
 
 

 
 

 
 
 

 
by 
 

 
  

http://ssrn.com/abstract=2536358 

 
 
 

Using Invalid Instruments on Purpose: Focused Moment 
Selection and Averaging for GMM 

Second Version 
 

 
 

Francis J. DiTraglia   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PIER Working Paper 14-045 

Penn Institute for Economic Research 
Department of Economics 
University of Pennsylvania 

3718 Locust Walk 
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu 
http://economics.sas.upenn.edu/pier 

http://ssrn.com/abstract_id=
mailto:pier@econ.upenn.edu
http://economics.sas.upenn.edu/pier


Using Invalid Instruments on Purpose: Focused Moment

Selection and Averaging for GMM∗

Francis J. DiTraglia†

University of Pennsylvania

This Version: December 9, 2014 First Version: November 9, 2011

Abstract

In finite samples, the use of a slightly endogenous but highly relevant instrument can

reduce mean-squared error (MSE). Building on this observation, I propose a moment

selection criterion for GMM in which moment conditions are chosen based on the MSE

of their associated estimators rather than their validity: the focused moment selection

criterion (FMSC). I then show how the framework used to derive the FMSC can address

the problem of inference post-moment selection. Treating post-selection estimators as

a special case of moment-averaging, in which estimators based on different moment sets

are given data-dependent weights, I propose a simulation-based procedure to construct

valid confidence intervals for a variety of formal and informal moment-selection and

averaging procedures. Both the FMSC and confidence interval procedure perform well

in simulations. I conclude with an empirical example examining the effect of instrument

selection on the estimated relationship between malaria transmission and income.
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1 Introduction

In finite samples, the addition of a slightly endogenous but highly relevant instrument can

reduce estimator variance by far more than bias is increased. Building on this observation,

I propose a novel moment selection criterion for generalized method of moments (GMM)

estimation: the focused moment selection criterion (FMSC). Rather than selecting only

valid moment conditions, the FMSC chooses from a set of potentially mis-specified moment

conditions based on the asymptotic mean squared error (AMSE) of their associated GMM

estimators of a user-specified scalar target parameter. To ensure a meaningful bias-variance

tradeoff in the limit, I employ a drifting asymptotic framework in which mis-specification,

while present for any fixed sample size, vanishes asymptotically. In the presence of such

locally mis-specified moment conditions, GMM remains consistent although, centered and

rescaled, its limiting distribution displays an asymptotic bias. Adding an additional mis-

specified moment condition introduces a further source of bias while reducing asymptotic

variance. The idea behind the FMSC is to trade off these two effects in the limit as an

approximation to finite sample behavior.1

I consider a setting in which two blocks of moment conditions are available: one that is

assumed correctly specified, and another that may not be. This is intended to mimic the

situation faced by an applied researcher who begins with a “baseline” set of relatively weak

maintained assumptions and must decide whether to impose any of a collection of stronger

but also more controversial “suspect” assumptions. When the (correctly specified) baseline

moment conditions identify the model, the FMSC provides an asymptotically unbiased es-

timator of AMSE, allowing us to carry out risk-based selection over the suspect moment

conditions. When this is not the case, it remains possible to use the AMSE framework to

carry out a sensitivity analysis.2

Continuing under the local mis-specification framework, I go on to derive the limit dis-

tribution of “moment average estimators,” data-dependent weighted averages of estimators

based on different moment conditions. These estimators are interesting in their own right

and can be used to study the important problem of inference post-selection. I propose a

simple, simulation-based procedure for constructing valid confidence intervals that can be

applied to a variety of formal moment averaging and post-selection estimators including the

FMSC. Using an applied example from development economics, I show that this procedure

1When finite-sample mean-squared error (MSE) is undefined or infinite, AMSE comparisons remain mean-
ingful. In this case, one can view AMSE as the limit of a sequence of “trimmed” squared error loss functions,
as in Hansen (2013). Trimmed MSE is always well-defined and the trimming fraction can be made asymp-
totically negligible.

2For discussion of this point, see Appendix C.
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is well within the ability of a standard desktop computer for problems of a realistic scale.

While the methods described here apply to general GMM models, I focus on two sim-

ple but empirically relevant examples: choosing between ordinary least squares (OLS) and

two-stage least squares (TSLS) estimators, and selecting instruments in linear instrumental

variables (IV) models. In the OLS versus TSLS example the FMSC takes a particularly

transparent form, providing a risk-based justification for the Durbin-Hausman-Wu test, and

leading to a novel “minimum-AMSE” averaging estimator that combines OLS and TSLS. It

is important to note that both the FMSC and related minimum-AMSE averaging estimator

considered here are derived for a scalar parameter of interest, as this is the most common

situation encountered in applied work. As a consequence, Stein-type results do not apply: it

is impossible to construct an estimator – post-selection, averaging or otherwise – with uni-

formly lower risk than the “valid” estimator that uses only the baseline moment conditions

in estimation. Nevertheless, it remains possible to achieve substantially lower risk than the

valid estimator over large regions of the parameter space, particularly in settings where the

additional moment conditions are highly informative and nearly correct. This is precisely

the situation for which the FMSC is designed. Selection and averaging are not a panacea,

but the methods presented in this paper can provide substantial gains in realistic settings,

as demonstrated in the simulation results presented below.

My approach to moment selection is inspired by the focused information criterion of

Claeskens and Hjort (2003), a model selection criterion for maximum likelihood estimation.

Like Claeskens and Hjort (2003), I study AMSE-based selection under mis-specification in a

drifting asymptotic framework. In contradistinction, however, I consider moment rather than

model selection, and general GMM rather than maximum likelihood estimation. Schorfheide

(2005) uses a similar approach to select over forecasts constructed from mis-specified vector

autoregression models, developed independently of the FIC. Mine is by no means the first

paper to consider GMM asymptotics under locally mis-specified moment conditions, an idea

that dates at least as far back as Newey (1985). The idea of using this framework for

AMSE-based moment selection, however, is novel.

The existing literature on moment selection under mis-specification is primarily concerned

with consistent selection: the goal is to select all correctly specified moment conditions while

eliminating all invalid ones with probability approaching one in the limit.3 This idea begins

with Andrews (1999) and is extended by Andrews and Lu (2001) and Hong et al. (2003).

More recently, Liao (2013) proposes a shrinkage procedure for consistent GMM moment se-

lection and estimation. In contrast to these proposals, which examine only the validity of

3Under the local mis-specification asymptotics considered below, consistent moment selection criteria
simply choose all available moment conditions. For details, see Theorem 4.2.
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the moment conditions under consideration, the FMSC balances validity against relevance to

minimize AMSE. Although Hall and Peixe (2003) and Cheng and Liao (2013) do consider rel-

evance, their aim is to avoid including redundant moment conditions after consistently elim-

inating invalid ones. Some other papers that propose choosing, or combining, instruments

to minimize MSE include Donald and Newey (2001), Donald et al. (2009), and Kuersteiner

and Okui (2010). Unlike the FMSC, however, these proposals consider the higher-order bias

that arises from including many valid instruments rather than the first-order bias that arises

from the use of invalid instruments.

Another important difference between the FMSC and the other proposals from the lit-

erature is the “F” – focus: rather than a single moment selection criterion, the FMSC is

really a method of constructing application-specific moment selection criteria. To see the

potential benefits of this approach consider, for example, a simple dynamic panel model. If

your target parameter is a long-run effect while mine is a contemporaneous effect, there is

no reason to suppose a priori that we should use the same moment conditions in estimation,

even if we share the same model and dataset. The FMSC explicitly takes this difference of

research goals into account.

Like Akaike’s Information Criterion (AIC), the FMSC is a conservative rather than con-

sistent selection procedure, as it remains random even in the limit. Although consistency is

a crucial minimal property in many settings, the situation is more complex for model and

moment selection: consistent and conservative selection procedures have different strengths,

but these strengths cannot be combined (Yang, 2005). The motivation behind the FMSC is

minimum-risk estimation. From this perspective, consistent selection criteria suffer from a

serious defect: in general, unlike conservative criteria, they exhibit unbounded minimax risk

(Leeb and Pötscher, 2008). Moreover, as discussed in more detail below, the asymptotics of

consistent selection paint a misleading picture of the effects of moment selection on inference.

For these reasons, the fact that the FMSC is conservative rather than consistent is an asset

in the present context.

Because it studies inference post-moment selection, this paper relates to a vast literature

on “pre-test” estimators. For an overview, see Leeb and Pötscher (2005, 2009). There

are several proposals to construct valid confidence intervals post-model selection, including

Kabaila (1998), Hjort and Claeskens (2003) and Kabaila and Leeb (2006). To my knowledge,

however, this is the first paper to treat the problem in general for post-moment selection

and moment average estimators in the presence of mis-specification.4 While I developed

the simulation-based, two-stage confidence interval procedure described below by analogy

4Related results appear in Berkowitz et al. (2012), Guggenberger (2010), Guggenberger (2012), and
Guggenberger and Kumar (2012).
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to a suggestion in Claeskens and Hjort (2008b), Leeb and Pötscher (2014) kindly pointed

out that similar constructions have appeared in Loh (1985), Berger and Boos (1994), and

Silvapulle (1996). More recently, McCloskey (2012) takes a similar approach to study a class

of non-standard testing problems.

The framework within which I study moment averaging is related to the frequentist

model average estimators of Hjort and Claeskens (2003). Two other papers that consider

weighting estimators based on different moment conditions are Xiao (2010) and Chen et al.

(2009). Whereas these papers combine estimators computed using valid moment conditions

to achieve a minimum variance estimator, I combine estimators computed using potentially

invalid conditions with the aim of reducing estimator AMSE. A similar idea uderlies the

combined moments (CM) estimator of Judge and Mittelhammer (2007), who emphasize

that incorporating the information from an incorrect specification could lead to favorable

bias-variance tradeoff. Unlike the FMSC, however, the CM estimator is not targeted to

a particular research goal and does not explicitly aim to minimize AMSE. For a different

approach to combining OLS and TSLS estimators, similar in spirit to the Stein-estimator

and developed independently of the work presented here, see Hansen (2014). Cheng et al.

(2014) provide related results for Stein-type moment averaging in a GMM context with

potentially mis-specified moment conditions. Both of these papers consider settings in which

the parameter of interest is of sufficiently high dimension that averaging can yield uniform

risk improvements. In contrast, I consider a setting with a scalar target parameter in which

uniform improvements are unavailable.

A limitation of the results presented here is that they are based upon the assumption

of strong identification and a fixed number of moment conditions. When I refer to a bias-

variance tradeoff below, either in finite samples or asymptotically, I abstract from weak– and

many–instruments considerations. In particular, my asymptotics are based on a classical

first-order approximation with the addition of locally invalid moment conditions. Extending

the idea behind the FMSC to allow for weak identification or a large number of moment

conditions is a challenging topic that I leave for future research.

The remainder of the paper is organized as follows. Section 2 describes the asymptotic

framework and Section 3 derives the FMSC, both in general and for two specific examples:

OLS versus TSLS and choosing instrumental variables. Section 4 studies moment average

estimators and shows how they can be used to construct valid confidence intervals post-

moment selection. Section 5 presents simulation results and Section 6 considers an empirical

example from development economics. Proofs, computational details and supplementary

material appear in the Appendix.
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2 Assumptions and Asymptotic Framework

2.1 Local Mis-Specification

Let f(·, ·) be a (p+q)-vector of moment functions of a random vector Z and an r-dimensional

parameter vector θ, partitioned according to f(·, ·) = (g(·, ·)′, h(·, ·)′)′ where g(·, ·) and h(·, ·)
are p- and q-vectors of moment functions. The moment condition associated with g(·, ·)
is assumed to be correct whereas that associated with h(·, ·) is locally mis-specified. More

precisely,

Assumption 2.1 (Local Mis-Specification). Let {Zni : 1 ≤ i ≤ n, n = 1, 2, . . .} be a trian-

gular array of random vectors defined on a probability space (Υ,F ,P) satisfying

(a) E[g(Zni, θ0)] = 0,

(b) E[h(Zni, θ0)] = n−1/2τ , where τ is an unknown constant vector,

(c) {f(Zni, θ0) : 1 ≤ i ≤ n, n = 1, 2, . . .} is uniformly integrable, and

(d) Zni →d Zi, where the Zi are identically distributed.

For any fixed sample size n, the expectation of h evaluated at the true parameter value

θ0 depends on the unknown constant vector τ . Unless all components of τ are zero, some

of the moment conditions contained in h are mis-specified. In the limit however, this mis-

specification vanishes, as τ/
√
n converges to zero. Uniform integrability combined with weak

convergence implies convergence of expectations, so that E[g(Zi, θ0)] = 0 and E[h(Zi, θ0)] =

0. Because the limiting random vectors Zi are identically distributed, I suppress the i

subscript and simply write Z to denote their common marginal law, e.g. E[h(Z, θ0)] = 0. It

is important to note that local mis-specification is not intended as a literal description of

real-world datasets: it is merely a device that gives asymptotic bias-variance trade-off that

mimics the finite-sample intuition.

2.2 Candidate GMM Estimators

Define the sample analogue of the expectations in Assumption 2.1 as follows:

fn(θ) =
1

n

n∑
i=1

f(Zni, θ) =

[
gn(θ)

hn(θ)

]
=

[
n−1

∑n
i=1 g(Zni, θ)

n−1
∑n

i=1 h(Zni, θ)

]

where gn is the sample analogue of the correctly specified moment conditions and hn is that

of the (potentially) mis-specified moment conditions. A candidate GMM estimator θ̂S uses
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some subset S of the moment conditions contained in f in estimation. Let |S| denote the

number of moment conditions used and suppose that |S| > r so the GMM estimator is

unique.5 Let ΞS be the |S| × (p + q) moment selection matrix corresponding to S. That

is, ΞS is a matrix of ones and zeros arranged such that ΞSfn(θ) contains only the sample

moment conditions used to estimate θ̂S. Thus, the GMM estimator of θ based on moment

set S is given by

θ̂S = arg min
θ∈Θ

[ΞSfn(θ)]′ W̃S [ΞSfn(θ)] .

where W̃S is an |S|×|S|, positive definite weight matrix. There are no restrictions placed on S

other than the requirement that |S| > r so the GMM estimate is well-defined. In particular,

S may exclude some or all of the valid moment conditions contained in g. While this may

seem strange, it accommodates a wider range of examples, including choosing between OLS

and TSLS estimators.

To consider the limit distribution of θ̂S, we require some further notation. First define

the derivative matrices

G = E [∇θ g(Z, θ0)] , H = E [∇θ h(Z, θ0)] , F = (G′, H ′)′

and let Ω = V ar [f(Z, θ0)] where Ω is partitioned into blocks Ωgg, Ωgh, Ωhg, and Ωhh con-

formably with the partition of f by g and h. Notice that each of these expressions involves

the limiting random variable Z rather than Zni, so that the corresponding expectations are

taken with respect to a distribution for which all moment conditions are correctly specified.

Finally, to avoid repeatedly writing out pre- and post-multiplication by ΞS, define FS = ΞSF

and ΩS = ΞSΩΞ′S. The following high level assumptions are sufficient for the consistency

and asymptotic normality of the candidate GMM estimator θ̂S.

Assumption 2.2 (High Level Sufficient Conditions).

