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Abstract: We propose point forecast accuracy measures based directly on distance of the
forecast-error c.d.f. from the unit step function at 0 (“stochastic error distance,” or SED).
We provide a precise characterization of the relationship between SED and standard predic-
tive loss functions, showing that all such loss functions can be written as weighted SED’s.
The leading case is absolute-error loss, in which the SED weights are unity, establishing its
primacy. Among other things, this suggests shifting attention away from conditional-mean
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1 Introduction

One often wants to evaluate (that is, rank) competing point forecasts by accuracy. Invariably

one proceeds by ranking by expected loss, E(L(e)), where e is forecast error and the loss

function L(e) satisfies L(0) = 0 and L(e) ≥ 0, ∀e.1 Typically, however, little thought is given

to the loss function L(e). Instead, Gauss’ centuries-old quadratic loss, L(e) = e2, remains

routinely invoked, primarily for mathematical convenience.

Against this background, in this paper we take a different approach, based on the entire

distribution of e. In particular, recognizing that any reasonable loss function must satisfy

L(0) = 0, we study accuracy measures based directly on the distance between F (e), the

c.d.f. of e, and F ∗(e), the unit step function at 0,2

F ∗(e) =

{
0, e < 0

1, e ≥ 0.

We compare F (e) to F ∗(e), and we favor forecasts that minimize the integrated absolute

distance between the two, or “stochastic error distance” (SED). This approach turns out

to yield useful insights with important practical implications.

We proceed as follows. In sections 2 and 3 we introduce unweighted and weighted SED,

respectively, and in each case we characterize the relationship between SED minimization

and expected loss minimization. In section 4 we generalize SED in a way that facilitates

relating it to Cramer-von-Mises divergence, among other divergence measures, and we pro-

vide a complete characterization of the relationship between generalized SED minimization

and expected loss minimization. We conclude in section 5.

1More general representations are possible, which recognize that the actual and forecasted values (y and
ŷ, say) need not enter loss only through their difference, which is the forecast error, e = y − ŷ. See, for
example, Patton (2014) and the references therein. We could instead rank by E(L(y, ŷ)), where the loss
function L(y, ŷ) satisfies L(y, y) = 0 and L(y, ŷ) ≥ 0, ∀y, ŷ. In the vast majority of the literature, however,
the simple L(e) form is used, and we shall follow suit here.

2In an abuse of notation, throughout this paper we use “F (·)” to denote any cumulative density function.
The meaning will be clear from context.



2 Ranking Forecasts by Stochastic Error Distance

We propose simply using the distribution of e directly, ranking forecasts by stochastic dis-

tance of F (e) from F ∗(·), the unit step function at 0. That is, we rank forecasts by

SED(F, F ∗) =

∫ ∞
−∞
|F (e)− F ∗(e)| de,

where smaller is better.3 We call SED(F, F ∗) the stochastic error distance. We can split

the SED(F, F ∗) integral at the origin, yielding

SED(F, F ∗) = SED−(F, F ∗) + SED+(F, F ∗)

=

∫ 0

−∞
F (e) de+

∫ ∞
0

(1− F (e)) de.
(1)

Hence SED(F, F ∗) has both “integrated c.d.f.” and “integrated survival function” compo-

nents. In Figure 1a we show SED(F, F ∗) and its components, and in Figure 1b we provide

an example of two error distributions such that one would prefer F1 to F2 under SED(F, F ∗).

2.1 The Relation Between SED(F, F ∗) and E(L(e))

We motivated SED(F, F ∗) as directly appealing and intuitive. It turns out, moreover, that

SED(F, F ∗) is intimately connected to one, and only one, traditionally-invoked loss function,

and it is not quadratic. We begin with a lemma and then proceed to the main result.

Lemma 2.1

(i) Let y be a positive random variable such that E(|y|)) <∞. Then

E(y) =

∫ ∞
0

[1− F (y)]dy,

where F (y) is the cumulative distribution function of y.

