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Abstract

This paper studies the use of a discrete instrumental variable to
identify the causal effect of a endogenous, mis-measured, binary treat-
ment in a homogeneous effects model with additively separable errors.
We begin by showing that the only existing identification result for
this case, which appears in Mahajan (2006), is incorrect. As such,
identification in this model remains an open question. We provide a
convenient notational framework to address this question and use it to
derive a number of results. First, we prove that the treatment effect
is unidentified based on conditional first-moment information, regard-
less of the number of values that the instrument may take. Second, we
derive a novel partial identification result based on conditional second
moments that can be used to test for the presence of mis-classification
and to construct bounds for the treatment effect. In certain special
cases, we can in fact obtain point identification of the treatment ef-
fect based on second moment information alone. When this is not
possible, we show that adding conditional third moment information
point identifies the treatment effect and completely characterizes the
measurement error process.

Keywords: Instrumental variables, Measurement error, Endogeneity,
Binary regressor, Partial Identification
JEL Codes: C10, C18, C25, C26
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1 Introduction

This paper studies the use of a discrete instrumental variable to identify the
causal effect of an endogenous, mis-measured, binary treatment in a homoge-
neous effects model with additively separable errors. Although a relevant case
for applied work, this setting has received little attention in the literature.
The only existing result for the case of an endogenous treatment appears in
an important paper by Mahajan (2006), who is primarily concerned with the
case of an exogenous treatment. As we show below, Mahajan’s identification
result for the endogenous treatment case is incorrect. As far as we are aware,
this leaves the problem considered in this paper completely unsolved.

We begin by providing a convenient notational framework within which
to situate the problem. Using this framework we then show that the proof
in Appendix A.2 of Mahajan (2006) leads to a contradiction. Throughout
his paper, Mahajan (2006) maintains an assumption (Assumption 4) which
he calls the “Dependency Condition.” This assumption requires that the in-
strumental variable be relevant. When extending his result for an exogenous
treatment to the more general case of an endogenous one, however, he must
impose an additional condition on the model (Equation 11), which turns out
to imply the lack of a first-stage, violating the Dependency Condition.

Since one cannot impose the condition in Equation 11 of Mahajan (2006),
we go on to study the prospects for identification in this model more broadly.
We consider two possibilities. First, since Mahajan’s identification results re-
quire only a binary instrument, we borrow an idea from Lewbel (2007) and
explore whether expanding the support of the instrument yields identifica-
tion based on moment equations similar to those used by Mahajan (2006).
While allowing the instrument to take on additional values does increase the
number of available moment conditions, we show that these moments cannot
point identify the treatment effect, regardless of how many (finite) values the
instrument takes on.

We then consider a new source of identifying information that arises from
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imposing stronger assumptions on the instrumental variable. Mahajan (2006)
and related papers, discussed below, use only conditional means of the out-
come to identify the treatment effect. However, if the instrument is not
merely mean independent but in fact statistically independent of the regres-
sion error term, as in a randomized controlled trial or a true natural exper-
iment, additional moment conditions become available. To the best of our
knowledge, this source of information has not been exploited in the extant
literature on instrumental variables. Under this stronger condition on the
instrument, we first show that conditional second moments of the outcome
variable identify the difference of mis-classification rates in the mis-measured
regressor: the probability that a true one is classified as a zero minus the
probability that a true zero is classified as a one. Because these rates must
equal each other when there is no mis-classification error, our result can be
used to test a necessary condition for the absence of measurement error. It
can also be used to construct simple and informative partial identification
bounds for the treatment effect. When one of the mis-classification rates is
known, this identifies the treatment effect. More generally, however, this is
not the case. We go on to show that conditional third moments point identify
both mis-classification rates. Thus, combining conditional first, second and
third moment information point identifies the treatment effect.

The remainder of this paper is organized as follows. In section 2 we
discuss the literature in relation to the problem considered here. Section 3
then lays out the econometric model, its assumptions, and our notational
framework. Section 4 considers identification based on conditional means,
showing that Mahajan’s proof is incorrect and that increasing the support
of the instrument cannot be used to obtain identification. Section 5 presents
our results under stronger conditions on the instrument, based on conditional
second and third moments of the outcome variable. Section 6 concludes.
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2 Related Literature

Many treatments of interest in applied work are binary. To take a partic-
ularly prominent example, consider treatment status in a randomized con-
trolled trial. Even if the randomization is pristine, which yields a valid binary
instrument (the offer of treatment), subjects may select into treatment based
on unobservables, and given the many real-world complications that arise in
the field, measurement error may be an important concern. As is well known,
instrumental variables (IV) based on a single valid instrument suffices to re-
cover the treatment effect in a linear model with a single endogenous regressor
subject to classical measurement errors. As is less well known, classical mea-
surement error is in fact impossible when the regressor of interest is binary:
because a true 1 can only be mis-measured as a 0 and a true 0 can only be
mis-measured as a 1, the measurement error must be negatively correlated
with the true treatment status (Aigner, 1973; Bollinger, 1996).