(a) θ0 lies in the interior of Θ, a compact set

(b) W̃S →p WS, a positive definite matrix

(c) WSΞSE[f(Z, θ)] = 0 if and only if θ = θ0

(d) E[f(Z, θ)] is continuous on Θ

(e) supθ∈Θ ‖fn(θ)− E[f(Z, θ)]‖ →p 0

(f) f is Z-almost surely differentiable in an open neighborhood B of θ0

5Identifying τ requires futher assumptions, as discussed in Section 2.3.
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(g) supθ∈Θ ‖∇θfn(θ)− F (θ)‖ →p 0

(h)
√
nfn(θ0)→d M +

[
0

τ

]
where M ∼ Np+q (0,Ω)

(i) F ′SWSFS is invertible

Although Assumption 2.2 closely approximates the standard regularity conditions for

GMM estimation, establishing primitive conditions for Assumptions 2.2 (d), (e), (g) and

(h) is slightly more involved under local mis-specification. Low-level sufficient conditions

for the two running examples considered in this paper appear in Appendix D. For more

general results, see Andrews (1988) Theorem 2 and Andrews (1992) Theorem 4. Notice that

identification, (c), and continuity, (d), are conditions on the distribution of Z, the marginal

law to which each Zni converges.

Theorem 2.1 (Consistency). Under Assumptions 2.1 and 2.2 (a)–(e), θ̂S →p θ0.

Theorem 2.2 (Asymptotic Normality). Under Assumptions 2.1 and 2.2

√
n(θ̂S − θ0)→d −KSΞS

([
Mg

Mh

]
+

[
0

τ

])

where KS = [F ′SWSFS]−1F ′SWS, M = (M ′
g,M

′
h)
′, and M ∼ N(0,Ω).

As we see from Theorems 2.1 and 2.2, any candidate GMM estimator θ̂S is consistent for

θ0 under local mis-specification. Unless S excludes all of the moment conditions contained

in h, however, θ̂S inherits an asymptotic bias from the mis-specification parameter τ . The

local mis-specification framework is useful precisely because it results in a limit distribution

for θ̂S with both a bias and a variance. This captures in asymptotic form the bias-variance

tradeoff that we see in finite sample simulations. In constrast, fixed mis-specification results

in a degenerate bias-variance tradeoff in the limit: scaling up by
√
n to yield an asymptotic

variance causes the bias component to diverge.

2.3 Identification

Any form of moment selection requires an identifying assumption: we need to make clear

which parameter value θ0 counts as the “truth.” One approach, following Andrews (1999), is

to assume that there exists a unique, maximal set of correctly specified moment conditions

that identifies θ0. In the notation of the present paper6 this is equivalent to the following:

6Although Andrews (1999), Andrews and Lu (2001), and Hong et al. (2003) consider fixed mis-
specification, we can view this as a version of local mis-specification in which τ →∞ sufficiently fast.
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Assumption 2.3 (Andrews (1999) Identification Condition). There exists a subset Smax of

at least r moment conditions satisfying:

(a) ΞSmaxE[f(Zni, θ0)] = 0

(b) For any S ′ 6= Smax such that ΞS′E[f(Zni, θ
′)] = 0 for some θ′ ∈ Θ, |Smax| > |S ′|.

Andrews and Lu (2001) and Hong et al. (2003) take the same basic approach to identifica-

tion, with appropriate modifications to allow for simultaneous model and moment selection.

An advantage of Assumption 2.3 is that, under fixed mis-specification, it allows consistent

selection of Smax without any prior knowledge of which moment conditions are correct. In

the notation of the present paper this corresponds to having no moment conditions in the

g block. As Hall (2005, p. 254) points out, however, the second part of Assumption 2.3 can

fail even in very simple settings. When it does fail, the selected GMM estimator may no

longer be consistent for θ0. A different approach to identification is to assume that there is

a minimal set of at least r moment conditions known to be correctly specified. This is the

approach I follow here, as do Liao (2013) and Cheng and Liao (2013).7

Assumption 2.4 (FMSC Identification Condition). Let θ̂v denote the GMM estimator based

solely on the moment conditions contained in the g–block

θ̂v = arg min
θ∈Θ

gn(θ)′W̃v gn(θ)

We call this the “valid estimator” and assume that it satisfies all the conditions of Assumption

2.2. Note that this implies p ≥ r.

Assumption 2.4 and Theorem 2.2 immediately imply that the valid estimator shows no

asymptotic bias.

Corollary 2.1 (Limit Distribution of Valid Estimator). Let Sv include only the moment

conditions contained in g. Then, under Assumption 2.4 we have

√
n
(
θ̂v − θ0

)
→d −KvMg

by applying Theorem 2.2 to Sv, where Kv = [G′WvG]−1G′Wv and Mg ∼ N(0,Ωgg).

Both Assumptions 2.3 and 2.4 are strong, and neither fully nests the other. In the

context of the present paper, Assumption 2.4 is meant to represent a situation in which

an applied research chooses between two groups of assumptions. The g–block contains the

7For a dicussion of why Assumption 2.4 is necessary and how to proceed when it fails, see Appendix C.
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“baseline” assumptions while the h–block contains a set of stronger, more controversial

“suspect” assumptions. The FMSC is designed for settings in which the h–block is expected

to contain a substantial amount of information beyond that already contained in the g–block.

The idea is that, if we knew the h–block was correctly specified, we would expect a large gain

in efficiency by including it in estimation. This motivates the idea of trading off the variance

reduction from including h against the potential increase in bias. If the h–block assumptions

are nearly correct we may want to use them in estimation. Not all applications have the

structure, but many do. Below, I consider two simple but empirically relevant examples:

choosing between OLS and TSLS estimators and choosing instrumental variables.

3 The Focused Moment Selection Criterion

3.1 The General Case

The FMSC chooses among the potentially invalid moment conditions contained in h based

on the estimator AMSE of a user-specified scalar target parameter. Denote this target

parameter by µ, a real-valued, Z-almost continuous function of the parameter vector θ that

is differentiable in a neighborhood of θ0. Further, define the GMM estimator of µ based on

θ̂S by µ̂S = µ(θ̂S) and the true value of µ by µ0 = µ(θ0). Applying the Delta Method to

Theorem 2.2 gives the AMSE of µ̂S.

Corollary 3.1 (AMSE of Target Parameter). Under the hypotheses of Theorem 2.2,

√
n (µ̂S − µ0)→d −∇θµ(θ0)′KSΞS

(
M +

[
0

τ

])

where M is defined in Theorem 2.2. Hence,

AMSE (µ̂S) = ∇θµ(θ0)′KSΞS

{[
0 0

0 ττ ′

]
+ Ω

}
Ξ′SK

′
S∇θµ(θ0).

For the valid estimator θ̂v we have Kv = [G′WvG]−1G′Wv and Ξv =
[

Ip 0p×q

]
. Thus,

the valid estimator µ̂v of µ has zero asymptotic bias. In contrast, any candidate estimator µ̂S

that includes moment conditions from h inherits an asymptotic bias from the correspond-

ing elements of τ , the extent and direction of which depends both on KS and ∇θµ(θ0).

Adding moment conditions from h, however, generally decreases asymptotic variance. In

particular, the usual proof that adding moment conditions cannot increase asymptotic vari-

ance under efficient GMM (see for example Hall, 2005, ch. 6) continues to hold under local
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mis-specification, because all moment conditions are correctly specified in the limit.8

Using this framework for moment selection requires estimators of the unknown quanti-

ties: θ0, KS, Ω, and τ . Under local mis-specification, the estimator of θ under any moment

set is consistent. A natural estimator is θ̂v, although there are other possibilities. Recall

that KS = [F ′SWSFS]−1F ′SWSΞS. Because it is simply the selection matrix defining moment

set S, ΞS is known. The remaining quantities FS and WS that make up KS are consistently

estimated by their sample analogues under Assumption 2.2. Similarly, consistent estimators

of Ω are readily available under local mis-specification, although the precise form depends

on the situation.9 The only remaining unknown is τ . Local mis-specification is essential for

making meaningful comparisons of AMSE because it prevents the bias term from dominating

the comparison. Unfortunately, it also prevents consistent estimation of the asymptotic bias

parameter. Under Assumption 2.4, however, it remains possible to construct an asymptoti-

cally unbiased estimator τ̂ of τ by substituting θ̂v, the estimator of θ0 that uses only correctly

specified moment conditions, into hn, the sample analogue of the potentially mis-specified

moment conditions. In other words, τ̂ =
√
nhn(θ̂v).

Theorem 3.1 (Asymptotic Distribution of τ̂). Let τ̂ =
√
nhn(θ̂v) where θ̂v is the valid

estimator, based only on the moment conditions contained in g. Then under Assumptions

2.1, 2.2 and 2.4

τ̂ →d Ψ

(
M +

[
0

τ

])
, Ψ =

[
−HKv Iq

]
where Kv is defined in Corollary 2.1. Thus, τ̂ →d (ΨM + τ) ∼ Nq(τ,ΨΩΨ′).

Returning to Corollary 3.1, however, we see that it is ττ ′ rather than τ that enters the

expression for AMSE. Although τ̂ is an asymptotically unbiased estimator of τ , the limiting

expectation of τ̂ τ̂ ′ is not ττ ′ because τ̂ has an asymptotic variance. Subtracting a consistent

estimate of the asymptotic variance removes this asymptotic bias.

Corollary 3.2 (Asymptotically Unbiased Estimator of ττ ′). If Ω̂ and Ψ̂ are consistent for

Ω and Ψ, then τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂ is an asymptotically unbiased estimator of ττ ′.

It follows that

FMSCn(S) = ∇θµ(θ̂)′K̂SΞS

{[
0 0

0 τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂′

]
+ Ω̂

}
Ξ′SK̂

′
S∇θµ(θ̂) (1)

8The general result for adding moment conditions in GMM is only relevant in situations where the valid
moment set is strictly nested inside of all other candidate moment sets. When this does not hold, such as in
the OLS versus IV example, we establish an analogous ordering of asymptotic variances by direct calculation.

9See Sections 3.2 and 3.3 for discussion of this point for the two running examples.
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provides an asymptotically unbiased estimator of AMSE. Given a set S of candidate specifi-

cations, the FMSC selects the candidate S∗ that minimizes the expression given in Equation

1, that is S∗FMSC = arg minS∈S FMSCn(S).

At this point, it is worth taking a brief pause to survey the ground covered thus far. We

began with a target parameter, µ, a risk function, mean-squared error, and a collection of

candidate estimators, µ̂S for S ∈ S . Our goal was to choose the estimator with the lowest

risk. Because finite-sample distributions were unavailable, we resorted to an asymptotic

experiment, local mis-specification, that preserved the bias-variance tradeoff embodied in

our chosen risk function. We then calculated the risk of the limit distribution of µ̂S to use as

a stand-in for the finite-sample risk. This quantity involved several unknown parameters. We

estimated these in such a way that the resulting asymptotic risk estimate would converge

in distribution to a random variable with mean equal to the true asymptotic risk. The

result was the FMSC: an asymptotically unbiased estimator of the AMSE of µ̂S. Viewing

the FMSC at this level of abstraction raises two questions. First, could we have chosen a

risk function other than mean-squared error? Second, why should we use an asymptotically

unbiased risk estimator?

The answer to the first question is a straightforward yes. The idea of using asymptotic

risk as a stand-in for finite sample risk requires only that we can characterize the limit

distribution of each µ̂S and use it to evaluate the chosen risk function. Claeskens et al.

(2006) and Claeskens and Hjort (2008a), for example, show how the FIC for model selection

in maximum likelihood models can be extended from squared error to Lp and linex loss,

respectively, in precisely this way. One could easily do the same for the FMSC although I do

not consider this possibility further here. Answering the second question is more difficult.

Under local mis-specification it is impossible to consistently estimate AMSE.10 If we merely

use the plug-in estimator of the squared asymptotic bias based on τ̂ , the resulting AMSE

estimate will “overshoot” asymptotically. Accordingly, it seems natural to correct this bias

as explained in Corollary 3.2. This is the same heuristic that underlies the classical AIC

and TIC model selection criteria as well as more recent procedures such as those described

in Claeskens and Hjort (2003) and Schorfheide (2005). Nevertheless, there could certainly

be situations in which it makes sense to use a risk estimator other than the asymptotically

unbiased one suggested here. If one wished to consider risk functions other than MSE, to take

a simple example, it may not be possible to derive an asymptotically unbiased risk estimator.

The plug-in estimator, however, is always available. Although I do not consider them further

below, alternative risk estimators could be an interesting topic for future research.

10This is not a defect of the FMSC: there is a fundamental trade-off between consistency and desirable
risk properties. See Section 4 for a discussion of this point.
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3.2 OLS versus TSLS Example

The simplest interesting application of the FMSC is choosing between ordinary least squares

(OLS) and two-stage least squares (TSLS) estimators of the effect β of a single endogenous

regressor x on an outcome of interest y. The intuition is straightforward: because TSLS is a

high-variance estimator, OLS will have a lower mean-squared error provided that x isn’t too

endogenous.11 To keep the presentation transparent, I work within an iid, homoskedastic

setting for this example and assume, without loss of generality, that there are no exogenous

regressors.12 Equivalently we may suppose that any exogenous regressors, including a con-

stant, have been “projected out.” Low-level sufficient conditions for all of the results in this

section appear in Assumption D.1 of Appendix D. The data generating process is

yni = βxni + εni (2)

xni = z′niπ + vni (3)

where β and π are unknown constants, zni is a vector of exogenous and relevant instruments,

xni is the endogenous regressor, yni is the outcome of interest, and εni, vni are unobservable

error terms. All random variables in this system are mean zero, or equivalently all constant

terms have been projected out. Stacking observations in the usual way, the estimators

under consideration are β̂OLS = (x′x)−1 x′y and β̃TSLS = (x′PZx)−1 x′PZy where we define

PZ = Z(Z ′Z)−1Z ′.

Theorem 3.2 (OLS and TSLS Limit Distributions). Let (zni, vni, εni) be a triangular array

of random variables such that E[zniεni] = 0, E[znivni] = 0, and E[εnivni] = τ/
√
n for all n.

Then, under standard regularity conditions, e.g. Assumption D.1,[ √
n(β̂OLS − β)

√
n(β̃TSLS − β)

]
d→ N

([
τ/σ2

x

0

]
, σ2

ε

[
1/σ2

x 1/σ2
x

1/σ2
x 1/γ2

])

where σ2
x = γ2 + σ2

v, γ2 = π′Qπ, E[zniz
′
ni]→ Q, E[v2

ni]→ σ2
v, and E[ε2ni]→ σ2

ε as n→∞.

We see immediately that, as expected, the variance of the OLS estimator is always strictly

lower than that of the TSLS estimator since σ2
ε/σ

2
x = σ2

ε/(γ
2 + σ2

v). Unless τ = 0, however,

OLS shows an asymptotic bias. In contrast, the TSLS estimator is asymptotically unbiased

11Because the moments of the TSLS estimator only exist up to the order of overidentificiation (Phillips,
1980) mean-squared error should be understood to refer to “trimmed” mean-squared error when the number
of instruments is two or fewer. See, e.g., Hansen (2013).

12The homoskedasticity assumption concerns the limit random variables: under local mis-specification
there will be heteroskedasticity for fixed n. See Assumption D.1 in Appendix D for details.
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regardless of the value of τ . Thus,

AMSE(OLS) =
τ 2

σ4
x

+
σ2
ε

σ2
x

, AMSE(TSLS) =
σ2
ε

γ2
.

and rerranging, we see that the AMSE of the OLS estimator is strictly less than that of the

TSLS estimator whenever τ 2 < σ2
xσ

2
εσ

2
v/γ

2. To estimate the unknowns required to turn this

inequality into a moment selection procedure, I set

σ̂2
x = n−1x′x, γ̂2 = n−1x′Z(Z ′Z)−1Z ′x, σ̂2

v = σ̂2
x − γ̂2

and define

σ̂2
ε = n−1

(
y− xβ̃TSLS

)′ (
y− xβ̃TSLS

)
Under local mis-specification each of these estimators is consistent for its population coun-

terpart.13 All that remains is to estimate τ 2. Specializing Theorem 3.1 and Corollary 3.2 to

the present example gives the following result.