(ii) Let y be a negative random variable such that E(|y|)) <∞.4 Then

E(y) = −
∫ 0

−∞
F (y)dy,

3Note that in the symmetric case SED(F, F ∗) = 2
∫ 0

−∞ F (e) de.
4In yet another abuse of notation, we use “y” throughout to denote either a generic random variable or

its realization.
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(a) c.d.f. of e. Under the SED(F, F ∗) criterion, we prefer smaller SED(F, F ∗) = SED−(F, F ∗) + SED+(F, F ∗).

(b) Two forecast error distributions. Under the SED(F, F ∗) criterion, we prefer F1(e) to F2(e).

Figure 1: Stochastic Error Distance (SED(F, F ∗))
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where F (y) is the cumulative distribution function of y.

Proof We prove (i). Integrating by parts, we have∫ c

0

yf(y)dy = −y[1− F (y)]
∣∣∣c
0

+

∫ c

0

[1− F (y)]dy

= −c(1− F (c)) +

∫ c

0

[1− F (y)]dy

where c > 0. The first term goes to zero as c→∞, because

c(1− F (c)) = c P (Y > c)

= c

∫ ∞
c

dP (y)

=

∫ ∞
c

c dP (y)

≤
∫ ∞
c

y dP (y) (replacing c with y)

=

∫ ∞
0

y dP (y)−
∫ c

0

y dP (y).

But this converges to zero as c→∞, because∫ ∞
0

y dP (y) ≤
∫ ∞
−∞
|y| dP (y) <∞.

The proof of (ii) proceeds identically, so we omit it. To the best of our knowledge, (i)

has not appeared in the forecasting literature. It does appear, however, in the hazard and

survival modeling literature, in whose jargon “expected lifetime equals the integrated survival

function.”

We now arrive at a key result.

Proposition 2.2 (Equivalence of SED and Expected Absolute Error Loss)

For any forecast error e, with cumulative distribution function F (e) such that E(|e|)) <∞,

we have

SED(F, F ∗) =

∫ 0

−∞
F (e) de+

∫ ∞
0

[1− F (e)] d e = E(|e|). (2)

That is, SED(F, F ∗) equals expected absolute loss for any error distribution.
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Proof 5

SED(F, F ∗) = SED−(F, F ∗) + SED+(F, F ∗)

=

∫ 0

−∞
F (e) de+

∫ ∞
0

(1− F (e)) de

= −
∫ 0

−∞
ef(e) de+

∫ ∞
0

ef(e) de (by Lemma 2.1 (i) for SED− and (ii) for SED+)

=

∫ ∞
0

ef(−e) de+

∫ ∞
0

ef(e) de

=

∫ ∞
0

e(f(−e) + f(e)) de

=

∫ ∞
−∞
|e|f(e) de

= E(|e|).

Hence if one is comfortable with SED(F, F ∗) and wants to use it to evaluate forecast accu-

racy, then one must also be comfortable with expected absolute-error loss and want to use

it to evaluate forecast accuracy. The two criteria are identical.

3 Weighted Stochastic Error Distance

In other circumstances, however, one may feel that the basic idea behind SED(F, F ∗) is

appropriate, but that divergence of F (·) from F ∗(·) on one side of the origin is more harmful

than on the other. This leads to the idea of a weighted SED (WSED) criterion, given by

a weighted sum of SED−(F, F ∗) and SED+(F, F ∗).

3.1 A Natural Generalization

In particular, let,

WSED(F, F ∗; τ) = 2(1− τ)SED(F, F ∗)− + 2τSED(F, F ∗)+

= 2(1− τ)

∫ 0

−∞
F (e) de+ 2τ

∫ ∞
0

(1− F (e)) de,

where τ ∈ (0, 1).6 The following result is immediate.

