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Abstract

We showed in McLean and Postlewaite (2014) that when agents are informationally
small, there exist small modi�cations to VCG mechanisms in interdependent value prob-
lems that restore incentive compatibility. This paper presents a two-stage mechanism that
similarly restores incentive compatibility. The �rst stage essentially elicits that part of
the agents�private information that induces interdependence and reveals it to all agents,
transforming the interdependent value problem into a private value problem. The second
stage is a VCG mechanism for the now private value problem. Agents typically need to
transmit substantially less information in the two stage mechanism than would be neces-
sary for a single stage mechanism. Lastly, the �rst stage that elicits the part of the agents�
private information that induces interdependence can be used to transform certain other
interdependent value problems into private value problems.

Keywords: Auctions, Incentive Compatibility, Mechanism Design, Interdependent Val-
ues, Ex Post Incentive Compatibility, Informational Size

JEL Classi�cations: C70, D44, D60, D82

1. Introduction

The Vickrey-Clarke-Groves mechanism (hereafter VCG) for private values environments is a
classic example of a mechanism for which truthful revelation is ex post incentive compatible. It
is well-known, however, that truthful revelation is generally no longer incentive compatible when
we move from a private values environment to an interdependent values environment. In McLean
and Postlewaite (2014) (henceforth MP (2014)) we showed that, when agents are informationally
small in the sense of McLean and Postlewaite (2002), there exists a modi�cation of a generalized
VCG mechanism using small additional transfers that restores incentive compatibility. This
paper presents an alternative, two-stage, mechanism that accomplishes the same goal �restoring
incentive compatibility for interdependent value problems. The advantage of the two stage
mechanism relative to a single stage mechanism is that, for typical problems, agents need to
transmit substantially less information.
We will explain intuitively the nature of the savings in transmitted information. Consider a

problem in which there is uncertainty about the state of nature. An agent�s private information

�We thank the National Science Foundation for �nancial support. We thank Rakesh Vohra for helpful con-
versations and Zehao Hu for excellent proofreading.



consists of a state dependent payo¤ function and a signal correlated with the state. A single
stage mechanism that delivers an e¢ cient outcome for any realization of agents� types must
do two things. First, it must elicit the information agents have about the state of nature to
determine the posterior probability distribution given that information. Second, it must elicit
agents�privately known state dependent payo¤s. A two stage mechanism can separate the two
tasks. First, elicit the information about the state of nature, but relay to agents the posterior
distribution on the state of nature before collecting any additional information. When agents are
induced to reveal their information about the state of nature truthfully, relaying the posterior
distribution on the state of nature converts the interdependent value problem into a private
value problem. When agents know the probability distribution on the set of states of nature,
they need only report their expected utility for each possible social outcome rather than their
utility for every social outcome in each of the states. Essentially, by moving from a one stage
mechanism to a two stage mechanism, we can shift the job of computing expected utilities given
the posterior from the mechanism to the agents. Doing this reduces the information that agents
must report to the mechanism; we discuss this in the last section.
In this paper, we construct a two stage game in which the second stage is modeled as a

standard private values VCG mechanism. The basic mechanics of �rst eliciting the information
correlated with the state of nature in order to convert an interdependent values problem into
private values problem can be applied to certain other environments as well. In particular, our
�rst stage can be combined with certain other mechanisms with desirable properties in private
value problems to address implementation problems in the presence of interdependent values.
We provide an example of how our mechanism works in the next section, and present the

general mechanism after that.

2. Example

The following single object auction example, a modi�cation of the example in McLean and
Postlewaite (2004), illustrates our basic idea. An object is to be sold to one of three agents.
There are two equally likely states of the world, �1 and �2, and an agent�s value for the object
depends on the state of the world. Agent i�s state dependent utility function can written as
vi = (v

1
i ; v

2
i ) = (vi(�1); vi(�2)) where v

j
i is his utility of the object in state �j . An agent�s utility

function is private information. In addition, each agent i receives a private signal si 2 fa1; a2g
correlated with the state. These signals are independent conditional on the state and the
conditional probabilities are as shown in the following table.

signal a1 a2
state
�1 � 1� �
�2 1� � �

where � > 1
2 : Consequently, an agent�s private information, his type, is a pair (si; vi) and we

make two assumptions. First, for any type pro�le (si; vi)3i=1; the conditional distribution on the
state space given (si; vi)3i=1 depends only on the signals (s1; s2; s3): Therefore, the agents�utility
functions provide no information relevant for predicting the state that is not already contained
in the signal pro�le alone. Second, we assume that for any type (si; vi) of agent i, the conditional
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distribution on the signals s�i of the other two agents given (si; vi) depends only on i�s signal si:
Note that the conditional distribution on the state space given (s1; s2; s3) and the conditional
distribution on the signals s�i given si can be computed using the table above.
Suppose the objective is to allocate the object to the agent for whom the expected value,

conditional on the agents�true signal pro�le, is highest. This is a problem with interdependent
values. Agent i�s conditional expected value for the object depends on the probability distrib-
ution on the states, conditional on the signals of all three agents. In McLean and Postlewaite
(2004), it is shown how one can design a mechanism to allocate the object to the highest value
agent for problems of this sort. Consider a direct mechanism in which each agent reports his type
(si; vi): The mechanism uses the reported signals about the state, s = (s1; s2; s3) to compute
the posterior distribution (�(�1js); �(�2js)) on �. This posterior is used along with agent i�s an-
nounced state dependent utilities to compute i�s expected utility: v̂i(s) = v1i �(�1js)+ v2i �(�2js).
The mechanism then awards the object to the agent with the highest expected value �vi(s) and
that agent pays the second highest expected value.1

The mechanism can be thought of as eliciting all the information available about the unknown
state � and then using a Vickrey auction based on the expected values that are computed using
this information about �. If agents always reported their true signals and if the true signal pro�le
is s = (s1; s2; s3), then by the well known property of Vickrey auctions, it is a dominant strategy
for each agent i to truthfully report his expected payo¤ �vi(s). However, agents may indeed
have an incentive to misreport their signals in order to manipulate the conditional expected
valuations that are used to determine the winner and the price. For example, if all agents�have
state dependent values that are lower in state �1 than in state �2 (xi < yi; i = 1; 2; 3), then
an agent who has received signal a2 may have an incentive to report a1. Such a misreport will
increase the probability weight that the posterior assigns to �1: Consequently, this will lower all
agents�expected values which, in turn, will a¤ect the price paid by the winner of the object.
To induce agents to truthfully announce their signals, McLean and Postlewaite add a reward

z to the payment of agent i if his report about the state is in the majority. Since agents
receive conditionally independent signals about the state, an agent maximizes the probability
that he gets the reward z by announcing truthfully if other agents are doing so. Since the
maximal possible gain from misreporting is bounded, then a su¢ ciently large z will make truthful
announcement an equilibrium.
The reward z need not be very large if � is close to 1. When � is close to 1, it is very

likely that the all agents received �correct� signals about the state. Therefore, conditional on
his own signal, agent i believes that a lie will, with high probability, have only a small e¤ect on
the posterior distribution on �. But the expected gain from misreporting will be small if the
expected change in the posterior is small. Thus, when agents are receiving very accurate signals
about �, small rewards will support truthful announcement as an equilibrium.
Our aim in this paper is to demonstrate a two stage modi�cation of this kind of mechanism

that accomplishes the same goal but requires less information to be transmitted. The two
stages correspond to the two parts of the mechanism discussed above. The �rst stage elicits
the information about the state and publicly posts the posterior distribution on � given the
reports. The agents use that posterior to compute their expected values of the object, and then
report those expected values. As before, the object is sold to the agent with the highest reported

1 If there are more than one agent with the highest expected value the object is awarded to each with equal
probability.
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expected value at the second highest reported expected value.
The important di¤erence between the one stage mechanism and the two stage mechanism

is that, in the one stage mechanism, agent i reports his type �his signal si and his vector of
state dependent payo¤s (xi; yi) �while in the two stage mechanism he does not report his type.
Instead he reports his signal si and his expected utility given the posted posterior �, a single
number rather than a pair of numbers. In more general problems with m states of the world
and k outcomes, an agent�s type would include a m� k matrix consisting of m state contingent
payo¤s for each of the k outcomes.
The di¤erence in the dimensionality of these announcements is tied to where the expectation

of utility given the posterior on � is computed. In a one stage mechanism it must be done
within the mechanism. To compute the expectation, the entire matrix of state-outcome payo¤s
of each agent must be transmitted to the mechanism. In the two stage mechanism, only the
information necessary to determine the posterior on � given all available private information is
transmitted in the �rst stage. The resulting posterior is then transmitted to the agents, who
compute the expectations and return those expected values to the mechanism. In terms of the
amount of information that must be transmitted, it is more e¢ cient for the agents to compute
the expectations.

