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Abstract

Much of the literature on mechanism design and implementation uses the revelation
principle to restrict attention to direct mechanisms. This is without loss of generality in a
well defined sense. It is, however, restrictive if one is concerned with the set of equilibria, if
one is concerned about the size of messages that will be sent, or if one is concerned about
privacy. We showed in McLean and Postlewaite (2014) that when agents are informationally
small, there exist small modifications to VCG mechanisms in interdependent value problems
that restore incentive compatibility. We show here how one can construct a two-stage
mechanism that similarly restores incentive compatibility while improving upon the direct
one stage mechanism in terms of privacy and the size of messages that must be sent.
The first stage essentially elicits that part of the agents’private information that induces
interdependence and reveals it to all agents, transforming the interdependent value problem
into a private value problem. The second stage is a VCG mechanism for the now private
value problem. Agents typically need to transmit substantially less information in the two
stage mechanism than would be necessary for a single stage mechanism. Lastly, the first
stage that elicits the part of the agents’private information that induces interdependence
can be used to transform certain other interdependent value problems into private value
problems.
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1. Introduction

Much of mechanism design and implementation theory employs direct mechanisms. In these
mechanisms, the participants’actions are taken to be their types, which embody all relevant
information that is not common knowledge. In many applications, the analysis can be restricted
to direct mechanisms without loss of generality since, for many mechanisms, the revelation
principle holds: to any Bayes equilibrium of a game defined for a mechanism with given outcome
function and message sets, there exists a payoff equivalent direct revelation mechanism in which
truthful reporting is an equilibrium.
While it is correct that restricting attention to direct mechanisms is without loss of gen-

erality in this sense, there are important problems in which this is not the case. In a typical
application of the revelation principle, one solves a principal-agent problem by maximizing the
principal’s utility function subject to incentive constraints requiring that the agent(s) announce
truthfully. This will indeed yield an equilibrium of the revelation game, but there may be addi-
tional equilibria. Postlewaite and Schmeidler (1986) provides an example in which, in addition
to the truthful-announcement equilibrium, there is a non-truthful equilibrium in which all agents
with private information are strictly better off. Exact implementation aims at identifying sets
of outcomes that can be implemented in asymmetric information problems in the sense that
an outcome is an equilibrium outcome if and only if it is in the set. Much of that literature
considers mechanisms in which agents announce more than their private type and demonstrates
the benefits of going beyond direct mechanisms.1

There is a second reason to consider non-direct mechanisms. In a direct mechanism, agent i
typically announces ti ∈ Ti, where Ti is the set of possible types for i. In the implementation
literature initiated by Hurwicz (1972) Ti was often taken to be the set of neoclassical preferences,
or essentially the set of concave utility functions on RL+. If no additional restrictions are placed
on Ti, communicating i’s type entails sending an infinite dimensional message. It may well
be the case that performance functions that can be exactly implemented in revelation games
can also be implemented in non-revelation games in which agents need send dramatically less
information than their full type.2

A third, and perhaps most significant, reason to consider non-direct mechanisms is a concern
for privacy. Participants in a mechanism might be concerned about revealing all of their private
information for two reasons. First, third parties may be able to intercept that information and
use it to the detriment of the participating agent.3 Second, even in the absence of a data breach,
agents may be uneasy about how the information they transmit might be used in the future.4

Given this concern, mechanisms that decrease the amount of information revealed relative to
that revealed in a direct mechanism are a priori preferred. Our aim in this paper is to show
how mechanisms that perform well in interdependent value problems can be improved upon
with respect to privacy and the size of messages agents send by moving from a one stage direct

1See, e.g., Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989) and Jackson (1991).
2For example, Postlewaite and Wettstein (1989) show that the Walrasian correspondence can essentially be

implemented by a mechanism in which agents announce prices and demands in contrast to the direct mechanism
that would require infinite dimensional announcements.
The seminal paper on message size requirements of mechanisms is Mount and Reiter (1974); see Ledyard and

Palfrey (1994, 2002) for more recent investigations of the message size requirements of mechanisms.
3See, e.g., https://corporate.target.com/about/shopping-experience/payment-card-issue-faq .
4See Heffetz and Ligett (2014) for examples and a nice discussion of this issue.
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mechanism to a two stage non=direct mechanism.
The Vickrey-Clarke-Groves mechanism (hereafter VCG) for private values environments is a

classic example of a mechanism for which truthful revelation is ex post incentive compatible. It
is well-known, however, that truthful revelation is generally no longer incentive compatible when
we move from a private values environment to an interdependent values environment. In McLean
and Postlewaite (2014) (henceforth MP (2014)) we showed that, when agents are informationally
small in the sense of McLean and Postlewaite (2002), there exists a modification of a generalized
VCG mechanism using small additional transfers that restores incentive compatibility. This
paper presents an alternative, two-stage non-direct mechanism that accomplishes the same goal
—restoring incentive compatibility for interdependent value problems. The advantage of the two
stage mechanism relative to a single stage mechanism is that, for typical problems, agents need
to transmit substantially less information.
We will explain intuitively the nature of the savings in transmitted information. Consider a

problem in which there is uncertainty about the state of nature. An agent’s private information
consists of a state dependent payoff function and a signal correlated with the state. A single
stage mechanism that delivers an effi cient outcome for any realization of agents’ types must
do two things. First, it must elicit the information agents have about the state of nature to
determine the posterior probability distribution given that information. Second, it must elicit
agents’privately known state dependent payoffs. A two stage mechanism can separate the two
tasks. First, elicit the information about the state of nature, but relay to agents the posterior
distribution on the state of nature before collecting any additional information.
When agents are induced to reveal their information about the state of nature truthfully,

relaying the posterior distribution on the state of nature converts the interdependent value
problem into a private value problem. Knowing the probability distribution on the set of states
of nature, agents need only report their expected utility for each possible social outcome rather
than their utility for every social outcome in each of the states. Essentially, by moving from
a one stage mechanism to a two stage mechanism, we can shift the job of computing expected
utilities given the posterior from the mechanism to the agents, reducing the information that
must be reported to the mechanism. An important side benefit of separating out the first stage
elicitation of information is that the method can be used to transform other interdependent
value problems into private value problems.
We provide an example of how our mechanism works in the next section, and present the

general mechanism after that.