5We provide an alternative proof of Proposition 2.2 in Appendix A.
6Note that when τ = 0.5, WSED(F, F ∗; τ) is just SED(F, F ∗).
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Proposition 3.1 (Equivalence of WSED and Expected Lin-Lin Loss)

For any forecast error e, with cumulative distribution function F (e) such that E(|e|)) <∞,

we have

WSED(F, F ∗; τ) = 2(1− τ)

∫ 0

−∞
F (e) de+ 2τ

∫ ∞
0

[1− F (e)] de = 2E(Lτ (e)), (3)

where Lτ (e) is the loss function

Lτ (e) =

(1− τ)|e|, e ≤ 0

τ |e|, e > 0,

and τ ∈ (0, 1).

Proof We have

WSED(F, F ∗; τ) = 2(1− τ)

∫ 0

−∞
F (e) de+ 2τ

∫ ∞
0

(1− F (e)) de

= 2(1− τ)

∫ 0

−∞
(−e)fe(e) de+ 2τ

∫ ∞
0

efe(e) de (by Lemma 2.1)

= 2(1− τ)

∫
|e|1{e ≤ 0}fe(e) de+ 2τ

∫
|e|1{e > 0}fe(e) de

= 2

∫ [
(1− τ)|e|1{e ≤ 0}+ τ |e|1{e > 0}

]
fe(e) de

= 2E(Lτ (e)).

The loss function Lτ (e) appears in the forecasting literature as a convenient and simple

potentially asymmetric loss function.7 It is often called “lin-lin” loss (i.e., linear on each

side of the origin), and sometimes also called “check function” loss, again in reference to

its shape. Importantly, it is the loss function underlying quantile regression; see Koenker

(2005).

Remark 3.2 (WSED and optimal prediction under aymmetric loss, I).

Because WSED(F, F ∗; τ) is proportional to expected lin-lin loss as established by Propo-

sition 3.1, we are led inescapably to the insight that point forecast accuracy evaluation by

WSED(F, F ∗; τ) is actually point forecast accuracy evaluation by expected lin-lin loss. The

7See Christoffersen and Diebold (1997).
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primacy of lin-lin loss in the WSED(F, F ∗; τ) case, and the primacy of absolute error loss

in the leading special case of WSED(F, F ∗; τ) (SED(F, F ∗)), emerges clearly.

Remark 3.3 (WSED and optimal prediction under aymmetric loss, II).

Patton and Timmermann (2007) suggest a different and fascinating route that also leads

directly and exclusively to lin-lin loss. Building on the work of Christoffersen and Diebold

(1997) on optimal prediction under asymmetric loss, they show that if loss L(e) is homoge-

neous and the target variable y has no conditional moment dependence beyond the condi-

tional variance, then the L-optimal forecast is always a conditional quantile of y. Hence under

their conditions WSED(F, F ∗; τ) loss is the only asymmetric loss function of relevance.

Our results and those of Patton and Timmermann are highly complementary but very

different, not only in the perspective from which they are derived, but also in the results

themselves. If, for example, y displays conditional moment dynamics beyond second-order,

then the L-optimal forecast is generally not a conditional quantile (and characterizations

in such cases remain elusive), whereas the WSED(F, F ∗; τ)-optimal forecast is always a

conditional quantile.

Remark 3.4 (WSED as an estimation/combination criterion).

WSED(F, F ∗; τ), which of course includes SED(F, F ∗) as a special case, can be used as a

forecast model estimation criterion. By Proposition 3.1, this amounts to estimation using

quantile regression, with the relevant quantile governed by τ . When τ = 1/2, the quantile

regression estimator collapses to the least absolute deviations (LAD) estimator. Similarly,

because the forecast combination problem is a regression problem (Granger and Ramanathan

(1984)), forecast combination under WSED(F, F ∗; τ) simply amounts to estimation of the

combining equation using quantile regression, with the relevant quantile governed by τ .

