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Abstract. We establish conditions under which an English auction for an indivisible

risky asset has an e¢ cient ex post equilibrium when the bidders are heterogeneous in both

their exposures to, and their attitudes toward, the ensuing risk the asset will generate

for the winning bidder. Each bidder�s privately known type is unidimensional, but may

a¤ect both his risk attitude and the expected value of the asset�s return to the winner.

An ex post equilibrium in which the winning bidder has the largest willingness to pay

for the asset exists if two conditions hold: each bidder�s marginal utility of income is log-

supermodular, and the vector-valued function mapping the type vector into the bidders�

expected values for the asset satis�es a weighted average crossing condition. However, this

equilibrium need not be e¢ cient. We show that it is e¢ cient if each bidder�s expected

value for the asset is nonincreasing in the types of the other bidders, or if the bidders

exhibit nonincreasing absolute risk aversion, or if the asset is riskless.
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1 Introduction

A notable feature of an English auction is the open ascending-bid process that allows

bidders to infer and use the private information of the others before the auction ends. A

remarkable consequence is that, in a variety of settings, an English auction has an e¢ cient

ex post equilibrium. A number of recent studies have established this in settings with

heterogeneous bidders and interdependent values: Maskin (1992), Krishna (2003), Dubra,

Echenique and Manelli (2009), and Birulin and Izmalkov (2011). These are important

results, given the detail-free nature and simplicity of English auctions, and the robust,

belief-free nature of ex post equilibria.

In this paper we consider English auctions in environments with two additional

features, both of which are prevalent in reality. First, the value the winning bidder will

receive from the object may be uncertain when the auction is held. Speci�cally, we consider

the case in which the object being sold is a risky asset that gives the winning bidder a

random monetary return at some time after the auction. This return is the sum of its

expected value, a function of all the bidders�types, and a random noise that is independent

of the types which we refer to as an �ensuing risk.�The second feature, without which the

ensuing risk would be irrelevant, is that the bidders need not be risk neutral. Heterogeneity

abounds: the bidders may have di¤erent utility functions for income, di¤erent expected

value functions for the asset�s return, and di¤erent ensuing risks. The model nests as

special cases essentially all existing models of single-object auctions with unidimensional

private information.

Ensuing risk is a feature of objects sold in many auctions. The value of �ne wine,

antiques, land, licenses, mineral rights, and takeover targets generally remains uncertain

to the winner at the time an auction concludes. Es½o and White (2004) provide the �rst

analysis of auctions with ensuing risk, interdependent types, and risk averse bidders, focus-

ing on the e¤ects of ensuing risk on bidding levels in �rst-price and second-price auctions.

Our environment generalizes theirs by allowing heterogeneity and nonmonotonic value

functions, and our focus on the existence of e¢ cient ex post equilibria in English auctions

is quite di¤erent. An important assumption in both papers, however, is that the risk is

noncontractible (uninsurable). This is the case when its realization is observed only by

the winning bidder, or is unveri�able for some other reason to a third-party enforcer of

contracts.1

The addition of ensuing risk and nonlinear utility signi�cantly alters the analysis

of an English auction. A bidder�s optimal bidding behavior in any English auction is

1Contractible ensuing risks are the focus of the literature on designing auctions with contingent pay-

ments, as recently surveyed by Skrzypacz (2013).
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determined largely by his willingness-to-pay function that maps the type vector into the

maximal amount he would be willing to pay for the asset. In a standard quasilinear utility

setting, a bidder�s utility is his �value� for the object, a function of the bidders�types,

less the price he pays. In this case his willingness-to-pay function is equal to his value

function, and so trivially has the same assumed properties. In our environment, however,

a bidder�s willingness-to-pay function is determined by the nature of his utility function

(for money), the asset�s (expected) value function, and the distribution of his ensuing risk.

Any desired properties of the endogenous willingness-to-pay functions must be derived

from the properties of these underlying exogenous functions.

Income e¤ects are an additional complication.2 Without quasilinear utility, the

maximum price a bidder is willing to pay for the asset is generally not equal to the minimum

price he would be willing to sell it for after winning it in the auction. Consequently,

even though the bidder with the largest willingness to pay wins the asset in the ex post

equilibrium we identify, the resulting allocation need not be ex post e¢ cient. The winner

may be able to sell the asset to a losing bidder to their mutual bene�t.

A bidder�s privately known type in this paper is unidimensional,3 but it plays two

roles. In addition to possibly a¤ecting the expected value of the asset to every bidder, a

bidder�s type may also a¤ect his own risk attitude. Our �rst key assumption, A1, is that

each bidder�s marginal utility of income is log-supermodular in his type and income. This

implies that a bidder�s risk tolerance increases in his type. (We do not require the bidders

to be risk averse; their utility functions may be concave, convex, or neither.4)

In previous work on the existence of e¢ cient ex post equilibria in English auctions,

an important assumption is that the bidders�value functions satisfy some sort of single-

crossing condition. Our second key assumption, A2, requires the bidders� (expected)

value functions for the asset to satisfy a �weighted average crossing condition� that re-

lates to a condition of Krishna (2003). However, what is actually important is that the

willingness-to-pay functions, not the value functions, satisfy a single-crossing condition.

This is where the log-supermodularity assumption is used: A1 and A2 together imply that

the willingness-to-pay functions also satisfy our weighted average crossing condition.

This result allows us to prove that an English auction in our setting has an ex post

equilibrium in which the asset is sold to a bidder with the highest willingness to pay

2Baisa (2013) considers the design of auctions in the presence of income e¤ects.

3Unidimensionality seems to be a necessary restriction, since e¢ cient ex post equilibria generically do

not exist if types are multidimensional (Dasgupta and Maskin, 2000; Jehiel and Moldovanu, 2001).

4A bidder�s utility for income could have convex parts because of, e.g., previously obtained �nancing

that must be paid back, and limited liability or wealth constraints.
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for it (Theorem 1 and Corollary 1).5 The argument somewhat resembles those in the

literature, especially that of Theorem 2 in Krishna (2003), applied to the willingness-to-

pay functions instead of the value functions. However, in two ways our argument is novel.

First, our formulation of a button auction model of an English auction allows a bidder to

immediately drop out when he sees another bidder drop out �rst, so that he is able to drop

out at the same price.6 (This does not happen in the equilibrium we identify.) Second,

instead of obtaining the (inverse) equilibrium strategies by applying an existence theorem

to a system of ordinary di¤erential equations, we construct them directly from the global

inverse of the vector-valued willingness-to-pay function of (all) the bidders, which we show

exists by applying a theorem of Gale and Nikaidô (1965).

Turning to the e¢ ciency question, we ask whether the equilibrium allocations are

Pareto e¢ cient conditional on the realized types.7 A symmetric, two-bidder example gives

a strong negative answer: the equilibrium allocation in the example is not ex post e¢ cient

whenever the bidders�types are unequal. This ine¢ ciency is due to two factors. First,

the losing bidder�s willingness to pay for the asset increases in the winning bidder�s type.

Since the price at which he drops out is based on an underestimate of the winning bidder�s

type, the losing bidder�s willingness to pay is larger ex post. Second, an adverse income

e¤ect is caused by the winner�s increasing absolute risk aversion. His positive information

rent due to winning makes him more risk averse, and hence lowers the price at which he

is willing to sell the asset. The result is that ex post, the loser is willing to pay more for

the asset than the lowest price the winner is willing to sell it, generating gains from trade.

The equilibrium is, however, ex post e¢ cient under relatively mild conditions. Our

second main result (Theorem 2) is that the equilibrium shown to exist in Theorem 1 is ex

post e¢ cient if each bidder�s expected value for the asset is nonincreasing in the types of

the other bidders, or if the bidders exhibit nonincreasing absolute risk aversion, or if the

asset is riskless.

The rest of the paper is organized as follows. The general environment is described

in Section 2. Assumptions A1 and A2 are presented in Section 3, together with their

implications. Our formulation of a button English auction is presented in Section 4.

5Existence per se is not an issue. In any setting in which some bidder wants to win at the reserve price

for any realization of the types, the English auction has an ex post equilibrium in which that bidder never

drops out and all the others drop out immediately, regardless of their types.

6This is done by a �clock stopping� convention similar to those used in Bulow and Klemperer (1994)

and Ausubel (2004). The continuous time game issues so addressed are the subject of, e.g., Simon and

Stinchcombe (1989).

7This is the usual notion of ex post e¢ iciency, but it does seem to presuppose that losing bidders learn

the winning bidder�s type. We discuss this more in Section 6.
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Theorem 1 and Corollary 1 on existence appear in Section 5, and Theorem 2 on e¢ ciency

in Section 6. Properties of matrices that satisfy a dominant weighted average condition

are derived in Appendix A, and proofs missing from the text are in Appendix B.

2 Environment

An indivisible asset is to be sold to one of several bidders using an English auction. The

asset will generate a random return for the winning bidder after the auction has been held.

Each bidder has a private type which can a¤ect his risk preferences regarding the asset�s

ensuing risk, as well as the expected value of that risk.

