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Abstract

We study dynamic moral hazard with symmetric ex ante uncer-
tainty about the difficulty of the job. The principal and agent update
their beliefs about the difficulty as they observe output. Effort is pri-
vate and the principal can only offer spot contracts. The agent has an
additional incentive to shirk beyond the disutility of effort when the
principal induces effort: shirking results in the principal having incor-
rect beliefs. We show that the effort inducing contract must provide
increasingly high powered incentives as the length of the relationship
increases. Thus it is never optimal to always induce effort in very long
relationships.
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1 Introduction

We analyze the long-run implications of the ratchet effect, arising from the
introduction of new technology, in a context where both firm and worker
are learning about its efficacy. Milgrom and Roberts (1990) provide a lucid
statement of the problem: when a firm installs new equipment, firms and
workers must learn the appropriate work standard. It is efficient to use
future information to adjust the standard, but this reduces work incentives
today.1 The ratchet effect arises from the combination of learning, moral
hazard and lack of long term commitment by the employer.

Earlier work on the ratchet effect usually assumes ex ante differential in-
formation. The agent has private information on the nature of the job, and
the principal is unable to make long term commitments. The problem is for-
mulated as one of dynamic mechanism design without commitment in which
the principal aims to induce the agent to reveal her private information.

We differ from this literature in formulating the ratchet effect as arising
from learning problem under symmetric incomplete information and moral
hazard (since worker effort is not observed by the principal). The princi-
pal and the agent are symmetrically uncertain about the difficulty of the
worker’s job. We assume that the principal cannot commit to long term
contracts, and has all the bargaining power when choosing optimal spot
(short-term) contracts. We also assume there is no limited liability, so the
agent will be left indifferent between accepting the principal’s optimal spot
contract and taking her outside option. Furthermore, since uncertainty per-
tains to the nature of the job, the outside option does not depend upon
what is learned. Finally, we assume signals do not allow for the principal’s
learning about job difficulty and about agent behavior to be disentangled
(in the sense that a signal that the state is good is also a signal of high effort,
and conversely). Our assumption on the structure of the signals is natural,
being satisfied by Holmström (1982) and most other parametric models.

The ratchet effect arises from the agent’s possible manipulation of the
principal’s beliefs by shirking. In a pure strategy equilibrium in which high
effort is chosen, the principal correctly anticipates the agent’s effort choices,
and the beliefs of the two parties about the nature of the job agree. However,
when the agent deviates and shirks, the beliefs of the two parties differ, at
least temporarily. Our analysis begins with a simple observation: In a two
period world, such a deviation increases the expected continuation value of

1In the sociological literature, Mathewson (1931), Roy (1952), and Edwards (1979) are
workplace studies that document the importance of output restriction in order to influence
the firm’s beliefs.
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the agent. In consequence, any incentive compatible contract inducing high
effort must be sufficiently high powered to offset this deviation gain. Thus,
the ratchet effect gives rise to a dynamic incentive cost (which we term
the future information rent from shirking, or FIRS ), since the agent must
be exposed to additional risk in order to overcome the incentive problem
(Proposition 1). Since the principal must compensate the agent for increased
risk, his wage costs increase. This finding generalizes Milgrom and Roberts
(1990), who show this in a model with a linear technology and normal model
signals, since we find that this applies under a general information structure
and general agent preferences.

The bulk of our analysis concerns the behavior of the dynamic incentive
cost as the time horizon T increases. Our focus is on sequentially incentive
efficient contracts, where the principal induces high effort in every period.
While it is intuitive that the future information rents from shirking in any
period should increase with the time horizon, there is a subtlety. The dy-
namic incentive cost is essentially the opportunity cost of not shirking, and
little is known about the comparative statics of the optimal effort contract
with respect to costs of shirking. Nonetheless, it turns out that the intuitive
increase with the time horizon does occur if either the agent has a spe-
cific form of CRRA preferences (Proposition 3) or if the signal distribution
satisfies one additional collinearity restriction.

However, a plausible conjecture is that this effect, when present, tapers
off: since the both principal and agent learn the state of the world, there
is very little uncertainty remaining towards the end of the game. Our main
result is that this conjecture is false. Under the collinearity restriction on
the signal distribution, the cost of inducing effort in any period is at least
linear in the remaining duration of the relationship (Proposition 4). The key
insight is the following. Consider the cost of inducing effort in the initial pe-
riod in a three period setting relative to that in a two period setting. In the
three period setting, the initial period future information rents from shirk-
ing reflects the increased value of different beliefs in period 2 arising from
a period 2 contract that is more high powered than the period 2 contract
in the two period setting (which is just the statically optimal contract).
We also provide an example showing that in the absence of this positive
feedback from one period’s future information rents from shirking to ear-
lier periods, the value from having different beliefs in all future periods is
bounded (Proposition 6). We also show a similar phenomenon arises under
an infinite horizon with discounting (Proposition 7). Finally, our results on
the cost of inducing effort imply that it is never optimal to always induce
effort when the time horizon is long enough, if the agent’s utility function
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is log, or if we have a sequence of short lived principals. While characteriz-
ing the optimal optimal pattern of elicited effort is beyond the scope of the
current analysis, we do report some suggestive numerical calculations in the
last Section.

1.1 Related Literature

This paper is related to a growing literature on dynamic moral hazard with
learning/experimentation. Holmström’s (1982) career concerns model is a
pioneering example.2 Like us, Holmström (1982) assumes there is symmetric
incomplete information, but critically, in that paper, learning relates to the
talent of the agent (not the nature of the job), and so affects the agent’s
outside option.

As we mentioned earlier, much of the work on the ratchet effect focuses
on the asymmetric information case, where the principal wishes to elicit the
private information of the agent. Lazear (1986) argues that high powered
incentives are able to overcome the ratchet effect, without any efficiency loss,
assuming that the worker is risk neutral. Gibbons (1987) shows that Lazear’s
result depends upon an implicit assumption of long term commitment; in its
absence, one cannot induce efficient effort provision by the more productive
type.3 Laffont and Tirole (1988) prove that in general one cannot induce
full separation given a continuum of types.4 Laffont and Tirole (1993) have
a comprehensive discussion, and consider both the case of binary types and
of a continuum of types. Gerardi and Maestri (2015) analyze an infinite
horizon model with binary types.

More recently, there has been increased interest in agency models with
learning, where the uncertainty also pertains to the nature of the project.
Bergemann and Hege (1998, 2005), Manso (2011), Hörner and Samuelson
(2015), and Kwon (2011) and analyze agency models with binary effort,
binary signals and limited liability. There is also recent work on learning
in agency models with private actions in continuous time and continuum
action spaces including DeMarzo and Sannikov (2011), Cisternas (2014), and
Pratt and Jovanovic (2014), that examines the agent’s incentives for belief
manipulation. Bhaskar (2014) studies a two-period model that makes the

2Extensions of the career concerns model include Gibbons and Murphy (1992) and
Dewatripont, Jewitt, and Tirole (1999).

3See also Freixas, Guesnerie, and Tirole (1985) and Carmichael and MacLeod (2000).
4Malcomson (2016) shows that the no full-separation result also obtains in a relational

contracting setting, where the principal need not have all the bargaining power, as long
as continuation play following full separation is efficient.
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same informational and contracting assumptions as in the present paper,
but allows for continuum effort choices (rather than binary). The main
finding is that the principal cannot implement interior effort choices in the
first period. Since the agent can increase his continuation value by shirking,
this must be dissuaded by high powered incentives. However, this implies
that the agent can deviate upwards, and increase his current payoff, without
any loss in continuation value since he can always quit the job tomorrow.

2 The model

We study a risk neutral principal (whom we treat as female) who repeatedly
hires a risk averse agent (whom we treat as male) to undertake some task.
In each period, the principal offers a spot contract to the agent, who decides
whether to accept or reject it. If the agent rejects the contract, the relation-
ship is dissolved and the game ends. If the agent accepts the contract, the
agent then decides whether to exert effort e (incurring a disutility of c > 0)
or shirk s (which is costless). As usual, there is moral hazard, with this
choice not observed by the principal. Moreover, there is uncertainty about
the “difficulty” of the task. Specifically, there are two states of the world
ω ∈ {B,G}, with the task being easy in G, and hard in B. The uncertainty
concerns how difficult it is to succeed on this job. Importantly, it does not
affect outside option of the agent, which we normalize to 0.