Measurement error in a binary regressor is usually called mis-classification.
The simplest form of mis-classification is so-called non-differential measure-
ment error. In this case, conditional on true treatment status, and possibly a
set of exogenous covariates, the measurement error is assumed to be uncor-
related with all other variables in the system. Even under this comparatively
mild departure from classical measurement error, the IV estimator is incon-
sistent (Black et al., 2000; Kane et al., 1999). Moreover, the probability limit
of the IV estimator does not depend on whether the treatment is endogenous
or not (Frazis and Loewenstein, 2003).

When the treatment is in fact exogenous, however, a valid instrument suf-
fices to recover the treatment effect using a non-linear GMM estimator. Black
et al. (2000) and Kane et al. (1999) more-or-less simultaneously pointed this
out in a setting in which two alternative measures of treatment are available,
both subject to non-differential measurement error. In essence, one measure
serves as an instrument for the other although the estimator is quite different

4



from IV.1 Subsequently, Frazis and Loewenstein (2003) correctly note that an
instrumental variable can take the place of one of the measures of treatment
in a linear model with an exogenous treatment, allowing one to implement
a variant of the GMM estimator proposed by Black et al. (2000) and Kane
et al. (1999). However, as we will show below, the assumptions required
to obtain this result are are stronger than Frazis and Loewenstein (2003)
appear to realize: the usual IV assumption that the instrument is mean in-
dependent of the regression error is insufficient for identification. Mahajan
(2006) extends the results of Black et al. (2000) and Kane et al. (1999) to
a more general nonparametric regression setting using a binary instrument
in place of one of the treatment measures. Although unaware of Frazis and
Loewenstein (2003), Mahajan (2006) makes the correct assumption over the
instrument and treatment to guarantee identification of the conditional mean
function. When the treatment is in fact exogenous, this coincides with the
treatment effect. Lewbel (2007) provides a related identification result in the
same model as Mahajan (2006) under different assumptions. In particular,
the variable that plays the role of the “instrument” need not satisfy the ex-
clusion restriction provided that it does not interact with the treatment and
takes on at least three distinct values.

Much less is known about the case in which the treatment, in addition to
suffering from non-differential measurement error, is also endogenous. Only
two papers consider this case. Frazis and Loewenstein (2003) briefly discuss
the prospects for identification in this setting. Although they do not provide
a formal proof they argue, in the context of their parametric linear model,
that the treatment effect is unlikely to be identified unless one is willing to
impose strong and somewhat unnatural conditions. The second paper that

1Ignoring covariates, the observable moments in this case are the joint probability dis-
tribution of the two binary treatment measures and the conditional means of the outcome
variable given the two measures. Although the system is highly non-linear, it can be
manipulated to yield an explicit solution for the treatment effect provided that the true
treatment is exogenous.

5



considers this case is Mahajan (2006). He extends his main result to the
case of an endogenous treatment, providing an explicit proof of identification
under the usual IV assumption in a model with additively separable errors.
Although their discussion does not apply to the non-parametric case, Frazis
and Loewenstein’s intuition turns out to be right: Mahajan’s proof is incor-
rect, as we prove below using a convenient notational framework introduced
in the following section.

3 The Model and Notation

Let T ∗ be a binary indicator of true treatment status, possibly endogenous,
x be a vector of exogenous covariates, and y be an outcome of interest where

y = h(T ∗,x) + ε (1)

and ε is mean zero. Since T ∗ is potentially endogenous, E[ε|T ∗,x] may not be
zero. Now let z be a discrete instrumental variable with support set {zk}K

k=1

satisfying the usual instrumental variables assumption, namely E[ε|z,x] = 0.
We assume throughout that z is a relevant instrument for T ∗, in other words

P(T ∗ = 1|zj,x) 6= P(T ∗ = 1|zk,x), ∀k 6= j. (2)

Our goal is to estimate the average treatment effect (ATE) function

τ(x) = h(1,x)− h(0,x). (3)

We maintain throughout that τ(x) 6= 0. If it were zero, this would imply
that T ∗ is irrelevant for y which can be directly tested regardless of whether
any mis-classification is present and regardless of whether T ∗ is endogenous.2

2This is because, as we will see below, the Wald Estimator is identified and is propor-
tional to the treatment effect. This estimator exists provided that we have a valid and
relevant instrument that takes on at least two values.