The set of bidders is N = f1; :::; ng, where n � 2: The private type of bidder i,

denoted as ti; is an element of a compact interval Ti = [ti; �ti] � R: A type pro�le is

denoted as t = (t1; : : : ; tn); an element of T : = T1 � � � � � Tn: The bidders may or may
not have a common prior on the type space �we need not specify this because we are

concerned with ex post equilibria.

If bidder i obtains the asset and the realized type vector is t; the asset will generate

for him a random income vi(t)+~zi. The random variables ~z1; :::; ~z have a commonly known

distribution and may be correlated, but they are independent of t and satisfy E(~zi) = 0.8

We refer to ~zi as the ensuing risk of the asset to bidder i, and to vi(t) as the expected

value of the asset to bidder i conditional on t: Each vi is assumed to be continuously

di¤erentiable on T:9

Type ti of bidder i has a Bernoulli utility function ui(�; ti) for money. We assume ui

is twice di¤erentiable on R� Ti; and the �rst partial derivative ui1 is positive everywhere.
We make no assumption about the sign of ui11(�; ti); allowing each bidder to be locally risk
loving, neutral, or averse at di¤erent levels of income.

If bidder i obtains the asset for price p; his payo¤ is Eui
�
vi(t) + ~zi � p; ti

�
: If he

does not obtain the asset and pays nothing, his payo¤ is ui(0; ti): We assume the former

is weakly larger than the latter if p = 0. Thus, any bidder would always like to obtain the

asset free of charge. We also assume a large enough price �p exists such that the reverse

strict preference holds for any i 2 N; t 2 T; and p � �p: Consequently, since ui1 > 0, for

each i 2 N and t 2T a unique number �i(t) 2 [0; �p) exists such that

Eui
�
vi(t) + ~zi � �i(t); ti

�
= ui(0; ti): (1)

We refer to �i(t) as bidder i�s (maximum) willingness to pay for the asset given the type

8Throughout, E(�) denotes expectation with respect to the arguments marked with tildes.
9That is, vi is continuous on T; has partial derivatives that are continuous on the interior of T; and

those partial derivatives converge to �nite quantities at boundary points of T:
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vector t. Were he to know t; bidder i would strictly prefer to purchase the asset at

price p over not purchasing the asset if and only if p < �i(t): Much of the subsequent

analysis focuses on the properties of these willingness-to-pay functions. Since each ui is

continuously di¤erentiable and ui1 > 0; �
i is continuously di¤erentiable on T:

A variety of special cases of this environment are of interest. Consider, for example,

the following three.

(a) Types determine only risk preferences: vi(t) := �vi: In this case we have a private

value environment, since the type vector directly a¤ects the payo¤ of bidder i only

through his own type, in ui(�; ti): His willingness to pay is a function of only his own
type, �i(ti):

(b) Types determine only expected values: ui(x; ti) = ui(x). In this case ti might be

an informative signal about the asset�s value to each bidder, causing the expected

values vi(t) to depend on t: Alternatively, t might determine the technology with

which bidder i can use the asset, and hence its expected return. The symmetric

model of Es½o and White (2004) is a special case.

(c) Bidders are risk neutral and types determine only expected values: this is the special

case of (b) in which ui(x) = x: In this case

E
�
ui(vi(t) + ~zi � p; ti)

�
= vi(t)� p;

and so the ensuing risks ~zi are irrelevant. The willingness-to-pay functions are equal

to the expected value functions: �i(t) = vi(t):

Remark 1 The previous literature on English auctions with asymmetric interdependent

values focuses on case (c), e.g., Krishna (2003), Dubra et al. (2009), and Birulin and

Izmalkov (2011). These papers also make one symmetry assumption, namely, that all

bidders have the same expected value at the lowest type vector: vi(t) = vj(t) for all i 6= j.10

This assumption provides a boundary condition for a system of di¤erential equations that

characterize an equilibrium. We dispense with this assumption partly to avoid assuming

any symmetry, and partly because only in case (c) would it imply that all bidders have the

same willingness to pay at t.

3 Two Key Assumptions

In this section we present and discuss the two assumptions which together imply that the

English auction has an ex post equilibrium in which the asset is always sold to a bidder

with the highest willingness to pay.

10This common value at t is normalized to equal 0:
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3.1 Ordering Risk Tolerance

A function g : X � T ! R; where X and T are subsets of R; is log-supermodular if

g(x; t)g(x0; t0) � g(x; t0)g(x0; t)

for all x; x0 2 R and t; t0 2 T such that x0 > x and t0 > t: The following assumption is that
each bidder�s marginal utility satis�es this property:

A1. ui1 is log-supermodular on R� Ti for all i 2 N:

The relevant implication of A1 is that higher types of a bidder are more tolerant of risk

than are lower types. This has been formalized in a variety of ways and contexts (e.g.,

Jewitt, 1987; Athey, 2002). For our purposes we provide the following result.

Lemma 1 Let X;T � R be intervals, and suppose a function u : X � T ! R has a

derivative u1 that is positive and log-supermodular on X �T: Let a 2 X and t; t0 2 T with
t0 > t; and let ~x be a random variable on X such that Eu(~x; t) and Eu(~x; t0) exist. If

Eu(~x; t) = u(a; t);

then (i) Eu(~x; t0) � u(a; t0); and (ii) Eu2(~x; t) � u2(a; t) when Eu2(~x; t) and u2(a; t) exist.

Lemma 1 (i) shows that log-supermodularity of the marginal utility function implies

that if one type is indi¤erent between a gamble and a riskless amount, then a higher type

weakly prefers the gamble. From this, familiar arguments (e.g., Pratt, 1964) show that the

certainty equivalent for a �xed gamble is nondecreasing in the type, the utility function

of a lower type is a concave transformation of that of any higher type, and, assuming the

second derivative exists, the Arrow-Pratt measure of absolute risk aversion is nonincreasing

in the type.

Lemma 1 (ii) yields a useful relationship between the derivatives of the willingness-

to-pay and expected value functions. For all i; j 2 N; di¤erentiating (1) with respect to
tj and solving for the derivatives �ij yields

�ij(t) = v
i
j(t) for j 6= i; (2)

and

�ii(t) = v
i
i(t) +

Eui2
�
vi(t) + ~zi � �i(t); ti

�
� ui2(0; ti)

Eui1 (vi(t) + ~zi � �i(t); ti)
:

Given A1, (1) , and Lemma 1 (ii); the numerator on the right side of this equality is

nonnegative. We thus have

�ii(t) � vii(t): (3)
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We end this subsection with an example to show why an assumption like A1 is

needed. It is a symmetric two-bidder example in which the expected value functions

satisfy the single-crossing condition of Maskin (1992) (and our own upcoming A2). The

auction would therefore have a symmetric (and e¢ cient) ex post equilibrium if the bidders

were risk neutral. But they are instead risk averse, with utility functions that violate A1,

and a symmetric ex post equilibrium does not exist.

Example 1 Each of two bidders, i = 1; 2; has CARA utility ui(x; ti) =
�
1� e�tix

�
=ti;

expected value vi(t) = ti + 1
2 t�i; and an ensuing risk ~zi that is normally distributed with

mean zero and variance �2 2 (2; 3). Each bidder�s set of types is the same nondegenerate
interval [t; �t] : The willingness-to-pay functions take the familiar form of expected value

less the cost of risk:

�i(t) = vi(t)� 1
2 ti�

2 =
�
1� 1

2�
2
�
ti +

1
2 t�i:

The partial derivatives are �ii = 1 � 1
2�

2 < 0 since �2 > 2; and �i1 + �
i
2 =

3
2 �

1
2�

2 > 0

since �2 < 3:

As usual, we model a two-bidder English auction as a second price auction. Suppose

(�; �) is a symmetric ex post equilibrium, and that �(t1) � �(t2) for some t = (t1; t2):

Given this t, bidder 2 wins with positive probability and pays �(t1) when he does, and

bidder 1 loses with positive probability. Because it is an ex post equilibrium, � must satisfy

two conditions. First, bidder 2 must not regret winning at t; i.e., the amount he pays

cannot exceed his willingness to pay:

�(t1) � �2(t): (4)

Second, bidder 1 must not regret losing at t: Thus, since he could win and pay �(t2) by

bidding high enough, this amount must exceed his willingness to pay:

�(t2) � �1(t): (5)

These inequalities hold for all t such that �(t1) � �(t2), and in particular for t = (t; t).

Thus, since �1(t; t) = �2(t; t); for all t 2 [t; �t] we have

�(t) = �i(t; t):

Now, since �0 = �i1 + �
i
2 > 0, � is a strictly increasing function. Hence, for all t1 < t2

we have �(t1) < �(t2); and so (t1; t2) must satisfy (4) and (5). But this is impossible. As

�11 < 0 and �1(t2; t1) = �2(t1; t2) (� is permutation symmetric), for t1 < t2 we have a

contradiction of (4):

�(t1) = �
1(t1; t1) > �

1(t2; t1) = �
2(t1; t2):

7



In this example a bidder�s risk aversion increases with his type. It does so fast

enough that the bidder�s willingness to pay for the asset decreases in his type, even though

his expected value for the asset increases in his type. (Inequality (3) fails to hold, as

�ii < 0 < vii:) However, because a bidder�s expected value for the asset increases fast

enough in the other bidder�s type, any symmetric equilibrium bid function must still be

increasing. The incompatibility of this with a willingness-to-pay function that decreases

in his own type is why a symmetric ex post equilibrium does not exist.