2. Example

The following single object auction example, a modification of the example in McLean and
Postlewaite (2004), illustrates our basic idea. An object is to be sold to one of three agents.
There are two equally likely states of the world, θ1 and θ2, and an agent’s value for the object
depends on the state of the world. Agent i’s state dependent utility function can written as
vi = (v1

i , v
2
i ) = (vi(θ1), vi(θ2)) where vji is his utility of the object in state θj . An agent’s utility

function is private information. In addition, each agent i receives a private signal si ∈ {a1, a2}
correlated with the state. These signals are independent conditional on the state and the
conditional probabilities are as shown in the following table.
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signal a1 a2

state
θ1 ρ 1− ρ
θ2 1− ρ ρ

where ρ > 1
2 . Consequently, an agent’s private information, his type, is a pair (si, vi) and we

make two assumptions. First, for any type profile (si, vi)
3
i=1, the conditional distribution on the

state space given (si, vi)
3
i=1 depends only on the signals (s1, s2, s3). Therefore, the agents’utility

functions provide no information relevant for predicting the state that is not already contained
in the signal profile alone. Second, we assume that for any type (si, vi) of agent i, the conditional
distribution on the signals s−i of the other two agents given (si, vi) depends only on i’s signal si.
Note that the conditional distribution on the state space given (s1, s2, s3) and the conditional
distribution on the signals s−i given si can be computed using the table above.
Suppose the objective is to allocate the object to the agent for whom the expected value,

conditional on the agents’ true signal profile, is highest. This is a problem with interdepen-
dent values. Agent i’s conditional expected value for the object depends on the probability
distribution on the states, conditional on the signals of all three agents. MP (2014) shows how
one can design a direct mechanism to allocate the object to the highest value agent. Each
agent reports his type (si, vi) and the mechanism uses the reported signals about the state
s = (s1, s2, s3) to compute the posterior distribution (π(θ1|s), π(θ2|s)) on Θ. This posterior is
used along with agent i’s announced state dependent utilities to compute i’s expected utility
vi(s) = v1

i π(θ1|s) + v2
i π(θ2|s). The mechanism then awards the object to an agent i with the

highest expected value v̄i(s) and that agent pays the second highest expected value from the set
{v̄j(s)} j 6=i while agents different from i pay nothing. 5

As stated, this direct mechanism is (not even) Bayesian incentive compatible. To induce
agents to truthfully announce their signals, MP (2014) rewards every agent j (winners and
losers) with a positive payment zj if his reported signal is in the majority. Since agents receive
conditionally independent signals about the state, agent j maximizes the probability that he
gets the reward zj by announcing truthfully if other agents are doing so. Since the maximal
possible gain from misreporting is bounded, a suffi ciently large value of zj will make truthful
announcement a Bayes-Nash equilibrium. Agent j’s reward zj need not be very large if ρ is
close to 1. When ρ is close to 1, it is very likely that all agents received “correct” signals
about the state. Therefore, conditional on his own signal, agent j believes that a lie will, with
high probability, have only a small effect on the posterior distribution on Θ. But the expected
gain from misreporting will be small if the expected change in the posterior is small. Thus,
when agents are receiving very accurate signals about θ, small rewards will support truthful
announcement as a Bayes-Nash equilibrium.
Our aim in this paper is to provide a non-direct two stage version of this one stage direct

mechanism that accomplishes the same goal but requires less information to be transmitted.
As an illustration, consider an alternative two stage, non-direct approach to the same simple
allocation problem described above in which the mechanism elicits the information about the
unknown state θ in stage one, and then uses a Vickrey auction in stage two based on the

5 If there is more than one agent with the highest expected value the object is awarded to each with equal
probability.
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expected values that are computed using the information about the state revealed in stage
one. In stage one, agents report a (not necessarily truthful) signal profile s = (s1, s2, s3) and
the mechanism then publicly posts the posterior distribution (ρ(θ1), ρ(θ1)) = (π(θ1|s), π(θ2|s))
computed from s. Using the posted distribution, agents can compute the associated expected
payoffs v1

i ρ(θ1) + v2
i ρ(θ2). These expected payoffs are then reported to the mechanism and the

mechanism awards the object to the agent who reports the highest expected payoff. If agents
report their true signals in stage one and if the true signal profile is s = (s1, s2, s3), then by
the well known property of Vickrey auctions, it is a dominant strategy in stage 2 for each agent
i to truthfully report his expected payoff vi(s). Of course, agents may have an incentive to
misreport their signals in order to manipulate the conditional expected valuations that are used
in the second stage to determine the winner and the price. For example, if all agents have state
dependent values that are lower in state θ1 than in state θ2 (v1

i < v2
i , i = 1, 2, 3), then an

agent who has received signal a2 may have an incentive to report a1. Such a misreport will
increase the probability weight that the posterior assigns to θ1. Consequently, this will lower all
agents’expected values which, in turn, will affect the price paid by the winner of the object. To
induce honest reporting in stage one of a perfect Bayesian equilibrium of this two stage game,
we use the same sort of reward system as that employed in the one stage direct mechanism of
MP(2014).
While the equilibrium outcomes of the one stage direct mechanism and two stage non-

direct mechanism are identical, there is a difference in the information that is reported to the
mechanism. In the direct mechanism, agent i reports his type (si, (v

1
1 , v

2
i )). In the two stage

game, agent i reports si and a real number corresponding to his expected payoff computed
using the posted posterior from the first stage. Consequently, agents reveal less information in
the non-direct mechanism. We note that moving to two stages is necessary for there to be a
reduction in the information sent to the mechanism; it cannot be accomplished with a one stage
mechanism, even if we allow non-direct mechanisms. More generally, we first show how one can
decompose agents’types into “informationally relevant”and “payoff relevant”components as in
the example, and then construct the two stages along the lines of the two parts of the mechanism
discussed above. We demonstrate how this two stage approach can transform an interdependent
value problem into a private value problem for the VCG mechanism, but our basic approach
can be used for other interdependent value implementation and mechanism design problems.

3. Preliminaries

In this section, we review the structure and salient results from MP (2014). If K is a finite set,
let |K| denote the cardinality of K and let ∆(K) denote the set of probability measures on K.
Throughout the paper, || · ||2 will denote the 2-norm and, for notational simplicity, || · || will
denote the 1-norm. The real vector spaces on which these norms are defined will be clear from
the context. Let Θ = {θ1, .., θm} represent the finite set of states of nature and let Ti denote the
finite set of types of player i. Let ∆∗(Θ×T ) denote the set of P ∈ ∆(Θ×T ) whose marginals PΘ

on Θ and PT on T satisfy the following full support assumptions: PΘ(θ) > 0 for each θ ∈ Θ and
PT (t) > 0 for each t ∈ T. The conditional distribution induced by P on Θ given t ∈ T (resp.,
the conditional distribution induced by (the marginal of) P on T−i given ti ∈ Ti) is denoted
PΘ(·|t) (resp., PT−i(·|ti)). Let C denote the finite set of social alternatives. Agent i′s payoff is
represented by a nonnegative valued function vi : C ×Θ× Ti → R+ and we assume that for all

4



i, vi(·, ·, ·) ≤M for some M ≥ 0.

A social choice problem is a collection (v1, .., vn, P ) where P ∈ ∆∗(Θ × T ). An outcome
function is a mapping q : T → C that specifies an outcome in C for each profile of announced
types. A mechanism is a collection (q, x1, .., xn) (written simply as (q, (xi)) where q : T → C is
an outcome function and each xi : T → R is a transfer function. For any profile of types t ∈ T,
let

v̂i(c; t) = v̂i(c; t−i, ti) =
∑
θ∈Θ

vi(c, θ, ti)PΘ(θ|t−i, ti).

