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Abstract

If players cannot perfectly synchronize their actions in co-ordination
games, the e±cient equilibrium is never achieved.

1. Introduction

Consider a simple co-ordination game, where each player can choose either a costly
action (\work") or a costless action (\shirk"). Work produces a bene¯t exceeding
its cost only if all other players also work. Such a game has an e±cient Nash
equilibrium, where all players work. It also has an ine±cient Nash equilibrium,
where all players shirk.
It is important to understand what conditions facilitate or discourage co-

operation. This note shows how an inability to precisely co-ordinate the timing of
actions can destroy the possibility of Pareto-improving co-operation. If it is costly
to be the ¯rst person to start working, and players cannot co-ordinate precisely,
then no one is willing to start working. This may be true even though the length
of time when that ¯rst player must work alone becomes arbitrarily small, and
thus the utility cost to him becomes arbitrarily small compared with the future



bene¯ts of co-operation. He would like to commit ex ante to working early (when
he may be the only one). But without the ability to commit his actions before
the play of the game, strategic concerns prevent co-operation.
I consider the following environment. There are N players. Each player ob-

serves his own \clock", but observes neither other players' clocks nor their actions.
Each player must decide whether or not to work, as a function of the time on his
clock. Suppose that the potential individual bene¯ts from co-operation are no
more than N times the cost of co-operation. Then as long as clocks are not
perfectly synchronized, no player ever works. By contrast, if clocks are perfectly
synchronized, any outcome is possible.
This result combines an idea from the computer science literature with recent

work on higher order beliefs in economics. Halpern and Moses (1990) showed
how asynchronous clocks prevent perfect co-ordination because statements about
timing never become common knowledge. In fact, it is straightforward to show
that such statements also never become almost common knowledge in the sense
of Monderer and Samet (1989) (i.e. \common p-belief" for p close to 1). But
Morris, Rob and Shin (1995) showed (in two person games) that if no event is
almost common knowledge, then there will be a tendency for the risk dominant
equilibrium to be played. A similar argument implies - in this context - that the
Pareto-dominated \shirking" equilibrium is always played.
The connection to these papers is discussed in section 3. The model is pre-

sented in the next section.

2. Model

A collection of N players are playing a co-ordination game. Action 0 (\shirk")
always gives a payo® of 0. Action 1 (\work") always entails a cost c. If all players
work, then they all also receive a reward k + c. Thus payo®s for i are given by:

all other players
choose 1

some player
chooses 0

i's action:
1 k ¡c
0 0 0

Each player i must decide what action to take as a function of the time on
his clock, ¿i 2 <+. Thus a pure strategy for player i is a measurable function
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si : <+ ! f0; 1g. Write s ´ (s1; :::; sN) and s¡i ´ (s1; :::; si¡1; si+1; :::; sN).
Players' clocks are not perfectly synchronized. In particular, write t 2 <+

for the \true time". Each player's clock actually begins xi seconds after time 0,
where each xi is independently distributed on some interval [0; "], where " > 0,
with common continuous density f (:). Write ¼ [:] for the probability measure on
[0; "]N , i.e. an event E µ [0; "]N has probability

¼ [E ] =
Z

x2E

(
NY

i=1

f (xi)

)
dx

In fact, only the following symmetry property of ¼ will be relevant:

¼ [fx : xi ¸ xj, for all j 6= ig] = 1

N
(2.1)

Thus each player attaches probability 1
N to having the slowest clock. Now if

player i's clock reads ¿i, he knows that either player j's clock reads ¿i + xi ¡ xj
or (if ¿i + xi ¡ xj < 0) that j's clock has not started. Write ³i (¿i; s¡i) for the
probability i attaches to all other players working, when his clock reads ¿i and
their equilibrium strategies are s¡i. Thus:

³i (¿i; s¡i) ´ ¼
hn
x 2 [0; "]N : sj (¿i + xi ¡ xj) = 1 for all j 6= i

oi

where we adopt the convention that sj (x) = 0 if x < 0. Player i discounts the
future with discount rate ri starting from the time his clock starts (i.e. xi). This
is a convention only - we will see that neither the discount rate nor the starting
time matter.
Thus player i's (ex ante) utility function is

ui (s) =
1R

t=xi

(
R

x2[0;"]N

Ã
k

Ã
NQ
j=1
sj (t¡ xj)

!
¡ csi (t¡ xi)

! (
NQ
j=1
f(xj)

)
dx

)
e¡ri(t¡xi)dt

=
1R

¿i=0

(
R

x2[0;"]N

Ã
k

Ã
NQ
j=1
sj (¿i + xi ¡ xj)

!
¡ csi (¿i)

! (
NQ
j=1
f(xj)

)
dx

)
e¡ri¿id¿i

=
1R

¿i=0
si (¿i)

(
R

x2[0;"]N

Ã
k

Ã
Q
j 6=i
sj (¿i + xi ¡ xj)

!
¡ c

! (
NQ
j=1
f(xj)

)
dx

)
e¡ri¿id¿i

=
1R

¿i=0
si (¿i) (k³i (¿i; s¡i) ¡ c) e¡ri¿id¿i
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Lemma 2.1. s is a Nash equilibrium if and only if, for all i and for almost all ¿i,

si (¿i) =

(
1, if ³i (¿i; s¡i) > c

k

0, if ³i (¿i; s¡i) < c
k

Proof. Follows immediately from the payo® function.
Notice that, technically, Nash equilibrium allows players to choose actions ar-

bitrarily at a negligible set of ¿i. It would be natural to focus on Nash equilibria
where we imposed the additional requirement that actionsmaximize instantaneous

utility at all dates. Then we would require that si (¿i) =

(
1, if ³i (¿i; s¡i) >

c
k

0, if ³i (¿i; s¡i) < c
k

for all i and all ¿i. If we restricted attention to such re¯ned equilibria, all the
analysis and proofs which follow would remain true with \for almost all..." re-
placed everywhere by \for all...".
Let us ¯rst note that if the cost of working is su±ciently low (for given N),

work is possible in equilibrium.

Lemma 2.2. If c
k

· 1
N
, then there is a Nash equilibrium where all players always

work (si (¿i) = 1 for all i and ¿i 2 <+).

Proof. For all i and ¿i 2 <+,

³i(¿i; s¡i) = ¼ [fx : ¿i + xi ¡ xj ¸ 0, for all j 6= ig]
¸ ¼ [fx : xi ¡ xj ¸ 0, for all j 6= ig]
= 1

N , by (2.1)
¸ c

k

Thus s is a Nash equilibrium by lemma 2.1.
But if this condition on payo®s is not satis¯ed, then all players must essentially

always shirk.

Lemma 2.3. If c
k
> 1

N
, then all Nash equilibria have all players almost always

shirking (si (¿i) = 0 for all i and almost all ¿i 2 <+).

Thus for any ¯xed c
k , there must always be shirking for su±ciently large N .

Proof. Suppose there exists an equilibrium s where some player i does not almost
always shirk. Then we must have ³i (¿i; s¡i) > 0 for some ¿i, which implies that
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all players do not almost always shirk. So let mi (si) be the ¯rst time at which
player i following strategy si works. Formally, let

mi (si) = sup f¿i : si (µ) = 0 for almost all µ · ¿ig

Let m =min
i
mi (si). Now, for any i,

³i(m; s¡i) = ¼ [fx : sj (m+ xi ¡xj) = 1, for all j 6= ig]
· ¼ [fx : m+ xi ¡ xj ¸ mj (sj) , for all j 6= ig]

since sj (µ) = 0, for almost all µ · mj (sj)
· ¼ [fx : xi ¡ xj ¸ 0, for all j 6= ig]

since mj (sj) ¸ m for all j
= 1

N , by (2.1)
< c

k

But by continuity of ³i (:; s¡i), there exists ± > 0 such that ³i(x; s¡i) < c
k for

all x 2 (m;m+ ±). This implies that si (x) = 0 for almost all x 2 (m;m+ ±).
Yet this implies mi (si) ¸ m+ ± for all i, a contradiction.
Lemma 2.3 relies heavily on the asynchonization. If we allowed " = 0, so that

all clocks were perfectly synchronized, then any symmetric strategy pro l̄e would
be an equilibrium. In particular, si (¿i) = 1 for all i and ¿i would always be an
equilibrium, independent of the values of c and k.