3. Preliminaries

In this section, we review the structure and salient results from MP (2014). If K is a �nite
set, let jKj denote the cardinality of K and let �(K) denote the set of probability measures
on K. Throughout the paper, jj � jj2 will denote the 2-norm and, for notational simplicity, jj � jj
will denote the 1-norm. The real vector spaces on which these norms are de�ned will be clear
from the context. Let � = f�1; ::; �mg represent the �nite set of states of nature and let Ti
denote the �nite set of types of player i: Let ��(�� T ) denote the set of P 2 �(�� T ) whose
marginals on � and T satisfy the following full support assumptions: P (�) > 0 for each � 2 �
and P (t) > 0 for each t 2 T: The conditional distribution induced by P on � given t 2 T (resp.,
the conditional distribution induced by (the marginal of) P on T�i given ti 2 Ti) is denoted
P�(�jt) (resp., P (�jti)): Let C denote the �nite set of social alternatives. Agent i0s payo¤ is
represented by a nonnegative valued function vi : C ��� Ti ! R+ and we assume that for all
i, vi(�; �; �) �M for some M � 0:

A social choice problem is a collection (v1; ::; vn; P ) where P 2 ��(� � T ): An outcome
function is a mapping q : T ! C that speci�es an outcome in C for each pro�le of announced
types. A mechanism is a collection (q; x1; ::; xn) (written simply as (q; (xi)) where q : T ! C
is an outcome function and the functions xi : T ! R are transfer functions. For any pro�le of
types t 2 T; let

v̂i(c; t) = v̂i(c; t�i; ti) =
X
�2�

vi(c; �; ti)P�(�jt�i; ti):

Although v̂ depends on P , we suppress this dependence for notational simplicity as well. Finally,
we make the simple but useful observation that the pure private value model is mathematically
identical to a model in which j�j = 1:

De�nition 1: Let (v1; ::; vn; P ) be a social choice problem. A mechanism (q; (xi)) is:
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ex post incentive compatible if truthful revelation is an ex post Nash equilibrium: for all
i 2 N , all ti; t0i 2 Ti and all t�i 2 T�i;

v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti) � v̂i(q(t�i; t
0
i); t�i; ti) + xi(t�i; t

0
i):

interim incentive compatible if truthful revelation is a Bayes-Nash equilibrium: for each
i 2 N and all ti; t0i 2 TiX
t�i2T�i

[v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti)]P (t�ijti) �
X

t�i2T�i

[v̂i(q(t�i; t
0
i); t�i; ti) + xi(t�i; t

0
i)]P (t�ijti)

ex post individually rational if

v̂i(q(t); t) + xi(t) � 0 for all i and all t 2 T:

feasible if for each t 2 T; X
j2N

xj(t) � 0:

outcome e¢ cient if for each t 2 T;

q(t) 2 argmax
c2C

X
j2N

v̂j(c; t).

In our framework, ex post means ex post the realization of the agents�information pro�le.
All activity takes place after players learn their private information but before the realization
of � is known. If, for all i, v̂i(c; t) does not depend on t�i; then the notions of ex post Nash
equilibrium and dominant strategy equilibrium coincide.

4. The Model

4.1. Information Decompositions

In this section, we show how the information structure for general incomplete information prob-
lems, even those without a product structure, can be represented in a way that separates out an
agent�s information about the state �: This is important because it is this part of his type that
a¤ects other agents�valuations of the social alternatives. The example of Section 2 illustrates
how we can elicit truthful reporting of agents�signals about the state when they are correlated.
In that example, an agent has beliefs about other agents signals that depend on his own

signal, and it is important that the beliefs are di¤erent for di¤erent signals the agent may
receive. In the example, agent i�s type consists of a signal ai and a state dependent utility
function that is independent of his signal. Consequently agent i has multiple types consisting
of the same signal but di¤erent utility functions, and all of these types will necessarily have the
same beliefs about other agents�signals.
It isn�t necessary to elicit that part of an agent�s type that doesn�t a¤ect other agents�

valuations (e.g., his utility function in the example) to cope with the interdependence, only

5



the part related to the state �. To formalize this idea, we recall the notion of information
decomposition from McLean and Postlewaite (2004).2

De�nition 2: Suppose that P 2 ��(� � T ): An information decomposition for P is a
collection D = ((Ai; fi)i2N ; Q) satisfying the following conditions:
(i) For each i, Ai is a �nite set and fi : Ti ! Ai is a function and Q 2 �(��A1�� � ��An):3

For each t 2 T , de�ne f(t) := (f1(t1); ::; fn(tn)) and f�i(t�i) := (f1(t1); ::; fi�1(ti�1); fi+1(ti+1); ::; fn(tn)):
(ii) For each t 2 T ,

P�(�jt) = Q�(�jf(t))

(iii) For each i, ti 2 Ti and a 2 A;X
t�i2T�i

:f�i(t�i)=a�i

P (t�ijti) = Q(a�ijfi(ti))

If ti 2 Ti; we will interpret fi(ti) 2 Ai as the "informationally relevant component" of ti
and we will refer to Ai as the set of agent i�s "signals." Condition (ii) states that a type pro�le
t 2 T; contains no information beyond that contained in the signal pro�le f(t) that is useful
in predicting the state of nature. Condition (iii) states that a speci�c type ti 2 Ti contains no
information beyond that contained in the signal fi(ti) that is useful in predicting the signals of
other agents.

Every P 2 ��(�� T ) has at least one information decomposition in which Ai = Ti; fi = id;
andQ = P which we will refer to as the trivial decomposition. However, the trivial decomposition
may not be the only one (or the most useful one as we will show below). For example, suppose
that each agent�s type set has a product structure Ti = Xi�Yi and that P 2 ��(��T ) satis�es

P (�; x1; y1; ::; xn; yn) = P1(�; x1; ::; xn)P2(y1; ::; yn)

for each (x1; y1; ::; xn; yn) where P1 2 �(� �X) and P 2 �(Y ): Then de�ning the projection
map pXi

(xi; yi) = xi; it follows that D = ((Xi; pXi
)i2N ; P1) is an information decomposition for

P .

Remark: If (v1; ::; vn; P ) is a social choice problem, then it follows from the de�nition that
any two information decompositions D = ((Ai; fi)i2N ; Q) and D0 = ((A0i; f 0i)i2N ; Q0) for P give
rise to the same v̂i; i.e., for all t 2 T; we haveX

�2�
vi(c; �; ti)Q�(�jf(t)) =

X
�2�

vi(c; �; ti)P�(�jt�i; ti) =
X
�2�

vi(c; �; ti)Q�(�jf 0(t)):

2This de�nition is equivalent to the partition formulation in McLean and Postlewaite (2004).
3The conditional distribution induced by Q on � given a 2 A (resp., the conditional distribution induced by

(the marginal of) Q on A�i given ai 2 Ai) is denoted Q�(�ja) (resp., Q(�jai)):
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4.2. Informational Size

In this paper, a fundamental role is played by the notion of informational size. Suppose that
D = ((Ai; fi)i2N ; Q) is an information decomposition for P 2 ��(��T ). In a direct mechanism,
agent i reports an element of Ti to the mechanism. Consider an alternative scenario in which
each agent i reports a signal ai 2 Ai to the mechanism. If i reports ai and the remaining agents
report a�i; it follows that the pro�le a = (a�i; ai) 2 A will induce a conditional distribution
on � (computed from Q) and, if agent i�s report changes from ai to a0i, then this conditional
distribution will (in general) change. We consider agent i to be informationally small if, for
each ai; agent i ascribes �small� probability to the event that he can e¤ect a �large� change
in the induced conditional distribution on � by changing his announced type from ai to some
other a0i. This is formalized in the following de�nition.