Although v̂ depends on P , we suppress this dependence for notational simplicity as well. Finally,
we make the simple but useful observation that the pure private value model is mathematically
identical to a model in which |Θ| = 1.

Definition 1: Let (v1, .., vn, P ) be a social choice problem. A mechanism (q, (xi)) is:
interim incentive compatible if truthful revelation is a Bayes-Nash equilibrium: for each

i ∈ N and all ti, t′i ∈ Ti,∑
t−i∈T−i

[v̂i(q(t−i, ti); t−i, ti) + xi(t−i, ti)]PT−i(t−i|ti) ≥
∑

t−i∈T−i

[v̂i(q(t−i, t
′
i); t−i, ti) + xi(t−i, t

′
i)]PT−i(t−i|ti).

ex post individually rational if

v̂i(q(t); t) + xi(t) ≥ 0 for all i and all t ∈ T.

feasible if for each t ∈ T, ∑
j∈N

xj(t) ≤ 0.

outcome effi cient if for each t ∈ T,

q(t) ∈ arg max
c∈C

∑
j∈N

v̂j(c; t).

4. The Model

4.1. Information Decompositions

In this section, we show how the information structure for general incomplete information prob-
lems, even those without a product structure, can be represented in a way that separates out an
agent’s information about the state θ. This is important because it is this part of his type that
affects other agents’valuations for the social alternatives. The example of Section 2 illustrates
how we can elicit truthful reporting of agents’signals about the state when they are correlated.
In that example, an agent has beliefs about other agents signals that depend on his own

signal, and it is important that the beliefs are different for different signals the agent may
receive. In the example, agent i’s type consists of a signal ai and a state dependent utility
function that is independent of his signal. Consequently agent i has multiple types consisting
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of the same signal but different utility functions, and all of these types will necessarily have the
same beliefs regarding other agents’signals.
It isn’t necessary to elicit that part of an agent’s type that doesn’t affect other agents’

valuations (e.g., his utility function in the example) to cope with the interdependence, only
the part related to the state θ. To formalize this idea, we recall the notion of information
decomposition from McLean and Postlewaite (2004).6

Definition 2: Suppose that P ∈ ∆∗(Θ × T ). An information decomposition for P is a
collection D = ((Ai, fi)i∈N , Q) satisfying the following conditions:

(i) For each i, Ai is a finite set, fi : Ti → Ai is a function, and Q ∈ ∆(Θ×A1 × · · · ×An).7

For each t ∈ T , define f(t) := (f1(t1), .., fn(tn)) and

f−i(t−i) := (f1(t1), .., fi−1(ti−1), fi+1(ti+1), .., fn(tn)).

(ii) For each t ∈ T ,
PΘ(θ|t) = QΘ(θ|f(t))

(iii) For each i, ti ∈ Ti and a ∈ A,∑
t−i∈T−i

:f−i(t−i)=a−i

PT−i(t−i|ti) = QA−i(a−i|fi(ti))

If ti ∈ Ti, we will interpret fi(ti) ∈ Ai as the “informationally relevant component” of ti
and we will refer to Ai as the set of agent i’s “signals.”Condition (ii) states that a type profile
t ∈ T, contains no information beyond that contained in the signal profile f(t) that is useful
in predicting the state of nature. Condition (iii) states that a specific type ti ∈ Ti contains no
information beyond that contained in the signal fi(ti) that is useful in predicting the signals of
other agents.

Every P ∈ ∆∗(Θ× T ) has at least one information decomposition in which Ai = Ti, fi = id,
andQ = P which we will refer to as the trivial decomposition. However, the trivial decomposition
may not be the only one (or the most useful one as we will show below). For example, suppose
that each agent’s type set has a product structure Ti = Xi×Yi and that P ∈ ∆∗(Θ×T ) satisfies

P (θ, x1, y1, .., xn, yn) = P1(θ, x1, .., xn)P2(y1, .., yn)

for each (x1, y1, .., xn, yn) where P1 ∈ ∆(Θ ×X) and P2 ∈ ∆(Y ). Then defining the projection
map pXi(xi, yi) = xi, it follows that D = ((Xi, pXi)i∈N , P1) is an information decomposition for
P .

Remark: If (v1, .., vn, P ) is a social choice problem, then it follows from the definition that
any two information decompositions D = ((Ai, fi)i∈N , Q) and D′ = ((A′i, f

′
i)i∈N , Q

′) for P give
rise to the same v̂i, i.e., for all t ∈ T, we have∑

θ∈Θ

vi(c, θ, ti)QΘ(θ|f(t)) =
∑
θ∈Θ

vi(c, θ, ti)PΘ(θ|t−i, ti) =
∑
θ∈Θ

vi(c, θ, ti)Q
′
Θ(θ|f ′(t)).

6This definition is equivalent to the partition formulation in McLean and Postlewaite (2004).
7The conditional distribution induced by Q on Θ given a ∈ A (resp., the conditional distribution induced by

(the marginal of) Q on A−i given ai ∈ Ai) is denoted QΘ(·|a) (resp., QA−i (·|ai)).
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4.2. Informational Size

In this paper, a fundamental role is played by the notion of informational size. Suppose that
D = ((Ai, fi)i∈N , Q) is an information decomposition for P ∈ ∆∗(Θ×T ). In a direct mechanism,
agent i reports an element of Ti to the mechanism. Consider an alternative scenario in which
each agent i reports a signal ai ∈ Ai to the mechanism. If i reports ai and the remaining agents
report a−i, it follows that the profile a = (a−i, ai) ∈ A will induce a conditional distribution
on Θ (computed from Q) and, if agent i’s report changes from ai to a′i, then this conditional
distribution will (in general) change. We consider agent i to be informationally small if, for
each ai, agent i ascribes “small” probability to the event that he can effect a “large” change
in the induced conditional distribution on Θ by changing his announced type from ai to some
other a′i. This is formalized in the following definition.

Definition 3: Suppose that D = ((Ai, fi)i∈N , Q) is an information decomposition for P ∈
∆∗(Θ× T ). Let

Iiε(a
′
i, ai) = {a−i ∈ A−i| ||QΘ(·|a−i, ai)−QΘ(·|a−i, a′i)|| > ε}

and
νQi (a′i, ai) = min{ε ≥ 0|

∑
a−i∈Iiε(a′i,ai)

QΘ(a−i|ai) ≤ ε}.

The informational size of agent i is defined as

νQi = max
ai∈Ai

max
a′i∈Ai

νQi (a′i, ai).

