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Abstract

The identification of causal effects in linear models relies, explicitly and im-
plicitly, on the imposition of researcher beliefs along several dimensions. Assump-
tions about measurement error, regressor endogeneity, and instrument validity
are three key components of any such empirical exercise. Although in practice
researchers reason about these three dimensions independently, we show that
measurement error, regressor endogeneity and instrument invalidity are mutu-
ally constrained by each other and the data in a manner that is only apparent by
writing down the full identified set for the model. The nature of this set makes
it clear that researcher beliefs over these objects cannot and indeed should not
be independent: there are fewer degrees of freedom than parameters. By failing
to take this into account, applied researchers both leave money on the table – by
failing to incorporate relevant information in estimation – and more importantly
risk reasoning to a contradiction by expressing mutually incompatible beliefs. We
propose a Bayesian framework to help researchers elicit their beliefs, explicitly
incorporate them into estimation and ensure that they are mutually coherent.
We illustrate the practical usefulness of our method by applying it to several
well-known papers from the empirical microeconomics literature.
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“Belief is so important! A hundred

contradictions might be true.”

— Blaise Pascal, Pensées

1 Introduction

To identify causal effects from observational data, an applied researcher must augment

the data with her beliefs. The exclusion restriction in an instrumental variables (IV)

regression, for example, represents the belief that the instrument has no direct effect on

the outcome of interest after controlling for other regressors. Although the exclusion

restriction can never be directly tested, applied researchers know how to think about it

and how to debate it. Indeed because we often have a reasonable idea of which factors

make up the regression error term – ability in a wage regression, for example – the

exclusion restriction is not simply a matter of opinion but a proposition that we can

evaluate in light of other beliefs that we bring to bear on the problem.

In practice, however, not all beliefs are treated equally. The exclusion restriction

is what we might call a “formal identification belief,” a belief that is directly imposed

to achieve identification. In addition to imposing formal beliefs, however, researchers

often state a number of other “informal beliefs” that are not imposed in estimation but

which may be used, among other things, to interpret results, or reconcile conflicting

estimates from different specifications. Papers that report the results of IV regressions,

for example, almost invariably state the authors’ belief about the sign of the correlation

between the endogenous regressor and the error term but fail to exploit this informa-

tion in estimation.1 Another commonly stated informal belief involves the extent of

measurement error. When researchers uncover an OLS estimate that is substantially

smaller than, but has the same sign as its IV counterpart, classical measurement error,

with its attendant “least squares attenuation bias,” often takes the blame.

In this paper we point out that relegating informal beliefs to second-class status is

both wasteful of information and potentially dangerous: beliefs along different dimen-

sions are mutually constrained by each other, by the model, and by the data. This

is a simple point which we believe has important implications for applied work but

1Referring more than 60 papers published in the top three empirical journals between 2002 and
2005, Moon and Schorfheide (2009) note that “in almost all of the papers the authors explicitly stated
their beliefs about the sign of the correlation between the endogenous regressor and the error term;
yet none of the authors exploited the resulting inequality moment condition in their estimation.”
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has been largely overlooked by the literature. By failing to explicitly incorporate rel-

evant information, which they, nevertheless, state and argue about informally, applied

researchers leave money on the table and, more importantly, risk reasoning to a contra-

diction by expressing mutually incompatible beliefs. This intuition is straightforward,

but quantifying the nature of the interrelation between these different beliefs and the

potential for contradiction is not. We develop a framework to address this general

point in the context of a workhorse linear model, and illustrate its practical usefulness.

Our starting point is a model of the form

y = βT ∗ + x′γ + u (1)

T ∗ = πz + x′δ + v (2)

T = T ∗ + w (3)

where T ∗ is a treatment variable, y is an outcome of interest, x is a vector of exogenous

controls, and z is a proposed instrument for T ∗. Our goal is to estimate the causal effect

of T ∗ on y, namely β. Unfortunately we observe not T ∗ but a noisy measure T polluted

by measurement error w. Moreover, the true treatment may itself be endogenous: T ∗

may be correlated with u. While we are fortunate to have an instrument at our disposal,

it may not satisfy the exclusion restriction: z is potentially correlated with u. Such a

scenario is common in applied work in microeconomics: endogeneity is the rule rather

than the exception in social science, the treatments of greatest interest – e.g. the quality

of institutions in development economics – are often the hardest to measure, and the

validity of a proposed instrument is almost always debatable.

In this draft we assume that T ∗ is continuous and w is classical measurement

error, uncorrelated with all variables in the system besides T . An extension to the

case where T ∗ is binary is currently in progress.2 We proceed by characterizing the

identified set in terms of model primitives over which researchers have formal and

informal beliefs, and using this characterization to construct an inferential tool that

combines the information in the data with these beliefs in a coherent and transparent

way. This tool reveals any inconsistencies in belief that may be present and thus allows

researchers to refine and discipline their beliefs about problem at hand. Although our

method employs Bayesian reasoning, it can be implemented in a number of different

ways that should make it appealing both to frequentist and Bayesian econometricians.

2For a discussion of the difference between these two setups, see Section 5.
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The approach we follow here is similar in this respect to Kline and Tamer (2015).

While measurement error, endogenous regressors and invalid instruments have all

generated voluminous literatures, to the best of our knowledge this is the first paper

to provide a full characterization of the identified set when all three problems may be

present simultaneously, and to point out that it contains informative restrictions that

have not been previously exploited. In a certain sense the lack of attention from the

existing literature is unsurprising: a partial identification analysis based on a model

that suffers from so many serious problems seems unlikely to produce particularly in-

formative bounds. Yet, as we will show below, by combining data with credible and

relatively weak subject-specific beliefs – beliefs that researchers already discuss infor-

mally in their research – one can learn a surprising amount both about the causal effect

of interest and the coherence of one’s beliefs, or lack thereof. We show that measure-

ment error, regressor endogeneity and instrument invalidity are mutually constrained

by each other and the data in a manner that is only apparent by characterizing the full

identified set for the model. In spite of the fact that a single valid instrument solves

both the problem of classical measurement error and regressor endogeneity, for exam-

ple, it is insufficient to carry out a partial identification exercise that merely relaxes the

exclusion restriction: values for the correlation between z and u that seem plausible

when viewed in isolation may imply wildly implausible amounts of measurement error

in T ∗ or a selection effect with the opposite of the expected sign.

Elicitation is a key ingredient of our framework: before we can impose researcher

beliefs about measurement error, regressor endogeneity, and instrument invalidity, we

need a way to express each in intuitive, empirically meaningful terms. To this end,

we re-parameterize the problem in terms of scale-free variables with bounded support.

We express instrument invalidity in terms of ρuz, the correlation between z and u, and

regressor endogeneity in terms of ρT ∗u, the correlation between T ∗ and u. In the case of

classical measurement error, we express the problem not in terms of the measurement

error variance but κ = V ar(T ∗)/V ar(T ), in essence a signal to noise ratio that is

conveniently bounded between zero and one. As we discuss further below, it should

be fairly easy to impose meaningful bounds on each of these quantities in a typical

applied example, and even something as simple as a sign restriction can turn out to be

surprisingly informative.

The addition of researcher beliefs is both unavoidable and potentially extremely

helpful when using observational data to study causal effects. Nevertheless, whenever
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one imposes information beyond what is contained in the data, it is crucial to make

clear how this affects the ultimate result. This motivates our use of what is referred to

in the statistics literature as a transparent parameterization.3 Following Poirier (1998)

and Moon and Schorfheide (2012), we show the problem can be decomposed into a

vector of partially-identified structural parameters θ, and a vector of identified reduced

form parameters ϕ in such a way that inference for the identified set Θ for θ depends

on the data only through ϕ. This decomposition has several advantages. First, since

the reduced form parameters are identified, inference for this part of the problem is

completely standard. The researcher can effectively “drop in” any procedure that gen-

erates posterior draws for ϕ including, if desired, one that exactly matches the usual

large-sample frequentist asymptotic distribution. Second, a transparent parameteriza-

tion shows us precisely where any identification beliefs we may choose to impose enter

the problem: the data rule out certain values of ϕ, while our beliefs amount to placing

restrictions on the conditional identified set Θ(ϕ).

In our setting, the reduced form parameter vector ϕ simply contains the elements

of the variance-covariance matrix Σ of the observables (y, T,x, z). By manipulat-

ing the model restrictions to eliminate all other variables, we express the conditional

identified set Θ(ϕ) as a relationship between regressor endogeneity, ρT ∗u, instrument

invalidity, ρuz, κ, the variable that governs the measurement error process.4 Crucially,

the dimension of the identified set is strictly smaller than the number of variables

used to describe it. Under classical measurement error, for example, the conditional

identified set is a heavily constrained, two-dimensional manifold in three-dimensional

(ρT ∗u, ρuz, κ)–space. This fact makes it clear how easily the constraints of the model,

embedded in this identified set, could contradict prior researcher beliefs. Moreover it

suggests that knowledge of the form of the identified set could be used to reconcile and

refine these beliefs in a way that would not be possible based on introspection alone.