De�nition 3: Suppose that D = ((Ai; fi)i2N ; Q) is an information decomposition for P 2
��(�� T ). Let

Ii"(a
0
i; ai) = fa�i 2 A�ij jjQ�(�ja�i; ai)�Q�(�ja�i; a0i)jj > "g

and
�Qi (a

0
i; ai) = minf" � 0j

X
a�i2Ii"(a0i;ai)

Q�(a�ijai) � "g

The informational size of agent i is de�ned as

�Qi = max
ai2Ai

max
a0i2Ai

�Qi (a
0
i; ai):

Loosely speaking, we will say that agent i is informationally small with respect to Q if
�Qi (a

0
i; ai) is small for all a

0
i; ai 2 Ai: If agent i receives signal ai but reports a0i 6= ai, the e¤ect of

this misreport is a change in the conditional distribution on� fromQ�(�ja�i; ai) toQ�(�ja�i; a0i):
If a�i 2 I"(a0i; ai); then this change is �large�in the sense that jjQ�(�ja�i; ai)�Q�(�ja�i; a0i)jj >
": Therefore,

P
a�i2Ii"(a0i;ai)

Q(a�ijai) is the probability that i can have a �large�in�uence on the
conditional distribution on � by reporting a0i instead of ai conditional on his observed signal ai:
An agent is informationally small if for each of his possible types ai, he assigns small probability
to the event that he can have a �large� in�uence on the distribution Q�(�ja�i; ai); given his
observed type.4

4.3. Variability of Beliefs

The example of Section 2 illustrates how one might induce truthful announcement of agents�
signals about the state. An agent who receives the signal a1 believes that the state is more likely
to be �1 than �2. Given that agents�signals are conditionally independent, he believes that each
of the other agents is more likely to have received signal a1 than a2. Hence, if those agents
are announcing truthfully, he maximizes his chance of receiving the reward z by announcing
truthfully as well. More generally, the key to constructing rewards for an agent who might

4 Informational size is closely related to the notion of nonexclusive information as well the Ky Fan distance
between random variables. See MP (2014) for an elaboration.
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receive signal a or a0 is that the agent�s beliefs about other agents� signals when he receives
signal a di¤er from his beliefs when he receives signal a0. Moreover, the magnitude of the
di¤erence matters in inducing truthful announcement. We turn next to de�ning a measure of
the variation of an agent�s beliefs.
Suppose that Q 2 �(� � A).We can �nd rewards that will induce agent i to reveal his

information if Q(�jai) and Q(�ja0i); the distributions on A�i given signals ai and a0i for agent
i; are di¤erent when ai 6= a0i: The size of the rewards that will induce truthful reporting will
depend on the magnitude of the di¤erence between Q(�jai) and Q(�ja0i) for di¤erent types ai and
a0i of agent i:
To de�ne formally the measure of variability, we treat each conditional Q(�jai) 2 �(A�i)

as a point in a Euclidean space of dimension equal to the cardinality of A�i: Our measure of
variability is de�ned as

�Qi = min
ai2Ai

min
a0i2Ainai

 Q(�jai)
jjQ(�jai)jj2

� Q(�ja0i)
jjQ(�ja0i)jj2

2 :
If �Qi > 0, then the agents�signals cannot be stochastically independent with respect to

Q. We will exploit this correlation in constructing Bayesian incentive compatible mechanisms.
For a discussion of the relationship between this notion of correlation and that found in the full
extraction literature, see MP (2014).
It is important to point out that �Qi and �Q

0

i are generally di¤erent for two decomposi-
tions D = ((Ai; fi)i2N ; Q) and D0 = ((A0i; f

0
i)i2N ; Q

0) for P: When an agent�s type set has
a product structure Ti = Xi � Yi as in the example of Section 4.1 and D = ((Ti; id)i2N ; P )

is the trivial decomposition, then �Qi = �Pi = 0 for all i. However, for the decomposition
D = ((Xi; pXi

)i2N ; P1) of that example, it may in fact be the case that �
P1
i > 0: The utility of

decompositions will become apparent when we state Theorem B below.

5. The One Stage Implementation Game

5.1. The Generalized VCG Mechanism

We now adapt some of our previous results on implementation with interdependent values to
the model of this paper. In the special case of pure private values, i.e., when j�j = 1, it is
well known that the classical VCG transfers will implement an outcome e¢ cient social choice
function: in the induced direct revelation game, it is a dominant strategy to honestly report
one�s type. In the general case of interdependent values, the situation is more delicate.
Let q : T ! C be an outcome e¢ cient social choice function for the problem (v1; ::; vn; P ).

For each t; de�ne transfers as follows:

�qi (t) =
X
j2Nni

v̂j(q(t); t)�max
c2C

24 X
j2Nni

v̂j(c; t)

35
Note that �qi (t) � 0 for each i and t. The resulting mechanism (q; (�qi )) is the generalized
VCG mechanism with interdependent valuations (GVCG for short) studied in MP(2014). It is
straightforward to show that the GVCG mechanism is ex post individually rational and feasible.
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In the pure private value case where j�j = 1; it follows that for an outcome e¢ cient social choice
function q : T ! C; we have

q(t) 2 argmax
c2C

X
i2N

vi(c; ti)

and the GVCG transfers reduce to

�qi (t) =
X
j2Nni

vj(c; tj)�max
c2C

24 X
j2Nni

vj(c; tj)

35 :
which are precisely the classical VCG transfers. Honest reporting of one�s type is, of course, a
dominant strategy in this private values setup. Unfortunately, the GVCG mechanism does not
inherit the very attractive dominant strategy property of the pure private values special case.
It is tempting to conjecture that the GVCG mechanism satis�es ex post incentive compatibility
or perhaps the weaker notion of Bayesian incentive compatibility but even the latter need not
hold. There are, however, certain positive results. In MP (2014), it is shown that the GVCG
mechanism is ex post incentive compatible when the problem satis�es a condition called non-
exclusive information. This property is satis�ed by all pure private values models, in which case,
ex post incentive compatibility reduces to dominant strategy incentive compatibility.
This observation follows as an immediate consequence of the de�nition of GVCG mechanisms

but it can also be deduced from a result that will play a crucial role in our analysis. This is the
�gain-bounded�property of the GVCG mechanism proved in McLean and Postlewaite (2014).

Lemma A: Suppose that q : T ! C is outcome e¢ cient for the problem (v1; ::; vn; P ) and
suppose that D = ((Ai; fi)i2N ; Q) is an information decomposition for P: Then for all t�i 2 T�i
and ti; t0i 2 Ti;

[v̂i(q(t�i; t
0
i); t�i; ti) + �

q
i (t�i; t

0
i)]� [ v̂i(q(t�i; ti); t�i; ti) + �

q
i (t�i; ti)]

� 2M(n� 1)jjQ�(�jf�i(t�i); fi(ti)�Q�(�jf�i(t�i); fi(t0i)jj:

In the case of the GVCG mechanism, Lemma A provides an upper bound on the �ex post
gain�to agent i when i�s true type is ti but i announces t0i and others announce truthfully. An
important implication of Lemma A is that an agent�s gain by misreporting his type is essentially
bounded by the degree to which his type a¤ects the posterior probability distribution on �;
we return to this below. In the pure private values model where j�j = 1; we conclude that
jjQ�(�jf�i(t�i); fi(ti)�Q�(�jf�i(t�i); fi(t0i)jj = 0 and we recover the classic dominant strategy
result. There is a second rami�cation of Lemma A: when agents are informationally small,
honest reporting is an approximate ex post Nash equilibrium in the GVCG mechanism. See MP
(2014) for a discussion of this result.
Lemma A has a third important consequence: if agent i is informationally small, then truth

is an approximate Bayes-Nash equilibrium in the GVCG mechanism so the mechanism is ap-
proximately interim incentive compatible. More precisely, we can deduce from Lemma A that
the interim expected gain from misreporting one�s type is essentially bounded from above by
one�s informational size. If we want the mechanism to be exactly interim incentive compatible,
then we must alter the mechanism (speci�cally, construct an augmented GVCG mechanism) in
order to provide the correct incentives for truthful behavior. We turn to this next.
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5.2. A Direct Mechanism for the One Stage Implementation Game

If we use the GVCG mechanism to de�ne a direct revelation game, then we show in MP (2014)
that honest reporting is an approximate ex post Nash equilibrium and an approximate Bayes-
Nash equilibrium when agents are informationally small. In MP (2014), we also consider a
modi�cation of the GVCG mechanism that is both approximately ex post incentive compatible
and exactly, rather than approximately, interim incentive compatible when agents are informa-
tionally small. To state the main result of MP (2014), we need the notion of an augmented
mechanism.

