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Abstract

This paper studies a class of continuous-time stochastic games in which the ac-

tions of a long-run player have a persistent effect on payoffs. For example, the quality

of a firm’s product depends on past as well as current effort, or the level of a pol-

icy instrument depends on a government’s past choices. The long-run player faces a

population of small players, and its actions are imperfectly observed. I establish the

existence of Markov equilibria, characterize the Perfect Public Equilibria (PPE) pay-

off set as the convex hull of the Markov Equilibria payoff set, and identify conditions

for the uniqueness of a Markov equilibrium in the class of all PPE. The existence

proof is constructive: it characterizes the explicit form of Markov equilibria payoffs

and actions, for any discount rate. Action persistence creates a crucial new channel to

generate intertemporal incentives in a setting where traditional channels fail, and can

provide permanent non-trivial incentives in many settings. These results offer a novel

framework for thinking about reputational dynamics of firms, governments, and other

long-run agents.

KEYWORDS: Continuous Time Games, Stochastic Games, Reputation

JEL: C73, L1

∗I thank Matt Elliott, Jeff Ely, Ben Golub, Alex Imas, Bart Lipman, David Miller, George Mailath,
Markus Mobius, Paul Niehaus, Yuliy Sannikov, Andy Skrzypacz, Joel Sobel, Jeroen Swinkels, Joel Watson,
Alex Wolitzsky and especially Nageeb Ali for useful comments. I also thank numerous seminar participants
for helpful feedback.

†Email: abohren@sas.upenn.edu; University of Pennsylvania

mailto:abohren@sas.upenn.edu.edu


Persistence and rigidities are fundamental features of many economic settings. Key charac-

teristics of these environments depend not only on actions taken today, but are also directly

influenced by choices made in the past. Examples abound of such settings. A firm’s ability

to make high quality products is a function of not only its effort today but also its past

investments in developing technology and training its workforce. A government’s ability to

offer efficient and effective public services to its citizens depends on its past investments in

improving infrastructure and building competent institutions. A doctor does not cure pa-

tients through instantaneous effort alone, but needs to undertake costly training to develop

skills and learn techniques. In all of these settings, and many others, past choices play a

central role in determining current and future profitability.

This paper studies the impact of persistence in a class of continuous-time stochastic

games with imperfect public monitoring between a long-run player and a population of small

players. Past actions influence a state variable, which captures their persistent effect on the

information and payoff structure of the game. Small players learn about the long-run player’s

action through a noisy public signal, whose precision may depend on the state variable. The

observable state variable and public signal both evolve stochastically, perturbed by Brownian

information. A stochastic game introduces a second channel for intertemporal incentives: in

addition to conditioning future equilibrium play on past outcomes, as is possible in standard

repeated games, players’ actions now directly impact feasible payoffs and the information

structure in future periods.

Markov equilibria play a key role in this setting. The main results of this paper estab-

lish conditions on the structure of the game that guarantee existence of Markov equilibria,

characterize the Perfect Public Equilibria (PPE) payoff set as the convex hull of the Markov

equilibria payoff set, and determine when a Markov equilibrium is unique. The existence

proof is constructive, and specifies the explicit form of behavior and payoffs in Markov equi-

libria, for any discount rate, as a function of the state variable. Equilibrium continuation

values are specified as the solution to a nonstochastic differential equation, defined over

the state space, while the long-run player’s action is determined by the sensitivity of its

continuation value to changes in the state variable (the first derivative of this solution).

The key contributions of this paper are along three dimensions. The innovative technical

work lies in deriving the main results for an unbounded state space and an unbounded flow

payoff (the instantaneous payoff of the long-run player). With an unbounded flow payoff, the

continuation value may also be unbounded; the first challenge lies in establishing that the

continuation value has linear growth with respect to the state under the proper assumption
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on the growth rate of flow payoffs and the state. This is a necessary step to characterize

conditions for sequential rationality and the evolution of the continuation value in any PPE

of the stochastic game. To establish existence of a Markov equilibrium, I need to find upper

and lower solutions for an unbounded ordinary differential equation and show that these

solutions have linear growth. Characterization of the PPE payoff set requires bounding the

difference between continuation values in any two PPE, despite the fact that continuation

values may be unbounded. Finally, deriving sufficient conditions for uniqueness of a Markov

equilibrium requires establishing that the slope of the continuation value with respect to the

state converges to the same value k in any Markov equilibrium. Given this and the linear

growth condition, we show that there is also a unique intercept b such that the continuation

value in any Markov equilibrium converges to kX+b. Note that when k 6= 0, incentives can be

maintained near the boundary of the state space, a contribution in itself. Unique boundary

conditions yield a unique Markov equilibrium across the entire state space. The general state

and payoff space can capture many applications, including models where equilibrium payoffs

are not monotonic with respect to the state variable and models where persistence generates

permanent (as opposed to temporary) incentives. Thus, I demonstrate that the insights first

presented in Faingold and Sannikov (2011) apply to a very broad set of games.

Conceptually, I demonstrate that action persistence creates a crucial effective channel to

generate intertemporal incentives in a setting where traditional channels fail. Faingold and

Sannikov (2011) and Fudenberg and Levine (2007) show that in continuous time repeated

games with a single long-run player and Brownian information, the long-run player cannot

attain payoffs beyond those of the highest static Nash equilibrium payoff.1 This paper estab-

lishes that when actions have a persistent effect on payoffs, it is possible to create effective

intertemporal incentives and the long-run player can earn payoffs higher than the static Nash.

At first glance, there appears to be a tension between my result and the rich literature ex-

amining incentives in continuous-time repeated games with imperfect monitoring (initiated

by Abreu, Milgrom, and Pearce (1991)). Sannikov and Skrzypacz (2010) show that Brow-

nian information must be used linearly; burning value through punishments that affect all

players does not provide effective incentives. Additionally, in many settings, including those

between long-run and small, anonymous players, tangential transfers along the boundary of

the equilibrium payoff set are not possible.2 In a repeated game, using Brownian information

linearly and non-tangentially will result in the continuation value escaping its upper bound

with positive probability, a contradiction. Thus, it is not possible to structure incentives

1This insight generalizes to continuous time stochastic games without persistent actions (see Corollary 1
in Section 3.2.

2Sannikov and Skrzypacz (2007) show how this issue also arises in games between multiple long-run
players in which deviations between individual players are indistinguishable.
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at the long-run player’s highest continuation payoff, and intertemporal incentives collapse.

However, a stochastic game introduces the possibility of using linear, non-tangential trans-

fers for some values of the state variable. This important feature introduces the possibility

of a non-trivial linear incentive structure.

With an unbounded flow payoff, it is possible to provide effective incentives as the state

variable becomes large; the same holds true for a bounded flow payoff if the static Nash

payoff perpetually oscillates. In both cases, the slope of the continuation value doesn’t

converge to zero and non-trivial incentives can be sustained. On the other hand, when the

flow payoff is bounded and the static Nash payoff is monotonic, the slope of the continuation

value converges to zero and incentives dissipate as the state grows large. Similarly, when the

state space is bounded, it is possible to sustain non-trivial incentives as the state variable

approaches the boundary if the state is not absorbed. The ability to sustain non-trivial

intertemporal incentives across the entire state space is an important and novel insight of

this paper.

Finally, these results make a practical contribution for equilibrium analysis. Many dy-

namic interactions depend on some type of state variable, and Markov equilibria are a pop-

ular concept in applied work; advantages include their simplicity and dependence on payoff

relevant variables to specify incentives. I develop a common framework and a rich set of

tools that these applied models can utilize to shed light on equilibrium behavior. The char-

acterization of equilibrium actions and payoffs connects the value of a firm, government or

other long-run player to choices that are empirically identifiable. The value of past actions

depends on the nature of persistence and the structure of the market, including observable

parameters such as the cost and depreciation rate of investment, the volatility of quality

or the relative value that consumers derive from cheap, low-quality products compared to

expensive high-end products. After stipulating functional forms to apply the model to a

specific economic setting, it is straightforward to derive the Markov equilibrium, calibrate it

with realistic parameters, and use numerical methods to estimate the solution. This will gen-

erate empirically testable predictions about the dynamics of equilibrium behavior, including:

when does a firm or government build its quality and when does it allow it to decay; when

does a firm maintain high quality in the long-run; what drives a firm to specialize in different

quality products or an expert to seek the next level of a verifiable certification? Establishing

that it is not possible to achieve payoffs above the best Markov equilibrium payoff offers a

strong justification for focusing on this more tractable class of equilibria.

To fix ideas, consider the canonical product choice game. A long-run firm interacts with

a sequence of short-run consumers. The firm has a dominant strategy to choose low effort,

but would have greater payoffs if it could somehow commit to high quality (its “Stackel-
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berg payoff”). Repeated interaction in discrete time with imperfect monitoring generates

a folk theorem (Fudenberg and Levine 1994), but the striking implication from Faingold

and Sannikov (2011) and Fudenberg and Levine (2007) is that such intertemporal incen-

tives disappear as the period length becomes small. Since Fudenberg and Levine (1989) and

Fudenberg and Levine (1992), we know that if the firm could build a reputation for being

a commitment type that produces only high quality products, a patient normal firm can

approach these payoffs in every equilibrium. Faingold and Sannikov (2011) shows that this

logic remains in continuous-time games, but that as in discrete-time, these reputation effects

are temporary: eventually, consumers learn the firm’s type, and reputation effects disap-

pear in the long-run (Cripps, Mailath, and Samuelson 2004).3 Commitment types connect

behavior across time, and enable the player to overcome binding moral hazard, at least in

the short-run. In fact, these models can be viewed as a type of stochastic game, since the

belief about the player’s type depends on its past actions (as well as beliefs about these past

actions).

However, there are many other ways that persistent actions can strengthen the link

between past behavior and future payoffs without using incentives that are driven by the

possibility that players may be non-strategic. This paper returns to a notion of reputation as

a type of capital (Klein and Leffler 1981), “a word which denotes the persistence of quality

and [...] commands a price (or exacts a penalty) because it economizes on search” (Stigler

1961). Consider a simple and realistic modification of the product choice setting in which

the firm’s product quality is a noisy function of current and past effort. Applying my results

to this application establishes that the firm also overcomes moral hazard; importantly, this

effect can remain in the long-run and incentives are permanent. Therefore, it is the persistent

effect of actions, rather than the particular form of persistence as a commitment type, that

drives the power of reputation models. Additionally, the general framework of this paper

applies to a broader set of environments, including settings in which the value of quality

is non-monotonic (firms specialize in high or low quality, governments formulate different

policy targets), a firm has different price-taking behavior (monopolist or fixed prices), or a

student invests in a series of verifiable certifications.

This paper builds on tools developed by Faingold and Sannikov (2011). They characterize

the unique Markov equilibrium in an incomplete information game in which the state variable

is the belief that the firm is a commitment type, the transition function for the state variable

3Since Kreps, Milgrom, Roberts, and Wilson (1982), Kreps and Wilson (1982) and Milgrom and Roberts
(1982), a player’s reputation has often been modeled as the belief that others have that it is a commitment
type and takes a fixed action in each period. Mailath and Samuelson (2001) show that reputational incentives
can also come from a firm’s desire to separate itself from an incompetent type. Yet, these reputation effects
are also temporary unless the type of the firm is replaced over time.
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follows Bayes rule, the state variable evolves as a function of the public signal, and the firm’s

payoffs do not directly depend on the state. I look at a complete information setting in which

both the long-run and small players may have state-dependent preferences, the state space

may be bounded or unbounded and have multiple interior absorbing states, the flow payoff of

the long-run player may be bounded or unbounded, the transition rule guiding the evolution

of the state takes a general form and the state may be independent of the public signal

(this isolates the impact of persistence). Unlike in Faingold and Sannikov (2011), the state

variable in this paper does not depend on beliefs about the long-run player’s equilibrium

action. Cisternas (2014) also builds on Faingold and Sannikov (2011) in a game where the

long-run player can either manipulate a hidden state itself or the public signal about the

state. He characterizes equilibrium incentives in the general setting, and obtains a closed-

form solution for these incentives in a subclass of linear-quadratic games.

Board and Meyer-ter vehn (2013) also look at persistent quality as an alternative way

to generate reputation effects in a setting similar to the product choice example. Product

quality is binary and reputation is defined as the consumers’ belief that the current product

quality is high. Consumers learn about quality through noisy signals, which is periodically

replaced; when a replacement occurs, the monopolist’s current effort determines the new

quality. The value of reputation stems from the higher price that the monopolist can charge

when the consumer has higher beliefs about quality. In contrast, in the product choice

application of this paper, quality is observable and the instantaneous return to quality need

not be linear. Technically speaking, realized quality in Board and Meyer-ter vehn (2013) is

discontinuous (jumping between low and high), which plays an important role in determining

intertemporal incentives, while quality in the product choice application of this paper is a

smooth function of past investments. Thus, the analysis uses different techniques.

The paper relates to a broad literature on stochastic games. Sobel (1973), examine equi-

librium existence in continuous-time stochastic games with perfect monitoring, while Flesch,

Thuijsman, and Vrieze (2003) study existence in discrete time stochastic games with imper-

fect monitoring. Dutta and Sundaram (1992) establish the existence of Markov equilibria

in a discrete-time stochastic growth model with two long-run players. Several folk theorems

exist for discrete time irreducible stochastic games with an observable state, beginning with

a perfect monitoring setting in Dutta (1995), and extending to imperfect monitoring envi-

ronments in Fudenberg and Yamamoto (2011) and Hörner, Sugaya, Takahashi, and Vieille

(2011). The technique in this paper also relates to methods established by Strulovici and

Szydlowski (2014) to ensure a well-behaved value function for optimal control problems with

a diffusion process.