The choice a ∈ {e, s} by the agent determines, with the state of the
world, the probability distribution over signals y ∈ Y , where Y := {y1, y2,
. . . , yK} is a finite set of signals. The spot contract specifies the wage pay-
ment as a function of the realized signal.

The agent updates his beliefs about the state knowing his own effort
choice and the realized public signal. The principal updates her beliefs
knowing only the signal, since the agent’s effort is not public (i.e., it is not
observed by the principal).

The agent’s flow utility from a wage payment w ∈ R is u(w), where u is
strictly increasing and concave. To guarantee individual rationality binds,
we assume unlimited liability, so that there are no constraints on the size
and sign of utility payments.

We find it more convenient to work with utility schedules, so we write a
spot contract as a utility schedule u := (u1, . . . , uK), where uk is the utility
the agent will receive after signal yk. The wage cost of providing utility level
uk is written w(uk) := u−1(uk).

We do not specify how output signals translate into revenues for the
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principal. While solving for the equilibrium of the game does require speci-
fying the principal’s trade-off between revenues and wage costs, that is not
our focus. Our focus, rather, is on the important preliminary step of charac-
terizing the expected cost minimizing sequence of spot contracts that induce
effort in every period. This step is independent of the revenue consequences
of effort.5

There are a finite number of signals with the probability of signal yk

at action a ∈ {s, e} and state ω ∈ {B,G} denoted by pk
aω. Our interest

is in settings where a signal that the state is good is also a signal of high
effort (and conversely), so that it is impossible to disentangle the two. Most
parametric models in the learning/experimentation literature satisfy this
assumption. For example, it is satisfied if the signal is the number of Poisson
distributed successes, with an arrival rate increasing in both the ease of the
job and effort. We capture this by the following assumption.

Assumption 1.

1. There exists an informative signal, i.e., there exists yk ∈ Y such that∣
∣{pk

sB , pk
eB , pk

sG, pk
eG}
∣
∣ 6= 1.

2. For any informative signal yk ∈ Y ,

min
{

pk
sB , pk

eG

}
< pk

sG, pk
eB < max

{
pk

sB , pk
eG

}
.

3. Signals have full support: pk
aω > 0 for all k, a, ω.

We partition the set of signals into a set of “high” signals Y H , “low”
signals Y L, and neutral Y \ (Y H ∪ Y L) by setting

yk ∈ Y H if pk
eG > pk

sB

and
yk ∈ Y L if pk

eG < pk
sB .

A player with belief μ that the task is easy (ω = G) assigns a probability
to signal yk of pk

aμ := μpk
aG +(1−μ)pk

aB . Assumption 1 immediately implies

yk ∈ Y H ⇐⇒ pk
eG > pk

eB , pk
sG > pk

sB ⇐⇒ pk
eμ > pk

sμ

5This analysis also does not depend upon the principal’s time preference. Also, it is
possible to generalize the results to the case where the principal is risk-averse, as long as
the agent’s incentive constraint binds in the static contract.
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and
yk ∈ Y L ⇐⇒ pk

eG < pk
eB , pk

sG < pk
sB ⇐⇒ pk

eμ < pk
sμ.

In other words, high signals arise with higher probability when either the
agent exerts effort or the state is good. An important implication of this
property is that if the principal believes that the agent is exerting effort,
but the agent is in fact shirking, then on average, the principal is more
pessimistic than the agent.

Lemma 1. Suppose the signals satisfy Assumption 1. Then,

μ =
∑

k
pk

sμ

μpk
sG

pk
sμ

>
∑

k
pk

sμ

μpk
eG

pk
eμ

.

Proof. Assumption 1 implies

yk ∈ Y H ⇐⇒ pk
eμ > pk

sμ ⇐⇒ pk
eG > pk

eμ

and
yk ∈ Y L ⇐⇒ pk

eμ < pk
sμ ⇐⇒ pk

eG < pk
eμ.

Thus,

μ −
∑

k
pk

sμ

μpk
eG

pk
eμ

= μ
∑

k
(pk

eμ − pk
sμ)

pk
eG

pk
eμ

> μ
∑

k
(pk

eμ − pk
sμ) = 0.

Suppose the principal and agent both assign probability μ to the task
being easy. The statically optimal spot contract offered by the principal is a
contract u ∈ RK minimizing its expected cost of provision

peμ ∙ w(u),

where paμ := (p1
aμ, . . . , pK

aμ), subject to incentive compatibility

peμ ∙ u − c ≥ psμ ∙ u (IC)

and individual rationality
peμ ∙ u − c ≥ 0. (IR)

Since the principal is risk neutral and the agent is risk averse, both (IC) and
(IR) bind at the statically optimal contract, which is unique and denoted
ûμ.

Another important implication of Assumption 1 is the following lemma
and its implication.
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Lemma 2. Suppose the signals satisfy Assumption 1. Then the statically
optimal contract satisfies

(peG − peB) ∙ ûμ > 0.

Proof. From (IC), we have

(peμ − psμ) ∙ ûμ > 0.

Observe that ûk
μ ≥ ûk′

μ if pk
eμ > pk

sμ and pk′

eμ ≤ pk′

sμ. [If not, there exists k

and k′ such that ûk
μ < ûk′

μ with pk
eμ > pk

sμ and pk′

eμ ≤ pk′

sμ. The contract

that equals the old contract except at signals yk and yk′
, where the utility

promises are replaced by the constant value (pk
eμûk

μ + pk′

eμûk′

μ )/(pk
eμ + pk′

eμ),
satisfies (IC) and (IR), at lower cost.]

Assumption 1 then implies that ûk
μ ≥ ûk′

μ for yk ∈ Y H and yk′
∈ Y L,

proving the lemma.

Suppose the principal assigns probability μ to G and offers a static con-
tract u at which the (IR) binds (given peμ). If the agent has belief π and
exerts effort, the agent’s payoff from exerting effort is

V ∗(π, μ) : = peπ ∙ u − c

= peμ ∙ u − c + (π − μ)(peG − peB) ∙ u

= (π − μ)(peG − peB) ∙ u. (1)

Hence, from Lemma 2, when the principal is less optimistic than the agent,
the statically optimal contract ûμ gives the agent a strictly positive payoff.
When μ < π, the principal uses overpowered incentives to induce effort,
since the agent believes the task is easier (on average) than the principal
believes the agent believes.

3 Two time periods

We begin with the first two period case. The principal minimizes the total
wage costs. The agent maximizes total expected payoff. To minimize no-
tation, we assume the agent does not discount in the finite horizon setting.
Our results hold under discounting, with obvious modifications; we discuss
discounting in more detail when we analyze the infinite horizon setting in
Section 8.

Neither the principal nor the agent can commit in period 1 to wages or
effort in period 2, so each period’s spot contract satisfies incentive compat-
ibility (IC) and individual rationality (IR) in that period.
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We are interested in the most efficient sequence of spot contracts inducing
e in every period. Since there is incomplete information, we require that both
the principal and the agent’s behavior be sequentially rational after every
history, and that both actors update using Bayes’ rule whenever possible.
The common prior probability on G of the principal and agent is denoted μ†.
Let μk

a := ψk
a(μ

†) be the posterior probability on G after yk under action a.
While the principal does not observe effort, under the sequence of incentive
efficient contracts, she assigns probability one to the agent choosing e.

Denote the first period spot contract by u(1) := (u1(1), . . . , uK(1)), and
the second period spot contract offered by the principal after signal yk by
u(yk) := (u1(yk), . . . , uK(yk)).

Definition 1. A two period sequence of contracts (u(1), (u(yk))yk∈Y ) is se-
quentially effort incentive efficient if

1. for every first period signal realization yk ∈ Y , u(yk) minimizes

peμk
e
∙ w(u) =

∑

k′

pk′

eμk
e

w(uk′
)

subject to the agent finding it optimal to participate and exert effort in
the second period after exerting effort in the first period, and

2. u(1) minimizes
∑

pk
eμ†w(uk) subject to the agent finding it optimal to

participate and exert effort in the first period.