3.2 Weighted Average Crossing

The single-crossing condition we use is related to the average crossing condition of Krishna

(2003), as we discuss below. Our condition is based on the following property of square

matrices.

De�nition. For n � 1; an n�n matrix A = [aij ] satis�es the dominant weighted average

condition (DWAC) if positive weights �1; : : : ; �n exist that sum to one and satisfy, for all

i 6= j;
nX
k=1

�kakj > maxf0; aijg:

In words, a square matrix satis�es DWAC provided some weighted average of its rows is

strictly positive, and each component of this average row is larger than each o¤-diagonal

element in its column.11 It will be useful to note now that each diagonal element of a

DWAC matrix is positive and larger than every other element in its column:

ajj > max f0; aijg for all i 6= j: (6)

This and other results about DWAC matrices are proved in Appendix A.

If a function mapping T into Rn has a Jacobian matrix satisfying DWAC at each
t 2 T, we say it satis�es the weighted average crossing condition. De�ning v : T! Rn by
v := (v1; : : : ; vn); we now make the following assumption:

A2. v satis�es the weighted average crossing condition.

This assumption requires that at each t, a marginal increase in tj should increase some

weighted average of all the bidders�expected values, and it should increase that average

more than it does the expected value of any bidder i 6= j: The weights used generally

depend on t: By (6), A2 implies vjj (t) > vij(t) for all i 6= j and t 2 T, and hence it

implies the pairwise single-crossing condition of Maskin (1992) and Dasgupta and Maskin

11 If n = 1; the de�nition requires only that the one element of A be positive.

8



(2000). A prominent example of a value function satisfying A2 is one that is additively

separable into common and private value components, vj(t) = w(t) + v̂j(tj); with v̂0j > 0

and
Pn
k=1max f0;�wk=v̂0kg < 1:12 (A similar observation is made in Krishna, 2003.)

Remark 2 A square matrix satis�es the dominant average condition (DAC) if it satis�es

DWAC with �k = 1=n for each k: The average crossing condition of Krishna (2003)

requires the Jacobian matrix of v to satisfy DAC at all type vectors at which two or

more bidders have the maximal valuation. In comparison, our weighted average crossing

condition is weaker in that the weights need not be equal or constant in t; but stronger

in that it requires the Jacobian matrix to satisfy DWAC at all t: We require the latter

because in our setting, two bidders who have the same expected value need not have the

same willingness to pay.13

Krishna (2003) also de�nes DWAC matrices (p. 286), but does not specify a corre-

sponding single-crossing condition on v. He does, however, say (p. 274) that in his setting

the existence of an e¢ cient ex post equilibrium can be shown if his average crossing con-

dition is weakened to one involving weighted averages. As his setting is a special case of

ours, the upcoming Theorems 1 and 2 show this is true.

The following lemma shows that A1 and A2 together imply that the willingness-to-

pay function � := (�1; : : : ; �n) also satis�es the weighted average crossing condition.

Lemma 2 Under A1-A2, for each t 2 T the matrix [�ij(t)] satis�es DWAC.

Proof. Fix t 2 T: By A2,
h
vij(t)

i
satis�es DWAC, and so vjj (t) > 0 by (6). By A1, (2)

and (3) hold. Hence,
h
�ij(t)

i
equals

h
vij(t)

i
plus a nonnegative diagonal matrix. This

implies, since
h
vij(t)

i
satis�es DWAC, that

h
�ij(t)

i
does too (using the same weights).

The most important result of Appendix A is Lemma A.3. It establishes that a DWAC

matrix is a �P-matrix,� which is a matrix for which the determinants of all principal

submatrices (including itself) are positive. The importance of this result is that if the

Jacobian matrix of a di¤erentiable function from T onto a set P � Rn is a P-matrix

12Given t; for each k let �k = max f0;�wk(t)=v̂0k(tj)g+ "k for some "k > 0: Since
P
max f0;�wk=v̂0kg <

1; a strictly positive ("1; : : : ; "n) can be found so that
P
�k = 1: For A = [vij(t)]; we have S(j) :=P

k �kakj = wj + �j v̂
0
j > wj : Obviously S(j) > 0 if wj > 0; and also if wj � 0 because then S(j) =

wj +
�
�wj=v̂0j + "j

�
v̂0j = "j v̂

0
j > 0: This proves A is DWAC, and so A2 holds.

13The alternative su¢ cient condition introduced in Krishna (2003), the cyclical crossing conditon, as

well as those used in Dubra, Echenique and Manelli (2009) and Birulin and Izmalkov (2011), are less

comparable to A2.
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everywhere, then the function has an inverse that maps P onto T.14 Lemma A.3 also

establishes that the inverse of a DWAC matrix maps the unit vector into a strictly positive

vector. Putting these results together gives us the following result.

Lemma 3 Under A1-A2, � has a continuously di¤erentiable inverse function, ' : �(T)!
T. Its Jacobian matrix at any p 2 �(T) satis�es ['ij(p)]e� 0:15

Proof. For each t 2 T the matrix [�ij(t)] is DWAC by Lemma 2. Lemma A.3 thus implies
it is a P-matrix at every t 2 T. Hence, since T is a compact rectangle, � has an inverse,

' : �(T) ! T; by Theorem 4 in Gale and Nikaidô (1965). The continuity of � implies

' is continuous. As � is continuously di¤erentiable and det[�ij(t)] > 0 at any t 2 T; the
inverse function theorem implies ' is continuously di¤erentiable at any p in the interior

of �(T), and has the Jacobian matrix�
'ij(p)

�
=
�
�ij('(p))

��1
:

Since [�ij('(p))] is continuous in p and has a positive determinant at all p 2 �(T); we
conclude that ' is continuously di¤erentiable on �(T): By Lemma A.3, for any p 2 �(T)
we have [�ij('(p))]

�1e� 0; and so ['ij(p)]e� 0.

We shall apply Lemmas 2 and 3 not only to �; but also to any function obtained

from � by holding the types of some bidders �xed. We can do this because, by Lemma

A.2 in Appendix A, all principal submatrices of a DWAC matrix are also DWAC matrices.

Thus, for any A � N and tNnA 2 TNnA; both lemmas apply under A1-A2 to the function
�̂ :TA ! RjAj de�ned by �̂(tA) = �A(tA; tNnA).

Assumptions A1 and A2 are the basis, largely via Lemma 3, of all the upcoming

results. For the rest of this paper they will be maintained background assumptions, not

explicitly listed in the statements of results.16

4 The Button Auction Game

We model an English auction by the following version of a button auction game. The price

of the asset steadily rises while all the active bidders hold down their buttons. The price

14The inverse function theorem does not imply this. A function may not have a global inverse even if

its Jacobian matrix is continuous and nonsingular everywhere, and its determinant never changes sign.

Examples are given, e.g., in Gale and Nikaidô (1965) and Rudin (1976, Exercise 9.17).

15Throughout, e and 0 denote the column vectors of 1�s and 0�s respectively, of length equal to the

dimension of the associated matrix.

16All upcoming results remain true if instead of A1-A2, we simply assumed � satis�es the weighted

average crossing condition. We prefer A1-A2 because they are assumptions about the exogenous functions

from which � is derived.
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stops rising the moment any bidder releases his button (�drops out� or �exits�). Some

number of seconds later, say � > 0; any of the remaining active bidders may exit too. If

any do, then in another � seconds any of the remaining active bidders may again exit.

This continues until no more bidders exit. Then, if at least two bidders are still active,

the price resumes its steady rise until it reaches another price at which bidders exit. The

process continues in this way until either only one bidder is active, in which case he is

the winner and pays a price equal to the highest price at which the others dropped out,

or all the active bidders simultaneously drop out, in which case they each win with equal

probability and the winner pays the price at which they dropped out. All exits are publicly

observed, both the exit prices and the identities of those who exit.

An exit round is a pair (p;D); where p � 0 and ? 6= D � N: Its interpretation is that
D is the set of bidders who simultaneously exit when the current price is p in this round.

At any moment during the auction the public history of exits is either the null history, h0;

if no bidder has yet exited, or it is a �nite sequence of exit rounds, h = f(pk; Dk)gKk=1 ; for
which K � 1; p1 � p2 � � � � � pK ; and the sets Dk of exiting bidders are disjoint.17 The
rounds occur in temporal order, i.e., Dk exits before Dk+1 exits. (If pk = pk+1; the two

sets of bidders exit at the same price, but those in Dk+1 exit after they have seen those

in Dk exit.) The set of all histories is denoted as H:

Lastly, it will be useful to de�ne the subhistories, h0; : : : ; hK ; of an exit history

h = f(pk; Dk)gKk=1 by hk := f(p`; D`)g
k
`=1 for k � 0: Note that hK = h; and that the null

history h0 is a subhistory of every exit history.