Many applied papers analyze equilibria in continuous time games with a state variable.
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Ericson and Pakes (1995) study Markov perfect equilibrium in a setting where uncertain

investment has a persistent impact on profits, which is similar in spirit to this paper’s quality

example (Section 2.1). Back (1992) looks at an asset pricing model with an insider trader,

Daley and Green (2012) study a dynamic asymmetric information setting where the value of

a seller’s asset is gradually revealed to buyers, Murto (2004) looks at firm exit decisions in a

duopoly setting with uncertain profit streams and Papageorgiou (2013) study how workers

learn about their types.

The organization of this paper proceeds as follows. Section 1 sets up the model and

Section 2 introduces several simple examples to illustrate potential applications. Section

3 presents the three main results: (1) establishing the existence of a Markov equilibrium,

(2) characterizing the PPE payoff set and (3) establishing when a Markov equilibrium is

unique in the class of all PPE; the section concludes with a discussion of the structure of

intertemporal incentives. In Section 4, the paper returns to the examples to illustrate the

main results of the model. A final section relates the shape of equilibrium payoffs to the

structure of the game. Most proofs are in the Appendix.

1 Model

I study a stochastic game of imperfect monitoring between a single long-run player and a

continuum of small, anonymous short-run players, I = [0, 1], with each individual indexed

by i. Time t ∈ [0,∞) is continuous.

Actions, Information and States: At each instant t, long-run and short-run players

simultaneously choose actions at from A and bit from B, respectively, where A is a compact

subset of a Euclidean space and B is a closed subset of a Euclidean space. Individual

actions are privately observed, while the aggregate distribution of short-run players’ actions,

bt ∈ ∆B and a public signal of the long-run player’s action, Yt , are publicly observed. The

stage game varies across time through its dependence on a publicly observed state variable

Xt ∈ Ξ, which determines the payoff and information structure. Assume that the state

space Ξ is a closed subset of R. The state variable begins at initial value X0 and evolves

stochastically as a function of the current state and players’ actions.

Represent the public signal profile and state variable by a system of stochastic differential

equations,[
dYt

dXt

]
=

[
µy(at, bt, Xt)

µx(at, bt, Xt)

]
dt+

[
σy
(
bt, Xt

)
σyx
(
bt, Xt

)
σxy
(
bt, Xt

)
σxx
(
bt, Xt

) ] · [ dZy
t

dZx
t

]
(1)
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where (Zy
t , Z

x
t )t≥0 is a d-dimensional Brownian motion, µy : A×B×Ξ→ Rd−1 is the drift of

the public signal, µx : A×B×Ξ→ R is the drift of the state variable and σ : B×Ξ→ Rd×d

is the volatility matrix:

σ =

[
σyy σyx

σxy σxx

]
=

[
σy

σx

]
,

with each function linearly extended to A×∆B. Assume µy, µx and σ are Lipschitz contin-

uous. The state space may or may not be bounded. It is bounded above if there exists an

upper bound X <∞ at which the volatility is a vector of zeros, σx(b,X) = 0 and the drift

is weakly negative, µx
(
a, b,X

)
≤ 0, for all (a, b) ∈ A×B; it is bounded below if there exists

a lower bound X > −∞ such that the volatility is zero and the drift is weakly positive for

all (a, b) ∈ A×B.

The drift of the public signal, µy provides a signal of the long-run player’s action and

can also depend on the aggregate action of the short-run players and the state, but is

independent of individual actions bit to preserve anonymity. Volatility is independent of

the long-run player’s action to maintain the assumption of imperfect monitoring.4 The

state variable influences the information structure through the drift and volatility of the

public signal profile, and may also provide an additional signal of the long-run player’s

action through its own drift, µx. Let {Ft}t≥0 represent the filtration generated by public

information, (Yt, Xt)t≥0.

Define a state X̃ as an absorbing state if the drift and volatility of the transition function,

dXt, are both zero.

Definition 1. X̃ ∈ Ξ is an absorbing state if µx(a, b, X̃) = 0 and σx

(
b, X̃

)
= 0 for all

(a, b) ∈ A×B.

Denote the set of absorbing states as Ξ̃. I make several assumptions on the structure of

public signals and the state. First, the volatility of the state variable is positive at all but a

finite number of points of the state space, and any interior point of the state space that has

zero volatility is an absorbing state. This ensures that the future path of the state variable

is almost always stochastic.

Assumption 1. The state space can be represented as the union of a finite number of subsets,

Ξ = ∪ni=1Ξi such that for any compact proper subset I ⊂ Ξi, there exists a cI with:

σI = inf
b∈B,X∈I

|σx (b,X)|2 > cI .

If X ∈ int(Ξ) and |σx (b,X)|2 = 0 for some b ∈ B, then X is an absorbing state.

4The volatility must be independent of the long run player’s action since it is essentially observable.
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Second, in order to maintain imperfect monitoring, the long-run player’s action cannot

be inferred from the path of the public signal and state variable. I assume that the rows

of the public signal volatility matrix, σy, are linearly independent. Additionally, when the

volatility of the state variable is a linear combination of the volatility of the public signals,

then the drift of the state variable is the same linear combination of the drift of the public

signals.

Assumption 2. There exists a constant c such that

|σyy (b,X) · y| ≥ c |y|

for all y ∈ Rd−1, X ∈ Ξ and b ∈ B. If there exists an X ∈ Ξ and b ∈ B and scalars

α1, ..., αd−1 such that σx (b,X) =
∑
αiσ

i
y (b,X), then there exist functions f1 and f2 such

that for all a ∈ A,

f1(a, b,X) =
∑

αiµ
i
y (a, b,X)

µx(a, b,X) = f1(a, b,X) + f2(b,X)

The game defined here includes several subclasses of games. If d = 1, then the state

variable contains all relevant information about the long-run player’s action and there is no

additional public signal. If µx(a, b,X) is independent of a, then the state evolves indepen-

dently of the long-run player’s action. If σxy = 0 and σyx = 0, then the state variable and

the public signal are independent.

Payoffs: The state variable determines the set of feasible payoffs in a given instant.

Given an action profile (a, b) and a state X, the long-run player receives an expected flow

payoff of g(a, b,X). It seeks to maximize the expected value of its discounted payoff,

r

∫ ∞
0

e−rtg(at, bt, Xt)dt

where r is the discount rate. Assume g is Lipschitz continuous. The dependence of payoffs

on the state variable creates a form of action persistence for the long-run player, since

the state variable is a function of prior actions. It is possible that the long-run player’s

payoffs only depend on the state indirectly through the action of the short-run players

(g(a, b,X) = g̃(a, b)).

Short-run players have identical preferences: they maximize the expected flow payoff,

h(a, bi, b,X), which is continuous.5 Ex-post payoffs can only depend on at through public

5If both g and h are independent of X, then the game reduces to a standard repeated game.
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information, as is standard in games of imperfect monitoring.6 Let B : A × ∆B × Ξ ⇒ B

represent the static best response correspondence for the short-run player, which maps an

action profile and a state to the set of short-run player actions that maximize the expected

flow payoff, and B : A × Ξ ⇒ ∆B represent the aggregate best response correspondence.

Assume that these correspondences are well-defined in the sense that they are non-empty

and if b ∈ B(a, b,X) (b ∈ B(a,X)), then |b| < ∞ (|b| < ∞ for each b ∈ suppb).7 In many

applications, it will be sufficient to specify the aggregate best response correspondence as a

reduced form for short-run players’ behavior.

The next assumption requires that, for any action of the long-run player and best response

of the short-run players, either the state grows at a rate slower than the discount rate, or

the flow payoff is bounded with respect to the state. This assumption will guarantee that

the expected discounted payoff of the long-run player is well-behaved.

Assumption 3. At least one of the following conditions hold:

1. There exists a k ∈ [0, r) and c > 0 such that, for all X ≥ 0, µx(a, b,X) ≤ kX + c for

all a ∈ A, b ∈ B and for all X ≤ 0, µx(a, b,X) ≥ kX − c for all a ∈ A, b ∈ B.

2. g(a, b,X) is bounded.

This assumption is trivially satisfied when the state space is bounded, by Lipschitz continuity.

Strategies and equilibrium: A public pure strategy for the long-run player is a stochas-

tic process (at)t≥0 with at ∈ A and progressively measurable with respect to {Ft}t≥0. Like-

wise, a public pure strategy for a short-run player is an action bit ∈ B progressively measurable

with respect to {Ft}t≥0. Given that small players have identical preferences, it is without loss

of generality to work with aggregate strategies (b̄t)t≥0. I restrict attention to pure strategy

perfect public equilibria (PPE).

Definition 2. A perfect public equilibria consists of public strategy profile S = (at, bt)t≥0 such

that after any public history and for all t ≥ 0, (i) (at)t≥0 maximizes the discounted expected

payoff of the long-run player, and (ii) b ∈ arg maxb′∈B h(at, b
′, bt, Xt) for all b ∈ supp b̄t.

Timing: At each instant t, players observe the current state Xt, choose actions, and

then nature stochastically determines payoffs, the public signal and next state as a function

of the current state and action profile.

6Alternatively, one could consider situation with a sequence of short-run players, in which payoffs depend
directly on a but the short-run players are not able to pass on knowledge of a to subsequent players, or a
continuum of long run small, anonymous players, since the individual action of a short run player has a
negligible impact on the aggregate action (and therefore Xt) and is not observable by the long run player.

7Assumptions on the primitives of the game that guarantee a well-defined best responce correspondence
include (i) B is compact; (ii) for each X, the short-run players are restricted to selecting actions from a
compact set BX . Note that we do not make the standard assumption that B is compact in order to allow
for the possibility that the optimal action b∗ is not uniformly bounded with respect to X.
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1.1 Equilibrium Structure

This section extends a recursive characterization of PPE to continuous time stochastic games.

In dynamic games, a long-run player’s incentives are created through the evolution of his

continuation value, which is the expected discounted payoff at time t given the public history.

The long-run player’s action impacts its continuation value through two channels: (1) future

equilibrium play and (2) the set of future feasible flow payoffs. It is well known that the

public signal can be used to punish or reward the long-run player in future periods by allowing

continuation play to depend on the realization of the public signal. A stochastic game adds

a second link between current play and future payoffs: the long-run player’s action affects

the evolution of the state variable, which in turn determines the set of future feasible stage

game payoffs. Each channel provides a potential source of intertemporal incentives.

Formally, define the continuation value as the expected value of the future discounted

payoff at time t, given the public information contained in {Ft}t≥0 and strategy profile

S = (at, bt)t≥0, as:

Wt(S) := Et

[
r

∫ ∞
t

e−r(s−t)g(as, bs, Xs)ds

]
and the expected value of the long-run player’s average discounted payoff at time t as:

Vt(S) : = Et

[
r

∫ ∞
0

e−rsg(as, bs, Xs)ds

]
= r

∫ t

0

e−rsg(as, bs, Xs)ds+ e−rtWt(S)

First, I establish that the continuation value is finite whenever Xt is finite, and the

expected value of the average discounted payoff is a martingale. This implies that E|Vt(S)| <
∞ for all t ≥ 0.

Lemma 1. Assume Assumption 3. For any public strategy profile S = (at, bt)t≥0, initial

state X0 <∞ and path of the state variable (Xt)t≥0 that, given S, evolves according to (1),

(i) there exists a K > 0 such that |Wt(S)| ≤ K(1 + |Xt|) for all t ≥ 0, and (ii) Vt(S) is a

martingale.

Given Assumption 3, either the slope of the drift with respect to X is less than the discount

rate for large |X|, or the flow payoff of the long-run player is bounded. This ensures that

Wt(S) doesn’t diverge, either because Xt grows large at a slow enough rate relative to the

discount rate, or because large Xt doesn’t lead to unboundedly large payoffs. Note that no

lower bound is necessary on the slope of µx, since a negatively sloped drift either eventually

pulls the state variable back to zero or asymptotes to a constant drift. This result is similar

in spirit to Lemma 1 in Strulovici and Szydlowski (2014), which establishes that the value

function of an optimal control problem is finite and satisfies a linear growth condition with
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respect to the state, and is not required in models with a bounded continuation value.

The next lemma characterizes the evolution of the continuation value and the long-run

player’s incentive constraint in a PPE. This is similar in spirit to Theorem 2 in Faingold and

Sannikov (2011), with the requisite changes to allow for an unbounded state space and flow

payoff.

Lemma 2. Assume Assumption 3. A public strategy profile S = (at, b
i
t)t≥0 is a PPE with

continuation values (Wt)t≥0 if and only if for some {Ft}-measurable process (βt)t≥0 in L:

1. Given (βt)t≥0, (Wt)t≥0 satisfies:

dWt = r
(
Wt − g(at, bt, Xt)

)
dt

+ rβyt
[
dYt − µy(at, bt, Xt)dt

]
+ rβxt

[
dXt − µx(at, bt, Xt)dt

]
If g or Ξ is bounded, then (Wt)t≥0 is bounded; otherwise, there exists a K > 0 such

that |Wt| ≤ K(1 + |Xt|) for all t ≥ 0.

2. Strategies (at, b
i
t)t≥0 are sequentially rational: for all t, (at, b

i
t) satisfy:

at ∈ arg max g(a′, bt, Xt) + βytµy(a
′, bt, Xt) + βxtµx(a

′, bt, Xt)

bit ∈ B
(
at, bt, Xt

)
The continuation value of the long-run player is a stochastic process that is measurable

with respect to public information, {Ft}t≥0. Two components govern the motion of the

continuation value, a drift term that captures the difference between the current continuation

value and the current flow payoff. This is the expected change in the continuation value. The

volatility term βyt determines the sensitivity of the continuation value to the public signal;

future payoffs are more sensitive to good or bad signal realizations when this volatility is

larger. The second volatility term βxt captures the sensitivity of the continuation value to

the state variable.

The condition for sequential rationality depends on the process (βt)t≥0, which specifies

how the continuation value changes with respect to public information. Today’s action

impacts future payoffs through the drift of the public signal and state variable, µy and µx,

weighted by the sensitivity of the continuation value, βx and βy, while it impacts current

payoffs through the flow payoff, g(a, b,X). A strategy for the long-run player is sequentially

rational if it maximizes the sum of the flow payoff today and the expected impact of today’s

action on future payoffs. This condition is analogous to the one-shot deviation principle in

discrete time.
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Use the condition for sequential rationality, I specify an auxiliary static game parame-

terized by the state variable and the volatility of the continuation value.