4 Generalized Weighted Stochastic Error Distance

As always let F (e) be the forecast error c.d.f., and let F ∗(e) be the unit step function at

zero. Now consider the following generalized weighted stochastic error distance (GWSED)

measure:

GWSED(F, F ∗; p, w) =

∫
|F (e)− F ∗(e)|pw(e) de, (4)
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where p > 0. All of our stochastic error distance measures are of this form. When p = 1 and

w(x) = 1 ∀ x, we have SED(F, F ∗), and when p = 1 and

w(x) =

2(1− τ), x < 0

2τ, x ≥ 0,

we have WSED(F, F ∗; τ). The GWSED(F, F ∗; p, w) representation facilitates comparisons

of WSED(F, F ∗; τ) to other possibilities that emerge for alternative choices of p and/or

w(·).

4.1 Connections Between GWSED(F, F ∗; p,w) and Other Dis-

tance and Divergence Measures

Several connections emerge.

4.1.1 Cramér Distance

When p = 2 and w(x) = 1, GWSED(F, F ∗; p, w) is Cramér distance, also known as Mallows

distance, or Monge-Kantorovich distance, or earth-movers distance; see Levina and Bickel

(2001). Closely related, moreover, are the “energy distance” used in higher dimensions (e.g.,

Székely and Rizzo (2013)) and the “continuous ranked probability score” of Gneiting and

Raftery (2007).8

We can decompose Cramér distance as∫ ∞
−∞

[
F (e)− F ∗(e)

]2
de =

∫ [
F (e)(1− F ∗(e)) + (1− F (e))F ∗(e)

− F (e)(1− F (e))− F ∗(e)(1− F ∗(e))
]
de

=

∫ 0

−∞
F (e)de+

∫ ∞
0

[
1− F (e)

]
de−

∫ ∞
−∞

F (e)(1− F (e)) de

= SED(F, F ∗)−
∫ ∞
−∞

F (e)(1− F (e)) de,

(5)

where e and e′ are random variables independently and identically distributed with distribu-

tion function F (·). Equation (5) is particularly interesting insofar as it shows that Cramér

distance is closely related to SED(F, F ∗), yet not exactly equal to it, due to the adjustment

8The continuous ranked probability score, however, is not used to rank point forecasts, but rather to
assess density forecasts; see Gneiting and Raftery (2007)).
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term,
∫
F (e)(1− F (e)) de. One can show that∫

F (e)(1− F (e)) de =
1

2
E(|e− e′|),

where e′ is a stochastic copy of e, revealing that the adjustment term, like the leading term,

is a measure of forecast error variability.

4.1.2 Cramér-von Mises Divergence

When p = 2 and w(e) = f(e), the density corresponding to F (e), GWSED(F, F ∗; p, w) is

Cramér-von Mises divergence,

CVM(F ∗, F ) =

∫
|F ∗(e)− F (e)|2 f(e) de. (6)

Note that the weighting function w(e) in Cramer-von Mises divergence CVM(F ∗, F ) is

distribution-specific, w(e) = f(e).

We can decompose Cramer-von-Mises divergence as

CVM(F ∗, F ) =

∫
|F ∗(e)− F (e)|2 f(e) de

=

∫ [
F (e)(1− F ∗(e)) + (1− F (e))F ∗(e)

− F (e)(1− F (e))− F ∗(e)(1− F ∗(e))
]
f(e) de

=

∫
R−

F (e)f(e)de+

∫
R+

(1− F (e))f(e)de−
∫
R

F (e)(1− F (e))f(e) de

=

∫ F (0)

0

p dp+

∫ 1

F (0)

(1− p) dp−
∫ 1

0

p(1− p) dp (by change of variable, e = F−1(p))

= F (0)2 − F (0) +
1

3

≥ 1

12
.

Note that CVM(F ∗, F ) achieves its lower bound of 1/12 if and only if F (0) = 1/2, which

implies that, like SED(F, F ∗), CVM(F ∗, F ) ranks forecasts according to expected absolute

error.

Remark 4.1 (CVM , Kolmogorov-Smirnov distance, and expected absolute error).
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Kolmogorov-Smirnov distance is

KS(F, F ∗) = sup
e
|F (e)− F ∗(e)| = max (F (0), 1− F (0)) .

