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Abstract

This paper studies infinite-horizon stochastic games in which players ob-
serve payoffs and noisy public information about a hidden state each period.
Public randomization is available. We find that, very generally, the feasible
and individually rational payoff set is invariant to the initial prior about the
state in the limit as the discount factor goes to one. We also provide a re-
cursive characterization of the equilibrium payoff set and establish the folk
theorem.
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1 Introduction

When agents have a long-run relationship, underlying economic conditions may
change over time. A leading example is a repeated Bertrand competition with
stochastic demand shocks. Rotemberg and Saloner (1986) explore optimal collu-
sive pricing when random demand shocks are i.i.d. each period. Haltiwanger and
Harrington (1991), Kandori (1991), and Bagwell and Staiger (1997) further ex-
tend the analysis to the case in which demand fluctuations are cyclic or persistent.
A common assumption of these papers is that demand shocks are publicly observ-
able beforefirms make their decisions in each period. This means that in their
model, firms can perfectly adjust their price contingent on the true demand today.
However, in the real world, firms often face uncertainty about the market demand
when they make decisions. Firms may be able to learn the current demand shock
through their saleafter they make decisions; but then in the next period, a new
demand shock arrives, and hence they still face uncertainty about the true demand.
In such a situation, firms need to estimate the true demand in order to figure out
the optimal pricing each period, and they may want to “experiment” in order to
obtain better information about the future economic condition. This paper de-
velops a general framework which incorporates such uncertainty, and investigates
how uncertainty influences long-run incentives.

Specifically, we consider a new class of stochastic games in which the state
of the world is hidden information. At the beginning of each petipd hidden
statew! (booms or slumps in the Bertrand model) is given, and players have some
posterior beliefu! about the state. Players simultaneously choose actions, and
then a public signay and the next hidden statg'** are randomly drawn. After
observing the signaJ, players updates their posterior belief using Bayes’ rule,
and then go to the next period. The siggatan be informative about both the
current and next states, which ensures that our formulation accommodates a wide
range of economic applications.

Throughout the paper, we assume that actions are perfectly observable. In
this case, there is no private information and thus players have the same posterior
belief u' about the current stat' after every history. Then this posterior belief
ut can be regarded as a common state variable, and thus our model reduces to
a stochastic game witbbservablestatesu!. This is a great simplification, but



still the model is not as tractable as one may expect; a problem is that there are
infinitely many possible posterior beliefs, so we need to consider a stochastic
game withinfinite states. This is in a sharp contrast with past work which assumes
afinite state space (Dutta (1995), Fudenberg and Yamamoto (2011b),anenA
Sugaya, Takahashi, and Vieille (2011)).

A main problem of having infinite states is that a Markov chain over infinite
states can be “badly” behaved in the long run. When we consider a finite-state
Markov chain, some states must pesitive recurrenin the sense that the state
will return to the current state in finite time with probability one. Intuitively,
positive recurrence ensures that the Markov chain is “well-behaved” in the long
run; in particular, under a mild condition, the Markov chairigodicso that the
state in a distant future is not influenced by the initial state. Using this property,
Dutta (1995) shows that the feasible payoff set for patient players, who care only
a distant future, is invariant to the initial state. All the existing techniques on
stochastic games rely on this invariance result. In contrast, when a Markov chain
has infinite states, states may not be positive recurrent, and accordingly, it is well-
known that an infinite-state Markov chain is not ergodic in many cadésnce,

a priori, there is no reason to expect the belief evolution to be ergodic.

Nonetheless, we find that the invariance result extends to our setup under a
mild condition. Specifically, we show that if the gamecsnnectedthen the
feasible payoff set is invariant to the initial belief in the limit as the discount
factor goes to one. We also show that the limit minimax payoff is invariant to
the initial belief under a stronger assumptistrong connectednes®ur proof is
substantially different from that of the literature, since the techniques which refer
to ergodic theorems are not applicable due to the infinite state space.

Our assumption, connectedness, is a condition about howuiygortof the
belief evolves over time; it requires that players can jointly drive the support of the
belief from any seQ)* to any other seR**, unless the se€®** is “not essential” in

IHorner, Takahashi, and Vieille (2011) consider stochastic games with infinite states, but they
assume that the limit equilibrium payoff set is identical for all initial states, that is, they assume
a sort of ergodicity. There is also an extensive literature on the existence of Markov strategy
equilibria for the infinite-state case. See recent work by Duggan (2012) and Levy (2013), and an
excellent survey by Dutta and Sundaram (1998). In contrast to the literature, this paper considers
a general class of equilibria which are not necessarily Markovian.

°There are some well-known sufficient conditions for ergodicity of infinite-state Markov
chains, but these conditions are not satisfied in our model. See Appendix G for discussions.
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the sense that the probability of the support bedig in a distant future is almost
negligible. (HereQ* andQ** denote subsets of the whole state sp@ceIntu-

itively, this property ensures that the evolution of the support of the belief is well-
behaved in the long run. As discussed in Section 4.3, connectedness is regarded
as a natural generalization of irreducibility commonly assumed in the literature
to the hidden-state case. We also show that connectedness can be replaced with
an even weaker condition, calledymptotic connectednegssymptotic connect-
edness is satisfied for generic games, as long as the underlying state evolution is
irreducible.

As noted, connectedness is a condition on the evolution of the support of the
belief, and thus it is much weaker than assuming the belief evolution itself to be
well-behaved. Nonetheless, connectedness is enough to establish the result we
want. To illustrate the idea, think about a one-player game. Since public random-
ization is available, the feasible payoff set is an interval and hence determined by
the maximal and minimal payoffs. Lé{ 1) be the maximal payoff with the initial
prior u in the limit as the discount factor goes to one, anditebe a belief which
maximizesf (). Our key finding is roughly as follows:

(x) If there is a beliefu such thatf(u) is equal tof (u*), then f(f1) is also
equal tof (u*) for everybelief i with the same support as

That is, once we can find a beligf with supportQ* which satisfies the above
property, it gives a uniform bound di( 1) for all beliefsfi with supportQ*. The
result ¢) greatly simplifies our problem, because it implies that in order to prove
that the maximal feasible payoff(u) is invariant toall beliefs u, it suffices to

find onebelief u with the above property for each sub§Et And we can indeed
find suchu for each supporf*, using the fact that connectedness ensures that
players can jointly drive the support from any set to other sets, and the fadt that
is a solution to a dynamic programming equation.

The second main result of the paper is the folk theorem, that is, we show that
any feasible and individually rational payoffs are achieved by sequential equilibria
as long as players are patient enough and the game is strongly connected. As an in-
termediate result, we provide a recursive characterization of the equilibrium pay-
off set, which generalizes self-generation of Abreu, Pearce, and Stacchetti (1990).
Taking into account the fact that the state evolution is not necessarily ergodic, we
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decompose payoffs in a way different than Abreu, Pearce, and Stacchetti (1990),
and by doing so, an equilibrium payoff can be regarded as the sum of a payoff ap-
proximating the Pareto-efficient frontier and of an expected continuation payoff.
This structure is reminiscent of that of the standard repeated games, in which an
equilibrium payoff is the sum of a stage-game payoff in period one, which is often
on the Pareto-efficient frontier, and of a continuation payoff. Hence we can gen-
eralize the proof idea of Fudenberg, Levine, and Maskin (1994, hereafter FLM)
to our setup, and can establish the folk theorem.

Stochastic games are proposed by Shapley (1953). Dutta (1995) character-
izes the feasible and individually rational payoffs for patient players, and proves
the folk theorem for the case of observable actions. Fudenberg and Yamamoto
(2011b) and HWrner, Sugaya, Takahashi, and Vieille (2011) extend the folk theo-
rem to games with public monitoring. All these papers assume that the state of
the world is publicly observable at the beginning of each petiod.

Athey and Bagwell (2008), Escobar and Toikka (2013), ariuinidr, Taka-
hashi, and Vieille (2015) consider repeated Bayesian games in which the state
changes as time goes and players have private information about the current state
each period. An important assumption in their model is that the state of the world
is a collection of players’ private information. They look at equilibria in which
players report their private information truthfully, so the state is perfectly revealed
before they choose actiofisin contrast, in this paper, players have only limited
information about the true state and the state is not perfectly revealed.

Wiseman (2005), Fudenberg and Yamamoto (2010), Fudenberg and Yamamoto
(2011a), and Wiseman (2012) study repeated games with unknown states. They
all assume that the state of the world is fixed at the beginning of the game and does
not change over time. Since the state influences the distribution of a public signal
each period, players can (almost) perfectly learn the true state by aggregating all
the past public signals. In contrast, in our model, the state changes as time goes
and thus players never learn the true state perfectly.

3Independently of this paper, Renault and Ziliotto (2014) also study stochastic games with
hidden states, but they focus only on an example in which multiple states are absorbing.

4An exception is Sections 4 and 5 o®kher, Takahashi, and Vieille (2015); they consider
equilibria in which some players do not reveal information and the public belief is used as a state
variable. But their analysis relies on the independent private value assumption.
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2 Setup

2.1 Stochastic Games with Hidden States

Let| = {1,---,N} be the set of players. At the beginning of the game, Nature
chooses the state of the word! from a finite setQ. The state may change as
time passes, and the state in pericd 1,2, --- is denoted byw' € Q. The state
w! is not observable to players, and Jee AQ be the common prior aboai?.

In each period, players move simultaneously, with playet | choosing an
actiong; from a finite sethA;. Let A= XA be the set of action profiles =
(& )iel. Actions are perfectly observable, and in addition players observe a public
signaly from a finite setY. Then players go to the next period- 1, with a
(hidden) stateo!™t. The distribution ofy andw!™! depends on the current state
w' and the current action profilec A; let ®(y, &|a) denote the probability that
players observe a signgland the next state becomes™! = @, given ' = w
anda. In this setup, a public signglcan be informative about the current staie
and the next stat&v, because the distribution gfmay depend oo andy may
be correlated wittio. Let i¥’(y|a) denote the marginal probability gf Assume
that public randomizatiom, which follows the uniform distribution ofD, 1], is
available at the end of each period.

Playeri’s payoff in periodt is a function of the current action profieeand
the current public signaj, and is denoted by;(a,y). Then her expected stage-
game payoff conditional on the current stabeand the current action profile
is g(a) = Yyey T8 (Y/@)ui(a,y). Here the hidden state influences a player’s
expected payoff through the distributionyoflLetg®(a) = (g(a))ici be the vector
of expected payoffs. L&, = max, a|29”(a)|, and letg = ¢ G;. Also letTt be
the minimum ofn®(y, @|a) over all (w, &, a,y) such thatt®(y, w|a) > 0.

Our formulation encompasses the following examples:

e Stochastic games with observable statestY = Q x Q and suppose that
®(y, &|a) = 0 fory = (y1,Y2) such thaty; # w ory» # ¢. That s, the first
component of the signalreveals the current state and the second compo-
nent reveals the next state. Suppose alsouffaty) is does not depend on
the second componew, so that stage-game payoffs are influenced by the
current state only. Since the signal in the previous period perfectly reveals



the current state, in this model players know the siatbeforethey choose
an action profile'. This is exactly the standard stochastic games studied in
the literature.

e Delayed observatianLetY = Q and assume thag’(y|a) = 1 fory = w.
That is, assume that the current sigyfateveals the current state’. This
is the case in which players observe the s#diter they choose their actions
al. In what follows, this class of games is referred to as stochastic games
with delayed observations.

e Observable and unobservable statdssume thatv consists of two com-
ponentswp andwy, and that the signaft perfectly reveals the first com-
ponent of the next stata)})“. Then we can interpratp as an observable
state andwy as an unobservable state. One of the examples which fits this
formulation is a duopoly market in which firms face uncertainty about the
demand, and their cost function depends on their knowledge, know-how, or
experience. The firms’ experience can be described as an observable state
variable as in Besanko, Doraszelski, Kryukov, and Satterthwaite (2010), and
the uncertainty about the market demand as an unobservable state.

In the infinite-horizon stochastic game, players have a common discount factor
0 €(0,1). Let (w',a",y",Z") be the state, the action profile, the public signal,
and the public randomization in periad Then the history up to period> 1
is denoted by = (a’,y",Z"),_,. LetH! denote the set of afi fort > 1, and
let HO = {0}. LetH = "o H! be the set of all possible histories. A strategy for
playeri iss = (§);>, such thas : H'=1 — AA is a measurable mapping for each
t. To simplify the notation, given any strategyand historyh', let s (h') denote
the action after periott!, i.e.,5(h') = §71(h!). LetS be the set of all strategies
for playeri, and letS= xi¢|S. Also letS be the set of all players strategies
which do not use public randomization, and &t= xi¢|S". Given a strategg
and historyht, let 5|, be the continuation strategy inducedspfter historyht.
Letv®(d,s) denote player’s average payoff in the stochastic game when the
initial prior puts probability one omv, the discount factor i$, and players play
strategy profiles. That is, letv’(d,s) = E[(1—-95) >4 6tflgi‘*’t(at)|w,s]. Simi-
larly, Ietvi“(5,s) denote players average payoff when the initial prior js. Note



that for each initial prioru, discount factod, ands_j € S*;, playeri’s best re-
ply s € § exists; see Appendix F for the proof. Lét(d,s) = (v*(9d,9))ic) and
VH(3,8) = (V' (3,9))iel.

2.2 Alternative Interpretation: Belief as a State Variable

In each period, each player forms a beligft about the current hidden stads.
Since players have the same initial prigrand the same informationf—1, the
posterior beliefu! is also the same across all players. Then we can regard this
belief ut as a common state variable; that is, our model can be interpreted as a
stochastic game withbservable stateg!.

With this interpretation, the model can be re-written as follows. In period one,
the belief is simply the initial prioru® = p. In periodt > 2, players use Bayes’
rule to update the belief; givam—1, al=1, andy'~1, let

_ DweQ “t—l(w)nw(yt—1,@|at—l)

 Ywea U )P (Y et )

for each®. Given this (common) beligfit, players chooses actioas and then
observe a signaf according to the distributiorm’YJt (Y|a) = T weq U (@) (y]a).
Public randomizatioz ~ U [0, 1] is also observed. Playés expected stage-game
payoff givenu! anda is gi“t (@) = 3 eo M (w)g?(a).

Now we give the definition of sequential equilibria. Lét H — AQ be a
belief system; i.e.{ (h') is the posterior aboub'** after historyh'. A belief sys-
tem is consistent with the initial priow if there is a completely mixed strategy
profile s such that¢ (ht) is derived by Bayes’ rule in all on-path histories sof
Since actions are observable, given the initial ptipa consistent belief is unique
at each information set which is reachable by some strategy. (So essentially there
is a unique belief systeri consistent withu.) A strategy profiles is asequen-
tial equilibrium in the stochastic game with the initial prigrif sis sequentially
rational given the belief systeghconsistent withu.

u'(&)

3 Example: Stochastic Bertrand Competition

Consider two firms which produce a homogeneous (undifferentiated) product. In
each period, each firinchooses one of the three prices: A high prigg & 2),
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a low price & = 1), or a Nash equilibrium priceaf = 0). Herea; = 0 is called
“Nash equilibrium price,” since we assume that the production cost is zero; this
ensures that there is a unique Nash equilibrium in the static game and each firm
chargesa’ = 0 in the equilibrium. To simplify the notation, let! = (af!, a4},

ak = (af,as), anda* = (af,a3).

There is a persistent demand shock and an i.i.d. demand shock. The persistent
demand shock is captured by a hidden statevhich follows a Markov process.
Specifically, in each period, the state is either a boara=(w") or a slump (w =
wb), and after each period, the state stays at the current state with probaility 0
We assume that the current action (price) does not influence the state evolution.
Let u € (0,1) be the probability oto™ in period one.

Due to the i.i.d. demand shock, the aggregate demand of the product is stochas-
tic, and its distribution depends on the current economic conditi@md on the
effective price migas,ap}. For simplicity, assume that the aggregate demand
takes one of the two valueg! = 10 andy- = 1. Assume that its distribution is

( ) if w=w" and minfa;,a} =1
(0.8,0.2) if w=w"and mina,ax} =1

(M@ |a), i2(yHa)) = { (0.8,0.2) if w= " and mifa;,a} =2 .
( ) if w= " and mifag,a} =2
(1,0) if min{ag,a2} =0

Intuitively, the high pricea is a “risky” option in the sense that the expected
demand is high (the probability gf' is 0.8) if the current economy is in a boom
but is extremely low (the probability of' is only 0.1) if the current economy is

in a slump. On the other hand, the low prateis a “safe” option in the sense that
the expected demand is not very sensitive to the underlying economic condition.
If the effective price is zero, the probability ¢ is one regardless of the current
statew. We assume that the realized demani@d public information. Assume
also thaty and the next staté&® are independently drawn.

This is the Bertrand model, and a firm with a lower price takes the whole
market share. Accordingly, firriis current profit isui(a,y) = ay if a < a_j.
andui(a,y) =0 if & > a_ . If & =a_, the firms share the market equally
andui(ay) = %Y. Givenw anda, let g®(a) = Jycy T (y|a)ui(a,y) be the ex-
pected profit of firmi, and letg®(a) = g{°(a) + g5’(a) be the total profit. An
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easy calculation shows thg?" (a") = 16.4, g¢" (ab) = 9.1, g*"(a!) = 3.8, and
g®"(a) = 8.2. So the high prica! yields higher total profits than the low price
aL ifitis in a boom, while the low price is better if it is in a slump. Also, letting
gt(a) = ug H( a)+((1-p)g L( a) be the total profit givem anda, it is easy to
see thagH (a) is maX|m|zed by the high prica" if u > 4% ~ 0.376, and by the
low priceal if u < 117 Letu* = 117 represent this threshold.

Now, consider the infinite-horizon model where the discount factay &
(0,1). What is the optimal collusive pricing in this model, i.e., what strategy
profile s maximizes the expectation of the discounted sum of the total profit,
5, 3t 1g@ (@)? To answer this question, Id{1) be the maximized value
given the initial priory, that is, f (1) = maxcsE[S S, 8 1g¥ (a)|u,s. From
the principle of optimality, the functiof must solve

acA

f(u) = maX[<1 d)g"(a +5;ﬂ$‘ (yla) f( uay>>] (1)

wherefi(u,a,y) is the belief in period two given that the initial prior js and
players playa and observey in period one. Intuitively, (1) says that the total
profit f (1) consists of today’s profgH (a) and the expectation of the future profits
f(fi(u,a,y)), and that the current action should maximize it.

For each discount factay € (0,1), we can derive an approximate solution to
(1) by value function iteration with a discretized belief space. Figure 1 shows
the value functionf for d = 0.7. As one can see, the value functibms upward
sloping, which means that the total profit becomes larger when the initial prior
becomes more optimistic.

Figure 2 shows the optimal policy. (In the vertical axis, 0 means the low price
al, while 1 means the high pric?). It shows that the optimal policy is a simple
cut-off rule; the optimal action is the low prie@ when the current beligi is less
thanu**, and is the high prica otherwise, with the threshold valyg* ~ 0.305.

This threshold valugr™ is lower than that for the static game} ~ 0.376. That
is, when the current belief g € (u**, u*), the firms choose the high price which
does not maximize the current profit. Note that this i€gen though actions do
not influence the state evolutiowhy is this the case?

A key is that choosing the high price provides better information about the
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Figure 1: Value Function Figure 2: Optimal Policy
x-axis: beliefu. y-axis: payoffs. x-axis: beliefu. y-axis: actions.

hidden statev than the low price, in Blackwell’s senSeTo see this, for each,
let M(a) denote the two-by-two matrix with row@i?(y"|a), & (y-|a)) for each
w. Then we have

13 1
(@) =n@") (}_‘1‘ T;‘) :
14 14
that is,M(a") is the product of1(a™) and astochastic matrixn which each row
is a probability distribution. This shows that(a") is agarbling of N(a") (see
Kandori (1992)), and in this sense, the public signaiven the low priceat is
less informative than that given the high price.

When the current belief i € (U™, u*), the current profit is maximized by
choosing the low prica. However, by choosing the high prieé' today, the
firms can obtain better information and can make a better estimation about the
hidden state tomorrow. This yields higher expected profits in the continuation
game, and whep € (u**, u*), this effect dominates the decrease in the current
profit. Hence the high price is chosen in the optimal policy.