Definition 3. Let S∗ : Ξ×Rd ⇒ A×∆B denote the correspondence of static Nash equilib-

rium action profiles in the auxiliary game parameterized by (X, zy, zx):

S∗(X, zy, zx) :=

{
(a, b) :

a ∈ arg maxa′ g(a′, b,X) + zy · µy(a′, b,X) + zxµx(a
′, b,X)

b ∈ B(a,X)

}
.

In any PPE strategy profile (at, bt)t≥0 of the stochastic game, given some processes (Xt)t>0

and (βt)t>0, the action profile at time t must be a static Nash equilibrium of the auxiliary

game, (at, bt) ∈ S∗(Xt, βyt, βxt). I assume that this auxiliary game has a unique static Nash

equilibrium with an atomic distribution over small players’ actions.

Assumption 4. Assume S∗(X, zy, zx) is non-empty and single-valued for all (X, zy, zx) ∈
Ξ×Rd, Lipschitz continuous on any subset of Ξ×Rd, and the small players choose identical

actions, bi = b ∀i.

While this assumption is somewhat restrictive, it still allows for a broad class of games,

including those discussed in the previous examples. It does not rule out games in which

non-trivial equilibria of the repeated game are possible.

1.1.1 Discussion

A key feature of the equilibrium structure is the linearity of the continuation value and in-

centive constraint with respect to the Brownian information. Brownian information can only

be used linearly to provide effective incentives in continuous time (Sannikov and Skrzypacz

2010). Therefore, the long-run player’s incentive constraint takes a very tractable form, in

which the process (βt)t≥0 captures all potential channels through which the long-run player’s

current action may impact future payoffs, including the coordination of equilibrium play, the

set of feasible payoffs and the information structure of public signals.

The key aspect of this model that allows for this tractable characterization of the long-

run player’s incentive constraint is the assumption that the volatility of the state variable is

almost always positive, which ensures that deviations do not alter the set of feasible paths

for the state variable. Consider a deviation from at to ãt at time t. The continuation

value under both strategies is a non-degenerate expectation with respect to the future path

of the state variable. Given that the same set of paths are possible under at and ãt, the

change in the continuation value when the long-run player deviates depends on the different

probability measure that the deviation induces over the the state variable. This change
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is linear with respect to the difference in the drift of the public signal and state variable,

µY
(
ãt, bt, Xt

)
−µY

(
at, bt, Xt

)
and µX

(
ãt, bt, Xt

)
−µX

(
at, bt, Xt

)
, due to the linear structure

of Brownian information.

It is of interest to note that it is precisely this linear structure with respect to the Brownian

information, coupled with the inability to transfer continuation payoffs between players, that

precludes the effective provision of intertemporal incentives in a standard repeated game

with a long-run and short-run player (Faingold and Sannikov 2011; Fudenberg and Levine

2007; Sannikov and Skrzypacz 2010). Short-run players preclude incentive structures with

transfers that are tangential to the boundary of the payoff set. Using Brownian information

to structure incentives with non-tangential linear transfers results in the continuation value

escaping the boundary of the payoff set with positive probability, a contradiction. And non-

linear incentive structures, such as value-burning, are ineffective, because the expected losses

from false punishment exceed the expected gains from cooperating.

This paper will illustrate that effective intertemporal incentives are provided in a stochas-

tic game by linearly (and non-tangentially) using Brownian information for some values of

the state variable. In particular, incentives are structured so that the volatility of the con-

tinuation value depends on the state variable. When the state variable is at the value(s)

that yields the maximum equilibrium payoff across all states, the continuation value is inde-

pendent of the Brownian information to prevent it from escaping the boundary of the payoff

set. In these periods, the long-run player acts myopically, as is the case in a repeated game.

However, at other values of the state variable, the continuation value linearly depends on

Brownian information, which creates effective intertemporal incentives.8

2 Examples

This interlude presents several brief examples to illustrate the model. The first example uses

a variation of the canonical product choice setting to demonstrate the model in a familiar

framework. The remaining examples illustrate the breadth of the model by applying it to

diverse settings. At the end of Section 3, I will return to these examples to characterize

payoffs and actions in the unique Markov equilibrium.

2.1 Persistent Effort as a Source of Reputation

A single long-run firm seeks to provide a sequence of short-run consumers with a product.

At each instant t, the firm chooses an unobservable effort level at ∈ [0, a] and consumers

8See Section 3.4.1 for a more detailed discussion.
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simultaneously choose a purchase level bt ∈ [0, 20]. Effort is costly for the firm, but increases

the likelihood of producing a high quality product both today and in the future.

The firm’s quality depends on current and past effort. The persistent component of

quality, Xt, captures the impact of past effort. This stock evolves according to a mean-

reverting stochastic process,

dXt = θ (at −Xt) dt+ σdZt

with drift µx = θ (a−X) proportional to the difference between current effort and stock

quality, constant volatility σ, Brownian noise dZ and persistence θ < r.9 Stock quality is

increasing in expectation when effort exceeds the stock, and decreasing when effort is below

the stock. Parameter θ embodies the rate at which past effort decays; as θ increases, the

impact of recent effort increases relative to effort further in the past. The closed form of dXt

lends insight into the structure of persistence. Given a history of effort levels (as)s≤t and

initial quality stock X0, the current value of the stock is

Xt = X0e
−θt + θ

∫ t

0

e−θ(t−s)asds+ σ

∫ t

0

e−θ(t−s)dZs

As shown in this expression, the impact of past effort decays at a rate proportional to θ and

the time that has elapsed since the effort was made. Consumers observe the stock quality,

which also provides a noisy public signal of the firm’s effort each instant.

Overall quality is a weighted average of the stock component and current effort,

q(a,X) = (1− λ)a+ λX

with λ to capture the relative importance of current and past effort in determining current

quality. Consumers enjoy high quality products, exhibit diminishing returns in the purchase

level, and the price is fixed at unity: h(a, bi, b,X) =
√
biq(a,X)− bi.10 The firm’s instanta-

neous profit is the difference between revenue and investment expenses, g(a, b,X) = b− ca2

for c < 1. Note that this example satisfies the necessary continuity, positive volatility and

imperfect monitoring assumptions from Section 1.

Applying Lemma 2 and Definition 3, the best response correspondence, given incentive

9This is an Ornstein-Uhlenbeck process.
10An alternative version of this example could allow the firm to set a quality-dependent price.
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weight zx = z, is:11

a(X, z) =

0 if z ≤ 0

min{ zθ
2c
, a} if z > 0

b(X, z) =

0 if q(a(X, z), X) ≤ 0

min {1
4
q(a(X, z), X)2, 20} if q(a(X, z), X) > 0

The firm faces a trade-off when choosing its investment level: the cost of investment is borne

in the current period, but yields a benefit in future periods through higher purchase levels

by consumers. In equilibrium, investment is chosen to equate the marginal cost of effort

with its expected marginal benefit. Effort increases with the incentive weight, persistence

and patience. It is interesting to note the trade-off between persistence and the discount

rate: only the ratio of these two parameters is relevant for determining investment; therefore,

doubling θ has the same impact as halving r. As θ approaches 0, stock quality is almost

entirely determined by its initial level and the intertemporal link between effort and quality

is very small. Consumers myopically optimize flow payoffs by choosing a purchase level such

that the marginal value of an additional unit of product is equal to the price. They are

willing to purchase more when they expect higher quality. As Assumption 4 requires, this

correspondence is single-valued for all (X, z) and Lipschitz continuous.

The firm is subject to binding moral hazard in that it would like to commit to a higher

level of effort in order to increase demand, but in the absence of such a commitment, will

deviate to low effort. In the static game, the firm always chooses the lowest possible effort

level, a(X, 0) = 0, regardless of the stock quality X, and this is also the unique equilibrium

strategy of the repeated game with no persistence (θ = 0). This example seeks to characterize

when quality persistence can provide the firm with intertemporal incentives to choose a

positive level of effort.

2.1.1 Unbounded Demand

In the preceding example, although quality is unbounded, consumer’s have a saturation

purchase level of b = 20. The model can also accommodate unbounded demand. Suppose

that the persistent component of quality and the firm’s flow payoff are the same as Section

11Note zy is irrelevant, since there is no public signal.
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2.1, but now consumers have a different value for quality,

h(a, bi, b,X) =

−bi if q(a,X) < 0

q(a,X) ln bi − bi if q(a,X) ≥ 0

and can purchase as much as they like, bi ∈ [0,∞]. The best response correspondence is the

same as before for the firm, and is now

b(X, z) = max {q(a(X, z), X), 0}

for the consumer.

Another interpretation of this model is that the consumer demands one unit of the good,

has a linear value for quality and bi represents price, h(a, bi, b,X) = max {q(a(X, z), X), 0}−
bi. The firm has monopoly power and sets a price equal to expected quality, capturing all of

the surplus.

2.1.2 Building a Specialization with Oscillating Demand

Consider another variation of the quality example where a firm faces a revenue curve that

oscillates with quality. For example, there is a large market for cheap, low quality or expen-

sive, high quality goods, but the market for intermediate levels of quality is thin. Consumers

choose an amount to spend b ∈ [0, 8] to maximize:

h(a, bi, b,X) =
√
bi (sin 2q(a,X) + q(a,X)/2)− 1

2
bi.

The oscillating value for quality introduces a non-monotonicity into the firm’s instantaneous

return on quality through consumer spending:

b(X, z) =

{
0 if q(a(X), X) ≤ 0

min (sin 2q(a(X, z), X) + q(a(X, z), X)/2) , 8) if q(a(X), X) > 0

}

It is possible for a firm to build a quality that is too high for the bargain market, but not

high enough for the upscale market. This variation seeks to characterize whether this non-

monotonicity is also present in the long-run value of quality (the PPE payoff), and how this

influences a firm’s incentives to invest in quality.
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2.2 Policy Targeting

Elected officials and governing bodies often play a role in formulating and implementing

policy targets. For example, the Federal Reserve targets interest rates, a board of directors

sets growth and return targets for its company, and the housing authority targets home

ownership rates. Achieving such targets requires costly effort on behalf of officials; often, the

policy level will depend on both current and past policy efforts. Moral hazard issues arise

when the preferences of the officials are not aligned with the population they serve.

Consider a setting where constituents elect a board to implement a policy target. The

policy Xt takes on values between [0, 2]. Constituents want to target Xt = 1, but in the

absence of intervention, the policy drifts towards its natural level d. The board can undertake

costly action at ∈ [−1, 1] to alter the level of the policy variable; a negative action decreases

Xt while a positive action increases Xt. The policy evolves according to

dXt = Xt(2−Xt) [at + θ(d−Xt)] dt+Xt(2−Xt)dZt

where θ captures the persistence of past effort. Effort has the largest impact on Xt for

intermediate values of the policy; the policy is also most volatile at intermediate levels. Note

that the process has two absorbing states, X̃ ∈ {0, 2}.
Constituents choose action each period, which represents their campaign contributions

or support for the board. I omit specifying an underlying utility function for constituents,

and represent the reduced form of the aggregate best response as

b (a,X) = 1 + λa2 − (1−X)2

They pledge higher support when the policy is closer to the target and when the board

exerts higher effort, where λ captures the marginal value of effort. The board has no direct

preference over the policy target; its flow payoff is increasing in the support it receives from

the constituents, and decreasing in effort: g(a, b,X) = b− ca2.

In the unique static Nash equilibrium, the board chooses not to intervene, aN = 0, and

constituents pledge support for the board proportional to the difference between the target

and current policy level, bN = 1−(1−X)2. This yields a static Nash payoff of 1−(1−Xt)
2 for

the board. Similar to the quality example, the board faces moral hazard when tasked with

achieving its’ constituents’ policy target. In the next section, I will see whether persistent

actions can allow the board to commit to a higher level of effort.
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3 Equilibrium Analysis

This section presents the main results of the paper. First, I construct the set of Markov

equilibria, which simultaneously establishes existence and characterizes equilibrium behavior

and payoffs in any Markov equilibria. Next, I show that the long run player’s payoff in any

PPE is bound above and below by the Markov equilibria payoff set; therefore, the PPE

payoff set is the convex hull of the correspondence of Markov equilibria payoffs. Third, I

establish conditions for a Markov equilibrium to be the unique equilibrium in the class of all

Perfect Public Equilibria. The section concludes with a discussion of incentives in stochastic

games.

3.1 Existence of Markov Perfect Equilibria

The first main result of the paper establishes the existence of a Markov equilibrium, in

which actions and payoffs are specified as a function of the state variable. The existence

proof is constructive, and characterizes the explicit form of equilibrium continuation values

and actions in Markov equilibria. This result applies to a general setting in which the state

space may be bounded or unbounded, and there may or may not be absorbing states within

the state space.

Given state X and incentive weights (zy, xx) = (0, z/r), define

g∗(X, z) : = g(S∗(X, 0, z/r), X)

µ∗(X, z) : = µx(S
∗(X, 0, z/r), X)

σ∗(X, z) : = σx(S
∗(X, 0, z/r), X)

as the equilibrium value of the flow payoff, drift and volatility, respectively, and let

ψ(X, z) := g∗(X, z) +
z

r
µ∗(X, z)

be the equilibrium value of the long-run player’s incentive constraint. Note that ψ(X, 0)

corresponds to the static Nash equilibrium payoff at state X.

In a Markov equilibrium, the continuation value and equilibrium actions are characterized

as a function of the state variable as Wt = U(Xt) and (a∗t , b
∗
t ) = (a(Xt), b(Xt)).