For any history h = f(pk; Dk)gKk=1 ; we denote the set of bidders who have dropped
out as D(h) := D1 [ � � � [Dk. (At the null history we have D(h0) := ?:) The set of active
bidders after history h is NnD(h):

An outcome is a complete history, one that determines the set of winning bidders

and the sale price. That is, it is a history f(pk; Dk)gKk=1 for which NnD(h) either contains
just one bidder, in which case he is the winner, or it is empty and DK contains at least

two bidders, all of whom win with equal probability. In both cases the sale price is pK .

Let Hi be the set of exit histories at which bidder i is active and the game is not

over, i.e., the histories h for which i =2 D(h) and jD(h)j � n� 2. A strategy for bidder i is
a function �i : Ti �Hi ! R+: When his type is ti and the history is h 2 Hi; strategy �i
requires the bidder to exit at price p if and only if p � �i(ti; h): For each t 2 T, the play
of a strategy pro�le � = (�1; : : : ; �n) gives rise to an outcome.

For each t 2 T the button auction protocol gives rise to a complete information

game, which we denote as �(t): In this game the vector of types t is common knowledge,

17For convenience, we take h = f(pk; Dk)gKk=1 with K = 0 to be the null history h0:
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and an outcome f(pk; Dk)gKk=1 yields commonly known payo¤s, Eui
�
vi(t) + ~zi � pK ; ti

�
for winners and ui(0; ti) for losers. A strategy pro�le � of the button auction is an ex post

equilibrium if, for each t 2 T; (�1(t1; �); : : : ; �n(tn; �)) is a Nash equilibrium of �(t):

5 Equilibrium Existence

We now show that under A1-A2, the button auction has an ex post equilibrium in which

the winning bidder has the largest willingness to pay for the asset. The �rst step is to

construct, for each bidder i and exit history h = f(pk; Dk)gKk=1 ; a minimum type function

� i(�; h) : [pK ;1) ! Ti: In equilibrium, when the exit history is h 2 Hi; bidder i drops
out if and only if the price rises to a level p at which his type is less than or equal to his

minimum type � i(p; h): This will be an equilibrium strategy because, so long as his type

exceeds his minimum type, the bidder�s willingness to pay must exceed the current price

even if all other active bidders immediately drop out. The type of an exiting bidder will

be given by his minimum type function evaluated at the price at which he exited.

Let � = (�1; : : : ; �n) = (� i; ��i): Given any history h = f(pk; Dk)gKk=1 2 Hi; the
equilibrium strategy of bidder i when his type is ti will be given by

��i (ti; h) := min
�
p � pK : �i (ti; ��i(p; h)) � p

	
: (7)

According to this strategy, the bidder will exit once the price rises enough to equal his

willingness to pay, calculated under the assumption that the other bidders�types are equal

to their minimum types at that price and history. At lower (greater) prices this calculated

willingness to pay is greater (lower) than the price, because � will satisfy the following

single-crossing property:

P1. For all i 2 N; ti 2 Ti; h = f(pk; Dk)gKk=1 ; and p0 � p � pK :

(i) �i(ti; ��i(p; h)) = p ) ti = � i(p; h);

(ii) �i(ti; ��i(p; h)) � p ) �i(ti; ��i(p0; h)) � p0:

We now construct � ; establishing that it satis�es P1 and other useful properties

along the way. The construction relies on the following lemma.18

18The properties ofm in Lemma 4 are analogous to the �break-even conditions�of Krishna (2003), made

more complicated here by the need to allow �i(m(p)) > p when mi(p) = ti because we have �(t) � 0

instead of �(t) = 0. Our construction is consequently quite di¤erent. Krishna shows a solution to his

break-even conditions exists by showing the existence of a solution to a set of di¤erential equations. We

instead prove Lemma 4 by a direct argument using the inverse of � shown to exist in Lemma 3.

12



Lemma 4 Fix p̂ � 0; D � N; and t̂ 2 T; and suppose that for all i =2 D;

�i(̂t)

8<: � p̂ if t̂i > ti

� p̂ if t̂i < �ti
. (8)

Then a continuous nondecreasing function m : [p̂;1)! T exists that satis�es m(p̂) = t̂;

mD(�) � t̂D; and, for all i =2 D; ti 2 Ti, and p0 � p � p̂ :

(i) �i(ti;m�i(p)) = p ) ti = mi(p);

(ii) �i(ti;m�i(p)) � p ) �i(ti;m�i(p0)) � p0; and

(iii) �i(m(p))

8<: � p if mi(p) > ti

� p if mi(p) < �ti
:

The minimum type function � is de�ned to be the functionm of Lemma 4 for various

choices of the triple (p̂; D; t̂): We start with the null history h0: Letting (p̂; t̂) = (0; t); we

have �i(̂t) � p̂ and t̂i < �ti for all i 2 N: So (8) is satis�ed when (p̂; D; t̂) = (0;?; t).
We can thus de�ne � (�; h0) : [0;1) ! T to be the function m the lemma yields for this

choice of (p̂; D; t̂). Note that � (�; h0) is continuous, nondecreasing, and satis�es P1 (with
pK = 0):

Now consider a one-round history h = f(p1; D1)g ; and let (p̂; D; t̂) = (p1; D1; � (p1; h0)):
Then Lemma 4 (iii) and the de�nition of � (�; h0) in the previous paragraph together
imply that (8) holds for all i =2 D: We can therefore again apply Lemma 4, de�ning

� (�; h) : [p1;1) ! T to be the m obtained for this choice of (p̂; D; t̂). Lemma 4 implies

� (�; h) satis�es P1 and is continuous and nondecreasing.
An important property of the minimum type functions constructed so far is that

they do not �jump�when bidders exit. That is, Lemma 4 and our choice of the boundary

value t̂ = �(p1; h0) implies � (p1; h0) = � (p1; h1) (where h1 = h). We state this now as a

general property that the minimum type functions will satisfy:

P2. For 1 � K < n; h = f(pk; Dk)gKk=1 ; and subhistories h0; : : : ; hK of h;

� (pk; hk�1) = � (pk; hk) for all k = 1; : : : ;K:

Having constructed the minimum type functions for the null history and all one-

round histories, we use the same procedure to construct these functions for all two-round

histories, then all three-round histories, and so on. The end result is a function � (p; h)

mapping all histories h = f(pk; Dk)gKk=1 and prices p � pK into T that satis�es P1-P2. For
each h = f(pk; Dk)gKk=1 ; the function � (�; h) is continuous and nondecreasing on [pK ;1).

Now that � has been de�ned, the strategies ��i are well de�ned by (7). The following

lemma establishes an important property of these strategies: if bidder i uses ��i and drops
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out, the history and price at which he drops out perfectly reveal his type. This is true

regardless of the strategies of the other bidders.

Lemma 5 For any t 2 T; i 2 N; and strategies ��i; let h = f(pk; Dk)gKk=1 be the
outcome when (��i ;��i) is played and t is the type vector. Then, letting h0; : : : ; hK be the

subhistories of h; for every i 2 Dk we have

�i (ti; ��i(pk; hk�1)) = pk and ti = � i(pk; hk�1):

Proof. Let i 2 Dk: Then (7) implies �i (ti; ��i(pk; hk�1)) � pk: Assume this inequality is
strict. Then pk > 0; since �i(�) � 0. If k = 1; then hk�1 = h0 (the null history), and the
continuity of ��i(�; h0) implies the existence of p 2 (0; p1) such that �i (ti; ��i(p; h0)) < p;
and so ��i should have caused bidder i to drop out before the price reached p1: This

contradiction implies k > 1: A similar continuity argument implies that if pk�1 < pk;

bidder i should have dropped out before the price reached pk: We thus have pk�1 = pk:

But then P2 implies

�i(ti; ��i(pk�1; hk�2)) = �i(ti; ��i(pk�1; hk�1))

= �i(ti; ��i(pk; hk�1))

< pk = pk�1:

This and (7) imply that bidder i should have dropped out in a round before round

k; i.e., in round k � 1 if not earlier. As this contradicts i 2 Dk; we conclude that

�i (ti; ��i(pk; hk�1)) = pk: This and P1 imply ti = � i(pk; hk�1):

We are �nally in position to prove the main result of this section.

Theorem 1 The strategy pro�le �� is an ex post equilibrium of the button auction.