Under a sequentially effort incentive efficient sequence of contracts, the
agent exerts effort in every period, and the second period beliefs of the agent
and principal agree. In particular, after yk, the second period effort incentive
efficient contract solves the static problem with public beliefs μk

e .
The first period is more complicated, since the agent’s deviation to shirk-

ing in the first period results in the principal and agent having different
beliefs. After signal yk, the agent has update μk

s , which differs from the
principal’s update of μk

e . In addition, the principal is mistaken in her con-
viction that the agent also has the belief μk

e .
We saw at the end of the previous section that if μk

s > μk
e , then the agent

receives a strictly positive payoff from the contract ûμk
e
. As a consequence,

the agent’s second period expected payoff strictly increases from shirking in
the first period:

1. Lemma 1 implies there is a signal yk such that μk
s > μk

e , with a resulting
second period gain from deviation.
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2. For any signal yk satisfying μk
s < μk

e , the IR constraint is violated, and
the agent walks away, obtaining his reservation utility.

Thus, the first period spot contract must satisfy the constraint

peμ† ∙ u(1) − c ≥ psμ† ∙ u(1) + W (μ†), (2)

where W (μ†) is the expected payoff in the second period from shirking rather
than exerting effort in the first period. This is the one period future infor-
mation rent from shirking. We have just seen that

W (μ†) ≥
∑

yk
pk

sμ† max{V ∗(μk
s , μ

k
e), 0} > 0,

and so the statically optimal contract ûμ† does not satisfy (2). The first pe-
riod spot contract must be more high powered than the statically optimally
contract in order to deter shirking.

We summarize this discussion in the following proposition.

Proposition 1. Suppose the two period sequence of contracts (u(1), (u(yk))yk∈Y )
is sequentially effort incentive efficient. Then, the first period contract u(1)
is more high powered than the statically optimal contract ûμ† :

(peμ† − psμ†) ∙ u(1) > c = (peμ† − psμ†) ∙ ûμ†

and
peμ† ∙ u(1) = peμ† ∙ ûμ† = c.

4 Finite Horizon

We consider next the finite horizon setting, with T periods in the relation-
ship. We index periods backwards, so in period t, there are t − 1 periods
remaining after the current one. In period τ = T, . . . , 1, the principal has
observed the history hτ ∈ Y T−τ , and offers a spot contract u(hτ ). In the
following definition, ĥt is the common T − t initial segment of each hτ .

Definition 2. A sequence of contracts ((u(hτ ))hτ∈Y T−τ )τ=1,...,T is sequen-
tially effort incentive efficient (SEIE) if for every t ∈ {T, . . . , 2, 1} and every
ĥt ∈ Y T−t, the sequence minimizes

t∑

τ=1

Ehτ ,yk{w(uk(hτ , yk)) | ĥt, aτ = e, aT = ∙ ∙ ∙ = aτ−1 = e]

subject to the agent finding it optimal to participate and exert effort in period
t and in every subsequent period after every public history, conditional on
the agent having exerted effort in every previous period.
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Since the behavior of the principal in any period is completely determined
by her beliefs about the state updated from the public history, we can solve
for SEIE recursively, beginning in the last period (period 1; recall we index
periods backwards).

We need to consider situations in which the agent and principal have
different beliefs. Let V (π, μ, t) denote the agent’s value function in period t
when his belief is π and the principal’s belief is μ (for our purposes, these
beliefs are the result of updating using ht ∈ Y T−t, the period t public his-
tory). Denote the effort incentive efficient contract offered by the principal
in period t by uμ(t).

In the last period, period 1, the principal, given his updated beliefs μ,
offers the contract uμ(1) := ûμ. The agent’s value from this contract is

V (π, μ, 1) = max
{
peπ ∙ uμ(1) − c, psπ ∙ uμ(1), 0

}
.

If beliefs agree the value is zero, i.e., V (μ, μ, 1) = 0.
Proceeding recursively, in period t,

V (π, μ, t) = max
{
peπ ∙ uμ(t) − c +

∑
k pk

eπV (ψk
e(π), ψk

e(μ), t − 1),

psπ ∙ uμ(t) +
∑

k pk
sπV (ψk

s(π), ψk
e(μ), t − 1), 0

}
,

where ψk
a(β) is the posterior probability on G after yk under action a, given

a prior β.
On the equilibrium path, the agent always exerts effort, so that in period

t, at belief μ, the contract uμ(t) satisfies the incentive constraint

peμ ∙ uμ(t) − c +
∑

k pk
eμV (ψk

e(μ), ψk
e(μ), t − 1)

≥ psμ ∙ uμ(t) +
∑

k pk
sμV (ψk

s(μ), ψk
e(μ), t − 1)

and the participation constraint

peμ ∙ uμ(t) − c +
∑

k pk
eμV (ψk

e(μ), ψk
e(μ), t − 1) = 0.

Since V (μ′, μ′, 1) = 0 for all μ′, induction immediately implies V (μ′, μ′, t) =
0 for all μ′.

Defining
W (μ, t) :=

∑
k pk

sμV (ψk
s(μ), ψk

e(μ), t − 1), (3)

as the future information rent from shirking (FIRS) in period t, the period-t
incentive constraint can then be written as

peμ ∙ uμ(t) − c ≥ psμ ∙ uμ(t) + W (μ, t).

Summarizing this discussion, we have:
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Proposition 2. A sequence of contracts ((u(hτ ))hτ∈Y T−τ )τ=1,...,T is sequen-
tially effort incentive efficient (SEIE) if and only if u = u(hτ ) minimizes

peμ(hτ ) ∙ w(u)

subject to

1. μ(hτ ) = Pr[G | hτ , aT = ∙ ∙ ∙ aτ−1 = e],

2. peμ(hτ ) ∙ u − c ≥ psμ(hτ ) ∙ u + W (μ(hτ ), t), and

3. peμ(hτ ) ∙ u − c ≥ 0.

Furthermore, the two inequalities hold as equalities in every SEIE contract.

From Section 3, we know W (μ, 2) > 0. Is W (μ, t) increasing in t, and if
it is increasing, does it increase without bound?

Intuitively, W (μ, 3) should be larger than W (μ, 2), because the latter
reflects the value of different beliefs induced by shirking under a statically
optimal contract for a less demanding incentive compatibility constraint.
This is essentially a question of comparative statics on static contracts with
respect to the opportunity cost of shirking, which turns out to be a lot
harder than comparative statics with respect to the disutility of effort. The
next section outlines the problem.

5 Comparative Statics of Optimal Contracts

The contract uμ(t) described in Proposition 2 solves a static incentive prob-
lem that is an instance of the following. The principal solves (where w(uk) =
u−1(uk) is the wage necessary for the agent to receive utility uk)

min
{uk}

∑

k
pk

eμw(uk)

subject to
∑

k
pk

eμuk − c ≥
∑

k
pk

sμuk + W (IC∗)

and
∑

k
pk

eμuk − c ≥ 0. (IR∗)

Suppose W and W̃ are two distinct opportunity costs of shirking, with
W > W̃ . Let u and ũ denote the vectors of utilities in the corresponding
optimal contracts. Since IC holds with equality we have
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(peμ − psμ) ∙ u = c + W

and
(peμ − psμ) ∙ ũ = c + W̃ .

We are interested in the properties of the vector ũ − u. In particular,
recalling (1), we would like to conclude

W > W̃ =⇒ (peG − peB) ∙ (u − ũ) > 0. (4)

While we know
(peμ − psμ) ∙ (u − ũ) = W − W̃ , (5)

without further assumptions, this does not imply (4).
There is one setting with general probabilities where we can deduce (4),

and so the monotonicity of W (μ, t) in t, and that is where the agent has a
particular form of CRRA preferences.

Proposition 3. Suppose the agent’s utility function is given by

u(w) =
√

A + w,

where A > 0. If w(uk) > −A for all yk under W and W̃ , then the implication
(4) holds.

The paper assumes the agent’s utility function is unbounded below, but
only to ensure individual rationality is always binding. While CRRA utility
functions are not unbounded below, individual rationality will still be bind-
ing if w(uk) > −A for all yk. In particular, it will be for many periods for
the utility function in Proposition 3 for sufficiently large A.