6



Now, suppose we observe not T ∗ but a noisy measure T polluted by non-
differential measurement error. In particular, we assume that

P(T = 1|T ∗ = 0, z,x) = α0(x) (4)

P(T = 0|T ∗ = 1, z,x) = α1(x) (5)

and additionally that

E[ε|T ∗, T, z,x] = E[ε|T ∗, z,x] (6)

Equations 4–5 amount to the assumption that z and T are conditionally
independent given (T ∗,x). In other words, z provides no additional informa-
tion about the process that causes T to be mis-classified above that already
contained in T ∗ and x. In contrast, we allow for the possibility that the mea-
surement error process does depend on the exogenous covariates x. Equation
6 states that, given knowledge of true treatment status, the instrument and
the exogenous covariates, the observed treatment status contains no informa-
tion about the mean of the regression error term. The assumptions on the
measurement error process contained in Equations 4–6 are standard in the
literature. Another standard assumption is the condition

α0(x) + α1(x) < 1 (7)

which rules out the possibility that 1−T is a better measure of T ∗ than T is,
and vice-versa. This condition is imposed in the literature (Black et al., 2000;
Frazis and Loewenstein, 2003; Kane et al., 1999; Lewbel, 2007; Mahajan,
2006) because in its absence the treatment effect would only be identified up
to sign. Our results will not in fact require the condition in Equation 7 to
hold.

Our arguments below, like those of Mahajan (2006) and Lewbel (2007),
proceed by holding the exogenous covariates fixed at some level xa. As such,
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z = 1 z = 1 . . . z = K

T = 0 ȳ01
p01

ȳ02
p02

. . . ȳ0K

p0K

T = 1 ȳ11
p11

ȳ12
p12

. . . ȳ1K

p1K

Table 1: Observables, using the shorthand p0k = qk(1− pk) and p1k = qkpk.

there is no loss of generality from suppressing dependence on x in our no-
tation. It should be understood throughout that any conditioning state-
ments are evaluated at x = xa. To this end let c = h(0,xa) and define
β = h(1,xa)− h(0,xa). Using this notation, Equation 1 can be re-expressed
as a simple linear model, namely

y = βT ∗ + u (8)

where we define u = c + ε, an error term that need not be mean zero. In
the context of Equation 8 the only observable information consists of the
moments of y, conditional on T, z, the conditional probabilities of T given z,
and the marginal probabilities of z. For now, following the existing literature,
we will restrict attention to the conditional mean of y. Below in section 5
we consider using higher moments of y. Let ȳt,k denote E[y|T = t, z = zk],
let pk denote P(T = 1|z = zk) and let qk = P(z = zk). Table 1 depicts the
observable moments for this problem.

The observed cell means ȳtk depend on a number of unobservable param-
eters which we now define. Let m∗tk denote the conditional mean of u given
T ∗ = t and z = zk, E[u|T ∗ = t, z = zk], and let p∗k denote P(T ∗ = 1|z = zk).
These quantities are depicted in Table 2. By the Law of Total Probability
and the definitions of pk and p∗k,

pk = P(T = 1|z = zk, T
∗ = 0)(1− p∗k) + P(T = 1|z = zk, T

∗ = 1)p∗k
= α0(1− p∗k) + (1− α1)p∗k
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z = 1 z = 1 . . . z = K

T ∗ = 0 m∗01
p∗01

m∗02
p∗02

. . . m∗0K

p∗0K

T ∗ = 1 m∗11
p∗11

m∗12
p∗12

. . . m∗1K

p∗1K

Table 2: Unobservables, using the shorthand p∗0k = qk(1−p∗k) and p∗1k = qkp
∗
k.

since the misclassification probabilities do not depend on z by Equations 4–5.
Rearranging,

p∗k = pk − α0

1− α0 − α1
, 1− p∗k = 1− pk − α1

1− α0 − α1
. (9)