Like CVM(F ∗, F ), KS(F, F ∗) achieves its lower bound at F (0) = 1/2. Hence, like SED(F, F ∗)

and CVM , KS(F, F ∗) ranks forecasts according to expected absolute error.

Remark 4.2 (Directional properties of CVM).

Although CVM(F ∗, F ) is well-defined, CVM(F, F ∗) is not, because

CVM(F, F ∗) =

∫
|F (e)− F ∗(e)|2 f ∗(e) de,

where f ∗(e) is Dirac’s delta.

Remark 4.3 (Comparative directional properties of CVM and Kullback-Leibler divergence).9

The Kullback-Leibler divergence KL(F ∗, F ) between F ∗(e) and F (e) is

KL(F ∗, F ) =

∫
log

(
f ∗(e)

f(e)

)
f ∗(e) de,

where f ∗(x) and f(x) are densities associated with distributions F ∗ and F . Unlike CVM(F ∗, F ),

KL(F ∗, F ) does not fit in our GWSED(F, F ∗; p, w) framework as it is ill-defined in both di-

rections.

4.2 A Complete Characterization

Equivalence of GWSED(F, F ∗; p, w) minimization and E(L(e)) minimization can actually

be obtained for a wide class of loss functions L(e). In particular, we have the following

proposition.

Proposition 4.4 (Equivalence of GWSED minimization and E(L(e)) minimization)

9There are of course many other distance/divergence measures, exploration of which is beyond the scope
of this paper. On Hellinger distance, for example, see Maasoumi (1993).
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Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for e > 0 and dL(e)/de < 0

for e < 0, and suppose also that F (e) and L(e) satisfy F (e)L(e) → 0 as e → −∞ and

(1− F (e))L(e)→ 0 as e→∞. Then∫ ∞
−∞
|F (e)− F ∗(e)|

∣∣∣∣dL(e)

de

∣∣∣∣ de = E(L(e)). (7)

That is, minimization of GWSED(F, F ∗; p, w) when p = 1 and w(e) = |dL(e)/de| corre-

sponds to minimization of expected loss E(L(e)).

Proof∫ ∞
−∞

∣∣F (e)− F ∗(e)
∣∣ ∣∣∣∣dL(e)

de

∣∣∣∣ de = −
∫ 0

−∞
F (e)

dL(e)

de
de+

∫ ∞
0

(1− F (e))
dL(e)

de
de

=

∫ 0

−∞
f(e)L(e) de+

∫ ∞
0

f(e)L(e) de

=

∫ ∞
−∞

f(e)L(e) de

= E[L(e)],

where we obtain the second line by integrating by parts and exploiting the the assumptions

on L(e) and F (e). In particular,∫ 0

−∞
F (e)

dL(e)

de
de = F (e)L(e)

∣∣∣0
−∞
−
∫ 0

−∞
f(e)L(e) de,

by integration by parts, but the first term is zero because F (e)L(e) → 0 as e → −∞, and

similarly, ∫ ∞
0

(1− F (e))
dL(e)

de
de = (1− F (e))L(e)

∣∣∣∞
0

+

∫ ∞
0

f(e)L(e) de,

again by integration by parts, and again the first term is zero because (1 − F (e))L(e) → 0

as e→∞.

Remark 4.5 (GWSED weightings other than those corresponding to WSED and SED).

Note that the E(L(e)) minimizers that match various GWSED(F, F ∗; p, w) minimizers gen-

erally correspond to non-standard and intractable loss functions L(e) in all cases but the

ones we have emphasized, namely WSED(F, F ∗; τ) and its leading case SED(F, F ∗).
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Remark 4.6 (The GWSED weighting that produces quadratic loss).

The weighting function in (7) that produces expected squared-error loss (E(L(e)) = E(e2))

is immediately ∣∣∣∣dL(e)

de

∣∣∣∣ = |2e|.