4.3. Variability of Beliefs

The example of Section 2 illustrates how one might induce truthful announcement of agents’
signals about the state. An agent who receives the signal a1 believes that the state is more likely
to be θ1 than θ2. Given that agents’signals are conditionally independent, he believes that each
of the other agents is more likely to have received signal a1 than a2. Hence, if those agents
are announcing truthfully, he maximizes his chance of receiving the reward z by announcing
truthfully as well. More generally, the key to constructing rewards for agent i who might receive
signal ai or a′i is a requirement that agent i’s beliefs regarding other agents’signals when he
receives signal ai differ from his beliefs when he receives signal a′i. Moreover, the magnitude of
the difference matters in inducing truthful reporting. We turn next to defining a measure of the
variation of an agent’s beliefs.
To define formally the measure of variability, we treat each conditional QA−i(·|ai) ∈ ∆(A−i)

as a point in a Euclidean space of dimension equal to the cardinality of A−i. Our measure of
variability is defined as

ΛQi = min
ai∈Ai

min
a′i∈Ai\ai

∥∥∥∥ QA−i(·|ai)
||QA−i(·|ai)||2

−
QA−i(·|a′i)
||QA−i(·|a′i)||2

∥∥∥∥2

.

If ΛQi > 0, then the agents’signals cannot be stochastically independent with respect to
Q. We will exploit this correlation in constructing Bayesian incentive compatible mechanisms.
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For a discussion of the relationship between this notion of correlation and that found in the full
extraction literature, see MP (2014).
It is important to point out that ΛQi and ΛQ

′

i are generally different for two decomposi-
tions D = ((Ai, fi)i∈N , Q) and D′ = ((A′i, f

′
i)i∈N , Q

′) for P. When an agent’s type set has
a product structure Ti = Xi × Yi as in the example of Section 4.1 and D = ((Ti, id)i∈N , P )

is the trivial decomposition, then ΛQi = ΛPi = 0 for all i. However, for the decomposition
D = ((Xi, pXi

)i∈N , P1) of that example, it may in fact be the case that ΛP1i > 0. The utility of
decompositions will become apparent when we state Theorem B below.

5. The One Stage Implementation Game

5.1. The Generalized VCG Mechanism

We now adapt some of our previous results on implementation with interdependent values to
the model of this paper. In the special case of pure private values, i.e., when |Θ| = 1, it is
well known that the classical VCG transfers will implement an outcome effi cient social choice
function: in the induced direct revelation game, it is a dominant strategy to honestly report
one’s type. In the general case of interdependent values, the situation is more delicate.
Let q : T → C be an outcome effi cient social choice function for the problem (v1, .., vn, P ).

For each t, define transfers as follows:

αqi (t) =
∑
j∈N\i

v̂j(q(t); t)−max
c∈C

 ∑
j∈N\i

v̂j(c; t)


Note that αqi (t) ≤ 0 for each i and t. The resulting mechanism (q, (αqi )) is the generalized
VCG mechanism with interdependent valuations (GVCG for short) studied in MP(2014). It
is straightforward to show that the GVCG mechanism is ex post individually rational and
feasible. In the pure private value case where |Θ| = 1, it follows that for an outcome effi cient
social choice function q : T → C, the GVCG transfers reduce to the classical VCG transfers.
Unfortunately, the GVCG mechanism does not inherit the very attractive dominant strategy
property of the pure private values special case. It is tempting to conjecture that the GVCG
mechanism satisfies ex post incentive compatibility or perhaps the weaker notion of Bayesian
incentive compatibility but even the latter need not hold. There are, however, certain positive
results. In MP (2014), it is shown that a modification of the GVCG mechanism is individually
rational, approximately ex post incentive compatible, exactly Bayesian incentive compatible
when when agents are informationally small. To state the main result of MP (2014), we need
the notion of an augmented mechanism.

Definition 4: Let (zi)i∈N be an n-tuple of functions zi : T → R+ each of which assigns
to each t ∈ T a nonnegative number, interpreted as a “reward”to agent i. If (q, x1, .., xn) is a
mechanism, then the associated augmented mechanism is defined as (q, x1 + z1, .., xn + zn) and
will be written simply as (q, (xi + zi)).

Using precisely the same techniques found in MP (2014), we can prove the following result
for one stage direct mechanisms.
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Theorem A : Let (v1, .., vn) be a collection of payoff functions.

(i) Suppose that q : T → C is outcome effi cient for the problem (v1, .., vn, P ). Suppose that
D = ((Ai, fi)i∈N , Q) is an information decomposition for (v1, .., vn, P ) satisfying ΛQi > 0 for
each i. Then there exists an augmented GVCG mechanism (q, (αqi + zi)) for the social choice
problem (v1, .., vn, P ) satisfying ex post IR and interim IC.

(ii) For every ε > 0, there exists a δ > 0 such that the following holds: whenever q : T →
C is outcome effi cient for the problem (v1, .., vn, P ) and whenever D = ((Ai, fi)i∈N , Q) is an
information decomposition for (v1, .., vn, P ) satisfying

max
i
νQi ≤ δmin

i
ΛQi ,

there exists an augmented GVCG mechanism (q, (αqi + zi)) with 0 ≤ zi(t) ≤ ε for every i and t
satisfying ex post IR and interim IC.8

Part (i) of Theorem A states that, as long as QA−i(·|ai) 6= QA−i(·|a′i) whenever ai 6= a′i,
then irrespective of the agents’informational sizes, the augmenting transfers can be chosen so
that the augmented mechanism satisfies Bayesian incentive compatibility. However, the required
augmenting transfers will be large if the agents have large informational size. Part (ii) states
that the augmenting transfers will be small if the agents have informational size that is small
enough relative to our measure of variation in the agents’beliefs.

6. The Two Stage Implementation Game

6.1. Preliminaries

Suppose that (v1, .., vn, P ) is a social choice problem and suppose that D = ((Ai, fi)i∈N , Q) is
an information decomposition for P.
Throughout this section, we will use the following notational convention:

ρ(a−i, ai) = QΘ(·|a−i, ai) and ρθ(a−i, ai) = QΘ(θ|a−i, ai).

Let Hi denote the collection of all functions ui : C → R+. Consequently we identify Hi with
RC+. For each profile u = (u1, .., un) ∈ H := H1 × · · · ×Hn, let

ϕ(u) ∈ arg max
c∈C

∑
i∈N

ui(c)

and define

ŷi(u) =
∑
j∈N\i

uj(ϕ(u))−max
c∈C

 ∑
j∈N\i

uj(c)

 .

Therefore, (ϕ, ŷ1, .., ŷn) defines the classic private values VCG mechanism and it follows that

ui ∈ arg max
u′i∈Hi

ui(ϕ(u−i, u
′
i)) + ŷi(u−i, u

′
i)

8 In MP (2014), it is also shown that the augmented mechanism is approximately ex post incentive compatible
in the sense defined in that paper.
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for all ui ∈ Hi and all u−i ∈ H−i.
We wish to formulate our implementation problem with interdependent valuations as a two

stage problem in which honest reporting of the agents’signals in stage one resolves the “inter-
dependency”problem so that the stage two problem is a simple implementation problem with
private values to which the classic VCG mechanism can be immediately applied. We now define
an extensive form game that formalizes the two stage process that lies behind this idea. As in
the indirect mechanism for the one stage problem, let Z = (ζi)i∈N be an n-tuple of functions
ζi : A→ R+ each of which assigns to each a ∈ A a nonnegative number ζi(a) again interpreted
as a “reward”to agent i. These rewards are designed to induce agents to honestly report their
signals in stage 1.
Given an information decomposition D and a reward system Z, we define an extensive form

game Γ(D, Z) that unfolds in the following way.