Equation 9 implies that p∗k is observable up to knowledge of the mis-classification
rates α0, α1 since pk is observable. Thus, the full set of parameters needed to
characterize the model in Equation 8 consists of β, α0, α1 and the conditional
means of u, namely m∗tk for a total of 2K + 3 parameters. In contrast, there
are only 2K available moment conditions, namely:

ŷ0k = α1(pk − α0)(β +m∗1k) + (1− α0)(1− pk − α1)m∗0k

1− α0 − α1
(10)

ŷ1k = (1− α1)(pk − α0)(β +m∗1k) + α0(1− pk − α1)m∗0k

1− α0 − α1
(11)

by the Law of Iterated Expectations, where the observables on the left hand
side are defined according to ŷ0k = (1− pk)ȳ0k and ŷ1k = pkȳ1k. Notice that
the observable “weighted” cell mean ŷtk depends on both m∗tk and m∗1−t,k

since the cell in which T = t from Table 1 is in fact a mixture of both the
cells T ∗ = 0 and T ∗ = 1 from Table 2, for a particular column k.

Clearly we have fewer equations than unknowns. What additional re-
strictions could we consider imposing on the system? In a very interesting
paper, Lewbel (2007) proposes using a three-valued “instrument” that does
not satisfy the exclusion restriction. By assuming instead that there is no
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interaction between the instrument and the treatment, he is able to prove
identification of the treatment effect. Using our notation it is very easy to see
why and how Lewbel’s argument works. His moment conditions are equiva-
lent to Equations 10 and 11 with the additional restriction that m∗0k = m∗1k

for all k = 1, . . . , K. This leaves the number of equations unchanged at 2K,
but reduces the number of unknowns to K + 3. The smallest K for which
K+3 is at least as large as 2K is 3, which makes it clear why Lewbel’s proof
must require that the “instrument” take on at least three values.3

Unlike Lewbel (2007), we, along with Mahajan (2006) and others, assume
that z satisfies the exclusion restriction. This implies a different constraint
on the m∗tk from Table 2. Since u = c+ ε, E[ε|z] = 0 implies that

E[u|z] = E[u] = c. (12)

By the Law of Iterated Expectations, this can be expressed as

(1− p∗k)m∗0k + p∗km
∗
1k = c

for all k = 1, . . . , K. This restriction imposes that a particular weighted
sum over the rows of a given column of Table 2 takes the same value across
columns. Using Equation 9 and rearranging gives

(1− pk − α1)m∗0k

1− α0 − α1
= c− (pk − α0)m1k∗

1− α0 − α1

3The context considered by Lewbel (2007) is slightly different from the one we pursue
here, in that his “instrument” is more like a covariate: it is allowed to have a direct effect
on the outcome of interest. For this reason, Lewbel (2007) cannot use the exogeneity of
the treatment to obtain identification based on a two-valued instrument.
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which we can substitute into Equations 10 and 11 to yield

ŷ0k = α1(pk − α0)
(

β

1− α0 − α1

)
+ (1− α0)c− (pk − α0)m∗1k (13)

ŷ1k = (1− α1)(pk − α0)
(

β

1− α0 − α1

)
+ α0c+ (pk − α0)m∗1k. (14)

Equations 13 and 14 also make it clear why the IV estimator is inconsistent
in the face of non-differential measurement error, and that this inconsistency
does not depend on the endogeneity of the treatment, as noted by Frazis and
Loewenstein (2003). Adding together Equations 13 and 14 yields

ŷ0k + ŷ1k = c+ (pk − α0)
(

β

1− α0 − α1

)

completely eliminating the m∗1k from the system. Taking the difference of
the preceding expression expression evaluated at two different values of the
instrument, zk and z`, and rearranging

W = (ŷ0k + ŷ1k)− (ŷ0` + ŷ1`)
pk − p`

= β

1− α0 − α1
(15)

which is the well-known Wald IV estimator, since ŷ0k + ŷ1k = E[y|z = zk].
Imposing Equation 12 replaces the K unknown parameters {m∗0k}