Theorem 3.3. Let τ̂ = n−1/2x′(y − xβ̃TSLS). Then, under the conditions of Theorem 3.2,

τ̂ →d N(τ, V ), V = σ2
εσ

2
x(σ

2
v/γ

2).

It follows that τ̂ 2− σ̂2
ε σ̂

2
x (σ̂2

v/γ̂
2) is an asymptotically unbiased estimator of τ 2 and hence,

substituting into the AMSE inequality from above and rearranging, the FMSC instructs us

to choose OLS whenever T̂FMSC = τ̂ 2/V̂ < 2 where V̂ = σ̂2
v σ̂

2
ε σ̂

2
x/γ̂

2. The quantity T̂FMSC

looks very much like a test statistic and indeed it can be viewed as such. By Theorem 3.3

and the continuous mapping theorem, T̂FMSC →d χ
2(1). Thus, the FMSC can be viewed

as a test of the null hypothesis H0 : τ = 0 against the two-sided alternative with a critical

value of 2. This corresponds to a significance level of α ≈ 0.16. But how does this novel

“test” compare to something more familiar, say the Durbin-Hausman-Wu (DHW) test? It

turns out that in this particular example, although not in general, the FMSC is numerically

equivalent to using OLS unless the DHW test rejects at the 16% level.

Theorem 3.4. Under the conditions of Theorem 3.2, FMSC selection between the OLS and

TSLS estimators is equivalent to a Durbin-Hausman-Wu pre-test with a critical value of 2.

The equivalence between FMSC selection and a DHW test in this example is helpful

for two reasons. First, it provides a novel justification for the use of the DHW test to

13While using the OLS residuals to estimate σ2
ε also provides a consistent estimate under local mis-

specification, the estimator based on the TSLS residuals should be more robust unless the instruments are
quite weak.
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select between OLS and TSLS. So long as it is carried out with α ≈ 16%, the DHW test is

equivalent to selecting the estimator that minimizes an asymptotically unbiased estimator

of AMSE. Note that this significance level differs from the more usual values of 5% or 10%

in that it leads us to select TSLS more often: OLS should indeed be given the benefit of the

doubt, but not by so wide a margin as traditional practice suggests. Second, this equivalence

shows that the FMSC can be viewed as an extension of the idea behind the familiar DHW

test to more general GMM environments.

3.3 Choosing Instrumental Variables Example

The OLS versus TSLS example is really a special case of instrument selection: if x is ex-

ogenous, it is clearly “its own best instrument.” Viewed from this perspective, the FMSC

amounts to trading off endogeneity against instrument strength. I now consider instrument

selection in general for linear GMM estimators in an iid setting. Consider the following

model:

yni = x′iβ + εi (4)

xni = Π′1z
(1)
ni + Π′2z

(2)
ni + vni (5)

where y is an outcome of interest, x is an r-vector of regressors, some of which are endogenous,

z(1) is a p-vector of instruments known to be exogenous, and z(2) is a q-vector of potentially

endogenous instruments. The r-vector β, p × r matrix Π1, and q × r matrix Π2 contain

unknown constants. Stacking observations in the usual way, we can write the system in

matrix form as y = Xβ + ε and X = ZΠ + V , where Z = (Z1, Z2) and Π = (Π′1,Π
′
2)′.

In this example, the idea is that the instruments contained in Z2 are expected to be strong.

If we were confident that they were exogenous, we would certainly use them in estimation.

Yet the very fact that we expect them to be strongly correlated with x gives us reason to fear

that they may be endogenous. The exact opposite is true of Z1: these are the instruments

that we are prepared to assume are exogenous. But when is such an assumption plausible?

Precisely when the instruments contained in Z1 are not especially strong. Accordingly, the

FMSC attempts to trade off a small increase in bias from using a slightly endogenous instru-

ment against a larger decrease in variance from increased instrument strength. To this end,

consider a general linear GMM estimator of the form

β̂S = (X ′ZSW̃SZ
′
SX)−1X ′ZSW̃SZ

′
Sy

where S indexes the instruments used in estimation, Z ′S = ΞSZ
′ is the matrix containing

15



only those instruments included in S, |S| is the number of instruments used in estimation

and W̃S is an |S| × |S| positive definite weighting matrix.

Theorem 3.5 (Choosing IVs Limit Distribution). Let (zni, vni, εni) be a triangular array

of random variables such that E[zniεni] = 0, E[znivni] = 0, and E[εnivni] = τ/
√
n for all

n. Suppose further that W̃S →p WS > 0. Then, under standard regularity conditions, e.g.

Assumption D.2,

√
n
(
β̂S − β

)
d→ −KSΞS

([
0

τ

]
+M

)
where

−KS = (Π′QSWSQ
′
SΠ)

−1
Π′QSWS

M ∼ N(0,Ω), QS = QΞ′S, E[zniz
′
ni]→ Q and E[ε2nizniz

′
ni]→ Ω as n→∞

To implement the FMSC for this example, we simply need to specialize Equation 1. To

simplify the notation, let

Ξ1 =
[
Ip 0p×q

]
, Ξ2 =

[
0q×p Iq

]
(6)

where 0m×n denotes an m × n matrix of zeros and Im denotes the m ×m identity matrix.

Using this convention, Z1 = ZΞ′1 and Z2 = ZΞ′2. In this example the valid estimator, defined

in Assumption 2.4, is given by

β̂v =
(
X ′Z1W̃vZ

′
1X
)−1

X ′Z1W̃vZ
′
1y (7)

and we estimate ∇βµ(β) with ∇βµ(β̂v). Similarly,

−K̂S = n
(
X ′ZΞ′SW̃SΞSZ

′X
)−1

X ′ZΞ′SW̃S

is the natural consistent estimator of −KS in this setting.14 Since ΞS is known, the only

remaining quantities from Equation 1 are τ̂ , Ψ̂ and Ω̂. The following result specializes

Theorem 3.1 to the present example.

Theorem 3.6. Let τ̂ = n−1/2Z ′2(y−Xβ̂v) where β̂v is as defined in Equation 7. Under the

14The negative sign is squared in the FMSC expression and hence disappears. I write it here only to be
consistent with the notation of Theorem 2.2.
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conditions of Theorem 3.5 we have τ̂ →d τ + ΨM where M is defined in Theorem 3.5,

Ψ =
[
−Ξ2QΠKv Iq

]
−Kv = (Π′QΞ′1WvΞ1Q

′Π)
−1

Π′QΞ′1Wv

Wv is the probability limit of the weighting matrix from Equation 7, Iq is the q × q identity

matrix, Ξ1 is defined in Equation 6, and E[zniz
′
ni]→ Q.

Using this result, I construct the asymptotically unbiased estimator τ̂ τ̂ ′ − Ψ̂Ω̂Ψ̂′ of ττ ′

from

Ψ̂ =
[
−n−1Z ′2X

(
−K̂v

)
Iq

]
, −K̂v = n

(
X ′Z1W̃vZ

′
1X
)−1

X ′Z1W̃v

All that remains before substituting values into Equation 1 is to estimate Ω. There are

many possible ways to proceed, depending on the problem at hand and the assumptions one

is willing to make. In the simulation and empirical examples discussed below I examine the

TSLS estimator, that is W̃S = (ΞSZ
′ZΞS)−1, and estimate Ω as follows. For all specifications

except the valid estimator β̂v, I employ the centered, heteroskedasticity-consistent estimator

Ω̂S =
1

n

n∑
i=1

ui(β̂S)2ziSz′iS −

(
1

n

n∑
i=1

ui(β̂S)ziS

)(
1

n

n∑
i=1

ui(β̂S)z′iS

)
(8)

where ui(β) = yi − x′iβ, β̂S = (X ′ZS(Z ′SZS)−1Z ′SX)−1X ′ZS(Z ′SZS)−1Z ′Sy, ziS = ΞSzi and

Z ′S = ΞSZ
′. Centering allows moment functions to have non-zero means. While the local

mis-specification framework implies that these means tend to zero in the limit, they are

non-zero for any fixed sample size. Centering accounts for this fact, and thus provides added

robustness. Since the valid estimator β̂v has no asymptotic bias, the AMSE of any target

parameter based on this estimator equals its asymptotic variance. Accordingly, I use

Ω̃11 = n−1

n∑
i=1

ui(β̂v)
2z1iz

′
1i (9)

rather than the (p × p) upper left sub-matrix of Ω̂ to estimate this quantity. This imposes

the assumption that all instruments in Z1 are valid so that no centering is needed, providing

greater precision.
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4 Moment Averaging & Post-Selection Estimators

Because it is constructed from τ̂ , the FMSC is a random variable, even in the limit. Com-

bining Corollary 3.2 with Equation 1 gives the following.

Corollary 4.1 (Limit Distribution of FMSC). Under Assumptions 2.1, 2.2 and 2.4, we have

FMSCn(S)→d FMSCS(τ,M), where

FMSCS(τ,M) = ∇θµ(θ0)′KSΞS

{[
0 0

0 B(τ,M)

]
+ Ω

}
Ξ′SK

′
S∇θµ(θ0)

B(τ,M) = (ΨM + τ)(ΨM + τ)′ −ΨΩΨ′.

This corollary implies that the FMSC is a “conservative” rather than “consistent” selec-

tion procedure. While this lack of consistency may sound like serious defect, it is in fact

a desirable feature of the FMSC for two reasons. First, as discussed above, the goal of

the FMSC is not to select only correctly specified moment conditions: it is to choose an

estimator with a low finite-sample MSE as approximated by AMSE. In fact, the goal of con-

sistent selection is very much at odds with that of controlling estimator risk. As explained

by Yang (2005) and Leeb and Pötscher (2008), the worst-case risk of a consistent selection

procedure diverges with sample size.15 Second, while we know from both simulation studies

(Demetrescu et al., 2011) and analytical examples (Leeb and Pötscher, 2005) that selection

can dramatically change the sampling distribution of our estimators, invalidating traditional

confidence intervals, the asymptotics of consistent selection give the misleading impression

that this problem can be ignored. The point is not that conservative criteria are immune

to the effects of selection on inference: it is that conservative criteria can be studied using

asymptotics that more accurately represent the phenomena encountered in finite samples.

There are two main problems with traditional confidence intervals näıvely applied post-

moment selection. First, they ignore model selection uncertainty. If the data had been

slightly different, we would have chosen a different set of moment conditions. Accordingly,

because traditional intervals condition on the selected model, they are too short. Second,

traditional confidence intervals ignore the fact that selection is carried out over potentially

invalid moment conditions. Even if our goal were to eliminate all mis-specified moment

conditions, for example by using a consistent criterion such as the GMM-BIC of Andrews

(1999), in finite-samples we would not always be successful. Because of this, our intervals

will be incorrectly centered.

15This fact is readily apparent from the results of the simulation study from Section 5.2: the consistent
criteria, GMM-BIC and HQ, have the highest worst-case RMSE, while the conservative criteria, FMSC and
GMM-AIC, have the lowest.
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To account for these two effects, we need a way to represent a non-normal sampling

distribution in our limit theory, and this rules out consistent selection. The key point is

that the post-selection estimator is a randomly-weighted average of the individual candidate

estimators, some of which are centered away from θ0. Thus, although the candidate estima-

tors are asymptotically normal, the post-selection estimator follows a mixture distribution.

Because they choose a single candidate with probability approaching one in the limit, con-

sistent selection procedures make it impossible to represent this phenomenon. In contrast,

conservative selection procedures remain random even as the sample size goes to infinity,

allowing us to derive a non-normal limit distribution and, ultimately, to carry out valid

inference post-moment selection. In the remainder of this section, I derive the asymptotic

distribution of generic “moment average” estimators and use them to propose a two-step,

simulation-based procedure for constructing valid confidence intervals post-moment selec-

tion. I also briefly consider genuine moment average estimators which may have important

advantages over selection.

4.1 Moment Average Estimators

A generic moment average estimator takes the form

µ̂ =
∑
S∈S

ω̂Sµ̂S (10)

where µ̂S = µ(θ̂S) is the estimator of the target parameter µ under moment set S, S is

the collection of all moment sets under consideration, and ω̂S is shorthand for the value of

a data-dependent weight function ω̂S = ω(·, ·) evaluated at moment set S and the sample

observations Zn1, . . . , Znn. As above µ(·) is a R-valued, Z-almost surely continuous function

of θ that is differentiable in an open neighborhood of θ0. When ω̂S is an indicator, taking

on the value one at the moment set moment set that minimizes some moment selection

criterion, µ̂ is a post-moment selection estimator. To characterize the limit distribution of

µ̂, I impose the following conditions on ω̂S.

Assumption 4.1 (Conditions on the Weights).

(a)
∑

S∈S ω̂S = 1, almost surely

(b) For each S ∈ S , ω̂S →d ϕS(τ,M), an almost-surely continuous function of τ , M and

consistently estimable constants only.
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Corollary 4.2 (Asymptotic Distribution of Moment-Average Estimators). Under Assump-

tion 4.1 and the conditions of Theorem 2.2,

√
n (µ̂− µ0)→d Λ(τ) = −∇θµ(θ0)′

[∑
S∈S

ϕS(τ,M)KSΞS

](
M +

[
0

τ

])
.

Notice that the limit random variable from Corollary 4.2, denoted Λ(τ), is a randomly

weighted average of the multivariate normal vector M . Hence, Λ(τ) is non-normal. This

is precisely the behavior for which we set out to construct an asymptotic representation.

The conditions of Assumption 4.1 are fairly mild. Requiring that the weights sum to one

ensures that µ̂ is a consistent estimator of µ0 and leads to a simpler expression for the limit

distribution. While somewhat less transparent, the second condition is satisfied by weighting

schemes based on a number of familiar moment selection criteria. It follows immediately from

Corollary 4.1, for example, that the FMSC converges in distribution to a function of τ , M

and consistently estimable constants only. The same is true for the J-test statistic, as seen

from the following result.

Theorem 4.1 (Distribution of J-Statistic under Local Mis-Specification). Define the J-test

statistic as per usual by Jn(S) = n
[
ΞSfn(θ̂S)

]′
Ω̂−1

[
ΞSfn(θ̂S)

]
where Ω̂−1

S is a consistent

estimator of Ω−1
S . Then, under the conditions of Theorem 2.2, we have Jn(S) →d JS(τ,M)

where

JS(τ,M) = [Ω
−1/2
S (MS + τS)]′(I − PS)[Ω

−1/2
S ΞS(MS + τS)],

MS = ΞSM , τ ′S = (0′, τ ′)Ξ′S, and PS is the projection matrix formed from the GMM identi-

fying restrictions Ω
−1/2
S FS.

Hence, normalized weights constructed from almost-surely continuous functions of either

the FMSC or the J-test statistic satisfy Assumption 4.1.

Post-selection estimators are merely a special case of moment average estimators. To see

why, consider the weight function

ω̂MSC
S = 1

{
MSCn(S) = min

S′∈S
MSCn(S ′)

}
where MSCn(S) is the value of some moment selection criterion evaluated at the sam-

ple observations Zn1 . . . , Znn. Now suppose MSCn(S) →d MSCS(τ,M), a function of τ ,

M and consistently estimable constants only. Then, so long as the probability of ties,

P {MSCS(τ,M) = MSCS′(τ,M)}, is zero for all S 6= S ′, the continuous mapping theorem
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gives

ω̂MSC
S →d 1

{
MSCS(τ,M) = min

S′∈S
MSCS′(τ,M)

}
satisfying Assumption 4.1 (b). Thus, post-selection estimators based on the FMSC, a down-

ward J-test procedure, or the GMM moment selection criteria of Andrews (1999) all fall

within the ambit of 4.2. The consistent criteria of Andrews (1999), however, are not partic-

ularly interesting under local mis-specification.16 Intuitively, because they aim to select all

valid moment conditions w.p.a.1, we would expect that under Assumption 2.1 they simply

choose the full moment set in the limit. The following result shows that this intuition is

correct.