The final ingredient of our procedure is inference for β. Since β is a simple function

of θ and ϕ, and generating posterior draws for ϕ is straightforward, the problem reduces

to sampling from the conditional identified set. We propose a procedure for sampling

uniformly on the surface Θ(ϕ). By imposing sign and interval restrictions on the

degree of measurement error, endogeneity, and instrument invalidity, we can add prior

information to the problem while remaining uniform on the regions of the identified

3See, for example, Gustafson (2015).
4When T ∗ is binary, measurement error is governed by two conditional probabilities: α0 and α1.

For a discussion of these parameters, see Section 5
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set that remain. The resulting posterior draws can be used in a number of ways. One

possibility is to carry out posterior inference on the worst-case upper and lower bounds

for β, in a manner consistent with the usual frequentist analysis of partially identified

models. Another is to average over the posterior draws in a fully Bayesian fashion

yielding a full posterior for β.

This paper relates to a vast literature on partial identification and measurement

error. Two recent related papers are Conley et al. (2012), who propose a Bayesian

procedure for inference in settings where the exclusion restriction in IV regressions

may not hold exactly, and Nevo and Rosen (2012), who derive bounds for a causal

effect in the setting where an endogenous regressor is “more endogenous” than the

variable used to instrument it is invalid. Our framework encompasses the methods

suggested in these two papers, but is more general in several dimensions. First, we

allow for measurement error simultaneously with endogeneity and instrument invalid-

ity. More importantly, the central point of our framework is that although imposing

restrictions on specific dimensions of an unidentified problem is always informative, it

may be misleading unless one has a way to verify the mutual consistency of all beliefs

that enter into the problem. In settings where researchers may be willing to implement

the partial identification exercises suggested by these papers, our framework will allow

them to make sure the added constraints do not require implausible assumptions on

measurement error or the sign of the correlation between the endogeneous treatment

and the unobservables, for example. Our paper also contributes to a small but grow-

ing literature on the Bayesian analysis of partially-identified models, including Poirier

(1998), Gustafson (2005), Moon and Schorfheide (2012), Kitagawa (2012), Richardson

et al. (2011), Hahn et al. (2015), and Gustafson (2015).

The remainder of this paper is organized as follows. Section 2 characterizes the iden-

tified set for the problem, while Section 3 describes our approach to inference. Section

4 presents three empirical examples illustrating the practical usefulness of our method,

and Section 5 concludes with some discussion of extensions currently in progress.

2 The Identified Set

To simplify the notation, suppose either that there are no exogenous control regressors

x, including a constant, or equivalently that they have been “projected out.” In Section

2.4 we explain why this assumption is innocuous and how to accommodate control
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regressors in practice.

With this simplification, Equations 1–3 become

y = βT ∗ + u (4)

T ∗ = πz + v (5)

T = T ∗ + w (6)

where we assume, without loss of generality, that all random variables in the system are

mean zero or have been de-meaned.5 Our goal is to learn the parameter β, the causal

effect of T ∗. In general T ∗ is unobserved: we only observe a noisy measure T that has

been polluted by classical measurement error w. We call (u, v, w, z) the “primitives”

of the system. Their covariance matrix is as follows:

Ω = V ar


u

v

w

z

 =


σ2
u σuv 0 σuz

σuv σ2
v 0 0

0 0 σ2
w 0

σuz 0 0 σ2
z

 (7)

Because w represents classical measurement error, it is uncorrelated with u, v, and z

as well as T ∗. The parameter σuz controls the endogeneity of the instrument z: unless

σuz = 0, z is an invalid instrument. Both σuv and σuz are sources of endogeneity for

the unobserved regressor T ∗. In particular,

σT ∗u = σuv + πσuz (8)

which we can derive, along with the rest of the covariance matrix for (y, T, T ∗, z), from

the fact that 
y

T

T ∗

z

 =


1 β 0 βπ

0 1 1 π

0 1 0 π

0 0 0 1



u

v

w

z

 (9)

along with the assumptions underlying the covariance matrix Ω of (u, v, w, z).

The system we have just finished describing is not identified: without further re-

5Equivalently, we can treat the constant term in the first-stage and main equation as exogenous
regressors that have been projected out.
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strictions we cannot learn the value of β from any amount of data. In particular,

neither the OLS nor IV estimators converge in probability to β, instead they approach

βOLS =
σTy

σ2
T

= β

[
σ2
T ∗

σ2
T ∗ + σ2

w

+
σT ∗u

σ2
T ∗

]
(10)

and

βIV =
σzy
σTz

= β +
σuz
σTz

(11)

where σ2
T ∗ denotes the variance of the unobserved true regressor T ∗, which equals

σ2
T − σ2

w.

Some quantities in the system, however, are identified. Since we observe (T, y, z),

we can learn the entries of the covariance matrix Σ of the observables, defined as

Σ =

 σ2
T σTy σTz

σTy σ2
y σyz

σTz σyz σ2
z

 (12)

and, as a consequence, the value of the first stage coefficient π since

π =
σT ∗z

σ2
z

=
σTz

σ2
z

(13)

where the fact that σT ∗z = σTz follows from Equations 7 and 9.

Although β is unidentified, the observable covariance matrix Σ, along with con-

straints on the unobserved covariance matrix Ω of the primitives, does impose restric-

tions on the unobservables. Combined with even relatively weak researcher-specific

prior knowledge, these restrictions can sometimes prove surprisingly informative, as

we show below. Before we can do this, however, we need to derive the identified set.

To aid in this derivation, we first provide a re-parameterization of the problem that

will not only simplify the expressions for the identified set, but express it in terms of

quantities that are empirically meaningful and thus practical for eliciting beliefs.

2.1 A Convenient Parameterization

The model introduced in the preceding section contains five non-identified parameters:

β, σuv, σuz, σ
2
v , and σ2

w. In spite of this, as we will show below, there are only two degrees

of freedom: knowledge of any two of the five is sufficient to identify the remaining three.
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As such we have a choice of how to represent the identified set. Because our ultimate

goal is to elicit and incorporate researcher’s beliefs, we adopt three criteria for choosing

a parameterization:

1. The parameters should be scale-free.

2. The parameter space should be bounded.

3. The parameters should be meaningful in real applications.

Based on these considerations, we define the identified set in terms of the following

quantities:

ρuz = Cor(u, z) (14)

ρT ∗u = Cor(T ∗, u) (15)

κ =
σ2
T ∗

σ2
T

=
σ2
T ∗

σ2
T ∗ + σ2

w

(16)

Note that these parameters are not independent of one another. For example, ρT ∗u

depends on both κ and ρuz. This is precisely the point of our analysis: these three

quantities are bound together by the assumptions of the model, which allows us to

derive the identified set. The first quantity ρuz is the correlation between the instrument

and the main equation error term u. This measures the endogeneity of the instrument:

the exclusion restriction in IV estimation, for example, corresponds the degenerate

belief that ρuz = 0. When critiquing an instrument, researchers often state a belief

about the likely sign of this quantity. The second quantity ρT ∗u is the correlation

between the unobserved regressor T ∗ and the main equation error term. This measures

the overall endogeneity of T ∗, taking into account both the effect of σuv and σuz. While

in practice it would be unusual for a researcher to be able to articulate a belief about

ρuv, as pointed out by Moon and Schorfheide (2009), researchers almost invariably

state their belief about the sign the quantity ρT ∗u before undertaking an IV estimation

exercise making its elicitation easy in many applications.

The third quantity, κ, is somewhat less familiar. In the simple setting we consider

here, with no covariates, κ measures the degree of attenuation bias present in the OLS

estimator in the absence of endogeneity in T ∗. In other words, if ρT ∗u = 0 then the

9



OLS probability limit is κ. Equivalently, since σT ∗y = σTy

κ =

(
σ2
T ∗

σ2
T

)(
σ2
yT

σ2
yT ∗

)
=

(
σ2
yT

σ2
Tσ

2
y

)(
σ2
T ∗σ2

y

σ2
yT ∗

)
=

ρ2yT
ρ2yT ∗

(17)

so another way to interpret κ is as the ratio of the observed R2 of the main equation

and the unobserved R2 that we would obtain if our regressor had not been polluted

with measurement error. A third and more general way to think about κ is in terms of

signal and noise. If κ = 1/2, for example, this means that half of the variation in the

observed regressor T is “signal,” T ∗, and the remainder is noise, w. While the other

two interpretations we have provided are specific to the case of no covariates, this third

interpretation is not.