Theorem 1. Suppose Assumptions 1, 2, 3 and 4 hold. Given any initial state X0, iff

U : Ξ→ R is a solution to the optimality equation,

U(X) = ψ(X,U ′(X)) +
1

2r
U ′′(X) |σ∗ (X,U ′(X))|2
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on Ξ\ Ξ̃, U(X) = ψ(X, 0) on X ∈ Ξ̃, and U is bounded (has linear growth) given bounded

(unbounded) flow payoff g(a, b,X), then U characterizes a Markov equilibrium with:

1. Equilibrium payoffs U(X0)

2. Continuation values (Wt)t≥0 = (U(Xt))t≥0

3. Equilibrium actions (a∗t , b
∗
t )t≥0 uniquely specified by S∗(Xt, 0, U

′(Xt)/r) for Xt ∈ Ξ\ Ξ̃

and S∗(Xt, 0, 0) for Xt ∈ Ξ̃.

The optimality equation has at least one continuous bounded (linear growth) solution that

lies in the range of feasible payoffs for the long-run player. Thus, there exists at least one

Markov equilibrium.

Theorem 1 shows that the stochastic game has at least one Markov equilibrium. Contin-

uation values in this equilibrium are characterized by the solution to the Bellman equation.

The continuation value is equal to the sum of the equilibrium flow payoff today, g∗(X,U ′),

and the expected change in the continuation value,

1

r
U ′µ∗(X,U ′) +

1

2r
U ′′ |σ∗(X,U ′)|2

weighted by the discount rate. The term U ′µ∗ captures how the continuation value changes

with respect to the equilibrium drift of the state variable. For example, if the state variable

has positive drift (µ∗ > 0), and the continuation value is increasing in the state variable

(U ′ > 0), then this increases the expected change in the continuation value. The term U ′′ |σ∗|2

captures how the continuation value changes with respect to the equilibrium volatility of the

state variable. If U is concave (U ′′ < 0), it is more sensitive to negative shocks than positive

shocks. Positive and negative shocks are equally likely, and therefore, the continuation

value is decreasing in the volatility of the state variable. If U is linear (U ′′ = 0), then the

continuation value is equally sensitive to positive and negative shocks, and the volatility of

the state variable does not impact the continuation value. Now consider a value of the state

variable X∗ that yields a local maximum U(X∗) (note this implies U ′(X∗) = 0). Since the

continuation value is at a local maximum, it must be decreasing as X moves away from X∗

in either direction. The fact that U ′′(X) < 0 ensures that the continuation value is less than

the current flow payoff. Greater volatility of X or a more concave function U lead to a larger

expected decrease in the continuation value.

The condition for sequential rationality takes an intuitive form. Theorem 1 characterizes

βt as:

(βyt, βxt) = (0, U ′(Xt)/r)
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The current action affects future payoffs through its impact on the state variable, µ∗, scaled

by the slope of the continuation value with respect to the state variable, U ′(X) and the

discount rate. The continuation value and equilibrium actions are independent of the public

signal, as should be the case in a Markov equilibrium; this is born out mathematically by

the condition βy = 0 for all t.

3.1.1 Outline of Proof

This section presents intuition for the proof of Theorem 1. The first step in proving exis-

tence is to show that if a Markov equilibrium (a∗t , b
∗
t ) exists, then continuation values must

be characterized by the solution to the optimality equation. In a Markov equilibrium, con-

tinuation values take the form of Wt = U(Xt), for some function U . Using Ito’s formula

to differentiate U(Xt) with respect to Xt yields an expression for the law of motion of the

continuation value in any Markov equilibrium dWt = dU(Xt), as a function of the law of

motion for the state variable:

dU(Xt) = U ′(Xt)µx(a
∗
t , b
∗
t , Xt)dt+

1

2
U ′′(Xt)

∣∣∣σx (b∗t , Xt

)∣∣∣2 dt+ U ′(Xt)σx

(
b
∗
t , Xt

)
dZt

In order for this to be an equilibrium, continuation values must also follow the law of motion

specified in Lemma 2, with drift:

r
(
U(Xt)− g(a∗t , b

∗
t , Xt)

)
and volatility:

βyt [σy · dZt] + βxt [σx · dZt]

Matching the drifts of these two laws of motion yields the optimality equation, while match-

ing the volatilities yields rβyt = 0 and rβxt = U ′(Xt). This establishes the condition for

sequential rationality, as a function of the state variable.

The next step is to show that this ODE has at least one solution that lies in the range of

feasible payoffs for the long-run player and meets the requisite growth conditions (bounded or

linear). Establishing existence for a bounded state space is similar in technique to Faingold

and Sannikov (2011). The innovative part of the proof lies in establishing existence for an

unbounded state space, particularly in the case that the flow payoff of the long-run player is

also unbounded. First I find lower and upper solutions, α(X) and β(X), to the optimality

equation. In the case of a bounded flow payoff, the lower and upper solutions must be

bounded to establish existence of a bounded solution. For an unbounded flow payoff, lower

and upper solutions must have linear growth to establish existence of a solution with linear
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growth; this is only possible when the growth rate of the drift is less than the discount rate.

The proof derives explicit expressions for these lower and upper solutions, as a function of the

growth rate of the flow payoff and drift with respect to X, and the discount rate. In turn,

these expressions characterize a lower and upper bound to the solution to the optimality

equation, α(X) ≤ U(X) ≤ β(X). Next I show that the Nagumo condition is satisfied on any

compact subset of the state space; this holds because the bound of the optimality equation

grows linearly with respect to U ′. Finally, Lipschitz continuity of the equilibrium drift µ∗

and flow payoff g∗ and Assumption 1 ensure that the optimality equation is continuous.

These three conditions establish existence of a twice continuously differentiable solution to

the optimality equation.

The final step is to show that the continuation value and actions characterized above do

in fact constitute a Markov equilibrium. Given an action profile (a∗, b
∗
) = S∗(X, 0, U ′(X)/r)

and solution U , the state variable evolves uniquely, the continuation value dU(Xt) satisfies

the condition for a PPE established in Lemma 2 and equilibrium actions satisfy sequential

rationality.

Theorem 1 also establishes that each solution U to the optimality equation characterizes

a single Markov equilibrium. This is a direct consequence of Assumption 4, which guarantees

that equilibrium actions are a unique function of U . If there are multiple solutions to the

optimality equation, then each solution characterizes a single Markov equilibrium. The

formal proof of Theorem 1 is presented in the Appendix.

3.2 Perfect Public Equilibria Payoff Set

This section characterizes the PPE payoff set. Define Υ : Ξ ⇒ R as the set of Markov

equilibria payoffs, which depend on the initial state and are derived from each bounded

solution to the optimality equation. Then the PPE payoff set is the convex hull of the

correspondence of Markov equilibria payoffs. It is not possible for the long-run player to

achieve a payoff above the highest Markov equilibrium payoff or below the lowest Markov

equilibrium payoff in any PPE.

Theorem 2. Suppose Assumptions 1, 2, 3 and 4 hold and let Υ be the correspondence

of Markov equilibria payoffs. Then the correspondence of perfect public equilibrium payoffs

ξ : Ξ⇒ R is characterized by the convex hull of the Markov equilibrium payoff set, co (Υ).

The proof of Theorem 2 shows that if a PPE {Wt}t≥0 yields a payoff higher than the

maximum Markov equilibrium payoff {U(Xt)}t≥0 at state X0, then the difference Dt =

Wt − U(Xt) between these two payoffs will grow arbitrarily large with positive probability,

irrespective of the state. Faingold and Sannikov (2011) establish a similar property on a
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bounded state space; their proof relies on the compactness of the state space to show that

the volatility of Dt achieves a minimum that is bounded away from 0. An innovative part

of this proof establishes that the volatility of Dt is bounded away from 0 on an unbounded

state space.

The possibility that Dt grows arbitrarily large is obviously a contradiction in the case

of a bounded state space or flow payoff, as the continuation value in any PPE must be

bounded. The second innovative contribution of this proof is to establish that this is also

a contradiction when the flow payoff, and therefore continuation value, is unbounded. By

Lemma 1, there exists a K > 0 such that |Wt(S)| ≤ K(1 + |Xt|) for all t ≥ 0. Thus, Dt can

only grow arbitrarily large when Xt grows arbitrarily large. But I showed above that Dt will

grow arbitrarily large independent of Xt. Therefore, as long as the model has a restriction on

the rate at which the continuation value can grow with respect to the state, this reasoning

will preclude the existence of PPE with payoffs outside the convex hull of the Markov payoff

set.

The impossibility of achieving PPE payoffs above the highest Markov payoff yields insight

into the role that the persistent effect of actions play in generating intertemporal incentives.

In a stochastic game with imperfect monitoring, intertemporal incentives can be generated

through two potential channels: (1) conditioning future equilibrium play on the public signal

and (2) how the current action impacts future feasible payoffs through the state variable.

Equilibrium play in a Markov equilibrium is completely specified by the state variable –

the public signal is ignored. As such, intertemporal incentives are generated solely from the

second channel. When this Markov equilibrium yields the highest payoff, it precludes the

existence of any equilibria that use the public signal to build stronger incentives. As such,

the ability to generate effective intertemporal incentives in a stochastic game with imperfect

monitoring stems entirely from the effect of the current action on the set of future feasible

payoffs through the state variable.

This insight relates to equilibrium degeneracy results from the continuous time repeated

games literature (Faingold and Sannikov 2011; Fudenberg and Levine 2007; Sannikov and

Skrzypacz 2010). As in stochastic games with persistent actions, (1) is an ineffective chan-

nel for intertemporal incentives in standard repeated games. However, in the latter class

of games, (1) is the only possible channel for intertemporal incentives. Stochastic games

without persistent actions exhibit this same degeneracy result. The state variable evolves

independently of the long-run player’s action and the incentive constraint is independent of

the continuation value, precluding channel (2). The unique PPE is one in which the long-run

player acts myopically.12

12Note that repeated play of the static Nash action profile is not necessarily an equilibrium strategy profile
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Corollary 1. Suppose that the drift of the state variable is independent of the long-run

player’s action for all X, and suppose Assumptions 1, 2, 3 and 4 hold. Then, given an

initial state X0, there is a unique perfect public equilibrium in which both players play the

static Nash action profile S∗(X, 0, 0) for all X.

Proof. When µx is independent of a for allX, the incentive constraint collapses to maximizing

the static flow payoff, and the long-run player plays the unique static Nash equilibrium action

profile (S∗(Xt, 0, 0))t≥0 in each state. Existence and uniqueness of a Markov equilibrium

stems directly from Theorem 1.13 The incentive constraint is independent of the solution to

the optimality equation, which means all solutions to the optimality equation yield the same

equilibrium action profile. The continuation value evolves according to the expected payoff

from playing the static Nash profile,

U(Xt) = Et

[
r

∫ ∞
t

e−rsg∗(Xs, 0)dt

]
.

Therefore, this solution must be unique. The solution to the optimality equation character-

izes this expected payoff, as a function of Xt. �

3.3 Uniqueness of Markov Equilibrium

The final main result establishes conditions under which there is a unique Markov equilib-

rium, which is also the unique equilibrium in the class of all Perfect Public Equilibria. The

main step of this result is to establish when the optimality equation has a unique feasible

solution.14 Any Markov equilibrium must have continuation values and equilibrium actions

specified by a solution to the optimality equation. Thus, when the optimality equation has

a unique feasible solution, there is a unique Markov equilibrium.

The limiting behavior of the flow payoffs and state variable, or the boundary conditions,

play a key role in determining uniqueness. Assumption 5 outlines a set of sufficient conditions

to guarantee that all solutions satisfy the same boundary conditions.

Assumption 5. .

1. If the state space is bounded from below (above), then X (X) is an absorbing state.

of the stochastic game, as is the case in repeated games.
13As will be shown in Theorem 3, uniqueness of a Markov equilibrium in a game with persistent actions

will require Assumption 5.
14If the flow payoff of the long-run player is bounded, then any bounded solution that lies in the range of

feasible payoffs is a feasible solution, while if the flow payoff of the long-run player is unbounded, then any
solution with linear growth is a feasible solution.
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2. If the state space is unbounded from below (above) and g is bounded, then there exists

a δ such that for |X| > δ, g∗(X, 0) is monotonic in X.

3. If g is unbounded, then |σ∗(X, z)|2 is Lipschitz continuous, g∗(X, z) and µ∗(X, z) are

separable in (X, z), and for all z ∈ R, there exists a δz such that for |X| > δz, ψ
′(X, z)

is monotonic in X.

Theorem 3. Suppose Assumptions 1, 2, 3, 4 and 5 hold. Then, for each initial value of the

state variable X0 ∈ Ξ, there exists a unique perfect public equilibrium, which is Markov.

1. If g is bounded, the unique bounded solution U of the optimality equation satisfies the

following boundary conditions:

lim
X→p

U(X)− g∗(X, 0) = 0

lim
X→p

U ′(X) = 0

for p ∈ {X,X}.

2. If g is unbounded, the unique solution U of the optimality equation with linear growth

satisfies the following boundary conditions:

lim
X→p

U(X)− yL(X) = 0

lim
X→p

U ′(X) = kp

for p ∈ {X,X}, where, given there exist g1, g2, µ1, µ2 such that g∗(X, k) = g1(X)+g2(k)

and µ∗(X, k) = µ1(X) + µ2(k),

yL(x) = − exp

(∫
r

µ1(x)
dx

)∫
exp

(
−
∫

r

µ1(x)
dx

)
rg1(x)

µ1(x)
dx+ g2(kp) +

kp
r
µ2(kp)

and

kp = lim
X→p

rg1(X)

rX − µ1(X)
.

The boundary conditions characterized in Theorem 3 have implications for equilibrium

play and payoffs as X approaches {X,X}. Recall the incentive constraint for the long-run

player. The link between the long-run player’s action and future payoffs is proportional to

the slope of the continuation value and the drift of the state variable, µ∗(X,U ′)U ′(X). In

the case of a bounded flow payoff, Assumption 5 guarantees that µ∗(X,U ′)U ′(X) converges

to 0. This reduces the long-run player’s incentive constraint to maximizing its instantaneous
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flow payoff and the continuation value converges to the static Nash payoff. If the flow payoff

is unbounded, Assumption 5 guarantees that U ′(X) converges to a unique limit slope kp,

which is proportional to the ratio of the flow payoff and drift. Unlike in the bounded case,

it is possible to sustain non-trivial incentives at the boundary, and the continuation value

may remain strictly above (or below) the static Nash payoff as X becomes large.