Theorem 4.2 (Consistent Criteria under Local Mis-Specification). Consider a moment se-

lection criterion of the form MSC(S) = Jn(S) − h(|S|)κn, where h is strictly increasing,

limn→∞ κn =∞, and κn = o(n). Under the conditions of Theorem 2.2, MSC(S) selects the

full moment set with probability approaching one.

The preceding result is a special case of a more general phenomenon: consistent selection

procedures cannot detect model violations of order O(n−1/2).

4.2 Moment Averaging for the OLS versus TSLS Example

Moment selection is a somewhat crude procedure: it gives full weight to the estimator that

minimizes the moment selection criterion no matter how close its nearest competitor lies.

Accordingly, when competing moment sets have similar criterion values in the population,

sampling variation can be magnified in the selected estimator. This motivates the idea

of averaging estimators based on different moment conditions rather than selecting them.

Indeed, in some settings it is possible to derive averaging estimators with uniformly lower

risk than the “valid” estimator via Stein-type arguments (e.g. Hansen (2014) and Cheng

et al. (2014)). In the case of a scalar target parameter, however, such results are unavailable

and hence cannot be used to guide the construction of moment averaging weights for the

setting considered in this paper.

So how should one construct weights for a scalar target parameter? One possibility is to

adapt a proposal from Buckland et al. (1997), who suggest averaging a collection of competing

maximum likelihood estimator with weights of the form wk = exp(−Ik/2)/
∑K

i=1 exp(−Ii/2)

where Ik is an information criterion evaluated for model k, and i indexes the set of K can-

didate models. This expression, constructed by an analogy with Bayesian model averaging,

gives more weight to models with lower values of the information criterion but non-zero

16For more discussion of these criteria, see Section 5.2 below.
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weight to all models. Applying a slightly more general form of this idea, suggested by

Claeskens and Hjort (2008b), to the moment selection criteria examined above we might

consider weights of the form

ω̂S = exp
{
−κ

2
MSC(S)

}/ ∑
S′∈S

exp
{
−κ

2
MSC(S ′)

}
where MSC(·) is a moment selection criterion and the parameter κ ≥ 0 varies the uniformity

of the weighting. As κ→ 0 the weights become more uniform; as κ→∞ they approach the

moment selection procedure given by minimizing the corresponding criterion. Setting κ = 1

gives the Buckland et al. (1997) weights.

Some preliminary simulation results, reported in an earlier draft of this paper, suggest

that exponential weighting can indeed provide MSE improvements. The difficulty, however,

lies in choosing an appropriate value for κ. In at least some applications, however, there is a

compelling alternative to the exponential weighting scheme: one can instead derive weights

analytically to minimize AMSE within the FMSC framework. This immediately suggests a

plug-in estimator of the optimal weights along the lines of the FMSC estimate of AMSE. To

illustrate this idea, I revisit the OLS versus TSLS example from Section 3.2. Let β̃(ω) be a

convex combination of the OLS and TSLS estimators, namely

β̃(ω) = ωβ̂OLS + (1− ω)β̃TSLS (11)

where ω ∈ [0, 1] is the weight given to the OLS estimator.

Theorem 4.3. Under the conditions of Theorem 3.2, the AMSE of the weighted-average

estimator
√
n
[
β̂(ω)− β

]
is minimized over ω ∈ [0, 1] by taking ω = ω∗ where

ω∗ =

[
1 +

τ 2/σ4
x

σ2
ε (1/γ

2 − 1/σ2
x)

]−1

=

[
1 +

ABIAS(OLS)2

AVAR(TSLS)− AVAR(OLS)

]−1

.

The preceding result has several important consequences. First, since the variance of

the TSLS estimator is always strictly greater than that of the OLS estimator, the optimal

value of ω cannot be zero. No matter how strong the endogeneity of x, as measured by τ , we

should always give some weight to the OLS estimator. Second, when τ = 0 the optimal value

of ω is one. If x is exogenous, OLS is strictly preferable to TSLS. Third, the optimal weights

depend on the strength of the instruments z as measured by γ. All else equal, the stronger

the instruments, the less weight we should give to OLS. To operationalize the AMSE-optimal
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averaging estimator suggested from Theorem 4.3, I define the plug-in estimator

β̂∗AV G = ω̂∗β̂OLS + (1− ω̂∗)β̃TSLS (12)

where

ω̂∗ =

[
1 +

max {0, (τ̂ 2 − σ̂2
ε σ̂

2
x (σ̂2

x/γ̂
2 − 1)) / σ̂4

x}
σ̂2
ε (1/γ̂

2 − 1/σ̂2
x)

]−1

(13)

This expression employs the same consistent estimators of σ2
x, γ and σε as the FMSC expres-

sions from Section 3.2. To ensure that ω̂∗ lies in the interval [0, 1], however, I use a positive

part estimator for τ 2, namely max{0, τ̂ 2− V̂ } rather than τ̂ 2− V̂ .17 In the following section

I show how one can construct a valid confidence interval for β̂∗ and related estimators.

4.3 Valid Confidence Intervals

While Corollary 4.2 characterizes the limiting behavior of moment-average, and hence post-

selection estimators, the limiting random variable Λ(τ) is a complicated function of the

normal random vector M . Because this distribution is analytically intractable, I adapt a

suggestion from Claeskens and Hjort (2008b) and approximate it by simulation. The result is

a conservative procedure that provides asymptotically valid confidence intervals for moment

average and hence post-conservative selection estimators.18

First, suppose that KS, ϕS, θ0, Ω and τ were known. Then, by simulating from M , as

defined in Theorem 2.2, the distribution of Λ(τ), defined in Corollary 4.2, could be approxi-

mated to arbitrary precision. To operationalize this procedure one can substitute consistent

estimators of KS, θ0, and Ω, e.g. those used to calculate FMSC. To estimate ϕS, we first

need to derive the limit distribution of ω̂S, the data-based weights specified by the user. As

an example, consider the case of moment selection based on the FMSC. Here ω̂S is simply

the indicator function

ω̂S = 1

{
FMSCn(S) = min

S′∈S
FMSCn(S ′)

}
(14)

To estimate ϕS, first substitute consistent estimators of Ω, KS and θ0 into FMSCS(τ,M),

17While τ̂2 − V̂ is an asymptotically unbiased estimator of τ2 it can be negative.
18Although I originally developed this procedure by analogy to Claeskens and Hjort (2008b), Leeb and

Pötscher (2014) kindly pointed out that constructions of the kind given here have appeared elsewhere in the
statistics literature, notably in Loh (1985), Berger and Boos (1994), and Silvapulle (1996). More recently,
McCloskey (2012) uses a similar approach to study non-standard testing problems.
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defined in Corollary 4.1, yielding,

F̂MSCS(τ,M) = ∇θµ(θ̂)′K̂SΞS

{[
0 0

0 B̂(τ,M)

]
+ Ω̂

}
Ξ′SK̂

′
S∇θµ(θ̂) (15)

where

B̂(τ,M) = (Ψ̂M + τ)(Ψ̂M + τ)′ − Ψ̂Ω̂Ψ̂ (16)

Combining this with Equation 14,

ϕ̂S(τ,M) = 1

{
F̂MSCS(τ,M) = min

S′∈S
F̂MSCS′(τ,M)

}
. (17)

For GMM-AIC moment selection or selection based on a downward J-test, ϕS(·, ·) may be

estimated analogously, following Theorem 4.1.

Although simulating draws from M , defined in Theorem 2.2, requires only an estimate of

Ω, the limit ϕS of the weight function also depends on τ . As discussed above, no consistent

estimator of τ is available under local mis-specification: the estimator τ̂ has a non-degenerate

limit distribution (see Theorem 3.1). Thus, substituting τ̂ for τ will give erroneous results

by failing to account for the uncertainty that enters through τ̂ . The solution is to use a

two-stage procedure. First construct a 100(1 − δ)% confidence region T (τ̂ , δ) for τ using

Theorem 3.1. Then, for each τ ∗ ∈ T (τ̂ , δ) simulate from the distribution of Λ(τ ∗), defined

in Corollary 4.2, to obtain a collection of (1 − α) × 100% confidence intervals indexed by

τ ∗. Taking the lower and upper bounds of these yields a conservative confidence interval for

µ̂, as defined in Equation 10. This interval has asymptotic coverage probability of at least

(1− α− δ)× 100%. The precise algorithm is as follows.

Algorithm 4.1 (Simulation-based Confidence Interval for µ̂).

1. For each τ ∗ ∈ T (τ̂ , δ)

(i) Generate J independent draws Mj ∼ Np+q(0, Ω̂)

(ii) Set Λj(τ
∗) = −∇θµ(θ̂)′

[∑
S∈S ϕ̂S(τ ∗,Mj)K̂SΞS

]
(Mj + τ ∗)

(iii) Using the draws {Λj(τ
∗)}Jj=1, calculate â(τ ∗), b̂(τ ∗) such that

P
{
â(τ ∗) ≤ Λ(τ ∗) ≤ b̂(τ ∗)

}
= 1− α

2. Set âmin(τ̂) = min
τ∗∈T (τ̂ ,δ)

â(τ ∗) and b̂max(τ̂) = max
τ∗∈T (τ̂ ,δ)

b̂(τ ∗)
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3. The confidence interval for µ is CIsim =

[
µ̂− b̂max(τ̂)√

n
, µ̂− âmin(τ̂)√

n

]

Theorem 4.4 (Simulation-based Confidence Interval for µ̂). Let Ψ̂, Ω̂, θ̂, K̂S, ϕ̂S be con-

sistent estimators of Ψ, Ω, θ0, KS, ϕS and define ∆n(τ̂ , τ ∗) = (τ̂ − τ ∗)′ (Ψ̂Ω̂Ψ̂′)−1 (τ̂ − τ ∗)
and T (τ̂ , δ) =

{
τ ∗ : ∆n(τ̂ , τ ∗) ≤ χ2

q(δ)
}

where χ2
q(δ) denotes the 1 − δ quantile of a χ2 dis-

tribution with q degrees of freedom. Then, the interval CIsim defined in Algorithm 4.1 has

asymptotic coverage probability no less than 1− (α + δ) as J, n→∞.

5 Simulation Results

5.1 OLS versus TSLS Example

I begin by examining the performance of the FMSC and averaging estimator in the OLS

versus TSLS example. All calculations in this section are based on the formulas from Sections

3.2 and 4.2 with 10,000 simulation replications. The data generating process is given by

yi = 0.5xi + εi (18)

xi = π(z1i + z2i + z3i) + vi (19)

with (εi, vi, z1i, z2i, z3i) ∼ iid N(0,S)

S =

[
S1 0

0 S2

]
, S1 =

[
1 ρ

ρ 1− π2

]
, S2 = I3/3 (20)

for i = 1, . . . , N where N , ρ and π vary over a grid. The goal is to estimate the effect of x on

y, in this case 0.5, with minimum MSE either by choosing between OLS and TSLS estimators

or by averaging them. To ensure that the finite-sample MSE of the TSLS estimator exists,

this DGP includes three instruments leading to two overidentifying restrictions (Phillips,

1980).19 This design satisfies regularity conditions that are sufficient for Theorem 3.2 – in

particular it satisfies Assumption D.1 – and keeps the variance of x fixed at one so that

π = Corr(xi, z1i + z2i + z3i) and ρ = Corr(xi, εi). The first-stage R-squared is simply

1− σ2
v/σ

2
x = π2 so that larger values of |π| reduce the variance of the TSLS estimator. Since

ρ controls the endogeneity of x, larger values of |ρ| increase the bias of the OLS estimator.

Figure 1 compares the root mean-squared error (RMSE) of the post-FMSC estimator to

those of the simple OLS and TSLS estimators. For any values of N and π there is a value

19Alternatively, one could use fewer instruments in the DGP and use work with trimmed MSE.
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of ρ below which OLS outperforms TSLS. As N and π increase this value approaches zero;

as they decrease it approaches one. Although the first two moments of the TSLS estimator

exist in this simulation design, none of its higher moments do. This fact is clearly evident

for small values of N and π: even with 10,000 simulation replications, the RMSE of the

TSLS estimator shows a noticable degree of simulation error unlike those of the OLS and

post-FMSC estimators. The FMSC represents a compromise between OLS and TSLS. When

the RMSE of TSLS is high, the FMSC behaves more like OLS; when the RMSE of OLS is

high it behaves more like TSLS. Because the FMSC is itself a random variable, however, it

sometimes makes moment selection mistakes.20 For this reason it does not attain an RMSE

equal to the lower envelope of the OLS and TSLS estimators. The larger the RMSE difference

between OLS and TSLS, however, the closer the FMSC comes to this lower envelope: costly

mistakes are rare. Because this example involves a scalar target parameter, no selection

or averaging scheme can provide a uniform improvement over the TSLS estimator. The

FMSC is specifically intended for situations in which an applied researcher fears that her

“baseline” assumptions may be too weak and consequently considers adding one or more

“controversial” assumptions. In this case, she fears that the exogenous instruments z1, z2, z3

are not particularly strong, π is small relative to N , and thus entertains the assumption

that x is exogenous. It is precisely in these situations that the FMSC can provide large

performance gains over TSLS.

As shown above, the FMSC takes a very special form in this example: it is equivalent to

a DHW test with α ≈ 0.16. Accordingly, Figure 1 compares the RMSE of the post-FMSC

estimator to those of DHW pre-test estimators with significance levels α = 0.05 and α = 0.1,

indicated in the legend by DHW95 and DHW90. Since these three procedures differ only

in their critical values, they show similar qualitative behavior. When ρ is sufficiently close

to zero, we saw from Figure 1 that OLS has a lower RMSE than TSLS. Since DHW95 and

DHW90 require a higher burden of proof to reject OLS in favor of TSLS, they outperform

FMSC in this region of the parameter space. When ρ crosses the threshold beyond which

TSLS has a lower RMSE than OLS, the tables are turned: FMSC outperforms DHW95 and

DHW90. As ρ increases further, relative to sample size and π, the three procedures become

indistinguishable in terms of RMSE. In addition to comparing the FMSC to DHW pre-test

estimators, Figure 2 also presents the finite-sample RMSE of the minimum-AMSE moment

average estimator presented in Equations 12 and 13. The performance of the moment average

estimator is very strong: it provides the lowest worst-case RMSE and improves uniformly

on the FMSC for all but the largest values of ρ.

20For more discussion of this point, see Section 4.
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Figure 1: RMSE values for the two-stage least squares (TSLS) estimator, the ordinary
least squares (OLS) estimator, and the post-Focused Moment Selection Criterion (FMSC)
estimator based on 10,000 simulation draws from the DGP given in Equations 19–20 using
the formulas described in Section 3.2.
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Figure 2: RMSE values for the post-Focused Moment Selection Criterion (FMSC) estimator,
Durbin-Hausman-Wu pre-test estimators with α = 0.1 (DWH90) and α = 0.05 (DHW95),
and the minmum-AMSE averaging estimator, based on 10,000 simulation draws from the
DGP given in Equations 19–20 using the formulas described in Sections 3.2 and 4.2.
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5.2 Choosing Instrumental Variables Example

I now evaluate the performance of FMSC in the instrument selection example described in

Section 3.3 using the following simulation design:

yi = 0.5xi + εi (21)

xi = (z1i + z2i + z3i)/3 + γwi + vi (22)

for i = 1, 2, . . . , N where (εi, vi, wi, zi1, z2i, z3i)
′ ∼ iid N(0,V) with

V =

[
V1 0

0 V2

]
, V1 =

 1 (0.5− γρ) ρ

(0.5− γρ) (8/9− γ2) 0

ρ 0 1

 , V2 = I3/3 (23)

This setup keeps the variance of x fixed at one and the endogeneity of x, Cor(x, ε), fixed

at 0.5 while allowing the relevance, γ = Cor(x,w), and endogeneity, ρ = Cor(w, ε), of the

instrument w to vary. The instruments z1, z2, z3 are valid and exogenous: they have first-

stage coefficients of 1/3 and are uncorrelated with the second stage error ε. The additional

instrument w is only relevant if γ 6= 0 and is only exogenous if ρ = 0. Since x has unit

variance, the first-stage R-squared for this simulation design is simply 1 − σ2
v = 1/9 + γ2.