De�nition 4: Let (zi)i2N be an n-tuple of functions zi : T ! R+ each of which assigns
to each t 2 T a nonnegative number, interpreted as a �reward�to agent i. If (q; x1; ::; xn) is a
mechanism, then the associated augmented mechanism is de�ned as (q; x1 + z1; ::; xn + zn) and
will be written simply as (q; (xi + zi)):

Using precisely the same techniques found in MP (2014), we can prove the following result
for direct mechanisms.

Theorem A : Let (v1; ::; vn) be a collection of payo¤ functions.

(i) Suppose that q : T ! C is outcome e¢ cient for the problem (v1; ::; vn; P ): Suppose that
D = ((Ai; fi)i2N ; Q) is an information decomposition for (v1; ::; vn; P ) satisfying �

Q
i > 0 for

each i. Then there exists an augmented GVCG mechanism (q; (�qi + zi)) for the social choice
problem (v1; ::; vn; P ) satisfying ex post IR and interim IC.

(ii) For every " > 0; there exists a � > 0 such that the following holds: whenever q : T !
C is outcome e¢ cient for the problem (v1; ::; vn; P ) and whenever D = ((Ai; fi)i2N ; Q) is an
information decomposition for (v1; ::; vn; P ) satisfying

max
i
�Qi � �min

i
�Qi ;

there exists an augmented GVCG mechanism (q; (�qi + zi)) with 0 � zi(t) � " for every i and t
satisfying ex post IR and interim IC.5

Part (i) of Theorem 2 states that, as long as Q(�jai) 6= Q(�ja0i) whenever ai 6= a0i; then
irrespective of the agents�informational sizes, the augmenting transfers can be chosen so that
the augmented mechanism satis�es Bayesian incentive compatibility. However, the required
augmenting transfers will be large if the agents have large informational size. Part (ii) states
that the augmenting transfers will be small if the agents have informational size that is small
enough relative to our measure of variation in the agents�beliefs.
To understand this condition, we �rst note that, if agent i is informationally small, then

truth is an approximate Bayes-Nash equilibrium in the GVCG mechanism so the mechanism is
approximately interim incentive compatible. More precisely, we can deduce from Lemma A that
the interim expected gain from misreporting one�s type is essentially bounded from above by

5 In MP (2014), it is also shown that the augmented mechanism is approximately ex post incentive compatible
in the sense de�ned that that paper.
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one�s informational size. If we want the mechanism to be exactly interim incentive compatible,
then we must alter the mechanism (speci�cally, construct an augmented GVCG mechanism) in
order to provide the correct incentives for truthful behavior. In MP (2014), the augmenting
zi rewards are de�ned using a spherical scoring rule and the di¤erence in an agent�s expected
reward between honest reporting and lying is (essentially) bounded from below by �Qi : Thus, the
number �Qi quanti�es the expected gain from honest reporting of one�s type and the condition of
part (ii) of Theorem A simply requires that the gain to lying quanti�ed in terms of informational
size �Qi be su¢ ciently outweighed by the gain to honest reporting as quanti�ed by �

Q
i :
6

The two conclusions of Theorem A illustrate the value of information decompositions for
implementation with interdependent valuations. The number �Qi depends only on the infor-
mationally relevant component of an agent�s type. As we have already indicated, it is possible
that �Pi = 0 for the trivial decomposition D = ((Ti; id)i2N ; P ) while �Pi > 0 for some other
decomposition D = ((Ai; fi)i2N ; Q):

As we have mentioned previously, the agents�beliefs cannot be independent if �Qi > 0 for
each i. Correlated information also plays a signi�cant role in the full surplus extraction problem
in the mechanism design literature (see Cremer and McLean (1985, 1989).) Those papers (and
subsequent work by McAfee and Reny (1992)) demonstrated how one can use correlation to
fully extract the surplus in certain mechanism design problems. The problems, however, are
quite di¤erent. Surplus extraction is a mechanism design problem while our problem is an
implementation problem. We do not look for transfers and an allocation scheme that solves a
mechanism design problem of the type presented in, for example, Myerson (1981) or Cremer and
McLean (1985, 1988). Instead, we study the problem of implementation of a given e¢ cient social
choice function and it is important to explicate the di¤erences. See MP (2014) for a discussion
of this issue.

5.3. An Indirect Mechanism for the One Stage Implementation Problem

The direct revelation game is the most common formulation of the implementation problem
and is, in a well known sense, without loss of generality as a result of the revelation principle.
However, there are interesting �indirect�mechanisms in which the message spaceMi of agent i is
di¤erent from Ti: Suppose that (v1; ::; vn; P ) is a problem and suppose that D = ((Ai; fi)i2N ; Q)
is an information decomposition for P: Let Gi denote the collection of all functions gi : C��!
R+. Consequently we identify Gi with RC��+ : Suppose that i�s message space is Mi = Ai �Gi:
Let Z = (�i)i2N be an n-tuple of functions �i : A! R+ each of which assigns to each a 2 A

a nonnegative number �i(a) interpreted as a �reward�to agent i. If the agents report the pro�le
(a; g) 2 A�G;then the mediator chooses a social outcome

 (a; g) 2 argmax
c2C

X
i2N

X
�

gi(c; �)Q�(�ja)

and augmented transfers

�i(a; g) =
X
j2Nni

X
�

gj( (a; g); �)Q�(�ja)�max
c2C

24 X
j2Nni

X
�

gj(c; �)Q�(�ja)

35+ �i(a).
6The proof of the main result in MP(2014) or Part 3 of the proof of Theorem B in the Appendix demonstrates

the spherical scoring rule construction as well as the precise roles of �Qi and �Qi in this tradeo¤.
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This indirect mechanism induces a game of incomplete information. A strategy for agent i in
this game is a pair (�i; i) where �i : Ti ! Ai speci�es a type dependent report �i(ti) 2 Ai and
i : Ti ! Gi speci�es a type dependent valuation function i(ti) 2 Gi.
If ai = fi(ti) and gi = vi(�; �; ti) for each i, then

 (a; g) 2 argmax
c2C

X
i2N

X
�

vi(c; �; ti)Q�(�jf(t))

and

�i(a; g) =
X
j2Nni

vj(c; �; tj)Q�(�jf(t))�max
c2C

24 X
j2Nni

vj(c; �; tj)Q�(�jf(t))

35+ �i(f(t))
A strategy (�i; i) for player i is truthful for i if �i(ti) = fi(ti) and i(ti) = vi(�; �; ti) for

all ti 2 Ti . A strategy pro�le (�i; i)i2N is truthful if (�i; i) is truthful for each player i.
If (�i; i)i2N is a truthful Bayes-Nash equilibrium in this one stage game, then the revelation
principle ensures that the outcome of the game coincides with an outcome of the revelation game
of Section 5.2. Under the hypotheses of (i) or (ii) of Theorem A, one can construct a system of
augmenting transfers �i ensuring that a truthful Bayes-Nash equilibrium exists in this game of
incomplete information.

6. The Two Stage Implementation Game

6.1. Preliminaries

Suppose that (v1; ::; vn; P ) is a social choice problem and suppose that D = ((Ai; fi)i2N ; Q) is
an information decomposition for P:
Throughout this section, we will use the following notational convention:

�(a�i; ai) = Q�(�ja�i; ai) and ��(a�i; ai) = Q�(�ja�i; ai):

Let Hi denote the collection of all functions ui : C ! R+. Consequently we identify Hi with
RC+: For each pro�le u = (u1; ::; un) 2 H := H1 � � � � �Hn; let

'(u) 2 argmax
c2C

X
i2N

ui(c)

and de�ne

ŷi(u) =
X
j2Nni

uj('(u))�max
c2C

24 X
j2Nni

uj(c)

35 .