In this example, the efficient payoff 1) can be achieved by a trigger strategy.
Consider the strategy profile in which the firms follow the optimal policy above,
but switch to “foreverl*” once there is a deviation from the optimal policy. Let us
check firmi’s incentive. In the punishment phase, firfas no reason to deviate
from a*, since “playinga” forever” is a Markov strategy equilibrium in this model.

5See Hao, Iwasaki, Yokoo, Joe, Kandori, and Obara (2012) for the case in which lower prices
yield better information about the hidden state.

11



(Indeed, when the opponent choosédorever, even if firm deviates, its payoff
is zero.) In the collusive phase, if the optimal policy specifies the low price today,
firm i has no reason to deviate because any deviation yields the payoff of zero. So
consider the case in which the optimal policy specifies the high price today. If firm
i deviates, its current payoff is at magt" (a-,a",) = 9.1, and its continuation
payoff is zero. So the overall payoff is at m@dt— 5)9.1+ &-0=2.73. On the
other hand, if firmi does not deviate, its payoff is at least mif,- 1 @ > 4.
Hence the above strategy profile is an equilibrium.

A couple of remarks are in order. First, the firms do “experiments” in this
efficient equilibrium. As argued, when the current beliefuis (u**, u*), the
firms choose the high prica in order to obtain better information, although it
does not maximize the current expected payoff.

Second, the equilibrium construction here is misleadingly simple, since it re-
lies on the existence of a Markov strategy equilibrium in whratls charged for-
ever. In general, when the state space is infinite, the existence of Markov strategy
equilibria is not guaranteed (see Duggan (2012) and Levy (2013)), and accord-
ingly, it is not obvious how to punish a deviator in an equilibrium. Indeed, the
proof of our folk theorem is non-constructive.

Third, the solution to (1) depends on the discount faétdrigure 3 illustrates
how the value function changes when the firms become more patient; it gives the
value functions fod = 0.9, = 0.99, andd = 0.999. The optimal policies are
still cut-off rules, and the cut-off value ig = 0.285 ford = 0.9, u = 0.276 for
0 =0.99, andu = 0.275 ford = 0.999. Note that the cut-off value becomes lower
(so the high price is chosen more frequently) when the discount factor increases.
The reason is that when the firms become patient, they care future profits more
seriously, and thus information about the hidden state tomorrow is more valuable.

As one can see from the figure, when the firms become patient, the value
function becomes almost flat, that is, the firms’ initial prior has almost no impact
on the total profit. This property is not specific to this example; we will show
in Lemma 5 that if the game isonnectedthen the feasible payoff set does not
depend on the initial prior in the limit as the discount factor goes to one. This
result plays an important role when we prove the folk theorem.
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Figure 3: Value Functions for High
x-axis: beliefu. y-axis: payoffs.

4 Connected Stochastic Games

In general, stochastic games can be very different from infinitely repeated games.
Indeed, the irreversibility created by absorbing states can support various sorts
of backward induction arguments with no real analog in the infinitely repeated
setting. To avoid such a problem, most of the existing papers assume irreducibility
of the state evolution, which rules out absorbing states (Dutta (1995), Fudenberg
and Yamamoto (2011b), anddrher, Sugaya, Takahashi, and Vieille (2011)).

Since we consider a new environment in which the staie hidden, we need
to identify an appropriate condition which parallels the notion of irreducibility in
the standard model. We find that one of such conditiom®mectednessvhich
imposes a restriction on how tisepportof the posterior belief evolves over time.

4.1 Full Support Assumption

Connectedness is satisfied in a wide range of examples, including the ones pre-
sented in Section 2.1. But its definition is a bit complex, and hence it would be
desirable to have a simple sufficient condition for connectedness. One of such
conditions is the full support assumption.

Definition 1. The state transition function hagwdl supportif *(y, w|a) > 0 for
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all w, @, a, andy such thatt®(y|a) > 0.

In words, the full support assumption holds if any statecan happen to-
morrow given any current state, action profilea, and signaly. An important
consequence of this assumption is that players’ posterior belief is always in the
interior of AQ; that is, after every history, the posterior beliéfassigns positive
probability to each stat@®. Note that we do not require a full support with respect
toy, so some signal may not occur for some state and some action profila.

As a result, the full support assumption can be satisfied for games with delayed
observations, in which the sigmatoes not have a full support.

In general, the full support assumption is much stronger than connectedness,
and it rules out many economic applications. For example, the full support as-
sumption is never satisfied if observable and unobservable state coexist.

4.2 Connectedness

In this subsection, we describe the idea of connectedness. In particular, we illus-
trate how it is related to irreducibility, which is commonly assumed in the litera-
ture on stochastic games with observable states.

The idea of irreducibility is introduced by Dutta (1995), and it is named by
Fudenberg and Yamamoto (2011b). Irreducibility requires that each Gtag
reachable from any stat® in finite time. Formally,é is accessible fronw if
there is a natural numbdrand an action sequen¢at,--- ,a") such that

Prlw' ! = dw,al,---,a") >0, (2)

where Pfw' ! = @|w,al,--- ,a") denotes the probability that the state in period
T + 1 is @ given that the initial state is) and players play the action sequence
(al,---,al) for the firstT periods.@ is globally accessiblé it is accessible from
any statew € Q. Irreducibility requires the following properfy:

Definition 2. The state evolution isreducibleif each statev is globally acces-
sible.

6 Irreducibility of Fudenberg and Yamamoto (2011b) is stronger than the one presented here,
but for our purpose (i.e., the invariance of the feasible payoff set), this weaker requirement is
enough. In this paper, their condition is statedadmist irreducibility, see Section 5.3.
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That is, irreducibility says that there is a path framto ¢ for any pair of
states. Very roughly speaking, this property ensures that the evolution of the state
is well-behaved in the long-run.

A natural extension of irreducibility to our model is to require global accessi-
bility of all posterior beliefsu!, becauseu! is an observable state in our model.

A belief i € AQ is globally accessibléf for any initial prior u, there isT and
(al,---,a) such that

Pr(uT+1:ﬁ|“7al7"' a >> 0.

Here, Ptu™ ™t = [iju,al,--- ,a") denotes the probability that the posterior belief
in periodT 41 is u" ™1 = J1 given that the initial prior iu and players play the
action sequencg@’,---,a"). A naive generalization of irreducibility is to require
each beliefi € AQ to be globally accessible.

Unfortunately, such a condition is too demanding and never satisfied. The
problem is that there are infinitely many possible beligfand thus there is no
reason to expect recurrence; i.e., the posterior belief may not return to the current
belief in finite time’ So we need to find a condition which is weaker than global
accessibility ofu but still parallels irreducibility of the standard model.

A key is to look at the evolution of theupportof ut, rather than the evolution
of ut itself. As will be explained in Section 5.2, all we need for our result is that
the evolution of thesupportof the posterior belief is well-behaved in the long run.
This suggests us to consider global accessibility of the support of the belief:

Definition 3. A non-empty subse®* C Q is globally accessibld there isrt* > 0
such that for any initial prioy, there is a natural numb@r < 49/, an action
sequencgal,---,a"), and a beliefi whose support is included @* such that

Pr(“T+l = ﬂ“‘lvalv"' 7aT) = .

In words,Q* C Q is globally accessible if given any initial prigr, the support
of the posterior beliefiT 1 can be a subset 61* with probability at leastt* > 0
when players play some appropriate action sequéate--,a’). A couple of
remarks are in order. First, the above condition differs from (2) in that the former

"Formally, there always exists a beligfwhich is not globally accessible, because given an
initial belief, only countably many beliefs are reachable.
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requires that there be a lower bourti > 0 on the probability of the posterior
belief reachingi, while the latter does not. The reason wiydoes not show up
in (2) is that when states are observable, possible initial states are finite and thus
the existence of a lower bouri@® > 0 is obvious. On the other hand, here we
explicitly assume the existence of the boumd since there are infinitely many
initial priors u.8
Second, the restrictiofi < 4 in the definition above is without loss of gen-
erality. Thatis, if there i > 4/9l which satisfies the condition stated above, then
there isT < 42! which satisfies the same condition. See Appendix A for details.
To state the definition of connectedness, we need to introduce one more idea,
transience We first give its definition and then discuss why we need it. Let
Pr(u"™*+1 = fi|u,s) denote the probability that the posterior belief in pefiog 1
is u'+1 = [i given that the initial prior is1 and players play the strategy profile
We would like to emphasize that the restrictibr 2/ in the definition below is
without loss of generality; see Appendix A for details.

Definition 4. A subsetQ* C Q is transientif it is not globally accessible and for
any pure strategy profile € S* and for anyu whose support i€2*, there is a
natural numbeT < 2/2l and a beliefi whose support is globally accessible such
that Pu"™ 1 = fiju,s) > 0.

In words, transience d* implies that if the support of the current belief is
Q*, then regardless of future actions, the support of the posterior belief cannot
stay there forever and must reach some globally accessible set with positive prob-
ability.? As shown in Lemma 11 in Appendix A, this property implies that if
the support of the current belief is transient, then the support cannot return to the
current one forever with positive probability. HenceQf is transient, the time
during which the support of the posterior belief stay®atis almost negligible
in the long run. In other words, the existence of transient @étdoes not influ-
ence the long-run behavior of the support of the posterior belief. Hence, if each

8Replacing the action sequen@, --- ,a") in the definition with a strategy profikedoes not
weaken the condition; that is, as long as there is a strategy profile which satisfies the condition
stated in the definition, we can find an action sequence which satisfies the same condition.

9The strategy profilsin Definition 4 cannot be replaced with an action sequéate -- ,a').
This is in sharp contrast with global accessibility, in which b@h --- ,a") ands give the same
condition.
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subsetQ* C Q is either globally accessible or transient, we can expect that the
evolution of the support should be well-behaved in the long-run, on the analogy
of irreducibility for games with observable states. This condition is precisely our
assumption, connectedness:

Definition 5. A stochastic game isonnectedf each subseQ* C Q is globally
accessible or transient.

The above definition is stated using the posterior beglfefIn Appendix A,
we will give an equivalent definition of connectedness based on primitives. It is
stated as a condition on the distribution of the next statithe distribution of the
public signal; this is a natural consequence from the fact that the evolution of the
posterior belief is determined by the interaction of the evolution of the underlying
statew and of players’ public signal. Using this definition, one can check if a
given game is connected or not in finitely many steps.

Connectedness is weaker than requiring that all sulf3etse globally ac-
cessible, since some sets can be transient. This difference is important, because
requiring global accessibility of all subse@s' is too demanding in most appli-
cations. To see this, take a singleton ©€&t= {w}. For this set to be globally
accessible, given any initial prior, the posterior beligfmust puts probability
one on this statey at some periodl. However this can happen only if the sigiyal
reveals the next state, and such an assumption is violated in most applications.

4.3 When is the Game Connected?

Now we will explain that connectedness is satisfied in a wide range of exam-
ples. First of all, as argued, connectedness is satisfied whenever the full support
assumption holds. To see this, note that under the full support assumption, the
support of the posterior belief is the whole sp&after every history. This im-

plies thatQ is globally accessible, and other subsets are transient. Hence the game
is connected. We record this result as a lemma:

Lemma 1. If the state transition function has a full support, then the game is
connected.

While the full support assumption is satisfied in many applications, it is still
stronger than connectedness. One of the examples in which the game is connected
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but the full support assumption does not hold is stochastic games with observable
states. So extending the full support assumption to connectedness is necessary if
we want to establish a general theory which subsumes existing models as a special
example. The following lemma shows that in stochastic games with observable
states, connectedness reduces to a condition which is weaker than irreducibility.
w is transientif for any pure strategy profilg, the state must reaches framto

some globally accessible stafewithin |Q| periods with positive probability.

Lemma 2. In stochastic games with observable states, the game is connected if
each statew is globally accessible or transient.

The proof of the lemma is straightforward; it is obvious that a singleton set
{w} with globally accessiblev is globally accessible, and other s&tsare tran-
sient.

Next, consider the case in which the state is observable with delay. In this
model, the full support assumption is satisfied if any state can happen tomorrow
with positive probability. On the other hand, if the state evolution is determin-
istic, the full support assumption is violated. The following lemma shows that
connectedness is satisfied even with a deterministic state evolution, as long as it is
irreducible. The proof is given in Appendix E.

Lemma 3. In stochastic games with delayed observations, the game is connected
if each stataw is globally accessible or transient.

In some applications, observable and unobservable states coexist. The full
support assumption is never satisfied in such an environment, due to the observ-
able component of the state. The next lemma shows that connectedness can be
satisfied even in such a case. Recall lagtdenotes an observable state ang
denotes an unobservable state. g @|a) be the marginal distribution of the
next stated given the current state and the action profile. Let 5 (a(a.y)
be the conditional probability of the unobservable stategiven that the current
state isw, the current action ig, and the signay is observed. The state evolu-
tion is fully stochastidf ni§(éla) > 0 andng (dula,y) > 0 for all w, @, a, and
y. Intuitively, this condition says that any observable state can happen tomorrow
with positive probability, and that players cannot rule out the possibility of any
unobservable state conditional on any signaNote that wedo notassume that
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the evolutions otwp andwy are independent, so the distribution of the next ob-
servable state may depend on the current unobservable state. Hence the evolution
of the observable statep here can be quite different from the one for the standard
stochastic game.

Lemma 4. Suppose that observable and unobservable states coexist. The game
is connected if the state evolution is fully stochastic.

From Lemmas 2 and 3, we know that irreducibility of the underlying state is
sufficient for connectedness, if states are observable (possibly with delay). Unfor-
tunately, this result does not hold if states are not observable; irreducibility may
not imply connectedness when states are hidden. See Example 2 in Appendix A,
in which the state follows a deterministic cycle (and hence irreducible) but the
game is not connected.

Remark 1. Although the game is not connected, we can still show that the folk
theorem holds in Example 2 in Appendix A. A key is that connectedness is stronger
than necessary, and it can be replaced with a weaker condition, eesjedp-

totic connectednesgSee Appendix C for the definition.) The example satisfies
asymptotic connectedness. More generally, as Lemma 14 in Appendix C shows,
the game is asymptotically connected for generic signal structures as long as the
state evolution is irreducible. This means that irreducibility of the underlying state
“almost” implies connectedness.

5 Feasible and Individually Rational Payoffs

5.1 Invariance of Scores

LetV®(d) be the set of feasible payoffs when the initial state® esnd the discount
factor isd, i.e., letV®(d) = co{v®(d,s)|s€ S}. Likewise, letvVH(d) be the set
of feasible payoffs when the initial prior j|g. Note that the feasible payoff set
depends o, as the statev changes over time.

Let A\ be the set of directions € RN with |A| = 1. For each directiol, we
compute the “score” using the following formula:

max A -v.
veVH(d)
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Note that this maximization problem indeed has a solution; see Appendix F for
the proof. Roughly speaking, the score characterizes the boundary of the feasible
payoff setvH () toward directiomA. For example, when is the coordinate vec-

tor with Aj =1 andAj = O for all j # i, we have mayoyu(s) A - V= maXeyu(s) Vi,

so the score represents the highest possible payoff for playéhne feasible pay-

off set. Given a directiol, let f(u) be the score given the initial prigr. The
function f can be derived by solving the following Bellman equation:

acA

f(u) = max [(1— 0)A-g'(a)+3 Z 7 (vla) f (ﬂ(u7a7y))] 3)
ye

wherei(u,a,y) is the belief in period two given that the initial prior js and
players playa and observey in period one. Note that (3) is a generalization of
(1), which characterizes the best possible profit in the stochastic Bertrand model,
indeed, whem = (%, \/%), (3) reduces to (1).

In Section 3, we have found that the total profit in the Bertrand model is insen-
sitive to the initial prior when the discount factor is close to one. The following
lemma generalizes this observation; it shows that if the game is connected and if
0 is sufficiently large, the scores do not depend on the initial prior. This result
implies that the feasible payoff seéd!(d) are similar across all initial priorg

when? is close to one. The proof is given in Appendix€.

Lemma 5. Suppose that the game is connected. Then for eaglD, there is

Owe thank Johannesdtner for pointing out that Lemma 5 strengthens the results in the lit-
erature of partially observable Markov decision process (POMDP). Whether the value function is
constant or not in the limit a8 — 1 is an important question in the POMDP literature, since the
constant value function ensures the existence of a solution to the dynamic programming equation
with time-average payoffs. It turns out that connectedness is weaker than sufficient conditions
found in the literature, including renewability of Ross (1968), reachability-detectability of Platz-
man (1980), and Assumption 4 of Hsu, Chuang, and Arapostathis (2006). (There is a minor error in
Hsu, Chuang, and Arapostathis (2006); see Appendix H for more details.) So for anyone interested
in a POMDP problem with time-average payoffs, connectedness is a condition which subsumes
these existing conditions and is applicable to a broader class of games. Indeed, Examples 1 and
4 in this paper do not satisfy any assumptions above, but they are connected. (Also, Examples
2 and 3 do not satisfy the above assumptions, but they are asymptotically connected and hence
Lemma 15 applies.) The only conditions which do not imply connectedness are Assumptions 2
and 5 of Hsu, Chuang, and Arapostathis (2006), but they are stated using the optimal policy and
hence not tractable. For example, to check their assumptions in our setup, and we need to compute
the optimal policy for each directioh.
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J € (0,1) such that for anp\ € A, 3 € (8,1), u, and i,

max A-v— max A-V| <E€.
veVH(9d) VeVH(d)

Although it is not stated in the lemma, in the proof we show that the score
converges at the rate of-15. Thatis, we can replacein Lemma 5 withO(1—9).

This lemma extends the invariance result of Dutta (1995) to the hidden-state
case. The proof technique is different, because his proof essentially relies on
ergodic theorems, which are not applicable to our model due to infinite states. In
Appendix G, we explain why his technique does not apply to our model in more
details. In the next subsection, we provide a sketch of the proof of Lemma 5
under the full support assumption, and discuss how to generalize it to connected
stochastic games.

Now we define the “limit feasible payoff set.” Lemma 9 in Appendix A shows
that the score mgxyu(s) A -vhas alimit as — 1, so letvH be the set of alv €
RN such thair -v<lims_,; max,cyu(s) A -vforallA. Lemma 5 above guarantees
that this seVH is independent oft, so we denote it by. This setV is the limit
feasible payoff set, in the sense thdt(5) approximate¥ for all u as long a®
is close to one; see Lemma 10 in Appendix A for details.

5.2 Proof Sketch

To illustrate the idea of our proof, consider the coordinate directionth A; = 1
so that the score is simply playgs highest possible payoff within the feasible
payoff set. For simplicity, assume thahas a full support, that isi*(y, @|a) > 0.
Assume further that there are only two states; so the initial prigrrepresented
by a real number betwegf, 1]. Lets* be the strategy profile which attains the
score when the initial prior ig, i.e., lets be such that' (5,s#) = max,cye(s) Vi-

As shown in Lemma 21 in Appendix E, the scm{é(é,s“) is convex with
respect tqu. (The proof relies on the fact that playiés payoffvi“(é,s) is linear
in a beliefu for a givens.) This implies that the score must be maximized by
¢ =0 oru = 1. Without loss of generality, assume that 0 is the maximizer,
and letw be the corresponding state. The curve in Figure 4 represents the score
v (8,94) for eachy; note that this is indeed a convex function and the value is
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Figure 4: Score!' (5,s/)

maximized aty = 0. In what follows, the maximized valug’(5,s”) is called
maximal score. (Here the superscripmeansu = 0.)

The rest of the proof consists of two steps. In the first step, we show that there
is a beliefu € [71,1— T such that the scond' (8, s") with the beliefu is close to
the maximal score. This result follows from the fact that the score function is a
solution to a dynamic programming equation.

The second step of the proof is more essential; it shows that if such a be-
lief u exists, then the scorvq[‘(é,sp) for everybelief [i is close to the maxi-
mal score. This means that we do not need to compute the score for each belief
separately; although the set of beliefs is continuous, if we candimebelief
u € [1m,1— 71 which approximates the maximal score, we can bound the scores
for all beliefs uniformly. The proof crucially relies on the convexity of the score
functionv!' (8, ), which comes from the fact that the state varigbls a belief.