K
k=1 with

a single parameter c, leaving us with the same 2K equations but only K + 4
unknowns. When K = 2 (a binary instrument) we have 4 equations and
6 unknowns. So how can one identify β in this case? The literature has
imposed additional assumptions which, using our notation, can once again be
mapped into restrictions on the m∗tk. Black et al. (2000), Kane et al. (1999),
and Mahajan (2006) make a joint exogeneity assumption on (T ∗, z), namely
E[ε|T ∗, z] = 0. Notice that this is strictly stronger than assuming that the
instrument is valid and the treatment is exogenous. In our notation, this joint
exogeneity assumption is equivalent to imposing m∗tk = c for all t, k. This
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reduces the parameter count to 4 regardless of the value ofK. Thus, when the
instrument is binary, we have exactly as many equations as unknowns. The
arguments in Black et al. (2000), Kane et al. (1999), and Mahajan (2006) are
all equivalent to solving Equations 13 and 14 for β under the added restriction
that m∗1k = c, establishing identification for this case. Frazis and Loewenstein
(2003) use the same argument in a linear model with a potentially continuous
instrument, but impose only the weaker conditions that the treatment is
exogenous and the instrument is valid. Nevertheless, a crucial step in their
derivation implicitly assumes the stronger joint exogeneity assumption used
by Black et al. (2000), Kane et al. (1999) and Mahajan (2006). Without this
assumption, their proof does not in fact go through.

If one wishes to allow for an endogenous treatment, clearly the joint ex-
ogeneity assumption m∗tk = c is unusable: we are back to 2K equations in
K + 4 unknowns. Based on the identification arguments described above,
there would seem to be two possible avenues for identification of the treat-
ment effect when a valid instrument is available. A first possibility would be
to impose alternative conditions on the m∗tk that are compatible with an en-
dogenous treatment. If z is binary, two additional restrictions would suffice
to equate the counts of moments and unknowns. This is the route followed
by Mahajan (2006) in his proof of identification with a binary instrument
and endogenous treatment. His Equation (11), expressed in our notation,
amounts to adding two cross-column restrictions in Table 2: m∗11 = m∗12 and
m∗01 = m∗02. Another possibility, suggested by Lewbel’s approach, would be
to rely on an instrument that takes on more than two values. Following
this approach would suggest a 4-valued instrument, the smallest value of
K for which 2K = K + 4. In the following section we present two of our
main results: first Mahajan’s approach leads to a contradiction, and second,
regardless of the value of K, β is unidentified based on conditional mean
information.
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4 Non-identification Based on First Moments

4.1 Mahajan’s Approach

Here we show that Mahajan’s proof of identification for an endogenous treat-
ment is incorrect. The problem is subtle so we give his argument in full detail.
We continue to supress dependence on the exogenous covariates x.

The first step of Mahajan’s argument is to show that if one could recover
the conditional mean function of y given T ∗, then a valid and relevant binary
instrument would suffice to identify the treatment effect.

Assumption 1 (Mahajan A2). Suppose that y = c+ βT ∗ + ε where

(i) E[ε|z] = 0

(ii) P(T ∗ = 1|zk) 6= P(T ∗ = 1|z`) for all k 6= `

(iii) P(T = 1|T ∗ = 0, z) = α0, P(T = 0|T ∗ = 1, z) = α1

(iv) α0 + α1 6= 1

Lemma 1 (Mahajan A2). Under Assumption 1, knowledge of the mis-classification
error rates α0, α1 suffices to identify β.

Proof of Lemma 1. Since z is a valid instrument that does not influence the
mis-classification probabilities

E[y|zk] = c+ βE[T ∗|zk] + E[ε|zk] = c+ βp∗k = c+ β
(

pk − α0

1− α0 − α1

)

by Equation 9. Since pk is observed, and z takes on two values, this is a
system of two linear equations in c, β provided that α0, α1 are known. A
unique solution exists if and only if p1 6= p2.

In his Theorem 1, Mahajan (2006) proves that α0, α1 can in fact be iden-
tified under the following assumptions.4

4Technically, one additional assumption is required, namely that the conditional mean
of y given T ∗ and any covariates would be identified if T ∗ were observed.
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Assumption 2 (Mahajan A1). Define ν = y − E[y|T ∗] so that by construc-
tion we have E[ν|T ∗] = 0. Assume that

(i) E[ν|T ∗, T, z] = 0.5

(ii) P(T ∗ = 1|zk) 6= P(T ∗ = 1|z`) for all k 6= `

(iii) P(T = 1|T ∗ = 0, z) = α0, P(T = 0|T ∗ = 1, z) = α1

(iv) α0 + α1 < 1

(v) E[y|T ∗ = 0] 6= E[y|T ∗ = 1]

Lemma 2 (Mahajan Theorem 1). Under Assumptions 2, the error rates
α0, α1 are identified as is the conditional mean function E[y|T ∗].

Proof of Lemma 2. See Mahajan (2006) Appendix A.1.