Proof. Fix t 2 T; and let h = f(pk; Dk)gKk=1 be the outcome when �� is played in �(t);
with subhistories h0; : : : ; hK = h: Then pK is the sale price. By Lemma 5, the imputed

types of those who exit are equal to their true types: � i(pk; hk�1) = ti for all i 2 Dk:
Hence, by P2 and the construction of � i; we have � i(p; h`) = ti for all i 2 Dk, ` � k; and
p � p`: Letting i 2 N; we must prove ��i is a best reply to ���i in the game �(t): Without
loss of generality we let i = 1: The proof breaks into two cases, depending on whether

bidder 1 wins with probability one or less than one when �� is played in �(t):

Case 1: Bidder 1 wins with probability one. In this case D(h) = Nn f1g : Since
bidder 1 does not drop out, (7) implies �1

�
t1; ��1(pK ; hK�1)

�
> pK ; and so P2 yields

�1 (t1; ��1(pK ; h)) > pK : (9)
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Since the other bidders do drop out, they have revealed their true types by the time the

price reaches pK ; implying ��1(pK ; h) = t�i: Thus, (9) implies �1(t) > pK ; showing that

bidder 1 prefers to win and pay pK than to lose. Any deviation from ��1 causes him either

to lose or to win and pay pK , as he cannot a¤ect the price he pays when he wins. So ��1
is indeed a best reply to ���1 in �(t):

Case 2: Bidder 1 loses with positive probability. In this case k � K exists such

that 1 2 Dk: Hence, by Lemma 5,

�1
�
t1; ��1(pk; hk�1)

�
= pk: (10)

As all deviations that cause bidder 1 to win generate the same sale price, we need only

show that he weakly prefers in �(t) to play ��1 than to never exit. So let h
0 = f(p0j ; D0j)gJj=1

be the outcome in �(t) when bidder 1 never exits and the others play ���1: In this outcome

bidder 1 wins and pays p0J . Since h
0
k�1 = hk�1; from (10) we obtain

�1
�
t1; ��1(pk; h

0
k�1)

�
= pk:

Hence, since pk � p0k � p0J ; P1-P2 imply

�1
�
t1; ��1(p

0
J ; h

0
J)
�
� p0J : (11)

Because all bidders i > 1 have dropped out by round J; we know ��1(p0J ; h
0
J) = t�1: This

and (11) yield �1(t) � p0J : We conclude that bidder 1 prefers losing to winning at price

p0J ; and so �
�
1 is indeed a best reply to �

�
�1 in �(t):

The following corollary establishes, in part, that the winning bidder has the largest

willingness to pay when �� is played. This is a key ingredient to showing that the equi-

librium is ex post e¢ cient. However, it is not a su¢ cient condition, as we shall see in the

next section.

Corollary 1 Let t 2 T; and let w 2 N be a bidder who wins with positive probability

when �� is played in �(t): Then, letting p be the resulting sale price, (i) �w(t) � p and

(ii) �w(t) � �`(t) for each ` 6= w:

Proof. Part (i) holds because �� is an ex post equilibrium (in �(t) bidder w would want

to deviate by immediately dropping out if �w(t) < p were true). To prove (ii); let ` 6= w;
and let h = f(pk; Dk)gKk=1 be the outcome when �� is played in �(t): (So p = pK :) Since
bidder ` loses with positive probability, k exists such that ` 2 Dk: By Lemma 5 we have

�`
�
t`; ��`(pk; hk�1)

�
= pk: (12)
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Turning to bidder w; since he wins with positive probability, he never drops out or he

drops out in round K: Hence, �w (tw; ��w(pK ; h)) � pK : This implies, by continuity and
the fact that �w(�) is bounded above, that p̂ � pK exists such that

�w (tw; ��w(p̂; h)) = p̂: (13)

By P1-P2, (12) implies �` (t`; ��`(p̂; h)) � p̂; and hence (13) yields

�w (tw; ��w(p̂; h)) � �` (t`; ��`(p̂; h)) : (14)

For i 6= w; bidder i drops out in round K or earlier, and so � i(p̂; h) = ti: By P1 and (13)

we have �w(p̂; h) = tw: So (14) yields �w(t) � �`(t); proving (ii):

6 Equilibrium E¢ ciency

We now turn to the question of whether the equilibrium �� is ex post e¢ cient. By �ex

post�we mean after the auction is held, but before the ensuing risk is realized. We start

by characterizing this notion of e¢ ciency in our environment.

The play of an English auction determines an allocation specifying which bidder

wins and how much he pays; the losers pay zero. This allocation is e¢ cient, given the

preferences determined by a type vector t 2 T; provided it is not Pareto dominated by
any other feasible allocation. Upon re�ection it is easy to see that an auction outcome is

e¢ cient at t if and only if there is no subsequent trade between the winning bidder and

any losing bidder that makes them both better o¤, at least one of them strictly.19 The

most a losing bidder ` is willing to pay the winner for the asset is �`(t): Thus, an allocation

is e¢ cient at t if and only if the winner is better o¤ keeping the asset than selling it to

any other bidder ` for the price �`(t): Accordingly, we say that an auction allocation in

which bidder w wins and pays price p is e¢ cient at t if

(EFF) Euw(vw(t) + ~zw � p; tw) � uw(�`(t)� p; tw) for all ` 6= w:20

An auction allocation is ex post e¢ cient if it is e¢ cient at every t 2 T:

Remark 3 The preferences used in EFF are conditional on the entire vector t; as though

all the bidders� types are revealed when the auction ends. However, unless there is a tie

19This is true under the assumption that the seller has zero value for the asset, which we now assume.

E¢ ciency thus does not require the asset to be returned to the seller.

20When all bidders are risk neutral, the inequality in EFF is vw(t) � v`(t): This is just the familiar

observation that in quasilinear utility settings, e¢ ciency amounts to selling the asset to a bidder who values

it the most, thereby maximizing the �surplus�.
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the winning bidder never drops out, and so does not reveal his type. In this case a losing

bidder may not know �`(t): Nonetheless, as a normative criterion, it seems reasonable

for the preferences to be evaluated conditional on t being common knowledge, and this is

standard practice in the literature. As a positive criterion to justify a prediction that no

trade would occur after the auction is over, note that if EFF is commonly known to hold,

the no-trade theorem (e.g., Milgrom and Stokey, 1982) implies that the equilibrium of any

bargaining game between the winner and a loser results in no trade.

An auction allocation is e¢ cient at t if the willingness to pay for the asset of each

losing bidder ` is less than the sale price p. This is because then Corollary 1 implies

�`(t) � p � �w(t); and so EFF holds:

Euw(vw(t) + ~zw � p; tw) � Euw(vw(t) + ~zw � �w(t); tw)

= uw(0; tw)

� uw(�`(t)� p; tw):

However, �`(t) > p is possible, especially if bidder ` is the last to drop out. In this case

the equilibrium allocation may be ex post ine¢ cient. Consider the following example.

Example 2 Each of two bidders has the utility function, ui(x; ti) = u(x); and exhibit

increasing absolute risk aversion (IARA): �u00=u0 is an increasing function. The bidders
also have the same value function, vi(t) = t1 + t2:

21 The ensuing risks are the same

nondegenerate random variable, ~z1 = ~z2 = ~z. We now show that for any t 2 T for which

t1 6= t2; the allocation that results when �� is played in �(t) is not e¢ cient at t:
For each i; the willingness-to-pay �i(t) is determined by

Eu(t1 + t2 + ~z � �i(t)) = u(0); (15)

and so �i(t) = t1 + t2 + c =: �(t) for some constant c: The equilibrium strategy of type ti

of bidder i is to exit at price ��i (ti) = �(ti; ti): The bidder with the highest type therefore

wins. Suppose t2 > t1. Then bidder 2 wins and pays the price p = �(t1; t1): Ex post, bidder

1 is willing to pay �(t) > p for the asset. Because of IARA, adding the positive amount

�(t)� p to the arguments on both sides of (15) yields

Eu(t1 + t2 + ~z � p) < u(�(t)� p);

since the bidder is more risk averse at higher incomes. Thus, EFF fails to hold.

21This common value setting does not strictly satisfy assumption A2. However, the ex post ine¢ ciency

of this example also obtains if vi(t) = ti + (1� ")t�i for su¢ ciently small " > 0; which does satisfy A2.
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The ine¢ ciency in Example 2 is driven by three forces. First, a bidder�s value

increases in the other�s type. This causes the losing bidder�s willingness to pay for the

asset once he learns the winner�s type to be higher than his bid, and hence the sale price,

because his bid is equal to his willingness to pay given an underestimate of the winner�s

type. Second, the winner�s increasing risk aversion creates an adverse income e¤ect. The

winner�s positive information rent, �(t) � p in monetary units, causes him to become

more risk averse, and therefore willing to sell the asset for a price lower than what he was

initially willing to pay for it. Third, there is ensuing risk, as without it the increasing risk

aversion would play no role. Our �nal theorem shows that ex post e¢ ciency obtains if any

one of these three forces is absent.

Theorem 2 Let t 2 T; and let w 2 N be a bidder who wins with positive probability when

�� is played in �(t): The resulting allocation is e¢ cient at t if one of the following is true:

(i) v`w � 0 for all ` 2 Nnfwg;

(ii) �uw11(�; tw)=uw1 (�; tw) is nonincreasing for all tw 2 Tw (NIARA); or

(iii) ~zw = 0 almost surely.