There are several advantages to parameterizing measurement error in terms of κ

rather than the measurement error variance σ2
w. First, κ has bounded support: it takes

a value in (0, 1]. When κ = 1, σ2
w = 0 so there is no measurement error. The limit

as κ approaches zero corresponds to taking σ2
w to infinity. Second, writing expressions

in terms of κ greatly simplifies our calculations. Indeed, as we will see in the next

section, the sample data provide simple and informative bounds for κ. Third, and

most importantly, we consider it much easier to elicit beliefs about κ than about σ2
w.

We will consider this point in some detail in the empirical examples that we present

below. In the section that follows we will solve for ρuz in terms of ρT ∗u, κ and the

observable covariance matrix Σ. First, however, we will derive bounds on these three

quantities.

2.2 Bounds on the Non-Identified Parameters

Our parameterization from the preceding section gives us several obvious bounds:

ρT ∗u, ρuz ∈ [−1, 1] and κ ∈ (0, 1]. Yet there are other, less obvious bounds that come

from the two covariance matrices: Σ and Ω. To state these additional bounds, we need

an expression for σ2
v , the variation in T ∗ not attributable to the instrument z, in terms

of κ and observables only. To this end, note that the R2 of the IV first stage, ρ2Tz, can

be expressed as

ρ2zT =
(πσz)

2

σ2
Tσ

2
z

=
π2σ2

z

σ2
T

10



Combining this with the fact that σ2
T = σ2

v + σ2
w + π2σ2

z , we have

1 =
σ2
v + σ2

w

σ2
T

+ ρ2Tz

Rearranging and simplifying we find that ρ2Tz = κ− σ2
v/σ

2
T and hence

σ2
v = σ2

T (κ− ρ2Tz) (18)

We now proceed to construct an additional bound for κ in terms of the elements of

Σ. To begin, since we can express κ as ρ2Ty/ρ
2
T ∗y and squared correlations are necessarily

less than or equal to one, it follows that κ > ρ2Ty. Although typically stated somewhat

differently, this bound is well known: in fact it corresponds to the familiar “reverse

regression bound” for β.6 As it happens, however, Σ provides an additional bound that

may be tighter than κ > ρ2Ty. Since σ2
v and σ2

T are both strictly positive, Equation 18

immediately implies that κ ≥ ρ2Tz. In other words the R2 of the IV first-stage provides

an upper bound for the maximum possible amount of measurement error. Given its

simplicity, we doubt that we are the first to notice this additional bound. Nevertheless,

to the best of our knowledge, it has not appeared in the literature. Taking the best of

these two bounds, we have

max{ρ2zT , ρ2yT} ≤ κ ≤ 1 (19)

Recall that κ is inversely related to the measurement error variance σ2
w: larger values

of κ correspond to less noise. We see from the bound in Equation 19 that larger

values of either the first-stage or OLS R-squared leave less room for measurement

error. This is important because applied econometricians often argue that their data

is subject to large measurement error, explaining large discrepancies between OLS and

IV estimates, but we are unaware of any cases in which such belief is confronted with

these restrictions.

Before proceeding to solve for the identified set, we derive one further bound from

the requirement that Ω – the covariance matrix of the model primitives (u, v, w, z) –

be positive definite. At first glance it might appear that this restriction merely ensures

that variances are positive and correlations bounded above by one in absolute value.

Recall, however, that Equation 7 imposes a considerable degree of structure on Ω. In

6To see this, suppose that ρT∗u = 0, and without loss of generality that β is positive. Then
Equation 10 gives βOLS = κβ < β. Multiplying both sides of κ > ρ2Ty by β and rearranging gives

β < βOLS/ρ
2
Ty, and hence βOLS < β < βOLS/ρ

2
Ty.
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particular, many of its elements are assumed to equal zero. Consider the restriction

|Ω| > 0. This implies

σ2
w

[
−σ2

uvσz + σ2
v

(
σuσ

2
z − σ2

uz

)]
> 0

but since σ2
w > 0, this is equivalent to

σ2
z

(
σ2
uσ

2
v − σ2

uv

)
> σ2

vσ
2
uz

Dividing both sides through by σ2
uσ

2
zσ

2
v and rearranging, we find that

ρ2uv + ρ2uz < 1 (20)

In other words (ρuz, ρuv) must lie within the unit circle: if one of the correlations is

very large in absolute value, the other cannot be. To understand the intuition behind

this constraint, recall that since v is the residual from the projection of T ∗ onto z, it

is uncorrelated with z by construction. Now suppose that ρuz = 1. If ρuv were also

equal to one, we would have a contradiction: z and v would be perfectly correlated.

The constraint given in Inequality 20 rules this out.

As explained above, we will characterize the identified set in terms of ρT ∗u, ρuz and

κ, eliminating ρuv from the system. Thus, we need to restate Inequality 20 so that it

no longer involves ρuv. To accomplish this, first write

ρT ∗u =

(
σv
σT ∗

)
ρuv +

(
πσz
σT ∗

)
ρuz

and then note that σv/σ
∗
T =

√
1− ρ2Tz/k and πσz/σT ∗ =

√
ρ2Tz using Equation 18 and

the definition of κ. Combining,

ρT ∗u =

(√
1− ρ2Tz/κ

)
ρuv +

(√
ρ2Tz/κ

)
ρuz (21)

and solving for ρuv,

ρuv =
ρT ∗u

√
κ− ρuzρTz√
κ− ρ2Tz

(22)
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so we can re-express the constraint from Inequality 20 as(
ρT ∗u

√
κ− ρuzρTz√
κ− ρ2Tz

)2

+ ρ2uz < 1 (23)

2.3 Solving for the Identified Set

We now provide a characterization of the identified set by solving for ρuz in terms

of ρT ∗u, κ and the observables contained in Σ. Rewriting the Equation 11 (the IV

estimator), we have

β =
σzy − σuz
σzT

(24)

and proceeding similarly for Equation 10 (the OLS estimator),

β =
σTy − σT ∗u

κσ2
T

(25)

Combining Equations 24 and 25, we have

σzy − σuz
σzT

=
σTy − σT ∗u

κσ2
T

(26)

Now, using Equations 7 and 9, the variance of y can be expressed as

σ2
y = σ2

u + β
(
2σT ∗u + βκσ2

T

)
Substituting Equation 24 for β, Equation 25 for βκσ2

T , and rearranging,

(
σ2
u − σ2

y

)
+

(
σzy − σuz
σzT

)
(σT ∗u + σTy) = 0 (27)

The next step is to eliminate σu from our system of equations. First we substitute

σT ∗z = σu
√
κσTρT ∗u

σuz = σuσzρuz

into Equations 26 and 27, yielding

(
σ2
u − σ2

y

)
+

(
σzy − σuσzρuz

σzT

)(
σuσT

√
κρT ∗u + σTy

)
= 0 (28)
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and
σzy − σuσzρuz

σzT
=
σTy − σTσuρT ∗u

κσ2
T

(29)

Rearranging Equation 29 and solving for σu, we find that

σu =
σzTσTy − κσ2

Tσzy
σT
√
κσTzρT ∗u − σzκσ2

Tρuz
(30)

Since we have stated the problem in terms of scale-free structural parameters,

namely (ρuz, ρT ∗u, κ), we may assume without loss of generality that σT = σy = σz = 1.

Even if the raw data do not satisfy this assumption, the identified set for the structural

parameters is unchanged. Imposing this normalization, the equation for the identified

set becomes (
σ̃2
u − 1

)
+

(
ρzy − σ̃uρuz

ρzT

)(
σ̃u
√
κρT ∗u + ρTy

)
= 0 (31)

where

σ̃u =
ρTzρTy − κρzy√
κρTzρT ∗u − κρuz

(32)

We use the notation σ̃u to indicate that normalizing y to have unit variance does change

the scale of σu. Specifically, σ̃u = σu/σy. This does not introduce any complications

because we eliminate σ̃u from the system by substituting Equation 32 into Equation

31. Note, however, that when
√
κρuz = ρT ∗uρTz, Equation 30 has a singularity.

After eliminating σ̃u, Equation 31 becomes a quadratic in ρuz that depends on

the structural parameters (ρT ∗u, κ) and the reduced form correlations (ρTy, ρTz, ρzy).