It is not obvious why one would generally want to adopt such a weighting, with e = e∗

weighted e∗ times more than e = 1, for any reason other than mathematical convenience.

Remark 4.7 (Relationship between GWSED and Elliott et al. (2005) loss).

GWSED(F, F ∗; p, w) (4) resembles the Elliott et al. (2005) (ETK) loss function,

LETK(e; p, α) = |e|p (α + (1− 2α)I(e < 0)) .

However, it differs fundamentally in that GWSED(F, F ∗; p, w) is based on distributional

distance, |F − F ∗|, whereas ETK loss is based on the usual forecast error distance, (y − ŷ).

Ultimately, ETK loss is a special case of GWSED(F, F ∗; p, w), corresponding to a particular

choice of exponent p and weighting function w(e), as per Proposition 4.4, as are all L(e) loss

functions that satisfy the regularity conditions of the proposition.

5 Conclusions and Directions for Future Research

Starting from first principles, we have proposed and explored several “stochastic error dis-

tance” (SED) measures of point forecast accuracy, based directly on the distance between

the forecast-error c.d.f. and the unit step function at 0. SED-type criteria sharply focus

attention on a particular loss function, absolute loss (and its lin-lin generalization), as op-

posed to the ubiquitous quadratic loss, or anything else. Our results elevate the status of

absolute and lin-lin loss for both point forecast evaluation and for estimation.

Several interesting directions for future research are apparent. One direction concerns

multivariate extensions, in which case it’s not clear how to define the unit step function

at zero, F ∗(e). Consider, for example, the bivariate case, in which the forecast error is

e = (e1, e2)
′. It seems clear that we want F ∗(e) = 0 when both errors are negative and

F ∗(e) = 1 when both are positive, but it’s not clear what to do when the signs diverge.

12



Figure 2: Absolute-Error Loss vs. Squared-Error Loss, e1 ∼ N(0, 1), e2 ∼ N(µ2, σ
2
2). We

show the disagreement region in black.

Another direction concerns determining conditions under which squared-error and absolute-

error loss disagree. That is, our results argue for the routine use of absolute-error loss and

its lin-lin generalization, but the importance of the difference between ranking forecasts by

absolute-error loss vs. other loss functions, and in particular, absolute-error loss vs. squared-

error loss, remains to be explored.10

In certain cases the answer is clear. If, for example, forecast errors are Gaussian, e ∼
N (µ, σ2), then |e| follows the folded normal distribution with mean

E(|e|) = σ
√

2/π exp

(
− µ2

2σ2

)
+ µ

[
1− 2Φ

(
−µ
σ

)]
.

Hence for unbiased forecasts (µ = 0) we have E(|e|) ∝ σ, so that absolute and quadratic

loss rankings must be identical. But even in the restrictive Gaussian case the rankings can

10Patton (2014) performs some related, but nevertheless different, explorations.
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diverge if one (or both) of the forecasts are biased. Consider, for example, two forecast errors,

e1 ∼ N(0, 1) and e2 ∼ N(µ2, σ
2
2), with µ2 ∈ [−1.3, 1.3] and σ2 ∈ (0, 1.3]. By simulation we

identify situations where absolute-error and squarred-error rankings diverge, which we show

in Figure 2. The regions are not large, but they are certainly not negligible. We conjecture,

moreover, that divergences may be much more common in non-Gaussian situations involving

asymmetry and/or fat tails.
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Appendices

A Alternative Proof of Proposition 2.2

Here we supply a different and shorter, if less instructive, proof.

Proposition

E(|e|) =

∫ ∞
0

[1− F (e)] de = SED(F, F ∗).

Proof

SED(F, F ∗) = −
∫ c

0

F−1(p) dp+

∫ 1

c

F−1(p) dp (where c = F (0))

=

∫ 0

−∞
−ef(e) de+

∫ ∞
0

ef(e) de (change of variables with p = F (e))

=

∫ ∞
−∞
|e|f(e) de

= E(|e|).
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