Proof. Let h = f(pk; Dk)gKk=1 be the outcome when �� is played in �(t): (So p = pK :)
(i) Let ` 2 Nnfwg: In this case we have �`w = v`w � 0; using (2). Because bidder `

loses with positive probability, ` 2 Dk for some k � K: Hence, �` (t`; ��` (pk; hk�1)) = pk:
From this and P1-P2 we obtain

�` (t`; ��` (pK ; h)) � pK : (16)

All losing bidders have revealed their types by round K; and so

(t`; ��` (pK ; h)) = (t`; �w(pK ; h); t�`w):

Thus, since tw � �w (pK ; h) ; from (16) and �`w � 0 we obtain

�`(t) � �` (t`; ��` (pK ; h)) � pK :

As noted in the text, this and Corollary 1 imply EFF.

(ii) We know EFF holds if p � �`(t) for all ` 6= w: So suppose p < �`(t) for some
` 6= w. Recall that �w(t) satis�es

Euw (vw(t) + ~zw � �w(t); tw) = uw(0; tw):

Hence, since �w(t) � �`(t) by Corollary 1, we have

Euw
�
vw(t) + ~zw � �`(t); tw

�
� uw(0; tw):
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As uw satis�es NIARA in this case, adding the positive amount �`(t) � p to the �rst
argument on both sides of this inequality yields EFF:

Euw (vw(t) + ~zw � p; tw) � uw(�`(t)� p; tw):

(iii) Since ~zw = 0 a.e., (1) implies �w(t) = vw(t). We thus have vw(t) � v`(t) for
all ` 6= w by Corollary 1. Hence, for all ` 6= w we have EFF:

Euw(vw(t) + ~zw � p; tw) = uw(vw(t)� p; tw)

� uw(�`(t)� p; tw): �

7 Conclusion

English auctions are often used to sell objects of uncertain post-auction value to buyers

who are not risk neutral. We have sought su¢ cient conditions for such auctions to have

e¢ cient ex post equilibria in realistic settings with asymmetries and interdependencies.

Previous work on this issue focused on environments with risk neutral bidders; in these

environments any ensuing risk borne by a winning bidder is irrelevant. One contribution

of this paper has been the formulation of su¢ cient conditions for a much larger class of

environments in which bidders have heterogeneous ensuing risks and risk attitudes.

The essence of Theorem 1 is that if the bidders�willingness-to-pay functions satisfy

our weighted average crossing condition, then an English auction has an ex post equilib-

rium in which the asset is always sold to a bidder who has the highest willingness-to-pay.

The bidders�willingness-to-pay functions satisfy the weighted average crossing condition

if their expected value functions for the asset satisfy it (A2), and if each bidder�s risk

tolerance is nondecreasing in his type (A1). Thus, A1-A2 are together su¢ cient for these

ex post equilibria to exist.

Selling the asset to a bidder who has the highest willingness-to-pay may not result

in an e¢ cient allocation. We presented an example in which the equilibrium allocation is

ine¢ cient at all type vectors that do not give rise to a tie. However, Theorem 2 shows

that an English auction has an e¢ cient ex post equilibrium if, in addition to A1-A2, the

bidders exhibit nonincreasing absolute risk aversion, or if each bidder�s expected value for

the asset is nonincreasing in the other bidders�types, or if the asset is riskless.

We have also made methodological contributions. While the English auction lit-

erature, especially Krishna (2003), has formulated versions of single crossing similar to

our weighted average crossing condition, to the best of our knowledge the demonstration

that these conditions imply the Jacobian matrix of the vector-valued willingness-to-pay

function is a P-matrix is novel. This result implies that the willingness-to-pay function is

globally invertible, a result that may be useful in other contexts.
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Appendix A. DWAC Matrices

In this appendix we provide results about n � n matrices A = [aij ] that satisfy the

dominant weighted average condition:

(DWAC) Positive weights �1; : : : ; �n exist that sum to one and satisfy, for all i 6= j;
nX
k=1

�kakj > maxf0; aijg:

Lemma A.1 If A is a DWAC matrix, then ajj > max f0; aijg for all i 6= j:
Proof. A weighted average of a column cannot be larger than the column�s largest element.

Hence, the DWAC inequalities imply that each diagonal element of the matrix must be

the largest in its column, and hence positive.

Lemma A.2 Each principal submatrix of a DWAC matrix is also a DWAC matrix.

Proof. Let A = [aij ] be an n�n DWAC matrix. If n = 1; the only submatrix is A itself,

and it is DWAC by hypothesis. So assume n � 2: We show that the principal submatrix
An of A obtained by deleting the nth row and column satis�es DWAC. Applying the same

argument to the other size n � 1 principal submatrices, and then repeated applications
of the argument to smaller and smaller principal submatrices, then shows that all the

principal submatrices satisfy DWAC.

Let �1; : : : ; �n be the weights that with A satisfy the DWAC inequalities. De�ne

�̂1; : : : ; �̂n�1 by

�̂k :=
�k

1� �n
:

These new weights are positive and sum to one. Let Ŵj :=
Pn�1
k=1 �̂kakj for every j =

1; :::; n � 1; and Wj :=
Pn
k=1 �kakj for j = 1; : : : ; n: Because A is DWAC, for any j < n

we have anj < Wj : This and �n > 0 imply

Wj = (1� �n)Ŵj + �nanj

< (1� �n)Ŵj + �nWj :

Thus, since �n < 1; we have Ŵj > Wj for all j < n: This and the fact that Wj >

max f0; aijg for all i 6= j imply

Ŵj > maxf0; aijg for all i; j < n; i 6= j:

So An indeed satis�es DWAC.
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Say that a square matrix is a P-matrix if all its principal minors, i.e., determinants

of its principal submatrices, are positive. The following lemma shows that any DWAC

matrix is a P-matrix,22 together with a useful result on the inverse of the matrix.

Lemma A.3 Any DWAC matrix A = [aij ] is a P-matrix and satis�es A�1e� 0:

Proof. We prove this by induction on n, starting with n = 2:23 In this case the principal

minors of A are a11 and a22; and (6) implies both are positive. So A is a P-matrix if

its determinant, jAj = a11a22 � a21a12; is positive. Since a11a22 > 0; we have jAj > 0

if a12a21 � 0: If instead both a12 and a21 are positive, then jAj > 0 because (6) implies

a11 > a21 and a22 > a12. Lastly, if both a12 and a21 are negative, then DWAC implies

�1a11 > �2 ja21j and �2a22 > �1 ja12j ; where �1 and �2 are the positive weights in DWAC.
Hence, in this case we have

(�1a11) (�2a22) > (�2 ja21j) (�1 ja12j) ) jAj > 0:

Thus, A is a P-matrix. This induction step is completed by noting that

A�1e= jAj�1
 

a22 �a12
�a21 a11

! 
1

1

!

= jAj�1
 
a22 � a12
a11 � a21

!
�
 
0

0

!
:

Now suppose the conclusions of the lemma hold for all DWAC matrices of size n� 1
or less, and let A = [aij ] be an n � n DWAC matrix. By Lemma A.1, the principal sub-
matrices of A satisfy DWAC. The induction hypothesis thus implies that all the principal

submatrices other than A itself are P-matrices, and their inverses map vectors of 1�s into

strictly positive vectors. We must show only that jAj > 0 (and so A is a P-matrix) and

A�1e� 0:

Let �1; : : : ; �n be the weights that with A satisfy the DWAC inequalities, and de�ne

Wj :=
Pn
k=1 �kakj for j = 1; : : : ; n: De�ne also new weights

�̂k :=
�k

1� �n
for k = 1; :::; n� 1;

and weighted averages

Ŵj :=

n�1X
k=1

�̂kakj for j = 1; :::; n:

22McKenzie (1960) shows that a matrix satisfying a (generalized) diagonal dominance condition with

positive diagonal entries is a P-matrix. However, this condition is not implied by DWAC, and so McKenzie�s

result does not imply that a DWAC matrix is a P-matrix.

23The lemma is vacuously true for n = 1; since by de�nition A = [a11] is both DWAC and a P-matrix

if and only if a11 > 0:
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An alternative way of writing Ŵj is

Ŵj =
1

1� �n
(Wj � �nanj) : (17)

Since A is DWAC, we have Wn < ann and Wj > anj for j < n: These inequalities together

with (17) imply Ŵn < ann and Ŵj > anj for j < n:

We shall prove A�1e � 0 by showing that the solution to Ax = e satis�es x � 0:

Let (Aje) be the augmented matrix of this system of equations. We apply the following

row transformations. The �rst one consists of subtracting, for each k < n; a multiple �̂k

of the kth row from the nth row. This transforms the nth row of (Aje) to

(an1 � Ŵ1; :::; ann � Ŵnj0):

Then, for each k < n; subtract a multiple akn=
�
ann � Ŵn

�
of this transformed nth row

from the kth row. This transforms (Aje) to0BBBBB@
â11 â1;n�1 0

. . .
...

ân�1;1 ân�1;n�1 0

an1 � Ŵ1 � � � an;n�1 � Ŵn�1 ann � Ŵn

�����������

1
...

