and only if absolute continuity holds. However, given
a player' belief it is possible to ¯nd modi¯ed belief that almost always induces
predictions that are similar to original prediction in the short run and moreover,
this modi¯ed belief assigns zero probability to events that are \very di®erent"
from the original null sets. This is possible because some of the \nulls sets" may

contain in¯nite play paths. So, absolute continuity may not hold with some belief,
but may hold for some modi¯ed belief that induces short run predictions that are
almost always similar to short run prediction under original belief. In this paper,
I show that convergence to Nash equilibrium obtains if and only if there exists
modi¯ed beliefs that satisfy absolute continuity and moreover, in \almost every
subgame" this modi¯ed beliefs induce predictions over outcomes that are close, in
the weak topology, to original players' predictions. Furthermore, in \almost every
subgame" behavior strategies are an almost best response to modi¯ed beliefs.

The central concept introduced in this paper is almost absolute continuity.
Players' beliefs are almost absolutely continuous with respect to optimal strategies
if there exist modi¯ed beliefs such that:

1. In \almost every subgame," modi¯ed beliefs induce predictions over out-
comes of play that are similar to original beliefs' predictions.
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2. In \almost every subgame," behavior strategies are an almost best responses
with respect to modi¯ed beliefs.

3. Modi¯ed beliefs about the future evolution of play are absolutely continuous
with respect to play induced by behavior strategies.

Beliefs and optimal strategies play eventually weakly like a Nash equilibrium
if beliefs are eventually arbitrarily accurate, in the weak topology, and best re-
sponses eventually induce outcomes that are close, in the weak topology, to a
Nash equilibrium play.

Players' beliefs and optimal strategies plays eventually weakly like a Nash
equilibrium if and only if optimal strategies are almost absolutely continuous

with respect to players' beliefs.4 This result shows that any outcome path ob-
tained where there is convergence to Nash equilibrium is also the outcome path of
behavior that is almost optimal with respect to beliefs that satis̄ es absolute con-
tinuity; and moreover, these modi¯ed beliefs induces predictions over outcomes
that are arbitrarily close to original players' predictions. Thus, absolute continu-
ity does not rule out any observable behavior that is asymptotically consistent
with Nash equilibrium.

2. The Model.

2.1. The Stage Game

The stage game is described by :

1. There exists n players.

2. Each player i 2 f1; 2; :::;ng has a ¯nite set
P
i of possible actions with

P
=

nQ
i=1

P
i denoting the set of action combinations. 4(

P
i) denote the set

of probability distributions on
P
i :

3. Each player i 2 f1;2; :::; ng has a payo® function ui :
P ! <:

2.2. The In¯nitely Repeated Game

The in¯nite horizon game is described by :

4This result is obtained under an assumption on players' behavior. This assumption is de-
scribed later in the paper.
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1. For every natural number t; let
Pt be the set of all histories of length

t · 1: Let H =
S
t

Ht be the set of all ¯nite histories. For every

¯nite history h 2 Ht, a cylinder with base on h is the set C(h) =
fw 2 P1 =w = (h; :::)g of all in¯nite histories such that the t initial
elements coincides with h.

2. Let =t be the ¾¡algebra on
P1 whose elements are all ¯nite unions

of cylinders with base on Ht: The ¾¡algebras =t de¯ne a ¯ltration

=0 ½ :::=t ½ ::: ½ =;

where =0 is the trivial ¾-algebra and = is the ¾-algebra generated by
the algebra of ¯nite histories =0 ´ S

t¸0
=t .

3. Each player i 2 f1; 2; :::;ng has a behavior strategy fi : H ! 4(
P
i)

that describes how player i randomizes among his possible actions
conditional to every possible history. We also denote by (fi(h)) (ai)
the probability that fi prescribes for the action ai 2 P

i; after the
¯nite history h 2 H:

4. Given any strategy pro¯le g = (g1; :::; gn) ; there exists a probability
measure ¹g (see Kalai and Lehrer (93a) for details) that represents

the probability distribution over play paths generated by the strategy
pro¯le g:

5. Given a strategy pro¯le g and a ¯nite history h 2 H, the induced strat-
egy pro¯le gh is de¯ned by gh(¶h) = g(h;¶h) for any ¶h 2 H: Analogously,
given w 2 P1, let w(t) 2 Pt be the t initial element of w; and letn
gw(t); t 2 N

o
be the sequence of behavior strategy pro¯les induced by

w:

6. Each player i 2 f1; 2; :::;ng believes that his opponents will play strate-
gies fi =

¡
f i1; :::; f

i
n

¢
: We assume that each player knows his own strat-

egy, i.e., fi = fii :

7. Let i̧, 0 < ¸i < 1; be player i's discount factor. Given player i's
beliefs f i =

¡
f i1; :::; f

i
n

¢
player i's discounted expected payo® function

is given by

Vi(f
i) = E¹fi

( 1X

t=1

n
( i̧)

t :ui
o)

:

We say that fi is a best response to f i¡i if for every player i's strategy
li

Vi(f
i) ¡ Vi(g

i) ¸ 0
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where gi =
¡
f i1; :; f

i
i¡1; li; f

i
i+1; ::; f

i
n

¢
: Analogously, we say that fi is an

"¡best response to f i¡i if the inequality above holds replacing 0 by ¡
": We also say that a strategy pro¯le f = (f1; ::; fn) is optimal if fi is
a best response to f i¡i, for every player i:

3. The Motivating Example.

The coordination game is described by the matrix

2
64

(I; II) L R
T (2; 2) (0;0)
B (0; 0) (1;1)