3.3.1 Outline of Proof

The proof establishing that the optimality equation has a unique feasible solution has two

main parts: (i) show that any feasible solution to the optimality equation must satisfy

the same boundary conditions, and (ii) show that it is not possible for two different feasible

solutions to the optimality equation to satisfy the same boundary conditions. The innovative

part of this proof is to establish the boundary conditions for an unbounded state space,

particularly when the flow payoff is also unbounded. I briefly describe this part of the proof.

In the case of an unbounded state space, the boundary conditions describe the limiting

behavior of the optimality equation as it approaches ∞. Consider the incentive constraint

ψ(X, k). Given the monotonicity assumption and the Lipschitz continuity of µ∗ and g∗, there

exists a function ψ∞(k) such that

lim
X→∞

ψ(X, k)/X = lim
X→∞

ψ′(X, k) := ψ∞(k).

exist and are equal, where ψ′ = dψ/dX. Let U be a solution to the optimality equation with

linear growth. For any k such that U ′(X) = k infinitely often as X → ∞, the shape of the

optimality equation will alternate between convex and concave at slope k. By the optimality

equation, ψ(X, k) will lie above U(X) when it is concave at slope k, and below U(X) when

it is convex at slope k. This property guarantees that

lim
X→∞

U/X = lim
X→∞

U ′ := Up

exist and are equal. The linear growth of U and the Lipschitz continuity of |σ∗|2 guarantee

that limX→∞ |σ∗(X,U ′)|2U ′′(X) = 0. Therefore, dividing the optimality equation by X and

taking limits, limX→∞ U/X−ψ(X,U ′)/X = 0. Combining these results yields Up = ψ∞(Up).

Any limit slope of a solution to the optimality equation with linear growth must be a fixed

point of ψ∞. Assumption 5 requires that g∗ and µ∗ are separable in (X,U ′), which is sufficient

to ensure that ψ∞ has a unique fixed point.

From the optimality equation and the uniqueness of the limit slope, there exists a φ

such that any solution to the optimality equation with linear growth satisfies limX→∞ U −
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U ′µ1(X)/r− g1(X) = φ. Consider the linear first order differential equation y−µ1(X)y′/r−
g1(X) = φ. When the growth rate of µ1 is in [0, r), then there is a unique solution yL that

has linear growth, and when the growth rate of µ1 is less than zero, then any two solutions

yL1 and yL2 with linear growth have the same boundary condition, limX→∞ y
L
1 −yL2 = 0. Given

the growth rate of µ is less than r by Assumption 3, we can show that any solution to the

optimality equation with linear growth satisfies the same boundary condition,

lim
X→∞

U − yL = 0

for all solutions yL with linear growth. Thus, we have established that any solutions to the

optimality equation, U and V , satisfy limX→∞ U(X) − V (X) = 0 and limX→∞ U
′(X) =

limX→∞ V
′(X) = k where k is the unique fixed point of ψ∞.15

Establishing the boundary conditions for a bounded state space and an unbounded state

space with a bounded flow payoff follow a similar pattern. Lastly, similar to Faingold and

Sannikov (2011), given two feasible solutions U and V , if there exists an X such that U(X)−
V (X) > 0, the structure of the optimality equation prevents these solutions from satisfying

the same boundary conditions on at least one side of the state space.

3.4 Discussion of Results

3.4.1 Effective Intertemporal Incentives

Theorems 1-3 illustrate that it is possible to structure effective intertemporal incentives in

stochastic games; this contrasts with the equilibrium degeneracy in continuous-time repeated

games with a long-run and short-run player (Faingold and Sannikov 2011; Fudenberg and

Levine 2007; Sannikov and Skrzypacz 2010). As discussed following Lemma 2, games with

Brownian information must have a linear and non-tangential incentive structure.16 In a

repeated game, any non-trivial (i.e. non-zero) non-tangential linear incentive structure will

escape the boundary of the payoff set with positive probability, a contradiction. However,

in a stochastic game, this linear relationship between the Brownian information and the

volatility of the continuation value can depend on the state variable. This important feature

introduces the possibility of a non-trivial linear incentive structure.

Theorem 1 characterizes the volatility of the continuation value, which depends on the

state variable and is proportional to β = (0, U ′(X)/r). When the state variable is at the

value(s) that yields the maximum continuation value across all states, the continuation value

15Section 4 illustrates that ψ∞ is straightforward to calculate, given functional forms for g and µx.
16There is a linear relationship between the volatility of the continuation value and the Brownian infor-

mation.
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must be independent of the Brownian information to prevent it from escaping the boundary

of the payoff set (as is the case in repeated games). In these periods, β = 0 and the long-run

player acts myopically. However, at other values of the state variable, the continuation value

depends on Brownian information (β 6= 0) and the long-run player does not play a myopic

best response. This is not possible in a repeated game – trivially, a repeated game is a

stochastic game with a single state, and so β must always be zero.

With an unbounded flow payoff, it is possible to provide effective incentives as the state

variable becomes large; the same holds true for a bounded flow payoff if the static Nash

payoff perpetually oscillates. In both cases, U ′(X) doesn’t converge to zero and non-trivial

incentives can be sustained for large |X|. On the other hand, when the flow payoff is bounded

and the static Nash payoff is monotonic, U ′(X) converges to zero and incentives dissipate as

|X| grows large.

Similarly, when the state space is bounded, it is possible to sustain non-trivial incentives

as the state variable approaches its endpoints if these endpoints are not absorbing states. On

the other hand, if the endpoints points are absorbing states, the stochastic game is eventually

reduced to a standard repeated game and incentives dissipate near the boundary. The ability

to sustain non-trivial intertemporal incentives across the entire state space is an important

and novel insight of this paper.

3.4.2 Temporary or Permanent Incentives

Intertemporal incentives are temporary if the long-run player’s continuation value converges

to the static Nash payoff; otherwise, incentives are permanent. Whether incentives are

temporary or permanent depends on the structure of the state variable and the equilibrium

drift and volatility of the state variable near its absorbing states. If the state variable

converges to an absorbing point with probability one, then the intertemporal incentives

created by the stochastic game will be temporary. Once this absorbing state is reached, the

stochastic game is reduced to a standard repeated game. On the other hand, if there are no

absorbing states, or if the state variable doesn’t converge to its absorbing states with positive

probability, then the intertemporal incentives created by the stochastic game are permanent.

Similarly, when the state space is unbounded, whether the state variable diverges will depend

on the behavior of the state variable as it approaches infinity.

The permanence of incentives has an intuitive relationship to reputation models of in-

complete information. Intertemporal incentives generated by incomplete information are

temporary. In these models, the state variable is the belief about the long-run player’s type

and X̃ ∈ {0, 1} are absorbing states. When the long-run player is a normal type, the transi-
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tion function governing beliefs has negative drift, and beliefs converge to X̃ = 0.17 At X = 0,

short-run players believe the long-run player is a normal type with probability one, and it

is not possible for the long-run player to earn payoffs above the static Nash payoff of the

complete information game, g∗(0, 0). This captures the temporary reputation phenomenon

associated with incomplete information models (Cripps et al. 2004; Faingold and Sannikov

2011). Once short-run players learn the long-run player’s type, it is not possible to return to

a state X > 0. Although X = 1 is also an absorbing state, the state variable almost surely

doesn’t converge to X = 1 when the long-run player is a normal type.

3.4.3 Empirical Content

Markov equilibria have an intuitive appeal in stochastic games. Advantages of Markov equi-

libria include their simplicity and their dependence on payoff relevant variables to specify

incentives. Theorem 1 yields a tractable expression that can be used to construct equilib-

rium behavior and payoffs in a Markov equilibrium. As such, this result provides a tool to

analyze equilibrium behavior in a broad range of applied settings. Once functional forms are

specified for the long-run player’s payoffs and the transition function of the state variable,

it is straightforward to use Theorem 1 to characterize the optimality equation and incentive

constraint for the long-run player, as a function of the state variable. Numerical methods

for ordinary differential equations can then be used to estimate a solution to the optimality

equation and explicitly calculate equilibrium payoffs and acti2ons. These calculations yield

empirically testable predictions about equilibrium behavior. Note that numerical methods

are used for estimation in an equilibrium that has been characterized analytically, and not

to simulate an approximate equilibrium. This is an important distinction.

4 Return to Examples

I return to the examples introduced in Section 2 to apply the results of Theorems 1, 2 and

3.

4.1 Persistent Effort as a Source of Reputation

Recall that the first example is interested in determining whether persistent effort can pro-

vide a firm with endogenous incentives to build its quality. This game can be viewed as a

stochastic game with stock quality X as the state variable and the change in stock quality dX

as the transition function. Let U(X) represent the continuation value of the firm in a Markov

17Provided it is not incentive compatible for the strategic player to perfectly mimic a behavioral type.
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Figure 1. Equilibrium Payoffs

perfect equilibrium when Xt = X. Then, given equilibrium action profile
(
a(X), b(X)

)
, the

continuation value can be expressed as an ordinary differential equation,

rU(X) = r
(
b(X)− ca(X)2

)
+ θ (a(X)−X)U ′(X) +

1

2
σ2U ′′(X)

where the first term, b − ca2, is the payoff that the firm earns today, and the second term,

θ (a−X)U ′(X) + 1
2
σ2U ′′(X), is the expected change in the continuation value. The firm’s

payoff is increasing in stock quality (U ′ > 0). Therefore, the expected change in the contin-

uation value is increasing with the drift of the stock, θ (a−X).

The volatility of the stock determines how the shape of the continuation value relates to

its expected change. If the value of quality is concave (U ′′ < 0), the firm is “risk averse”

in quality. It is is more sensitive to negative quality shocks than positive shocks. With

Brownian noise, positive and negative shocks are equally likely, so volatility hurts the firm.

On the other hand, if the value of quality is convex, then the firm benefits more from positive

shocks than it is hurt by negative shocks and volatility is beneficial. For example, if quality

is research and there is a big payoff once a certain threshold is crossed, then volatility is

good for the firm.

Figure 1 illustrates U(X) for several discount rates. There is an interesting non-monotonicity

of the continuation payoff with respect to the discount rate, which is driven by two compet-

ing factors. A firm with a low discount rate places a greater weight on the future, which

gives it a stronger incentive to choose high effort today and build up its quality. On the

other hand, a low discount rate means that transitory positive shocks to quality have a lower

29



Figure 2. Firm Equilibrium Behavior

value relative to the long-run expected quality. When stock quality is low, the first effect

dominates and low discount rates yield higher payoffs; this relationship flips when the stock

quality becomes large.

The slope of the continuation value captures the impact of investment on future payoffs for

the firm. In a Markov equilibrium, this expected marginal benefit depends on the sensitivity

of the continuation value to changes in stock quality, U ′(X), and the marginal impact of

current effort on the stock quality, θ.

a(X) = min

{
θ

2cr
U ′(X), a

}
.

When the continuation value is more sensitive to changes in stock quality (captured by a

steeper slope), the firm chooses higher effort. Figure 2 graphs equilibrium actions for the

firm. The firm’s effort level peaks in a region of negative drift in the figure. When the firm

receives a positive quality shock, it exerts effort to maintain this high quality, but also enjoys

high payoffs today at the expense of allowing the quality to slowly drift down. The firm has

the strongest incentive to invest at intermediate quality levels - a “reputation building” phase

characterized by high effort and rising quality. The slope of the continuation value converges

to 0 as quality becomes very high or low; the firm’s continuation value is not very sensitive

to changes in quality and the firm has weak incentives to choose high effort. When quality is

very high, the firm in effect “rides” its good reputation by choosing low effort and allowing

quality to drift downward. Very negative shocks lead to periods where the firm chooses low

effort and allows quality to recover - “reputation recovery” - before beginning to rebuild.
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Figure 3. Equilibrium Drift of Stock Quality

These reputation effects are present in the long-run.18 Product quality is cyclical, and

periods of lower quality are followed by periods of higher quality.19 This contrasts with mod-

els in which reputation is derived from behavioral types: as Cripps et al. (2004) and Faingold

and Sannikov (2011) show, reputation effects are temporary insofar as consumers eventu-

ally learn the firm’s type, and so asymptotically, a firm’s incentives to build a reputation

disappear.

Figure 3 illustrates the equilibrium dynamics of the stock quality. When the equilibrium

drift is positive, stock quality increases in expectation, whereas the opposite holds when

the equilibrium drift is negative. Quality is stable when effort exactly offsets decay, or

mathematically, when the drift is zero. As the firm becomes more patient, a higher level of

quality is stable.

The Markov equilibrium described above is the unique Perfect Public Equilibrium, by

Theorem 3. When the state space is unbounded and the long run player’s flow payoff is

bounded, a sufficient condition for uniqueness is that the static Nash payoff is monotonic

in quality above a certain quality level. In this example, the static Nash payoff of the firm

18Mathematically, reputation effects are present in the long-run when there is positive probability that
the state variable doesn’t converge to an absorbing state. In this example, there are no absorbing states,
and the requirement is satisfied trivially.

19One could also model a situation in which the firm exits once quality hits a lower bound X by making
X an absorbing state and setting the state space equal to Ξ = [X,∞). This would not necessarily create
short-term reputation effects; whether quality converges to X depends on the equilibrium dynamics of Xt.
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depends on the consumers’ purchase levels, which is determined by the value of the stock:

g∗(X, 0) =

{
0 if X ≤ 0

min
{

1
4
(λX)2, 20

}
if X > 0

}

This payoff is monotonically increasing in X.