Hence, when γ = 0, so that w is irrelevant, the first-stage R-squared is just over 0.11.

Increasing γ increases the R-squared of the first-stage. This design satisfies the sufficient

conditions for Theorem 3.5 given in Assumption D.2. When γ = 0, it is a special case of the

DGP from Section 5.1.

As in Section 5.1, the goal of moment selection in this exercise is to estimate the effect of

x on y, as before 0.5, with minimum MSE. In this case, however, the choice is between two

TSLS estimators rather than OLS and TSLS: the valid estimator uses only z1, z2, and z3 as

instruments, while the full estimator uses z1, z2, z3, and w. The inclusion of z1, z2 and z3 in

both moment sets means that the order of over-identification is two for the valid estimator

and three for the full estimator. Because the moments of the TSLS estimator only exist up

to the order of over-identification (Phillips, 1980), this ensures that the small-sample MSE

is well-defined.21 All estimators in this section are calculated via TSLS without a constant

term using the expressions from Section 3.3 and 20,000 simulation replications.

Figure 3 presents RMSE values for the valid estimator, the full estimator, and the post-

FMSC estimator for various combinations of γ, ρ, and N . The results are broadly similar to

those from the OLS versus TSLS example presented in Figure 1. For any combination (γ,N)

21Alternatively, one could use fewer instruments for the valid estimator and compare the results using
trimmed MSE, as in Hansen (2013).
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there is a positive value of ρ below which the full estimator yields a lower RMSE than the

full estimator. As the sample size increases, this cutoff becomes smaller; as γ increases, it

becomes larger. As in the OLS versus TSLS example, the post-FMSC estimator represents a

compromise between the two estimators over which the FMSC selects. Unlike in the previous

example, however, when N is sufficiently small there is a range of values for ρ within which

the FMSC yields a lower RMSE than both the valid and full estimators. This comes from

the fact that the valid estimator is quite erratic for small sample sizes. Such behavior is

unsurprising given that its first stage is not especially strong, R-squared ≈ 11%, and it has

only two moments. In contrast, the full estimator has three moments and a stronger first

stage. As in the OLS versus TSLS example, the post-FMSC estimator does not uniformly

outperform the valid estimator for all parameter values, although it does for smaller sample

sizes. The FMSC never performs much worse than the valid estimator, however, and often

performs substantially better, particularly for small sample sizes.

I now compare the FMSC to the GMM moment selection criteria of Andrews (1999),

which take the form MSC(S) = Jn(S)− h(|S|)κn, where Jn(S) is the J-test statistic under

moment set S and −h(|S|)κn is a “bonus term” that rewards the inclusion of more mo-

ment conditions. For each member of this family we choose the moment set that minimizes

MSC(S). If we take h(|S|) = (p + |S| − r), then κn = log n gives a GMM analogue of

Schwarz’s Bayesian Information Criterion (GMM-BIC) while κn = 2.01 log log n gives an

analogue of the Hannan-Quinn Information Criterion (GMM-HQ), and κn = 2 gives an ana-

logue of Akaike’s Information Criterion (GMM-AIC). Like the maximum likelihood model

selection criteria upon which they are based, the GMM-BIC and GMM-HQ are consistent

provided that Assumption 2.3 holds, while the GMM-AIC, like the FMSC, is conserva-

tive. Figure 4 gives the RMSE values for the post-FMSC estimator alongside those of the

post-GMM-BIC, HQ and AIC estimators. I calculate the J-test statistic using a centered

covariance matrix estimator, following the recommendation of Andrews (1999). For small

sample sizes, the GMM-BIC, AIC and HQ are quite erratic: indded for N = 50 the FMSC

has a uniformly smaller RMSE. This problem comes from the fact that the J-test statistic

can be very badly behaved in small samples.22 As the sample size becomes larger, the classic

tradeoff between consistent and conservative selection emerges. For the smallest values of ρ

the consistent criteria outperform the conservative criteria; for moderate values the situation

is reversed. The consistent criteria, however, have the highest worst-case RMSE. For a dis-

cussion of a combined strategy based on the GMM information criteria of Andrews (1999)

and the canonical correlations information criteria of Hall and Peixe (2003), see Appendix

E.2. For a comparison with the downward J-test, see Appendix E.1.

22For more details, see Appendix E.1.
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Figure 3: RMSE values for the valid estimator, including only (z1, z2, z3), the full estimator,
including (z1, z2, z3, w), and the post-Focused Moment Selection Criterion (FMSC) estimator
based on 20,000 simulation draws from the DGP given in Equations 22–23 using the formulas
described in Sections 3.3.
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Figure 4: RMSE values for the post-Focused Moment Selection Criterion (FMSC) estimator
and the GMM-BIC, HQ, and AIC estimators based on 20,000 simulation draws from the
DGP given in Equations 22–23 using the formulas described in Sections 3.3.
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5.3 Valid Confidence Intervals

I now revisit the simulation experiments introduced above in Sections 5.1 and 5.2 to evaluate

the finite-sample performance of confidence intervals contructed according to Algorithm

4.1. All results are based on 10,000 simulation replications from the appropriate DGP with

α = δ = 0.05. For more computational details, see Appendix B. Coverage probabilities and

relative widths are all given in percentage points, rounded to the nearest whole percent.

Table 1b shows the problem of ignoring moment selection by presenting the the actual

coverage probability of a näıve 90%, post-FMSC confidence interval for the OLS versus

TSLS simulation experiment. The näıve procedure simply constructs a textbook 90% in-

terval around the FMSC-selected estimator. Unsurprisingly, it performs poorly: coverage

probabilities can be made arbitrarily close to zero by choosing appropriate parameter values,

a problem that persists even for large N . At other parameter values, however, the inter-

vals are close to their nominal level. This is precisely the lack of uniformity described by

Leeb and Pötscher (2005). A similar pattern emerges in the choosing instrumental variables

simulation: see Table 9b in Appendix E.3.

Table 2a gives the actual coverage probability of the conservative, 90% post-FMSC con-

fidence interval, constructed according to Algorithm 4.1, for the OLS versus TSLS example.

These intervals achieve their nominal minimum coverage for all parameter values but can

be quite conservative, particularly for smaller values of π, ρ and N . In particular, coverage

never falls below 94% but occasionally exceeds 99.5%. Some conservatism is inevitable given

the procedure, which takes which takes worst-case bounds over a collection of intervals. The

real culprit in this example, however, is the TSLS estimator, as we see from Table 1a. Al-

though this estimator is correctly specified and is not subject to model selection uncertainty,

its textbook 90% confidence interval dramatically overcovers for smaller values of π even if

N is fairly large. This is a manifestation of the weak instruments problem. This additional

source of conservatism is inherited by the two-step post-FMSC intervals. Results for the

minimum-AMSE moment average estimator, given in Table 2b, are similar.

The worry, of course, is not conservatism as such but the attendant increase in con-

fidence interval width. Accordingly, Tables 3a and 3b compare the median width of the

simulation-based post-FMSC and minimum-AMSE intervals to that of the TSLS estimator.

A value of 25, for example indicates that the simulation-based interval is 25% wider than

the corresponding interval for the TSLS estimator. This comparison shows us the inferential

cost of carrying out moment selection relative to simply using the correctly-specified TSLS

estimator and calling it a day. Moment selection is not a free lunch: the averaging and post-

selection intervals are wider than those of the TSLS estimator, sometimes considerably so.

Intriguingly, the minimum-AMSE intervals are generally much shorter than the post-FMSC
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(a) Two-Stage Least Squares

ρ
N = 50 0 0.1 0.2 0.3 0.4 0.5

0.1 98 98 96 93 89 82
0.2 97 97 95 93 88 83

π 0.3 96 96 94 92 88 85
0.4 94 93 93 91 89 87
0.5 92 92 92 91 90 88
0.6 91 91 90 90 90 88

ρ
N = 100 0 0.1 0.2 0.3 0.4 0.5

0.1 98 98 97 94 89 83
0.2 96 96 95 92 89 85

π 0.3 94 94 93 91 89 87
0.4 92 92 92 91 90 88
0.5 91 91 90 90 89 89
0.6 90 90 90 90 90 89

ρ
N = 500 0 0.1 0.2 0.3 0.4 0.5

0.1 96 96 94 93 90 86
0.2 92 92 91 91 90 89

π 0.3 91 91 91 91 90 90
0.4 90 90 91 90 90 90
0.5 90 90 90 90 90 90
0.6 90 91 90 90 90 90

(b) Näıve post-FMSC

ρ
N = 50 0 0.1 0.2 0.3 0.4 0.5

0.1 88 80 58 30 11 4
0.2 88 79 59 34 15 10

π 0.3 87 81 62 39 25 23
0.4 86 80 66 46 38 43
0.5 86 81 68 56 54 62
0.6 85 81 72 66 67 75

ρ
N = 100 0 0.1 0.2 0.3 0.4 0.5

0.1 88 72 36 10 4 4
0.2 87 74 40 17 13 19

π 0.3 86 74 45 29 32 45
0.4 85 74 51 43 54 70
0.5 85 76 59 57 70 84
0.6 85 78 66 68 81 88

ρ
N = 500 0 0.1 0.2 0.3 0.4 0.5

0.1 87 31 8 12 16 24
0.2 84 35 24 42 62 80

π 0.3 83 42 43 70 87 90
0.4 84 49 62 86 90 90
0.5 84 57 76 89 90 90
0.6 86 66 84 90 90 90

Table 1: Coverage probabilities of nominal 90% CIs for the OLS versus TSLS simulation
experiment from Section 5.1. Values are given in percentage points, rounded to the nearest
whole percent, based on 10,000 simulation draws from the DGP given in Equations 19–20.

intervals in spite of being somewhat more conservative.

Turning our attention now to the choosing instrumental variables simulation experiment

from Section 5.2, Table 4a gives the coverage probability and Table 4b the median relative

width of the conservative, 90%, simulation-based, post-FMSC confidence interval. In this

case, the width calculation is relative to the valid estimator, the TSLS estimator that includes

the exogenous instruments z1, z2, z3 but excludes the potentially endogenous instrument w.

Here the simulation-based intervals are far less conservative and occasionally undercover

slightly. The worst case, 81% actual coverage compared to 90% nominal coverage, occurs

when N = 50, γ = 0.6, ρ = 0.5. This problem stems from the fact that traditional interval

for the valid estimator systematically under-covers when N = 50 or 100.23 Nevertheless, the

simulation-based interval works well in this example: in the worst case, its median width is

23For details, see Table 9a in Appendix E.3.
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(a) FMSC

ρ
N = 50 0 0.1 0.2 0.3 0.4 0.5

0.1 100 100 99 99 98 97
0.2 99 99 99 99 98 97

π 0.3 99 99 99 99 98 96
0.4 98 98 98 98 98 95
0.5 97 98 98 98 97 94
0.6 97 97 97 97 96 94

ρ
N = 100 0 0.1 0.2 0.3 0.4 0.5

0.1 100 99 99 99 99 98
0.2 99 99 99 99 99 97

π 0.3 98 98 99 99 98 95
0.4 97 97 98 98 97 94
0.5 97 97 98 97 95 95
0.6 97 97 97 96 95 96

ρ
N = 500 0 0.1 0.2 0.3 0.4 0.5

0.1 99 99 99 99 99 96
0.2 97 97 98 99 97 94

π 0.3 96 97 98 97 95 98
0.4 96 97 97 95 98 98
0.5 96 97 96 97 98 98
0.6 96 97 95 97 97 96

(b) AMSE-Averaging Estimator

ρ
N = 50 0 0.1 0.2 0.3 0.4 0.5

0.1 100 100 100 99 98 96
0.2 100 100 100 99 98 96

π 0.3 100 100 99 99 98 95
0.4 99 99 99 98 97 94
0.5 99 99 98 98 96 93
0.6 98 98 98 97 96 93

ρ
N = 100 0 0.1 0.2 0.3 0.4 0.5

0.1 100 100 100 100 99 97
0.2 100 100 100 99 98 95

π 0.3 99 99 99 99 97 94
0.4 99 99 99 98 96 94
0.5 98 99 98 97 95 94
0.6 98 98 97 96 95 95

ρ
N = 500 0 0.1 0.2 0.3 0.4 0.5

0.1 100 100 100 99 98 95
0.2 99 99 99 98 96 94

π 0.3 98 98 98 97 95 97
0.4 98 98 97 96 96 97
0.5 98 98 96 96 97 97
0.6 98 97 96 96 97 96

Table 2: Coverage probabilities of simulation-based conservative 90% CIs for the OLS versus
TSLS simulation experiment from Section 5.1. Values are given in percentage points, rounded
to the nearest whole percent, based on 10,000 simulation draws from the DGP given in
Equations 19–20.

only 22% greater than that of the valid estimator.

Although the simulation-based intervals work fairly well, two caveats are in order. First,

when the usual first-order asymptotic theory begins to break down, such as a weak instru-

ments example, the simulation-based intervals can inherit an under– or over–coverage prob-

lem from the valid estimator. Second, moment selection comes with a cost: the simulation-

based intervals are on average wider than a textbook confidence interval for the valid estima-

tor, as we would expect given the impossibility results for post-selection inference outlined

in Leeb and Pötscher (2005).24 As described above, the primary goal of the the FMSC is

estimation rather than inference. Once the decision to carry out moment selection has been

24The intervals presented here could potentially be shortened by optimizing width over α while holding
α+ δ fixed at 0.1. For more discussion of this idea, see Claeskens and Hjort (2008b) and McCloskey (2012).
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(a) post-FMSC Estimator

ρ
N = 50 0 0.1 0.2 0.3 0.4 0.5

0.1 40 41 41 41 42 42
0.2 41 42 42 43 42 42

π 0.3 42 43 43 43 43 43
0.4 43 43 43 43 43 43
0.5 43 42 42 42 42 41
0.6 41 41 40 40 39 38

ρ
N = 100 0 0.1 0.2 0.3 0.4 0.5

0.1 40 41 41 41 41 42
0.2 42 42 42 42 43 44

π 0.3 43 43 43 44 45 46
0.4 43 43 43 44 44 44
0.5 43 43 42 42 42 42
0.6 42 41 40 39 39 39

ρ
N = 500 0 0.1 0.2 0.3 0.4 0.5

0.1 40 41 42 42 43 46
0.2 42 43 45 47 49 51

π 0.3 43 44 46 48 49 49
0.4 43 44 45 46 46 44
0.5 43 43 42 42 39 27
0.6 42 40 39 37 28 20

(b) AMSE-Averaging Estimator

ρ
N = 50 0 0.1 0.2 0.3 0.4 0.5

0.1 32 33 33 33 33 33
0.2 33 34 34 34 34 34

π 0.3 34 35 34 34 35 34
0.4 35 35 35 35 34 34
0.5 36 36 35 34 34 33
0.6 36 35 35 33 32 32

ρ
N = 100 0 0.1 0.2 0.3 0.4 0.5

0.1 33 32 32 32 32 33
0.2 34 33 34 33 34 35

π 0.3 35 35 34 35 35 35
0.4 35 35 35 35 35 35
0.5 36 36 35 34 33 33
0.6 36 35 34 32 32 32

ρ
N = 500 0 0.1 0.2 0.3 0.4 0.5

0.1 31 32 33 33 34 35
0.2 33 34 35 36 37 39

π 0.3 35 35 36 36 37 38
0.4 35 35 35 36 36 36
0.5 36 35 34 34 34 31
0.6 36 33 32 32 30 25

Table 3: Median width of two-step, simulation-based conservative 90% CI relative to that of
a traditional 90% CI for the TSLS estimator in the OLS versus TSLS example from Section
5.1. Values are given in percentage points, rounded to the nearest whole percent, based on
10,000 simulation draws from the DGP given in Equations 19–20.

taken, however, one cannot simply ignore this fact and report the usual confidence intervals.