3
75

Player I believes that player II will play left with probability µ and Player

II believes that player I will play top with probability :̧ Players' priors over
these parameters have densities

vI(µ) =
µm

R 1
0 µm:dµ

= (m +1):µm;

and

vII(¸) =
¸m

R 1
0 ¸m:d¸

= (m + 1):¸m:

So,

¹fI(\left at period 1") =

Z 1

0
µ:vI (µ):dµ =

m + 1

m + 2
:

After observing left for t ¡ 1 periods, player I0s posterior density over µ
become,

µm:µt¡1
R 1
0 µm:µt¡1dµ

:

So,

¹fI (\left at period t" / \left until period t¡1") =

R 1
0 µ:µm:µt¡1dµ
R 1
0 µm:µt¡1dµ

=
m + t

m + t + 1
:

Let A 2 = be the event \(top; left) forever". Then,

¹fI(A) · ¹fI(\left forever") =
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1Y

t=1

¹fI (\left at period t" / \left until period t ¡ 1") =

1Y

t=1

m + t

m + t +1
= lim
j!1

m + 1

m + j
= 0:

So, for every m 2 N; ¹fI(A) = 0: Analogously, for every m 2 N; ¹fII (A) = 0:
I now show that, for every m 2 N; ¹f(A) = 1:
In the ¯rst period, player I believes that player II will play left with probabil-

ity m+1
m+2. Therefore, player I believes that player II will play left with probability

greater than 1
3 and so, player I optimally plays top; with probability one, in the

¯rst period. Analogously, player II optimally plays left; with probability one, in
the ¯rst period. So, (top; left) is played, with probability one, in the ¯rst period.

Player I observes that player II played left in the ¯rst period. So, in the
second period, player I believes that player II will play left with probability even
greater than in the ¯rst period: So, player I optimally plays top; with probability
one, in the second period. Analogously, player II optimally plays left; with
probability one, in the second period. By induction (top; left) is played, with
probability one, in all periods.

For all m ¸ 0; the absolute continuity hypothesis does not hold true. In fact,
¹f and ¹f i are disjoint. That is, both players assign zero probability to an event
that has, in fact, full measure.

I now show that properties 1 ¡ 3 hold as claimed in the introduction.
Let g = (gI; gII ) be a strategy pro¯le such that both players play (top; left)

regardless of past plays. g is a Nash equilibrium and so, the play path induced
by players' behavior strategies, \(top; left) forever", is a Nash equilibrium play.

However, for every l 2 N;

¹fi(\(top; left) from period t to t + l" / \(top; left) until period t ¡ 1") =

t+lY

j=t

m + j

m + j + 1
=

m + t

m + t + l + 1
!
t!1

1 i = I; II

and

¹f(\(top; left) from period t to t+l" / \(top; left) until period t¡1") = 1 8t 2 N:

So, for all m 2 N; players' beliefs over outcomes eventually converge, in the
weak topology, to the true probability distribution induced by behavior players'
strategies.
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Furthermore, for every l 2 N; for every t 2 N;

¹fi(\(top; left) from period t to t + l" / \(top; left) until period t ¡ 1") =

m + t

m + t + l +1
!

m!1 1 i = I; II and

¹f(\(top; left) from period t to t + l" / \(top; left) until period t ¡ 1") = 1.

Therefore, as m goes to in¯nity, in all subgames reached by (top; left) in
every previous period; players' beliefs over outcomes are arbitrarily close, in the
weak topology, to the true probability distribution induced by players' behavior
strategies. Furthermore, \(top; left) forever" is a full measure event: So, with
probability one, in all subgames players' beliefs over outcomes are arbitrarily
close, in theweak topology, to the true probability distribution induced by players'
behavior strategies, provided that m is large enough.

I now show that, for every " > 0; it is possible to ¯nd an "¡perturbation
of players' beliefs such that behavior strategies are absolutely continuous with
respect to these modi¯ed beliefs.

For every " > 0; let l 2 N be the period such that after observing (top; left)

for l periods, players' beliefs over outcomes are "¡close, in the weak topology, to
the true probability distribution induced by players' strategies. For i = I; II; let
ki be such that ki coincide with f i until period l, and ki coincide with f after
period l.

Consider the full measure event \(top; left) forever". Let h 2 H be any ¯nite
history of the form \(top; left) until period t ¡ 1". Then, by de¯nition, kih plays
weakly "¡like f ih; i = I; II . Furthermore, (fi)h is also a best response to

¡
ki¡i

¢
h

i = I; II; because
³
kIII

´
h

still prescribes a probability greater than 1
3 to \left".

So, \top" with probability one is still a best response in this case. Analogously,

(fII )h (\left") = 1 and
³
kIII

´
h
(\top") ¸ 1

3: So,
³
kI; kII

´
are an "¡ perturbation

of
³
f I; f II

´
:

On the other hand, ¹ki(\(top; left) forever") =

¹ki(\(top; left) from period 1 to l") =

lY

t=1

¹ki(\(top; left) at period t " / \(top; left) until period t ¡ 1") =

lY

t=1

m + t

m + t +1
> 0 i = I; II .

So, ¹f is absolutely continuous with respect to ¹kI and to ¹kII :
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4. Main Concepts and Results.

De¯nition 4.1 Let " > 0 and let ¹ and ~¹ be two probability measures de¯ned
on =. The probability measure ¹ is "¡close to ~¹ if

k¹ ¡ ~¹k = sup
A2=

j¹(A) ¡ ~¹(A)j · ":

The probability measure ¹ is weakly "¡close to ~¹ if

d(¹; ~¹) =
1X

k=1

2¡k:

Ã
sup
A2=k

j¹(A) ¡ ~¹(A)j
!

· ":

The norm k k induces the strong topology on the set of probability measures
on §1 while d is the metric of the weak topology.