5.2.1 Step 1: Existence oft Approximating the Maximal Score

Recall that the score function is maximized at the belieft 0, ands® is the
strategy profile which achieves this maximal score. &'ebe the action profile
in period one played bg®. Let u(y) be the posterior belief at the beginning of
period two when the initial prior ist = 0 and the outcome in period ong(&',y).
Since the score(d,s”) is the sum of the payoff’(a“) in period one and the
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expectation of the continuation payoff”’ (5,s#0)), we have
W(8,8°) = (1-8)gi(a") + SEY (8,80

whereE is the expectation with respectyaiven that the initial state i® anda*
is chosen in period one. Equivalently,
1-90

W(8,5%) ~ EMY(8,8Y)] = === (gP(a) — v (8,5°)).

For simplicity, assume thab ands” does not depend od. (Lemma 22 in Ap-
pendix E shows that the result easily extends to the case in which they depend on
d.) Then the above equality implies that

vo(5,s%) —EMY (5,8 ¥)) =0 (L‘S) . (4)

i ) i ) 5
That is, the expected continuation payBfi" (5,s#¥)] is “close” to the maxi-
mal scorev®(5,s%).
Now, we claim that the same result holds even if we take out the expectation

operator; i.e., for each realization pfthe continuation payofi'¥) (5, s#¥)) is
close to the maximal score so that

vO(5,5°) — MY (5, ¢4y = 0 (?) . (5)

To see this, note that

WI(O.8) —EMY (3] = 3 meyia ) {'(8,8) — ™ (8,80}
ye

Sincev’(4,s%) is the maximum score, the term in the curly brackets is non-
negative for ally. Thus, if there isy such that the term in the curly brackets
is not of orderLT‘S, then the right-hand side is not of ordéjgé. However this
contradicts (4), and hence (5) holds forll

Pick an arbitrary. Then the resulting posterior beligfy) satisfies the desired
properties. Indeed, (5) ensures that the score for the heligfapproximates the
maximal score. Also, the full support afimplies u(y) € [, 1—Ti].
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5.2.2 Step 2: Uniform Bound

Takep(y) as in the first step so that(y) € [71,1 — 71 and the score approximates
the maximal score ifi(y) is the initial prior. Consider the strategy profdé),
which achieves the score with the initial prigfy). The dashed line in Figure 5
represents playeéis payoff with this strategy profile*®) for each beliefu. Note
that it must be a line, because given a strategy prsfilee payoff for any interior
belief u € (0,1) is a convex combination of those for the boundary beliefs 0
andu = 1. The dashed line must be below the curve, since the curve gives the best
possible payoff for eacpr. Also, the dashed line must intersect with the curve at
u = u(y), since the strategy profig'() achieves the score at= p(y). Taken
together, the dashed line must be tangential to the curne-ati(y), as described

in the figure.

~

Gtaph of#(3,84¥)) ™~ ~ \

p=0 u(y) p=1
Figure 5: Payoff bys*()

Suppose that the dashed line is downward-sloping, arid k& as in the fig-
ure. In wordsD is the difference between theintercept of the dashed line and
V) (3,84¥)). Since we have (5), the valizis also of order2, as one can see
from the figure. Then the slope of the dashed line, which is eq%ois also of
orderl;(s‘s. This implies that the dashed line is “almost flat” and thus the strategy
profile s*O) yields similar payoffs regardless of the initial prigr In particular,
sincevi“(y)(é,s“(y)) is close tov’(8,s”), the dashed line is close to the horizontal
line corresponding to the maximal scoré(d,s”) regardless of the initial prior
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K. Then the curve, which is between these two lines, is also close to the horizontal
line corresponding to the maximal scaf&(d,s) for all u. This implies that the
scorevi“(cS,s“) approximates the maximal score for gll which proves Lemma
5.

We can also show that the same result holds even if the dashed line is upward-
sloping. To prove it, we use the payoffsiat= 1 rather than ati = 0 to bound the
slope of the dashed line.

5.2.3 Discussion

In the above proof, in order to bound the slope of the dashed line, we use the
full support assumption, which guarantees théf) € [71,1—T1; i.e., the support

of u(y) must be the whole state spa@e Indeed, ifu(y) does not have a full
support and is the boundary poiaty) = 0, the slope of the dashed Iirv%) is

not necessarily of ordefz?, even ifD is of order.

In general, when we consider connected stochastic games, the full support
assumption may not be satisfied, and hence the support of the posterior may not
reach the whole state spa@e However, we can extend the idea presented in the
second step to obtain the following result: If the score for some initial prigr
close to the the maximal scotéthen foreverybelief which has the same support
as, the corresponding score is also close to the maximal score. That is, if we
can bound the score for some beliefwith supportQ*, then it gives a uniform
bound on the scores fatl beliefs with supporf2*.

This suggests that we may classify the set of all beliefs into groups with the
same supports, and use the following “infection” argument:

e As a first step, we try to find a beligf* such that the score fqr* is close
to the maximal score. Le®* be the support oft*. Then the above result
bounds the score faverybelief with the supporQ*; that is, the scores for
all beliefs with the suppo®* are close to the maximal score.

e As a second step, we try to find a beljf* such that the score fqu**
is close to the score for some beligf with supportQ*. Let Q** be the

HMore precisely, we need that this beljefis not too close to the boundary 6fQ*, whereQ*
is the support ofs. This parallels the fact that(y) in the above proof satisfigs(y) € [7T,1— T
and hence does not approximate the boundary poiatO or u = 1.
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support ofu™*. From the first step, we already know that the latter score is
close to the maximal score, and so is the former. This implies that the scores
for all beliefs with the suppoi®** are also close to the maximal score.

In this way, we may try to bound the scores in order, group by group. Since
there are only finitely many subses’, this process ends in finite steps, and it
bounds the scores for all beliefs. The proof shows that this idea indeed works in
connected stochastic games, because connectedness ensures that players can drive
the support from any sets to others, which helps to fihdr u** stated above.

5.3 Minimax Payoffs

Theminimax payoftto playeri in the stochastic game given the initial prjoand
discount facto® is defined to be
vH(8) = min maxv(5,s).

s €S s
Note that the minimizes_; indeed exists (see Appendix F for the proof), and it is
possibly a mixed strategy.

When the state is observable, Dutta (1995) shows that the minimax payoff has

a limit asd — 1 and its limit is invariant to the initial statey, by assuming a
condition which we calftobust irreducibility!? Robust irreducibility strengthens
irreducibility in that it assures that any stafecan be reachable from any state
w regardless of player i's play More formally, & is robustly accessible from
w if for eachi, there is a (possibly mixed) action sequer@aéi,-- ,a‘f?‘) such
that for any playeli’s strategys, there is a natural numbdr < |Q| such that
Prlw™! = @w,s,al;,---,a’;) > 0. @ is robustly globally accessibl# it is
robustly globally accessible frow for all .

Definition 6. The state evolution imbustly irreduciblef each stateo is robustly
globally accessible.

When the state is observable, robust irreducibility ensures that the limit min-
imax payoff is invariant to the initial state. This paper extends this result to the

2As noted in footnote 6, this condition is called irreducibility in Fudenberg and Yamamoto
(2011b).
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hidden-state model. The assumption we makstisng connectednesghich
strengthens connectedness and parallels the idea of robust irreducibility. Roughly,
strong connectedness requires that players can drive the support of the belief from
any sets to other sets regardless of plajgeplay. The formal definition is stated
in Appendix B, but we would like to emphasize that it is satisfied in a wide range
of applications. For example, the game is strongly connected if the state evolution
has a full support. Also Lemmas 2 through 4 hold even for strong connectedness,
if the assumption is replaced with a stronger condition which ensures robustness
to playeri’s deviation. For example, in stochastic games with observable states,
the game is strongly connected if the state evolution is robustly irreducible.

As shown in Appendix B, if the game is strongly connected, the limit minimax
payoff exists and is invariant to the initial pripr. The proof of the invariance of
the minimax payoff is quite different from that of the feasible payoff set. A new
complication here is that the minimax paygﬁ(é) is not necessarily convex (or
concave) with respect ta, since playei maximizes the value while the oppo-
nents minimize it. In the proof, we take advantage of the fact that for each fixed
strategys_; of the opponents, play&s best possible payoff mgxs vi“(s,s_i) IS
convex with respect to the initial prigr. This implies that if the opponents play
a minimax strategy!.:‘zi for somefixed [i1, then playeli’s best possible payoff is
convex with respect to the initial prigr. Since the set of beliefg is continuous,
there is a continuum of minimax strategi&li}ﬁeﬁg, and thus there is a con-
tinuum of convex functions, each of which is induced by some minimax strategy
s‘zi. In the proof, we bound this series of convex curves uniformly.

Let \_/i“ = Iim5_>1\_/i“(5) denote the limit minimax payoff with the initial prior
M. Since this limit is invariant tqu for strongly connected stochastic games, we
denote it byv;. LetV* denote the limit set of feasible and individually rational
payoffs; that isV* is the set of all feasible payofisc V such that; > v, for all i.

6 Stochastic Self-Generation

The invariance results in the previous sections implies that after every history
the feasible and individually rational payoff set in the continuation game is similar
to the one for the original game. This suggests that dynamic programming can
be helpful to characterize the equilibrium payoff set, as in the standard repeated
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games. In this section, we show that this approach indeed works. Specifically, we
introduce the notion o$tochastic self-generationvhich generalizes the idea of
self-generation of Abreu, Pearce, and Stacchetti (1990).

In standard repeated games where the payoff functions are common knowl-
edge, Abreu, Pearce, and Stacchetti (1990) show that for each discount factor
9, the equilibrium payoff set is equal to the maximal self-generating payoff set.
Their key idea is to decompose an equilibrium payoff into the stage-game pay-
off in period one and the continuation payoff from period two on. To be more
concrete, les be a pure-strategy subgame-perfect equilibrium of some repeated
game, an@* be the action profile chosen Isyn period one. Assume that actions
are observable. Then the equilibrium payotif s must satisfy

v=(1-9)g(a*)+ dw(a"). (6)

Here,g(a") is the stage-game payoff vector given the action prefilendw(a*)
is the continuation payoff vector from period two given thatis chosen in pe-
riod one. Sincesis a subgame-perfect equilibrium, the continuation play is also
subgame-perfect, which implies thata*) is chosen from the equilibrium payoff
setE(d). Also, whensis an equilibrium which approximates the Pareto-efficient
frontier, typically the actiora® in period one yields a Pareto-efficient payoff. So
(6) implies that the equilibrium payoff is decomposable into a Pareto-efficient
payoff and some continuation payoff chosen from the equilibrium payofaset
shown in Figure 6. FLM use this structure to establish a folk theorem.
Obviously, a similar payoff decomposition is possible in our model.Lbe
the initial prior ands € S* be a sequential equilibrium which does not use public
randomization. Then the equilibrium payeffmust satisfy

v=(1-0)g"(@)+0o zflﬁ'(y\a*)w(a*,y) (7)
ye

wherew(a*,y) is the continuation payoff vector from period two on when the
outcome in period one i&",y). However, decomposing the payoff like (7) is not
very useful. A problem is that the stage-game pagébffa”) is not necessarily on

the Pareto-efficient frontier of the feasible payoff ¥etthis comes from the fact

that the feasible payoff set in stochastic games is defined to be the set of long-run
payoffs, rather than stage-game payoffs.
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Figure 6: Payoff Decomposition

To fix this problem, we consider the following “random block” structure. The
infinite horizon is divided intdblocks whose lengths are determined by public
randomizatiore € [0,1]. Specifically, at the end of each perigdplayers deter-
mine whether to continue the current block or not in the following way: Given
some parametep € (0,1), if 2 < p, the current block continues so that period
t + 1 is the next period of the current block.Zf> p, then the current block ter-
minates and the next peridd- 1 is regarded as the first period of the next block.
In sum, the current block terminates with probability p each period.

With this random block structure, equilibrium payoffs can be decomposed in
the following way. Fix some initial priop and sequential equilibriume Sarbi-
trarily, and letv be the equilibrium payoff. For simplicity, assume tkatoes not
use public randomization; so in the following discussions, public randomization
is used only for determining the length of random blocks. Since the equilibrium
payoff is the sum of the payoffs during the first random block and the continuation
payoff from the second random block, we have

[oe]

v=(1-8)'5 (p3)" *ElG (&)lp5 + (1) ip“l5tE[W<h‘>lu,SJ @)
t=

t=

wherew(h') be the continuation payoff vector after histdy Note that the first
term on the right-hand side is the expected payoff during the first random block;
the stage game payo@wt(at) in periodt is discounted by(pd)'~1, since the
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probability of periodt being reached before the termination of the first block is
p'—L. The second term on the right-hand side is the expected continuation payoff
from the second random block; the tefth— p)p'~! represents the probability
that the first block is terminated at the end of petioArranging the first term of

the right-hand side, we obtain

1-9 oo
= H _ t—1 st t
V=1psY (P9 + (=) § POk

This shows that the equilibrium payoff vectors decomposable into the follow-
ing two terms; the first term on the right-hand sidehe payoff vector in the
stochastic game with discount factod gnot 8), and the second is the continua-
tion payoff from the second random block. Intuitively, this comes from the fact
that the “effective discount factor” in the random blockoid, due to the termina-
tion probability 1— p.

Now, pick p sufficiently large and then také& close to one. Thepd is close
to one, and thus the payoff vectgt(pd,s) can approximate the efficient frontier
of the limit feasible payoff se¢ (with an appropriate choice @j. This implies
thatv is a weighted average of some payoff approximating the efficient frontier
and expected continuation payoffs, just as in Figure 6. Also, for a fpxate
coeﬁicient% on the termv#(pd,s) converges to zero whed goes to one;
hence a small variation in continuation payoffs is enough to provide appropriate
incentives during the first random block. These properties are reminiscent of the
payoff decomposition (6) for the standard repeated game, and we use them to
establish the folk theorem.

Now we present a version of the self-generation theorem which decomposes
payoffs in the above way. Consider an auxiliary dynamic game such that the game
terminates at some periogwhich is randomly determined by public randomiza-
tion; that is, after every periog the game terminates with probability-1p (and
proceeds to the next period with probability, wherep € (0, 1) is a fixed param-
eter. Assume also that if the game terminates at the end of pergath player
i receives some “bonus paymeﬁ’{’(_—r? depending on the past histony. Intu-
itively, this bonus payment;(h') corresponds to playeis continuation payoff
from the next block in the original stochastic game. Here the paymede-
pends orh!, which reflects the fact that players’ continuation payoffs from the
next block depend on the history during the current block. Gved, p € (0,1),
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andw:H — RN, let(u,d, p,w) denote thisstochastic termination gameFor
each strategy profils, playeri’'s expected average payoff in this stochastic ter-
mination game is precisely the right-hand side of (8). When we consider the
stochastic termination game, we assume that the funetidones not depend on
the past public randomization, in order to avoid a measurability problem.

Definition 7. A pair (s,V) of a strategy profile and a payoff vectosi®chastically
enforceable with respect t@, u, p) if there is a functionw : H — RN such that
the following properties are satisfied:

() When players play the strategy profsen the stochastic termination game
I(u,d, p,w), the resulting payoff vector is exactly

(i) sisasequential equilibrium in the stochastic termination gatpe d, p,w).

Intuitively, sin the above definition should be interpreted as a strategy profile
for the first block, anar as players’ equilibrium payoff in the original stochastic
game. Stochastic enforceability guarantees that there are some continuation pay-
offs w(ht) from the second block so that players’ incentive constraints for the first
block are satisfied and the equilibrium payefs indeed achieved.

Now we introduce the concept of stochastic self-generation, which is a coun-
terpart to self-generation of Abreu, Pearce, and Stacchetti (1990).

Definition 8. A subsetW of RN is stochastically self-generating with respect to
(, p) if for eachv € W and , there aresc Sandw: H — W such that(s,v) is
stochastically enforceable with respect{& v, p) usingw.

In words, forW to be stochastically self-generating, each payaffW must
be stochastically enforceable given any initial pgigrusing some strategy profile
s and functionw which chooses continuation payoffs from the ¥ét Here we
may use different strategy profiteand continuation payofiv for different priors
U, since the posterior belief is a common state variable in our model.

The following result is an extension of the self-generation theorem of Abreu,
Pearce, and Stacchetti (1990). The proof is similar to theirs and hence omitted.

Proposition 1. Fix &. If W is bounded and stochastically self-generating with
respect to(d, p) for some p, then for each payoff vectoe W and initial prior
U, there is a sequential equilibrium with the payoff v.
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For stochastic games with observable (and finite) statés)et, Sugaya, Taka-
hashi, and Vieille (2011) use the idea dt-period generation,” which decomposes
a player’s overall payoff into her average payoff in theeriod stochastic game
and her continuation payoff, whefeis a fixed number. It is unclear if their idea
works in our setup, because the belief evolution in our model may not be ergodic
and thus an average payoff in tlieperiod stochastic game may not approximate
the boundary of the s&t*. Fudenberg and Yamamoto (2011b) propose the con-
cept of “return generation,” which considers a stochastic game such that the game
terminates when the state returns to the initial state. Unfortunately we cannot
follow their approach, as the belief may not return to the initial belief forever.

Independently of this paper,dtnher, Takahashi, and Vieille (2015) also pro-
pose the same self-generation concept, which they call “random switching.” How-
ever, their model and motivation are quite different from ours. They study repeated
adverse-selection games in which players report their private information every
period. In their model, a player’s incentive to disclose her information depends on
the impact of her report on her flow payoffs until the effect of the initial state van-
ishes. Measuring this impact is difficult in general, but it becomes tractable when
the equilibrium strategy has the random switching property. That being said, they
use stochastic self-generation in order to measure payoffs by misreporting. In
contrast, in this paper, stochastic self-generation is used to decompose equilib-
rium payoffs in an appropriate way. Another difference between the two papers is
the order of limits. They take the limits gfandd simultaneously, while we fiyp
first and then také large enough.

Remark 2. Note that Proposition 1 does not rely on the fact that the state is a
belief. Hence it applies to general stochastic games with infinite states, in which
the state is not necessarily a belief.

7 Folk Theorem

Now we will establish the folk theorem for strongly connected stochastic games:

Proposition 2. Suppose that the game is strongly connected. Then for any interior
point v of V*, there isd € (0,1) such that for anyd € (&,1) and for any initial
prior u, there is a sequential equilibrium which yields the payoff of v.
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This proposition shows that the folk theorem holds under the full dimensional
condition, dinV* = N. (If dimV* < N, there is no interior point of *.)

The proof builds on the techniques developed by FLM and Fudenberg and Ya-
mamoto (2011b). From Proposition 1, it is sufficient to show that any “smooth”
subsetV of the interior ofV* is stochastically self-generating férclose to one,
that is, it is enough to show that each target payoff W is stochastically en-
forceable using continuation payoffschosen from the s&t/. Construction of
the continuation payoff functiow is more complex than those in FLM and Fu-
denberg and Yamamoto (2011b), since we need to consider the random block
structure; but it is still doable. The formal proof can be found in Appendix D.

8 Conclusion

This paper considers a new class of stochastic games in which the state is hidden
information. We find that if the game is strongly connected, then the feasible
and individually rational payoff set is invariant to the initial belief in the limit

as the discount factor goes to one. Then we develop the idea of stochastic self-
generation, which generalizes self-generation of Abreu, Pearce, and Stacchetti
(1990), and prove the folk theorem.

Throughout this paper, we assume that actions are perfectly observable. In an
ongoing project, we try to extend the analysis to the case in which actions are not
observable. When actions are not observable, each player has private information
about her actions, and thus different players may have different beliefs. This im-
plies that a player’s belief is not public information and cannot be regarded as a
common state variable; hence the model does not reduce to stochastic games with
observable states. Accordingly, the analysis of the imperfect-monitoring case is
quite different from that for the perfect-monitoring case.
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Appendix A: More on Connectedness

A.1 Connectedness in Terms of Primitives

Here we provide the definition of global accessibility, transience, and connected-
ness in terms of primitives. We begin with global accessibility.

Definition 9. A subsetQ* C Q is globally accessiblef for each statew € Q,
there is a natural numbdr < 49, an action sequend@?,---,a' ), and a signal
sequencgy’,---,y") such that the following properties are satisftéd:

(i) If the initial state isw and players playal,---,a"), then the sequence
(y},---,y") realizes with positive probability. That is, there is a state se-
quence(w?,- -, ' 1) such thatw! = w and %' (yt, wi+1jat) > 0 for all
t<T.