Therefore, ('; ŷ1; ::; ŷn) de�nes the classic private values VCG mechanism and it follows that

ui 2 arg max
u0i2Hi

ui('(u�i; u
0
i)) + ŷi(u�i; u

0
i)

for all ui 2 Hi and all u�i 2 H�i:
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We wish to formulate our implementation problem with interdependent valuations as a two
stage problem in which honest reporting of the agents�signals in stage one resolves the �inter-
dependency�problem so that the stage two problem is a simple implementation problem with
private values to which the classic VCG mechanism can be immediately applied. We now de�ne
an extensive form game that formalizes the two stage process that lies behind this idea. As in
the indirect mechanism for the one stage problem, let Z = (�i)i2N be an n-tuple of functions
�i : A! R+ each of which assigns to each a 2 A a nonnegative number �i(a) again interpreted
as a �reward�to agent i. These rewards are designed to induce agents to honestly report their
signals in stage 1.
Given an information decomposition D and a reward system Z; we de�ne an extensive form

game �(D; Z) that unfolds in the following way.

Stage 1: Each agent i learns his type ti 2 Ti and makes a (not necessarily honest) report
ri 2 Ai of his signal to the mechanism designer. If (r1; ::; rn) is the pro�le of stage 1 reports,
then agent i receives the nonnegative payment �i(r1; ::; rn) and the game moves to stage 2.

Stage 2: If (r1; ::; rn) = r 2 A is the reported type pro�le in stage 1, the mechanism
designer publicly posts the conditional distribution �(r) = Q�(�jr). Agents observe this posted
distribution (but not the pro�le r) and make a second (not necessarily honest) report from Hi

to the mechanism designer. If (u 1; ::; un) = u 2 H is the second stage pro�le of reports, then the
mechanism designer chooses the social alternative '(u) 2 C; each agent i receives the transfer
ŷi(u); and the game ends.

We wish to design the rewards �i so as to accomplish two goals. In stage 1, we want to induce
agents to report honestly so that the reported stage 1 pro�le is exactly f(t) = (f1(t1); ::; fn(tn))
when the true type pro�le is t. In stage 2, upon observing the posted posterior distribution
Q�(�jf(t)); we want each agent i to report the payo¤ function

u�i (�) =
X
�2�

vi(�; �; ti)Q�(�jf(t)):

If these twin goals are accomplished in a Bayes-Nash equilibrium, then the social outcome is

'(u�) 2 argmax
c

X
i2N

X
�2�

vi(c; �; ti)Q�(�jf(t));

the transfers are

ŷi(u
�) =

X
j2Nni

vj('(u
�); �; tj)Q�(�jf(t))�max

c2C

24 X
j2Nni

vj(c; �; tj)Q�(�jf(t))

35 :
and the ex post payo¤ to agent i of type ti isX

i2N

X
�2�

vi('(u
�); �; tj)Q�(�jf(t)) + ŷi(u�) + �i(f(t)):

Note that these transfers and payo¤s are precisely the GVCG transfers and payo¤s de�ned in
Section 5 for the one stage implementation problem.
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6.2. Strategies and Equilibria in the Two Stage Game

De�ne
� := fQ�(�ja) : a 2 Ag:

Given the speci�cation of the extensive form, it follows that the second stage information sets
of agent i are indexed by the elements of Ai � � � Ti: A strategy for agent i in this game is a
pair (�i; �i) where �i : Ti ! Ai speci�es a type dependent report �i(ti) 2 Ai in stage 1 and
�i : Ai � �� Ti ! Hi speci�es a second stage report �i(ri; �; ti) 2 Hi as a function of i�s �rst
stage report ri 2 Ai; the posted distribution �; and i0s type ti 2 Ti:
We are interested in a Perfect Bayesian Equilibrium (PBE) assessment for the two stage

implementation game �(D; Z) consisting of a strategy pro�le (�i; �i)i2N and a system of second
stage beliefs in which players truthfully report their private information at each stage.

De�nition 5: A strategy (�i; �i) for player i is truthful for i if �i(ti) = fi(ti) for all ti 2 Ti
and

�i(fi(ti); �; ti) =
X
�2�

vi(�; �; ti)�(�)

for all � 2 � and ti 2 Ti : A strategy pro�le (�i; �i)i2N is truthful if (�i; �i) is truthful for each
player i.

Formally, a system of beliefs for player i is a collection of probability measures on ��T�i
indexed by Ai ��� Ti; i.e., a collection of the form

f�i(�jri; �; ti) 2 �(�� T�i) : (ri; �; ti) 2 Ai ��� Tig:

with the following interpretation: when player i of type ti reports ri in Stage 1 and observes
the posted distribution �; then player i assigns probability mass �i(�; t�ijri; �; ti) to the event
that other players have true types t�i and that the state of nature is �: As usual, an assessment
is a pair f(�i; �i)i2N ; (�i)i2Ng consisting of a strategy pro�le and a system of beliefs for each
player.

De�nition 6: An assessment f(�i; �i)i2N ; (�i)i2Ng is an incentive compatible Perfect
Bayesian equilibrium (ICPBE) assessment if (�; �; �) = f(�i; �i)i2N ; (�i)i2Ng is a Perfect
Bayesian Equilibrium assessment and the pro�le (�i; �i)i2N is truthful.

6.3. The Main Result

Theorem B: Let (v1; ::; vn) be a collection of payo¤ functions.

(a) Suppose that q : T ! C is outcome e¢ cient for the problem (v1; ::; vn; P ): Suppose that
D = (Ai; fi)i2N ; Q) is an information decomposition for P satisfying �Qi > 0 for each i. Then
there exists a reward system Z = (�i)i2N such that the two stage game �(D; Z) has an ICPBE
(��; ��; �).
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(b) For every " > 0; there exists a � > 0 such that the following holds: whenever q : T ! C
is outcome e¢ cient for the problem (v1; ::; vn; P ) and D = (Ai; fi)i2N ; Q) is an information
decomposition for P satisfying

max
i
�Qi � �min

i
�Qi ;

there exists a reward system Z = (�i)i2N such that the two stage game �(D; Z) has an ICPBE
(��; ��; �). Furthermore, 0 � �i(a) � " for every i and a.

To prove Theorem B, we proceed in several steps which we outline here. Suppose that
D = (Ai; fi)i2N ; Q) is an information decomposition for P .

Step 1 : Suppose that (�; �) is a strategy pro�le with �i(ti) = fi(ti) for all i and ti: Suppose
that player i is of true type ti; the other players have true type pro�le t�i; player i reports ri
in stage 1. Given the de�nition of (��i; ��i); it follows that �j(tj) = fj(tj) for each j 6= i:
Therefore, player i of type ti who has submitted report ri in stage 1 and who observes � 2 � at
stage 2 will assign positive probability X

t̂�i:�(f�i(t̂�i);ri)=�

P (t̂�ijti) > 0

to the event
ft̂�i 2 T�i : �(f�i(t̂�i); ri) = �g:

Therefore, i�s updated beliefs regarding (�; t�i) consistent with (�; �) are given by

�i(�; t�ijri; �; ti) =
��(f�i(t�i); fi(ti))P (t�ijti)P
t̂�i:�(f�i(t̂�i);ri)=�

P (t̂�ijti)
if �(f�i(t�i); ri) = �

= 0 otherwise.