Proof. Since w′(uk) = 2uk, the first order conditions for the principal’s
problem can be written as

2uk = λ + ζ

(

1 −
pk

sμ

pk
eμ

)

, k = 1, . . . ,K,

where λ is the multiplier on the IR constraint and ζ is the multiplier on the
IC constraint. The incentive constraint (peμ − psμ) ∙ u = c + W can then be
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rewritten as

c + W =
∑

k
(pk

eμ − pk
sμ)

[
λ

2
+

ζ

2

(

1 −
pk

sμ

pk
eμ

)]

=
∑

k

ζ

2
(pk

eμ − pk
sμ)

(

1 −
pk

sμ

pk
eμ

)

=:
ζX(μ)

2
,

where X(μ) > 0 from Assumption 1. This implies

ζ =
2(c + W )

X(μ)
,

and so

(peG − peB) ∙ (u − ũ) =
∑

k
(pk

eG − pk
eB)

(W − W̃ )
X(μ)

(

1 −
pk

sμ

pk
eμ

)

=: X∗(μ)(W − W̃ ), (6)

where X∗(μ) > 0 again from Assumption 1.

While Proposition 3 (and its proof) provide conditions under which the
future information rent from shirking is monotonic in T , it does not provide
a direct route to a lower bound on W (μ, t).

6 A Restriction on Signals

We now pursue a direct path to link (4) and (5) by assuming the vectors
(peG − peB) and (peμ − psμ) are collinear. Our goal is to bound W (μ, t) as
a function of t, since larger information rents require more high powered
incentives. We bound W (μ, t) from below by bounding V (π, μ, t).

Obtaining tight bounds for the value function is in general difficult. How-
ever, under the collinearity assumption, we are able to obtain useful bounds
by considering a particular specification of continuation play of the agent,
namely always exert effort. Denote by V ∗(π, μ, t) the agent’s value function
in period t when his belief is π and the principal’s belief is μ, and the agent
always chooses effort. Since

V (π, μ, t) ≥ V ∗(π, μ, t), (7)
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it is enough to bound V ∗(π, μ, t). The value recursion for V ∗ is

V ∗(π, μ, t) = peπ ∙ uμ(t) − c +
∑

k

pk
eπV ∗(ψk

e(π), ψk
e(μ), t − 1). (8)

As we saw from (1), if π > μ, the first flow term is positive, with subsequent
flows reflecting additional rents from updated differences in beliefs. How-
ever, beliefs merge (Blackwell and Dubins, 1962): the difference between
the agent’s and the principal’s posteriors vanishes. Consequently, in a long
relationship, the impact of a difference in beliefs after a deviation in the
initial period on the expected information rent in the last period is small.

Nonetheless, in the last period, any small information rent leads to an
increase (albeit small) in the power of the required incentives in the penulti-
mate period. This implies that the information rents in period 2 generated
from a difference in beliefs are greater than they would have been in the last
period. This in turn requires more high powered incentives in period 3, and
so on. This cascading effect implies that the effect of an additional period
upon period 1 incentives are non-negligible, no matter how long the time
horizon T is.

Proposition 4. Suppose there exists a vector γ ∈ RK , γ ∙ 1 = 0, and
constants α > 0 and β satisfying β > max{α, 1} > 0 such that

psG = psB + αγ,

peB = psB + γ,

and peG = psB + βγ.

Let

K := min
μ

(β − 1)
[μ(β − α) + (1 − μ)]

> 0.

For any integer t,

V (π, μ, t) ≥ V ∗(π, μ, t) ≥ (π − μ)Kct. (9)

Remark 1. With binary signals, the collinearity assumption is automati-
cally satisfied, since the space of probabilities is one-dimensional.

We now prove the proposition. Assumption 1 holds without further
restrictions on the parameters, with yk ∈ Y H if γk > 0 and yk ∈ Y L if
γk < 0. Note that peG−peB = (β−1)γ and peμ−psμ = [μ(β−α)+(1−μ)]γ.

15



We first state two implications of the assumed structure on signals. The
optimal spot contract in period t satisfies

c + W (μ, t) = (peμ − psμ) ∙ uμ(t) = [μ(β − α) + (1 − μ)]γ ∙ uμ(t) (10)

(where W (μ, 1) = 0), and so (since (IR) binds on uμ(t) at belief μ, recalling
(1))

peπ ∙ uμ(t) − c = (π − μ)(β − 1)γ ∙ uμ(t),

= (π − μ)
(β − 1)

[μ(β − α) + (1 − μ)]
(c + W (μ, t)). (11)

The first inequality in (9) is simply (7).
From the value recursion for V ∗ given in (8), we have

V ∗(π, μ, t) = peπ ∙ uμ(t) − c +
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1)

= (π − μ)
(β − 1)

[μ(β − α) + (1 − μ)]
(c + W (μ, t))

+
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1). (12)

A natural way to proceed is by induction. Suppose t = 1. Then,

V (π, μ, 1) ≥ V ∗(π, μ, 1)

= (π − μ)(peG − peB) ∙ uμ(1)

= (π − μ)(β − 1)γ ∙ uμ(1)

≥ (π − μ)Kc.

The inductive hypothesis is

V ∗(π, μ, t − 1) ≥ (π − μ)Kc(t − 1).

If this implied
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1) ≥ (π − μ)Kc(t − 1), (13)

then we would be done, since W (μ, t) ≥ 0 and so

(π − μ)K(c + W (μ, t)) ≥ (π − μ)Kc.

However, (13) fails because beliefs merge. From the inductive hypothesis
we have
∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1) ≥ Kc(t − 1)
∑

k
pk

eπ(ψk
e(π) − ψk

e(μ)).
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Using the equality pk
eπ = pk

eμ + (π − μ)(pk
eG − pk

eB), we have

∑

k
pk

eπ(ψk
e(π) − ψk

e(μ)) = π −
∑

k
pk

eπ

μpk
eG

pk
eμ

= π − μ − (π − μ)μ
∑

k
(pk

eG − pk
eB)

pk
eG

pk
eμ

= (π − μ)(1 − ξ(μ)), (14)

where

ξ(μ) := μ
∑

k
(pk

eG − pk
eB)

pk
eG

pk
eμ

> 0

is the merging deficit.6 Therefore, all we can conclude from the inductive
hypothesis with respect to the second term of (12) is

∑

k
pk

eπV ∗(ψk
e(π), ψk

e(μ), t − 1) ≥ (π − μ)Kc(t − 1)(1 − ξ(μ)). (15)

For future reference, a straightforward calculation shows that under the
collinear parameterization,

ξ(μ) = μ(β − 1)
∑

k
γk pk

eG

pk
eμ

. (16)

But the inductive hypothesis also bounds the future information rents
from shirking,

W (μ, t) =
∑

k
pk

sμV (ψk
s(μ), ψk

e(μ), t − 1)

≥ K(t − 1)c
∑

k
pk

sμ(ψk
s(μ) − ψk

e(μ)).

Now,

∑

k
pk

sμ(ψk
s(μ) − ψk

e(μ)) = μ −
∑

k
pk

sμ

μpk
eG

pk
eμ

= μ
∑

k

{
pk

eμ − pk
sμ

} pk
eG

pk
eμ

= μ
∑

k
[μ(β − α) + (1 − μ)]γk pk

eG

pk
eμ

=
[μ(β − α) + (1 − μ)]

(β − 1)
ξ(μ). (17)

6The strict positivity of ξ(μ) is an immediate implication of Assumption 1. As one
would expect, ξ(μ) → 0 as μ → 0 or 1 (recall

∑
k γk = 0 and use (16)).

17



Hence,
(β − 1)

[μ(β − α) + (1 − μ)]
W (μ, t) ≥ K(t − 1)cξ(μ). (18)

Substituting (15) and (18) into (12) yields

V ∗(π, μ, t) ≥ (π − μ)Kc[1 + (t − 1)ξ(μ) + (t − 1)(1 − ξ(μ))] = (π − μ)Kct,

completing the proof.
These calculations also give via (3), a lower bound on W .

Corollary 1. The future information rent from shirking is bounded below
by a linear function of time:

W (μ, t) ≥ Kc
[μ(β − α) + 1 − μ]

(β − 1)
ξ(μ)(t − 1).