De¯nition 4.2 Given two strategy pro¯les f = (f1; :::; fn) and g = (g1; :::; gn);
we say that f plays (weakly) "¡like g if ¹f is (weakly) "¡close to ¹g:

If f plays "¡like g; then these two strategy pro¯les induce two probability
measures on play paths that assign similar probabilities for all measurable events.
However, if f plays weakly "¡like g; then these strategy pro¯les generate two
probability measures that assign similar probabilities for all measurable events,
except possibly the ones that may only be observed in the distant future.

De¯nition 4.3A strategy pro¯le g = (g1; :::gn) is a (weak) subjective "¡equilibrium

if there exists a matrix of strategies (gij)1·i·n;1·j·n; with gii = gi such that

(i) gi is a best response to gi¡i, i = 1; :::n, and
(ii) g plays (weakly) "¡like gi = (gi1; :::g

i
n), i = 1; :::n.

A strategy pro¯le g is a (weak) subjective "¡equilibrium if players' predictions
over outcomes are "¡close, in the (weak) strong topology, to the true probability
distribution of play paths, induced by players' optimal strategies. Clearly, if " > 0;

then a subjective "¡equilibrium is a weak subjective "¡equilibrium, but not
conversely. However, there is no di®erence between a subjective 0 - equilibrium
and a weak subjective 0 - equilibrium.

Any Nash equilibrium is a subjective 0 - equilibrium but not conversely. The
di®erence is that a subjective 0¡equilibrium does not require that players' beliefs
and strategies coincide o® the play path.
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De¯nition 4.4 Beliefs
¡
f1; :::; fn

¢
and optimal strategies f = (f1; :::; fn) play

eventually (weakly) "¡like a Nash equilibrium if there exists a set  2 = such
that

1. ¹f() = 1

2. For every w 2 ; for every " > 0; there exists a period t(w; ") such that for
all t ¸ t(w;"); fw(t) and f iw(t); i = 1; :::;n; plays (weakly) "¡like the same
Nash equilibrium.

Beliefs
¡
f1; :::; fn

¢
and optimal strategies f = (f1; :::; fn) plays eventually

(weakly) like a Nash equilibrium if, for every " > 0; f and f i; i = 1; :::;n; plays
eventually (weakly) "¡like the same Nash equilibrium.

That is, beliefs and optimal strategies plays eventually (weakly) "¡like a
Nash equilibrium if, in ¯nite time, beliefs and best responses play (weakly) "¡like
the same Nash equilibrium. The same de¯nition apply if \Nash equilibrium" is
replaced by \"¡Nash equilibrium" or \(weak) subjective "¡equilibrium".

De¯nition 4.5 Given two strategy pro¯les f and g; f is absolutely continuous
with respect to g if ¹f is absolutely continuous with respect to ¹g ; i:e:; for every
A 2 =; ¹g(A) = 0 imply ¹f (A) = 0:

In particular, players' best responses are absolutely continuous with respect to
players' beliefs if any event in the ¾¡ algebra = that occurs with strictly positive
probability is assigned strictly positive probability by all players.

I assume that the optimal strategies f are absolutely continuous with respect
to the players' beliefs f i on the algebra =0: That is,

¹fi(A) = 0 ) ¹f(A) = 0 8A 2 =0; i = 1; :::;n:

This assumption is a necessary condition for players to update their beliefs by
Bayes' rule. Notice, however, that absolute continuity on the algebra =0 is a
weaker condition than the absolute continuity on the ¾¡algebra =. Moreover,
the mere fact that players are able to revise their beliefs by Bayes' rule does not
necessarily imply convergence to Nash equilibrium. I now restate the main results
of Kalai and Lehrer (93a, b, c).
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Proposition 4.1 Beliefs
¡
f1; :::; fn

¢
and optimal strategies f plays eventually

"¡like a subjective "¡equilibrium, for all " > 0; if and only if f is absolutely
continuous with respect to f i i = 1; :::;n.

Proof - The \if" part is a direct consequence of the Blackwell-Dubins theo-
rem. For the converse, see Kalai and Lehrer (93c). In the appendix, we give an
alternative proof for the converse.

Kalai and Lehrer (93b) have also shown that for every " > 0; there is ´ > 0

such that if g is a subjective ´¡equilibrium, then g plays "¡like an "¡Nash
equilibrium. These propositions imply the main result of Kalai and Lehrer (93a,
c).

Proposition 4.2 Beliefs
¡
f1; :::; fn

¢
and optimal strategies f plays eventually

"¡like a "¡Nash equilibrium, for all " > 0; if and only if f is absolutely continuous
with respect to fi; i = 1; :::;n.

That is, proposition 4.2 shows that absolute continuity is a su±cient and
necessary condition for convergence to an almost Nash equilibrium play, in the
strong topology.

I now show that absolute continuity is \robust to perturbations" in the strong
topology.

Proposition 4.3 Let f and fi, i = 1; :::;n; be optimal strategies and beliefs

of the players. Consider a sequence of strategy pro¯les, gi(m); such that gi(m)
plays ´i(m)¡like f i; and ´i(m) !

m!1 0; i = 1; :::; n:

If f is absolutely continuous with respect to f i, then there exists m(") such
that for all m ¸ m("); there exists a set B(m) 2 = such that

1. ¹f(B(m)) ¸ 1 ¡ ";

2. if A ½ B(m); A 2 =; then ¹gi(m)(A) = 0 ) ¹f(A) = 0; and

3. 8w 2 B(m);

°°°°
³
¹gi (m)

´
w(t)

¡ (¹f)w(t)

°°°° !
t!1

0:

Proof - See Appendix.
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In particular, proposition 4.3 shows that if players' optimal strategies f are
absolutely continuous with respect to players' beliefs, f i; then any \modi¯ed"
beliefs, gi(m); that plays almost like f i; eventually plays almost like f: Proposition
3.3 is false if we just assume that gi(m) plays almost weakly like f i. For example,
in the coordination game given before, players' beliefs and optimal strategies
plays almost weak like the same Nash equilibrium. However, players assign zero
probability to a set that has, in fact, full measure.