Notice that the identification of the error rates in Lemma 2 does not de-
pend on the interpretation of the conditional mean function E[y|T ∗]. If T ∗

is an exogenous treatment, the conditional mean coincides with the treat-
ment effect; if it is endogenous, this is not the case. Either way, the mean-
ing of α0, α1 is unchanged: these parameters simply characterize the mis-
classification process. Based on this observation, Mahajan (2006) claims
that he can rely on Lemma 2 to identify α0, α1 and thus the causal effect β
when the treatment is endogenous via Lemma 1. To do this, he must build
a bridge between Assumption 1 and Assumption 2 that allows T ∗ to be en-
dogenous. Mahajan (2006) does this by imposing one additional assumption:
Equation 11 in his paper.

Assumption 3 (Mahajan Equation 11). Let y = c+ βT ∗ + ε where E[ε|T ∗]
may not be zero and suppose that

E[ε|T ∗, T, z] = E[ε|T ∗].
5This is Mahajan’s Equation (I).
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Lemma 3. Suppose that y = c + βT ∗ + ε where E[ε|z] = 0 and define the
unobserved projection error ν = y−E[y|T ∗]. Then Assumption 3 implies that
E[ν|T ∗, T, z] = 0, which is Assumption 2(i).

Proof of Lemma 3. Taking conditional expectations of the causal model,

E[y|T ∗] = c+ βT ∗ + E[ε|T ∗]

which implies that

ν = y − c− βT ∗ − E[ε|T ∗] = ε− E[ε|T ∗].

Now, taking conditional expectations of both sides given T ∗, T, z, we see that

E[ν|T ∗, T, z] = E[ε|T ∗, T, z]− E [E (ε|T ∗) |T, T ∗, z]

= E[ε|T ∗, T, z]− E [ε|T ∗] = 0

by Assumption 3, since E[ε|T ∗] is (T ∗, T, z)–measurable.

To summarize, Mahajan’s claim is equivalent to the proposition that un-
der Assumptions 1(i), 2(ii)–(v), and 3, β is identified even if T ∗ is endogenous.
Although Lemmas 1, 2 and 3 are all correct, Mahajan’s claim is not. While
Assumption 3 does guarantee that Assumption 2(i) holds, when combined
with Assumption 1(i) it also implies that 2(ii) fails if T ∗ is endogenous. The
failure of Assumption 2(ii) in turn leads to a division by zero in the solution
to the linear system following Mahajan’s displayed Equation 26: the system
no longer has a unique solution so identification fails.

Proposition 1 (Lack of a First Stage). Suppose that Assumptions 1(i) and
3 hold and E[ε|T ∗] 6= 0. Then P(T ∗ = 1|z1) = P(T ∗ = 1|z2), violating
Assumption 2(ii).

15



Proof of Proposition 1. By the Law of Iterated Expectations,

E[ε|T ∗, z] = ET |T ∗,z [E (ε|T ∗, T, z)] = ET |T ∗,z [E (ε|T ∗)] = E [ε|T ∗] (16)

where the second equality follows from Assumption 3 and the final equality
comes from the fact that E[ε|T ∗] is (T ∗, z)–measurable. Using our notation
from above let u = c + ε and define m∗tk = E[u|T ∗ = t, z = zk]. Since c is
a constant, by Equation 16 we see that m∗01 = m∗02 and m∗11 = m∗12. Now,
by Assumption 1(i) we have E[ε|z] = 0 so that E[u|z1] = E[u|z2] = c. Again
using iterated expectations,

E [u|z1] = ET ∗|z1 [E (u|T ∗, z1)] = (1− p∗1)m∗01 + p∗1m
∗
11 = c

E [u|z2] = ET ∗|z2 [E (u|T ∗, z2)] = (1− p∗2)m∗02 + p∗2m
∗
12 = c

The preceding two equations, combined with m∗01 = m∗02 and m∗11 = m∗12

imply that p∗1 = p∗2 unless m∗01 = m∗11 = m∗02 = m∗12 = c. But this four-way
equality is ruled out by the assumption that E[ε|T ∗] 6= 0.

4.2 Generic Lack of Identification

We have seen that Mahajan (2006)’s approach cannot identify β when the
treatment is endogenous: Assumption 3 in fact implies that the instrument
is irrelevant. But this alone does not establish that a valid instrument is
insufficient to identify β when the treatment is endogenous. In particular, our
equation counts from above appear to suggest that a valid instrument that
takes on at least four values might suffice for identification. Unfortunately,
this is not the case as we now show.