The assumption on the structure of signals plays two roles in the analysis.
The first is to provide a relationship between peπ ∙uμ(t)−c and W (μ, t). The
second is connect the merging deficit with the bound on W (μ, t). While it is
possible to provide a relationship between peπ ∙ uμ(t)− c and W (μ, t) under
weaker assumptions, the connection of the merging deficit with the bound
on W (μ, t) is more subtle, and we have not found a more general condition.

We now precisely characterize the future information rents from shirking
under one simple additional restriction.

Proposition 5. Suppose the probability distribution on signals satisfies the
conditions of Proposition 4, and that peG+psB = peB +psG (i.e., β = α+1).

1. For all informative signals, yk, ψk
s(μ) > ψk

e(μ), and so after shirking
the agent is always more optimistic than the principal, and so never
takes the outside option.

2. If u satisfies IR with equality at peμ, then psπ ∙ u = peπ ∙ u − γ ∙ u.

3. The agent is always indifferent between exerting effort and shirking
under the optimal contract. An optimal continuation play for the agent
after shirking at a common belief μ is to accept every future contract
and always exert effort, so that, for all π ≥ μ,

V (π, μ, t) = V ∗(π, μ, t) = (π − μ)αct

and
W (μ, t) = cξ(μ)(t − 1).
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Proof.

1. A few lines of algebra shows that ψk
s(μ) − ψk

e(μ) has the same sign as
α(γk)2, which is strictly positive if and only if γk 6= 0, that is, if yk is
informative.

2. Consider a contract u that satisfies IR with equality at peμ. Then,

psπ ∙ u = (psπ − peμ) ∙ u + c + peμ ∙ u − c

= [π(psB + αγ) + (1 − π)psB

− μ(psB + βγ) − (1 − μ)(psB + γ)] ∙ u + c

= (παγ − μβγ − (1 − μ)γ) ∙ u + c

= (παγ − μαγ − μγ − (1 − μ)γ) ∙ u + c

= (π − μ)αγ ∙ u − γ ∙ u + c,

while

peπ ∙ u = (π − μ)(peG − peB) ∙ u + c

= (π − μ)(β − 1)γ ∙ u + c

= (π − μ)αγ ∙ u + c.

3. We prove by induction. The agent is clearly indifferent between effort
and shirt for t = 1, and V ∗(π, μ, 1) = (π − μ)αc. Suppose the agent is
indifferent between shirk and effort for τ = 1, . . . , t − 1. Then,

V (π, μ, τ ) = V ∗(π, μ, τ ) = (π − μ)αcτ, τ = 1, . . . , t − 1

and so
W (μ, t) = cξ(μ)(t − 1).

The difference between the value from effort and shirk in period t is

peπ ∙ uμ(t) − c +
∑

k pk
eπV (ψk

e(π), ψk
e(μ), t − 1)

−psπ ∙ uμ(t) −
∑

k pk
sπV (ψk

s(π), ψk
e(μ), t − 1)

= peπ ∙ uμ(t) − c − psπ ∙ uμ(t) + αc(t − 1)
∑

k(p
k
sπ − pk

eπ)ψk
e(μ)

= W (μ, t) + αc(t − 1)
∑

k(p
k
sπ − pk

eπ)ψk
e(μ)

= cξ(μ)(t − 1) − αc(t − 1)ξ(μ)/α = 0,

where the first equality comes from substituting for V = V ∗ evalu-
ated at t − 1 and simplifying, the second equality uses part 2 of the
proposition (and (10)), and the third equality applies the inductive
hypothesis again and (16)).
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pH
aω a = e a = s

ω = G r q + (2r − 1)
ω = B 1 − r q

Figure 1: The probability of the high signal yH as a function of the state
ω and action a, with 0 < q < r < 1 and 2r − 1 > 0 and q + r < 1. The
conditions of Proposition 5 hold.

7 Merging with Binary Signals

We have already seen in the two period case that the initial period contract
must be more high powered than the one period contract in order to com-
pensate for the one period FIRS. But this means that in the three period
contract, the FIRS reflects the increased value of different beliefs in period
2 from the more high powered period 2 contract, in addition to the value of
different beliefs in period 1.

How much of the lower bound on future information rents from shirking
is due to the value from having different beliefs in all future periods, and
how much is due to the positive feedback from one period’s increase in the
required power of the incentives to the previous period?

To shed light on this issue, we consider a symmetric binary signal envi-
ronment in which we have an exact expression for the FIRS: There are two
signals yH and yL, with the probability of yH given in Figure 1 (note that
peG + psB = peB + psG as required in Proposition 5).

By construction, beginning from a common prior, if the principal ex-
pects effort, but the agent shirks, then the agents is more optimistic than
the principal after both yH and yL. We are interested in the value to the
agent of shirking in the initial period (and so being more optimistic in ev-
ery future period), when there are no expected information rents after the
initial period.

Suppose that in each period (after the initial period), the principal of-
fers the statically optimal contract ûμ(t), where μ is the posterior update
assuming the agent has exerted effort previously. The principal has belief
ψe(μ, hτ ) =: μτ . This contract solves

uH − uL =
c

pH
eμτ − pH

sμτ

and
pH

eμτ uH + pL
eμτ uL = 0.
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The flow benefit to the agent from exerting effort is then, from (1),

[ψe(π, hτ ) − μτ ](pH
eG − pH

eB)(uH − uL) = [ψe(π, hτ ) − μτ ]
(2r − 1)c

pH
eμτ − pH

sμτ

.

The value to the agent of having belief π > μ at the end of the initial period
with t periods remaining is

V †(π, μ, t) = Eeπ

t∑

τ=1

[ψe(π, hτ ) − μτ ]
(2r − 1)c

pH
eμτ − pH

sμτ

,

where, as before, hτ ∈ Y t−τ . At the risk of emphasizing the obvious, observe
that because π > μ, for all hτ we have that ψe(π, hτ ) − μτ = ψe(π, hτ ) −
ψe(μ, hτ ) > 0.

We have the following proposition, which is proved in Appendix A.

Proposition 6. Suppose there are two signals with distributions given in
Figure 1 and 16r3(1 − r) < 1. There exists V̄ ∈ R such that for all t, and
π > μ,

V †(π, μ, t) < V̄.

While we have not been able to bound V † for other parameterizations,
we conjecture the result holds more generally. We interpret this result as
confirming our intuition that the incentive costs are unbounded in t due to
the positive feedback from the power of the incentives.

8 Infinite Horizon

In this section, we maintain the hypotheses on the probability distributions
of Proposition 4 and show that a similar phenomenon arises with an infinite
horizon. We assume both the principal and agent discount with possibly
different discount factors δA and δP < 1. We focus on stationary high effort
incentive efficient contracts.

Proposition 7. Suppose the probability distributions satisfy the conditions
in Proposition 4, and K is the constant defined in that proposition. Suppose
a stationary high effort incentive efficient contract exists and V (π, μ) is the
agent’s value when his belief is π and the principal’s belief is μ. Then,

V (π, μ) ≥
Kc(π − μ)

1 − δA
. (19)
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The denominator 1 − δA replaces the horizon, and analogously to the
finite horizon, as the agent becomes patient, future information rents from
shirking become arbitrarily large.

Let Y be the set of all functions mapping [0, 1]2 to R equalling zero on
the diagonal (i.e., V (μ, μ) = 0 for all μ ∈ [0, 1] and all V ∈ Y),7 and let
Ψ : Y → Y be the mapping defined by V ′ = Ψ(V ) given by

V ′(π, μ) := max
{

peπ ∙ uV
μ − c + δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)),

psπ ∙ uV
μ + δA

∑

k
pk

sπV (ψk
s(π), ψk

e(μ)), 0
}

, (20)

where uV
μ is the unique cost minimizing vector of utilities satisfying

peμ ∙ uV
μ − c ≥ psμ ∙ uV

μ + δA

∑

k
pk

sπV (ψk
s(π), ψk

e(μ)) (21)

and peμ ∙ uV
μ − c ≥ 0. (22)

For any stationary high effort incentive efficient contract, the value func-
tion V describing the agent’s value when his belief is π and the principal’s
belief is μ is a fixed point of Ψ.