(i) Ifplayers play(al,---,a’)and observgy',---,y"), then the state in period
T +1 must be in the s&*, regardless of the initial state (possiblyw # w).
That is, for eachd € Q and @ ¢ Q*, there is no sequendev?,-- -, w'™ 1)
such thato! = @, w1 = @, andn® (i, wi+ijal) > O forallt < T.

As the following lemma shows, the definition of globally accessibility here is
equivalent to the one presented in Section 4.2. The proof can be found in Ap-
pendix E.

Lemma 6. Definitions 3 and 9 are equivalent.

Let & be the set of all globally accessidlE C Q. The setd is non-empty,
as the whole state spa€¥ = Q is always globally accessible. Indeed, when

13 As claimed in Section 4.2, restricting attentionTto< 49/ is without loss of generality. To
see this, pick a subs€* C Q andw arbitrarily. Assume that there is a natural numbes 4/
so that we can chooge?,---,a") and(y*,---,y") which satisfy (i) and (i) in Definition 9. For
eacht <T and® € Q, let Q'(&) be the support of the posterior belief given the initial stat¢he
action sequencgal, - ,a"), and the signal sequen¢g',--- ,y*). SinceT > 49l there are and
>t such thaf'(®) = Q' (@) for all ®. Now, consider the action sequence with lerith (f—t),
which is constructed by deletin@!*?,-- - ,a') from the original sequend@’, --- ,a"). Similarly,
construct the signal sequence with lengith (f —t). Then these new sequences satisfy (i) and (ii)
in Definition 9 in Appendix A. We can repeat this procedure to show the existence of sequences
with length T < 412 which satisfy (i) and (ii).
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Q* = Q, clause (ii) is vacuous and clause (i) is trivially satisfied by an appropriate
choice of(y*,---,y").

When the full support assumption holds, only the whole state dpaseglob-
ally accessible, i.e = {Q}. On the other hand, when the full support assump-
tion is not satisfied¢” may contain a proper subs@t ¢ Q. Note that if some
proper subse* is in the set?, then by the definition of global accessibility,
any superse™ O Q* is in the set¢’. That is, any superset @* is globally
accessible.

The following is the definition of transience in terms of primitives. With an
abuse of notation, for each pure strategy prafideS* which does not use public
randomization, les(y!,---,y*~1) denote the pure action profile induced $in
periodt when the past signal sequencegys, - -,y 1).

Definition 10. A singleton sef w} ¢ ¢ is transientif for any pure strategy profile
se S, there is a globally accessible €2t € ¢, a natural numbef < 212, and

a signal sequendg?,---,y") such that for eackh € Q*, there is a state sequence
(@, , ' 1) such thato! = w, w1 = &, andr® (Y, wtHL[s(yL, -+, yi 1)) >
Oforallt <T.14

In words, {w} is transient if the support of the belief cannot stay there for-
ever given any strategy profile; that is, the support of the belief must reach some
globally accessible s&®* at some point in the futur®. It is obvious that the
definition of transience above is equivalent to Definition 4 in Section 4.2, except
that here we consider only singleton séts}.

Now we are ready to give the definition of connectedness:

Definition 11. A stochastic game isonnectedf each singleton sefw} is glob-
ally accessible or transient.

MRestricting attention td@ < 219 is without loss of generality. To see this, suppose that there
is a strategy profils and an initial prioru whose support i€* such that the probability that the
support of the posterior belief reaches some globally accessible set within péfiaz2ro. Then
we can construct a strategy profiisuch that if the initial prior igt and players plag, the support
of the posterior belief never reaches a globally accessible set. The proof is standard and hence
omitted.

Swhile we consider an arbitrary strategy profile S* in the definition of transience, in order
to check whether a s¢to} is transient or not, what matters is the belief evolution in the fif$t 2
periods only, and thus we can restrict attention f§-period pure strategy profiles, Hence the
verification of transience of each sgb} can be done in finite steps.
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In this definition, we consider only singleton s€t®}. However, as the fol-
lowing lemma shows, if each singleton get} is globally accessible or transient,
then any subse®* C Q is globally accessible or transient. Hence the above defi-
nition is equivalent to the one in Section 4.2.

Lemma 7. If each singleton sefw} is globally accessible or transient, then any
subseQ* C Q is globally accessible or transient.

A.2 Limit Feasible Payoff Set

As shown in Lemma 5, connectedness implies the invariance of the feasible payoff
set whend is close to one. The following lemma shows that for each direction
and sufficiently large, there is a strategy profilewhich yields a payoff vector
approximating the score regardless of the initial pyior The proof is found in
Appendix E.

Lemma 8. Suppose that the game is connected. Then for easlD, there is
& € (0,1) such that for anyA € A andd € (8,1), there is a pure strategy profile
se€ S such that for all,

A-vH(d,8)— max A-V| <e.
VeVH(3)
This lemma is used in the proof of the next lemma, which shows that for each
initial prior u and directiom, the score converges to a limiting valuedagoes to
one. This ensures that the 88t in Section 4.2 is well-defined. The proof can be
found in Appendix E®

Lemma 9. If the game is connected, théms_,; maX,cyu(5) A - v exists for each
A andpu.

The next lemma shows that the convergence of the score functigh( 5, )
is uniform inA. This implies that the sef# in Section 4.2 is indeed the limit
feasible payoff set in the sense that the feasible payof¥/8¢d) approximates
VH whend is close to one. The proof can be found in Appendix E.

16This lemma is a corollary of Theorem 2 of Rosenberg, Solan, and Vieille (2002), but for
completeness, we provide a (simple and new) proof. We thank JohaidmesrHor pointing this
out.
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Lemma 10. For eachg, there isd € (0,1) such that for eaciA € A, & € (5,1),
and u,

max A-v—Ilim max A-v| <E€.
veVH(0) 0—1veVH(9)

A.3 Examples

As Lemmas 2 and 3 suggest, irreducibility of the underlying state is not necessary
for connectedness. Here we present one of such examples; that is, in the example
below, the game is connected although the underlying state is not irreducible.

Example 1. Suppose that there are three stat@$wy, andws. If the current state

is wy, the state stays at with probability 3 and moves taw, with probability 3.

If the current state isy, the state moves tas for sure. If the current state ts3,

the state moves ta, for sure. Note that this state transition is not irreducible, as
there is no path fromy, to ;. Assume that the signal spaceis- {yo,Y1,Y2, Y3},

and that the signal is correlated with the next hidden state. Specifically, if the
next state isu, players observgy or yi with probability 3-3, for eachk = 1,2, 3.
Intuitively, yi reveals the next state, for eachk = 1,2, 3, whileyp does not reveal
the state. In this example, it is easy to check th@t} and {ws} are globally
accessible, whilw, } is transient. Hence the game is connected.

From Lemmas 2 and 3, we know that irreducibility of the underlying state is
sufficient for connectedness, if states are observable (possibly with delay). Unfor-
tunately, this result does not hold if states are not observable; that is, irreducibility
may not imply connectedness when states are hidden. We can show this through
the following example, in which the state follows a deterministic cycle.

Example 2. Suppose that there are only two stat@s+ {wj, «w,}, and that the
state evolution is a deterministic cycle; i.e., the state goasytéor sure if the
current state iso, and vice versa. Assume thid@;| = 1 for eachi, and that the
public signaly does not reveal the state, that is, 75 (y|a) > 0 for all w, a, andy.

In this game, if the initial prior is fully mixed so that(c) > 0 andu(wy) > 0,

then the posterior belief is also mixed. Hence only the whole state §paceQ

is globally accessible. On the other hand, if the initial prior puts probability one on
some statev, then the posterior belief puts probability one@in all odd periods
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and ond # w in all even periods. Hence the support of the posterior belief cannot
reach the globally accessible €&t = Q, and thus eacliw} is not transient.

Now we present another example in which the game is not connected although
the state evolution is irreducible. What is different from Example 2 is that the state
evolution is not deterministic. (As will be explained in Appendix C, asymptoti-
cally connectedness is satisfied in both these examples.)

Example 3. Consider a machine with two states; and w,. w; is a “normal”

state andw, is a “bad” state. Suppose that there is only one player and that she has
two actions, “operate” and “replace.” If the machine is operated and the current
state is normal, the next state will be normal with probabiityand will be bad

with probability 1— p;, wherep; € (0,1). If the machine is operated and the
current state is bad, the next state will be bad for sure. If the machine is replaced,
regardless of the current state, the next state will be normal with probatsilend

will be bad with probability - p,, wherep, € (0,1]. There are three signalg,

y», andys. When the machine is operated, both the “succgssihd the “failure”

y» can happen with positive probability; we assume that its distribution depends
on the current hidden state and is not correlated with the distribution of the next
state. When the machine is replaced, the “null signalis observed regardless

of the hidden state. Connectedness is not satisfied in this example { spcés
neither globally accessible nor transient. Indeed, when the support of the current
beliefisQ, itis impossible to reach the beligfwith p(w,) = 1, which shows that

{wr} is not globally accessible. Alsfuy} is not transient, because if the current
belief puts probability one ony, and “operate” is chosen forever, the support of
the posterior belief is alway&o, }.

In some applications, there are action profiles which reveal the next state. If
there is such an action profile, then the game is connected, as illustrated in the
next example.

Example 4. Consider the machine replacement problem discussed above, but now
assume that there are three actions; “operate,” “replace,” and “inspect.” If the
machine is inspected, the state does not change and a signal reveals the current
state (hence the next state). Then it is easy to verify that éaghis globally
accessible and thus the game is connected.
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A.4 Consequence of Transience

Lastly, we would like to present a lemma, which can be helpful to understand the
interpretation of transience. As claimed in Section 4.2, if the support of the current
belief is transient, then the support cannot return to the current one forever with
positive probability. This in turn implies that the probability of the support of the
belief being transient in periodl is almost negligible whef is large enough. The
following lemma verifies this claim formally. The proof is given in Appendix E.
Let X(Q*|u,s) be the random variabl€ which represents the first time in which
the support of the posterior beliefds" given that the initial prior it and players
plays. That is, let

X(Q*|u,s) = inf{T > 2 with supu™ = Q*|u,s}.

Let P(X(Q*|u,s) < ) denote the probability that the random variable is finite;
i.e., it represents the probability that the support rea€lies finite time.

Lemma 11. For any transient seQ)*, any initial prior u whose support i€*,
and any strategy profile s, the probability that the support return@tan finite
time is strictly less than one. That is,

Pr(X(Q*|u,s) < o) < 1.

Appendix B: Strong Connectedness

Here we present the definition of strong connectedness, which ensures the invari-
ance of the minimax payoffs. To do so, we first need to introduce the idea of
robust global accessibility and strong transience. We begin with robust global
accessibility:

Definition 12. A non-empty subse®* C Q is robustly globally accessibiéthere
is " > 0 such that for any initial priop and for anyi, there is an action sequence
(at;,-- ,a‘l‘?‘) such that for any players strategys, there is a natural number

T < 49 and a beliefi whose support i€* such that

Pr(“T+l = ﬂ|u7a17"' 7aT) >
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Robust global accessibility d@* differs from global accessibility in two re-
spects. First, robust global accessibility requires that the support of the belief
should reacl)* regardless of playais play. Second, the support of the resulting
belief [i must be precisely equal @*; global accessibility requires only that the
support of the posterior belig¢f be a subset aR*.

Next, we define strong transience.

Definition 13. A subsetQ* C Q is strongly transientf it is not robustly globally
accessible and there 18 > 0 such that for any pure strategy profde S* and
for any 4 whose support i©*, there is a natural numb@r < 29l and a beliefii

whose support is robustly globally accessible such that

Pr(p™* = fi|p,s) > 7.

Again, strong transience differs from transience in two respects. First, the
support of the posterior beligi must be robustly globally accessible. Second,
we now require that the probability that the support of the belief reaches a robust
globally accessible set is at leastregardless of the initial prior with suppd2*.

Now we are ready to state the definition of strong connectedness.

Definition 14. The game istrongly connected the following conditions hold:

(i) Each non-empty subsé€r* C Q is robustly globally accessible or strongly
transient.

(i) For eachw, for eachu whose support i€2, and for each pure strategy
profiles e S, there is a natural numb@r< 4? and a histonh" such that
the probability o' given(w,s) is positive, and the support of the posterior
belief induced byw andh' is identical with that induced by andh'.

Clause (i) is a natural extension of connectedness. Clause (ii) is new, which
says that the supports of the two posterior beliefs induced by different posteriors
w andu must merge at some point, regardless of the play. Note that clause (ii) is
trivially satisfied in many examples; for example, if the state evolution has a full
support, then the support of the posterior beli€diregardless of the initial belief,
and hence clause (ii) holds.

The following lemma, which parallels Lemmas 5 and 8, is a consequence of
strong connectedness. The proof is given in Appendix E.
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Lemma 12. Suppose that the game is strongly connected. Then for &£ach,
there isd € (0,1) such that the following properties hold:

(i) Foranyd e (8,1), u, andfi

V(8)-v(8)| <&

(i) Forany d € (3, 1), there is a strategy profiles S* such that for allu,
V(8,5 —v'(0)] <€

and

Clause (i) asserts that whenis sufficiently large, the minimax payoffs are
similar across all priorgt. Clause (ii) ensures that whenis sufficiently large,
there is a strategy profilesuch that regardless of the initial prigy the generated
payoff approximates the minimax payoff and playsrplay s is approximately
optimal. The existence of such a strategy profile is useful in the proof of Lemma
13.

The next lemma shows that the limit minimax payoff exists. See Appendix E
for the proof.

Lemma 13. Suppose that the game is strongly connected. ﬂM&lyF(é)
exists.

Appendix C: Relaxing Connectedness

Here we show that connectedness is stronger than necessary for the invariance of
the feasible payoff set; we show thretymptotic connectednesghich is weaker
than connectedness, is sufficient.

To illustrate the idea of asymptotic connectedness, consider Example 2 in Sec-
tion 4.2, where the state is unobservable and follows a deterministic cycle. Sup-
pose that the signal distribution is different at different states and does not depend
on the action profile, that isg’*(-|a) =  and 7%%(-|a) = 7 for all a, where
TH # Th. Suppose that the initial statedag. Then the true state must log in all
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odd periods, and bey in all even periods. Hence if we consider the empirical
distribution of the public signals in odd periods, it should approxintatevith
probability close to one, by the law of large numbers. Similarly, if the initial state
is wy, the empirical distribution of the public signals in odd periods should ap-
proximaters. This implies that players can eventually learn the current state by
aggregating the past public signals, regardless of the initial pridience ford
close to one, the feasible payoff set should be similar acrogs ak., Lemma 5
should remain valid in this example, even though the game is not connected.
The point in this example is that, while the singleton &ex} is not glob-
ally accessible, it imsymptotically accessibi@ the sense that at some point in
the future, the posterior belief puts a probability arbitrarily close to oneugn
regardless of the initial prior. As will be explained, this property is enough to es-
tablish the invariance of the feasible payoff set. Formally, asymptotic accessibility
is defined as follows:

Definition 15. A non-empty subse®* C Q is asymptotically accessiblefor any

€ > 0, there is a natural numb@&r and i* > 0 such that for any initial priop,

there is a natural numbdr* < T and an action sequenc¢a’,---,a’ ) such that
Pr(u™ = fiju,al,---,a"") > m* for somefi with ¥ cq- fi(w) > 1—¢.

Asymptotic accessibility of2* requires that given any initial priqu, there
is an action sequend@l,---,a" ) so that the posterior belief can approximate a
belief whose support *. Here the lengti * of the action sequence may depend
on the initial prior, but it must be uniformly bounded by some natural nuriiber

As argued above, each singleton §et} is asymptotically accessible in Ex-
ample 2. In this example, the state changes over time, and thus if the initial prior
puts probability close to zero am, then the posterior belief in the second period
will put probability close to one ow. This ensures that there is a uniform bound
T on the lengthT * of the action sequence.

Similarly, the set{cw,} in Example 3 is asymptotically accessible, although
it is not globally accessible. To see this, suppose that the machine is operated
every period. Thenw, is the unique absorbing state, and hence there is Jome
such that the posterior belief after periddattaches a very high probability on
wp regardless of the initial prior (at least after some signal realizations). This is
precisely asymptotic accessibility ¢to,}.
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The definition of asymptotic accessibility is stated in terms of the posterior be-
lief, not primitives. However, as explained above, in some applications, checking
whether each s&€2* is asymptotically accessible is a relatively simple task. Also,
as will be explained in Lemma 14 below, there is a simple sufficient condition for
asymptotic connectedness.

Note thatQ* is asymptotically accessible whenever it is globally accessible,
and hence the whole state sp&e= Q is always asymptotically accessible. Let
0 be the set of all asymptotically accessible sets. Next, we give the definition of
asymptotic transience.

Definition 16. A singleton set{ w} ¢ 0 is asymptotically transienif there is 7"
such that for ang > 0, there is a natural numb&rsuch that for each pure strategy
profiles e S, there is an asymptotically accessible Q&étc 0, a natural number
T* < T, and a beliefi such that Piu™" = fijw,s) > 0, T seo- (@) > 1—¢, and
fi(é) > fr* for all @ € Q*.

In words, asymptotic transience fd} requires that if the support of the cur-
rent belief is{w}, then regardless of the future play, with positive probability, the
posterior beliefu™ = [ approximates a belief whose supp@t is globally ac-
cessible. Asymptotic transience is weaker than transience in two respects. First, a
global accessible s€X* in the definition of transience is replaced with an asymp-
totic transient seQ*. Second, the support of the posterjoiis not necessarily
identical withQ*; it is enough iffi assigns probability at least-de on Q*.17

Now we are ready to state the definition of asymptotic connectedness.

Definition 17. A stochastic game iasymptotically connecteifl each singleton
set{w} is asymptotically accessible or asymptotically transient.

The definition of asymptotic connectedness is very similar to connectedness;
the only difference is that global accessibility in the definition of connectedness is
replaced with asymptotic accessibility. Asymptotic connectedness is weaker than

1"Asymptotic transience is different from asymptotic transience in that the last requirement,
[1(@) > 7t*, ensures that the posterior beliefs not close to the boundary AfQ*. So the posterior
belief i must be really an interior point ofQ*. Note that this requirement is automatically

satisfied infl in the definition of transience, by settifitj = =,
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connectedness, and indeed, the game is asymptotically connected but not con-
nected in Examples 2 and 3. Also, asymptotic connectedness is satisfied in an im-
portant class of games, as the following lemma showsrfZéa) = (78°(y|a) )yey

be the marginal distribution gfgiven w anda.

Lemma 14. The game is asymptotically connected if the following properties
hold:

The state evolution is irreducible.

Signals do not reveal the current state, that is, for each a and! (if|a) >
0 for somew, thenni&(y|a) > 0 for all @.

Signals do not reveal the next state, that is, for eaglio, @, a, ¥, andy, if
n®(y,|a) > 0 and m®(y, w|a) > 0, thennt® (¥, d|a) > O.

For each a, the signal distribution§ri’(a), w € Q} are linearly indepen-
dent.

The lemma shows that if the state evolution is irreducible [and- |Q|, then
for “generic” signal structures, asymptotic connectedness is satisfied. The proof
of the lemma can be found in Appendix E.

As shown in Lemma 5, connectedness ensures invariance of the feasible pay-
off set, which plays an important role in our equilibrium analysis. The follow-
ing lemma shows that the invariance result remains valid as long as the game is
asymptotically connectetf The proof can be found in Appendix E.

Lemma 15. Suppose that the game is asymptotically connected. Then for each
£ >0, there isd € (0,1) such that the following properties hold:

(i) ForanyA e A, d € (8,1), u, and i,

max A-v— max A-V| <E€.
veVH(9) VeVH (D)

BHowever, unlike Lemma 5, we do not know the rate of convergence, and in particular, we do
not know if we can replace in the lemma withO(1 — 9).
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(i) Forany A € A andd € (3,1), there is a pure strategy profileesS* such
that for all u,

A-vH(d,8)— max A-v|<e.
veVH(9d)

With this lemma, it is easy to see that Proposition 2 is valid for asymptotically
connected stochastic games. That is, the folk theorem holds as long as the game
is asymptotically connected.