Theorem 1 (Lack of Identification). Suppose that Assumption 1 holds and
additionally that E[ε|T ∗, T, z] = E[ε|T ∗, z] (non-differential measurement er-
ror). Then regardless of how many values z takes on, generically β is uniden-
tified based on the observables contained in Table 1.
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Proof of Theorem 1. The assumptions of this Theorem are the same as those
used to derive Equations 13 and 14. These expressions, for k = 1, . . . , K
constitute the full set of available moment conditions. To establish lack of
identification, we derive a parametric relationship between β and the other
model parameters such that, varying β along this parametric relationship,
the observables (ŷ0k, ŷ1k) are unchanged for all k.

Recall from the discussion preceding Equation 15 that the Wald estimator
W = β/(1 − α0 − α1) is identified in this model so long as K is at least 2.
Rearranging, we find that:

α0 = (1− α1)− β/W

(pk − α0) = pk − (1− α1) + β/W

1− α0 = α1 + β/W

Substituting these into Equations 13 and 14 and summing the two, we find,
after some algebra, that

ŷ0k + ŷ1k +W(1− pk) = c+ β +Wα1.

Since the left-hand side of this expression depends only on observables and
the identified quantityW , this shows that the right-hand side is itself identi-
fied in this model. For simplicity, we define Q = c+ β +Wα1. Since W and
Q are both identified, varying either necessarily changes the observables, so
we must hold both of them constant. We now show that Equations 13 and
14 can be expressed in terms of W and Q. Conveniently, this eliminates α0

from the system. After some algebra,

ŷ0k = α1(Q−m∗1k) + β(c−m∗1k)/W + (1− pk) [m∗1k −Wα1] (17)

ŷ1k = (1− α1)Q+ β(m∗1k − c)/W − (1− pk) [m∗1k +W(1− α1)] (18)
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Now, rearranging Equation 18 we see that

Q− ŷ1k−W(1− pk) = α1(Q−m∗1k) +β(c−m∗1k)/W + (1− pk) [m∗1k −Wα1]
(19)

Notice that the right-hand side of Equation 19 is the same as that of Equation
17 and that Q− ŷ1k −W(1− pk) is precisely ŷ0k. In other words, given the
constraint that W and Q must be held fixed, we only have one equation for
each value that the instrument takes on. Finally, we can solve this equation
for m∗1k as

m∗1k = W(ŷ0k − α1Q)− β(Q− β −Wα1) +W2(1− pk)α1

W(1− pk − α1)− β (20)

using the fact that c = Q−β−Wα1. Equation 20 is a manifold parameterized
by (β, α1) that is unique to each value that the instrument takes on. Thus,
by adjusting {m∗1k}

K
k=1 according to Equation 20 we are free to vary β while

holding all observable moments fixed.

5 Identification Based on Higher Moments

Having shown that the moment conditions from Table 1 do not identify β

regardless of the value of K, we now consider exploiting the information
contained in higher moments of y. When z is not merely mean-independent
but in fact statistically independent of ε, as in a randomized controlled trial
or a true natural experiment, the following assumptions hold automatically.

Assumption 4 (Second Moment Independence). E[ε2|z] = E[ε2]

Assumption 5 (Third Moment Independence). E[ε3|z] = E[ε3]

Theorem 2. Under Assumption 4 and the conditions of Theorem 1 the dif-
ference of mis-classification rates, (α1−α0) is identified provided that z takes
on at least two values.
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Proof of Theorem 2. First define

µ∗k` = (pk − α0)m∗1k − (p` − α0)m∗k` (21)

∆y2 = E(y2|zk)− E(y2|z`) (22)

∆yT = E(yT |zk)− E(yT |z`) (23)

By iterated expectations it follows, after some algebra, that

∆y2 = βW(pk − p`) + 2Wµ∗k` (24)

∆yT = (1− α1)W(pk − p`) + µ∗k` (25)

Now, solving Equation 25 for µ∗k`, substituting the result into Equation 24
and rearranging,

R ≡ β − 2(1− α1)W = ∆y2 − 2W∆yT
W(pk − p`)

. (26)

SinceW is identified it follows thatR is identified. Rearranging the preceding
equality and substituting β =W(1− α0 − α1) to eliminate β, we find that

α1 − α0 = 1 +R/W . (27)

Because both R and W are identified, it follows that the difference of error
rates is also identified.