This makes clear the di®erences between \modifying a player belief" in the
weak and strong topology. If a player's belief is modi¯ed, but predictions over

outcomes remain close in the strong topology to original predictions, then these
two probability distributions assign zero measure to the same sets that lie inside
a \large" set (a set that has high probability with respect to both probability
distributions). In this case, absolute continuity can be \preserved." However,
if only short run predictions over outcomes remain close to original short run
predictions then absolute continuity may not be \preserved." Therefore, absolute
continuity cannot be a necessary condition for convergence to Nash equilibrium,
because whenever absolute continuity holds players' beliefs can be modi¯ed in
such a way that absolute continuity is no longer satis̄ ed but convergence to
Nash equilibrium still holds.

De¯nition 4.6 Let f and fi i = 1; :::; n be the optimal strategies and the
beliefs of the players. The strategy pro¯le ki = (ki1; :::k

i
i¡1; fi; k

i
i+1; :::; k

i
n) is an

"¡ perturbation of player i's beliefs if there exists a set A 2 = such that

1. ¹f(A) ¸ 1 ¡ ";

2. 8w 2 A; 8t 2 N; (fi)w(t) is an "¡best response to
¡
ki¡i

¢
w(t) ; and

3. 8w 2 A; 8t 2 N; kiw(t) plays weakly "¡like fiw(t) :

The strategy pro¯le ki is an "¡perturbation of player i's beliefs if, in all
subgames, except possibly in a set of play paths that has probability less than ";
ki always plays weakly "¡like player i0s beliefs, and behavior strategy f is always
an "¡best response to ki.

The notion of \perturbation" is not an asymptotic notion.5 A strategy pro¯le
is an "¡ perturbation of player i's beliefs if with probability 1 ¡ "; \modi¯ed

beliefs" always induce similar predictions over the future evolution of the play and

5This is in contrast with the notion of neighborhood in Lehrer and Somorodinsky (94).
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behavior strategies are always an "¡best response to \modi¯ed beliefs". This is an
important restriction because if observed outcomes induced by behavior strategies
can be justi¯ed by players' beliefs, then observed outcomes can also be justi¯ed
by modi¯ed beliefs.

Of course, perturbations on beliefs should not perturb beliefs that a player
has over his or her own behavior strategy.

I now de¯ne the central notion of almost absolute continuity.

De¯nition 4.7 Let f and f1; :::; fn be the optimal strategies and the beliefs

of the players. The pro¯le f is "¡absolutely continuous with respect to f i if there
exists an "¡ perturbation of players' beliefs, ki; such that f is absolute continuous
with respect to ki:

The pro¯le f is almost absolutely continuous with respect to f i if, for every
" > 0; f is "¡absolutely continuous with respect to f i:

That is, f is almost absolutely continuous with respect to fi if, for every " > 0;
there exists an "¡ perturbation of fi; ki; such that f is absolutely continuous with
respect to ki: Clearly, if f is absolutely continuous with respect to fi then f is
almost absolutely continuous with respect to f i:

I assume
R) There exists some ¾ > 0 such that

8h 2 H;8ai 2 §i If (fi(h)) (ai) 6= f0;1g then (fi(h)) (ai) ¸ ¾:

R) is an assumption on players' behavior. It requires that if, at a certain
period, a player decides to randomize over some pure strategies, then he or she
will not assign an arbitrarily small probability to any of the pure strategies choices.
I do not know if this assumption can be dispensed.

Proposition 4.4 Let f and
¡
f1; :::; fn

¢
be the optimal strategies and the

beliefs of the players. For every " > 0; there is ^́ > 0 such that for every ´ · ^́
if f is ´¡absolutely continuous with respect to fi i = 1; :::; n then f and f i

i = 1; :::; n plays eventually weakly "¡like a weak subjective "¡equilibrium.
On the other hand, under assumption R), for every " > 0; there is ^́ > 0 such

that for every ´ · ^́ if f i i = 1; :::;n and f plays eventually weakly ´¡like a weak
subjective ´¡equilibrium, then f is "¡absolutely continuous with respect to f i

i = 1; :::; n:

Proof - See Appendix.
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Proposition 4.4 shows that if almost absolute continuity holds then players
eventually make accurate predictions over play paths. On the other hand, if
players' prediction over play paths are eventually accurate then almost absolute
continuity holds.

If absolute continuity holds then players' beliefs are eventually accurate. There-
fore, all modi¯ed beliefs that induce predictions over play paths that are similar
to original beliefs are also eventually accurate. However, absolute continuity does
not hold for all these beliefs. On the other hand, by de¯nition, if almost absolute

continuity holds for some beliefs, then it holds for all modi¯ed beliefs that induces
predictions over play paths that are similar to original beliefs.

Proposition 4.4 characterizes the distinction between the case where players'
predictions over play paths are eventually accurate and the case where players'
predictions over play paths are not eventually accurate. In the ¯rst case there
exists modi¯ed beliefs that satis¯es absolute continuity; and moreover, with the
possible exception of play paths that have small probability, these modi¯ed beliefs
always induces similar predictions (on future evolution of play) to original beliefs.
Furthermore, if modi¯ed beliefs induces similar predictions (over future evolution
of play) to original beliefs, then behavior strategies must be almost optimal with
respect to modi¯ed beliefs. So, with the possible exception of play paths that
have small probability, behavior strategies must be almost optimal with respect
to modi¯ed beliefs.