Solving, we find that

(ρ+uz, ρ
−
uz) =

(
ρT ∗uρTz√

κ

)
± (ρTyρTz − κρzy)

√
1− ρ2T ∗u

κ
(
κ− ρ2Ty

) (33)

Notice that the fraction under the square root is always positive, so both solutions are

always real. This follows because ρ2T ∗u must be between zero and one and, as we showed

above, κ > ρ2Ty. Although the preceding expression always yields two real solutions,

one of these is extraneous as it implies a negative value for σ̃u. To see why this is the

14



case, substitute each solution into the reciprocal of Equation 32. We have

σ̃−1u =

√
κρTzρT ∗u

ρTyρTz − κρzy
− κ

ρTzρTy − κρzy

[(
ρT ∗uρTz√

κ

)
± (ρTyρTz − κρzy)

√
1− ρ2T ∗u

κ
(
κ− ρ2Ty

)]

=

√
κρTzρT ∗u

ρTyρTz − κρzy
−

[( √
κρTzρT ∗u

ρTyρTz − κρzy

)
±

√
κ(1− ρ2T ∗u)(
κ− ρ2Ty

) ]

= ∓

√
κ(1− ρ2T ∗u)(
κ− ρ2Ty

)
Since the quantity inside the square root is necessarily positive given the constraints

on correlations and κ, we see that ρ+uz is always extraneous. Thus, the only admissible

solution is

ρuz =

(
ρT ∗uρTz√

κ

)
− (ρTyρTz − κρzy)

√
1− ρ2T ∗u

κ
(
κ− ρ2Ty

) (34)

Along with Inequalities 19 and 23, and the requirement that correlations be less

than one in absolute value, Equation 34 gives a complete and minimal characterization

of the identified set of the model based on three quantities over which beliefs can

be easily articulated. It also reveals that the identified set only has two degrees of

freedom, even though researchers can often express beliefs about instrument validity,

treatment endogeneity, and measurement error independently. Given any pair from

the vector (ρuz, ρT ∗u, κ) and values for the observed moments (σT , σz, σy, ρTy, ρTz, ρyz)

of the covariance matrix Σ, we can solve for the implied value of β using Equation 24.

Specifically,

β =
σy
σz

(
ρyz − ρuzσ̃u

ρTz

)
(35)

using the fact that σ̃u = σu/σy, where σ̃u is the standard deviation of the main equation

error term from the normalized system, as given in Equation 30, and σu is the standard

deviation of the main equation error term from the original system. Notice that ρT ∗u

and κ enter Equation 35 through σ̃u. This fact highlights the central point of our

analysis: even though exact knowledge of σuz alone would be sufficient to correct the

IV estimator, yielding a consistent estimator of β, stating beliefs about this quantity

alone does not provide a satisfactory solution to the identification problem. For one,

because it depends on the scaling of both z and u, it may be difficult to elicit beliefs

about σuz. Although we can learn σz from the data, σu can only be estimated if we have

resolved the identification problem. In contrast, ρuz, our preferred parameterization,

15



is scale-free. More importantly, however, the form of the identified set makes it clear

that our beliefs about ρuz are constrained by any beliefs we may have about ρT ∗u and

κ. This observation has two important consequences. First, it provides us with the

opportunity to incorporate our beliefs about measurement error and the endogeneity

of the regressor to improve our estimates. Failing to use this information is like leaving

money on the table. Second, it disciplines our beliefs to prevent us from reasoning to a

contradiction. Without knowledge of the form of the identified set, applied researchers

could easily state beliefs that are mutually incompatible without realizing it. Our

analysis provides a tool for them to realize this and adjust their beliefs accordingly.

While we have thus far discussed only beliefs about ρuz, ρT ∗u and κ, one could also

work backwards from beliefs about β to see how they constrain the identified set. We

explore this possibility in one of our examples below.

2.4 Accommodating Exogenous Controls

At the beginning of Section 2 we assumed either that there were no control regressors

or that they had been projected out. Because the control regressors x from Equations

1 and 2 are exogenous, this is innocuous, as we now show. Without loss of generality,

suppose that (T ∗, z, y) are mean zero or have been demeaned. Let (T̃ ∗, T̃ , ỹ, z̃) denote

the residuals from a linear projection of the random variables (T ∗, y, z) on x, e.g.

T̃ ∗ = T ∗ −ΣT ∗xΣ−1xxx and so on, where Σab is shorthand for Cov(a, b). Then, provided

that (T ∗, T,x, y, z) satisfy Equations 1–3, it follows that

ỹ = βT̃ ∗ + u (36)

T̃ ∗ = πz̃ + v (37)

T̃ = T̃ ∗ + w (38)

since x is uncorrelated with u and w by assumption and uncorrelated with v by con-

struction. The parameters of this transformed system, β and π, are identical to those

of the original system, as are the error terms. And because the transformed system

contains no covariates, the analysis presented above applies directly.

The only complication involves the structural parameters κ, ρT ∗u and ρuz. While

it makes sense to elicit researcher beliefs before projecting out x, the equations for the

identified set presented above will involve not these quantities but their analogues for
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the transformed system, namely

κ̃ = V ar(T̃ ∗)/V ar(T̃ )

ρ̃T̃ ∗u = Cor(T̃ ∗, u)

ρ̃uz̃ = Cor(z̃, u)

Both for the purposes of eliciting beliefs and understanding the identified set, we need

to be able to transform back and forth the parameters on their original scale and the

versions that project out x. For κ̃, we have

κ̃ =
σ2
T ∗ − ΣTxΣ−1xxΣxT

σ2
T − ΣTxΣ−1xxΣxT

=
σ2
T ∗(1− ΣTxΣ−1xxΣxT/σ

2
T ∗)

σ2
T (1− ΣTxΣ−1xxΣxT/σ2

T )
=
κ−R2

T.x

1−R2
T.x

(39)

where R2
T.x denotes the population R-squared from a regression of T on x, and we have

used the fact that, since w is classical measurement error, ΣT ∗x = ΣTx. Equation 39

relates κ ≡ σ2
T ∗/σ2

T for the original system to the analogue κ̃, purely in terms of an

identified quantity: R2
T.x. Thus, if the user states beliefs over κ, we can easily transform

them to the implied beliefs about κ̃ simply by using the R-squared that results from the

regression that projects x out of T . We can proceed similarly for the other parameters

that characterize the identified set. For ρ̃uz̃ we have

ρ̃uz̃ =
Cov(z − ΣzxΣ−1xxx, u)

σu
√
σ2
z − ΣzxΣ−1xxΣxz

=
Cov(z, u)

σuσz
√

1− ΣzxΣ−1xxΣxz/σ2
z

=
ρuz√

1−R2
z.x

(40)

using the fact that x is assumed to be uncorrelated with u, where R2
z.x denotes the

R-squared from the population regression of z on x. Finally, for ρ̃T̃ ∗u, we have

ρ̃T̃ ∗u =
Cov(T ∗ − ΣTxΣ−1xxx, u)

σu
√
σT ∗ − ΣTxΣxxΣxT

=
Cov(T ∗, u)

σuσT ∗
√

1− ΣTxΣ−1xxΣxT/σ2
T ∗

=
ρT ∗u√

1−R2
T.x/κ

(41)

using the fact that x is uncorrelated with u and ΣT ∗x = ΣTx.7

Since we can always reduce a problem with exogenous covariates to one without,

and because we can describe the mapping between the parameters that govern the

identified set of the original problem and those of the transformed system, we can

7Note that Equation 18 also applies for the partialed-out system. This, combined with Equation
39, implies that κ is always strictly less than R2

T.x, and thus, the expression inside the square root in
Equation 41 is guaranteed to be positive.
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easily accommodate control variables in the framework derived above. In practice,

one simply projects out x before proceeding, using the R-squared values from these

preliminary regressions to transform any user-specified restrictions over ρuz, ρT ∗u, κ into

the implied restrictions over ρ̃uz̃, ρ̃T̃ ∗u and κ̃.

3 Inference

We now turn our attention to inference. Our approach is is Bayesian in that we

proceed by simulating posterior draws, but many of the inferences we draw can be

given a frequentist interpretation if preferred. The key is our decomposition of the

identified set from above into two pieces: the reduced form parameters Σ, and the

structural parameters θ = (κ, ρuz, ρT ∗u). This allows us to proceed in two simple

steps. First, we carry out inference for the reduced form parameter Σ. This part of

the problem is completely standard: in particular, the usual large-sample equivalence

between Bayesian posterior credible intervals and frequentist confidence intervals holds

for these parameters. As such, the user of our method is free to employ any desired

method of generating posterior draws for Σ in our framework. We propose two simple

and relatively uncontroversial possibilities below in Section 3.1. Each draw Σ(j) from

the posterior for the reduced form parameters leads to an identified set Θ(Σ(j)) for

the reduced form parameters θ. In our second step, we draw uniformly over Θ(Σ(j)),

possibly subject to user-specified interval or sign restrictions on the elements of θ.