Stage 1: Each agent i learns his type ti ∈ Ti and makes a (not necessarily honest) report
ri ∈ Ai of his signal to the mechanism designer. If (r1, .., rn) is the profile of stage 1 reports,
then agent i receives the nonnegative payment ζi(r1, .., rn) and the game moves to stage 2.

Stage 2: If (r1, .., rn) = r ∈ A is the reported type profile in stage 1, the mechanism
designer publicly posts the conditional distribution ρ(r) = QΘ(·|r). Agents observe this posted
distribution (but not the profile r) and make a second (not necessarily honest) report from Hi

to the mechanism designer. If (u 1, .., un) = u ∈ H is the second stage profile of reports, then the
mechanism designer chooses the social alternative ϕ(u) ∈ C, each agent i receives the transfer
ŷi(u), and the game ends.

We wish to design the rewards ζi to accomplish two goals. In stage 1, we want to induce
agents to report honestly so that the reported stage 1 profile is exactly f(t) = (f1(t1), .., fn(tn))
when the true type profile is t. In stage 2, upon observing the posted posterior distribution
QΘ(·|f(t)), we want each agent i to report the payoff function

u∗i (·) =
∑
θ∈Θ

vi(·, θ, ti)QΘ(θ|f(t)).

If these twin goals are accomplished in a perfect Bayesian equilibrium, then the social outcome
is

ϕ(u∗) ∈ arg max
c

∑
i∈N

∑
θ∈Θ

vi(c, θ, ti)QΘ(θ|f(t)),

the transfers are

ŷi(u
∗) =

∑
j∈N\i

vj(ϕ(u∗), θ, tj)QΘ(θ|f(t))−max
c∈C

 ∑
j∈N\i

vj(c, θ, tj)QΘ(θ|f(t))

 ,
and the ex post payoff to agent i of type ti is∑

i∈N

∑
θ∈Θ

vi(ϕ(u∗), θ, tj)QΘ(θ|f(t)) + ŷi(u
∗) + ζi(f(t)).

Note that these transfers and payoffs are precisely the GVCG transfers and payoffs defined in
Section 5 for the one stage implementation problem.
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6.2. Strategies and Equilibria in the Two Stage Game

Define
Π := {QΘ(·|a) : a ∈ A}.

Given the specification of the extensive form, it follows that the second stage information sets
of agent i are indexed by the elements of Ai × Π × Ti. A strategy for agent i in this game is a
pair (αi, βi) where αi : Ti → Ai specifies a type dependent report αi(ti) ∈ Ai in stage 1 and
βi : Ai × Π× Ti → Hi specifies a second stage report βi(ri, π, ti) ∈ Hi as a function of i’s first
stage report ri ∈ Ai, the posted distribution π, and i′s type ti ∈ Ti.
We are interested in a Perfect Bayesian Equilibrium (PBE) assessment for the two stage

implementation game Γ(D, Z) consisting of a strategy profile (αi, βi)i∈N and a system of second
stage beliefs in which players truthfully report their private information at each stage.

Definition 5: A strategy (αi, βi) for player i is truthful for i if αi(ti) = fi(ti) for all ti ∈ Ti
and

βi(fi(ti), π, ti)(·) =
∑
θ∈Θ

vi(·, θ, ti)π(θ)

for all π ∈ Π and ti ∈ Ti . A strategy profile (αi, βi)i∈N is truthful if (αi, βi) is truthful for each
player i.

Formally, a system of beliefs for player i is a collection of probability measures on Θ×T−i
indexed by Ai ×Π× Ti, i.e., a collection of the form

{µi(·|ri, π, ti) ∈ ∆(Θ× T−i) : (ri, π, ti) ∈ Ai ×Π× Ti}.

with the following interpretation: when player i of type ti reports ri in Stage 1 and observes
the posted distribution π, then player i assigns probability mass µi(θ, t−i|ri, π, ti) to the event
that other players have true types t−i and that the state of nature is θ. As usual, an assessment
is a pair {(αi, βi)i∈N , (µi)i∈N} consisting of a strategy profile and a system of beliefs for each
player.

Definition 6: An assessment {(αi, βi)i∈N , (µi)i∈N} is an incentive compatible Perfect
Bayesian equilibrium (ICPBE) assessment in the game Γ(D, Z) if (α, β, µ) = {(αi, βi)i∈N , (µi)i∈N}
is a Perfect Bayesian Equilibrium assessment and the profile (αi, βi)i∈N is truthful.

6.3. The Main Result

Theorem B: Let (v1, .., vn) be a collection of payoff functions.

(a) Suppose that q : T → C is outcome effi cient for the problem (v1, .., vn, P ). Suppose that
D = (Ai, fi)i∈N , Q) is an information decomposition for P satisfying ΛQi > 0 for each i. Then
there exists a reward system Z = (ζi)i∈N such that the two stage game Γ(D, Z) has an ICPBE
(α∗, β∗, µ).
(b) For every ε > 0, there exists a δ > 0 such that the following holds: whenever q : T → C

is outcome effi cient for the problem (v1, .., vn, P ) and D = (Ai, fi)i∈N , Q) is an information
decomposition for P satisfying

max
i
νQi ≤ δmin

i
ΛQi ,
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there exists a reward system Z = (ζi)i∈N such that the two stage game Γ(D, Z) has an ICPBE
(α∗, β∗, µ). Furthermore, 0 ≤ ζi(a) ≤ ε for every i and a.

To prove Theorem B, we proceed in several steps which we outline here. Suppose that
D = (Ai, fi)i∈N , Q) is an information decomposition for P .

Step 1 : Suppose that (α, β) is a strategy profile with αi(ti) = fi(ti) for all i and ti. Suppose
that player i is of true type ti, the other players have true type profile t−i, player i reports ri
in stage 1. Given the definition of (α−i, β−i), it follows that αj(tj) = fj(tj) for each j 6= i.
Therefore, player i of type ti who has submitted report ri in stage 1 and who observes π ∈ Π at
stage 2 will assign positive probability∑

t̂−i:ρ(f−i(t̂−i),ri)=π

PT−i(t̂−i|ti) > 0

to the event
{t̂−i ∈ T−i : ρ(f−i(t̂−i), ri) = π}.

Therefore, i’s updated beliefs regarding (θ, t−i) consistent with (α, β) are given by

µi(θ, t−i|ri, π, ti) =
ρθ(f−i(t−i), fi(ti))PT−i(t−i|ti)∑
t̂−i:ρ(f−i(t̂−i),ri)=π

PT−i(t̂−i|ti)
if ρ(f−i(t−i), ri) = π

= 0 otherwise.