In the same spirit, we can show that strong connectedness is stronger than
necessary for the invariance of the limit minimax payoff. Indeed, the following
condition,asymptotic strong connectedngissweaker than strong connectedness
but sufficient for the invariance result. The proof is omitted, as it is a combination
of those of Lemmas 12 and 15.

Definition 18. A non-empty subseQ* C Q is asymptotically robustly acces-
sible if there is 7" > 0 such that for any > 0, there is a natural numbé&r
and it > 0 such that for any initial priou and for anyi, there is an action
sequencdal;,---,a';) such that for any playei’s strategys, there is a natu-
ral numberT* < T and a belieffi such that Ru™+1 = fiju,at,---,a") > m,

S wear H(w) > 1—¢, andfi(w) > 7t for all w € Q.

Definition 19. A subsetQ* C Q is asymptotically strongly transient it is not
asymptotically robustly accessible and for any 0, there is a natural number
T and ™ > 0 such that for any pure strategy profie S and for anyu whose
support isQ*, there is an asymptotically accessible Qéte 0, a natural number

T*< T, and abeliefi such that A" ™1 = fi|u, ) > m* andy g o- fI(0) > 1—¢,

Definition 20. The game isasymptotically strongly connectefithe following
conditions hold:

(i) Each non-empty subsé€* C Q is asymptotically robustly accessible or
asymptotically strongly transient.

(i) There is7t* > 0 such that for ang > 0, there is a natural numb@&r such
that for eachw, for eachu whose support i€2, and for each pure strategy
profilese S, there is a natural numb@r < T and a histonh"" such that
the probability ofh™ given (w,s) is positive, and such that the posterior
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belief {1 induced byw andh' satisfiesy ;co- fI(&®) > 1— & andfi(®) > *
for each@ € Q*, whereQ* is the support of the posterior induced pynd
hT.

Appendix D: Proof of Proposition 2

Here we prove the folk theorem for strongly connected stochastic games.

Definition 21. A subsetV of RN is smoothif it is closed and convex; it has a non-
empty interior; and there is a unique unit normal for each point on the boundary
of w.1?

Pick an arbitrary smooth subsét of the interior ofV*. From Proposition 1,
it is sufficient to show that each target payeo# W is stochastically enforceable
using continuation payoff&/ chosen from the s&¥/. As argued by FLM, a key
step is to show enforceability of boundary poimtsf W. Indeed, if we can show
that all boundary pointg of W are enforceable, then it is relatively easy to check
that all interior points ofV are also enforceable.

So pick an arbitrary boundary pomte W. We want to prove thatis enforce-
able using continuation payofigh') in W for all sufficiently larged. A sufficient
condition for this is that there are some real numlzers0 andK > 0 such that
v is enforceable using continuation payoffs in theGeah Figure 7 for alld. For-
mally, lettingA be a unit normal taV atv, the seiG in the figure refers to the set
of all payoff vectorsvsuch thatA -v> A - V4 (1— d)e and such thaw is within
(1—9)K of v. Note that the se& depends on the discount factdy but if W is
smooth, this seB is always in the interior of the s&{ for anyd close to one. (See
Fudenberg and Levine (1994) for a formal proof.) Thus if continuation payoffs
w(ht) are chosen from the s&tfor eachd, they are in the s/, as desired.

The concept ofiniform decomposabilityf Fudenberg and Yamamoto (2011b)
formalizes the above idea, and here we extend it to our setup. Given, any
€>0,K>0,andd € (0,1), let Gy, ¢ k 5 be the set of allSuch thatA - v >
A -V+ (1—9d)e and such that is within (1 — 0)K of v. Whenv is a boundary

19A sufficient condition for each point on the boundanMéfto have a unique unit normal is
that the boundary is @%-submanifold ofRN.
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Figure 7: Continuation payoffs are chosen fr@n

point of W and A is the corresponding unit normal, this $8f, . k 5 is exactly
the setG in Figure 7.

Definition 22. A subseW of RN is uniformly decomposable with respect tdf p
there aree > 0,K > 0, andd € (0,1) such that for eackic W, & € (8,1), A €A,
and u, there aresc Sandw: H — G, ¢k 5 such that(s,v) is stochastically
enforceable with respect (@, u, p) usingw.

In words, uniform decomposability requires that any target payeafw is
stochastically enforceable using continuation payoffs in theGsat, k 5. The
following lemma shows uniform decomposability is sufficient for theVieb be
self-generating for sufficiently largé.2° The proof is similar to Fudenberg and
Yamamoto (2011b) and hence omitted.

Lemma 16. Suppose that a smooth and bounded subset \RNois uniformly
decomposable with respect to p. Then ther@ is(0,1) such that for any payoff
vector ve W, for anyd € (3,1), and for anyy, there is a sequential equilibrium
which yields the payoff v.

In what follows, we will show that any smooWv in the interior ofV* is
uniformly decomposable. A directioh is regular if it has at least two non-zero
components, and oordinateif it has exactly one non-zero component. The next
lemma is an extension of Theorem 5.1 of FLM. Very roughly speaking, it shows
that a boundary point of W with a regular unit normal vector is enforceable
using continuation payoffs in the g6t The proof can be found in Appendix E.

20This is a counterpart to the “local decomposability lemma” of FLM for infinitely repeated
games. For more discussions, see Fudenberg and Yamamoto (2011b).
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Lemma 17. For each regular directiom and for each p= (0,1), there is K> 0
such that for eaclu, for each s= S, for eachd € (0,1), and for each \e V, there
is w such that

(i) (s,v) is stochastically enforceable with respectt u, p) by w,

(i) A-wht)y=2A.v— ﬁ()\ -VH(pd,s)—A -v) for allt and H, and

(iii) [v—w(h')| < =55K forallt and H.

This lemma applies to all target payofisc V, but for the sake of the ex-
position, letv be a boundary point diV with a regular unit normah. Assume
also thatp and d are close to one. Letbe a strategy profile approximating the
boundary otV toward directionA when the discount factor igd. Sincev is in
the interior ofV*, we have - v¥(pd,s) — A -v=1 > 0. Clause (i) says that such a
pair (s,V) is enforceable using some continuation paywaff#\lso, clauses (ii) and
(i) ensure that these continuation payoffs are in theGat Figure 7, by letting
€ =1. Indeed, clause (i) reduces do-w(h') = A -v— ﬁl, and thus all the
continuation payoffs must be in the shaded area in Figure 8. (In particular, clause
(i) says that continuation payoffs can be chosen from a hyperplane orthogonal to

A. This is reminiscent of the idea of “utility transfers across players” of FLM.)

# VH(pd, s)

Figure 8: Continuation Payoffs for Regular Directidn

Note that in the above lemma, the rate of convergence (the constarthe
lemma) depends on directioh; indeed this constarK can become arbitrarily
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large asA approaches a coordinate vector. However, in Lemma 20 we will extract
a finite set of direction vectors so the dependence of the constahtvah not
cause problems.

The next lemma extends Lemma 5.2 of FLM, which considers enforceability
for coordinate directions. The proof can be found in Appendix E.

Lemma 18. For each pe (0,1), there is K> 0 such that for eaclu, s_j € S°;,
veV,d,and s € arg magegvi“(pé,é,s_i), there is w such that

(i) (s,v) is stochastically enforceable with respect(t u, p) by w,

(i) wi(ht) =v; — ulj—r;s)(s(vi“(pé,s) —v;) for allt and H, and

(iii) [v—w(ht)| < 7=55K for allt and H.

To see the implication of the above lemma, Jdbe a boundary point oV
such that the corresponding unit normal is a coordinate vectorAithl. That
is, letv be a payoff vector which gives the best possible payoff to playethin
the setV. Letsbe a strategy profile which approximates the best payoff for player
i within the feasible payoff s&t, so thatvi“(pé,s) —V; =1 > 0. Clause (i) says
that such a paifs, V) is enforceable using some continuation payeffsClauses
(ii) and (iii) ensure that continuation payoffs are in the shaded area in Figure 9.

. VH(pd, s)

L(1-9) |
;(l—p)5

/A
Wht)//

Figure 9: Continuation Payoffs far with Aj = 1

Likewise, letv be a boundary point ofV such that the corresponding unit
normal is a coordinate vector with = —1. Considers which approximates the
limit minimax payoff to playel so thatv; — vi“(pé,s) =1> 0. Then clauses (ii)
and (iii) ensure that the continuation payoffs are in the shaded area in Figure 10.
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Figure 10: Continuation Payoffs farwith A; = —1

To prove the above lemma, it is important tisails a best reply t@_; given u
and pd; this property ensures that playié& incentive constraints are satisfied by
a constant continuation functiam, so that clause (ii) is satisfied.

The next lemma guarantees that foclose to one, there are strategy profiles
which approximate the boundary ¥f in the stochastic game with the discount
factor p. Intuitively, these strategies are the ones we have considered in Figures 8
through 10. The proof is found in Appendix E.

Lemma 19. Suppose that the game is connected. Then for any smooth subset
W of the interior of V, there aree > 0 and pe (0,1) such that the following
properties hold:

(i) ForeveryregularA and u, there is a strategy profiles S* such that

A -VvH(p,s) > maxA -v+e.
vew

(if) For eachiand for eachu, there is a strategy_s € S*; such that

maxvi' (p,s) > maxv; + .
SES vew

(i) For eachiand for eachyu, there is a strategy s € S*; such that

maxvi' (p,s) < minv; — €.
SES veWw

Now we are in a position to prove uniform decomposability of a smooth subset
W of the interior ofV*. The proof can be found in Appendix E.
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Lemma 20. For any smooth subset W of the interior of \there is p< (0,1) such
that W is uniformly decomposable with respect to p.

This lemma, together with Lemma 16, establishes Proposition 2.

Remark 3. When the game is not (asymptotically) connected, the limit feasible
payoff setv# may depend om. However, even in this case, the following result
holds. Letyi“ be the limit superior of players minimax payoff with the initial
prior u, asd — 1. LetV*H be the set off € VH such thaty; > \_/i“ for all i, and
let V* be the intersection of *# over all u. Then for any interior poinv of V*

and any initial prioru, there is a sequential equilibrium with the payeiivthend

is large enough. That is, if a payoff vectors feasible and individually rational
regardless of the initial prigu, then it is achieved by some equilibrium.

Appendix E: Proofs of Lemmas

E.1 Proof of Lemma 3

It is obvious that ifw is transient, thedw} is transient. Fix an arbitrarjw} such
thatw is globally accessible yditw} is not globally accessible. It is sufficient to
show that{ w} is transient. To do so, fix arbitragy andy* such thatg’(y*|a*) >

0, and letQ* be the set of alfo such thatt®(y*, é|a*) > 0. It is sufficient to show
thatQ* is globally accessible, as it implies thiab} is transient.

Fix an arbitrary initial prioru, and take an arbitrarg* such thaju(w*) > ﬁ
Since the state evolution is irreducible, there is an action sequahge- ,a")
with T < |Q| such that the probability of the state in peridd+ 1 beingw is
positive conditional on the initial stai®* and the action sequenca',---,a’).
Suppose that, given the initial priqr, players play this action sequence until
periodT and thera* in periodT + 1. Then in periodl + 1, the true state can be
w, so that with positive probability, the signgl realizes. Then the support of the
posterior belief i<*, since the signay reveals that the current stateds Note
that the probability of this event is at least

H(w") P’ = wlw',a’,-- a")r(y'[a’) >
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Since the lower boun% > 0 is the same across all initial priors, the §ets
globally accessible.

E.2 Proof of Lemma5

Fix d andA. For eachu, lets# be a pure-strategy profile which solves ma -
v(9,s). Without loss of generality we assurgéc S,

Note that given each initial priou, the score is equal td - v¥(d,s#). The
following lemma shows that the score is convex with respegt. to

Lemma 21. A -vH(3,9") is convex with respect tp.

Proof. Takeu and i, and take an arbitrary € (0,1). Let i = ku+ (1—K)[.
Then we have

A VRS ) = kA (8, S) + (1— K)A -VA(3, 1)

< KA -W(O,) + (1—K)A -VH(9,9),
which implies the convexity. Q.E.D.

SinceA -vH(d,sM) is convex, there iso such that
Av2(5,8%) > A V() 9)

for all u. (Here the superscripb refers to the initial priogu which assigns prob-
ability one to the statev.) Pick such aw.

For eachl and signal sequendg!, ---,y"), letr(y,---,y") denote the prob-
ability that the sequenag?,---,y") appears when the initial statedsand play-
ers plays®. Sinces” is pure and the initial belief puts probability one anwe
haver(y,---,y") > 7 forall (y!,---,y") with ri(y%,--- ,y") > 0. For each such
(yY,---,y"), let u(yL,---,y") be the posterior belighi™** given the initial state
w, the strategy profils®, and the signal sequenc¢g',---,y"). The following
lemma bounds the difference between the maximal sgoré’(5,s”) and the
score when the initial prior igt = p(yt,---,y"). LetC(T) = %29-

Lemma 22. For each T andy?,---,y") with ri(y*, - ,y") > 0,

1-57

A VO(8,9) — A HY YD (5 Oy | < 51

c(T).
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Proof. From the principle of optimality, we have
T
A V9(8,59) =(1- ) Z5“1E[/\ g% (@)|w! = w, Y]
t=

+5T Z 7T<y17-.. 7yT)/\ .Vu(yl>"'7yT)(5’S/J(y1’...7yT)).
(yl»‘",y )GYT

Since(1—8) 31, 8 1E[A - g¥ (a)|w! = w,s%) < (1— 37)g, we have

A V25,89 <(1-3")g

+57 Z Tyt yT)A VO Y (5 YTy
(Yt yh)evT

This inequality, together with (9), implies that

T

A V23,89 <(1—=38N)g+ 8T m(yt, - ,yT)A .Vu(yla--',yT)(&su(yl,--v,y
+ 5T(1_ n(yla e ayT))A 'Vw(573w>

)

for each(y?,---,y"). Arranging, we have

(1-8T)(9— A v(3,5)

. NIRRT [\ GRER! (- y")
Av2(5,8°)—A v (9,8 ) STy yT)

IN

for each(y',---,y") such thatr(y*,--- ,y") > 0. Sincer(y?,--- ,y") > 7',
1-37)(g—A-v*(5,5V))
o

Using (9) and\ - v®(d,s“) > —qg, the result follows. Q.E.D.

)\ W(a,sw) _A .Vu(ylv'“7yT)(57SIJ(y17'“7yT)) S (

Since the game is connectefdp} is either globally accessible or transient.
When it is transient, there is a natural numbex 212 and a signal sequence
(y},---,y") such that if the initial state i@ and players plag®, then the signal se-
quencey?,---,y") appears with positive probability and the support of the result-
ing posterior beliefu(y*,---,y") is a globally accessible s&* ¢ ¢. Take such
T, (y4,---,y"), andQ*. To simplify our notation, lep* = u(y*,---,y"). Since
p* is a belief induced by the initial state in periodT + 1, we haveu* (&) > 7T
for eachd € Q*. LetC = C—Tg—)

When{w} is globally accessible, 1&@* = {w}, T =0, u* € AQ with u*(w) =
1 andC = 2g.

53



Lets' = s, that is,s" is the strategy profile which achieves the score when
the initial prior isu*. Lemma 22 shows that this strategyapproximates the
maximal scoreh - v¥(d,s“) when the initial prior isu*. The following lemma
shows that this strategy’ can still approximate the maximal score even if the
initial prior p* is replaced with some statein the setQ*.

Lemma 23. For eachd® € Q*, we have

o) W v&) S 1-3"
A-v?(0,8Y) —A -v¥(4,5")| < TC.
Proof. When{w} is globally accessibleép € Q* impliesé = w so that the lemma
obviously follows. Hence we focus on the case in whieh} is not globally
accessible. Tak& € Q* arbitrarily. Then we have
AV(B,s) = § @A VP(8,S)
WEQ*
<O VP(8,5) + S WI@IA-vP(8,87)

W#W

Using (9),
AV (8,5°) < @A -VP(8,8%) + (1— pH[@])A -v2(3,52).
Arranging,
PG -V2(8,8%) — A -v2(3,5)) <A -v¥(3,8°) — A W (3,5).

Note that the term in the parenthesis in the left-hand side is hon-negative. Simi-
larly the right-hand side is non-negative. Hence

_1Av9(8,8%) — A V' (5,8Y)]

N (] '

(A VO(5,59) — A VO(3,S")

Since we haver*[@] > 7T,

_ A (8,82) A v (8,5

_T *

(/\ VO(5,59) — A VO(3,S") =

Using Lemma 22, the result follows. Q.E.D.

The following lemma shows that the same result holds even if the initial state
@ € Q* is replaced with some priqx whose support if*.

54



Lemma 24. For eachyu such thatu (@) = 0 for all & ¢ Q*, we have

10"
A -Vv¥(0,8%) — A -VH(d,s")] < 6—TC'

Proof. We have
AVA(3,s") = % f(E)A -VP(3,5).
eQ*
Subtracting both sides fromh-v¥(d,s),

AVO(3,59) = A V(8 = S (@) (A -VP(3,5°) — A -vP(3,5)).

weQ*
Then from Lemma 23, the result follows. Q.E.D.

Take " > 0 such that for each globally accessible g€tsatisfies the con-
dition stated in Definition 3. (Suclt* exists, since there are only finitely many
subsets of).) SinceQ* is globally accessible, given any initial prigr;, there is a
natural numbeT (i) < 4@ and an action sequenaéu) = (al(u),---,a’ ¥ (u))
such that the support of the posterior belief at the beginning of p@ripd + 1 is
a subset of2* with probability at leastt*.

Now let u** be such that™ (w) = ﬁ for eachw. Given the initial prioru™*,
consider the following strategy profigs*:

o Let uM = p*.

Players play the action sequenagu) for the firstT(uV) periods. Let
1@ be the posterior belief in perigbi(u¥) + 1.

If the support of the posterior beligf? is a subset of2*, then players play
s" in the rest of the game.

If not, then players playa(u(?) for the nextT (u(?) periods. Letu(® be
the posterior belief after that.

If the support of the posterior beligf® is a subset of2*, then players play
s" in the continuation game.

And so on.

55



Intuitively, for the firstT(u(l)) periods, players play an action sequence which
can potentially induce a posterior belief whose support is a subsgt dfet (@
be the posterior belief, and if its support is indeed a subs&t*othey play the
strategy profiles* in the continuation game. Lemma 24 guarantees that the score
in the continuation payoff after the switch $0 approximates the maximal score
A -v9(5,s¥). If the support ofu(? is not a subset a@*, once again players play
an action sequence which can potentially induce a posterior belief whose support
is a subset 0o2*. And they do the same thing over and over.

The following lemma shows that the score given the initial pri6t and the
strategy profiles** approximates the maximal scokte v¥’(J,s”) whenJd is close
toone. LeC =%,

Lemma 25. We have

1-9o7
5T

Proof. If 1—3-‘?1C > g, then the result is obvious because we have/®(d,s*) —

A -V (8,5%)| < 7. So in what follows, we assume th%g?lc <0,

Suppose that the initial prior ig** and players play the strategy profg€.
By the definition ofs**, once the support of the posterior beljef) reaches a
subset ofQ* for somek, players switch their continuation play $6, and Lemma
24 ensures that the score in the continuation game is alee${d,s”) — 1—:5-?10
This implies that after the switch &, the “per-period score” in the continuation
game is at least - v¥(9,s%) — 1*§T C. To simplify the notation, let* denote this

5

payoff lower bound, that isy* = A - v¥(9,s%) — 13?TC. On the other hand, the
per-period score before the switchdois at least-2g, sinceA - g“(a) < —2g for

all w anda. For eaclt, let p' denote the probability that the switchgodoes not
happen until the end of peridd Let p® = 1. Then from the above argument, we

have

o <

AVO(3,8°) — A - (3,5)| < C+(1-0*")C.