Repeating these two steps yields a collection of posterior draws for Σ, κ, ρT ∗u and ρuz,

from which we can calculate the implied posterior draws for β.

The resulting draws can be used to conduct inference in a number of different ways.

One possibility is to carry out inference for the identified set itself, possibly subject

to some restriction on θ. In this approach, the uniform distribution over Θ(Σ(j)) is

used merely as a computational device rather than a statement of prior belief: we

average over Σ(j) and take bounds over Θ. For example, each conditional identified set

Θ(Σ(j)) implies an identified set B(Σ(j)) for β. By averaging over Σ(j) we can conduct

inference for B, for example by constructing a credible set. In large samples such a

credible set will exactly coincide with the corresponding frequentist confidence region

since Σ is identified. A committed frequentist who wishes to employ our method could

limit herself to drawing inferences of this kind, possibly combined with sign or interval

restrictions on θ, e.g. by assuming a positive selection effect: ρT ∗u > 0. As we will
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see below, even fairly mild restrictions can be surprisingly informative. One could also

use the draws Σ(j) to carry out inference for elements of θ, for example by calculating

the “probability of a valid instrument” under a set of restrictions. Even when Θ(Σ(j))

is not particularly informative about β, it can very easily rule out a wide range of

values for κ, ρT ∗u or ρuz. For example, suppose that we are considering an example in

which we very strongly believe that ρT ∗u < 0. Subject to this restriction, a given draw

Θ(Σ(j)) could very easily rule out the possibility that ρuz = 0. Averaging over Σ(j),

we can calculate the posterior probability that the identified set is compatible with a

valid instrument.

A Bayesian, however, may wish to go further by averaging over draws for (κ, ρT ∗u, ρuz)

as well as those for Σ. The identified set is a two-dimensional manifold of which partial

identification bounds for β, at a given value Σ(j), consider only the two worst-case

points. From this perspective it seems only natural to consider what fraction of the

points in this set lead to a particular value for β. Accordingly, one could choose to

take our uniform samples from Θ(Σ(j)) literally. This would amount to placing a uni-

form prior on the conditional identified set. Moon and Schorfheide (2012) employ

such a “reference prior” in their example of a two-player entrance game. The data,

of course, can never falsify this conditional prior so one must proceed with extreme

caution. Moreover, while a uniform distribution may sound like the natural choice for

representing prior ignorance, uniformity in (κ, ρT ∗u, ρzu)-space could very easily imply a

highly informative prior in some different parameterization. Nevertheless, as explained

above, we believe that there are compelling reasons to parameterize the problem in

terms of ρuz, ρT ∗u and κ: they are scale-free, empirically meaningful quantities about

which researchers are naturally inclined to state beliefs. In most situations, however,

these beliefs will be fairly vague making it difficult to elicit an informative prior on the

identified set. As such, our preferred approach is to split the difference: rather than

taking it completely literally, we treat the conditionally uniform prior as a starting

point. In one of the examples below, for example, we consider what kind of deviation

from uniformity would be necessary to support a particular belief about β.

The remainder of this section gives the computational details that underlie our

inference procedure. Section 3.1 proposes two methods of generating draws for Σ(j)

while Section 3.2 describes an accept-reject algorithm for sampling uniformly from

the conditional identified set. In each section we suppress exogenous covariates for

simplicity. If covariates are present, we apply the same methods to the residuals that
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result from regressing (T, y, z) on x.

3.1 Posterior Draws for the Reduced Form Parameters

Because all of its elements are identified, inference for Σ is standard and can be carried

out in a number of different ways. Here we consider two simple possibilities.

Our first proposal is based on a large-sample approximation. The idea is to condi-

tion on T and z, as is standard in instrumental variables regression, and incorporate

sampling uncertainty in σTy and σzy only, applying the central limit theorem exactly

as one does when deriving the frequentist large-sample distribution of IV and OLS

estimators. To begin, let

εT = (y − E[y])− βT (T − E[T ])

εz = (y − E[y])− βz(z − E[z])

where βT = σTy/σ
2
T , and βz = σzy/σ

2
z . While neither βT nor βz equals the true

treatment effect β, the parameters of both of these regressions are identified. Under

the standard regularity conditions for linear regression, we have √n(β̂T − βT)√
n
(
β̂z − βz

) →d B

[
MT

Mz

]
(42)

where β̂T = σ̂Ty/σ̂
2
T and β̂z = σ̂zy/σ̂

2
z are the least-squares estimators of βT and βz,

(MT ,Mz)
′ ∼ N(0, V ), and

B =

[
1/σ2

x 0

0 1/σ2
z

]
, V = E

[
T 2ε2T zTεzεT

zTεzεT z2ε2z

]
. (43)

Note that V depends not on the structural error u but on the reduced form errors

εT , εz. By construction εT is uncorrelated with T and εz is uncorrelated with z but the

reduced form errors are necessarily correlated with each other. Now, using Equations

42 and 43 we see that[ √
n (σ̂Ty − σTy)√
n (σ̂zy − σzy)

]
→d B

−1B

[
MT

Mz

]
=

[
MT

Mz

]
(44)
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and thus, in large samples [
σ̂Ty

σ̂zy

]
≈ N

([
σTy

σzy

]
, V̂ /n

)
(45)

where V̂ is the textbook robust variance matrix estimator, namely

V̂ =
1

n

n∑
i=1

[
T 2
i ε̂

2
T i ziTiε̂ziε̂T i

ziTiε̂ziε̂T i z2i ε̂
2
zi

]

where ε̂T i denotes the ith residual from the βT regression and ε̂zi the ith residual from the

βz regression. Since we are working solely with identified parameters, the usual large-

sample equivalence between a Bayesian posterior and frequentist sampling distribution

holds. Accordingly, we propose to generate draws for σTy and σzy according to[
σ
(j)
Ty

σ
(j)
zy

]
∼ N

([
σ̂Ty

σ̂zy

]
, V̂ /n

)
(46)

Combining these draws with the fixed values σ̂2
T , σ̂

2
z and σ̂zT , since we are conditioning

on z and T , yields posterior draws for Σ based on a large-sample normal approximation,

namely

Σ(j) =

 σ̂2
T σ

(j)
Ty σ̂Tz

σ
(j)
Ty σ̂2

y σ
(j)
zy

σ̂Tz σ
(j)
zy σ̂2

z

 (47)

Drawing Σ(j) based on this large-sample approximation is simple, robust to heteroskedas-

ticity, and likely to appeal broadly. Unfortunately this approach is not guaranteed to

produce positive definite draws. When the sample size is small, as in our example from

Section 4.1, this can be problematic.

A solution to this problem is to proceed in a fully Bayesian fashion rather than using

an approximation based on the Central Limit Theorem. There are many possible ways

to accomplish this. One simple possibility is to posit a joint normal likelihood for

(T, y, z) and place a Jeffrey’s prior on Σ. In particular if, Ti

yi

zi

 ∼ iid N3(µ,Σ), π (µ,Σ) ∝ |Σ|−2 (48)
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then the marginal posterior for Σ is

Σ|T,y, z ∼ Inverse-Wishart(n− 1, S) (49)

where

S =
n∑

i=1

 (Ti − T̄ )

(yi − ȳ)

(zi − z̄)

[ (Ti − T̄ ) (yi − ȳ) (zi − z̄)
]

(50)

The Jeffrey’s prior approach has several advantages. First, as it involves a non-

informative prior, it requires no input from the user. Second, it is guaranteed to

produce positive definite draws for Σ which is important given that our derivation of

the identified set depends on this condition. Nevertheless, the Jeffrey’s prior approach

has several disadvantages. For one, the use of a Jeffrey’s prior is not without contro-

versy in Bayesian econometrics. But more fundamentally, it may seem odd to model

the joint distribution of (T, z, y) given that the typical regression problem, Bayesian

or frequentist, involves a model of the conditional distribution of y given T and z.

This may be less of a concern in a examples featuring a large number of exogenous

control regressors. Since these are projected out before proceeding, we are in effect

positing a normal distribution only for the residuals of the regressions of (T, y, z) on

x. In the empirical example from Section 4.3, for example, Protestant share, distance

to Wittenberg, and literacy rate are highly non-normal. The residuals after projecting

out a large number of demographic controls, however, are plausibly Gaussian. Nev-

ertheless, in the examples below, we will only employ the Jeffrey’s prior approach in

situations where the sample size is too small for our large-sample approximation to

ensure positive definite draws for Σ.