We proceed as in the finite horizon case, bounding V by the value func-
tion when the agent exerts effort. Consequently, as for the finite horizon
case, we do not need to know the precise details of the spot contracts, here
uV

μ . It is enough to know that

peπ ∙u
V
μ −c = (π−μ)

(β − 1)
[μ(β − α) + (1 − μ)]

(
c + δA

∑

k
pk

sπV (ψk
s(π), ψk

e(μ))
)

,

which follows from familiar arguments (see (10) and (11)).

Lemma 3. Denote by V the subset of Y satisfying the inequality in (19).
The mapping Ψe : Y → Y defined by V ∗ = Ψe(V ), where

V ∗(π, μ) := peπ ∙ uV
μ − c + δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)) (23)

is a self-map on V, i.e.,
Ψe : V → V .

7We have already seen in the finite horizon setting that this property holds, and it could
be deduced here as well. Assuming it directly is without loss of generality and simplifies
our analysis.
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The proofs of all the lemmas in this section are in Appendix B.
Since

Ψ(V ) ≥ Ψe(V )

pointwise (i.e., for all (π, μ), Ψ(V )(π, μ) ≥ Ψe(V )(π, μ)) and Ψe : V → V ,
we have Ψ : V → V .

We now argue that any fixed point of Ψ must lie in V , which proves
Proposition 7. Since Ψ need not be a contraction, we argue indirectly.

Let Y0 := {V ∈ Y | V (π, μ) ≥ 0 ∀(π, μ)}. Clearly, Ψ : Y → Y0. For all
V ∈ Y0,

Ψ(V )(π, μ) ≥ Ψe(V )(π, μ) ≥ (π − μ)Kc.

Lemma 4. Defining

Yκ := {V ∈ Yκ−1 | V (π, μ) ≥ (π − μ)Kc(1 − δκ
A)/(1 − δA), ∀(π, μ)},

we have
Ψ : Yκ → Yκ+1, ∀κ ≥ 0.

Since V =
⋂

Yκ, we have the desired result.

Lemma 5. Every fixed point of Ψ is in V.

Proposition 7 implies a similar lower bound on the future information
rent from shirking to that in Corollary 1.

Corollary 2. The future information rent from shirking becomes unbounded
as the agent becomes arbitrarily patient:

W (μ) ≥
Kc

(1 − δA)
[μ(β − α) + 1 − μ]

(β − 1)
ξ(μ).

8.1 Existence of stationary high effort incentive efficient con-
tracts

A natural approach to obtaining existence of a well-defined value function
is to find conditions under which Ψ is a contraction. Since Ψ is the point-
wise maximum of Ψe (defined in (23)), Ψs (the analogous operator in which
the agent shirks in the current period, corresponding to the second term in
(20)), and the zero function, Ψ will be a contraction (under the sup norm)
if Ψe and Ψs are (again, under the sup norm).
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Suppose V, V̂ ∈ V . Then,

|Ψe(V )−Ψe(V̂ )|

≤ sup
π,μ

∣
∣
∣
∣

(π − μ)(β − 1)
μ(β − α) + (1 − μ)

∣
∣
∣
∣

× δA

∣
∣
∣
∑

k
pk

sπ[V (ψk
s(π), ψk

e(μ)) − V̂ (ψk
s(π), ψk

e(μ))]
∣
∣
∣

+ δA

∣
∣
∣
∑

k
pk

eπ[V (ψk
e(π), ψk

e(μ)) − V̂ (ψk
e(π), ψk

e(μ))]
∣
∣
∣

≤ |V − V̂ | ×

{

sup
π,μ

∣
∣
∣
∣

(π − μ)(β − 1)
μ(β − α) + (1 − μ)

∣
∣
∣
∣+ 1

}

δA.

This simple calculation shows that if Ψe is not a contraction, the failure
arises from the future information rent from shirking (which contributes the
sup term in the last expression. We also see that Ψe is a contraction if that
sup term is sufficiently small (relative to (1− δA)/δA). A similar calculation
shows that Ψs is also a contraction if a similar sup term is sufficiently small
(also relative to (1 − δA)/δA).8

A second approach to obtaining existence is to impose the same param-
eter restriction as in Proposition 5. In this case, we again have an exact
expression for the value function (for essentially the same reason).

Lemma 6. Suppose β = α + 1 (as in Proposition 5). The mapping Ψ has
as a fixed point the function

V (π, μ) =
αc(π − μ)

1 − δA
, (24)

and the associated stationary high effort incentive efficient contract is the
unique cost minimizing vector of utilities satisfying (21) and (22).

9 The Cost of Inducing Effort

We have shown that the agent’s opportunity cost of effort increases at least
linearly in the length of the relationship. We now examine how this trans-
lates to the principal’s expected wage cost in any period, as a function of the
length of the remaining relationship. We content ourselves with two simple
observations regarding the expected wage cost of inducing effort. First, if
the agent’s utility function is log, then the wage cost is exponential in the

8The sup in Ψe is being taken over |(pH
eπ − pH

eμ)/(pH
eπ − pH

sμ)|, while the sup in Ψs is
being taken over |(pH

sπ − pH
eμ)/(pH

eπ − pH
sμ)|.
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length of the relationship. Second, for any strictly concave utility function
the expected wage cost is at least linear in the length of the relationship.

Consider first log utility. The expected wage cost from the spot contract
uμ(t) can be bounded below as

peμ ∙ w(uμ(t)) =
∑

k
(pk

sB + μ(β − 1)γk) exp(uk
μ(t))

≥ μ(β − 1)
∑

k
γk exp(uk

μ(t))

≥ μ(β − 1) exp(γ ∙ uμ(t))

≥ μ(β − 1) exp(c + W (μ, t)).

Consider next an arbitrary strictly concave and differentiable u and as-
sume temporarily binary signals, {yL, yH}. Let uH

μ (1) and uL
μ(1) denote the

optimal contract in the static case, i.e., when t = 1, and let wH
μ (1) and wL

μ (1)
denote the corresponding wages. Since uH

μ (1)−uL
μ(1) = c/(pH

eμ − pH
sμ) (from

the incentive constraint) and u is strictly concave, u′(wH
μ (1)) > u′(wL

μ (1)).
Let a := u′(wH

μ (1)), and b := u′(wL
μ (1)). We approximate the function u by

the piece-wise linear function ũ,

ũ(w) =

{
ũ0 + a(w − w̃), w ≥ w̃,

ũ0 − b(w̃ − w) , w < w̃,

where (w̃, ũ0) is defined so that ũ is a continuous function, by the condition

ũ0 := uL
μ(1) + b

(
w̃ − wL

μ (1)
)

= uH
μ (1) − a

(
wH

μ (1) − w̃
)

as depicted in Figure 2.
Under binary signals, and the utility function ũ, the optimal contract in

period t, ũμ(t) = (ũL
μ(t), ũH

μ (t)), satisfies

Δũμ(t) := ũH
μ (t) − ũL

μ(t) =
c + W (μ, t)
pH

eμ − pH
sμ

.

The optimal contract is the pair (ũL
μ(t), ũH

μ (t)) solving

ũH
μ (t) = ũL

μ(t) + Δũμ(t) and

0 = pH
eμũH

μ (t) + (1 − pH
eμ)ũL

μ(t).

It is straightforward to verify that the expected cost of this contract is of
the same order as W (μ, t), and so linear in t (see Figure 2; while peμ does
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Figure 2: The original utility function u, the approximating piecewise lin-
ear utility function ũ, and the statically optimal contract uμ(1) for binary
signals. The contract uμ(1) is determined by Δuμ(1) and the requirement
that expected utility (under peμ) is zero. The expected cost of the contract
is then the corresponding value on the w-axis.
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vary as beliefs are updated, it is bounded by peB and peG ). It is also
straightforward to verify that the expected wage cost under the true utility
function u is strictly greater than that under ũ. Thus the expected wage
costs under the true utility function are bounded below by a linear function.
Finally, since we can find a sequence of strictly concave utility functions that
converge to ũ, one cannot in general do better than a linear bound.

We now argue that the linear bound applies to any arbitrary finite set of
signals satisfying the conditions of Proposition 4, by constructing a bounding
information structure that is equivalent to binary signals in the period whose
expected wage costs we are bounding.