Step 2 : Let
wi(�; �; ti) :=

X
�2�

vi(�; �; ti)�(�)

and for each � and t�i let w��i(�; t�i) 2 H�i be de�ned as

w��i(�; t�i) := (wj(�; �; tj))j2Nni:

Next, we de�ne the following particular second stage component ��i of agent i�s strategy as
follows: for each (ri; �; ti) 2 Ai ��� Ti; let

��i (ri; �; ti) 2 arg max
ui2Hi

X
t�i2T�i

X
�2�

�
vi('(ui; w

�
�i(�; t�i)); �; ti) + ŷi(ui; w

�
�i(�; t�i))

�
�i(�; t�ijri; �; ti):

where �i(�jri; �; ti) is de�ned in Step 17 . We then show that

��i (fi(ti); �; ti) =
X
�2�

vi(�; �; ti)�(�) = wi(�; �; ti):

7Note that ��i (ri; �; ti) exists since each vi takes on only �nitey many values for each i and the set � is also
�nite.
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Step 3 : If ��i (ti) = fi(ti) for all i and ti and ��i is de�ned as in Step 2, then (�
�; ��)

is a truthful strategy pro�le. The proof is completed by constructing a system of rewards
Z = (�i)i2N such that (��; ��; �) is an ICPBE of the two stage game �(D; Z). To accomplish
this, we de�ne

�i(a�i; ai) = "
Q(a�ijai)
jjQ(�jai)jj2

:

To prove part (a) of Theorem B, we show that one can �nd " > 0 so that (i) deviations at second
stage information sets are unpro�table given the beliefs � de�ned in step 1 and (ii) coordinated
deviations across the two stages are unpro�table. This latter argument depends crucially on the
special transfers �i: It is these transfers that induce truthful reporting in stage 1, thus reducing
the second stage to a simple implementation problem with private values. To prove part (b),
we show that " can be chosen to be small when each agent�s informational size is small enough
relative to the variation in his beliefs.

7. Discussion

7.1. Information Transmitted

We have presented three approaches to implementation with interdependent values: a one stage
direct mechanism, a one stage indirect mechanism and a two stage game. In each of these
approaches, the "quantity" and "complexity" of the information that is transmitted by the
agents to the mechanism is di¤erent. Because of the revelation principle, it is commonplace to
conduct analyses using direct mechanisms. However, a direct mechanism may not be the agents�
preferred mechanism when, e.g., privacy is a consideration. In our one stage direct mechanism,
an agent reports his type. In the one stage indirect mechanism, he reports signal and a payo¤
as a function of the social outcome and the state. At the end of the two stage game, he has
reported a signal and a payo¤ as a function only of the social outcome.
For many problems agents would like to send as little information as possible. They may

be concerned that the information may be misused by the mechanism designer, or they might
be concerned that others may learn something about the agent because of the information
transmitted. The mechanism itself may reveal, at least partially, the information an agent
sends; alternatively, the agent may be concerned that reported information may be inadvertently
leaked.
Our three mechanisms provide a hierarchy of implementation games in terms of privacy pro-

tection and we can use the product structure example of Section 4.3 to illustrate this hierarchy.
In an equilibrium of the one stage direct mechanism, agent i reveals his true type ti = (xi; yi)
and the mechanism learns both coordinates. In an equilibrium of the one stage indirect mech-
anism, agent i reveals his true signal xi and his true payo¤ function gi = vi(�; �; ti) but not his
true yi: Although the mechanism learns i�s true value of xi; the mechanism can only make an
inference regarding the second coordinate yi of agent i�s type using the information contained
in the pair (xi; gi): In an equilibrium of the two stage game, agent i reveals his true xi and his
true expected payo¤ function

ui =
X
�2�

vi(�; �; ti)P1(�jx1; ::; xn):
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Again, the mechanism learns i�s true value of xi and again, the mechanism can only make an
inference regarding the second coordinate yi of agent i�s type. However, the information with
respect to which this inference is made, i.e., (xi; ui) is coarser that the information available in
the one stage indirect mechanism.
Furthermore, while mechanism design typically focuses on the incentive problems of eliciting

information, there is ultimately a cost of running these mechanisms. One of the costs of operating
a mechanism is related to the complexity of the information that agents must transmit to the
mechanism.8 Agents transmit less information in our two stage mechanism than they transmit in
the one stage indirect mechanism described above. In the one stage indirect mechanism agents
need to transmit their entire state dependent utility function for the mechanism to compute
agents�expected utility functions on C. In the two stage mechanism, they need only transmit
the expected utility function, a vector, a substantial savings in message size, particularly when
there are many states.

7.2. Informational Requirements

In mechanism design theory, it is commonly assumed that the data de�ning the problem is
common knowledge, that is, that the utility functions and probability distributions are commonly
known by the mechanism designer and the agents who are to participate in the mechanism. This
is a heroic assumption in nearly all problems and there is always a desire to decrease the reliance
of mechanisms on the common knowledge assumption. Dominant strategy mechanisms, when
possible, are attractive for this reason. Similarly mechanisms for which truthful announcement
is an ex post Nash equilibrium are valued. We note that in our two stage mechanism, the �rst
stage announcements are approximately ex post Nash equilibria in the sense de�ned in MP
(2014) when agents are informationally small.
There are interesting problems that are covered by our model for which the usual common

knowledge assumption can be relaxed. Speci�cally, for the case of noisy signals about two states,
it is enough that the agents and the mechanism designer know the maximum and minimum val-
ues of the accuracy parameter �, the agents know their payo¤s and and the mechanism designer
knows the maximum and minimum values of the possible payo¤s. With this information, the
mechanism can compute augmenting transfers that reward an agent whose report is a majority
report as in the example of Section 2. Furthermore, these transfers can be chosen to induce hon-
est reporting for any distribution generated by accuracy levels in the given range. Consequently,
the agents will report honestly in stage 1 irrespective of their beliefs regarding the true value
of the accuracy knowing only the range of possible values. Once the informationally relevant
information is revealed in stage 1, it is a dominant strategy to truthfully report expected payo¤
functions in stage 2.

8The seminal paper on message size requirements of mechanisms is Mount and Reiter (1974); see Ledyard
and Palfrey (1994, 2002) for more recent investigations of the message size requirements of mechanisms.
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8. Appendix

8.1. Preparatory Lemmas

Lemma B: Let M be a nonnegative number and let fgi : C ��! R+ : i 2 Ng be a collection
of functions satisfying gi(�:�) �M for all i. For each S � f1; ::; ng and for each � 2 �(�); let

FS(�) = max
c2C

X
i2S

X
�2�

gi(c; �)�(�):

Then for each �; �0 2 �(�);

jFS(�)� FS(�0)j � jSjM jj� � �0jj:
Proof : See MP(2014)

Lemma C: Let M be a nonnegative number and let fgi : C � � ! R+ : i 2 Ng be a
collection of functions satisfying gi(�; �) �M for all i. For each � 2 �(�); let

�(�) 2 argmax
c2C

X
i2N

X
�2�

gi(c:�)�(�);

and

�i(�) =
X
j2Nni

X
�2�

gj(�(�); �)�(�)�max
c2C

24 X
j2Nni

X
�2�

gj(c; �)�(�):

35 :
Then for each t 2 T and all �; �0 2 �(�);"X

�2�
gi(�(�

0); �)�0(�) + �i(�
0)

#
�
"X
�2�

gi(�(�); �)�(�) + �i(�)

#
� (2n� 1)M jj� � �0jj

Proof :"X
�2�

gj(�(�
0); �)�0(�) + �i(�

0)

#
�
"X
�2�

gj(�(�); �)�(�) + �i(�)

#
=
X
k2N

X
�2�

gk(�(�
0); �)�0(�)�

X
k2N

X
�2�

gk(�(�); �)�(�)

+ max
c2C

24 X
j2Nni

X
�2�

gj(c; �)�(�):

35�max
c2C

24 X
j2Nni

X
�2�

gj(c; �)�
0(�)

35
= max

c2C

"X
k2N

X
�2�

gk(c; �)�
0(�)

#
�max

c2C

"X
k2N

X
�2�

gk(c; �)�(�)

#

+max
c2C

24 X
j2Nni

X
�2�

gj(c; �)�(�)

35�max
c2C

24 X
j2Nni

X
�2�

gj(c; �)�
0(�)

35
� nM jj� � �0jj+ (n� 1)M jj� � �0jj
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where the last inequality follows from Lemma B.