AV (8,87) > (1-6) iétl (P29 +(1-p" V). (20)

t=

Recall that the length of the action sequea¢g) is at most £ for eachp.
Recall also that the probability that the action sequeaigg does not induce the
switch tos* is at most - 1" for eachu. Hence we have

pn4‘Q‘—i-k < (1_ n:k)n
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for eachn=0,1,--- andk € {0,---,4® —1}. This inequality, together with
—29 < V¥, implies that

pMEHk(_2g) + (1 — pM KW > (1— )N (—20) + {1— (1— 7))V

foreachn=0,1,--- andk € {0,--- ,4% —1}. Plugging this inequality into (10),
we obtain

o 49 n—1
A- T 57 ) S (15 6(n—1)4|Q‘+k—1 _(1_71*) Zg ‘
Vo= 2 L (L

. Q Q (n-1)4l®Ql 1 540
SlnceZﬂ!lcS(“_l)A" ltk-1_0 (1-0"")

1-0 !
s e 5% v sin-nae | —(1-m)"2g
S CERE L DIl I
- @-8") 3 (a5 izg

S
8 |l
=

+(1-8") 3 () - {(1-m)e* v
1

=]
Il

Sincey®_{(1—m)d* 1= PR andyy (6% )"t = T 5
(1-5*")2g & m

AV (8,87) > -

+ Ve
1—(1-m)8%  1—(1- )84
Subtracting both sides frovh- v¥®(,s“), we have

A-VP(3,8%) — A -V (5,5)

(1-64")2g 3 m(1-8NC  (1-3*")A v9(5,s?)
T1-(1-m)84 {1-(1-m)s4eT 1 (1-m)s4°

57



SinceA -v®(3,s%) > —2g,

A VR(3,89)— AV (8,87)
(1-6%"2g 5 m@1-a8T)C (1-64"2g
T1-(1-m)*  {1—-(1-m)3¥} 6T 1—(1— )54
(1-6*"4g  m(@1-87)C
=1-(1-m)  {I-(1-m)}s"
(1-6%"ag (- sT)C

TT* o7
1-97 Q. ~
Hence the result follows. Q.E.D.

The next lemma asserts that the strategy prefilean approximate the max-
imal score regardless of the initial state

Lemma 26. For each® € Q, we have

_ T

1, x
<57 ClQ|+(1-5*")C|Q|.

‘/\ VO(5,5°) — A VP(8,5)

Proof. The proof is very similar to that of Lemma 23. Repld®e u*, s*, and7m’
in the proof of Lemma 23 witle, p**, s, andﬁ, respectively. Then we have

’)\ VO(3,57) — A VO(3,59)| <1Q]- A vP(8,87) — A VKT (5,5

for eachd andé € Q. Then from Lemma 25, the result follows. Q.E.D.

The next lemma implies that the strategy prodifecan approximate the max-
imal score regardless of the initial prigr

Lemma 27. Forall u € AQ,

T

o7
Proof. The proof is very similar to that of Lemma 24. Repld2eands’ in the

proof of Lemma 24 witiQ ands™, respectively. In the last step of the proof, use
Lemma 26 instead of Lemma 23. Q.E.D.

A -V9(3,5%) — A VH(8,87)| < clQ|+(1-3*")ElQ|.
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From Lemma 27 and
A-v2(5,8%) > A VM (5, ) > A -vH(9,5), (12)

we have
1-9o7
o7

This implies the lemma, since < 29/, C = ﬁ%?;l andC = % for any 5 andA.

A V2(5,59) — A -vH(8,84)| < clQ|+ (1—5*"E|ql.

E.3 Proof of Lemma 6

We first show that global accessibility in Definition 9 implies the one in Definition
3. Take a se®@* which is globally accessible in the sense of Definition 9, and fix an
arbitrarily initial prior 4. Note that there is at least ongsuch thau(w) > ﬁ SO
pick suchw, and then pickal,---,a") and(y!, - ,y") as stated in Definition 9.
Suppose that the initial prior jg and players playal,---,a"). Then clause (i) of
Definition 9 guarantees that the signal sequepte - - ,y") appears with positive
probability. Also, clause (ii) ensures that the support of the posterior helief
after observing this signal sequence is a subs&@ofi.e., u' (@) = 0 for all

@ ¢ Q*.?1 Note that the probability of this signal sequerigt --- ,y") is at least

1 _ 1 _ 09
p(w)Priyt,-- yTw,al,---,a") > @ﬂT > @n“ >0,

where P(y!,--- yT|w,al,--- ,a") denotes the probability of the signal sequence
(y,---,y") given the initial statew and the action sequenc¢at,---,a"). This
implies that global accessibility in Definition 9 implies the one in Definition 3, by
letting 7° € (0, &7,

Next, we show that the converse is true. K¥tbe a globally accessible set
in the sense of Definition 3. Pick* > 0 as stated in Definition 3, and piak
arbitrarily. Letu be such thagi(w) = 1— T andu(&) = m for eachd # w.
SinceQ* is globally accessible, we can choose an action sequ@ice - ,a'")

and a beliefi whose support is included @* such that

Pr(uT+l:ﬂ|“7a17'”7aT)Z . (12)

21The reason is as follows. From Bayes’ ruje! *1(@) > 0 only if Pr(y%,--- ,y" @™t =
@|@,al,---,a") > 0 for somed with (@) > 0. But clause (i) asserts that the inequality does
not hold for allé € Q and&@ ¢ Q*.
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Let (y%,---,y") be the signal sequence which induces the posterior bglief
given the initial priory and the action sequenca’,---,a"). Such a signal se-
quence may not be unique, so ¥tbe the set of these signal sequences. Then
(12) implies that

Z Pr(ylv"'7yT’u7a17"'7aT)Zn*‘

Arranging,

Z .Z u((Z))Pr(yl,---,yT|(I),a1,---,aT)2n’k.
(yL,- yT)eYT WEQ

Pluggingu (&) = 2(|g|11) andy 1 . yryeyr PIYL, -, yT[@,at, - ,aT) < linto
this inequality,

Il(w) Pr(ylv' e 7yT‘w7a17' o 7aT)+ - 2 m
(yl‘yl.”yT)e?T
so that
T
N(w) Pr(y17"' 7yT|w7a17"' 7aT) > ?

(y17~~-,yT)e\?T
Hence there is somg?,---,y") € YT which can happen with positive probability
given the initial statew and the action sequencal,---,a’). Obviously this
sequencéy’,--- ,y") satisfies clause (i) in Definition 9. Also it satisfies clause
(i) in Definition 9, since(y*, --- ,y") induces the posterior beligfwhose support
is Q*, given the initial prior whose support is the whole spa@e Sincew can
be arbitrarily chosen, the proof is completed.

E.4 Proof of Lemma7

By the definition of global accessibility, {fw} is globally accessible, any superset
Q* DO {w} is globally accessible. So it is sufficient to show thdtf} is transient,
then any supers&* D {w} is globally accessible or transient.

To prove this, take a transient §eb} and a supers@** O {w}. Suppose that
Q** is not globally accessible. In what follows, we will show that it is transient.
Take a strategg € S* arbitrarily. TakeQ* € &, T, and(y?,---,y"), as stated in
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Definition 10. Suppose that the initial belief iswith the supporQ**, and that
players plays. Then, sinceu puts a positive probability ow, the signal sequence
(y},---,y") realizes with positive probability and the support of the posterior be-
lief u" 1 must be a supers&** of Q*. SinceQ* is globally accessible, so is the
supersef)***. This shows tha@** is transient, as can be arbitrary.

E.5 Proof of Lemma 8
Sets= s as in the proof of Lemma 5. Then from Lemma 27 and (11), we obtain

1-97

ol x
5T ClQ|+(1-3*")C|Q|.

A VH(5,87) — A VH (8, )| <

Hence the result holds.

E.6 Proof of Lemma9

TakeA, u, ande > O arbitrarily. Letd € (0,1) be such that

max A-v—limsup max A-v| < E, (13)
VEVH(J) 5—1 VEVH(d) 2
and such that there & with
max A-v—A-VA(3,s") < (14)
VEVH(3) 2

for all fi. (The existence of suahis guaranteed by Lemma 8.) It suffices to show
that
limsup max A-v— max A-v<eg (15)
5—1 VEVH(d) veVH(9)
forall 6 € (3,1). -
Take 6 € (8,1) arbitrarily, and letp = g. Consider the following strategy
profile s*: Plays* until the “random termination period”such that > p and
Z' < pforall T <t. After the random termination peridd play s* once again

from periodt + 1, until the next random termination period, and so on. Intuitively,
players revise their play with probability-1p in each period.
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Let u* € argmiry A ~v’7(5,§**). Suppose that*™ is played in the stochastic
game with initial prioru™ and discount factod. Then the corresponding score is

IJ*,S*]

+(1-p) Zpt LSEA (5, 57) |, s ]

[0e]

A-vH(8,87) =(1-8)E [Z(D&t_l)\ g% ()
t

wherep (h') denotes the posterior belief at the beginning of petied. given the
initial prior u* and the past historly'. Note that

[Z(F@t 'A-g (@)

Hence we have

¢ /\~v“*(5,s*)
K 1-pd

" 1-9)
(B =20y
A-VvE(5,57) 1—p5)\

+(1-p) Zpt LSEA - T(5,5) |, 8.

V(3,87

Sinceu* minimizesA - v (3,s**), we obtain

. 1-9) - > .
LM Aok >( LyM * . t—1sty U ok
AV (0,87) > 1—p5)\ Vi (8,8")+(1 p)tz protA - vH (5,57)

1-p)o .
e ( yH ok
1—p5)\ A (5’S)+—1—p5 A v (9,87).

Arranging,
AV (8,57) > A v (3,s).
Then from (13) and (14), we have

A -V (3,8%) > limsup max A -v—¢.
51 VEV®(d)

This implies (15), since we have

max A-v>A-VH(3,s%) > A v (5,57).
VeVH(3)
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E.7 Proof of Lemma 10

Note that lims_,; maxcyus)A - v is continuous with respect t4. Note also
that {max,cyu () A - V}(s,y) IS €qui-Lipschitz continuous with respectAo since
VH(9) is included in the bounded seti|[—3;, ;] for all § andu. Hence, for
eachA, there is an open skt C A containingA such that

lim max A-v—Ilim max A-v|< £ (16)
5—1veVH(d) d—1veVH(J) 3
forall A € U, andu, and such that
~ €
max A-v— max A-v| < - (17)
VEVH(J) VEVH(D) 3

for all A € U,, 0 € (0,1), andu. The family of open set$U, }, A covers the
compact sel\, so there is a finite subcovéU, } ,ca+. Since the sef* C Ais a
finite set of directions\, there isd € (0, 1) such that

&
< =

im max A-v— max A-v 3

5—1veVH(3) VEVH(3)

forall A € A*, € (8,1), andu. Plugging (16) and (17) into this, we obtain

im max A-v— max A-v
d—1veVH(d) VEVH ()

< E.

forall A € A, 5 € (8,1), andp, as desired.

E.8 Proof of Lemma 11

Pick a transient se®@* arbitrarily. To prove the lemma, suppose not so that there
is a pure strategy profilee S* and a beliefu whose support i9* such that

Pr(X(Q*|u,s) < o) =1. (18)

Pick suchs € S and .

Suppose that the initial prior ig and players plag. SinceQ* is transient,
there is a natural numb@rand a signal sequen¢g', - - - ,.y" ) with the following
properties:
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(i) The probability of the signal sequengg, - - - ,.y") givenu andsis positive.

(i) The support of the posterior belief has not yet returne@to that is, for
eacht < T, the support of the posterior beligfgiven the initial prioru, the
strategy profiles, and the signal realizatiofy', - - - , .y!) is notQ”.

(iii) The support of the posterior belief givam, s, and(y?,---,.y") is globally
accessible.

The existence of a signal sequence which satisfies (i) and (iii) is obvious,&ince

is transient. To see that there is a signal sequence which satisfies all three proper-
ties simultaneously, suppose not so that all signal sequences with (i) and (iii) do
not satisfy (ii). That is, given that the strategy profles played, the support of

the posterior belief must return @* before it reaches a globally accessible set.
Assume that the initial prior ig, and consider the following strategy profge ~

¢ Play the strategy profils until the support of the posterior belief returns to
Q*.

e Once the support returns ", then play the profile again, until the sup-
port of the posterior belief returns fo* next time.

e And so on.

By the construction, if the initial prior igt and players plag, the support of the
posterior belief cannot reach a globally accessible set. This contradicts the fact
that the sefd* is transient. Hence there must be a signal sequence which satisfies
(i), (ii), and (iii) simultaneously. Take such a signal sequegyée -- ,y"), and let

Q** be the support of the posterior belief after this signal sequences| ety

be the continuation strategy profile aftgt, --- ,y") induced bys. Note that this

is well-defined, sincsis a pure strategy profile. Since the sequefye --,y")
satisfies (ii) and since (18) holds, if the support of the current beli&fsand
players plays|(y1,_.,,yT) in the continuation game, then the support will re&h

with probability one. That is, for all whose support i**, we have

Pr(X(Q*|[1,S| (y17,,,7yT)) < 00) =1.
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This in turn implies that for eact € Q**, there is a natural numbatr, an action
sequenced’,---,a"), and a signal sequen¢g',--- ,y") such that

Pr(yl7"'7y |6:)7 Al?"'7é~T)>o (19)
and such that
Py, 97, @ et &L - aT) =0 (20)

for all w! € Q™ andw'+1 ¢ Q*.

Pick w arbitrarily. From (iii), the seQ0** is globally accessible, and hence we
can choose a natural number< 49, an action sequend@’, - -- ,éf), a signal
sequencgy’, - - ,Vf), and a statév such that

PrL, - 97w T = Djw, &, &) > 0 (21)
and such that
PrL, 5, el &L &) =0 (22)

for all w! € Q and W'+ ¢ Q**. Given this®, chooseT, (aL,--,&"), and
(y},---,y") so that (19) and (20) hold. Now, consider the action sequence

a=(&, .. .44, ..4a)
and the signal sequence
=@ 9990,
Then from (19) and (21), we have
Pr(y|w, a) > 0.
Also, from (20) and (22), we have
Pr(y, wf+f+1]wl, a)=0

for all w! € Q andw' +T+1 ¢ Q*. This shows that the sequenceandy satisfy

(i) and (ii) in Definition 9 forw. Since sucha andy exist for eachw € Q, the
setQ* is globally accessible. (The length of the action sequenalkove may be
greater than #/, but as discussed in footnote 13, we can always find a sequence
with lengthT < 4/2) However this is a contradiction, as the §gtis transient.
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E.9 Proof of Lemma 12

Fix 6. For a given strategg_; and a priory, let v'(s_;) denote playei’s best
possible payoff; that is, let!'(s_i) = maxeg V' (5,5,5-i). As the following
lemma shows, this payoff functiori’i‘(s_i) Is convex with respect ta. The proof
is very similar to Lemma 21 and hence omitted.

Lemma 28. For each s, v;“(s_i) is convex with respect tp.

Let s* denote the minimax strategy profile given the initial pfiorFor each
u, letv(s) = max,]eAQvi’](s‘ii) be the maximal value of the convex function
V(). Let p* € argmaxepaWi(s). That is,vi(s")) is the maximal value
when we consider a series of the convex functipr§(s",)} jcaq. Sincevk (s))
IS convey, it is maximized whep is an extreme point. Leb denote this extreme
point that is,v®(s",) > v¥ (&) for all p. (This w denotes the prior in which
players believe that the initial statedsfor sure.)

Take a smallh > 0, and letu,; be the perturbation of the prigr* such that
Uy =(1—n)u*+n (ﬁ, S ,|—§12|). Note thaty, assigns at least probability on
each state.

Let ZH be the set of all (possibly mixed) action profiles which is chosen in
period one by some minimax strategies associated with the initial pri¢c* is
a set because there can be multiple minimax strategy associateg .vitlhen a
standard argument shows ttt is upper hemi-continuous. This, together with

the fact thats‘ii is Markov, implies that without loss of generality we can assume
thats‘f; ands’” '} are “close” whem is small. (This is a loose statement because we
do not explain how to measure the distance between two strategies.) Accordingly
we have the following lemma; the proof is standard and hence omitted.

Lemma 29. For any é € (0,1) and e > 0, there isfp > 0 such that for any] €

©.m), * *
v - ()

<E.
By lettinge = 1— 9, this implies that for any € (0,1), there isnf > 0 such that
foranyn € (0,7m),

w(e) - <1-. (23)
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In what follows, we fixn so that (23) holds. Let" be playeri’s best reply
agalnss given the initial priorw. Since the game is strongly connected, there
is a natural numbeF and a histonh! such that

e The historyh™ happens with probability at Iea(ﬁ%)T, given the initial state
w and the profile(q*,s’f’;), and

e The support of the posterior induced by the initial statand the history
hT is identical with that induced by the initial prigry; and the histor' .

Pick suchT andh'. (Here, the minimum probability%)T comes from the fact
that clause (ii) in the definition of strong connectedness considers “all” strategy
profiless.) Then Ietu(hﬂu;) be the posterior in period@ + 1 given that the
initial prior is p* and the history ish'. Similarly, let u(h"|w) be the posterior
given the initial priorw. By the definition o', the supports of these two beliefs
are the same; l€2* denote this support. L& = ZQ(Q)T and letC = (‘%‘)T. The
following lemma shows that playés continuation payoff induced by the initial
statew, the profile(s’, s, ) and the historn” is close to the value®(s",).

Lemma 30. For any 9,

x 1-067 %
KO | < Spc(1-8)C.

( ")

Since 5” r=9" , this implies

* * - T
‘vico<su_)_ViH(thw)(S’igthlln))‘S 55 C+(1-5)C.

Proof. Note that

V() =(1- 5)Zat-lE[gﬁ<at>|w,s*,s‘i?1

t=

* h
+38" S PriT w5, SO .
hTeHT

Since(1—8) 31, o' 1E[g¢ (a!)|w, 5 < (1—3T)g,

() < (1-8T)g+ 8T Y PR |5 SV (),
hl
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From (23) andsi(s",) > v “*’)(s_ﬁ |7 ), we know that

vf““”‘*”(é,s’i’? i) <V + (1) (24)
forallhT e HT. Plugging this into the above inequality,
v(dh) <(1-8T)g+ 87 Pr(hT .57, D™ ()
+87(1-PrinTw, s, ) {w(e) + (1-8)}.
Since (24) holds and H1IT|w,s{k,s‘_1’?) > (2T,

N — T
V() <(1- 8T)g+ 8 (,—,’1,) 0TI ()
T

ry {1_ (,—Z) }{v{”(s‘ﬁ)ﬂl—é)}.

Subtracting{l—6T(%)T}va(s’i’l) ST(I)T(1-68)— 5T(E)TVH(hTIw)(Sﬁq 1)
from both sides,

m\' u,, (hT o) , 45
o () {eeha-o - )
< (1-8")(@- W) +87(1-5).
Dividing both sides by (;1)T,
V(L) 4+ (1-8) - “""< i)
_ AT (g ") (1 5)(\Ar)

T T

"7 A

By the definition ofu*, the left-hand side is positive. Note also tkzﬁ(s '7 > -0
Hence the result follows. Q.E.D.

(G-

(QI

* Tl ¥ AT 1—6T
o) I < ALEZ 2 O

:II
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The second statement in the above lemma ensures that plsyeaximal

T
payoff given the initial prioru(h"|w) and the opponents’ strateg;ﬁ k) IS
close to the valug (s‘u ). The next lemma shows that the same is true even if the

initial prior p(h'|w) is replaced withi € Q*. LetC’ = —T andC' = 7—%—

Lemma 31. For each® € QF,

o, (T | 1-6"
w(eh) - ) < 2

C' +(1-96)C

Proof. Pick an arbitraryo € Q*. Then we have

vy(hT|m)(su(hT|uﬁ)>

= S HT )BS85 . )

weQ

< u(h|0) [P, |, " ) 4 (1 u(hﬁw)[a)])vms‘_"{).

T, %
Here the equality follows from' hT'“”(s‘i(h |””)) #(h ') (8,5 |r,S " Iki) ),

and the inequality from? (3,5, &' ") < Vi(S’ii)- Arranging,
5 i u(h? * T BT |
(T 60)[6)(w(s) VP8, 1) ) < et 1T

The term in the parenthesis in the left-hand side is non-negative. Similarly, the
right-hand side is non-negative. Hence

HCARGRICHED
—i

() —VP(3,5 .S thun))‘ =

N H(hT[w)[&]
Usingu(h™|w)[@] > 7' and Lemma 30,
. T 1-97 ~
‘Vi(s“ ) V(8,8 |y & '“”))' < =57 C+(1-9)C. (25)
~ U *
Sincevi‘”(s‘igh ‘“”)) is at leas¥® (3,5 |7, S W”)) but at most;(s")), the result
follows. Q.E.D.