Next I compare the firm’s payoffs to a game in which actions do not have a persistent

effect on payoffs (this corresponds to θ = 0). When effort is transitory, the unique equilibrium

of the stochastic game is to choose zero effort each period. Persistence enhances the firm’s

payoffs through two complimentary channels. First, the firm chooses an effort level that

equates the marginal cost of investment today with the marginal future benefit. In order for

the firm to be willing to choose a positive level of effort, the future benefit of doing so must

be positive. Second, the link with future payoffs allows the firm to commit to a positive level

of effort in the current period, which increases the equilibrium purchase level of consumers in

the current period. Therefore, the persistent effect of actions create nontrivial intertemporal

incentives for the firm to exert effort.

4.1.1 Unbounded Demand

The expressions for equilibrium actions and continuation values in this variation mirrors those

characterized above, with the exception of the consumer’s action. However, the marginal

return to the quality stock does not dissipate as X becomes large. In the unique Markov

equilibrium, the slope of the continuation value converges to

lim
X→∞

U ′(X) = λr/(r + θ),

as does the average return on stock quality, U(X)/X. Therefore, positive investment is

sustained for any positive stock quality, and limit investment converges to:

lim
X→∞

a(X) =
θλ

2c(r + θ)
.

On the other hand, if stock quality becomes very negative, the slope of the continuation

value and equilibrium investment both converge to zero.

When the flow payoff is unbounded, a sufficient condition for uniqueness is that the

equilibrium flow payoff and drift are separable in (X,U ′), and that the slope of ψ(X,U ′) is
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Figure 4. Equilibrium Continuation Value

monotonic in X for large X. Both conditions are satisfied in this example:

g∗(X,U ′) =
(1− λ)θU ′

2cr
+ λX − (θU ′)2

4cr2

µ∗(X,U ′) =
θ2U ′

4cr2
− θX

ψ′(X,U ′) = λX − θU ′/r

for large X.

4.1.2 Building a Specialization with Oscillating Demand

The expressions for equilibrium actions and continuation values in this variation also mirror

those in the initial quality example, with the exception of the consumer’s action. However,

the equilibrium dynamics are quite different. Investment oscillates as a function of quality.

When the long-run player is in a region where spending is increasing with quality, it continues

to build its quality. Once it crosses over to a region of decreasing spending, it slacks off for

a while and lets its quality decay. Overall, the value of quality trends upward. However, at

low levels of quality, this value oscillates. A low quality firm may be better off remaining a

low quality firm, rather than trying and failing to move up market. Figures 4 and 5 illustrate

equilibrium behavior. As in the initial quality example, the firm’s payoff is bounded and

g∗(X, 0) is eventually monotonic, guaranteeing uniqueness.
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Figure 5. Equilibrium Actions

4.2 Policy Targeting

This example seeks to determine when persistent actions create incentives for a governing

board to implement its’ constituents policy target. From Section 3, the continuation value

can be represented as

U(X) = r
(
b− ca2

)
+X(2−X) [a+ θ(d−X)]U ′(X) +

1

2
X(2−X)U ′′(X)

which is plotted in Figure 6.

The continuation value is concave in the policy level, and skewed in the direction of the

natural drift. The natural drift d increases the board’s payoff when it pushes the policy

variable in the direction of the target; namely, when d − X and U ′ have the same sign. If

the natural drift lies far below the target, then at high levels, the policy will naturally move

toward the target, which benefits the board. This skewness is illustrated in Figure 6 for

several levels of d.

Volatility hurts the board, given that the continuation value is concave. The policy

variable is most volatile at intermediate values; this puts a damper on the continuation

value at the target. In fact, the highest Markov payoff, which occurs at the target, is strictly

less than the static Nash at X = 1, U(1) < v(1) = 1, which corresponds to the payoff that the

governing board would earn if it could somehow keep the policy at the target permanently.

The board’s incentives are driven by the slope of the continuation value and the impact
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Figure 6. Equilibrium Payoffs

of its efforts on the policy level,

at(X) =
Xt(2−Xt)

2rc
U ′(Xt)

When the current policy level is very far from its optimal target, the board’s effort has a

smaller impact on the policy level, and the board has a lower incentive to undertake costly

effort. When the policy level is close to its target, the continuation value approaches its

maximum, the slope of the continuation value approaches zero and the board also has a

lower incentive to exert effort. Therefore, the board has the strongest incentives to exert

effort when the policy variable is an intermediate distance from its target. Figure 7 plots

the equilibrium effort choice of the board.

5 Properties of Equilibrium Payoffs

The optimality equation provides a rich characterization of the relationship between equi-

librium payoffs and the structure of the game. Its form yields insights into the shape of

equilibrium payoffs, which states yield the highest or lowest equilibrium payoffs, and how

these properties are tied to the underlying stage game.

Recall that g∗(X, 0) represents the static Nash equilibrium payoff at state X. The shape

of the static Nash payoff with respect to the state is a key determinant of the shape of the

PPE payoff with respect to the state. I call a local maximum or minimum of the static Nash

or PPE payoff correspondence an extrema. The number of PPE payoff extrema is bounded
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Figure 7. Government Equilibrium Behavior

by the number of static Nash extrema. Whether an extrema of the PPE payoff can occur

on a given interval of the state space depends on the shape of the static Nash payoff on that

interval. On any interval of the state space where the static Nash payoff is monotonic, the

PPE payoff can have at most two extrema. Proposition 1 formally establishes these results.

Proposition 1. Assume 1, 2, 3, 4 and 5. Let kv and kU be the number of strict interior

extrema for g∗(X, 0) and U, with kIv and kIU representing the restriction to interval I ⊂ Ξ.

1. kU ≤ kv <∞.

2. If g∗(X, 0) is not constant on I, then U(X) is not constant on I.

3. Suppose g∗(X, 0) is constant on I. If X ∈ I or X ∈ I then kIU = 0; otherwise, kIU ≤ 1.

4. Suppose g∗(X, 0) is increasing (decreasing) on I.

(a) If the interval includes a boundary point, then kIU ≤ 1.

(b) If the interval does not include a boundary point, then kIU ≤ 2.

(c) If kIU = 1 and X ∈ I, then the strict interior extremum is a maximum (mini-

mum) and if kIU = 1 and X ∈ I then the strict interior extremum is a minimum

(maximum).

(d) When kIU = 2, then there is a minimum (maximum) followed by a maximum

(minimum).
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Proof. For notational simplicity, suppose the state space is bounded. At an interior ex-

tremum X, U ′(X) = 0. From the optimality equation, if X is a minimum, U(X) ≥ g∗(X, 0),

and if X is a maximum, U(X) ≤ g∗(X, 0). For the following proofs, let ξI represent the

set of states that correspond to strict interior extrema of U on interval I, ordered so that

X1 < X2 < ... < XkIU
.

Part 1 follows directly from Assumption 5, Lemma 10 and the Lipschitz continuity of

g∗. For part 2, I prove the contrapositive. Suppose U is constant on some interval I: there

exists a constant c such that U(X) = c for all X ∈ I. Then U ′(X) = 0 and U ′′(X) = 0

for all X ∈ I. From the optimality equation, U(X) = g∗(X, 0) for all X ∈ I. Therefore,

g∗(X, 0) = c for all X ∈ I and g∗(X, 0) is constant on I.

For part 3, suppose g∗(X, 0) is constant on an interval I and suppose kIU ≥ 2. If X1 is

a minimum and X2 is a maximum, then g∗(X1, 0) ≤ U(X1) < U(X2) ≤ g∗(X2, 0). This is a

contradiction, because g∗(X, 0) is constant. The same logic holds if X1 is a maximum and

X2 is a minimum. Therefore, kIU ≤ 1. If X ∈ I and X1 is a minimum, then g∗(X1, 0) ≤
U(X1) < g∗(X, 0) = U(X). This is a contradiction, because g∗(X, 0) is constant – it’s not

possible to have a minimum. Similarly, it’s not possible to have a maximum. Therefore, if I

contains a boundary point, kIU = 0.

For part 4, assume g∗(X, 0) is increasing on an interval I and kIU ≥ 2. If Xi is a strict

maximum and Xi+1 is a strict minimum, then g∗(Xi+1, 0) ≤ U(Xi+1) < U(Xi) ≤ g∗(Xi, 0).

This is a contradiction, because v is increasing on I – it’s not possible to have a maximum

followed by a minimum. Therefore, kIU = 1 if X1 is a maximum, and kIU ≤ 2 if X1 is a

minimum. Now suppose that X ∈ I. By the boundary conditions, g∗(X, 0) = U(X). If X1

is a strict minimum then g∗(X1, 0) ≤ U(X1) < g∗(X, 0) = U(X). This is a contradiction,

because g∗(X, 0) is increasing – it’s not possible to have a minimum. Therefore, kIU = 0 or

kIU = 1 and X1 is a maximum. Similarly, if X ∈ I, it’s not possible to have a maximum.

Either kIU = 0 or kIU = 1 and X1 is a minimum. The proof for when g∗(X, 0) is decreasing is

analogous.

To extend the proofs to an unbounded state space, replace g∗(X, 0) with limX→p g
∗(X, 0)

for p ∈ {X,X}. �

A direct application of Proposition 1 leads to Proposition 2. If the static Nash payoff

increases or decreases with respect to the state variable, then the PPE payoff also increases

or decreases, respectively, with respect to the state variable. Similarly, if the static Nash

payoff is single-peaked, and takes on the same value at the upper and lower bound of the

state space, then the PPE payoff is also single-peaked.

Proposition 2. Suppose Assumptions 1, 2, 3, 4 and 5 hold.
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1. If g∗(X, 0) (strictly) monotonically increases (decreases) in X, then U (strictly) mono-

tonically increases (decreases) in X.

2. If g∗(X, 0) is single-peaked with a maximum (minimum) and g∗(X, 0) = g∗
(
X, 0

)
, then

U is single-peaked with a maximum (minimum).

Proof. Let kv and kU be the number of strict interior extrema for g∗(X, 0) and U . Suppose

g∗(X, 0) is monotonically increasing on Ξ, with dg∗(X, 0)/dx > 0 for some X ∈ Ξ, but

U(X) is not monotonically increasing. Then U ′(X) < 0 for some X ∈ Ξ. By Proposition 1,

kU = 0. Therefore, it must be that U ′(X) ≤ 0 for all X ∈ Ξ. By the boundary conditions,

U(X) = g∗(X, 0) < U(X) = g∗(X, 0)

so there must be an X such that U ′(X) > 0, a contradiction. Therefore, U(X) is monotoni-

cally increasing in X. If g∗(X, 0) is strictly monotonically increasing, then U is also strictly

monotonically increasing, by part (2) of Proposition 1. The proof for g∗(X, 0) decreasing is

analogous.

Suppose kv = 1 and g∗(X, 0) has a unique interior maximum at X∗. Then dg∗(X, 0)/dx ≥
0 for X < X∗ and dg∗(X, 0)/dx ≤ 0 for X > X∗. By Proposition 1 part (1), kU ≤ kv = 1,

and by part (4), if U has a strict interior extrema on (X,X∗], then it has a maximum, and

if U has a strict interior extrema on [X∗, X), then it has a maximum. Therefore, if kU = 1,

the extremum is a maximum. Suppose kU = 0 and U has no interior extremum. Then U is

either increasing, decreasing, or constant on Ξ. Since g∗(X, 0) = g∗
(
X, 0

)
, by the boundary

conditions, U(X) = U
(
X
)
. Therefore, kU = 0 implies that U is constant on Ξ. This is a

contradiction: by Proposition 1 part (2), if g∗(X, 0) is not constant on Ξ, then U cannot be

constant on Ξ. Therefore, it must be the case that kU = 1 and U is single-peaked with a

maximum. �

This Section concludes with a weak bound on the PPE payoff set when the flow payoff

is bounded. If the flow payoff is bounded, then the PPE payoff set is bounded and W :=

supΞ U(X) and W := infΞ U(X) exist. When Wt = W , Wt must have zero volatility (βt = 0)

and a weakly negative drift, so as not to exceed this bound. From Lemma 2, if the drift is

weakly negative, then the current flow payoff is weakly greater than the continuation value.

But when βt = 0, the current flow payoff is the static Nash payoff at the current state.

Therefore, the PPE payoff set is bounded above by the highest static Nash payoff across all

states. Similarly, PPE payoff set is bounded below by the lowest static Nash payoff across

all states.20 Proposition 3 states this formally.

20Note that when the continuation value is not at its upper or lower bound, the PPE payoff may lie above
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Proposition 3. Suppose Assumptions 1, 2, 3 and 4 hold, and the PPE payoff set is bounded

from above (below) across all states. Then the highest (lowest) PPE payoff is bounded above

(below) by the static Nash payoff at the corresponding state:

1. If ∃X such that W = U(X), then W ≤ g∗(X, 0). If W = lim supX→p U(X), then

W ≤ lim supX→p g
∗(X, 0) for p ∈ {−∞,∞}.

2. If ∃X such that W = U(X), then W ≥ g∗(X, 0). If W = lim infX→p U(X), then

W ≥ lim infX→p g
∗(X, 0) for p ∈ {−∞,∞}.

Proof. Suppose U(X) is bounded from above. Then U(X) is continuous and bounded on Ξ,

a closed set. Therefore, U(X) either attains its maximum on Ξ, in which case W = U(X)

for some X, or W = lim supX→p U(X) for p ∈ {−∞,∞}. Suppose W = U(X) occurs at

an interior non-absorbing state X. Then U ′(X) = 0 and U ′′(X) ≤ 0. From the optimality

equation,

U ′′(X) =
2r
(
W − g∗(X, 0)

)
|σ∗ (X, 0)|2

≤ 0.

and therefore W ≤ g∗(X, 0). If W = U(X) occurs at an absorbing state X̃, then W =

g∗(X̃, 0). Suppose the state space is bounded from above and W = U(X). By the definition

of X, µ∗(X,U ′(X)) ≤ 0 and σ∗
(
X,U ′(X)

)
= 0. Also, U ′(X) ≥ 0. From the optimality

equation,

W − g∗(X, 0) =
1

r
U ′(X)µ∗(X,U ′(X)) ≤ 0

The proof for W = U(X) is analogous. Otherwise, by Lemma 10, the local minima and

maxima of U are bounded by the local minima and maxima of g∗(X, 0). Therefore, for any

sequence local maxima {Uk} converging to W , there exists a sequence of states {Xk} such

that Uk = U(Xk) and W ≤ limk→∞ g
∗(Xk, 0) = lim supX→∞ g

∗(X, 0). The proofs for the

lower bound W are analogous. �

If the continuation value is sufficiently flat around a state X that yields W (i.e. if

U ′′(X) = 0) or X is an absorbing state, then the highest PPE payoff is W = g∗(X, 0).