Proposition 4.5 For every " > 0; there is ^́ > 0 such that for every ´ · ^́;

if g is a weak subjective ´¡equilibrium, then g plays weakly "¡like an Nash
equilibrium.

Proof - See Appendix.

Proposition 4.5 shows that if players make accurate predictions over play
paths, then outcomes induced by players' optimal strategies are close, in the
weak topology, to an exact Nash equilibrium play.

These two propositions imply our main result.

Proposition 4.6 Under assumption R), beliefs
¡
f1; :::; fn

¢
and optimal

strategies f = (f1; :::; fn) plays eventually weakly like a Nash equilibrium if and
only if f is almost absolutely continuous with respect to f i; i = 1; :::; n:
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Proof - See Appendix.

Proposition 4.6 shows that almost absolute continuity is necessary and su±-
cient for convergence to Nash equilibrium. More important, consider the case that
players' beliefs and optimal strategies eventually induces probability distributions
over outcomes that resembles a Nash equilibrium play. If absolute continuity is
not satis̄ ed then behavior strategies can also be \justi¯ed" by some modi¯ed
beliefs that satis¯es absolute continuity and with the possibly exception of play
paths that have small probability, these modi¯ed beliefs always induces predic-

tions over outcomes that are arbitrarily close, in the weak topology, to players'
original predictions. On the other hand, if players' beliefs and optimal strategies
satis¯es absolute continuity or almost absolute continuity then, by de¯nition, any
modi¯ed beliefs over play paths that induces similar prediction to players' origi-
nal predictions also satis̄ es almost absolute continuity. So, convergence to Nash
equilibrium obtains with respect to any of these beliefs.

Remark: Outcomes induced by exact best responses to \modi¯ed beliefs",
are not necessarily \close" to outcomes induced by best responses to \original
beliefs".

Take, for example, two players playing an in¯nitely repeated \matching pen-
nies". Assume that both players believe that his or her opponent is randomizing
among all pure strategies with equal probability, regardless of past outcomes. In
this case, any strategy is a best response. Assume that both players adopts a
behavior strategy such that posteriors of the probability measures induced by

players' beliefs and optimal strategies merge in the weak, but not in the strong,
topology. In this case, by proposition 3.1, the absolutely continuity assumption
does not hold. Take any perturbation of original beliefs that are absolutely con-
tinuous with respect to behavior strategies and consider an exact best response
to these modi¯ed beliefs. According to these modi¯ed beliefs, at some period,
a player believes that his or her opponent is not randomizing with equal proba-
bility. At those periods, this player will choose a pure strategy, with probability
one. Therefore, outcomes induced by such strategies can not be close, in the weak
topology, to outcomes induced by best responses to \original beliefs".

5. Conclusion

Lehrer and Smorodinsky (94), hereafter LS, obtained coordination assumptions
on beliefs and best responses that are weaker than absolute continuity but en-
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sure convergence to Nash equilibrium. Although independently obtained, the
results in this paper and the results in Lehrer and Smorodinsky's (94) paper
are complementary. LS focus on behavior strategies' perturbations while I only
consider perturbations on beliefs. Therefore, there are substantial di®erences in
the assumptions made in this paper and the conditions used by LS. Moreover,
thecniques used by LS and the ones in this paper are completely di®erent. LS
show that if beliefs accommodate the truth, i.e., if beliefs assign positive prob-
ability to \neighborhoods of the truth" then convergence to Nash equilibrium
obtains. A direct consequence of the results in this paper and the ones in LS

is that if beliefs accommodate the truth then convergence to Nash equilibrium
obtains because there exists modi¯ed belief that satis¯es absolute continuity and
moreover, in \almost every subgame" this modi¯ed belief induces similar short
run predictions to original predictions.

I also show that any outcome path obtained where there is convergence to
Nash equilibrium is also the outcome path of behavior that is almost optimal
with respect to beliefs that satis¯es absolute continuity; and moreover, these
beliefs are arbitrarily close to original beliefs. Thus, absolute continuity does
not rule out any observable behavior that is asymptotically consistent with Nash
equilibrium.

Appendix

Proof of Proposition 4.1's Converse Let (") 2 = be the set such that
beliefs play " ¡ like optimal strategies in ¯nite time. Let  be

T
n¸1

( 1n): Clearly,

¹f() = 1; and the posteriors of ¹f and ¹f i i = 1; :::; n; converge in the strong
topology on :

Let A 2 = be any set such that ¹f (A) > 0: Let ¸ be a probability measure
de¯ned by

¸(B) =
¹f (A \ B)

¹f (A)
8B 2 =

Clearly ¸ is absolutely continuous with respect to ¹f : By the Blackwell-Dubins
theorem, there exists a set C 2 = such that ¸(C) = 1; and the posteriors of ¹f
and ¸ converge in the strong topology on C:

By de¯nition, ¹f (A \ C) = ¹f(A) > 0: So, ¹f(C) > 0 and C \  6= ;: The
posteriors of ¹f i; ¹f ;and ¸ converge, in the strong topology, on C \ :

Also by de¯nition, ¸(A) = 1. So, for every observation h 2 §t; the posteriors
of ¸ are such that ¸h(A) = 1: Assume by contradiction that ¹f i(A) = 0: Then,
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for every observation h 2 §t;
³
¹fi

´
h

(A) = 0. Therefore, the posteriors of ¹fi

and ¸ can not converge in the strong topology on C \ : A contradiction.

q:e:d:

Proof of Proposition 4.3 Sandroni (94), proposition 3.4 pg 13, has shown
that

8 sequences fBng 2 =0; ¹
fi

(Bn) ! 0
n!1 ) ¹f (Bn) ! 0

n!1
Assume that for some sequence fAng 2 =;

¹
fi

(An) ! 0
n!1 :

By the Caratheodory extension theorem, there exists a sequence of sets fBng 2 =0
such that

¯̄
¯¹

fi
(An) ¡ ¹

fi
(Bn)

¯̄
¯ · 1

m
and

¯̄
¯¹f (An) ¡ ¹f (Bn)

¯̄
¯ · 1

m

So, ¹
fi

(Bn) ! 0
n!1 and therefore, ¹f (Bn) ! 0

n!1 : So,

¹f (An) ! 0
n!1 :

Therefore,

8 sequences fAng 2 =; ¹
fi

(An) ! 0
n!1 ) ¹f (An) ! 0

n!1

Let ± > 0, ±(m) be any sequence of strictly positive numbers such that

1X

m=1

±(m) + ± = 1:

Let ¸ =
1P
m=1

±(m):¹gi(m) + ±:¹f i be a probability measure. For every m;

¹gi (m) and ¹f i are absolutely continuous with respect to ¸: Therefore, by the
Radon-Nykodym theorem, there exists functions Á(m) and Á such that

¹g(m) = Á(m):¸ , ¹
fi

= Á:¸

Let C(m) 2 = be the set fÁ(m) > 0; Á > 0g :
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Clearly, if A 2 = is a set such that A ½ C(m) then

¹gi(m)(A) = 0 , ¸(A) = 0 , ¹
fi

(A) = 0 ) ¹f (A) = 0

Let ·(m) be the function T:min fÁ(m);Ág and let º(m) = ·(m):¸ be a
positive measure, where T 2 <+ is such that º(m) is also a probability measure.
For every m; º(m) is absolutely continuous with respect to ¹gi(m) and ¹

fi
; and ¹

fi

is absolutely continuous with respect to ¹f : Therefore, by the Blackwell-Dubins
theorem, there exists a sets D(m) 2 = and  2 = such that º(m)(D(m)) = 1
and ¹f() = 1 such that

8w 2 D(m) \ ;

°°°°
³
¹f

´
w(t)

¡
³
¹gi(m)

´
w(t)

°°°° !
t!1

0:

C(m)c = fÁ(m) = 0g [ fÁ = 0g : So, ¹
fi

(C(m)c) ! 0
m!1 :

However, º(m)(D(m)c) = 0: So, D(m)c ½ f·(m) = 0g [ F = C(m)c [ F;
where F 2 = is a set such that ¸(F ) = 0:

Clearly, ¹
fi

(F ) = 0: Therefore, ¹
fi

(D(m)c) · ¹
fi

(C(m)c): So,

¹
fi

(C(m) \ D(m)) ! 1
m!1 :

Let B(m) be C(m) \ D(m) \ : Then,

¹f (B(m)) ! 1
m!1;

and
8A ½ B(m); ¹gi(m)(A) = 0 ) ¹f (A) = 0;

and the posteriors of ¹f and ¹gi(m) converge, in the sup norm, on B(m):

q:e:d:

Lemma A.1. Let f and f1; :::; fn be the optimal strategies and the beliefs
of the players. Let ki = (ki1; :::; fi; :::; k

i
n) be a strategy pro¯le such that

1. ki plays weakly ´¡like fi

2.
¡
ki

¢
h =

¡
f i

¢
h if ¹f(C(h)) = 0; h 2 H:

3.
³
kij

´
h

(aj) =
³
f ij

´
h
(aj) if ¹f(C(h; a)) = 0; h 2 H; a = (a1; :::; an) 2 §.
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Then, given assumption R), for every " > 0 there exists ^́ > 0; such that if
´ · ^́; then fi is an "¡best response to ki¡i:

Proof- Assume by contradiction that there exists an "0 > 0; and a sequence
of strategy pro¯les ki(m) = (ki1(m); :::; fi(m); :::; kin(m)) such that

1. fi(m) is a best response to f i¡i(m);

2. d
³
¹ki(m);¹fi (m)

´
!

m!1 0;

3.
¡
ki(m)

¢
h =

¡
f i(m)

¢
h if ¹f(m)(C(h)) = 0; h 2 H;

4.
³
kij(m)

´
h

(aj) =
³
f ij(m)

´
h

(aj) if ¹f(m)(C(h;a)) = 0; h 2 H; a = (a1; :::; an) 2
§;

5. fi(m) is not an "0¡best response to ki¡i(m):

By de¯nition, there exists a behavior strategy l(m) such that

Vi(b(m)) = E¹b(m)

( 1X

t=1

n
(¸i)

t :ui
o)

¸ Vi(k
i(m)) + "0

where b(m) = (ki1(m); :::; l(m); :::; kin(m)):
Also by de¯nition,

Vi(f
i(m)) ¸ Vi(c(m))

where c(m) = (f i1(m); :::; l(m); :::; fin(m)):
By the Banach-Alaoglu theorem, there exists probability measures ¹b; ¹c; ¹f i ;¹ki

and a subsequence, also indexed by m, such that

d
³
¹z(m);¹z

´
!

m!1 0 where z = b; c; fi; ki:

Clearly, ¹ki = ¹fi because ¹ki(m) is arbitrarily close to ¹f i(m); in the weak
topology.