The next lemma shows that the same result holds for all initial priathose
support isQ*. The proof is identical with that of Lemma 24 and hence omitted.
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Lemma 32. For eachyu such thatu (@) = 0 for all & ¢ Q*,

1-57
5T

C'+(1-9)C.

‘m(s“?) —v!l(s“?“”“ﬁ'))‘ <

Letting u = u(hT|u;‘,), the above lemma implies that the minimax payoff
given the initial priorp(h" |Uy) is close to the valug (s‘_‘?); that is,

S“ Vﬂ hTW hT“n))‘ < 1 51'5 C + (1_5)6/‘

Now let It be the prior which maximizes the minimax payoff. Note that such a
maximizer exists, because playtsrpayoffvi“(é,s) is continuous with respect to

p and so is the minimax payojf‘(é). By the definition oft, the minimax payoff
given[i is at least the minimax payoff given the prip(hT|u,7) and at most the
valueV (s“ ). Then from the above inequality, we obtain the following lemma,
which says that the minimax payoff givenis also close to the valuﬁ(s“ B

Lemma 33. We have

1-67

S T

Pick T > 0 such that for each robustly globally accessible g&tsatisfies
the condition stated in the definition of robust global accessibility, and such that
for each strongly transient set} satisfies the condition stated in the definition of
strong transience.

Let u be the prior which minimizes the minimax payoff, anddebe the sup-
port of . The sefQ is either robustly globally accessible or strongly transient. If
Q is strongly transient, then there is a robustly globally accessibl@Set nat-
ural numbefT, and a histor)hf such that the histortqf happens with probability
at leastrr* given the initial priorp and the profilest, and such that the support of
the posterior in period + 1 induced by the initial priop and the histor;hT~ is
Q**. Pick suchQ™, T, andhf, and letu** be the posterior induced t;_yandhf.

If Q is robustly globally accessible, then €t* = Q, T = 0, andu** = u.

The following lemma shows that the minimax payoffs fpandu** are close.
LetC’ = 2 B

v -V < C'+(1-0)C.

70



Lemma 34. We have

1-5"
5'f

W) )| <

c”.

Proof. When the sef is robustly globally accessible, the proof is obvious. When
Q is strongly transient, the proof is identical with that of Lemma 22. Replace
A -v@(5,59) in Lemma 22 withv(s5), A - vHO YD) (5 SH-Y)) with A -
Ve9(8,s%), and(yL, - ,yT) with hT, respectively. Q.E.D.

SinceQ** is robustly globally accessible, for any initial prigy there is an ac-
tion sequence_i(u) = (at;(u), - ,a‘l'?‘ (¢)) such that for any playeis strategy
s, there is a natural numbar < 419l such that aftell periods, the support of the
posterior is equal t&** with probability at leastt*. Note also that this posterior

belief puts at leasfr* on each statey € Q**, as the following lemma shows.

Lemma 35. If a subsetQ** is robustly globally accessible, then therers >
0 such that for any initial prioru and for any i, there is an action sequence
(al,,--- ,a‘l‘?‘) such that for any player i's strategy, shere is a natural number

T < 419 and a belieffi such that
Pr(“TJrl = ﬁ|“7ala e 7aT> = m

and such thafi(w) > |—é|ﬁ4‘m for all w € Q** andfi(w) = 0 for other w.

Proof. Like global accessibility, there is an alternative definition of robust global
accessibility; a se@** is robustly globally accessible if for each statec Q, there

is an action sequenda’;, - -- ,a‘l‘?‘) such that for ang, there is a natural number

T < 419 and a signal sequenc¢g',- - - ,y") such that the following properties are
satisfied:

() Ifthe initial state isw, playeri playss, and the opponents playfi e ,aIi)'
then the sequendg?, --- ,y") realizes with positive probability.

(i) If player i playss, the opponents pIaYa{i,--- ,aL), and the signal se-
quencelyt, ---,y") realizes, then the state in peridd- 1 must be in the set
Q**, regardless of the initial state (possiblyd # w).
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(i) If the initial state isw, playeri playss;, the opponents plagal;, - ,aT;),

and the signal sequen¢g', --- ,y") realizes, then the support of the belief
in periodT + 1 is the seQ)*.

To prove the lemma, fix an arbitrary pripr. Pick w such thatu(w) > ﬁ and

then chooséal , - -- ,a‘l‘?') as in the above definition. Then for eaghchoose
T and (y%,---,y") as in the above definition. Lei be the posterior belief in
periodT 4 1 given the initial prioru, playeri’s strategys, the opponents’ play
(al;,---,a’;), and the signal sequentg,---,y"). From (ii), fi(w) = O for other

w. Also from (iii), fi(w) > ﬁﬁ"’ml for all w e Q**. Q.E.D.

Now assume that the initial prior |$ and players-i play the following strat-
egy s: Let A** denote the set of beliefg such thatu(w) > ﬁﬂﬁ“‘m for all
w € Q" andu(w) = 0 for otherc.

o et u(l) =M.

e Play the action sequenee;(u'V) for the first 4% periods, unless the pos-
terior belief reaches the sat*.

e If the posterior belief satisfieg! € A** in some period < 42 + 1, then
stop playinga_i (1)) and switch the play immediately 8 in the rest of
the game.

e If not, play the action sequenee.i(u?) for the next £ periods. where
1@ is the posterior belief in period9 + 1.

e If the posterior belief satisfigs! € A** in some period < 2-4/9/ 41, then
switch the play immediately ts‘i?* in the rest of the game.

e And so on.

Let viﬁ(s*_*i) be playeri’'s payoff when the initial prior igt, the opponents play

s, and player plays a best reply. Note that after the switchsﬁé*, player

i's continuation payoff is equal tq“(s‘_‘?) wherepu is the posterior belief when

the switch happens. Since this switch eventually happens with probability one,
the overall payoffviﬁ(siﬁ) cannot be significantly greater than the valtiée =

ok
i

max; cper vi“(s‘_’ ). Formally, we have the following lemma.
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Lemma 36. V() < vi* + (1- 6*7)2g.

Proof. The proof is very similar to that of Lemma 25. Lgtdenote the probabil-
ity that the switch tas‘iI does not happen until the end of period_et p® = 1.
Then we have

wist) < 3 8 et (-t )
t=

Recall that the length of the action sequeacg() is at most £ for each
[, and that the probability that the action sequeacg 1) does not induce the
switch tos* is at most - it*. Hence we have

pn4‘Q‘+k < (1_ n*)n

for eachn = 0,1,--- andk € {0,---,4/% —1}. This inequality, together with
g > v, implies that

™ g (1 p™T N < (1 )G {1 (1)

for eachn=0,1,--- andk € {0,---,4/% —1}. Plugging this inequality into the
first one, we obtain
00 4‘Q| 1 7-[* n—1

sn-140+k-1 | (1-T0)"g

fenza-953 5 - -y

Then as in the proof of Lemma 25, the standard algebra shows

(1-5%")g 34 .

ok
wsh) < 1—(1— ) 3%° 1-(1—m)54'9‘\f‘k '

549 11

Since o =1————"—5,wehave
1-(1-m)o% 1-(1-m)o%
- 1- 547
H 7 * *
Vi (S—i>§\ﬁi< +1_(l_n_*)54\g\(g_\fik )

Since 1- (1— n*)64‘9' >1—(1-m")=m andv;* > —g, the result follows.
Q.E.D.
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From Lemma 36 and the fact thaf(si*}) is at least the minimax payoff

vF ("), we have
W) < vt +(1-6"")2g
This, together with Lemma 33, implies that
1-9o7
o7

v <Vt (1-5*")2g+ C'+(1-8)C.

On the other hand, by the definition, we know ti#gt < v (s‘j). Hence

o7 = 419
sC+(1-8)C +(1-5"")2g.

w() v

<
Let I be a solution to Mgy« V' (). The inequality here says that playir
best possible payoff given the initial prigr and the opponents’ strategﬁg* IS
close to the valug; (s‘_’?). That is,
1-87
The following lemma shows that the same result holds even if we replace the

initial prior fI with & € Q**. LetC” = % C = % andC = ijlg‘

C'+(1-6)¢ +(1-5*")20.

Lemma 37. For any @ € Q**,

* ~. sk — T N ~
vi(sh) v )| < - 5T C”+(1-8)C" +(1-5%"¢.
~ T, %
Proof. The proof is very similar to that of Lemma 31. Replaé'%{s‘_lgh lun)) in
G * | {] *k
Lemma 31 withv@(s"; ), vt (&7 7)) with of (5. QE.D.

The next lemma shows that the same result holds for all initial priashose
support isQ**. The proof is identical with that of Lemma 24 and hence omitted.

Lemma 38. For any u with p(é) = 0 with @ ¢ Q**,

T

(Sli|) < or

*

vi(st) — v

C"+(1-8)E" +(1—5*"C.
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Letting u = pu**, the above lemma implies that the minimax payoff given the
initial prior u** is close tov; (sﬂ?). (More precisely, the difference between the two
valuesis of order - 5 ) Then from Lemma 34, we can conclude that the minimal

minimax payoffvH ) is also close tcm(s“ ). This, together with Lemma 33,
implies clause (i).
To prove clause (ii), lepu™ = (ﬁ,--- ,ﬁ). The discussion above shows

that the difference betweean(s";) and the minimax payofé" (s*.") is of or-

der 1—- 6. Then as in the proof of Lemma 37, we can show that the difference
betweerv, (s“ ) and the payofﬁ/‘*’(s“ ") is of order 1— & for all w, and that the
difference between.(s‘f,) and the payoff/®(s*") is of order 1- 5 for all w.

(The derivation of the latter result is identical with the one for the derivation of
(25).) Then as in Lemma 38, we can prove that bétfs”, ) andv¥(s#"") are
close tovi(s,) for eachy. Since the minimax payoff (s",) is close tov(s")

for eachy, clause (ii) holds by setting= s

E.10 Proof of Lemma 13

Very similar to that of Lemma 9. Here we use Lemma 12 instead of Lemma 8.

E.11 Proof of Lemma 14

Take an arbitrary singleton sétv} which is not asymptotically accessible. It is
sufficient to show that this s¢tv} is asymptotically transient.

Take an arbitrary pure strategye S°. Suppose that the initial prior assigns
probability one onw and that the strategyis played. Take an arbitrary history
R2"* with length 221+ which can happen with positive probability. Given this
history " and the initial stateo, we can compute the posterior beljgf for
each period € {1,---,2°+1 41}, Let Q! be the support of the beligi® in
periodt. SinceQ is finite, there must bé andf # t such thatQ! = Qf. Pick
sucht andf, and without loss of generality, assume that 212 andf < 2/9l+1,
Let (&%, ,éf—t) be the action sequence chosen from petiad periodf — 1
according to the history@'m“. Also, letQ* = Qt = Qf. Since signals do not
reveal the state, if the support of the initial prior( and players play the se-
quence(al,- - ,éf*‘) repeatedly, then the support of the posterior belief after pe-
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riod n(f —t) is also in the se2* for each natural number, regardless of the
realized signal sequence.

Recall that our goal is to prove asymptotic transiencq @¥. For this, it
is sufficient to show that the s€X* is asymptotically accessible; that is, given
any initial prior u, there is an action sequence and a signal sequence so that the
posterior belief puts probability at least-le on Q*. To prove this, the following
two lemmas are useful. The first lemma shows that thege>i9 such that given
any initial prior u, there is an action sequence and a signal sequence so that the
posterior belief puts probability at leagion Q*. Then the second lemma shows
that from such a belief (i.e., a belief which puts probability at lepsh Q*), we
can reach some posterior belief which puts probability at least bn Q*, by
letting players playa?, - -- ,éf*t) repeatedly.

Lemma 39. There is g> 0 such that for each initial priou, there is a natural
number T< |Q| and an action sequendd?, --- ,a"),

=HQ
’ 51 1 Tl" |

Pr(IJT—HLZ I“I?a?"'?a)zm

T

for somefl with S g0+ fI(&0) > Q.

Proof. Since the state evolution is irreducible, for each initial state Q, there is
a natural numbeT < |Q|, an action sequendd!,--- ,&"), and a signal sequence
(y%,---,y") such that
Pr(y17 e ayT; wT+1|d); él; t aéT) 2 ﬁT-
Wl tleQx
That is, if the initial state igo and players playal,---,a"), then the state in
periodT + 1 can be in the se&®* with positive probability. Let

q(d)) — sz+l€Q* Pr(ylﬂ e ayT,wT+1|d), al, te ,aT)
Q| maxpeq Pr(y?:, -+ yT|@, &, -, &T)

Here we write( @), because the right-hand side depends on the choi@ of - ,&")
and (y*,---,y"), which in turn depends on the choice @ By the definition,
q(@) > 0 for eachd. Letq = mingcq q(&) > 0.

In what follows, we will show that thig| satisfies the property stated in the

lemma. Picku arbitrarily, and then picko with () > ﬁ arbitrarily. Choose
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T, (&',---,8"), and(y,---,y") as stated above. Lgt be the posterior belief
after(&at,---,a") and(y!,---,y") given the initial prioru. Then
[1(&)) _ ZwleQ Zw”leQ* U(wl) Pr(yla T ayTa wT+1‘wlv 5'17 T 7éT)
weQ* ZwleQ I,l(&)l) Pr(yla'“ ayT‘wlvalv"' 7§T)
> Z(UT+16Q* U(Cb) Pr(yl, e 7yT7 wT+1‘d), él, T 751-)
N ZwleQ U(wl) Pr(yl7"' 7yT‘w17é17"' JaT)
>q(®) = q.

Also, the above beliefi realizes with probability

1 T 1 T o 1 T 51 T TTT ﬁQl
Pr(y7ay ‘uaaava)zu(w)Pr(yaay |waaavé)2mzﬁ7
as desired. Q.E.D.

To simplify the notation, le&(n) be the action sequence which consists of
cycles of(al,--- &), that s,

an) = (at,...,atat,....at....a. ... a&".

Lemma 40. For eache > 0 and g> 0, there is a natural number n ard** > 0
such that for each initial prionu with ¥ gcq+ (@) > q, there is some beligi
With ¥ geq+ t(@) > 1— € such that

Pr(u" Y = 1|y, a(n)) > .

Proof. If Q* is the whole state space, the result holds obviously. So we assume
that Q* is a proper subset d. With an abuse of notation, |€tQ* be the set

of all priors u € AQ which puts probability one o@*; i.e., AQ* is the set of

all u such thaty o+ H(@) = 1. Likewise, letA(Q\ Q*) be the set of all priors

u € AQ which puts probability zero of*.

Let Pr(-|ew,&l,--- &) be the probability distribution ofy?,---,y*1) in-
duced by the initial statey and the action sequen¢é, - -- ,éf“). Similarly, let
Pr(-|u,at,--- &) be the distribution when the initial prior js. Since the signal
distributions{ i¥(a)|w € Q} are linearly independent far= &, the distributions
{Pr(-|w,at,--- &) |w e Q} are also linearly independent. Hence the convex
hull of {Pr(-|w,&t,--- & Y)|w € Q*} and that of{Pr(-|w,&l, -, & Yw ¢ Q*}
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do not intersect. Lex > 0 be the distance between these convex hulls. Then for
eachfl € AQ* andu € A(Q\Q"),

Pr[m. &t &Y~ Pri gL - 87| 2 k.

This implies that there i% € (0,1) such that for eacly € AQ* andp € A(Q\
Q*), there is a signal sequengg. - -,y 1) such that

Priyt, -y m Al a7 > Pyt -y Yt AT+ (26)

Pick such a numbeir € (0,1).
Chooses > 0 andq > 0O arbitrarily, and leth be a natural number such that

1 \" q 1—¢
> :
<1—fr) 1-q~ ¢ 7

Sinceir € (0,1), the existence af is guaranteed. In what follows, we will show
that thisn and** = (qi1)" satisfy the condition stated in the lemma.
Pick u such thaty gcq- H(@) > q, and letp € AQ* be such thajfi(w) =
U@ for eachw € Q* andfi(w) = 0 for w¢ Q. Likewise, letu € A(Q\ Q%)

Y ocor H(®)
be such thati(w) = % for eachw ¢ Q" andu(w) = 0 for w € Q*. Choose
(yh,--- ,yf‘t) so that (26) holds for thig andy. Let [i be the posterior belief in
periodf —t 4+ 1 when the initial prior isu, players playat, - - ,éf_t) and observe
(yh - Y.

By the definition ofQ*, if the initial state is in the se®* and players play
(at,--- ,éf‘t), then the state in periot—t + 1 must be in the se®*. (To see
this, suppose not and the state in periedt + 1 can bed ¢ Q* with positive
probability. Then, since signals do not reveal the current or next state, thd set
must contairdo, implying thatQ # Q*. Thisis a contradiction.) That is, we must

have

Pr(y17 T 7yf_t= wf_t+1|w17 5-17 T 7at~—t) =0 (28)
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for all w! € Q* andwi—t+1 ¢ Q*. Then we have

A ~

ZcbeQ* U(w)
> aea H(D)
 Yeten Yo ticg H@H P! - YL o et &L dY
o Y wleq Y oi-trign H(wb) Pr(yL, -yt o tH|ol &l ... &)
ZwleQ* 2 f-tHleqr U( 1) Pr(yl, yf_t wf_Hl‘wl él e éf_t)
T Seteo Y aitiigos H(WHPIYL, -y ot el &L AT
 Yetear Taitrico H(W PriyY - YL et gl dY
Yk Yof tiiggr M(WH PI(YL, -y et oot gt - a )
. S wleor Y wi-trieg H(@D) PriYY, -y L o ot &l 7éf—t)
S olear 3 of-tricq H(WH Pr(YL, -yt -t ot 8L, ... &t
_ Zw1€Q*u(w1) Pr(y s 7yt t|w17a1="" 7at t)
 Seten H(@YHPIYL -yt ol AL &)
Py Y AL Y S aeq (@)
Pr(yt, - Yt 8t &Y S geor H(®)
Here, the second equality comes from (28). Sifice- - ,yf*t) satisfies (26), we
have

Pr(yt, -y tm,al,-. & - 1
Pr(y?, - ,yf*t|g,é1,--~ ,étlt) = 1-7T
Applying this inequality to the previous one, we obtain
2 HeQr ﬁ((b) > 1 . 2 DeQr “((D)
Yago: H(Q) ~ 1-T0 3 ae0 H(D)
Sincel—};T > 1, this inequality implies that the likelihood &* induced by the
posterior beliefli is greater than the likelihood @* induced by the initial prior
u. Note also that such a posterior beljefrealizes with probability at leasj,
since (26) implies

Pr(y17 e 7yf_t“17é'17 e 7é'f_t) Z qpr(yl7 e 7yf_t|H7 élu e 7é'f_t) Z Qﬁ'

In sum, we have shown that given any initial prioevith 5 gcq« 1(60) > q, if
players play the action sequen@, - -- ,éf‘t), then with probability at leagiit,
the posterior belieﬂf*t+l satisfies

41 ~
Z eQ*Il @) T 1-T Jae M (00)
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Now suppose that we are in peribd-t + 1 and the posterior belie;ﬁf—t+1
satisfies (29). Note that (29) impli€S,cq- uf‘”l(w) > @, and hence we can
apply the above argument once again; that is, we can show that if players play the
action sequenc@’, - -- ,éf‘t) again for the next—t periods, then with probability
at leastyft, the posterior beligfi2®-1)+1 satisfies

Soca 2EV@) 1 S B@) ( 1 )2_ Soear H(@)

Yaeqr HEEVTH@) T 1-T Yapo H(0) ~ \1-T1)  Fao- M(D)
Iterating this argument, we can prove the following statement: Given that the
initial prior is , if players play the action sequena), then with probability at

leastr** = (qft)", the posterior beliefi"®-t+1 satisfies

ZcbeQ*IJn(f*t)H(Cb) S < 1 )n‘ oco H(©)
Y apqr HMEUHL(@) — ¥ o M(D)

Plugging (27) an Zegﬁ((wg > % into this,

This implies that the posterior belief puts probability at least 4 on Q*, as
desired. Q.E.D.