3. Discussion

3.1. Relation to the literature

Why does a lack of synchronization matter so much? Halpern and Moses (1990)
made the observation that, with asynchronized clocks, no statement about timing
ever becomes common knowledge. In the environment we considered, when does
individual i know that all clocks have started, i.e. that ¿j ¸ 0 for all j? Only if
¿i ¸ ", so that he knows that t ¸ "; i knows that everyone knows that all clocks
have started only if he knows that all clocks read at least ", i.e. if ¿i ¸ 2". We can
verify by induction that there is nth order knowledge that all clocks have started
only if each ¿i ¸ n". Thus it never becomes common knowledge.
In fact, it not only never becomes common knowledge, it also never becomes

common p-belief in the sense of Monderer and Samet (1989), for any p greater
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than 1
N
. An event is common p-belief if everyone believes it with probability at

least p, everyone believes with probability at least p that everyone believes it with
probability at least p, and so on. Let us see why statements about timing never
become common p-belief, if p > 1

N
. When does everyone believe that all clocks

read at least k? Suppose ¿i = k. Then individual i attaches probability exactly
1
N

to every individual having a time greater than or equal to k. If p > 1
N , there exists

± > 0, such that individual i attaches probability at least p to every individual
having a time greater than or equal to k only if ¿i ¸ k+±. Thus there is nth order
p-belief that all clocks have started only if each ¿i ¸ n±. Thus it never becomes
common p-belief.
Monderer and Samet (1989) showed that common p-belief for p close to 1 is a

su±cient condition for outcomes close to common knowledge outcomes. Morris,
Rob and Shin (1995) showed how it was a necessary condition in the sense that
a lack of common p-belief implied that one (out of many) common knowledge
equilibria had to be played. Carlsson and van Damme (1994) earlier showed this
in the particular context of noisy signals about payo®s. In this paper, noise about
the time plays an analogous role.

3.2. Interpretation

This note examined a particularly simple form of asynchronization. A more realis-
tic scenario might be the following. Up until some (stochastic) \switching time",
conditions are not ripe for work and it is a dominant strategy to shirk. After
that time, payo®s switch to those in this paper with Pareto-ranked symmetric
equilibria. Within " seconds of the switch, each player is informed of the switch.
Each player can choose actions contingent the actual time and on the length of
time since he received his message.
The analysis of this note can be extended to this more complex scenario.

Depending on the ex ante probability distribution on the switching time, there
may exist equilibria where everyone starts working at a certain time (and ignore
the arrival of messages). The existence of such an equilibrium will depend on the
ex ante distribution of the switching time. But for large N or small c

k
, it is not

possible to co-ordinate decisions to work using the messages. This can be shown
by exactly the same kind of argument as in this note: contingent on the real time,
each individual will put probability close to 1

N
on having received the message

with the most delay.
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How should this failure to use information to co-ordinate be interpreted? Ru-
binstein (1989) has argued in a related context that, in practise, boundedly ra-
tional players with \high order knowledge" will behave as if they had common
knowledge. In this context, this argument is unconvincing. If players decided
after a certain length of time to behave \as if" there was common knowledge that
all clocks had started, any symmetric view of the world would presumably require
that they still attach probability 1

N to being the last to start working. For large
N , this means they will not work.
I interpret this result as suggesting that imperfectly correlated information

will typically prevent co-ordination (of either fully rational or boundedly rational
players) when players cannot observe others' actions. Since co-ordination does
in fact occur, the ability to respond to others' actions is shown to be key to
generating co-ordination (see Gale (1993, 1995) and references therein).
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