Step 2 : Let
wi(·, π, ti) :=

∑
θ∈Θ

vi(·, θ, ti)π(θ)

and for each π and t−i let w∗−i(π, t−i) ∈ H−i be defined as

w∗−i(π, t−i) := (wj(·, π, tj))j∈N\i.

Next, we define the following particular second stage component β∗i of agent i’s strategy as
follows: for each (ri, π, ti) ∈ Ai ×Π× Ti, let

β∗i (ri, π, ti) ∈ arg max
ui∈Hi

∑
t−i∈T−i

∑
θ∈Θ

[
vi(ϕ(ui, w

∗
−i(π, t−i)), θ, ti) + ŷi(ui, w

∗
−i(π, t−i))

]
µi(θ, t−i|ri, π, ti)

where µi(·|ri, π, ti) is defined in Step 19 . We then show that

β∗i (fi(ti), π, ti) =
∑
θ∈Θ

vi(·, θ, ti)π(θ) = wi(·, π, ti).

Step 3 : If α∗i (ti) = fi(ti) for all i and ti and β∗i is defined as in Step 2, then (α∗, β∗)
is a truthful strategy profile. The proof is completed by constructing a system of rewards

9Note that β∗i (ri, π, ti) exists since each vi takes on only finitey many values for each i and the set Π is also
finite.
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Z = (ζi)i∈N such that (α∗, β∗, µ) is an ICPBE of the two stage game Γ(D, Z). To accomplish
this, we define spherical scoring rule transfers

ζi(a−i, ai) = ε
QA−i(a−i|ai)
||QA−i(·|ai)||2

as in MP(2014.) To prove part (a) of Theorem B, we show that one can find ε > 0 so that (i)
deviations at second stage information sets are unprofitable given the beliefs µ defined in step
1 and (ii) coordinated deviations across the two stages are unprofitable. This latter argument
depends crucially on the special transfers ζi. It is these transfers that induce truthful reporting in
stage 1, thus reducing the second stage to a simple implementation problem with private values.
To prove part (b), we show that ε can be chosen to be small when each agent’s informational
size is small enough relative to the variation in his beliefs.
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7. Appendix

7.1. Preparatory Lemmas

Lemma A: Let M be a nonnegative number and let {gi : C ×Θ→ R+ : i ∈ N} be a collection
of functions satisfying gi(·.·) ≤M for all i. For each S ⊆ {1, .., n} and for each π ∈ ∆(Θ), let

FS(π) = max
c∈C

∑
i∈S

∑
θ∈Θ

gi(c, θ)π(θ).

Then for each π, π′ ∈ ∆(Θ),

|FS(π)− FS(π′)| ≤ |S|M ||π − π′||.
Proof : See MP(2014)

Lemma B: Let M be a nonnegative number and let {gi : C × Θ → R+ : i ∈ N} be a
collection of functions satisfying gi(·, ·) ≤M for all i. For each π ∈ ∆(Θ), let

ξ(π) ∈ arg max
c∈C

∑
i∈N

∑
θ∈Θ

gi(c.θ)π(θ),

and

ηi(π) =
∑
j∈N\i

∑
θ∈Θ

gj(ξ(π), θ)π(θ)−max
c∈C

 ∑
j∈N\i

∑
θ∈Θ

gj(c, θ)π(θ).

 .
Then for each t ∈ T and all π, π′ ∈ ∆(Θ),[∑

θ∈Θ

gi(ξ(π
′), θ)π′(θ) + ηi(π

′)

]
−
[∑
θ∈Θ

gi(ξ(π), θ)π(θ) + ηi(π)

]
≤ (2n− 1)M ||π − π′||

Proof :[∑
θ∈Θ

gj(ξ(π
′), θ)π′(θ) + ηi(π

′)

]
−
[∑
θ∈Θ

gj(ξ(π), θ)π(θ) + ηi(π)

]
=
∑
k∈N

∑
θ∈Θ

gk(ξ(π′), θ)π′(θ)−
∑
k∈N

∑
θ∈Θ

gk(ξ(π), θ)π(θ)

+ max
c∈C

 ∑
j∈N\i

∑
θ∈Θ

gj(c, θ)π(θ).

−max
c∈C

 ∑
j∈N\i

∑
θ∈Θ

gj(c, θ)π
′(θ)


= max

c∈C

[∑
k∈N

∑
θ∈Θ

gk(c, θ)π′(θ)

]
−max

c∈C

[∑
k∈N

∑
θ∈Θ

gk(c, θ)π(θ)

]

+ max
c∈C

 ∑
j∈N\i

∑
θ∈Θ

gj(c, θ)π(θ)

−max
c∈C

 ∑
j∈N\i

∑
θ∈Θ

gj(c, θ)π
′(θ)


≤ nM ||π − π′||+ (n− 1)M ||π − π′||
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where the last inequality follows from Lemma A.

Lemma C: Suppose that Q ∈ ∆(Θ×A) and define a system of rewards Z = (ζi)i∈N where

ζi(a−i, ai) = ε
QA−i(a−i|ai)
||QA−i(·|ai)||2

for each (a−i, ai) ∈ A. Then for each ai, a′i ∈ Ai,∑
a−i

[ζi(a−i, ai)− ζi(a−i, a′i)]QA−i(a−i|ai) ≥
ε

2
√
|A|

ΛQi .

Proof : Since∥∥∥∥ QA−i(·|ai)
||QA−i(·|ai)||2

−
QA−i(·|a′i)
||QA−i(·|a′i)||2

∥∥∥∥2

= 2

[
1−

QA−i(·|a′i) ·QA−i(·|ai)
||QA−i(·|ai)||2||QA−i(·|a′i)||2

]
and ||QA−i(·|ai)||2 ≥ 1√

|A−i|
≥ 1√

|A|
, we conclude that

∑
a−i

[ζi(a−i, ai)− ζi(a−i, a′i)]Q(a−i|ai) =
∑
a−i

[
ε
QA−i(a−i|ai)
||QA−i(·|ai)||2

− ε
QA−i(a−i|a′i)
||QA−i(·|a′i)||2

]
Q(a−i|ai)

= ε

[
QA−i(·|ai) ·Q(|ai)
||QA−i(·|ai)||2

−
QA−i(·|a′i) ·Q(·|ai)
||QA−i(·|a′i)||2

]
= ε||QA−i(·|ai)||2

[
1−

QA−i(·|a′i) ·QA−i(·|ai)
||Q(·|ai)||2||Q(·|a′i)||2

]
=

ε

2
||Q(·|ai)||2

∥∥∥∥ QA−i(·|ai)
||QA−i(·|ai)||2

−
QA−i(·|a′i)
||QA−i(·|a′i)||2

∥∥∥∥2

≥ ε

2
√
|A|

ΛQi .