3.2 Uniform Draws on the Conditional Identified Set

To generate uniform draws on Θ(Σ(j)) we employ an accept-reject algorithm, simi-

lar to that proposed by Melfi and Schoier (2004). We proceed in two steps. First

we draw κ(`) ∼ Uniform(κ, κ) independently of ρ
(`)
T ∗u ∼ Uniform(ρ

T ∗u
, ρT ∗u). Ab-

sent any prior restrictions that further restrict the support of κ or ρT ∗u, we take

κ = max
{

(ρ2zT )(`), (ρ2Ty)
(`)
}

, κ = 1, ρ
T ∗u

= −1 and ρT ∗u = 1. We then solve for

ρ
(`)
uz via Equation 34 and check whether it lies in the interval [ρ

uz
, ρuz]. Absent any

prior restrictions on ρuz, we take this interval to be [−1, 1]. If ρ
(`)
uz lies in this region
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and if the triple (ρuz, ρT ∗u, κ) satisfies Inequality 23, we accept draw `; otherwise we

reject it. We repeat this process until we have L draws on the identified set. While

these draws are uniform when projected into the (κ, ρT ∗u) plane, they are not uniform

on the identified set itself. To make them uniform, we need to re-weight each draw

based on the local surface area of the identified set at that point. By “local surface

area” we refer to the quantity

M (ρT ∗u, κ) =

√
1 +

(
∂ρuz
∂ρT ∗u

)2

+

(
∂ρuz
∂κ

)2

(51)

which Apostol (1969) calls the “local magnification factor” of a parametric surface.

The derivatives required to evaluate the function M are

∂ρuz
∂ρT ∗u

=
ρTz√
κ

+
ρT ∗u (ρTyρTz − κρzy)√
κ
(
κ− ρ2Ty

)
(1− ρ2T ∗u)

(52)

and

∂ρuz
∂κ

= −ρT
∗uρTz

2κ3/2
+

√
1− ρ2T ∗u

κ
(
κ− ρ2Ty

) {ρzy +
1

2
(ρTyρTz − κρzy)

[
1

κ
+

1

κ− ρ2Ty

]}
(53)

To accomplish the re-weighting, we first evaluate M (`) = M(ρ
(`)
T ∗u, κ

(`)) at each draw

` that was accepted in the first step. We then calculate Mmax = max`=1,...,LM
(`) and

resample the draws
(
ρ
(`)
uz , ρ

(`)
T ∗u, κ

(`)
)

with probability p(`) = M (`)/Mmax.

4 Empirical Examples

We now consider several examples drawn from the applied literature to illustrate the

methods proposed above: the first considers the effect of institutions on income per

capita, a second considers the estimation of returns to schooling, and a third explores

the causal effect of the Protestant reformation on literacy.

4.1 The Colonial Origins of Comparative Development

We begin by considering the main specification of Acemoglu et al. (2001), who use

early settler mortality as an instrument to study the effect of institutions on GDP per
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capita based on cross-country data for a sample of 64 countries. The main equation is

log GDP/capita = constant + β (Institutions) + u

and the first stage is

Institutions = constant + π (log Settler Mortality) + v

This leads to an OLS estimate of β̂OLS = 0.52 (S.E. = 0.06) and an IV estimate that is

nearly twice as large, β̂IV = 0.94 (S.E. = 0.16), a difference which the authors attribute

to measurement error:

This estimate is highly significant . . . and in fact larger than the OLS esti-

mates... This suggests that measurement error in the institutions variables

that creates attenuation bias is likely to be more important that reverse

causality and omitted variables biases. (p. 1385)

But to what extent can measurement error explain this disparity? Can we use our

framework to assess whether measurement error is more important than omitted vari-

ables? In their paper Acemoglu et al. (2001) state a number of beliefs that are relevant

for this exercise. First, their discussion suggests there is likely a positive correlation

between “true” institutions and the main equation error term u. For example, they

mention that such a correlation could arise through reverse causality if wealthier soci-

eties can afford “better” institutions.8 Second, by way of a footnote (see footnote 19 in

their paper) that uses a second measure of institutions as an instrument for the first,

they argue that measurement error could be substantial. Translating their calculations

from this footnote into our framework implies a value of κ equal to 0.6.9 This would

correspond to 40% of the variation in the observed measure of institutions being noise.

Since the 0.6 estimate for κ is subject to sampling uncertainty, we consider a prior that

8The authors also discuss several potential omitted variables, such as legal origin and British
culture, which are likely to be positively correlated contemporary institutional quality.

9The calculation is as follows. Suppose we have two measures of institutions, T1 and T2, each
subject to classical measurement error: T1 = T ∗ + w1 and T2 = T ∗ + w2. Because the measurement
error is classical, both T1 and T1 suffer from precisely the same degree of endogeneity, because they
inherit this problem from T ∗ alone. Thus, the probability limit of OLS based on T1 is κ(β+σT∗u/σ

2
T∗)

while that of IV using T2 to instrument for T1 is β + σT∗u/σ
2
T∗ . Taking the ratio of the two identifies

κ. In this particular example 0.52/0.87 ≈ 0.6. The standard error for the numerator is 0.06 while
that for the denominator is 0.16.
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restricts κ to lie in the interval [0.45, 0.82].10

We begin by computing the full identified set for this example evaluated at the

MLE for the matrix Σ of reduced form parameters, which we present in Figure 1a.

The region in green restricts attention to the two beliefs mentioned above: ρT ∗u > 0,

and κ ∈ [0.45, 0.82]. As the figure illustrates, those quite reasonable beliefs already

shrink the identified set considerably, although the data by itself further constrains κ to

be at least 0.54 at the MLE for Σ (the constraint in equation 19 binds). The identified

set also allows us to locate the region corresponding to β > 0, i.e. a positive effect of

institutions on prosperity. This corresponds to the blue region in Figure 1b. Figure 1c

then “zooms in” to the portion of the identified set that corresponds to the prior beliefs,

still indicating the points that lead to a positive value of β in blue. Reassuringly from

the authors’ perspective, less than 4% of the restricted identified set evaluated at the

MLE for Σ maps into a negative value for β. Nevertheless, notice that at the MLE for

Σ the restricted identified set completely rules out ρuz = 0. Figure 1c shows that under

the prior, log settler mortality must be negatively correlated with the error. Moreover,

this correlation is at least 0.2 in magnitude. We have thus encountered a contradiction

in beliefs; evaluated at the most likely values for the reduced form parameters, the

model rules out simultaneously believing that the instrument is valid, that 18-55%

of the measured variation in institutions is noise, and that institutions are positively

correlated with the error.

Of course, examining only the MLE for Σ ignores sampling variability which is

likely to be significant in this example as it only includes 64 observations.11 There

are two kinds of probabilities that one can calculate using our framework: those that

involve only bounds on the identified set, incorporating posterior uncertainty over Σ

only, and those that additionally average over the uniform draws on the identified set.

We begin by considering two probabilities of the first kind. First, while the lower

bound for κ at the MLE is 0.54, allowing for sampling variability in Σ yields a range

of possible values for this lower bound. The symmetric 90% posterior credible region

for the lower bound on κ, imposing no prior restrictions on any of the unidentified

parameters, is (0.40, 0.67). In other words, the data tell us that it is extremely unlikely

that more than 60% of the measured variation in institutions is noise. Second, we

10This range is roughly equal to taking upper and lower bounds for κ based on a one standard error
interval around 0.52 and 0.87.

11For this example, our frequentist large-sample approach is infeasible as the small sample size of
64 observations leads to a substantial number of non-positive definite draws for Σ. Thus, we carry
out inference using our fully Bayesian approach with a Jeffery’s prior.
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can also calculate probabilities that condition on our interval restrictions. Restricting

ρT ∗u > 0 and κ ∈ [0.45, 0.82] we find that nearly 48% of the posterior density for

Σ is incompatible with a valid instrument. In other words, each draw Σ(j) yields an

identified set like the one depicted for Σ̂MLE in Figure 1c and while the shapes of these

sets differ, 48% of them exclude ρuz = 0 just as the set for the MLE does.

The preceding two probability statements are informative but also somewhat coarse.

To take a particularly stark example, even under our prior support restrictions, 100%

of the draws for Σ yield identified sets that allow for the possibility of a negative β.