Algorithm 4.1 provides a way to carry out honest inference post-selection and construct con-

fidence intervals for complicated objects such as the minimum-AMSE averaging estimator

from Section 4.2. More to the point, although formal moment selection is relatively rare,

informal moment selection is extremely common in applied work. Downward J-tests, DHW

tests and the like are a standard part of the applied econometrician’s toolkit. Because it

can be employed to construct confidence intervals that account for the effects of specification

searches, Algorithm 4.1 can provide a valuable robustness check, as I explore in the empirical

example that follows.
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(a) Coverage Probability

ρ
N = 50 0 0.1 0.2 0.3 0.4 0.5

0.1 89 88 88 87 89 89
0.2 90 88 87 86 88 89

γ 0.3 91 89 87 85 86 88
0.4 91 91 87 84 83 87
0.5 92 91 88 84 82 84
0.6 92 92 90 85 82 81

ρ
N = 100 0 0.1 0.2 0.3 0.4 0.5

0.1 92 90 90 91 91 91
0.2 92 90 88 89 91 91

γ 0.3 93 90 87 88 90 91
0.4 94 92 86 84 88 90
0.5 94 93 87 83 84 89
0.6 94 93 89 82 82 86

ρ
N = 500 0 0.1 0.2 0.3 0.4 0.5

0.1 95 93 92 92 92 92
0.2 96 91 92 91 92 93

γ 0.3 96 89 92 92 92 93
0.4 96 89 90 91 92 93
0.5 96 90 87 91 91 92
0.6 95 92 83 91 91 92

(b) Relative Median Width

ρ
N = 50 0 0.1 0.2 0.3 0.4 0.5

0.1 20 18 18 17 17 19
0.2 20 18 17 16 16 16

γ 0.3 21 17 15 14 14 17
0.4 21 17 13 13 13 15
0.5 22 16 13 12 12 13
0.6 22 17 13 10 10 12

ρ
N = 100 0 0.1 0.2 0.3 0.4 0.5

0.1 20 18 16 15 14 14
0.2 22 17 15 13 12 14

γ 0.3 22 16 13 12 12 14
0.4 21 16 11 10 10 14
0.5 21 15 11 9 9 12
0.6 21 15 11 8 8 11

ρ
N = 500 0 0.1 0.2 0.3 0.4 0.5

0.1 22 17 13 10 8 7
0.2 22 15 10 7 6 9

γ 0.3 21 13 8 6 7 12
0.4 20 13 7 6 7 11
0.5 19 13 8 6 6 9
0.6 20 13 8 5 6 8

Table 4: Performance of the simulation-based, conservative 90% post-FMSC confidence in-
terval in the choosing instrumental variables simulation from Section 5.2. The left panel
gives coverage probabilities, and the right panel gives median widths relative to that of
a traditional 90% interval for the valid estimator. Values are given in percentage points,
rounded to the nearest whole percent, based on 10,000 simulation draws from the DGP
given in Equations 22–23.
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6 Empirical Example: Geography or Institutions?

Carstensen and Gundlach (2006) address a controversial question from the development

literature: does geography directly effect income after controlling for institutions? A number

of well-known studies find little or no direct effect of geographic endowments (Acemoglu

et al., 2001; Easterly and Levine, 2003; Rodrik et al., 2004). Sachs (2003), on the other

hand, shows that malaria transmission, a variable largely driven by ecological conditions,

directly influences the level of per capita income, even after controlling for institutions.

Because malaria transmission is very likely endogenous, Sachs uses a measure of “malaria

ecology,” constructed to be exogenous both to present economic conditions and public health

interventions, as an instrument. Carstensen and Gundlach (2006) address the robustness of

Sachs’s results using the following baseline regression for a sample of 44 countries:

lngdpci = β1 + β2 · institutions i + β3 ·malaria i + εi (24)

This model extends the baseline specification of Acemoglu et al. (2001) to include a direct

effect of malaria transmission which, like institutions, is treated as endogenous.25 Consid-

ering a variety of measures of both institutions and malaria transmission, and a number

of instrument sets, Carstensen and Gundlach (2006) find large negative effects of malaria

transmission, lending support to Sach’s conclusion.

In this section, I revisit and expand upon the instrument selection exercise given in Table

2 of Carstensen and Gundlach (2006) using the FMSC and corrected confidence intervals

described above. I consider two questions. First, based on the FMSC methodology, which

instruments should we choose if our target parameter is β3, the effect of malaria transmission

on per capita income? Does the selected instrument set change if our target parameter is β2,

the effect of institutions? Second, are the results robust to the effects of instrument selection

on inference? All results are calculated by TSLS using the formulas from Section 3.3 and

the variables described in Table 5, with lngdpc as the outcome variable and rule and malfal

as measures of institutions and malaria transmission.

To apply the FMSC to the present example, we require a minimum of two valid instru-

ments besides the constant term. Based on the arguments given by Acemoglu et al. (2001)

and Sachs (2003), I proceed under the assumption that lnmort and maleco, measures of early

settler mortality and malaria ecology, are exogenous. Rather than selecting over all 128 pos-

sible instrument sets, I consider eight specifications formed from the four instrument blocks

defined by Carstensen and Gundlach (2006). The baseline block contains lnmort, maleco and

25Due to a lack of data for certain instruments, Carstensen and Gundlach (2006) work with a smaller
sample of countries than Acemoglu et al. (2001).
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Name Description

lngdpc Real GDP/capita at PPP, 1995 International Dollars Outcome
rule Institutional quality (Average Governance Indicator) Regressor
malfal Fraction of population at risk of malaria transmission, 1994 Regressor
lnmort Log settler mortality (per 1000 settlers), early 19th century Baseline
maleco Index of stability of malaria transmission Baseline
frost Prop. of land receiving at least 5 days of frost in winter Climate
humid Highest temp. in month with highest avg. afternoon humidity Climate
latitude Distance from equator (absolute value of latitude in degrees) Climate
eurfrac Fraction of pop. that speaks major West. European Language Europe
engfrac Fraction of pop. that speaks English Europe
coast Proportion of land area within 100km of sea coast Openness
trade Log Frankel-Romer predicted trade share Openness

Table 5: Description of variables for Empirical Example.

a constant; the climate block contains frost, humid, and latitude; the Europe block contains

eurfrac and engfrac; and the openness block contains coast and trade. Full descriptions of

these variables appear in Table 5. Table 6 lists the eight instrument sets considered here,

along with TSLS estimates and traditional 95% confidence intervals for each.26

Table 7 presents FMSC and “positive-part” FMSC results for instrument sets 1–8. The

positive-part FMSC sets a negative squared bias estimate to zero when estimating AMSE.

If the squared bias estimate is positive, FMSC and positive-part FMSC coincide; if the

squared bias estimate is negative, positive-part FMSC is strictly greater than FMSC. Addi-

tional simulation results for the choosing instrumental variables experiment from Section 5.2,

available upon request, reveal that the positive-part FMSC never performs worse than the

ordinary FMSC and sometimes performs slightly better, suggesting that it may be preferable

in real-world applications. For each criterion the table presents two cases: the first takes

the effect of malfal, a measure of malaria transmission, as the target parameter while the

second uses the effect of rule, a measure of institutions. In each case the two best instrument

sets are numbers 5 (baseline, climate and Europe) and 8 (all instruments). When the target

parameter is the coefficient on malfal, 8 is the clear winner under both the plain-vanilla and

positive-part FMSC, leading to an estimate of −1.08 for the effect of malaria transmission on

per-capita income. When the target parameter is the coefficient on rule, however, instrument

sets 5 and 8 are virtually indistinguishable. Indeed, while the plain-vanilla FMSC selects

instrument set 8, leading to an estimate of 0.84 for the effect of instutitions on per-capita

income, the positive-part FMSC selects instrument set 5, leading to an estimate of 0.93.

Thus the FMSC methodology shows that, while helpful for estimating the effect of malaria

26The results for the baseline instrument presented in panel 1 of Table 6 are slightly different from those
in Carstensen and Gundlach (2006) as I exclude Vietnam to keep the sample fixed across instrument sets.
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1 2 3 4
rule malfal rule malfal rule malfal rule malfal

coeff. 0.89 −1.04 0.97 −0.90 0.81 −1.09 0.86 −1.14
SE 0.18 0.31 0.16 0.29 0.16 0.29 0.16 0.27
lower 0.53 −1.66 0.65 −1.48 0.49 −1.67 0.55 −1.69
upper 1.25 −0.42 1.30 −0.32 1.13 −0.51 1.18 −0.59

Baseline Baseline Baseline Baseline
Climate

Openness
Europe

5 6 7 8
rule malfal rule malfal rule malfal rule malfal

coeff. 0.93 −1.02 0.86 −0.98 0.81 −1.16 0.84 −1.08
SE 0.15 0.26 0.14 0.27 0.15 0.27 0.13 0.25
lower 0.63 −1.54 0.59 −1.53 0.51 −1.70 0.57 −1.58
upper 1.22 −0.49 1.14 −0.43 1.11 −0.62 1.10 −0.58

Baseline Baseline Baseline Baseline
Climate Climate Climate

Openness Openness Openness
Europe Europe Europe

Table 6: Two-stage least squares estimation results for all instrument sets.

transmission, the openness instruments coast and trade provide essentially no additional

information for studying the effect of institutions.

Table 8 presents three alternative post-selection confidence intervals for each of the in-

strument selection exercises from Table 7: Näıve, 1-Step, and 2-Step. The Näıve intervals are

standard, nominal 95% confidence intervals that ignore the effects of instrument selection.

These are constructed by identifying the selected instrument set from Table 7 and simply

reporting the corresponding nominal 95% interval from Table 6 unaltered. The 1-Step in-

tervals are simulation-based nominal 95% intervals constructed using a simplified, and less

computationally intensive, version of the procedure given in Algorithm 4.1. Rather than

taking the minimum lower confidence limit and maximum upper confidence limit over all

values in a given confidence region for τ , this procedure simply assumes that the estimated

value τ̂ is exactly correct, and generates simulations for Λ under this assumption. Neither

the Näıve nor the 1-Step procedures yield valid 95% confidence intervals. They are provided

merely for comparison with the 2-Step procedure, which fully implements Algorithm 4.1

with α = δ = 0.05 and J = 10, 000. As explained above, the 2-Step interval is guaranteed

to have asymptotic coverage probability of at least 1 − α − δ, in this case 90%. From the
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µ = malfal µ = rule
FMSC posFMSC µ̂ FMSC posFMSC µ̂

(1) Valid 3.03 3.03 −1.04 1.27 1.27 0.89
(2) Climate 3.07 3.07 −0.90 1.00 1.00 0.97
(3) Openness 2.30 2.42 −1.09 1.21 1.21 0.81
(4) Europe 1.82 2.15 −1.14 0.52 0.73 0.86
(5) Climate, Europe 0.85 2.03 −1.02 0.25 0.59 0.93
(6) Climate, Openness 1.85 2.30 −0.98 0.45 0.84 0.86
(7) Openness, Europe 1.63 1.80 −1.16 0.75 0.75 0.81
(8) Full 0.53 1.69 −1.08 0.23 0.62 0.84

Table 7: FMSC and and positive-part FMSC values corresponding to the instrument sets
from Table 6

2-Step intervals, we see that the results of Carstensen and Gundlach (2006) are extremely

robust. There is no evidence that accounting for the effects of instrument selection changes

our conclusions about the sign or significance of malfal or rule.

µ =malfal µ =rule
FMSC posFMSC FMSC posFMSC

Näıve (−1.58,−0.58) (−1.58,−0.58) (0.57, 1.10) (0.63, 1.22)
1-Step (−1.52,−0.67) (−1.51,−0.68) (0.57, 1.08) (0.68, 1.17)
2-Step (−1.62,−0.55) (−1.62,−0.55) (0.49, 1.18) (0.58, 1.27)

Table 8: Post-selection CIs for the instrument selection exercise from Table 7.

Although this example uses a simple model and a relatively small number of observa-

tions, it nevertheless provides a realistic proof of concept for FMSC instrument selection

and post-selection inference because the computational complexity of the procedures de-

scribed above is determined almost entirely by the dimension, q, of τ . This is because the

2-Step confidence interval procedure requires us to carry out two q-dimensional constrained

optimization problems with a stochastic objective function: one for each confidence limit.

Fixing q, the number of instrument sets under consideration is far less important because

we can pre-compute any quantities that do not depend on τ ∗. With q = 7, this example

presents the kind of computational challenge that one would reasonably expect to encounter

in practice yet is well within the ability of a standard desktop computer using off-the-shelf

optimization routines. Running on a single core it took just over ten minutes to generate

all of the results for the empirical example in this paper. For more computational details,

including a description of the packages used, see Appendix B.
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7 Conclusion

This paper has introduced the FMSC, a proposal to choose moment conditions using AMSE.

The criterion performs well in simulations, and the framework used to derive it allows us

to construct valid confidence intervals for post-selection and moment-average estimators.

Although simulation-based, this procedure remains feasible for problems of a realistic scale

without the need for specialized computing resources, as demonstrated in the empirical

example above. Moment selection is not a panacea, but the FMSC and related confidence

interval procedures can yield sizeable benefits in empirically relevant settings, making them

a valuable complement to existing methods. While the discussion here concentrates on

two cross-section examples, the FMSC could prove useful in any context in which moment

conditions arise from more than one source. In a panel model, for example, the assumption

of contemporaneously exogenous instruments may be plausible while that of predetermined

instruments is more dubious. Using the FMSC, we could assess whether the extra information

contained in the lagged instruments outweighs their potential invalidity. Work in progress

explores this idea in both static and dynamic panel settings by extending the FMSC to

allow for simultaneous moment and model selection. Other potentially fruitful extensions

include the consideration of risk functions other than MSE, and an explicit treatment of

weak identification and many moment conditions.
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A Proofs

Proof of Theorems 2.1, 2.2. Essentially identical to the proofs of Newey and McFadden

(1994) Theorems 2.6 and 3.1.

Proof of Theorems 3.2, 3.5. The proofs of both results are similar and standard, so I

provide only a sketch of the argument for Theorem 3.5. First substitute the DGP into the

expression for β̂S and rearrange so that the left-hand side becomes
√
n(βS − β). The right-

hand side has two factors: the first converges in probability to −KS by an L2 argument and

the second converges in distribution to M + (0′, τ ′)′ by the Lindeberg-Feller Central Limit

Theorem.

Proof of Theorem 3.1. By a mean-value expansion:

τ̂ =
√
nhn

(
θ̂v

)
=
√
nhn(θ0) +H

√
n
(
θ̂v − θ0

)
+ op(1)

= −HKv

√
ngn(θ0) + Iq

√
nhn(θ0) + op(1)

= Ψ
√
nfn(θ0) + op(1)

The result follows since
√
nfn(θ0)→d M + (0′, τ ′)′ under Assumption 2.2 (h).