Let yK denote the signal with maximum likelihood ratio (pk
e/pk

s) and y1

the signal with minimum likelihood ratio. The new information structure
is obtained from the original information structure by replacing each signal
yk, k 6= 1,K, with two signals ȳk and yk having probabilities θk

ap
k
aμ and

(1 − θk
a)p

k
aμ, respectively, under the action a ∈ {s, e}. The numbers θk

a are
chosen to satisfy

θk
ep

k
eμ

θk
sp

k
sμ

=
pK

eμ

pK
sμ

and
(1 − θk

e)p
k
eμ

(1 − θk
s)pk

sμ

=
p1

eμ

p1
sμ

,

so that the likelihood ratio of ȳk equals that of yK , while the likelihood ratio
of yk equals that of y1.

Since the optimal spot contract under the original information struc-
ture is feasible under the new information structure (by treating the pooled
{yk, ȳk} as yk), the expected wage cost of inducing effort under the original
information structure is at least as large as that from inducing effort under
the new structure. But since there are only two likelihood ratios under the
new information, there are only two wages offered in the optimal spot con-
tract (i.e., the optimal spot contract partitions the signal space into two,
{y1}∪{yk : k = 2, . . . ,K −1} and {yK}∪{ȳk : k = 2, . . . ,K −1}). We have
already seen that in this case, the expected wage cost is of the same order
as W (μ, t), and so is linear in t.

10 Endogenous Effort

We conclude with a few comments on endogenous effort. We maintain the
assumptions of Proposition 4, and consider the case of finite horizons only.
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Suppose the signal is the level of revenue accruing to the principal, so that
the expected revenue under action a and belief μ is Eaμy. Let w0 := w−1(0)
denote the constant wage that meets the agent’s IR constraint when the
agent shirks. We assume Eaμy − w0 > 0 for all a and μ so that employing
the agent is always optimal in the one-period problem. This implies that
employment is also efficient in the dynamic case, since the learning benefit
that accrues when the agent is employed (even if shirking) is positive. Let

R(μ) := Eeμy − Esμy

denote the principal’s incremental revenue from effort over shirk at belief μ.
Denote the expected wage cost of the contract uμ(t) by wμ(t).

In the one-period problem, the principal’s optimal policy is to induce
effort if

R(μ) > wμ(1) − w0,

and to induce shirking otherwise.9

We suppose first that, like the agent, the principal does not discount
future payoffs. A first easy result (really an observation) is that if the
agent’s utility is log, then it cannot be optimal for the principal to induce
effort in every period, for a sufficiently long horizon. For if the principal
were to do so, the expected wage cost of inducing effort in the initial period
grows exponentially in the horizon, while any potential benefit from doing
so grows at most linearly. But, as we saw in the previous section, it may
be that the expected wage cost grows only linearly. In that case, a simple
comparison is not possible.

In general, determining the principal’s optimal sequence of induced ef-
forts is complicated, not least because it will also involve elements of active
learning (experimentation) and possibly randomization over effort.

The principal will not induce randomized effort if the information struc-
ture such that ψk

s(μ) ≥ ψk
e(μ) for every k, so that the agent never quits

after shirking. Under this informational assumption, it is always optimal
for the principal to induce a deterministic level of effort, i.e. it is strictly
dominated for the principal to induce the agent to randomize between effort
and shirking. If the principal induces random effort at date t, then at t− 1,
then after any signal realization yk, the principal faces a screening problem,
where the types of the agent correspond to the beliefs associated with the
two different effort choices. If ψk

s(μ) ≥ ψk
e(μ) for every k, the agent never

9We assume that the principal induces shirking when she is indifferent, thereby focusing
attention on the principal optimal equilibrium, since such a policy minimizes the deviation
gain of the agent. Such an indifference does not arise generically.
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gets any informational rent after working, while he gets a rent from shirking,
just as in the case the principal induces working for sure. This implies that
the incentive constraint and participation constraint at date t for inducing
random effort are identical to the constraints for inducing work for sure,
thus ensuring that inducing random effort is dominated by one of the two
pure effort levels. If the informational structure is such that there is a signal
realization for which the agent is more pessimistic after shirking than after
working, then inducing random effort allows the principal to commit to pay
future rents to the agent who exerted effort. This relaxes both incentive and
participation constraints, and in this case, inducing random effort can be
optimal.

To illustrate how complicated the optimal sequence could be, we now
focus on the case of a sequence of short-lived principals contracting with the
long-lived agent. A short-lived principal will not induce effort for purposes
of experimentation/learning. She will only induce effort if the expected wage
cost of doing so is less than R(μ).

As for a long-lived principal and log utility agent, it is obviously never
optimal for a short-lived principal to induce effort when all future principals
induce effort and the horizon is long. A short run principal may induce
random effort. As discussed above, a sufficient condition for not inducing
random effort is that ψk

s(μ) ≥ ψk
e(μ) for every k.

A plausible conjecture is that for a sufficiently long lived agent, initially
the short-lived principals induce shirking, followed by a second and final
phase where they induce work. Intuitively, the initial phase reduces the
time horizon and uncertainty regarding the state, both of which reduce the
future informational rents from shirking, thereby permitting the principal to
induce effort in the second phase. This conjecture is incorrect: For suppose
not. Then the principal offers a deterministic spot contract in the first phase,
and since there is learning during the first phase, the future information rent
from shirking is the first period of the initial phase decreases to zero as the
first phase becomes arbitrarily long. Eventually, the initial principal will
prefer to induce effort.

The above considerations suggest that even for the case of short-lived
principals, the optimal sequence of induced agent behavior is complicated.
This is illustrated in Figures 3 and 4, which report the expected wage cost
of inducing effort given optimal future effort inducement (that is, effort in
a period is only induced if that period’s principal finds it optimal to do
so). For example, for T = 2, the initial period principal does not induce
effort for μ ∈ (.1, .2). Consequently, for T = 3, there is a discontinuity in
the expected wage cost of inducing effort in the initial period at μ = 4

7 :
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Figure 3: The expected wage cost of inducing effort in the initial period, as
a function of the prior μ and length of the horizon. There are two signals,
with pH

eG = 3
4 , pH

eB = pH
sG = 1

2 , and pH
sB = 1

4 . The cost of effort is c = 2 and
the agent’s utility functions if u(w) = 10 log w. Finally, yH − yL = 1.292,
so that R(μ) + w0 = 1.323. The horizontal line is R(μ) + w0, the vertical
line is μ = 0.65. The cyan solid line is for T = 1, the red dotted line is for
T = 2, and the purple dashed line is for T = 3.
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Figure 4: The expected wage cost of inducing effort in the initial period, as
a function of the prior μ for T = 4 and T = 5. The green dashed line is for
T = 4, and the blue dotted line is for T = 5. The parameter values are the
same as in Figure 3.

For μ > 4
7 , effort is induced in the second periods after all signals, and so

the FIRS is high. For μ just below 4
7 , the low signal leads to a posterior

in (.1, .2) and so a constant wage (no effort induced) in the second period,
with a consequently lower FIRS. Moreover, if slightly larger yH −yL, we see
it is possible for some priors to induce effort in the initial period for T = 3
but not for T = 2. Finally, we see that is there is no monotonicity of the
expected wage cost in either T or μ. At μ = .65, for example, this results
in effort being induced in the initial period for T = 1, 2, and 4 but not for
T = 3 and 5.
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A Proofs for Section 7

Lemma A.1. Suppose μ, π > 1
2 . Then, there exists σ ∈ (0, 1) such that for

all μ, π ≥ 1
2 and for all yk ∈ Y H ,

∣
∣
∣ψk

e(π) − ψk
e(μ)

∣
∣
∣ ≤ σ |π − μ| .

Proof. From some straightforward calculations, we have

ψk
e(π) − ψk

e(μ) =
πpk

eG

pk
eπ

−
μpk

eG

pk
eμ

=
(π − μ)pk

eGpk
eB

pk
eπpk

eμ

,

and so it remains to bound the ratio of probabilities.
Now, consider

fk(π, μ) := pk
eπpk

eμ − pk
eGpk

eB

= πμ(pk
eG)2 + (1 − π)(1 − μ)(pk

eB)2

− [πμ + (1 − π)(1 − μ)]pk
eGpk

eB .

This function is increasing in π and μ (since yk ∈ Y H), and so is minimized
at π = μ = 1

2 over π, μ ≥ 1
2 . That is,

fk(π, μ) ≥
1
4
(pk

eG − pk
eB)2 ∀π, μ ≥

1
2
.