Notice that Figure 1c, evaluated at the MLE, also does not rule out negative values

of β. Nevertheless, the corresponding region of the identified set, depicted in green,

is a very small fraction of the total area. The same is true for most of the draws

for Σ. This motivates a second kind of probability statement, one that averages both

over the draws for Σ and and over those for (ρuz, ρT ∗u, κ). Unlike the statements

about bounds from above, however, inferences constructed in this manner will depend

on the assumption of uniformity over the identified set. One need not take this prior

literally, however, to learn a great deal from the exercise. For example, we can consider

the kinds of deviations from uniformity that would be required to support particular

beliefs. Returning to our point about negative values for β, under a conditionally

uniform prior for the structural parameters ρT ∗u, ρzu and κ restricted to ρT ∗u > 0 and

κ ∈ [0.45, 0.82], just over six percent of the posterior density for β lies below zero, as

shown in Figure 2b. This implies that one would need a very strange prior over the

conditional identified set, one that disproportionately favors extremely large values of

ρT ∗u and extremely negative values of ρuz, to assign substantial posterior probability

to a negative β. We can use the same idea to re-examine our earlier probability

statement concerning instrument validity. Averaging over both Σ and the uniform

draws on the conditional identified set, we see that the restriction ρT ∗u > 0 combined

with κ ∈ [0.45, 0.82] gives a posterior probability of 82 percent that ρuz is less than

-0.1. The main implication of this fact is that the IV estimator is likely somewhat of

an overestimate in this example, as we see from Figure 2b.12 The posterior median for

β, for example, is around 0.73 compared to an IV point estimate of 0.94.

We learn quite a lot from our framework in this example. The main result of

Acemoglu et al. (2001) continues to hold: in spite of the fact that Settler Mortality is

12An instrument that is negatively correlated with the structural equation error term will result
in a downward-biased estimate precisely when the first-stage coefficient is negative, as it is in this
example.
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likely negatively correlated with u under reasonable prior beliefs, it appears that the

effect of institutions on income per capita is almost certainly positive.13

4.2 The Returns to Schooling

In a second example we apply our framework to the classic question in labor economics

related to the estimation of the returns to schooling. We use a sample of 741 males

from Blackburn and Neumark (1992), which contains labor market information for the

year 1980. Following some of the earlier literature on the subject (Griliches (1979),

Card (1999)), we propose using father’s education as the instrument for the individual’s

years of schooling. The main equation is

log(wage rate) = constant + β (Years of Schooling) + x′γ + u

and the first stage is

Years of Schooling = constant + π (Father’s Years of Schooling) + x′δ + v

The set of covariates x we include contains IQ, age, age squared, marital status, race,

a South dummy, and an urban dummy. We find an OLS estimate of 0.039 (S.E.

= 0.0064), and an IV estimate of 0.072 (S.E. = 0.024). Both of these estimates appear

to be small relative to the rest of the literature, and in fact most labor economists

would not believe the exclusion restriction behind the choice of father’s schooling as an

instrument. On the other hand, the literature has pointed out that measurement error

in schooling, even if small, may be an important source of attenuation bias in Mincerian

regressions. In a well-known study, Ashenfelter and Krueger (1994) use the responses

of identical twins about their siblings’ education to assess the extent of measurement

error in self-reported years of schooling. This allows them to estimate the so-called

13This example also illustrates the usefulness of our framework as a tool for refining researcher
beliefs. Our initial prior restriction for κ was not that it lie in the interval [0.45, 0.82], but rather
κ < 0.6. This belief was communicated to us in personal correspondence by one of the authors of
Acemoglu et al. (2001). Based on footnote 19 of the paper, he expressed the belief that at least
40 percent of the measured variation in quality of institutions was likely to be noise. Imposing this
belief along with ρT∗u > 0, however, leads to an empty identified set for just under 25 percent of the
draws for Σ. In other words, the data strongly refute this prior. This left us with the choice of either
relaxing ρT∗u > 0, which would seem strange in this example, or allowing for the possibility of less
measurement error. Accordingly, we chose the latter route, leading to the analysis presented above
where none of the identified sets are empty.
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“reliability ratio” (κ in our notation):

The two estimates of the reliability ratio for the twins schooling levels . . . are

0.92 and 0.88. These estimates indicate that between 8 and 12 percent of

the measured variance in schooling levels is error. Previous estimates of

the reliability ratio in schooling levels . . . have ranged between 0.8 and 0.93

. . . (p. 1161)

These estimates are in close agreement to most others in the literature (see Card,

1999). Being based on self-reported years of schooling, we would expect even less

measurement error in our sample from Blackburn and Neumark (1992), which uses

administrative records. Nevertheless, our prior will restrict κ to take values larger

than 0.8, thus allowing for noise to be up to 20% of the total variation in years of

schooling. Beliefs regarding the partial correlation between schooling and unobserved

ability, ρT ∗u here, are somewhat more contentious among labor economists. Although

most seem to agree this correlation should be positive14 and most likely not larger

than 0.8, some may consider the possibility of a weak but negative correlation between

schooling and ability (e.g. Ashenfelter and Krueger, 1994; Erickson, 1993).

Figure 3a depicts the identified set at the MLE for Σ. In this case, the data

rules out κ’s below 0.4 only, and does not rule out any values for either ρuz or ρT ∗u.

The green region depicts our prior for this problem: reliability ratios above 0.8, and a

positive but not excessively large correlation between education and unobserved ability:

between 0 and 0.8. Figure 3b then depicts in blue the region over the full identified

set, evaluated at the MLE, mapping into positive values for β. Notice that given the

data, positive returns to schooling are more likely for negative values of either the

ability bias or the instrument invalidity. We see from Figures 4a and 4b that, without

imposing prior beliefs, the model and the data allow for a huge range for the returns

to schooling: as small as −400% or as large as +400%. Figure 3c then imposes our

prior, which we believe represents the consensus among labor economists. Restricting

the problem to this subset of the parameter space has several implications. First, we

learn that believing that schooling and ability are positively correlated rules out a valid

instrument at the MLE for Σ. Averaging over the sampling variation, the probability

of father’s education being a valid instrument is only 7%. That is, 93% of the posterior

14Berhman and Rosenzweig (1999) review the literature, and also point out that the negative
”selection effect” estimated by Ashenfelter and Krueger (1994) is not robust to the use of a larger
sample size.
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density for Σ implies an identified set that does not include ρuz = 0. Perhaps more

surprisingly, only 20% of the points in the identified set evaluated at the MLE for Σ

is consistent with a positive value for β. Figure 4 illustrates this more clearly. Once

we introduce our prior, the data and the model make positive returns to schooling

very unlikely. In particular only a strong prior, one that assigns an overwhelming

amount of density to the region where both ρT ∗u and ρzu are small, would make it

more likely than not a posteriori that β is positive. Such a prior, however, supposes

that father’s education is fairly close to being a valid instrument and that ability is

only weakly correlated with schooling. If instead one took what we consider to be the

more reasonable view that father’s education is likely to be a very poor instrument,

say ρuz > 0.15, the model and data would force one to conclude that the returns to

schooling are necessarily negative!

We have found a clear red flag; the reasonable beliefs that κ > 0.8, ρT ∗u ∈ [0, 0.8],

and ρuz > 0 are incompatible with the even more reasonable belief that β > 0. More-

over, the weaker beliefs that κ > 0.8 and ρT ∗u ∈ [0, 0.8] make β > 0 very unlikely for

any reasonable prior over the identified set. As some have suggested that schooling and

ability are negatively correlated (e.g. Ashenfelter and Krueger, 1994), one might won-

der if imposing ρT ∗u < 0 rather than the reverse would avoid this stark contradiction.

Inspection of Figures 3a and 3b shows that such a belief would indeed be compatible

with a positive β. Nevertheless, notice that this would require ρuz < 0, namely the

very implausible belief that father’s schooling is negatively correlated with son’s ability.

In this example, our framework is useful in pointing out that something is seriously

amiss. Among the possibilities, heterogeneous effects may be important, measurement

error may be far from classical, or the model may be seriously misspecified. In any

case, the researcher may want to go back to the drawing board.

4.3 Was Weber Wrong?

In sharp contrast to the previous example, we now present an application where our

framework leads to very different conclusions. Becker and Woessmann (2009) are

interested in the long-run effect of the adoption of Protestantism in 16th Century

Prussia on literacy rates. The paper exploits variation across counties in distance

to Wittenberg, the city where Martin Luther introduced his ideas and preached, as

an instrument for the Protestant share of the Population in the 1870s. Their main
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equation is

Literacy rate = constant + β (Protestant share) + x′γ + u

and the first stage is

Protestant Share = constant + π (Distance to Wittenberg) + x′δ + v

Under this specification, Becker and Woessmann (2009) obtain an OLS estimate

of β̂OLS = 0.099 (S.E = 0.010) and a twice-as-large IV estimate of β̂IV = 0.189 (S.E.

= 0.028). Throughout their main specifications, the authors include a set of covariates

x, which includes the fraction of the population younger than age 10, of Jews, of

females, of individuals born in the municipality, of individuals of Prussian origin, the

average household size, log population, population growth in the preceding decade, and

the fraction of the population with unreported education information. In our exercise

below we include this same set of controls as described in section 3.