Fix € > 0 arbitrarily. Choose as stated in Lemma 39, and then chonsed
T as stated in Lemma 40. Then the above two lemmas ensure that given any
initial prior u, there is an action sequence with length< |Q| +n(f —t) such
that with probability at leastr™ = ﬁ%’f the posterior belief puts probability at
least 1— £ on Q*. Since the bound®| + n(f —t) and ** do not depend on the
initial prior p, this shows tha®©* is asymptotically accessible, and heree} is

asymptotically transient.

E.12 Proof of Lemma 15

Fix 0 andA. Lets* andw be as in the proof of Lemma 5. We first prove the
following lemma, which says that if two initial priogg and i are close, then the
corresponding scores are also close.
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Lemma 41. For anye € (0, i), 4, and i with maxpeq |H(®) — A(®)] < €,

}A VH(B,8) — A -v’](é,sﬁ)‘ < £9/Q).
Proof. Without loss of generality, assume thatv#(3,s4) > A -vA(3,%). Then

AVH(3,8) — A -vﬂ<5,sﬂ)) < (/\ VH(8, ) — A -vﬂ(a,sﬂ)‘

S H@AVIES)~ 5 R(@A -v5’<6,s“>‘

weQ weQ
< > Av9(5,87)[u(d) — fi(@)].
weQ
SinceA -v®(5,s?) < gand|u(®) — fi(@)| < &, the result follows. Q.E.D.

Since there are only finitely many subs@tsc Q, there isit* > 0 such that for
each asymptotically transief*, 7t* satisfies the condition stated in the definition
of asymptotic transience. Pick suh > 0.

Picke € (0, ﬁ) arbitrarily. Then there is a natural numbleandrr* > 0 such
that for each asymptotically accessilf}¢, T and rr* satisfy the condition stated
in the definition of asymptotically accessibility, and such that for each asymptoti-
cally transientQ*, T satisfies the condition stated in the definition of asymptotic
transience. Pick such andr* > 0.

Since the game is asymptotically connectgd} is either asymptotically ac-
cessible or asymptotically transient. When it is asymptotically transient, there is
an asymptotically accessible €t, a natural numbef* < T, and a signal se-
quence(y!,---,y"") such that if the initial state ie and players plag®, then
the signal sequendag?,---,y" ) appears with positive probability and the result-
ing posterior beliefu(y*,---,y"") satisfiesy gcq- H(y,---,y" )[@] > 1— € and
p(yt,---,y")[@] > 7" for all & € Q*. Take suchQ*, T*, and(y?,---,y" ). Let
n(yL,---,y"") be the probability that the signal sequer(g®,---,y" ) happens
given the initial stateo and the strategy profils®, and letu* = p(y*,---,y" ) be
the resulting posterior belief. Sin¢g!,---,y" ) is induced by the initial state
and the pure strategs?, we haverr(y*,--- ,y" ) > 7 .

When{w} is asymptotically accessible, 18 = {w}, T* =0, andu* € AQ
with p*(w) = 1.
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LetC(T) = ﬁ? andC(T) = %?. Since Lemma 22 holds, we have

ST 5T
1-9 C(T*)<l o

A-Vv2(3,8%) —A v (8,¢) < v <o

C(T). (30)

That is, the score with the initial prigr* is close to the maximal score, whéns
close to one. (Recall thdt andC(T) depends om but not ond.)

Note that the beliefi* approximates some belief whose suppofisthat is,
Y weqr W¥[@] > 1— €. Note also thap*[&] > 7* for all o € Q*. Hence there is a
belief i* whose support iQ* such thafli*[¢] > 71" for all & € Q*, and such that
fi* is e-close tou* in that maxyeq |U* (@) — fI* (@)| < €. Lemma 41 implies that
these two beliefgr* andi* induce similar scores, that is,

AV (8,8 = AV (8, < eg|Ql.

Plugging this into (30), we obtain the following lemma, which says that the score
with the initial prior fi* is close to the maximal score. Lsit=s".

Lemma 42. We have

1-957
o7
Recall that the support gi* is Q*. The next lemma shows that the strategy

profile s* approximates the maximal score even if the initial stat@ is Q*. Let

C(T
c=<0,

AVv2(8,8°) — A V' (5,5%)| <

C(T)+¢£9|Q|.

Lemma 43. For each® € QF,

1-6" . €g|Q|
sC+ .

. oy yw *
AVP(8,5%) — A VP(3,57)| < —

Proof. Very similar to that of Lemma 23. Specifically, replade v (,s*) in
the proof of Lemma 23 withh - v (5,s"). Use Lemma 42 instead of Lemma
22. Q.E.D.

The next lemma also shows that the strategy preafilgpproximates the max-
imal score for any initial state ig whose support iQ*. The proof is very similar
to that of Lemma 24 and hence omitted.
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Lemma 44. For eachyu such thatu (@) = 0 for all & ¢ Q*,

1-6" . £9|Q|
5T Ct =

The above lemma, together with Lemma 41, implies the following lemma: It
says that the strategy profig& approximates the maximal score for any initial
prior 4 which approximates some belief whose suppof?is

IA-Vv?(9,8%) —A V(3,8 <

Lemma 45. For eachp such thaty geq« H(@) > 1— &,

1-8" . 2¢7|Q
5T Ct—

. Y _ L yH o
A VO(8,59) — A VM (8,87)| < =

Let u** be such thap™ (w) = ﬁ for eachw. SinceQ* is asymptotically
accessible, for any initial priog, there is a natural numbér(u) < T and an
action sequenca(u) = (al(u),---,a' (W (u)) such that the probability that the
posterior beliefu ¥+ satisfiesy 5cq- uT W *1(&) > 1—¢is at leastr*. Lets™
be the following strategy profile:

o Letu® = .

Players play the action sequerag:?) for the firstT (uY) periods.

If the posterior beliefu(® satisfiesy zco- u? (@) > 1 — ¢, then players
play s in the continuation game.

If not, players playa(u(?) for the nextT (u(?) periods.

If the posterior beliefu(® satisfiesy zco- u® (@) > 1 — ¢, then players
play s in the continuation game.

e And so on.

LetC = %. The following lemma is a counterpart to Lemma 25, which shows
that the strategg™ can approximate the maximal score when the initial prior is
“**.

Lemma 46. We have

1-0o7 ~  2€7|Q]
1_ T — ~ . .
s C+(1-0)C+—

A V93,87~ A v (8,57)| <
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Proof. The proof is essentially the same as that of Lemma 25; we simply replace
4191 in the proof of Lemma 25 withl, and use Lemma 45 instead of Lemma
24, Q.E.D.

The next lemma extends the above one; it shows that the same result holds
regardless of the initial prigu.

Lemmad7. Forall ue AQ,

A V9(5,59) - A WH(5,87)| < & 5T5 ClQ| + (1— 8NE|Q| + ZE?LQ'Z
Proof. The proof is simply a combination of those of Lemmas 26 and 27. The
only difference is to use Lemma 46 instead of Lemma 25. Q.E.D.
From Lemma 47 and (11), we have
A -V2(3,5%) — A VK (8,94 < 1;T5TC|Q]+(1 sTEQ| + 282‘{?‘2

Note thatT and " depend ore but not ond andA. This in turn impliesC and
C depend ore but not ond andA. Note also thaft* does not depend og, J,
or A. Hence the above inequality implies that the left-hand side can be arbitrarily
small for allA, if we takee close to zero and then takeclose to one. This proves
clause (i).

The proof of clause (ii) is similar to that of Lemma 5.

E.13 Proof of Lemma 17

Fix 4, s, A, p, 8, andv as stated. Consider the gamgu, d, p,W) with a function
W such thawr(ht) =V for alli andh'; i.e., we consider the case in which players’
payoffs when the game terminates are constant. Let

~(1-9)E | 524(5p) g (&) ]

(1-p) 52, p1o '
Intuitively, we choose;in such a way that playeis expected payoff in the game
r(u,d,p,W) given the strategy profileis equal tov;; indeed, we have

~

Vi =

1-8)E| Y (po)ig? (@
(1-9) L;(p) g’ (a)

sl +1—p 'y ptot = v
P
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Also, letvi(a;) denote player’s payoff when she makes a one-shot deviatioa to
in period one.
Now letz! : H — RN be such that

Vi =Vi(a&)+(1-p)d EYn“<y|a,&i<h°>)ai<a,s_i(h"),y)
ye

for all g € A, and
A zl(a7y) =0

for alla€ A andy € Y. The first equation implies that playeis indifferent

over all actionsy in the first period of the gamE(, 8, p,W), if she can obtain

an additional “bonus paymentii(a, y) when the game terminates at the end of
period one. The second equation implies that the bonus payment w&@ioy)

is on the linear hyperplane tangentialko The existence of suctt comes from

the fact that actions are perfectly observable. The proof is very similar to that of
Lemmas 5.3 and 5.4 of FLM and hence omitted. Note also that for 2agre

can takeK > 0 such thatzl(a y)| < %K for all u, 8, andp; this is
becausev, —vi(a)| is at mostf%&g. (Note that the ternfl — p) 5>, pt =16
appears both i andv;(g), so that it cancels out when we compute the difference
Vi —Vi(&).)

Similarly, for eachht, we will specify a functiord*?! to provide appropriate
incentives in period + 1 of the gamé (u, &, p,W). For each historyit, letv;(h')
denote playei’s continuation payoff aftei' in the gaméd (u, 8, p, W) when play-
ers plays|it. Also letv;(h',a;) denote her continuation payoff when she makes a
one-shot deviation te; in the next period. Leti(h') represent the posterior belief
afterht. LetZ*!: H*1 — RN be such that

vi(h) = vi(h',a) + (1~ p)éy; ) (yla, s (H)A (N, (3, 5-1(H), )
(31)
for all ht anda; € A;, and
A2 (ay)) =0 (32)

for alla€ A andy € Y. To see the meaning of (31), suppose that now we are in
periodt + 1 of the gamé (i, &, p, W) and that the past history was (31) implies
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that player is indifferent over all actions in the current period if she can obtain
a bonus paymenzf“(h”l) when the game terminates at the end of petiod..
Also, (32) asserts that the bonus paym#nt(h*+1) is on the linear hyperplane
tangential toA . Note that for eacid, we can také&k > 0 such that

1-9 g
(1-pd)(1-p)d
for all h', 5, andp. Here we can choos€ uniformly in h', since actions are
observable and there are only finitely many pure action profiles.

Now we construct the continuation payoff functianLetw: H — R be such
that

Z7H(h)] <

(33)

wi(h) =¥ + Z(hY) (34)

for eachi, t > 1, andht. That is, we consider the continuation payoff functien
which gives the constant valug dnd the bonus paymedth') to playeri when
the game terminates at the end of periodThis continuation payoff function
makes player indifferent over all actions in each perivdregardless of the past
history. (Note that(h') does not influence playé&s incentive in earlier periods
f < t, since (31) implies that the expected valuezght) conditional onht~1 is
equal to zero for alht~! as long as playerdoes not deviate in periad) Also,
the resulting payoff vector ig. Therefore clause (i) follows.

By the definition ofvi, we have

Gy 1=0 .

Vi = Vi - p)5(vi (pd,s) —Vi). (35)
This, together with (32) and (34), proves clause (ii). Also, from (34) and (35), we
have

(1-p)d

v—w(h')| < [VH(pd,s) —v|+[Z ().

Then from (33),

~

1-90 K
(pa.9) v+ ).

(1-p)d

[v—w(h')] <

Sincev € V, we havev®(pd,s) —v| < 0. Hence, by lettind > lpr +3, we have
clause (iii).
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E.14 Proof of Lemma 18

Fix p, s_i, 4, 9, v, ands as stated. For eagh# i, letVj, vj(h'), andv;(h',a;) be
as in the proof of Lemma 17. Then for edchlet z‘jJrl : H*! — R be such that

vi(h') =vj(h',aj) +(1-p)d 2 ™ (ylaj,s-j(h)Z (N, (aj,5-j(h")),y))
ye

for all h andaj € Aj, and let
w;(h') =¥ +Z(h).

Then playerj’s incentive constraints are satisfied.

Now, consider player's continuation payoffv;. LetV; be as in the proof of
Lemma 17, and let

wi(h') =
for all ht. With this constant continuation payoff, playié&s incentive constraints
are satisfied becausgis a best reply tes_; given initial prior u and discount
factor pd. Hence clause (i) follows. From (35), we have
w(K) == s (4 (5.9 —v),

which proves clause (ii) follows. Also, lettir§ > g;, we haveK > |vi’“'(p5, S) — Vi
so that clause (iii) follows.

E.15 Proof of Lemma 19

Fix W as stated, and taleeso that thee-neighborhood oV is in the interior ol *.
Then from Lemma 10, there g such that the-neighborhood otV is included
in the feasible payoff s&t#(p) and such thay; — € > v;(p) for all i andv € W.
Then clauses (i) through (iii) hold.

E.16 Proof of Lemma 20

Fix W. Fix pe (0,1) and€ > 0, as stated in Lemma 19. (He@representg

in Lemma 19.) Applying Lemmas 17 and 18 to the strategy profiles specified in
Lemma 19, it follows that there i§ € (0, 1) such that for each, there isK) > 0

such that for each € (8,1), u, andv € W, there is a strategy profig , 5, and

a functionw,, 5 , such that
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() (Su2.5,:V) is enforced byw, 5., for (5, 1, )

(i) A-Wypgpu(h) <A-v— ﬁ:g;; for eacht andht, and

i) [v—wy, 54(N)| < 2=8LK, for eacht andht.
\A,0,H (1-p)o

IZ,\ . ..
s Then it follows from (ii) and (iii)

thatw\,m(;’u(ht) € Gy 2e k5 forallt andht. The rest of the proof is the same as
that of Lemma 8 of Fudenberg and Yamamoto (2011b).

Sete = ﬁ, and for each\, letK, =

Appendix F: Existence of Maximizers

Lemma 48. For each initial prior i, discount facto®, and s € S*;, player i's
best reply sc §' exists.

Proof. The formal proof is as follows. Pick, d, ands_j € S*;. With an abuse
of notation, leth' = (a’,y")}_, denote a history with lengthwithout informa-
tion about public randomization, and lét be the set of all functions (bounded
sequences) : H — R. For each functiorf € [®, letT f be a function such that

(T £)(h) = max| (L~ 50" (@, 5.1 (h)) + 55 y;s_mh‘)[a_i]nf‘(ht)(yla) f(h,ay)

wherefi(ht) is the posterior belief ofo! ™ given the initial priory and the history

h'. Note thatT is a mapping from® to itself, and that® with the sup norm is a
complete metric space. Alsbis monotonic, sincéT f)(u) < (T f)(u) for all u

if f(u) < f(u)forall u. MoreoverT is discounting, because lettiri§+c) () =
f(u) +c, the standard argument shows thdt +c)(u) < (T f)(u) + oc for all

. Then from Blackwell's theorem, the operaibris a contraction mapping and
thus has a unique fixed poirit. The corresponding action sequence is a best
reply tos_;. Q.E.D.

Lemma 49. max,cyu(s)A - v has a solution.
Proof. Identical with that of the previous lemma. Q.E.D.

Lemma 50. There is sj which solvesning ,css MaXses VH(8,9).
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Proof. The formal proof is as follows. Pick andd, and leth' andl® be as in the
proof of Lemma 48. For each functidne |*, let T f be a function such that

(TH)(h)= min max[(l—é)giﬂ(ht)(a;,a_i)qté

a_icxjzAA; g EA a_icA_

wherefi(h!) is the posterior belief ofo! ™ given the initial priory and the history
h'. Note thatT is a mapping fromi® to itself, and that® with the sup norm is a
complete metric space. Alsbis monotonic, because ff(ht) < f(ht) for all hf,
then we have

] . _

(Tf)(ht)ﬁgnegqx (1-06)g" (ay,a-i) + 0 ;y; " (yla)f(h,a,y)
fi(ht)

< max _(1—5)9 (a,0- +66L;Iy; y!a> {G# ,y)_

for all a_; andht, which implies(T f)(ht) < (T f)(ht) for all h. Moreover,T is
discounting as in the proof of Lemma 48. Then from Blackwell’s theorem, the
operatorT is a contraction mapping and thus has a unique fixed pointThe
corresponding action sequence is the minimger Q.E.D.

Appendix G: Comparison with Dutta (1995)

Dutta (1995) considers irreducible stochastic games and shows that the limit fea-
sible payoff set is invariant to the initial staté@ Clause (i) of Lemma 5 extends
his result to stochastic games with hidden states. As argued in the introduction,
our proof technique is substantially different from that of Dutta (1995), since we
need to deal with technical complications arising from infinitely many sfates

To highlight the difference, it may be helpful to explain the idea of Dutta
(1995). Assume thab is observable, and fix arbitrarily. From the principle of
optimality, the score must be attained by a Markov strai@gyQ — A, where
a*(w) denotes the action profile when the current stam.is8Vhen players play
this Markov strategy, the evolution of the statkis described by a Markov chain.
For simplicity, assume that the state transition function has a full suppdtien

22As Dutta (1995) shows, the full support assumption here can be replaced with irreducibility.
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it is immediate that the Markov chain is ergodic, i.e., the time-average of the state
converges to the unique invariant measure regardless of the initial state. Ergodicity
guarantees that the initial state does not influence players’ time-average payoffs,
which approximate their discounted payoffs &close to oné3 Hence the scores
are independent of the initial stadefor d close to one.

In our model, the score is achieved by a Markov stragyA\Q — A, where
the state space i5.Q rather tharQ. Such a Markov strategy induces a Markov
chain which governs the evolution of the beli€f so letP(-|u) € A(AQ) be the
distribution of the posterior beligi in the next period given the current beljef
Suppose that the Markov strategy is not constant, that i* induce different
action profiles for some different beligfsandfi. Then the distributiodP(-|u) of
the belief tomorrow is not continuous with respect to the current bgliett the
point in which the Markov strateggt” switches the action profile. This implies
that the Markov chain is not Felléf, and thus the standard probability theory
does not tell us if there is an invariant meastiteHence,a priori there is no
reason to expect ergodicity, and thus the proof idea of Dutta (1995), which relies
on ergodicity, is not applicable.

Appendix H: Assumption 4 of Hsu, Chuang, and Arapostathis (20

Hsu, Chuang, and Arapostathis (2006) claims that their Assumption 4 implies

their Assumption 2. However it is incorrect, as the following example shows.
Suppose that there is one player, two statesgnd wy), two actions & and

d), and three signalsy{, y2, andys). If the current state isn, anda is chosen,

(y1, 1) and (y2, wp) occur with probability%-%. The same thing happens if the

23This result follows from Abel’s theorem.

247 Markov chainP = (P(-|1))uenq is Feller if P(-|u) is continuous with respect tp. It is
well-known that a Markov chaif® has an invariant measure if it is Feller and the state space is
compact (Theorem 3.1.1 of Da Prato and Zabczyk (1996)). On the other hand, if a Markov chain
is not Feller (even iP(-|u) is discontinuous only at finitely maryy), it may not have an invariant
measure. For example, suppose that the state spiéjisu'*! = “7( if ut € (0,1], andut*t =1
if ut =0. We have discontinuity only at = 0, but there is no invariant measure.

25Even if the Markov chain has an invariant measure, there may be more than one invariant
measures; indeed, tl&oeblin condition which is often assumed for the uniqueness of invariant
measure, is not satisfied here. See Doob (1953) for more details. (The condition is stated as
“Hypothesis D.”)
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current state isp, andd’is chosen. Otherwisdys, w;) and(yz, wyp) occur with
probability %% Intuitively, y; shows that the next state 4g andy, shows that

the next state iss, while y3 is not informative about the next state. And as long

as the action matches the current state @éor w; andafor ay), the signalys

never happens so that the state is revealed each period. A stage-game payoff is O
if the current signal ig; ory,, and—1 if ys.

Suppose that the initial prior puts probability one@n The optimal policy
asks to choosein period one and any periddvith y*~1 = y4, and asks to choose
ain any periodt with y'=1 = y,. If this optimal policy is used, then it is easy
to verify that the support of the posterior is always a singleton set and thus their
Assumption 2 fails. On the other hand, their Assumption 4 holds by letag2.

This shows that Assumption 4 does not imply Assumption 2.

To fix this problem, the minimum with respect to an action sequence in As-
sumption 4 should be replaced with the minimum with respect to a strategy. The
modified version of Assumption 4 is more demanding than connectedness in this
paper.
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