7.2. Proof of Theorem B

We will prove part (b) of Theorem B first. To begin, define beliefs µi(·|ri, π, ti) ∈ ∆(Θ × T−i)
for agent i at each information set (ri, π, ti) ∈ Ai × Π × Ti as in Section 5. In addition, define
wi(·, π, ti) and w∗−i(π, t−i) as in Section 5. Let α∗i (ti) = fi(ti) and recall that β

∗
i is defined for

agent i as follows: for each (ri, π, ti) ∈ Ai ×Π× Ti, let

β∗i (ri, π, ti) ∈ arg max
ui∈Hi

∑
t−i∈T−i

∑
θ∈Θ

[vi(ϕ(ui, w
∗
−i(π, t−i)), θ, ti)+ŷi(ui, w

∗
−i(π, t−i))]µi(θ, t−i|ri, π, ti).

For notational convenience, we will write QA−i(·|ai) as Q(·|ai) and PT−i(·|ti) as PT−i(·|ti)
throughout this proof. Choose ε > 0 and define a system of rewards Z = (ζi)i∈N where

ζi(a−i, ai) = ε
Q(a−i|ai)
||Q(·|ai)||2

.
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Since 0 ≤ Q(a−i|ai)
||Q(·|ai)||2 ≤ 1, for all i, a−i and ai.it follows that

0 ≤ ζi(a−i, ai) ≤ ε.

Next suppose that
0 < δ <

ε

12nM
√
|A|

.

We will show that (α∗, β∗, µ) is an ICPBE in the game Γ(D, Z) whenever maxi ν
Q
i ≤ δmini ΛQi .

To accomplish this, we must show that (α∗, β∗) is truthful, that first stage deviations are un-
profitable and that coordinated deviations across stages are unprofitable.

Part 1 : To show that (α∗, β∗) is truthful, we must show that

β∗i (fi(ti), π, ti)(·) =
∑
θ∈Θ

vi(·, θ, ti)π(θ) = wi(·, π, ti)

for all π ∈ Π and ti ∈ Ti . i.e., that

wi(·, π, ti) ∈ arg max
ui∈Hi

∑
t−i∈T−i

∑
θ∈Θ

[
vi(ϕ(ui, w

∗
−i(π, t−i), θ, ti) + ŷi(ui, w

∗
−i(π, t−i))

]
µi(θ, t−i|fi(ti), π, ti)

for each ti and each π ∈ Π. To see this, note that for each ui ∈ Hi,∑
t−i∈T−i

∑
θ∈Θ

[vi(ϕ(ui, w
∗
−i(π, t−i)), θ, ti) + ŷi(ui, w

∗
−i(π, t−i)]µi(θ, t−i|fi(ti), π, ti)

=
∑

t−i∈T−i
:ρ(f−i(t−i),fi(ti))=π

∑
θ∈Θ

[vi(ϕ(ui, w
∗
−i(π, t−i)), θ, ti) + ŷi(ui, w

∗
−i(π, t−i)]

[
ρθ(f−i(t−i), fi(ti))P (t−i|ti)∑
t̂−i:ρ(f−i(t̂−i),fi(ti))=π

P (t̂−i|ti)

]

=
∑

t−i∈T−i
:ρ(f(t))=π

[∑
θ∈Θ

vi(ϕ(ui, w
∗
−i(π, t−i)), θ, ti)ρθ(f(t)) + ŷi(ui, w

∗
−i(π, t−i))

][
P (t−i|ti)∑

t̂−i:ρ(f−i(t̂−i),fi(ti))=π
P (t̂−i|ti)

]

=
∑

t−i∈T−i
:ρ(f(t))=π

[∑
θ∈Θ

vi(ϕ(ui, w
∗
−i(π, t−i)), θ, ti)π(θ) + ŷi(ui, w

∗
−i(π, t−i))

][
P (t−i|ti)∑

t̂−i:ρ(f−i(t̂−i),fi(ti))=π
P (t̂−i|ti)

]

=
∑

t−i∈T−i
:ρ(f(t))=π

[wi(ϕ(ui, w
∗
−i(π, t−i)), π, ti) + ŷi(ui, w

∗
−i(π, t−i)]

[
P (t−i|ti)∑

t̂−i:ρ(f−i(t̂−i),fi(ti))=π
P (t̂−i|ti)

]

≤
∑

t−i∈T−i
:ρ(f(t))=π

[wi(ϕ(wi(·, π, ti), w∗−i(π, t−i)), π, ti) + ŷi(wi(·, π, ti), w∗−i(π, t−i))]
[

P (t−i|ti)∑
t̂−i:ρ(f−i(t̂−i),fi(ti))=π

P (t̂−i|ti)

]

=
∑

t−i∈T−i

∑
θ∈Θ

[vi(ϕ(wi(·, π, ti), w∗−i(π, t−i)), θ, ti) + ŷi(wi(·, π, ti), w∗−i(π, t−i)]µi(θ, t−i|ri, π, ti).

16



Therefore, (α∗, β∗) is truthful.

Part 2 : To show that deviations at second stage information sets are unprofitable, suppose
that all players use α∗i in stage 1 and players j 6= i use β∗j in stage 2. Then, upon observing π
and having reported truthfully in stage 1, it follows from the definition of β∗j that each player
j 6= i reports β∗j (fj(tj), π, tj) = wj(·, π, tj) in stage 2. Therefore, the second stage expected
payoff to player i who reports ui ∈ Hi given the beliefs µi defined above is∑

t−i∈T−i

∑
θ∈Θ

[
vi(ϕ(ui, w

∗
−i(π, t−i)), θ, ti) + ŷi(ui, w

∗
−i(π, t−i)

]
µi(θ, t−i|fi(ti), π, ti)

so the definition of β∗i implies that

wi(·, π, ti) ∈ arg max
ui∈Hi

∑
t−i∈T−i

∑
θ∈Θ

[
vi(ϕ(ui, w

∗
−i(π, t−i)), θ, ti) + ŷi(ui, w

∗
−i(π, t−i))

]
µi(θ, t−i|fi(ti), π, ti).

Part 3 : To show that coordinated deviations across stages are unprofitable for player i, we
assume that other players use (α∗−i, β

∗
−i) and we must show that, for all ti ∈ Ti and all ri ∈ Ai,

we have

∑
t−i∈T−i

[∑
θ∈Θ

vi(ϕ(wi(·, ρ(f(t)), ti)), w
∗
−i(ρ(f(t), t−i)), θ, ti)ρθ(f(t)) + ŷi(wi(·, ρ(f(t)), ti)), w

∗
−i(ρ(f(t)), t−i))

]
P (t−i|ti)

+
∑

t−i∈T−i

ζi(f(t))]P (t−i|ti)

≥
∑

t−i∈T−i

max
ui∈Hi

[∑
θ∈Θ

vi(ϕ(ui, w
∗
−i(ρ(f−i(t−i), ri), t−i)), θ, ti)ρθ(f(t)) + ŷi(ui, w

∗
−i(ρ(f−i(t−i), ri), t−i))

]
P (t−i|ti)

+
∑

t−i∈T−i

ζi(f−i(t−i), ri)P (t−i|ti).