Lemma D: For each a0i; ai 2 Ai;X
a�i

jj�(a�i; ai)� �(a�i; ri))jjQ(a�ijai) � 3�Qi

Proof : Recall that
�Qi = max

ai2Ai

max
a0i2Ai

�Qi (a
0
i; ai):

where
Ii"(a

0
i; ai) = fa�i 2 A�ij jjQ�(�ja�i; ai)�Q�(�ja�i; a0i)jj > "g

and

�Qi (a
0
i; ai) = min

8<:" � 0
������

X
s�i2Ii"(a0i;ai)j

Q(a�ijaig � "

9=; :

Therefore, X
a�i

jj�(a�i; ai)� �(a�i; ri))jjQ(a�ijai)

=
X
a�i

:jj�(a�i;ai)��(a�i;ri))jj>�Qi

jj�(a�i; ai)� �(a�i; ri))jjQ(a�ijai)

+
X
a�i

:jj�(a�i;ai)��(a�i;ri))jj��Qi

jj�(a�i; ai)� �(a�i; ri))jjQ(a�ijai)

� 2�Qi + �
Q
i

= 3�Qi

Lemma E: Suppose that Q 2 �(��A) and de�ne a system of rewards Z = (�i)i2N where

�i(a�i; ai) = "
Q(a�ijai)
jjQ(�jai)jj2

for each (a�i; ai) 2 A: Then for each ai; a0i 2 Ai;X
a�i

[�i(a�i; ai)� �i(a�i; a0i)]Q(a�ijai) �
"

2
p
jAj
�Qi :

Proof : Since Q(�jai)
jjQ(�jai)jj2

� Q(�ja0i)
jjQ(�ja0i)jj2

2 = 2 �1� Q(�ja0i) �Q(jai)
jjQ(�jai)jj2jjQ(�ja0i)jj2

�
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and jjQ(�jai)jj2 � 1p
jA�ij

� 1p
jAj
; we conclude that

X
a�i

[�i(a�i; ai)� �i(a�i; a0i)]Q(a�ijai) =
X
a�i

�
"
Q(a�ijai)
jjQ(�jai)jj2

� " Q(a�ija
0
i)

jjQ(�ja0i)jj2

�
Q(a�ijai)

= "

�
Q(�jai) �Q(jai)
jjQ(�jai)jj2

� Q(�ja0i) �Q(jai)
jjQ(�ja0i)jj2

�
= "jjQ(�jai)jj2

�
1� Q(�ja0i) �Q(jai)

jjQ(�jai)jj2jjQ(�ja0i)jj2

�
=

"

2
jjQ(�jai)jj2

 Q(�jai)
jjQ(�jai)jj2

� Q(�ja0i)
jjQ(�ja0i)jj2

2
� "

2
p
jAj
�Qi :

8.2. Proof of Theorem B

We will prove part (b) of Theorem B �rst. To begin, de�ne beliefs �i(�jri; �; ti) 2 �(� � T�i)
for agent i at each information set (ri; �; ti) 2 Ai � � � Ti as in Section 5. In addition, de�ne
wi(�; �; ti) and w��i(�; t�i) as in Section 5. Let ��i (ti) = fi(ti) and recall that �

�
i is de�ned for

agent i as follows: for each (ri; �; ti) 2 Ai ��� Ti; let

��i (ri; �; ti) 2 arg max
ui2Hi

X
t�i2T�i

X
�2�
[vi('(ui; w��i(�; t�i)); �; ti)+ŷi(ui; w��i(�; t�i))]�i(�; t�ijri; �; ti):

Choose " > 0 and de�ne a system of rewards Z = (�i)i2N where

�i(a�i; ai) = "
Q(a�ijai)
jjQ(�jai)jj2

:

Since 0 � Q(a�ijai)
jjQ(�jai)jj2 � 1; for all i, a�i and ai:it follows that

0 � �i(a�i; ai) � ":

Next suppose that
0 < � <

"

12nM
p
jAj

:

We will show that (��; ��; �) is an ICPBE in the game �(D; Z) whenever maxi �Qi � �mini �
Q
i :

To accomplish this, we must show that (��; ��) is truthful, that �rst stage deviations are un-
pro�table and that coordinated deviations across stages are unpro�table.

Part 1 : To show that (��; ��) is truthful, we must show that

��i (fi(ti); �; ti) =
X
�2�

vi(�; �; ti)�(�) = wi(�; �; ti)
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for all � 2 � and ti 2 Ti : i.e., that

wi(�; �; ti) 2 arg max
ui2Hi

X
t�i2T�i

X
�2�

�
vi('(ui; w

�
�i(�; t�i); �; ti) + ŷi(ui; w

�
�i(�; t�i))

�
�i(�; t�ijfi(ti); �; ti)

for each ti and each � 2 �: To see this, note that for each ui 2 Hi;X
t�i2T�i

X
�2�
[vi('(ui; w��i(�; t�i)); �; ti) + ŷi(ui; w��i(�; t�i)]�i(�; t�ijfi(ti); �; ti)

=
X

t�i2T�i
:�(f�i(t�i);fi(ti))=�

X
�2�
[vi('(ui; w��i(�; t�i)); �; ti) + ŷi(ui; w��i(�; t�i)]

"
��(f�i(t�i); fi(ti))P (t�ijti)P
t̂�i:�(f�i(t̂�i);fi(ti))=�

P (t̂�ijti)

#

=
X

t�i2T�i
:�(f(t))=�

"X
�2�

vi('(ui; w
�
�i(�; t�i)); �; ti)��(f(t)) + ŷi(ui; w

�
�i(�; t�i))

#"
P (t�ijti)P

t̂�i:�(f�i(t̂�i);fi(ti))=�
P (t̂�ijti)

#

=
X

t�i2T�i
:�(f(t))=�

"X
�2�

vi('(ui; w
�
�i(�; t�i)); �; ti)�(�) + ŷi(ui; w

�
�i(�; t�i))

#"
P (t�ijti)P

t̂�i:�(f�i(t̂�i);fi(ti))=�
P (t̂�ijti)

#

=
X

t�i2T�i
:�(f(t))=�

[wi('(ui; w��i(�; t�i)); �; ti) + ŷi(ui; w��i(�; t�i)]
"

P (t�ijti)P
t̂�i:�(f�i(t̂�i);fi(ti))=�

P (t̂�ijti)

#

�
X

t�i2T�i
:�(f(t))=�

[wi('(wi(�; �; ti); w��i(�; t�i)); �; ti) + ŷi(wi(�; �; ti; w��i(�; t�i))]
"

P (t�ijti)P
t̂�i:�(f�i(t̂�i);fi(ti))=�

P (t̂�ijti)

#

=
X

t�i2T�i

X
�2�
[vi('(wi(�; �; ti); w��i(�; t�i)); �; ti) + ŷi(wi(�; �; ti); w��i(�; t�i)]�i(�; t�ijri; �; ti):

Therefore, (��; ��) is truthful.

Part 2 : To show that deviations at second stage information sets are unpro�table, suppose
that all players use ��i in stage 1 and players j 6= i use ��j in stage 2. Then, upon observing �
and having reported truthfully in stage 1, it follows from the de�nition of ��j that each player
j 6= i reports ��j (fj(tj); �; tj) = wj(�; �; tj) in stage 2. Therefore, the second stage expected
payo¤ to player i who reports ui 2 Hi given the beliefs �i de�ned above isX

t�i2T�i

X
�2�

�
vi('(ui; w

�
�i(�; t�i)); �; ti) + ŷi(ui; w

�
�i(�; t�i)

�
�i(�; t�ijfi(ti); �; ti)

so the de�nition of ��i implies that

wi(�; �; ti) 2 arg max
ui2Hi

X
t�i2T�i

X
�2�

�
vi('(ui; w

�
�i(�; t�i)); �; ti) + ŷi(ui; w

�
�i(�; t�i))

�
�i(�; t�ijfi(ti); �; ti):
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Part 3 : To show that coordinated deviations across stages are unpro�table for player i, we
assume that other players use (���i; �

�
�i) and we must show that, for all ti 2 Ti and all ri 2 Ai,

we have

X
t�i2T�i

"X
�2�

vi('(wi(�; �(f(t)); ti)); w��i(�(f(t); t�i)); �; ti)��(f(t)) + ŷi(wi(�; �(f(t)); ti)); w��i(�(f(t)); t�i))
#
P (t�ijti)

+
X

t�i2T�i

�i(f(t))]P (t�ijti)