We want to show that ¹b = ¹c:
Assume, by contradiction, that there exists some h 2 H; h = (h0; :::; hr), such

that
¹b(C(h)) 6= ¹c(C(h)):

Then, for some 0 · s · r ¡ 1;

(¹b)(h0;:::;hs) (C(h0; :::; hs+1)) 6= (¹c)(h0;:::;hs) (C(h0; :::; hs+1)):
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But, hs+1 = (h1s+1; :::; h
n
s+1); and

(¹b)(h0 ;:::;hs) (C(h0; :::;hs+1)) = lim
m!1

nY

j 6=i;j=1

³
kij(m)

´

(h0 ;:::;hs)
(h
j
s+1): (l(m))(h0 ;:::;hs) (h

i
s+1)

(¹c)(h0 ;:::;hs) (C(h0; :::;hs+1)) = lim
m!1

nY

j 6=i;j=1

³
f ij(m)

´
(h0 ;:::;hs)

(hjs+1): (l(m))(h0 ;:::;hs) (h
i
s+1):

So, there exists a subsequence, also indexed by m, such that

lim
m!1

nY

j 6=i;j=1

³
kij(m)

´
(h0 ;:::;hs)

(hjs+1) 6= lim
m!1

nY

j 6=i;j=1

³
fij(m)

´
(h0;:::;hs)

(hjs+1):

Furthermore, it has to be the case that for some ~m

¹f(m)(C(h0; :::;hs)) 6= 0 and (fi(m))(h0;:::;hs) (h
i
s+1) 6= 0 for all m ¸ ~m:

Otherwise,

³
kij(m)

´
(h0 ;:::;hs)

(hjs+1) =
³
f ij (m)

´
(h0 ;:::;hs)

(hjs+1) in¯nitely often.

By assumption R), there exists ¾ > 0 such that

(fi(m))(h0;:::;hs) (h
i
s+1) > ¾ for all m ¸ ~m:

However,

(¹ki)(h0;:::;hs) (C(h0; :::; hs+1)) = lim
m!1

nY

j 6=i;j=1

³
kij(m)

´
(h0 ;:::;hs)

(hjs+1):
³
f ij(m)

´
(h0 ;:::;hs)

(hjs+1):

³
¹f i

´
(h0;:::;hs)

(C(h0; :::; hs+1)) = lim
m!1

nY

j 6=i;j=1

³
fij(m)

´
(h0;:::;hs)

(hjs+1):
³
fij(m)

´
(h0;:::;hs)

(hjs+1):

So,

(¹ki)(h0;:::;hs) (C(h0; :::; hs+1)) 6=
³
¹f i

´
(h0 ;:::;hs)

(C(h0; :::;hs+1)):

A contradiction. Therefore,
¹b = ¹c:
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But,

lim
m!1 Vi(b(m)) = Vi(b) = Vi(c) = lim

m!1 Vi(c
i(m)) · lim

m!1 Vi(f
i(m)) = Vi(f

i)

and

Vi(f
i) = Vi(k

i) = lim
m!1 Vi(k

i(m)) · lim
m!1 Vi(b(m))¡ "0 = Vi(b) ¡ "0:

Therefore,
Vi(b) · Vi(b) ¡ "0: A contradiction.

q:e:d

Proof of Proposition 4.4 )) Assume that f is an 1
m¡absolutely continuous

with respect to fi; m 2 N:
By de¯nition, there exists sets A(m) 2 = and (m) 2 =; and strategy pro¯le

ki(m) such that

¹f(A(m)) ¸ 1 ¡ 1

m
; ¹f((m)) = 1; and

the posteriors of ¹f and ¹ki (m) merge, in the strong topology on (m); and

8w 2 A(m); 8t 2 N;
³
ki(m)

´
w(t)

plays weakly
1

m
¡ like

³
fi

´
w(t)

:

Let ^́ be 1
¹m · "

2:

Let A 2 = be the set
1T
j=1

S
m¸j

A(m); and let  2 = be the set
1T
m=1

(m):

Clearly,
¹f (A \) = 1:

If w 2 A \  then, w 2 S
m¸ ¹m

A(m). So, w 2 A(m̂)\ (m̂) for some m̂ ¸ ¹m:

Therefore, for all ´ · ^́; if f is an ´¡absolutely continuous with respect to f i

and w 2 A \ ; then there exists a period ¹t such that

³
ki(m)

´
w(t)

plays
"

2
¡ like fw(t); for all t ¸ ¹t:

and ³
ki(m)

´
w(t)

plays weakly
"

2
¡ like f iw(t); for all t ¸ ¹t:
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Therefore, for every w 2 A \ ; there exists a time ¹t such that, if t ¸ ¹t then
³
f i(m)

´
w(t)

plays weakly " ¡ like fw(t):

() For every ´ > 0; let T i´ : §1 ! N[f1g be a function such that T i´(w) = j
if

d

µ³
¹f i

´
w(t)

; (¹f)w(t)

¶
· ´ 8t ¸ j;

and T i´(w) = 1 if

d

µ³
¹fi

´
w(t)

; (¹f )w(t)

¶
> ´ in¯nitely often.

Let 0 < ^́ · " be as in lemma A.1. By assumption, ¹f(T i^́ < 1) = 1: So,
there exists ¹t 2 N such that

¹f(
n
T i^́ < ¹t

o
) ¸ 1 ¡ ":

Let ki be a strategy pro¯le such that if t · ¹t; then

ki(h) = f i(h) 8h 2 §t;

and if t > ¹t; then
³
ki

´
h

=
³
fi

´
h

if ¹f(C(h)) = 0; h 2 §t;

³
kij

´
h

(aj) =
³
f ij

´
h

(aj) if ¹f (C(h;a)) = 0; j = 1; :::; n; h 2 §t; a = (a1; :::; an) 2 §;

ki(h) = f(h) otherwise.