Since∑
θ∈Θ

vi(ϕ(wi(·, ρ(f−i(t−i), ri), ti), w
∗
−i(ρ(f−i(t−i), ri), t−i)), θ, ti)ρθ(f−i(t−i), ri)

+ ŷi(wi(·, ρ(f−i(t−i), ri), ti), w
∗
−i(ρ(f−i(t−i), ri), t−i))

≥
∑
θ∈Θ

vi(ϕ(ui, w
∗
−i(ρ(f−i(t−i), ri), t−i)), θ, ti)ρθ(f−i(t−i), ri)

+ ŷi(ui, w
∗
−i(ρ(f−i(t−i), ri), t−i))
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for all ui ∈ Hi, it follows from Lemma C that for each t−i and each ui, ri and ti,∑
θ∈Θ

vi(ϕ(wi(·, ρ(f(t)), ti)), w
∗
−i(ρ(f(t)), t−i)), θ, ti)ρθ(f(t)) + ŷi(wi(·, ρ(f(t)), ti)), w

∗
−i(ρ(f(t)), t−i))

−
[∑
θ∈Θ

vi(ϕ(ui, w
∗
−i(ρ(f−i(t−i), ri), t−i)), θ, ti)ρθ(f(t)) + ŷi(ui, w

∗
−i(ρ(f−i(t−i), ri), t−i))

]
=
∑
θ∈Θ

vi(ϕ(wi(·, ρ(f(t)), ti)), w
∗
−i(ρ(f(t)), t−i)), θ, ti)ρθ(f(t)) + ŷi(wi(·, ρ(f(t)), ti)), w

∗
−i(ρ(f(t), t−i)))

− [∑
θ∈Θ

vi(ϕ(wi(·, ρ(f−i(t−i), ri), ti), w
∗
−i(ρ(f−i(t−i), ri), t−i)), θ, ti)ρθ(f−i(t−i), ri)

+ ŷi(wi(·, ρ(f−i(t−i), ri), ti), w
∗
−i(ρ(f−i(t−i), ri), t−i))]

+ [∑
θ∈Θ

vi(ϕ(wi(·, ρ(f−i(t−i), ri), ti), w
∗
−i(ρ(f−i(t−i), ri), t−i)), θ, ti)ρθ(f−i(t−i), ri)

+ ŷi(wi(·, ρ(f−i(t−i), ri), ti), w
∗
−i(ρ(f−i(t−i), ri), t−i))]

−
[∑
θ∈Θ

vi(ϕ(ui, w
∗
−i(ρ(f−i(t−i), ri), t−i)), θ, ti)ρθ(f−i(t−i), ri) + ŷi(ui, w

∗
−i(ρ(f−i(t−i), ri), t−i))

]
+
∑
θ∈Θ

vi(ϕ(ui, w
∗
−i(ρ(f−i(t−i), ri), t−i)), θ, ti)[ρθ(f−i(t−i), ri)− ρθ(f(t))]

≥ −(2n− 1)M ||ρ(f(t))− ρ(f−i(t−i), ri))|| −M ||ρ(f(t))− ρ(f−i(t−i), ri))||

Therefore,∑
t−i∈T−i

∑
θ∈Θ

[vi(ϕ(wi(·, ρ(f(t), ti)), w
∗
−i(ρ(f(t), t−i)), θ, ti)ρθ(f(t)) + ŷi(wi(·, ρ(f(t), ti)), w

∗
−i(ρ(f(t), t−i)))]P (t−i|ti)

+
∑

t−i∈T−i

ζi(f(t))P (t−i|ti)

≥
∑

t−i∈T−i

max
ui∈Hi

[∑
θ∈Θ

vi(ϕ(ui, w
∗
−i(ρ(f−i(t−i), ri), t−i)), θ, ti)ρθ(f(t)) + ŷi(ui, w

∗
−i(ρ(f−i(t−i), ri), t−i))]P (t−i|ti)

+
∑

t−i∈T−i

ζi(f−i(t−i), ri)P (t−i|ti)

+
∑

t−i∈T−i

[ζi(f(t))− ζi(f−i(t−i), ri)]P (t−i|ti)− 2nM
∑

t−i∈T−i

||ρ(f(t))− ρ(f−i(t−i), ri))||P (t−i|ti)

To complete the proof, we must show that∑
a−i

[ζi(a−i, fi(ti))− ζi(a−i, ri)]Q(a−i|fi(ti)) ≥ 2nM
∑
a−i

||ρ(a−i, fi(ti))−ρ(a−i, ri))||Q(a−i|fi(ti)).
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From the definition of νQi , it follows that∑
a−i

||ρ(a−i, ai)− ρ(a−i, ri))||Q(a−i|ai)

=
∑
a−i

:||ρ(a−i,ai)−ρ(a−i,ri))||>νQi

||ρ(a−i, ai)− ρ(a−i, ri))||Q(a−i|ai)

+
∑
a−i

:||ρ(a−i,ai)−ρ(a−i,ri))||≤νQi

||ρ(a−i, ai)− ρ(a−i, ri))||Q(a−i|ai)

≤ 2νQi + νQi

= 3νQi .

Consequently, we can apply Lemma C and the definition of information decomposition to
conclude that∑

t−i∈T−i

[ζi(f(t))− ζi(f−i(t−i), ri)]P (t−i|ti)− 2nM
∑

t−i∈T−i

||ρ(f(t))− ρ(f−i(t−i), ri))||P (t−i|ti)

=
∑
a−i

∑
t−i∈T−i

:f−i(t−i)=a−i

[ζi(f(t))− ζi(f−i(t−i), ri)]P (t−i|ti)

−2nM
∑
a−i

∑
t−i∈T−i

:f−i(t−i)=a−i

||ρ(f(t))− ρ(f−i(t−i), ri))||P (t−i|ti)

=
∑
a−i

[ζi(a−i, fi(ti))− ζi(a−i, ri)]

 ∑
t−i∈T−i

:f−i(t−i)=a−i

P (t−i|ti)



−2nM
∑
a−i

||ρ(a−i, fi(ti))− ρ(a−i, ri))||

 ∑
t−i∈T−i

:f−i(t−i)=a−i

P (t−i|ti)


=

∑
a−i

[ζi(a−i, fi(ti))− ζi(a−i, ri)]Q(a−i|fi(ti))− 2nM
∑
a−i

||ρ(a−i, fi(ti))− ρ(a−i, ri))||Q(a−i|fi(ti))

≥ ε

2
√
|A|

ΛQi − (2nM)(3νQi )

≥ 0

To prove part (a) of the theorem, note that part 3 above shows that∑
t−i∈T−i

[ζi(f(t))− ζi(f−i(t−i), ri)]P (t−i|ti)− 2nM
∑

t−i∈T−i

||ρ(f(t))− ρ(f−i(t−i), ri))||P (t−i|ti)

≥ ε

2
√
|A|

ΛQi − 2nM
∑

t−i∈T−i

||ρ(f(t))− ρ(f−i(t−i), ri))||P (t−i|ti).
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If ΛQi > 0, then choosing ε > 0 suffi ciently large proves the result.
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