Proof of Corollary 3.2. By Theorem 3.1 and the Continuous Mapping Theorem, we have

τ̂ τ̂ ′ →d UU
′ where U = ΨM + τ . Since E[M ] = 0, E[UU ′] = ΨΩΨ′ + ττ ′.

Proof of Theorem 3.4. By Theorem 3.3,
√
n(β̂OLS − β̃TSLS) →d N (τ/σ2

x,Σ) where Σ =

σ2
ε (1/γ2 − 1/σ2

x). Thus, under H0 : τ = 0, the DHW test statistic

T̂DHW = n Σ̂−1(β̂OLS − β̃TSLS)2 =
n(β̂OLS − β̃TSLS)2

σ̂2
ε (1/γ̂2 − 1/σ̂2

x)

converges in distribution to a χ2(1) random variable. Now, rewriting V̂ , we find that

V̂ = σ̂2
ε σ̂

2
x

(
σ̂2
v

γ̂2

)
= σ̂2

ε σ̂
2
x

(
σ̂2
x − γ̂2

γ̂2

)
= σ̂2

ε σ̂
4
x

(
1

γ̂2
− 1

σ̂2
x

)
= σ̂4

x Σ̂

using the fact that σ̂v = σ̂2
x− γ̂2. Thus, to show that T̂FMSC = T̂DHW , all that remains is to

establish that τ̂ 2 = nσ̂4
x(β̂OLS − β̃TSLS)2, which we obtain as follows:

τ̂ 2 =
[
n−1/2x′(y − xβ̃)

]2

= n−1
[
x′x

(
β̂ − β̃

)]2

= n−1
[
nσ̂2

x

(
β̂ − β̃

)]2

.
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Proof of Corollary 4.2. Because the weights sum to one

√
n (µ̂− µ0) =

√
n

[(∑
S∈S

ω̂Sµ̂S

)
− µ0

]
=
∑
S∈S

[
ω̂S
√
n (µ̂S − µ0)

]
.

By Corollary 3.1, we have

√
n (µ̂S − µ0)→d −∇θµ(θ0)′KSΞS

(
M +

[
0

τ

])

and by the assumptions of this Corollary we find that ω̂S →d ϕS(τ,M) for each S ∈ S ,

where ϕS(τ,M) is a function of M and constants only. Hence ω̂S and
√
n (µ̂S − µ0) converge

jointly in distribution to their respective functions of M , for all S ∈ S . The result follows

by application of the Continuous Mapping Theorem.

Proof of Theorem 4.3. Since the weights sum to one, by Theorem 3.2

√
n
[
β̂(ω)− β

]
d→ N

(
Bias

[
β̂(ω)

]
, V ar

[
β̂(ω)

])
where

Bias
[
β̂(ω)

]
= ω

(
τ

σ2
x

)
V ar

[
β̂(ω)

]
=

σ2
ε

σ2
x

[
(2ω2 − ω)

(
σ2
x

γ2
− 1

)
+
σ2
x

γ2

]
and accordingly

AMSE
[
β̂(ω)

]
= ω2

(
τ 2

σ4
x

)
+ (ω2 − 2ω)

(
σ2
ε

σ2
x

)(
σ2
x

γ2
− 1

)
+
σ2
ε

γ2
.

The preceding expression is a globally convex function of ω. Taking the first order condition

and rearranging, we find that the unique global minimizer is

ω∗ =

[
1 +

τ 2/σ4
x

σ2
ε (1/γ

2 − 1/σ2
x)

]−1

=

[
1 +

ABIAS(OLS)2

AVAR(TSLS)− AVAR(OLS)

]−1

.

Proof of Theorem 4.1. By a mean-value expansion,

√
n
[
ΞSfn

(
θ̂S

)]
=
√
n [ΞSfn(θ0)] + FS

√
n
(
θ̂S − θ0

)
+ op(1).
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Since
√
n
(
θ̂S − θ0

)
→p − (F ′SWSFS)−1 F ′SWS

√
n [ΞSfn(θ0)], we have

√
n
[
ΞSfn(θ̂S)

]
=
[
I − FS (F ′SWSFS)

−1
F ′SWS

]√
n [ΞSfn(θ0)] + op(1).

Thus, for estimation using the efficient weighting matrix

Ω̂
−1/2
S

√
n
[
ΞSfn

(
θ̂S

)]
→d [I − PS] Ω

−1/2
S ΞS

(
M +

[
0

τ

])

by Assumption 2.2 (h), where Ω̂
−1/2
S is a consistent estimator of Ω

−1/2
S and PS is the projection

matrix based on Ω
−1/2
S FS, the identifying restrictions.27 The result follows by combining and

rearranging these expressions.

Proof of Theorem 4.2. Let S1 and S2 be arbitrary moment sets in S and let |S| denote

the cardinality of S. Further, define ∆n(S1, S2) = MSC(S1) −MSC(S2) By Theorem 4.1,

Jn(S) = Op(1), S ∈ S , thus

∆n(S1, S2) = [Jn(S1)− Jn(S2)]− [h (p+ |S1|)− h (p+ |S2|)]κn
= Op(1)− Cκn

where C = [h (p+ |S1|)− h (p+ |S2|)]. Since h is strictly increasing, C is positive for |S1| >
|S2|, negative for |S1| < |S2|, and zero for |S1| = |S2|. Hence:

|S1| > |S2| =⇒ ∆n(S1, S2)→ −∞

|S1| = |S2| =⇒ ∆n(S1, S2) = Op(1)

|S1| < |S2| =⇒ ∆n(S1, S2)→∞

The result follows because the full moment set contains more moment conditions than any

other moment set S.

Proof of Theorem 4.4. By Theorem 3.1 and Corollary 4.2,

P {µ0 ∈ CIsim} → P {amin ≤ Λ(τ) ≤ bmax}

where a(τ ∗), b(τ ∗) define a collection of (1−α)×100% intervals indexed by τ ∗, each of which

27See Hall (2005), Chapter 3.
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is constructed under the assumption that τ = τ ∗

P {a(τ ∗) ≤ Λ(τ ∗) ≤ b(τ ∗)} = 1− α

and we define the shorthand amin, bmax as follows

amin(ΨM + τ) = min {a(τ ∗) : τ ∗ ∈ T (ΨM + τ, δ)}

bmax(ΨM + τ) = max {b(τ ∗) : τ ∗ ∈ T (ΨM + τ, δ)}

T (ΨM + τ, δ) =
{
τ ∗ : ∆(τ, τ ∗) ≤ χ2

q(δ)
}

∆(τ, τ ∗) = (ΨM + τ − τ ∗)′(ΨΩΨ′)−1 (ΨM + τ − τ ∗)

Now, let A =
{

∆(τ, τ) ≤ χ2
q(δ)

}
where χ2

q(δ) is the 1− δ quantile of a χ2
q random variable.

This is the event that the limiting version of the confidence region for τ contains the true

bias parameter. Since ∆(τ, τ) ∼ χ2
q, P (A) = 1− δ. For every τ ∗ ∈ T (ΨM + τ, δ) we have

P [{a(τ ∗) ≤ Λ(τ ∗) ≤ b(τ ∗)} ∩ A] + P [{a(τ ∗) ≤ Λ(τ) ≤ b(τ ∗)} ∩ Ac] = 1− α

by decomposing P {a(τ ∗) ≤ Λ(τ ∗) ≤ b(τ ∗)} into the sum of mutually exclusive events. But

since

P [{a(τ ∗) ≤ Λ(τ ∗) ≤ b(τ ∗)} ∩ Ac] ≤ P (Ac) = δ

we see that

P [{a(τ ∗) ≤ Λ(τ ∗) ≤ b(τ ∗)} ∩ A] ≥ 1− α− δ

for every τ ∗ ∈ T (ΨM + τ, δ). Now, by definition, if A occurs then the true bias parameter

τ is contained in T (ΨM + τ, δ) and hence

P [{a(τ) ≤ Λ(τ) ≤ b(τ)} ∩ A] ≥ 1− α− δ.

But when τ ∈ T (ΨM + τ, δ), amin ≤ a(τ) and b(τ) ≤ bmax. It follows that

{a(τ) ≤ Λ(τ) ≤ b(τ)} ∩ A ⊆ {amin ≤ Λ(τ) ≤ bmax}

and therefore

1− α− δ ≤ P [{a(τ ∗) ≤ Λ(τ ∗) ≤ b(τ ∗)} ∩ A] ≤ P [{amin ≤ Λ(τ) ≤ bmax}]

as asserted.
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B Computational Details

This paper is fully replicable using freely available, open-source software. For full source

code and replication details, see https://github.com/fditraglia/fmsc. Results for the

simulation studies and empirical example were generated using R version 3.1.0 (R Core Team,

2014) and C++ via the Rcpp (Eddelbuettel, 2013; Eddelbuettel and François, 2011) and

RcppArmadillo (Eddelbuettel and Sanderson, 2014) packages, versions 0.11.2 and 0.4.300.8.0,

respectively. RcppArmadillo version 0.4.300.8.0 provides an interface to version 4.300 of

the Armadillo C++ linear algebra library (Sanderson, 2010). All figures in the paper were

converted to tikz using version 0.7.0 of the tikzDevice package (Sharpsteen and Bracken,

2013). The simulation-based confidence intervals from Section 5.3 were calculated using

Algorithm 4.1 with J = 1000 by searching over a grid of 100 equally spaced values within

a 95% confidence interval for the scalar τ . In constrast, the simulation-based intervals

for the empirical example from Section 6 were constructed with J = 10, 000 using a mesh-

adaptive search algorithm provided by version 3.6 of the NOMAD C++ optimization package

(Abramson et al., 2013; Audet et al., 2009; Le Digabel, 2011), called from R using version

0.15-22 of the crs package (Racine and Nie, 2014). TSLS results for Table 6 were generated

using version 3.1-4 of the sem package (Fox et al., 2014).

C Failure of the Identification Condition

When there are fewer moment conditions in the g-block than elements of the parameter

vector θ, i.e. when r > p, Assumption 2.4 fails: θ0 is not estimable by θ̂v so τ̂ is an infeasible

estimator of τ . A näıve approach to this problem would be to substitute another consistent

estimator of θ0 and proceed analogously. Unfortunately, this approach fails. To understand

why, consider the case in which all moment conditions are potentially invalid so that the

g–block is empty. Letting θ̂f denote the estimator based on the full set of moment conditions

in h,
√
nhn(θ̂f )→d ΓNq(τ,Ω) where Γ = Iq−H (H ′WH)−1H ′W , using an argument similar

to that in the proof of Theorem 3.1. The mean, Γτ , of the resulting limit distribution

does not equal τ , and because Γ has rank q − r we cannot pre-multiply by its inverse

to extract an estimate of τ . Intuitively, q − r over-identifying restrictions are insufficient to

estimate a q-vector: τ cannot be estimated without a minimum of r valid moment conditions.

However, the limiting distribution of
√
nhn(θ̂f ) partially identifies τ even when we have no

valid moment conditions at our disposal. A combination of this information with prior

restrictions on the magnitude of the components of τ allows the use of the FMSC framework

to carry out a sensitivity analysis when r > p. For example, the worst-case estimate of

47

https://github.com/fditraglia/fmsc


AMSE over values of τ in the identified region could still allow certain moment sets to be

ruled out. This idea shares similarities with Kraay (2012) and Conley et al. (2012), two

recent papers that suggest methods for evaluating the robustness of conclusions drawn from

IV regressions when the instruments used may be invalid.

D Low-Level Sufficient Conditions

Assumption D.1 (Sufficient Conditions for Theorem 3.2). Let {(zni, vni, εni) : 1 ≤ i ≤
n, n = 1, 2, . . .} be a triangular array of random variables such that

(a) (zni, vni, εni) ∼ iid and mean zero within each row of the array (i.e. for fixed n)

(b) E[zniεni] = 0, E[znivni] = 0, and E[εnivni] = τ/
√
n for all n

(c) E[|zni|4+η] < C, E[|εni|4+η] < C, and E[|vni|4+η] < C for some η > 0, C <∞

(d) E[zniz
′
ni]→ Q > 0, E[v2

ni]→ σ2
v > 0, and E[ε2ni]→ σ2

ε > 0 as n→∞

(e) As n → ∞, E[ε2nizniz
′
ni] − E[ε2ni]E[zniz

′
ni] → 0, E[ε2i vniz

′
ni] − E[ε2ni]E[vniz

′
ni] → 0, and

E[ε2niv
2
ni]− E[ε2ni]E[v2

ni]→ 0

(f) xni = z′niπ + vi where π 6= 0, and yni = βxni + εni

Parts (a), (b) and (d) correspond to the local mis-specification assumption, part (c) is

a set of moment restrictions, and (f) is simply the DGP. Part (e) is the homoskedasticity

assumption: an asymptotic restriction on the joint distribution of vni, εni, and zni. This con-

dition holds automatically, given the other asssumptions, if (zni, vni, εni) are jointly normal,

as in the simulation experiment described in the paper.

Assumption D.2 (Sufficient Conditions for Theorem 3.5.). Let {(zni,vni, εni) : 1 ≤ i ≤
n, n = 1, 2, . . .} be a triangular array of random variables with zni = (z

(1)
ni , z

(1)
ni ) such that

(a) (zni,vni, εni) ∼ iid within each row of the array (i.e. for fixed n)

(b) E[vniz
′
ni] = 0, E[z

(1)
ni εni] = 0, and E[z

(2)
ni εni] = τ/

√
n for all n

(c) E[|zni|4+η] < C, E[|εni|4+η] < C, and E[|vni|4+η] < C for some η > 0, C <∞

(d) E[zniz
′
ni]→ Q > 0 and E[ε2nizniz

′
ni]→ Ω > 0 as n→∞

(e) xni = Π′1z
(1)
ni + Π′2z

(2)
ni + vni where Π1 6= 0, Π2 6= 0, and yi = x′niβ + εni

These conditions are similar to although more general than those contained in Assumption

D.1 as they do not impose homoskedasticity.
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E Supplementary Simulation Results

This section discusses additional simulation results for the choosing instrumental variables

example, as a supplement to those given in Section 5.2.

E.1 Downward J-Test

The downward J-test is an informal but fairly common procedure for moment selection in

practice. In the context of the simulation example from Section 5.2 it amounts to simply

using the full estimator unless it is rejected by a J-test. Table 5 compares the RMSE of

the post-FMSC estimator to that of the downward J-test with α = 0.1 (J90), and α = 0.05

(J95). For robustness, I calculate the J-test statistic using a centered covariance matrix

estimator, as in the FMSC formulas from section 3.3. Unlike the FMSC, the downward

J-test is very badly behaved for small sample sizes, particularly for the smaller values of

γ. For larger sample sizes, the relative performance of the FMSC and the J-test is quite

similar to what we saw in Figure 1 for the OLS versus TSLS example: the J-test performs

best for the smallest values of ρ, the FMSC performs best for moderate values, and the two

procedures perform similarly for large values. These results are broadly similar to those

for the GMM moment selection criteria of Andrews (1999) considered in Section 5.2, which

should not come as a surprise since the J-test statistic is an ingredient in the construction

of the GMM-AIC, BIC and HQ.