1

0

1CCCCCA ; (18)

where

âkj = akj + akn
Ŵj � anj
ann � Ŵn

for k < n: (19)

Let Â denote the top left (n�1)�(n�1) matrix [âij ] in (18). As these row transformations
preserved the value of the determinant jAj ; we see from (18) that jAj =

�
ann � Ŵn

� ���Â��� :
Thus, if Â is DWAC, the induction hypothesis implies it is a P-matrix, and we have

jAj > 0 because ann > Ŵn: Furthermore, from (18) we see that the system Ax = e

reduces to Âx̂ = ê; where x̂ = (x1; : : : ; xn�1)T and ê is the (n� 1)-vector of 1�s, and that
xn satis�es

xn =

n�1X
j=1

 
Ŵj � anj
ann � Ŵn

!
xj : (20)

If Â is DWAC, the induction hypothesis and Âx̂ = ê imply x̂� 0: Also in this case,

as each coe¢ cient in (20) is positive, we have xn > 0. The lemma is therefore proved by

showing that Â is DWAC.

Multiply both sides of (19) by �̂k and sum over k to obtain

n�1X
k=1

�̂kâkj = Ŵj + Ŵn
Ŵj � anj
ann � Ŵn

:
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Using (17) to substitute out Ŵj and Ŵn yields, after some algebra,

n�1X
k=1

�̂kâkj =Wj +Wn
Wj � anj
ann �Wn

:

This expression is positive, since A satisfying DWAC implies thatWj ; Wn; Wj�anj ;
and ann�Wn are all positive. Now, let j < n and i =2 fj; ng ; and note from (19) and (17)

that

âij = aij + ain
Wj � �nanj � (1� �n) anj
(1� �n) ann � (Wn � �nann)

= aij + ain
Wj � anj
ann �Wn

:

Hence,

n�1X
k=1

�̂kâkj � âij =Wj +Wn
Wj � anj
ann �Wn

� aij � ain
Wj � anj
ann �Wn

= (Wj � aij) + (Wn � ain)
Wj � anj
ann �Wn

;

which is also positive because A satis�es DWAC. We conclude that for all i; j < n; i 6= j;
n�1X
k=1

�̂kâkj > maxf0; âijg;

and so Â indeed satis�es DWAC.

Appendix B. Proofs not in the Text

Proof of Lemma 1. Let t0 2 T satisfy t0 > t; and assume the expectation Eu(~x; t0)
exists. A function ' : X ! R is well-de�ned by

' (x) :=
u(x; t0)

u1(a; t0)
� u(x; t)

u1(a; t)
;

since u1 > 0 on X � T: As u1 is log-supermodular, for any x 2 X we have

(x� a)'0 (x) = (x� a)
�
u1(x; t

0)

u1(a; t0)
� u1(x; t)
u1(a; t)

�
� 0:

Integrating '0 on [a; x] thus yields ' (x) � ' (a). This inequality rearranges to

u(x; t0)� u(a; t0)
u1(a; t0)

� u(x; t)� u(a; t)
u1(a; t)

:

Now replace x by ~x; take expectations, and use Eu(~x; t) = u(a; t) to obtain

Eu(~x; t0)� u(a; t0)
u1(a; t0)

� 0:
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Since u1(a; t0) > 0; this proves (i): Part (ii) follows immediately from (i):

We now turn to Lemma 4. A key part of its proof are the following two preliminary

lemmas.

Lemma B.1. Let p̂ � 0 and m : [p̂;1)! T be any continuous function with a right-side

derivative at all p � p̂ satisfying m0
i(p) � 0 for all i 2 N: Letting d

dp�
i(m(p)) denote the

right-side derivative of �i(m(�)) at p; suppose that for all i 2 N;

m0
i(p) = 0 or

d
dp�

i(m(p)) = 1:

Then, for all i 2 N;
m0
i(p) = 0 ) d

dp�
i(m(p)) < 1:

Proof. For the given p we write m = m(p) and m0 = m0(p): Let A be the set of all

i 2 N such that m0
i 6= 0: Hence, m0

i = 0 if and only if i =2 A; and d
dp�

i(m) = 1 for all

i 2 A: Re-indexing if necessary, we can assume A = f1; :::; ag: The lemma holds trivially
if A 2 f?; Ng; so we can assume 1 � a < n: We have

d

dp
�i(m) = �i1(m)m

0
1 + :::+ �

i
a(m)m

0
a = 1; i 2 A; (21)

d

dp
�`(m) = �`1(m)m

0
1 + :::+ �

`
a(m)m

0
a =: c`; ` =2 A: (22)

Letting ` =2 A; we must show that c` < 1: Lemma 2 implies
h
�ij(m)

i
is DWAC, and so

Lemma A.2 in Appendix A implies the principal submatrix
h
�ij(m)

i
i;j2A[f`g

is DWAC.

Letting (�1; : : : ; �a; �`) � 0 be the weights the de�nition of DWAC for the principal

submatrix requires, it is easy to show that for �̂i := �i= (1� �`) we have
Pa
i=1 �̂i = 1 and,

for all j 6= `;

�`j(m) < Ŵj :=
aX
i=1

�̂i�
i
j(m):

Multiply the ith equation in (21) by �̂i and then subtract them all from the `th equation

in (22) to obtain
aX
j=1

�
�`j(m)� Ŵj

�
m0
j = c` � 1: (23)

Because m0 � 0, (21) implies m0
j > 0 for some j 2 A: The left side of (23) is therefore

negative. Hence, c` < 1:

The bulk of Lemma 4 is established in the following preliminary lemma.
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Lemma B.2. Let p̂ � 0; D � N; t̂ 2 T; and suppose

�i(̂t)

8<: � p̂ if t̂i > ti

� p̂ if t̂i < �ti
for all i =2 D: (24)

Then a continuous, right di¤erentiable, and nondecreasing m : [p̂;1) ! T exists that

satis�es m(p̂) = t̂; mD(�) � t̂D; and

�i(m(p))

8<: � p if mi(p) > ti

� p if mi(p) < �ti
for all i =2 D and p � p̂: (25)

As the construction of m in the proof of Lemma B.2 is rather involved, we illustrate

it informally by an example before presenting the proof.

Example B.1 This is a two-bidder example, with T = [0; 1]2; �1(t) = 2 + 2t1 � t2; and
�2(t) = 1 + t2: The image �(T) of � is the parallelogram in Figure B.1. We illustrate

the construction of m for the case (p̂; D; t̂) = (0;?;0): The construction progresses from
small to large values of p, as shown in the �gure.24

(a) p = 0: The desired initial condition, m(p̂) = t̂, yields m(0) := 0:

(b) 0 < p � 1: If p < 1; each bidder�s willingness-to-pay exceeds p : �(t) � pe for all

t 2 T; where e = (1; 1): Thus, the only way to satisfy (25) with a continuous

function is to de�ne it on (0; 1] as m(p) := t = 0:

(c) 1 < p < 3
2 : To make m continuous at 1; we must have m(p) � 0 for p � 1:We cannot

have m(p) = 0; since then �2(m(p)) = 1 < p; and (25) could not hold. We also

cannot have �(m(p)) = pe; since p < 3
2 implies pe =2 �(T): The remaining possibility

is m1(p) = 0 and m2(p) > 0; so that �1(m(p)) > p and �2(m(p)) = p: This implies

m(p) := (0; p� 1); and it satis�es (25).

(d) 3
2 � p � 2: In this case pe 2 �(T). By Lemma 3, � has an inverse de�ned on �(T):
Hence, we can de�ne m(p) := ��1(pe); which in this example is

m(p) := (p� 3
2 ; p� 1):

This choice satis�es (25) trivially because �i(m(p)) = p for each i:

24The minimum type function for the null history, � (�; h0); is this m: The corresponding equilibrium
bidding functions in this example can be obtained from it using (7), and are �1(t1) = t1 +

3
2
if t1 � 1

2
;

�1(t1) = 2t1 + 1 if t1 >
1
2
; and �2(t2) = 1 + t2: Other, outcome-equivalent ex post equilibria are obtained

by replacing �1 on (
1
2
; 1] by any function �̂1 satisfying �̂1(�) � 2:
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(e) 2 < p � 3: Since m2(2) = 1 = �t2 and m2 must be nondecreasing, we de�ne m2(p) := 1

for p > 2: Then, de�ning m1(p) :=
1
2(p�1) maintains �

1(m(p)) = p; and hence (25).

(f) 3 < p: As m(3) = �t; we must de�ne m(p) := �t for all p > 3:

1

1.5

2

1 1.5 2 3 4
p1

p2
p2 = p1

π(T)

a,bc

d

e
fπ(m(p))

π(t)

π(t)

Figure B.1

Proof of Lemma B.2. Set mD(p) := t̂D for all p � p̂: Letting A := NnD and

m = (mA;mD); it remains to �nd mA so that m satis�es the desired properties. We do

so in a �nite number of steps, all of which are iterations of the following:

Step 0. Show the existence of q > p̂ and a function mA : [p̂; q] ! TA that is continuous

nondecreasing, right di¤erentiable on [p̂; q); satis�es mA(p̂) = t̂A; and yields a function

m = (mA;mD) that satis�es (25) on [p̂; q] and, if q <1; the following property:

I(q) � I(p̂); and M(q) �M(p̂) if I(q) = I(p̂); (*)

where for any p 2 [p̂; q], M(p) and I(p) are the sets

M(p) :=
�
i 2 A : �i(m(p)) = p; mi(p) < �ti

	
(marginal bidders),

I(p) :=
�
i 2 A : �i(m(p)) > p

	
(inframarginal bidders).