Becker and Woessmann (2009) express beliefs about the three key parameters in

our framework. First, their IV strategy relies on the assumption that ρuz = 0. Fur-

thermore, despite using demographic data from the 1870s, the authors argue that the

1870 Prussian Census is regarded by historians to be highly accurate. As such, they

express the belief that measurement error in literacy rates is small. Finally, Becker and

Woessmann (2009) go through a lengthy discussion of the nature of the endogeneity of

the Protestant share. Overall, they argue it is likely that Protestantism is negatively

correlated with the error:

... wealthy regions may have been less likely to select into Protestantism at

the time of the Reformation because they benefited more from the hierarchi-

cal Catholic structure, because the opportunities provided by indulgences

allured to them , and because the indulgence costs weighted less heavily on

them... The fact that “Protestantism” was initially a “protest” movement

involving peasant uprisings that reflected social discontent is suggestive of

such a negative selection bias. (pp. 556-557)

Notice that under the belief that measurement error is small, a negative correlation

between the Protestant share and the error is necessary for the OLS estimate to be

downward biased if the instrument is valid. A natural question in this example is,
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thus, whether the assumption that ρT ∗u < 0 is compatible with little measurement

error and a valid instrument. Figure 5a plots the full identified set for this exercise at

the MLE for the data. One key feature of the identified set is that the constraint for

measurement error from equation 19 binds. The data alone rules out a signal to noise

ratio κ in the Protestant share below 0.5. This means that there is more signal than

noise in measured Protestant share, but the data alone allows for the possibility of

significantly more measurement error than the authors appear to entertain. The figure

also depicts in green the subset of the identified set for which Becker and Woessmann

(2009)’s prior that ρT∗u < 0 holds.15 Figure 5b also presents the unrestricted identified

set at the MLE, this time depicting in blue the points for which the causal effect

of Protestantism on literacy is positive (β > 0). A comparison of Figures 5a and

5b suggest what Figure 5c then clearly illustrates; under the author’s prior and the

restriction on κ implied by the data, the restricted identified set at the MLE rules out

a non-positive β. Under a conditionally uniform prior over this restricted identified set,

the left panel of Figures 6c and 6d present the corresponding densities for β, with and

without accounting for sampling variability in Σ, which not only has a strictly positive

support but also suggests the IV estimate may be smaller than the true causal effect.

Note, however, that we have placed no restrictions on κ beyond those implied by the

data. In particular, Figures 6c and 6d include values for β that correspond to κ as

small as 0.5. This allows for the possibility of even greater measurement error than was

present in the institutions variable from our first example, based on Acemoglu et al.

(2001). This seems extreme given Becker and Woessmann’s emphasis on the accuracy

of their census data. Thus Figures 6e and 6f further restrict attention to those values

of β that correspond to a stronger prior in which κ > 0.8. This allows at most 20%

of the variation in measured Protestant share to be noise. Remarkably, the posterior

for β under a conditionally uniform prior now aligns much more closely with the IV

estimate and excludes nearly all of the implausibly large causal effects from Figures 6c

and 6d. These very large values for β were only possible if we were willing to allow for

the possibility of very severe measurement error in Protestant share.

It is also worth noting that, with or without a prior restriction on κ, the restricted

identified set is fully compatible with a valid instrument and always rules out negative

values for β. In this example, the authors beliefs are mutually consistent and their

result is extremely robust, even to substantial instrument invalidity.

15More precisely we introduce the constraint that −0.9 < ρT∗u < 0 to rule out outlandishly large
negative correlations between Protestantism and the error
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5 Conclusion and Extensions

In this paper we have presented a Bayesian procedure for inference in a non-identified

linear model that is potentially subject to measurement error, an endogenous regres-

sor, and an invalid instrument. Using three well-known examples from the empirical

microeconomics literature, we have shown that our method can be highly informative,

both about the mutual coherence of researcher beliefs and about the causal effect of

interest.

We are currently working on two extensions to the results presented above. The

first allows for multiple instrumental variables. While there are no serious technical

obstacles to this extension, eliciting beliefs over multiple potentially invalid instruments

may be difficult in practice. A second, more involved extension considers the case

in which T ∗ is binary, a common situation in applied work. In this case, classical

measurement error is impossible: if T ∗ = 1 then w ∈ {−1, 0} while if T ∗ = 0 then

w ∈ {0, 1}. This implies that Cor(w, T ∗) ≤ 0. Accordingly, in this case we assume

that the measurement error is non-differential rather than classical: while the joint

distribution of T ∗ and T is unrestricted, we assume that T is conditionally independent

of all other variables in the system, given T ∗.

When T ∗ is binary the problem becomes substantially more complicated, as the

instrumental variables estimator does not eliminate the inconsistency arising from non-

differential measurement error.16 Moreover, in place of a single measurement error

parameter κ, the binary case has two mis-classification probabilities α0 = P (T =

1|T ∗ = 0) and α1 = P (T = 0|T ∗ = 1). Adding these to ρuz and ρT ∗u yields an

identified set that comprises a three-dimensional manifold in four-dimensional space.

Nevertheless, the same approach we outlined above can still be applied, although the

details are somewhat different. Indeed, it may be even easier to elicit researcher beliefs

over α0, α1 than κ. For example, in a regression of birth-weight on mother’s smoking

behavior, we would expect α0, the fraction of non-smokers who claim to be smokers,

to be nearly zero. Work on this and other empirical examples for the binary case is

currently in progress.

16See for example Kane et al. (1999), Black et al. (2000) and Frazis and Lowenstein (2003).
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Figure 1: Identified set for the Colonial Origins example from Section 4.1. Panels (a)
and (b) depict the full identified set for (ρT ∗u, ρuz, κ) evaluated at the MLE for Σ, while
panel (c) restricts attention to the region κ ∈ [0.45, 0.82], ρT ∗u > 0.
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Figure 2: Histograms for β for the Colonial Origins example from Section 4.1. In
each panel the dashed red line indicates the OLS estimate, and the dashed blue line
the IV estimate. Panels (a) and (b) impose no prior restrictions on the identified
set for (ρT ∗u, ρuz, κ), while panels (c) and (d) restrict attention to the region κ ∈
[0.45.0.62], ρT ∗u > 0. Panels (a) and (c) are evaluated at the MLE for Σ, whereas
panels (b) and (d) average over the posterior draws for Σ(j).
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Figure 3: Identified set for Returns to Schooling example from Section 4.2. Panels (a)
and (b) depict the full identified set for (ρT ∗u, ρuz, κ) evaluated at the MLE for Σ, while
panel (c) restricts attention to the region that satisfies the prior κ > 0.8, ρT ∗u ∈ [0, 0.8].

38



β

-3 -2 -1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

(a) Full, MLE

β

-4 -2 0 2 4

0.
0

0.
5

1.
0

1.
5

(b) Full, Posterior

β

-0.25 -0.15 -0.05 0.05

0
1

2
3

4
5

6

(c) Restricted, MLE

β

-0.3 -0.2 -0.1 0.0

0
1

2
3

4
5

6

(d) Restricted, Posterior

Figure 4: Histograms for β for the Returns to Schooling example from Section 4.2. In
each panel the dashed red line indicates the OLS estimate, and the dashed blue line
the IV estimate. Panels (a) and (b) impose no prior restrictions on the identified set
for (ρT ∗u, ρuz, κ), while panels (c) and (d) restrict attention to the region that satisfies
the prior κ > 0.8, ρT ∗u ∈ [0, 0.8]. Panels (a) and (c) are evaluated at the MLE for Σ,
whereas panels (b) and (d) average over the posterior draws for Σ(j).
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Figure 5: Identified set for the “Was Weber Wrong?” example from Section 4.3. Panels
(a) and (b) depict the full identified set for (ρT ∗u, ρuz, κ) evaluated at the MLE for Σ,
while panel (c) restricts attention to the region that satisfies the prior ρT ∗u < 0.
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Figure 6: Histograms for β for the “Was Weber Wrong?” example from Section 4.3.
In each panel the dashed red line indicates the OLS estimate, and the dashed blue
line the IV estimate. Panels (a) and (b) impose no prior restrictions on the identified
set for (ρT ∗u, ρuz, κ). Panels (c) and (d) restrict attention to the region that satisfies
the prior ρT ∗u < 0 while Panels (e) and (f) add the further restriction that κ > 0.8.
Panels (a), (c) and (e) are evaluated at the MLE for Σ, whereas panels (b), (d) and
(f) average over the posterior draws for Σ(j).
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