E.2 Canonical Correlations Information Criterion

Because the GMM moment selection criteria suggested by Andrews (1999) consider only

instrument exogeneity, not relevance, Hall and Peixe (2003) suggest combining them with

their canonical correlations information criterion (CCIC), which aims to detect and eliminate

“redundant instruments.” Including such instruments, which add no information beyond

that already contained in the other instruments, can lead to poor finite-sample performance

in spite of the fact that the first-order limit distribution is unchanged. For the choosing

instrumental variables simulation example, presented in Section 5.2, the CCIC takes the

following simple form

CCIC(S) = n log
[
1−R2

n(S)
]

+ h(p+ |S|)κn (25)

where R2
n(S) is the first-stage R2 based on instrument set S and h(p+|S|)κn is a penalty term

(Jana, 2005). Instruments are chosen to minimize this criterion. If we define h(p + |S|) =

(p + |S| − r), setting κn = log n gives the CCIC-BIC, while κn = 2.01 log log n gives the
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Figure 5: RMSE values for the post-Focused Moment Selection Criterion (FMSC) estimator
and the downward J-test estimator with α = 0.1 (J90) and α = 0.05 (J95) based on 20,000
simulation draws from the DGP given in Equations 22–23 using the formulas described in
Sections 3.3.
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CCIC-HQ and κn = 2 gives the CCIC-AIC. By combining the CCIC with an Andrews-

type criterion, Hall and Peixe (2003) propose to first eliminate invalid instruments and then

redundant ones. A combined GMM-BIC/CCIC-BIC criterion for the simulation example

from section 5.2 uses the valid estimator unless both the GMM-BIC and CCIC-BIC select

the full estimator. Combined HQ and AIC-type procedures can be defined analogously.

In the simulation design from this paper, however, each of these combined criteria gives

results that are practically identical to those of the valid estimator. This hold true across

all parameter values and sample sizes. Full details are available upon request.

E.3 Additional Confidence Interval Simulations

(a) Valid Estimator

ρ
N = 50 0 0.1 0.2 0.3 0.4 0.5

0.1 83 83 83 82 83 83
0.2 83 83 83 83 84 83

γ 0.3 83 82 83 83 83 83
0.4 82 83 84 83 83 84
0.5 84 83 83 83 83 83
0.6 83 83 83 83 82 82

ρ
N = 100 0 0.1 0.2 0.3 0.4 0.5

0.1 86 87 87 87 86 86
0.2 86 86 86 86 87 86

γ 0.3 86 86 87 87 87 87
0.4 86 87 86 86 87 87
0.5 87 87 86 86 86 86
0.6 87 86 86 87 86 87

ρ
N = 500 0 0.1 0.2 0.3 0.4 0.5

0.1 90 89 89 89 90 90
0.2 89 90 90 90 90 90

γ 0.3 89 90 90 90 90 90
0.4 89 90 90 89 90 90
0.5 90 90 90 90 90 89
0.6 89 89 89 90 90 90

(b) Näıve post-FMSC

ρ
N = 50 0 0.1 0.2 0.3 0.4 0.5

0.1 80 78 77 79 81 82
0.2 79 75 73 74 79 81

γ 0.3 79 72 66 67 73 78
0.4 78 71 62 59 66 75
0.5 78 68 57 52 57 67
0.6 77 68 54 47 50 60

ρ
N = 100 0 0.1 0.2 0.3 0.4 0.5

0.1 84 82 84 86 86 86
0.2 83 77 78 84 87 86

γ 0.3 82 74 71 79 85 86
0.4 82 71 63 71 82 86
0.5 81 69 56 62 76 84
0.6 81 66 51 52 69 81

ρ
N = 500 0 0.1 0.2 0.3 0.4 0.5

0.1 89 88 89 89 90 90
0.2 87 84 90 90 90 90

γ 0.3 86 77 89 90 90 90
0.4 85 67 88 89 90 90
0.5 84 59 84 90 90 89
0.6 83 52 77 89 90 90

Table 9: Coverage probabilities of nominal 90% CIs for the choosing instrumental variables
simulation experiment described in Section 5.2. All values are given in percentage points,
rounded to the nearest whole percent, based on 10,000 simulation draws from the DGP given
in Equations 22–23.

51



References

Abramson, M., Audet, C., Couture, G., Dennis, Jr., J., Le Digabel, S., Tribes, C., 2013. The

NOMAD project. Software available at http://www.gerad.ca/nomad.

Acemoglu, D., Johnson, S., Robinson, J. A., 2001. The colonial origins of comparative de-

velopment: An empirical investigation. American Economic Review 91 (5), 1369–1401.

Andrews, D. W. K., December 1988. Laws of large numbers for dependent non-identically

distributed random variables. Econometric Theory 4 (3), 458–467.

Andrews, D. W. K., June 1992. Generic uniform convergence. Econometric Theory 8 (2),

241–257.

Andrews, D. W. K., May 1999. Consistent moment selection procedures for generalized

methods of moments estimation. Econometrica 67 (3), 543–564.

Andrews, D. W. K., Lu, B., 2001. Consistent model and moment selection procedures for

GMM estimation with application to dynamic panel data models. Journal of Econometrics

101, 123–164.

Audet, C., Le Digabel, S., Tribes, C., 2009. NOMAD user guide. Tech. Rep. G-2009-37, Les

cahiers du GERAD.

URL http://www.gerad.ca/NOMAD/Downloads/user_guide.pdf

Berger, R. L., Boos, D. D., September 1994. P values maximized over a confidence set for the

nuisance parameter. Journal of the American Statistical Association 89 (427), 1012–1016.

Berkowitz, D., Caner, M., Fang, Y., 2012. The validity of instruments revisited. Journal of

Econometrics 166, 255–266.

Buckland, S. T., Burnham, K. P., Augustin, N. H., 1997. Model selection: An integral part

of inference. Biometrics 53 (2), 603–618.

Carstensen, K., Gundlach, E., 2006. The primacy of institutions reconsidered: Direct income

effects of malaria prevelance. World Bank Economic Review 20 (3), 309–339.

Chen, X., Jacho-Chvez, D. T., Linton, O., June 2009. An alternative way of computing

efficient instrumental variables estimators, lSE STICERD Research Paper EM/2009/536.

URL http://sticerd.lse.ac.uk/dps/em/em536.pdf

52

http://www.gerad.ca/nomad
http://www.gerad.ca/NOMAD/Downloads/user_guide.pdf
http://sticerd.lse.ac.uk/dps/em/em536.pdf


Cheng, X., Liao, Z., October 2013. Select the valid and relevant moments: An information-

based LASSO for GMM with many moments, PIER Working Paper 13-062.

URL http://economics.sas.upenn.edu/system/files/13-062.pdf

Cheng, X., Liao, Z., Shi, R., October 2014. Uniform asymptotic risk of averaging gmm

estimator robust to misspecification, working Paper.

Claeskens, G., Croux, C., Jo, 2006. Variable selection for logistic regression using a

prediction-focused information criterion. Biometrics 62, 972–979.

Claeskens, G., Hjort, N. L., 2003. The focused information criterion. Journal of the American

Statistical Association 98 (464), 900–945.

Claeskens, G., Hjort, N. L., 2008a. Minimizing average risk in regression models. Econometric

Theory 24, 493–527.

Claeskens, G., Hjort, N. L., 2008b. Model Selection and Model Averaging. Cambridge Series

in Statistical and Probabilistic Mathematics. Cambridge.

Conley, T. G., Hansen, C. B., Rossi, P. E., 2012. Plausibly exogenous. Review of Economics

and Statistics 94 (1), 260–272.

Demetrescu, M., Hassler, U., Kuzin, V., 2011. Pitfalls of post-model-selection testing: Ex-

perimental quantification. Empirical Economics 40, 359–372.

Donald, S. G., Imbens, G. W., Newey, W. K., 2009. Choosing instrumental variables in

conditional moment restriction models. Journal of Econometrics 152, 28–36.

Donald, S. G., Newey, W. K., September 2001. Choosing the number of instruments. Econo-

metrica 69 (5), 1161–1191.

Easterly, W., Levine, R., 2003. Tropics, germs, and crops: how endowments influence eco-

nomic development. Journal of Monetary Economics 50, 3–39.

Eddelbuettel, D., 2013. Seamless R and C++ Integration with Rcpp. Springer, New York,

iSBN 978-1-4614-6867-7.

Eddelbuettel, D., François, R., 2011. Rcpp: Seamless R and C++ integration. Journal of

Statistical Software 40 (8), 1–18.

URL http://www.jstatsoft.org/v40/i08/

53

http://economics.sas.upenn.edu/system/files/13-062.pdf
http://www.jstatsoft.org/v40/i08/


Eddelbuettel, D., Sanderson, C., March 2014. RcppArmadillo: Accelerating R with high-

performance C++ linear algebra. Computational Statistics and Data Analysis 71, 1054–

1063.

URL http://dx.doi.org/10.1016/j.csda.2013.02.005

Fox, J., Nie, Z., Byrnes, J., 2014. sem: Structural Equation Models. R package version 3.1-4.

URL http://CRAN.R-project.org/package=sem

Guggenberger, P., 2010. The impact of a hausman pretest on the asymptotic size of a hy-

pothesis test. Econometric Theory 26, 369–382.

Guggenberger, P., 2012. On the asymptotic size distortion of tests when instruments locally

violate the exogeneity assumption. Econometric Theory 28, 387–421.

Guggenberger, P., Kumar, G., 2012. On the size distortion of tests after an overidentifying

restrictions pretest. Journal of Applied Econometrics 27, 1138–1160.

Hall, A. R., 2005. Generalized Method of Moments. Advanced Texts in Econometrics. Oxford.

Hall, A. R., Peixe, F. P., 2003. A consistent method for the selection of relevant instruments

in linear models. Econometric Reviews 22, 269–288.

Hansen, B. E., September 2013. Efficient shrinkage in parametric models, university of Wis-

consin.

Hansen, B. E., October 2014. A stein-like 2sls estimator, university of Wisconsin.

Hjort, N. L., Claeskens, G., 2003. Frequentist model average estimators. Journal of the

American Statistical Association 98 (464), 879–899.

Hong, H., Preston, B., Shum, M., 2003. Generalized empirical likelihood-based model selec-

tion for moment condition models. Econometric Theory 19, 923–943.

Jana, K., 2005. Canonical correlations and instrument selection in econometrics. Ph.D. thesis,

North Carolina State University.

URL http://www.lib.ncsu.edu/resolver/1840.16/4315

Judge, G. G., Mittelhammer, R. C., 2007. Estimation and inference in the case of competing

sets of estimating equations. Journal of Econometrics 138, 513–531.

Kabaila, P., 1998. Valid confidence intervals in regressions after variable selection. Econo-

metric Theory 14, 463–482.

54

http://dx.doi.org/10.1016/j.csda.2013.02.005
http://CRAN.R-project.org/package=sem
http://www.lib.ncsu.edu/resolver/1840.16/4315


Kabaila, P., Leeb, H., 2006. On the large-sample minimal coverage probability of confidence

intervals after model selection. Journal of the American Statistical Association 101 (474),

819–829.

Kraay, A., 2012. Instrumental variables regressions with uncertain exclusion restrictions: A

Bayesian approach. Journal of Applied Econometrics 27 (1), 108–128.

Kuersteiner, G., Okui, R., March 2010. Constructing optimal instruments by first-stage

prediction averaging. Econometrica 78 (2), 679–718.

Le Digabel, S., 2011. Algorithm 909: NOMAD: Nonlinear optimization with the MADS

algorithm. ACM Transactions on Mathematical Software 37 (4), 1–15.

Leeb, H., Pötscher, B. M., 2005. Model selection and inference: Facts and fiction. Econo-

metric Theory 21 (1), 21–59.

Leeb, H., Pötscher, B. M., 2008. Sparse estimators and the oracle property, or the return of

Hodges’ estimator. Journal of Econometrics 142, 201–211.

Leeb, H., Pötscher, B. M., 2009. Model selection. In: Handbook of Financial Time Series.

Springer.

Leeb, H., Pötscher, B. M., May 2014. Testing in the presence of nuisance parameters: Some

comments on tests post-model-selection and random critical values, University of Vienna.

URL http://arxiv.org/pdf/1209.4543.pdf

Liao, Z., November 2013. Adaptive GMM shrinkage estimation with consistent moment

selection. Econometric Theory 29, 857–904.

Loh, W.-Y., 1985. A new method for testing separate families of hypotheses. Journal of the

American Statistical Association 80 (390), 362–368.

McCloskey, A., October 2012. Bonferroni-based size-correction for nonstandard testing

problems, Brown University.

URL http://www.econ.brown.edu/fac/adam_mccloskey/Research_files/

McCloskey_BBCV.pdf

Newey, W. K., 1985. Genearlized method of moments specification testing. Journal of Econo-

metrics 29, 229–256.

Newey, W. K., McFadden, D., 1994. Large Sample Estimation and Hypothesis Testing.

Vol. IV. Elsevier Science, Ch. 36, pp. 2111–2245.

55

http://arxiv.org/pdf/1209.4543.pdf
http://www.econ.brown.edu/fac/adam_mccloskey/Research_files/McCloskey_BBCV.pdf
http://www.econ.brown.edu/fac/adam_mccloskey/Research_files/McCloskey_BBCV.pdf


Phillips, P. C. B., 1980. The exact distribution of instrumental variables estimators in an

equation containing n+ 1 endogenous variables. Econometrica 48 (4), 861–878.

R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria.

URL http://www.R-project.org/

Racine, J. S., Nie, Z., 2014. crs: Categorical Regression Splines. R package version 0.15-22.

URL http://CRAN.R-project.org/package=crs

Rodrik, D., Subramanian, A., Trebbi, F., 2004. Institutions rule: The primacy of institutions

over geography and integration in economic development. Journal of Economic Growth 9,

131–165.

Sachs, J. D., February 2003. Institutions don’t rule: Direct effects of geography on per capita

income, NBER Working Paper No. 9490.

URL http://www.nber.org/papers/w9490

Sanderson, C., 2010. Armadillo: An open source C++ linear algebra library for fast proto-

typing and computationally intensive experiments. Tech. rep., NICTA.

URL http://arma.sourceforge.net/armadillo_nicta_2010.pdf

Schorfheide, F., 2005. VAR forecasting under misspecification. Journal of Econometrics 128,

99–136.

Sharpsteen, C., Bracken, C., 2013. tikzDevice: R Graphics Output in LaTeX Format. R

package version 0.7.0.

URL http://CRAN.R-project.org/package=tikzDevice

Silvapulle, M. J., December 1996. A test in the presence of nuisance parameters. Journal of

the American Statistical Association 91 (436), 1690–1693.

Xiao, Z., 2010. The weighted method of moments approach for moment condition models.

Economics Letters 107, 183–186.

Yang, Y., 2005. Can the strengths of AIC and BIC be shared? a conflict between model

identification and regression estimation. Biometrika 92 (4), 937–950.

56

http://www.R-project.org/
http://CRAN.R-project.org/package=crs
http://www.nber.org/papers/w9490
http://arma.sourceforge.net/armadillo_nicta_2010.pdf
http://CRAN.R-project.org/package=tikzDevice

	Introduction
	Assumptions and Asymptotic Framework
	Local Mis-Specification
	Candidate GMM Estimators
	Identification

	The Focused Moment Selection Criterion
	The General Case
	OLS versus TSLS Example
	Choosing Instrumental Variables Example

	Moment Averaging & Post-Selection Estimators
	Moment Average Estimators
	Moment Averaging for the OLS versus TSLS Example
	Valid Confidence Intervals

	Simulation Results
	OLS versus TSLS Example
	Choosing Instrumental Variables Example
	Valid Confidence Intervals

	Empirical Example: Geography or Institutions?
	Conclusion
	Proofs
	Computational Details
	Failure of the Identification Condition
	Low-Level Sufficient Conditions
	Supplementary Simulation Results
	Downward J-Test
	Canonical Correlations Information Criterion
	Additional Confidence Interval Simulations