The preceding result can be used in several ways. One possibility is to
test for the presence of mis-classification error. If the treatment is measured
without error, then α0 must equal α1. By examining the identified quantities
R and W , one could possibly discover that this requirement it violated.
Moreover, in some settings mis-classification may be one-sided. In a smoking
and birthweight example, it seems unlikely that mothers who did not smoke
during pregnancy would falsely claim to have smoked. If either of α0, α1 is
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known, Theorem 2 point identifies the unknown error rate and hence β, using
the fact that β =W(1− α0 − α1). When neither of the error rates is known
a priori, the same basic idea can be used to construct bounds for β.

We now show that by augmenting Theorem 2 with information on con-
ditional third moments, we can point identify β.

Theorem 3. Under Assumptions 4-5 and the conditions of Theorem 1, the
mis-classification rates α0 and α1 and the treatment effect β are identified
provided that z takes on at least two values.

Proof of Theorem 3. First define

v∗tk = E(u2|T ∗ = t, z = zk) (28)

λ∗k` = (pk − α0)v∗1k − (p` − α0)v∗1` (29)

∆y3 = E(y3|zk)− E(y3|z`) (30)

∆y2T = E(y2T |zk)− E(y2T |z`) (31)

where u, as above, is defined as ε + c. By iterated expectations it follows,
after some algebra, that

∆y3 = β2W(pk − p`) + 3βWµ∗k` + 3Wλ∗k` (32)

∆y2T = β(1− α1)W(pk − p`) + 2(1− α1)Wµ∗k` + λ∗k` (33)

where, as above, the identified quantity W equals β/(1 − α0 − α1) and µ∗k`

is as defined in Equation 21. Now, substituting for λ∗k` in Equation 32 using
Equation 33 and rearranging, we find that

∆y3 − 3W∆y2T = βW(pk − p`) [β − 3W(1− α1)] + 3WRµ∗k` (34)

where R is as defined in Equation 26. Now, using Equation 25 to eliminate
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µ∗k` from the preceding equation, we find after some algebra that

S ≡ β2 − 3W(1− α1)(β +R) =
∆y3 − 3W

[
∆y2T +R∆yT

]
W(pk − p`)

. (35)

Notice that S is identified. Finally, by eliminating β from the preceding
expression using Equation 26, we obtain a quadratic equation in (1 − α1),
namely

2W2(1− α1)2 + 2RW(1− α1) + (S −R2) = 0. (36)

Note that, since, W ,R and S are all identified, we can solve Equation 36 for
(1− α1). The solutions are as follows

(1− α1) = 1
2

(
−R
W
± 1
W
√

3R2 − 2S
)

(37)

It can be shown that 3R2 − 2S = [R+ 2W(1− α1)]2 so the quantity under
the radical is guaranteed to be positive, yielding two real solutions. One of
these is (1− α1), but what about the other root? Using Equation 27 we can
re-express Equation 36 as a quadratic in α0. Surprisingly, after simplifying,
we obtain a quadratic with identical coefficients. This implies that the second
root of Equation 36 identifies α0. Since we know the sign of the difference
α1 − α0 from Theorem 2, we know which mis-classification rate is larger
and hence can correctly label the two roots. Finally, substituting into β =
W(1− α0 − α1), we identify the treatment effect.

Note that, in contrast to all other results in the literature (Black et al.,
2000; Frazis and Loewenstein, 2003; Kane et al., 1999; Lewbel, 2007; Maha-
jan, 2006), our proof does not require the assumption that α0 + α1 < 1 to
identify β.
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6 Conclusion

This paper has presented the first point identification result for the effect
of an endogenous, binary, mis-measured treatment using a discrete instru-
ment. While our results require us to impose stronger conditions on the
instrument, these conditions are satisfied in a number of empirically relevant
examples, for example randomized controlled trials and true natural exper-
iments. We obtain identification by augmenting conditional first moments
with additional information contained in second and third moments and fur-
ther derive a partial identification result based on first and second moments
alone. By appealing to higher moments we can accommodate any amount
of mis-classification, dispensing with a standard assumption from the litera-
ture that mis-classification is not “too severe.” In addition, and contrary to
an incorrect previous result in Mahajan (2006), we showed that appealing
to higher moments is necessary if one wishes to obtain identification: first
moment information alone cannot identify the causal effect of an endoge-
nous, mis-classified binary treatment regardless of the number of values the
instrument may take. While we have restricted our attention in this paper
to the case of homogeneous treatment effects, a promising avenue for future
research would be to consider the heterogenous case.
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