Accomplishing Step 0 proves the lemma if q =1: If q <1, then (m(q); q) satis�es
(25), and so (24) holds with (m(q); q) replacing (̂t; p̂): This allows us to make Step 1

a repeat of Step 0, with this replacement of (̂t; p̂) by (m(q); q), yielding q1 > q and a
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function mA : [q; q1] ! TA satisfying the desired properties on [q; q1], as well as (*)

with (q; q1) replacing (p̂; q) if q1 < 1: Gluing this function to the one found in Step 0
results in the desired mA de�ned on the larger interval [p̂; q1]: This proves the lemma if

q1 = 1: Otherwise, since (*) will then hold at (q; q1); we can repeat Step 0 yet again,
with (m(q1); q1) replacing (̂t; p̂); to obtain q2 > q1: We continue to iterate until we obtain

qk =1 for some k <1; at which point we are done. The iteration ends in a �nite number
of steps because of property (*). To see why, note that repeated applications of (*) shows

that the sequence of integer pairs,n
(ik;mk) : ik =

���I(qk)��� ; jk = ���M(qk)��� ; qk <1o ;
is strictly decreasing in the lexicographic ordering.25 If this is an in�nite sequence, it would

reach the lower bound (0; 0) in a �nite number of steps, say k: But then the next iteration

would yield qk+1 = 1; because (*) cannot hold when (q; p̂) is replaced by (qk; qk+1), for
any �nite qk+1; given that I(qk) =M(qk) = ?: This contradiction shows that the sequence
is �nite. Hence, qk =1 for some k <1:

By this iterative logic, we need only accomplish Step 0. Start by setting mA(p̂) :=

t̂A: By (24), m(p̂) satis�es (25) for p = p̂: We accomplish the rest of the step separately

in three cases.

Case 1: I(p̂) = ?, M(p̂) = ?: Fix i 2 A: Because mA(p̂) = t̂A; we obtain �i(̂t) � p̂ from
(24) and I(p̂) = ?: This and M(p̂) = ? imply t̂i = �ti or �i(̂t) < p̂: In turn, this and (24)
yield t̂i = �ti: Now de�ne q :=1 and mA(p) := �tA for p > p̂: As a constant function, m is

trivially continuous, nondecreasing, and right di¤erentiable on [p̂;1): For any i 2 A; m
satis�es (25) at all p � p̂ because

�i(m(p)) = �i(̂t) � p̂ � p

and mi(p) = �ti > ti: This accomplishes Step 0 in this case.
26

Case 2: I(p̂) 6= ?, M(p̂) = ?: Now let q = mini2I(p̂) �i(̂t); and note that q > p̂: De�ne
mA(p) := t̂A for p 2 (p̂; q]: Again, this trivially yields a continuous nondecreasing m on

[p̂; q] that satis�es the boundary condition m(p̂) = t̂ and is right di¤erentiable on [p̂; q).

Fix i 2 A: If i =2 I(p̂); then, since i =2 M(p̂), m satis�es (25) on [p̂; q] for this i by the

argument used in Case 1. So suppose i 2 I(p̂): Then �i(̂t) > p̂ and, by (24), t̂i < �ti: Thus,
by the de�nition of q; we have �i(̂t) � p for all p 2 [p̂; q]: This, together with t̂i < �ti;

implies that for this i; m satis�es (25) on [p̂; q]. Lastly, (*) holds because I(q) � I(p̂):

25The strict lexicographic ordering on integer pairs, <L; is de�ned by (i; j) <L (i0; j0) if and only if either

i < i0 or i = i0 and j < j0:

26Step 0 proves the lemma in this case, since it yields q =1:
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Case 3: M(p̂) 6= ?: Simplify notation by letting M = M(p̂): Consider the function

�̂ := �M (�; t̂NnM ) that maps TM into RjM j
+ : By Lemmas 3 and A.2, �̂ has a C1 inverse,

' : �̂(TM )!TM ; satisfying

['ij(p)]e� 0 for any p 2 �̂(TM): (26)

We can assume, by the Whitney Extension Theorem, that ' is actually a C1 function

de�ned on RjM j: This allows us to de�ne a C1 function � : R ! RjM j by �(p) := '(pe):

The chain rule yields �0(p) = ['ij(pe)]e for all p 2 R: Thus, since p̂e = �̂(̂tM ) 2 �̂(TM);
from (26) we obtain �0(p̂) � 0: We also have �(p̂) = t̂M and, by the de�nition of M;

t̂M � �tM :We conclude that q̂ > p̂ exists such that �(q̂)� �tM and � is strictly increasing

on [p̂; q̂): We de�ne mA : [p̂; q̂)! TA by mA(p) :=
�
�(p); t̂AnM

�
: Hence,

�M (m(p)) = pe for p 2 [p̂; q̂); (27)

and m is continuous, right-di¤erentiable, and nondecreasing on [p̂; q̂). We also have

(a) ti � mi(p) < �ti for all i 2M;p 2 [p̂; q̂):

Furthermore, we can take q̂ > p̂ su¢ ciently small so that

(b) �i(m(p)) > p for all i 2 I(p̂); p 2 [p̂; q̂):

Now let q be the supremum of all such q̂ that satisfy (a)-(b). We thus havem : [p̂; q)! T,

which we extend to q so that it is continuous: m(q) := limp"qm(p): It remains to show

that (25) and (*) hold.

To show that (25) holds, �x i 2 A and p 2 [p̂; q]: If i 2M; then �i(m(p)) = p by (27)
(and continuity if p = q); and so (25) holds. Assume now that i =2 M: Then t̂i 2 fti; �tig;
since otherwise (24) would imply i 2M: If t̂i = ti; then �i(̂t) � p̂ by (24), and so �i(̂t) > p̂
because i =2 M: Hence i 2 I(p̂); and so (b) yields �i(m(p)) � p: This and mi(p) = t̂i = ti

imply (25). Lastly, suppose t̂i = �ti: Then �i(̂t) � p̂ by (24). Because m is nondecreasing

and mj is constant on [p̂; q] for all j 2 N=M (including j = i); (27) and Lemma B.1 imply

m0
i(p

0) < 1 for all p0 2 [p̂; q): Thus, since m(p̂) = t̂ and �i(̂t) � p̂; we have �i(m(p)) � p:
This and mi(p) = t̂i = �ti yield (25).

It remains only to prove (*). To prove I(q) � I(p̂); consider some i =2 I(p̂): Then
�i(m(p̂)) � p̂: If i 2M; then �i(m(q)) = q by (27), and so i =2 I(q): If instead i =2M; then
mi(q) = mi(p); and so

�i(mi(q);m�i(p̂)) = �
i(m(p̂)) � p̂:

As q > p̂, Lemma B.1 now implies �i(m(q)) < q; and so again i =2 I(q): This proves

I(q) � I(p̂):
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Now suppose I(q) = I(p̂): Let i 2M(q): Then �i(m(q)) = q andmi(p̂) � mi(q) < �ti:

If i =2 M; then mi(p̂) = mi(q); and so �i(mi(p̂);m�i(q)) = q: This and Lemma B.1 imply

�i(m(p̂)) > p̂; and so i 2 I(p̂): But then i 2 I(q); since I(q) = I(p̂); contrary to i 2M(q):
We thus have M(q) � M(p̂): Now, as m cannot be extended above q without violating

(a) or (b), we have

(a0) mi(q) = �ti for some i 2M; or

(b0) �i(m(q)) = q for some i 2 I(p̂):

If (b0) holds, then I(q) 6= I(p̂): So (a0) must hold. As the i in (a0) cannot be in M(q); we
conclude that M(q) � M(p̂): This completes the proof of (*), and thus of Step 0 in this
case.

Proof of Lemma 4. Let m : [p̂;1)! T be the function obtained by applying Lemma

B.2 to (p̂; D; t̂). It is immediate that m satis�es all the properties to be proved except (i)

and (ii): Asm is right di¤erentiable, Lemma B.1 applies to m̂ := (ti;m�i); and so implies

(ii): To show (i); suppose that for some i =2 D and ti 2 Ti; we have �i(ti;m�i(p)) = p: If

ti > mi(p); then because �ii > 0; we have

�i(m(p) < �i(ti;m�i(p)) = p:

But then, by Lemma B.2; we have the contradiction mi(p) = �ti � ti: Similarly, if ti <

mi(p); then

�i(m(p) > �i(ti;m�i(p)) = p;

leading by Lemma B.2 to the contradiction mi(p) = ti � ti: Hence ti = mi(p); proving (i):
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