Define

X := min
yk∈Y H

(pk
eG − pk

eB)2

4pk
eGpk

eB

and set

σ =
1

1 + X
∈ (0, 1). (A.1)

Then,

pk
eπpk

eμ − pk
eGpk

eB = fk(π, μ)

≥ Xpk
eGpk

eB

=

(
1
σ
− 1

)

pk
eGpk

eB ,

and so
pk

eGpk
eB

pk
eπpk

eμ

≤ σ.
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Proof of Proposition 6. For the purposes of this proof, it is more con-
venient to index periods forward rather than backward, so that hτ is the τ
length history leading to period τ , with T − τ periods remaining.

Given hτ , let n(hτ ) denote the difference between the number of yH and
yL realizations in hτ . Then, since pH

eB = pL
eG, histories of different lengths

lead to the same posterior as long as they agree in n(hτ ), i.e., for all hτ and
hτ ′

, with τ possibly different from τ ′,

n(hτ ) = n(ĥτ ′
) ⇒ ψe(μ, hτ ) = ψe(μ, ĥτ ′

).

We proceed by conditioning on G (the unconditional expectation is then
the average of the conditioning on G and the symmetric term from B).
Moreover, for large t, conditional on G, the probability that n(ht) is negative
goes to zero sufficiently fast, that it is enough to show that

Pr {n(hτ ) ≥ 0 for τ = 0, . . . , t − 1}×

E

{
t−1∑

τ=0

[ψe(π, hτ ) − ψe(μ, hτ )]

∣
∣
∣
∣
∣
G, aτ = e, n(hτ ) ≥ 0

}

(A.2)

is bounded. Moreover, we can also assume μ > 1/2, since conditional on G,
the probability that n(hτ ) is small becomes arbitrarily small as t becomes
large.

From Lemma A.1 (using the value of σ from (A.1)), we have that for
σ := 4r(1 − r) ∈ (0, 1), if π, μ > 1

2 , then

ψe(π, n(hτ )) − ψe(μ, n(hτ )) < σn(hτ )(π − μ).

Then the expression in (A.2) is bounded above by

t−1∑

τ=0

τ∑

n=0

Pr(n(hτ ) = n)σn(π − μ)

= (π − μ)
t−1∑

n=0

σn
t−1∑

τ=n

Pr(n(hτ ) = n)

≤ (π − μ)
∞∑

n=0

σn
∞∑

τ=n

Pr(n(hτ ) = n). (A.3)

We first bound

Pr(n(hτ ) = n) = b((τ + n)/2; τ , p) =

(
τ

(τ + n)/2

)

r(τ+n)/2(1 − r)(τ−n)/2.
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Using Stirling’s formula10

√
2π mm+1/2e−m ≤ m! ≤ e mm+1/2e−m for all positive integers m,

we bound the binomial coefficients as follows
(

τ
(τ + n)/2

)

=
τ !

(τ+n)
2 ! (τ−n)

2 !

≤
e τ τ+ 1

2 e−τ

2π
[

(τ+n)
2

] (τ+n)
2

+ 1
2
e−

(τ+n)
2

[
(τ−n)

2

] (τ−n)
2

+ 1
2
e−

(τ−n)
2

≤
τ τ+ 1

2

√
2
[

(τ+n)
2

] (τ+n)
2

+ 1
2
[

(τ−n)
2

] (τ−n)
2

+ 1
2

=
(2τ)τ+ 1

2

(τ2 − n2)
τ
2
+ 1

2

×

(
τ − n

τ + n

)n/2

≤
(2τ)τ+ 1

2

(τ2 − n2)
τ
2
+ 1

2

≤ 2τ+ 1
2

(
τ2

τ2 − n2

) τ
2
+ 1

4

.

We also need the following calculation. Setting k :=
√

(1 + σ)/(1 − σ),
gives for all τ > kn,

τ2

τ2 − n2
σ <

k2n2

k2n2 − n2
σ

=
k2

k2 − 1
σ

=
1 + σ

2σ
σ =

1 + σ

2
=: y < 1,

where the final inequality holds because σ < 1.

10See, for example, Abramowitz and Stegun (1972, 6.1.38).
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We are now in a position to bound (A.3), since

∞∑

n=0

σn
∞∑

τ=n

Pr(n(hτ ) = n) =
∞∑

n=0

σn
kn∑

τ=n

Pr(n(hτ ) = n)

+
∞∑

n=0

(

σ2 r

1 − r

)n/2 ∞∑

τ=kn+1

(
τ

(τ + n)/2

)

[r(1 − r)]τ/2

≤
∞∑

n=0

σn(k − 1)n

+
√

2
∞∑

n=0

(

σ2 r

1 − r

)n/2 ∞∑

τ=kn+1

(
τ2

τ2 − n2

) τ
2
+ 1

4

[4r(1 − r)]τ/2

≤
∞∑

n=0

σn(k − 1)n

+
√

2
∞∑

n=0

(

σ2 r

1 − r

)n/2 ∞∑

τ=kn+1

(
τ2

τ2 − n2

) 1
4

yτ/2.

Since σ < 1 and y < 1, this expression is bounded if

1 > σ2 r

1 − r
= 16r2(1 − r)2

r

1 − r
= 16r3(1 − r).

B Proofs for Section 8

Proof of Lemma 3. For V ∈ V ,

∑

k
pk

sμV (ψk
s(μ), ψk

e(μ)) ≥
∑

k
pk

sμ

Kc(ψk
s(μ) − ψk

e(μ))
1 − δA

≥
[μ(β − α) + (1 − μ)]

(β − 1)
Kcξ(μ)
(1 − δA)

(where the last inequality follows from (17)). This gives

V ∗(π, μ) ≥ (π − μ)K

{

c + δA
cξ(μ)

(1 − δA)

}

+ δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)).

Turning to the second term and applying (14) to obtain the equality gives

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)) ≥
Kc
∑

k pk
eπ(ψk

e(π) − ψk
e(μ))

1 − δA

= (π − μ)
Kc

(1 − δA)
(1 − ξ(μ)),
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so that

V ∗(π, μ) ≥ (π − μ)
Kc

(1 − δA)
{1 − δA + δAξ(μ) + δA(1 − ξ(μ))}

= (π − μ)
Kc

(1 − δA)
,

and so V ∗ ∈ V .

Proof of Lemma 4. For V ∈ Yκ, applying (17),

∑

k
pk

sμV (ψk
s(μ), ψk

e(μ)) ≥
∑

k
pk

sμ

Kc(1 − δκ
A)(ψk

s(μ) − ψk
e(μ))

(1 − δA)

≥
c(1 − δκ

A)ξ(μ)
(1 − δA)

(pH
eμ − pH

sμ).

Then, as in the beginning of the proof of Lemma 3,

Ψe(V )(π, μ) ≥ (π − μ)K

{

c + δA
(1 − δκ

A)cξ(μ)
(1 − δA)

}

+ δA

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)).

But

∑

k
pk

eπV (ψk
e(π), ψk

e(μ)) ≥
Kc(1 − δκ

A)
∑

k pk
eπ(ψk

e(π) − ψk
e(μ))

1 − δA

= (π − μ)
K(1 − δκ

A)c
(1 − δA)

(1 − ξ(μ)),

so that

Ψ(V )(π, μ) ≥ Ψe(V )(π, μ)

≥ (π − μ)
Kc

(1 − δA)
{1 − δA + δA(1 − δκ

A)ξ(μ) + δA(1 − δκ
A)(1 − ξ(μ))}

= (π − μ)
Kc(1 − δκ+1

A )
(1 − δA)

,

and so V ∗ ∈ Yκ+1.

Proof of Lemma 5. Each fixed point of Ψ must be in every Yκ, so that

V (π, μ) ≥
(π − μ)Kc(1 − δκ

A)
(1 − δA)

, ∀(π, μ),

for all κ, implying V ∈ V .
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Proof of Lemma 6. We need only show that the function specified in (24)
is a fixed point of Ψ. It is straightforward to verify that (24)) is a fixed
point of Ψe. Analogous calculations to those in Proposition 5 shows that
Ψe(V )−Ψs(V ) = 0 for V given by (24), and so (24) does indeed describe a
fixed point of Ψ.
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