�
X

t�i2T�i

max
ui2Hi

"X
�2�

vi('(ui; w
�
�i(f�i(t�i); ri); t�i)); �; ti)��(f(t)) + ŷi(ui; w

�
�i(f�i(t�i); ri); t�i))

#
P (t�ijti)

+
X

t�i2T�i

�i(f�i(t�i); ri)P (t�ijti):

SinceX
�2�

vi('(wi(�; �(f�i(t�i); ri); ti); w��i(�(f�i(t�i); ri); t�i)); �; ti)��(f�i(t�i); ri)

+ ŷi(wi(�; �(f�i(t�i); ri); ti); w��i(�(f�i(t�i); ri); t�i))

�
X
�2�

vi('(ui; w
�
�i(�(f�i(t�i); ri); t�i)); �; ti)��(f�i(t�i); ri)

+ ŷi(ui; w
�
�i(�(f�i(t�i); ri); t�i))
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for all ui 2 Hi; it follows from Lemma C that for each t�i and each ui; ri and ti;X
�2�

vi('(wi(�; �(f(t)); ti)); w��i(�(f(t)); t�i)); �; ti)��(f(t)) + ŷi(wi(�; �(f(t)); ti)); w��i(�(f(t)); t�i))

�
"X
�2�

vi('(ui; w
�
�i(�(f�i(t�i); ri); t�i)); �; ti)��(f(t)) + ŷi(ui; w

�
�i(�(f�i(t�i); ri); t�i))

#
=
X
�2�

vi('(wi(�; �(f(t)); ti)); w��i(�(f(t)); t�i)); �; ti)��(f(t)) + ŷi(wi(�; �(f(t)); ti)); w��i(�(f(t); t�i)))

� [X
�2�

vi('(wi(�; �(f�i(t�i); ri); ti); w��i(�(f�i(t�i); ri); t�i)); �; ti)��(f�i(t�i); ri)

+ ŷi(wi(�; �(f�i(t�i); ri); ti); w��i(�(f�i(t�i); ri); t�i))]
+ [X

�2�
vi('(wi(�; �(f�i(t�i); ri); ti); w��i(�(f�i(t�i); ri); t�i)); �; ti)��(f�i(t�i); ri)

+ ŷi(wi(�; �(f�i(t�i); ri); ti); w��i(�(f�i(t�i); ri); t�i))]
�
"X
�2�

vi('(ui; w
�
�i(�(f�i(t�i); ri); t�i)); �; ti)��(f�i(t�i); ri) + ŷi(ui; w

�
�i(�(f�i(t�i); ri); t�i))

#
+
X
�2�

vi('(ui; w
�
�i(�(f�i(t�i); ri); t�i)); �; ti)[��(f�i(t�i); ri)� ��(f(t))]

� �(2n� 1)M jj�(f(t))� �(f�i(t�i); ri))jj �M jj�(f(t))� �(f�i(t�i); ri))jj

Therefore,X
t�i2T�i

X
�2�
[vi('(wi(�; �(f(t); ti)); w��i(�(f(t); t�i)); �; ti)��(f(t)) + ŷi(wi(�; �(f(t); ti)); w��i(�(f(t); t�i)))]P (t�ijti)

+
X

t�i2T�i

�i(f(t))P (t�ijti)

�
X

t�i2T�i

max
ui2Hi

[X
�2�

vi('(ui; w
�
�i(�(f�i(t�i); ri); t�i)); �; ti)��(f(t)) + ŷi(ui; w

�
�i(�(f�i(t�i); ri); t�i))]P (t�ijti)

+
X

t�i2T�i

�i(f�i(t�i); ri)P (t�ijti)

+
X

t�i2T�i

[�i(f(t))� �i(f�i(t�i); ri)]P (t�ijti)� 2nM
X

t�i2T�i

jj�(f(t))� �(f�i(t�i); ri))jjP (t�ijti)

To complete the proof, we must show thatX
a�i

[�i(a�i; fi(ti))� �i(a�i; ri)]Q(a�ijfi(ti)) � 2nM
X
a�i

jj�(a�i; fi(ti))��(a�i; ri))jjQ(a�ijfi(ti))
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Applying Lemmas D and E and the de�nition of information decomposition, we conclude thatX
t�i2T�i

[�i(f(t))� �i(f�i(t�i); ri)]P (t�ijti)� 2nM
X

t�i2T�i

jj�(f(t))� �(f�i(t�i); ri))jjP (t�ijti)

=
X
a�i

X
t�i2T�i

:f�i(t�i)=a�i

[�i(f(t))� �i(f�i(t�i); ri)]P (t�ijti)

�2nM
X
a�i

X
t�i2T�i

:f�i(t�i)=a�i

jj�(f(t))� �(f�i(t�i); ri))jjP (t�ijti)

=
X
a�i

[�i(a�i; fi(ti))� �i(a�i; ri)]

2664 X
t�i2T�i

:f�i(t�i)=a�i

P (t�ijti)

3775

�2nM
X
a�i

jj�(a�i; fi(ti))� �(a�i; ri))jj

2664 X
t�i2T�i

:f�i(t�i)=a�i

P (t�ijti)

3775
=

X
a�i

[�i(a�i; fi(ti))� �i(a�i; ri)]Q(a�ijfi(ti))� 2nM
X
a�i

jj�(a�i; fi(ti))� �(a�i; ri))jjQ(a�ijfi(ti))

� "

2
p
jAj
�Qi � (2nM)(3�

Q
i )

� 0

To prove part (a) of the theorem, note that part 3 above shows thatX
t�i2T�i

[�i(f(t))� �i(f�i(t�i); ri)]P (t�ijti)� 2nM
X

t�i2T�i

jj�(f(t))� �(f�i(t�i); ri))jjP (t�ijti)

� "

2
p
jAj
�Qi � 2nM

X
t�i2T�i

jj�(f(t))� �(f�i(t�i); ri))jjP (t�ijti):

If �Qi > 0; then choosing " > 0 su¢ ciently large proves the result.

9. bibliography

References

[1] Clarke, E. (1971), �Multipart Pricing of Public goods,�Public Choice 8, 19-33.

[2] Cremer, J. and R. P. McLean, (1985), �Optimal Selling Strategies under Uncertainty for a
Discriminatory Monopolist when Demands Are Interdependent,�Econometrica, 53, 345-61.

[3] Cremer, J. and R. P. McLean, (1988), �Full Extraction of the Surplus in Bayesian and
Dominant Strategy Auctions,�Econometrica, 56, 1247-57.

24



[4] Green, J. and J.-J. La¤ont (1979), Incentives in Public Decision Making. Amsterdam:
North-Holland.

[5] Groves, T. (1973), �Incentives in Teams,�Econometrica 41, 617-631.

[6] Ledyard, J.O. and T.R. Palfrey (1994), �Voting and Lottery Drafts as E¢ cient Public
Goods Mechanisms,�Review of Economic Studies 61, 327�355.

[7] Ledyard, J.O. and T.R. Palfrey (2002), �The Approximation of E¢ cient Public Good Mech-
anisms by Simple Voting Schemes,�Econometrica 67, 435�448.

[8] McAfee, P. and P. Reny (1992), �Correlated Information and Mechanism Design,�Econo-
metrica 60, 395-421.

[9] McLean, R. and A. Postlewaite (2002), �Informational Size and Incentive Compatibility,�
Econometrica 70, 2421-2454.

[10] McLean, R. and A. Postlewaite (2004), �Informational Size and E¢ cient Auctions,�Review
of Economic Studies 71, 809-827.

[11] McLean, R. and A. Postlewaite (2014), �Implementation with Interdependent Valuations,�
forthcoming, Theoretical Economics.

[12] Mount, K. and S. Reiter (1974), �The Informational Size of Message Spaces,� Journal of
Economic Theory 8, 161�192.

[13] Postlewaite, A. and D. Schmeidler, (1986), �Implementation in Di¤erential Information
Economies,�Journal of Economic Theory, June 1986, 39, 14-33.

[14] Vickrey, W. (1961), �Counterspeculation, Auctions and Competitive Sealed tenders,�Jour-
nal of Finance 16, 8-37.

25