Otherwise, the highest PPE payoff will be strictly below g∗(X, 0), as either the continuation

value or the state changes too quickly at X.

6 Conclusion

Persistence and rigidities are pervasive in economics. There are many situations in which a

payoff-relevant stock variable is determined not only by actions chosen today, but also by

or below the static Nash payoff at the corresponding state.
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the history of past actions. This paper shows that this realistic departure from a standard

repeated game provides a new channel for intertemporal incentives. The long-run player

realizes that the impact of the action it chooses today will continue to be felt tomorrow, and

incorporates the future value of this action into its decision. Persistence is a particularly

important source of intertemporal incentives in the class of games examined in this paper;

in the absence of such persistence, the long-run player cannot earn payoffs higher than those

earned by playing a myopic best response.

The main results of this paper are to establish conditions on the structure of the game

that guarantee existence of Markov equilibria, and uniqueness of a perfect public equilib-

rium, which is Markov. These results develop a tractable method to characterize equilibrium

behavior and payoffs, which can be applied to models in industrial organization, political

economy and macroeconomics. The equilibrium dynamics can be directly related to ob-

servable features of a firm or government or other long-run player, and used to generate

empirically testable predictions. Once more structure is placed on payoff functions and the

state variable, it will be possible to address questions about efficiency, comparative statics,

steady-state dynamics, the impact of shocks and market design issues such as the trade-off

between different types of persistence.

This paper leaves open several interesting avenues for future research, including whether

the model is robust in the sense that nearby discrete time games exhibit similar equilibrium

properties and whether it is possible to say anything about a game with multiple long-run

players or states. Analyzing a setting with multiple state variables is technically challenging;

whether it is possible to reduce such games to a simpler setting that yields a tractable

characterization of equilibrium dynamics remains an open question.
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7 Appendix

7.1 Proof of Lemma 1

By Assumption 3, there exists a k ∈ [0, r) and c > 0 such that for all X ≥ 0, µx(a, b,X) ≤
kX + c for all a ∈ A, b ∈ B, and for all X ≤ 0, µx(a, b,X) ≥ kX − c for all a ∈ A, b ∈ B.

By Lipshitz continuity, there exists a Kg, Kσ > 0 such that for all X ∈ Ξ, |g(a, b,X)| ≤
Kg(

c
k

+ |X|) and σ (b,X) ≤ Kσ (1 + |X|) for all a ∈ A, b ∈ B.

Step 1: Derive a bound on Eτ
[
g(at, bt, Xt)

]
, the expected flow payoff at time t conditional

on available information at time τ ≤ t. Note this bound will be independent of the strategy

profile. Define

f(X) : =


Kg(

c
k
−X) if X ≤ −1

−1
8
KgX

4 + 3
4
KgX

2 + 3
8
Kg +Kg

c
k

if X ∈ (−1, 1)

Kg(
c
k

+X) if X ≥ 1

Note f ∈ C2, f(X) ≥ 0, |f ′ (X)| ≤ Kg and f ′′(X) ≤ 3
2
Kg. Ito’s Lemma holds for any C2

function, so for any strategy profile S =
(
at, bt

)
t≥0

, any initial value Xτ < ∞ and path of

the state variable (Xt)t≥τ that evolves according to 1, given S, and any t ≥ τ ,

f(Xt) = f(Xτ ) +

∫ t

τ

(
f ′(Xs)µx(as, bs, Xs) +

1

2
f ′′(Xs)

∣∣σx (bs, Xs

)∣∣2) ds+

∫ t

τ

f ′(Xs)σx
(
bs, Xs

)
dZs

≤ f(Xτ ) +

∫ t

τ

(
Kg (k |Xs|+ c) + 3KgK

2
σ

)
ds+KgKσ

∫ t

τ

(1 +Xs) dZs

≤ f(Xτ ) + k

∫ t

τ

f(Xs)ds+ 3KgK
2
σ (t− τ) +KgKσ

∫ t

τ

(1 +Xs) dZs

where f ′Xs)µx(as, bs, Xs) ≤ Kg (k |Xs|+ c) and 1
2
f ′′(Xs)

∣∣σx (bs, Xs

)∣∣2 ≤ 3KgK
2
σ for all X ∈

Ξ and
(
a, b
)
∈ A × B. Taking expectations, and noting that (1 +Xs) is square-integrable
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on [τ, t], so the expectation of the stochastic integral is zero,

Eτ [f(Xt)] ≤ f(Xτ ) + 3KgK
2
σ (t− τ) + k

∫ t

τ

Eτ [f(Xs)] ds

≤
(
f(Xτ ) + 3KgK

2
σ (t− τ)

)
ek(t−τ)

where the last line follows from Gronwall’s inequality. Note that for all X ∈ Ξ, |g(a, b,X)| ≤
f(X) for all a ∈ A, b ∈ B. Therefore,

e−r(t−τ)Eτ
∣∣g(at, bt, Xt)

∣∣ ≤ e−r(t−τ)Eτ [f(Xt)] ≤
(
f(Xτ ) + 3KgK

2
σ (t− τ)

)
e−(r−k)(t−τ)

Step 2: Show that if Xt <∞, then Wt(S) <∞.

|Wt(S)| =

∣∣∣∣Et [r ∫ ∞
t

e−r(s−t)g(as, bs, Xs)ds

]∣∣∣∣
≤ rEt

[∫ ∞
t

e−r(s−t)
∣∣g(as, bs, Xs)

∣∣ ds]
≤ r

∫ ∞
t

e−r(s−t)Et
∣∣g(as, bs, Xs)

∣∣ ds
≤ r

∫ ∞
t

(
f(Xt) + 3KgK

2
σ (s− t)

)
e−(r−k)(s−t)ds

= r

(
f(Xt)(r − k) + 3KgK

2
σ

(r − k)2

)
which is finite for any Xt < ∞ and k < r. Also, given that f(Xt) has linear growth, there

exists a K > 0 such that:

|Wt(S)| ≤ K(1 + |Xt|).

Step 3: Show E |Vt(S)| <∞ for any X0 <∞. By similar reasoning to Step 2,

E |Vt(S)| = E

∣∣∣∣Et [r ∫ ∞
0

e−rsg(as, bs, Xs)ds

]∣∣∣∣ ≤ E

[
r

∫ ∞
0

e−rs
∣∣g(as, bs, Xs)

∣∣ ds]
which is finite for any X0 <∞ and k < r.
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Step 4: Show Et[Vt+k(S)] = Vt(S)

Et[Vt+k(S)] = Et

[
r

∫ t+k

0

e−rsg(as, bs, Xs)ds+ e−r(t+k)Wt+k(S)

]
= r

∫ t

0

e−rsg(as, bs, Xs)ds

+Et

[
r

∫ t+k

t

e−rsg(as, bs, Xs)ds+ e−r(t+k)Et+k

[
r

∫ ∞
t+k

e−r(s−(t+k))g(as, bs, Xs)ds

]]
= r

∫ t

0

e−rsg(as, bs, Xs)ds+ e−rtWt(S) = Vt(S)

By steps 3 and 4, Vt(S) is a martingale.

Note that if g(a, b,X) is bounded with respect to X, then, trivially, Vt(S) and Wt(S) are

bounded for all t ≥ 0 and X0 ∈ Ξ. Also note that g(a, b,X) is bounded whenever the state

space is bounded.

7.2 Proof of Lemma 2

Evolution of the continuation value: From Lemma 1, Vt(S) is a martingale. Take the

derivative of Vt(S) wrt t :

dVt(S) = re−rtg(at, bt, Xt)dt− re−rtWt(S)dt+ e−rtdWt(S)

By the martingale representation theorem, there exists a progressively measurable process

(βt)t≥0 such that Vt can be represented as dVt(S) = re−rtβ>t σ
(
bt, Xt

)
dZt. Combining these

two expressions for dVt(S) yields the law of motion for the continuation value:

dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt+ rβ>t σ

(
bt, Xt

)
dZt

= r
(
Wt(S)− g(at, bt, Xt)

)
dt+ rβyt

[
dYt − µy(at, bt, Xt)dt

]
+rβxt

[
dXt − µx(at, bt, Xt)dt

]
where βt = (βyt, βxt) is a vector of length d. The component βyt captures the sensitivity of the

continuation value to the public signal, while the component βxt captures the sensitivity of

the continuation value to the state variable. Lemma 1 establishes that any continuation value

is bounded when g is bounded, and otherwise bounded with respect to the state variable.

Sequential Rationality: Consider strategy profile (at, bt)t≥0 played from period τ on-

wards and alternative strategy (ãt, bt)t≥0 played up to time τ . Recall that all values of Xt

are possible under both strategies, but that each strategy induces a different measure over
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sample paths (Xt)t≥0. At time τ , the state variable is equal to Xτ . Action aτ will induce[
dYτ

dXτ

]
=

[
µy(aτ , bτ , Xτ )

µx(aτ , bτ , Xτ )

]
dt+ σ(bτ , Xτ ) ·

[
dZy

τ

dZx
τ

]

whereas action ãτ will induce[
dYτ

dXτ

]
=

[
µy(ãτ , bτ , Xτ )

µx(ãτ , bτ , Xτ )

]
dt+ σ(bτ , Xτ ) ·

[
dZy

τ

dZx
τ

]

Let Ṽτ be the expected average payoff conditional on information at time τ when the long-

run player follows ã up to τ and a afterwards, and let Wτ be the continuation value when

the long-run player follows strategy (at)t≥0 starting at time τ .

Ṽτ = r

∫ τ

0

e−rsg(ãs, bs, Xs)ds+ e−rτWτ

Consider changing τ so that long-run player plays strategy (ãt, bt) for another instant: dṼτ

is the change in average expected payoffs when the long-run player switches to (at)t≥0 at

τ + dτ instead of τ . When long-run player switches strategies at time τ ,

dṼτ = re−rτ
[
g(ãτ , bτ , Xτ )−Wτ

]
dτ + e−rτdWτ

= re−rτ
[
g(ãτ , bτ , Xτ )− g(aτ , bτ , Xτ )

]
dτ + re−rτβyτ

[
dYτ − µy(aτ , bτ , Xτ )dτ

]
+re−rτβxt

[
dXt − µx(at, bt, Xt)dt

]
= re−rτ

[[
g(ãτ , bτ , Xτ )− g(aτ , bτ , Xτ )

]
dτ + βyτ

[
µy(ãτ , bτ , Xτ )− µy(aτ , bτ , Xτ )

]
dτ
]

+re−rτ
[
βxτ
[
µx(ãτ , bτ , Xτ )− µx(aτ , bτ , Xτ )

]
dτ + β>τ σ

(
bt, Xt

)
dZt
]

There are two components to this strategy change: how it affects the immediate flow payoff

and how it affects future public signal Yt and future state Xt, which impact the continuation

value. The profile (ãt, bt)t≥0 yields the long-run player a payoff of:

W̃0 = E0

[
Ṽ∞

]
= E0

[
Ṽ0 +

∫ ∞
0

dṼt

]
= W0 + E0

[
r

∫ ∞
0

e−rt

{
g(ãt, bt, Xt) + βyτµy(ãτ , bτ , Xτ ) + βxτµx(ãτ , bτ , Xτ )

−g(at, bt, Xt)− βyτµy(aτ , bτ , Xτ )− βxτµx(aτ , bτ , Xτ )

}
dt

]

If

g(at, bt, Xt)+βytµy(at, bt, Xt)+βxtµx(at, bt, Xt) ≥ g(ãt, bt, Xt)+βytµy(ãt, bt, Xt)+βxtµx(ãt, bt, Xt)
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holds for all t ≥ 0, then W0 ≥ W̃0 and deviating to S = (ãt, bt) is not a profitable deviation.

A strategy (at)t≥0 is sequentially rational for the long-run player if, given (βt)t≥0, for all t:

at ∈ arg max g(a′, bt, Xt) + βytµy(a
′, bt, Xt) + βxtµx(a

′, bt, Xt).

7.3 Notation

Given state X and βy = 0, βx = z, let

(a(X, z), b(X, z)) := S∗(X, 0, z/r)

be the optimal actions and

g∗(X, z) := g(a(X, z), b(X, z), X)

µ∗(X, z) := µx(a(X, z), b(X, z), X)

σ∗(X, z) := σx(b(X, z), X)

be the value of the flow payoff, drift and volatility, respectively, as the optimal actions. All

of these functions are Lipschitz continuous, either by assumption or because they are the

composite of Lipschitz continuous functions. Also, for any fixed X, all of these functions

are bounded with respect to z, since a(X, z) is bounded by the compactness of A and the

remaining functions depend on z through a(X, z). Let

ψ(X, z) := g∗(X, z) +
z

r
µ∗(X, z)

be the value of the long-run player’s incentive constraint at the optimal action. For a fixed

z, ψ(X, z) is Lipschitz continuous in X, but not necessarily Lipschitz continuous in (X, z).

Also, ψ is not bounded in z.