Clearly, with probability one according to ¹f , the posteriors of ¹f and ¹ki
coincide after period ¹t: So, by the converse of proposition 4.1, f is absolutely
continuous with respect to ki.

Let A 2 = be the set

n
T i^́ < ¹t

o
\

8
<
:

[

¹f (C(h))=0

C(h)

9
=
;

C

Clearly,
¹f(A) ¸ 1 ¡ ":

23



Furthermore, by de¯nition, if w 2 A then,

³
ki

´
w(t)

plays weakly " ¡ like
³
fi

´
w(t)

8t 2 N:

By lemma A.1, 8w 2 A; 8t 2 N; (fi)w(t) is an "¡best response to
¡
ki¡i

¢
w(t)

:

So, ki is an "¡perturbation of f i:

q:e:d:

Proof of Proposition 4.5 Let ¹(m) !
m!1 ¹ denote a sequence of probability

measures such that
d (¹(m); ¹) !

m!1 0:

Suppose by contradiction that there exists an "0 > 0 and a sequence of strategy
pro¯les g(m) such that

1. g(m) is a 1
m¡weak subjective equilibrium;

2. A strategy pro¯le p plays weakly "0¡ like g(m); then p is not a Nash equi-
librium.

By the de¯nition of 1
m¡weak subjective equilibrium, there exists strategy

pro¯les gij(m) i = 1; :::;n j = 1; ::; n such that

gi(m) = gii(m) is a best response to gi¡i(m) =
³
gi1(m); :::; gii¡1(m); gii+1(m); :::; gin(m)

´
:

and

gi(m) =
³
gi1(m); :::; gnn(m)

´
plays weakly

1

m
¡ like g(m) =

³
g11(m); :::; gnn(m)

´

4(
P
j) is a compact set and 8h 2 H;

³
gij(m)

´
(h) 2 4(§j):

Let h0 be the null history.
Consider a ¯rst subsequence, also indexed by m, such that

³
gij(m)

´
(h0) !

m!1

³
gij

´
(h0) i = 1; :::;n; j = 1; ::; n:

24



The second subsequence, also indexed by m, is a subsequence of the ¯rst
subsequence such that

³
gij(m)

´
(h) !

m!1

³
gij

´
(h) 8h 2 §1 i = 1; :::; n; j = 1; ::;n:

The k¡th subsequence, also indexed by m, is a subsequence of the (k¡1)¡th
subsequence such that

³
gij(m)

´
(h) !

m!1

³
gij

´
(h) 8h 2 §t; t · k; i = 1; :::; n; j = 1; ::;n:

Consider a ¯nal subsequence, also indexed by m. Take the ¯rst elements of
the ¯rst subsequence, the second elements of the second subsequence and so on,
ad in¯nitum.

Clearly, ³
gi(m)

´
(h) !

m!1

³
gi

´
(h) 8h 2 H ; i = 1; :::; n

and
(g(m)) (h) !

m!1 g(h) 8h 2 H:

Therefore,

¹gi(m) !
m!1 ¹gi i = 1; :::; n and ¹g(m) !

m!1 ¹g:

But, ¹gi(m) and ¹g(m) are arbitrarily close in the weak topology. So,

¹g = ¹gi i = 1; :::;n

We want to show that g is a 0¡subjective equilibrium.
Suppose, by contradiction, that there exists a player, say player 1, such that

g1 is not a best response to g1¡1 =
³
g12; :::; g

1
n

´
:

So, there exists a behavior strategy l such that

V1(b) = E¹b

( 1X

t=1

n
(¸1)

t :u1
o)

> V1(g
1) = E¹g1

( 1X

t=1

n
(¸1)

t :u1
o)

where b = (l; g12; :::; g
1
n):

Let b(m) be
¡
l; g12(m); :::; g1n(m)

¢
: By de¯nition,

(b(m)) (h) !
m!1 b(h) 8h 2 H:
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So,
¹b(m) !

m!1 ¹b:

Therefore,

V1(b(m)) !
m!1 V1(b) and V1(g

1(m)) !
m!1 V1(g

1)

So, there exists m large enough such that

V1(b(m)) > V1(g
1(m))

which contradicts the fact that

g1(m) is a best response to g1¡1(m)

So, g is a 0¡subjective equilibrium. There exists a Nash equilibrium ¹g that
plays 0¡like g (see Kalai and Lehrer (93b)): However,

¹g(m) !
m!1 ¹g = ¹¹g

So, if m is large enough, g(m) plays "0
2 like a Nash equilibrium ¹g:

A contradiction
q:e:d:

Proof of Proposition 4.6 If f is almost absolutely continuous with respect
to f i i = 1; :::;n then, by proposition 3.4,

¡
f1; :::; fn

¢
and f plays eventually

weakly °¡like a weak subjective °¡equilibrium, for every ° > 0: Therefore, by
proposition 3.5,

¡
f1; :::; fn

¢
and f plays eventually weakly "¡like a Nash equilib-

rium, for every " > 0: So,
¡
f1; :::; fn

¢
and f plays eventually weakly like a Nash

equilibrium.
On the other hand, if beliefs

¡
f1; :::; fn

¢
and optimal strategies f = (f1; :::; fn)

plays eventually weakly like a Nash equilibrium, then, beliefs
¡
f1; :::; fn

¢
and op-

timal strategies f = (f1; :::; fn) plays eventually weakly ´¡like a weak subjective
´¡equilibrium, for every ´ > 0: So, by proposition 3.4, f is "¡absolutely con-

tinuous with respect to f i i = 1; :::;n; for every " > 0: Therefore, f is almost
absolutely continuous with respect to f i i = 1; :::;n:

q:e:d:
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