7.4 Proof of Theorem 1

Form of Optimality Equation: In a Markov equilibrium, the continuation value and

equilibrium actions are characterized as a function of the state variable as Wt = U(Xt),

a∗t = a(Xt) and b
∗
t = b(Xt). By Ito’s formula, if a Markov equilibrium exists, the continuation
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value will evolve according to:

dU(Xt) = U ′(Xt)dXt +
1

2
U ′′(Xt)

∣∣∣σx (b∗t , Xt

)∣∣∣2 dt
= U ′(Xt)µx(a

∗
t , b
∗
t , Xt)dt+

1

2
U ′′(Xt)

∣∣∣σx (b∗t , Xt

)∣∣∣2 dt+ U ′(Xt)σx

(
b
∗
t , Xt

)
dZt

Matching the drift of this expression with the drift of the continuation value characterized

in Lemma 2 yields the optimality equation for strategy profile (a∗, b
∗
),

U ′′(X) =
2r
(
U(X)− g(a∗, b

∗
, X)

)
∣∣∣σx (b∗t , Xt

)∣∣∣2 − 2µx(a
∗, b
∗
, X)∣∣∣σx (b∗t , Xt

)∣∣∣2U ′(X)

which is a second order non-homogenous differential equation.

Matching the volatility characterizes the process governing incentives, βy = 0 and βx =

U ′(X)/r. Intuitively, the continuation value and equilibrium actions are independent of the

public signal in a Markov equilibrium; this is born out mathematically by the condition

βy = 0. Plugging these into the condition for sequential rationality,

S∗(X, 0, U ′(X)/r) =

{
(a∗, b

∗
) s.t. a∗ = arg max

a
g(a, b

∗
, X) +

1

r
U ′(X)µx(a, b

∗
, X) , b

∗
= B(a∗, X)

}
which is unique by Assumption 4.

Existence of solution to optimality equation: Let f : Ξ×R2 → R denote the right

hand side of the optimality equation:

f(X,U, U ′) =
2r

|σ∗(X,U ′)|2
(U − ψ(X,U ′))

which is continuous on int(Ξ) \ Ξ̃. I establish that the second order differential equation

U ′′ = f(X,U, U ′)

has at least one C2 solution that takes on values in the interval of feasible payoffs for the

long-run player.

Case 1: Unbounded State Space. I use the following theorem from Schmitt (1969),

which gives sufficient conditions for the existence of a solution to a second order differential

equation defined on R3. The Theorem is reproduced below.

Theorem 4 (Schmitt (1969)). Let α, β ∈ C2(R) be functions such that α ≤ β, E =

{(t, u, v) ∈ R3|α(t) ≤ u(t) ≤ β(t)} and f : E → R be continuous. Assume that α and β
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are such that for all t ∈ R,

f(t, α(t), α′(t)) ≤ α′′(t) and β′′(t) ≤ f(t, β(t), β′(t)).

Assume that for any bounded closed interval I, there exists a positive continuous function

φI : R+ → R that satisfies ∫ ∞
0

sds

φI(s)
=∞

and for all t ∈ I, (u, v) ∈ R2 with α(t) ≤ u ≤ β(t),

|f (t, u, v)| ≤ φI(|v|).

Then the equation u′′ = f (t, u, v) has at least one solution u ∈ C2(R) such that for all t ∈ R,

α(t) ≤ u(t) ≤ β(t).

Lemma 3. Suppose Ξ = R and there are no interior absorbing points. The optimality

equation has at least one solution U ∈ C2(R) that lies in the range of feasible payoffs for the

long-run player.

Suppose Ξ = R and there are no interior absorbing points. The optimality equation is

continuous on R3. Consider the functions

α (X) : =


α1X − ca if X ≤ −1

1
8
α1X

4 − 3
4
α1X

2 − 3
8
α1 − ca if X ∈ (−1, 1)

−α1X − ca if X ≥ 1

β (X) : =


−β1X + cb if X ≤ −1

−1
8
β1X

4 + 3
4
β1X

2 + 3
8
β1 + cb if X ∈ (−1, 1)

β1X + cb if X ≥ 1

for some α1, β1, ca, cb ≥ 0. Note that α, β ∈ C2(R) and α ≤ β. Then α, β are lower and

upper solutions to the optimality function if there exist α1, β1, ca, cb ≥ 0 such that:

2r

σ2(X,α′)
(α− ψ(X,α′)) ≤ α′′ and β′′ ≤ 2r

σ2(X, β′)
(β − ψ(X, β′))

for all X ∈ R.

Step 1: Assume that there exists a k ∈ [0, r) such that for some c ≥ 0, µ∗(X, z) ≤ kX+c

for all X ≥ 0 and µ∗(X, z) ≥ kX − c for all X ≤ 0. Show that there exist α1, β1, ca, cb ≥ 0
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such that α, β are lower and upper solutions to the optimality function. Note Step 1 does

not require g to be bounded.

Step 1a: Find a bound on ψ(X, z). By Lipschitz continuity and the fact that g∗ and µ∗

are bounded in z, ∃kg, km ≥ 0 such that

|g∗(X, z)− g∗(0, z)| ≤ kg |X|

|µ∗(X, z)− µ∗(0, z)| ≤ km |X|

for all (X, z). Therefore, ∃g
1
, g

2
, g1, g2 ≥ 0, µ

1
, µ2 ∈ [0, r), µ

2
, µ1 > 0 and γ, γ,m,m ∈ R

such that:

g1
X + γ

−g
2
X + γ

≤ g∗(X, z) ≤

−g1X + γ if X < 0

g2X + γ if X ≥ 0µ1
X +m

−µ
2
X +m

≤ µ∗(X, z) ≤

−µ1X +m if X < 0

µ2X +m if X ≥ 0

and



(
g

1
− µ1

r
z
)
X + γ + m

r
z(

−g
2

+ µ2
r
z
)
X + γ + m

r
z(

g
1

+
µ
1

r
z
)
X + γ + m

r
z

−
(
g

2
+

µ
2

r
z
)
X + γ + m

r
z

≤ ψ(X, z) ≤



(
−g1 +

µ
1

r
z
)
X + γ + m

r
z if X < 0, z ≤ 0(

g2 −
µ
2

r
z
)
X + γ + m

r
z if X ≥ 0, z ≤ 0

−
(
g1 + µ1

r
z
)
X + γ + m

r
z if X < 0, z ≥ 0(

g2 + µ2
r
z
)
X + γ + m

r
z if X ≥ 0, z ≥ 0

Step 1b: Find conditions on (α1, β1, ca, cb) such that α, β are lower and upper solutions

to the optimality function when X ≤ −1. Note α′′ (X) = β′′ (X) = 0, so this corresponds to

showing ψ(X,α1) ≥ α1X − ca and ψ(X,−β1) ≤ −β1X + cb. From the bound on ψ :

ψ(X,α1) ≥
(
g

1
+
µ

1

r
α1

)
X + γ +

m

r
α1

ψ(X,−β1) ≤ −
(
g1 +

µ
1

r
β1

)
X + γ − m

r
β1
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Therefore, this requires:

α1 ≥
rg

1

r − µ
1

and ca ≥ −γ −
m

r
α1 := c1

a

β1 ≥
rg1

r − µ
1

and cb ≥ γ − m

r
β1 := c1

b

Step 1c: Find conditions on (α1, β1, ca, cb) such that α, β are lower and upper solutions to

the optimality function when X ≥ 1. This corresponds to showing ψ(X,−α1) ≥ −α1X − ca
and ψ(X, β1) ≤ β1X + cb. From the bound on ψ :

ψ(X,−α1) ≥ −
(
g

2
+
µ2

r
α1

)
X + γ − m

r
α1

ψ(X, β1) ≤
(
g2 +

µ2

r
β1

)
X + γ +

m

r
β1

Therefore, this requires:

α1 ≥
rg

2

r − µ2

and ca ≥ −γ +
m

r
α1 := c2

a

β1 ≥
rg2

r − µ2

and cb ≥ γ +
m

r
β1 := c1

b

Step 1d: Find conditions on (α1, β1, ca, cb) such that α, β are lower and upper solutions

to the optimality function when X ∈ (−1, 1). Note α′′ (X) = −3
2
α1 (1−X2) ≥ −3

2
α1 and

α (X) ≤ −3
8
α1 − ca and β′′ (X) = 3

2
β1 (1−X2) ≤ 3

2
β1 and β (X) ≥ 3

8
β1 + cb, so this is

equivalent to showing:

ca ≥
3

4

(
|σ∗ (X,α′)|2

r
− 1

2

)
β1 − ψ (X,α′)

cb ≥
3

4

(
|σ∗ (X,α′)|2

r
− 1

2

)
β1 + ψ (X, β′)

for X ∈ (−1, 1). Let σ = supX∈[0,1],z |σ∗ (X, z)|, which exists since σ∗ is Lipschitz continuous

in X and bounded in z.

First consider X ∈ (−1, 0], which means that β′ = 1
2
β1X (3−X2) ∈ (−β1, 0] and a′ =
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−1
2
α1X (3−X2) ∈ [0, α1). From the bound on ψ :

ψ (X,α′) ≥
(
g

1
+
µ

1

r
α′
)
X + γ +

m

r
α′ ≥ −g

1
+ γ −

µ
1

r
α1 +

α1

r
min {m, 0}

ψ (X, β′) ≤
(
−g1 +

µ
1

r
β′
)
X + γ +

m

r
β′ ≤ g1 + γ +

µ
1

r
β1 −

β1

r
min {m, 0}

Therefore, this requires:

ca ≥
3

4

(
σ2

r
− 1

2

)
α1 + g

1
− γ +

µ
1

r
α1 −

α1

r
min {m, 0} := c3

a

cb ≥
3

4

(
σ2

r
− 1

2

)
β1 + g1 + γ +

µ
1

r
β1 −

β1

r
min {m, 0} := c3

b

Next consider X ∈ [0, 1), which means that β′ = 1
2
β1X (3−X2) ∈ [0, β1) and a′ =

−1
2
α1X (3−X2) ∈ (−α1, 0]. From the bound on ψ :

ψ (X,α′) ≥
(
−g

2
+
µ2

r
α′
)
X + γ +

m

r
α′ ≥ −g

2
+ γ − µ2

r
α1 −

α1

r
max {m, 0}

ψ (X, β′) ≤
(
g2 +

µ2

r
β′
)
X + γ +

m

r
β′ ≤ g2 + γ +

µ2

r
β1 +

β1

r
max {m, 0}

This requires:

ca ≥
3

4

(
σ2

r
− 1

2

)
α1 + g

2
− γ +

µ2

r
α1 +

α1

r
max {m, 0} := c4

a

cb ≥
3

4

(
σ2

r
− 1

2

)
β1 + g2 + γ +

µ2

r
β1 +

β1

r
max {m, 0} := c4

b

Step 1e: Compiling these conditions and choosing

α1 = max

{
rg

1

r − µ
1

,
rg

2

r − µ2

}

β1 = max

{
rg1

r − µ
1

,
rg2

r − µ2

}

yields α1, β1 ≥ 0 that satisfy the slope conditions in steps 1b-1d, and choosing

ca = max
{

0, c1
a, c

2
a, c

3
a, c

4
a

}
and cb = max

{
0, c1

b , c
2
b , c

3
b , c

4
b

}
yields ca, cb that satisfy the intercept conditions in steps 1b-1d. Conclude that α and β are
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lower and upper solutions to the optimality equation.

Step 2: Assume g is bounded. Show that there exist α1, β1, ca, cb ≥ 0 such that α, β are

lower and upper solutions to the optimality function. Note step 2 places no restrictions on

the relationship between the growth rate of µx and r.

Define g := supa,X g(a,B(a,X), X) and g := infa,X g(a,B(a,X), X), which exist since

g is bounded. Set α1 = 0 and ca = −g. Then ψ(X,α′) = g∗(X, 0), so α − ψ(X,α′) =

g − g∗(X, 0) ≤ 0 and α (X) = g is a lower solution. Similarly, set β1 = 0 and cb = g. Then

ψ(X, β′) = g∗(X, 0), so β − ψ(X, β′) = g− g∗(X, 0) ≥ 0 and β (X) = g is an upper solution.

Step 3: Show that the Nagumo condition is satisfied. Given a compact proper subset

I ⊂ Ξ, there exists a KI > 0 such that

|f(X,U, U ′)| =
∣∣∣∣ 2r

|σ∗ (X,U ′)|2

(
U − g∗ (X,U ′)− U ′

r
µ∗ (X,U ′)

)∣∣∣∣ ≤ KI (1 + |U ′|)

for all (X,U, U ′) ∈ {I × R2 s.t. α (X) ≤ U ≤ β (X)}. This follows directly from the fact

that X ∈ I, α (X) and β (X) are bounded on I, α (X) ≤ U ≤ β (X), g∗, µ∗ are bounded

on (X,U ′) ∈ I × R and the lower bound on σx. Define φI(z) = KI (1 + z). Therefore,∫∞
0
φI(s)

−1sds =∞.

Conclude that f(X,U(X), U ′(X)) has at least one C2 solution U such that for all X ∈ R,

α (X) ≤ U ≤ β (X). If α and β are bounded, then U is bounded.

Case 2: Bounded State Space. I use standard existence results from Coster and

Habets (2006) and an extension in Faingold and Sannikov (2011), which is necessary because

the optimality equation is undefined at the upper and lower bound of the state space. The

result applied to the current setting is reproduced below.

Lemma 4 (Faingold Sannikov (2011)). Let E =
{

(t, u, v) ∈ (t, t)× R2
}

and f : E → R
be continuous. Let α, β ∈ R such that α ≤ β and f(t, α, 0) ≤ 0 ≤ f(t, β, 0) for all t ∈
R. Assume also that for any closed interval I ⊂ (t, t), there exists a KI > 0 such that

|f (t, u, v)| ≤ KI

(
1 + |v|2

)
for all (t, u, v) ∈ I × [α, β] × R. Then the differential equation

U ′′ = f (t, U(t), U ′(t)) has at least one C2 solution U on (t, t) such that α ≤ U(t) ≤ β.

When Ξ is compact, the feasible payoff set for the long-run player is also bounded,

since g is Lipschitz continuous and A is compact. Define g := infA,Ξ g(a,B(a,X), X) and

g := supA,Ξ g(a,B(a,X), X).

Lemma 5. Suppose Ξ is compact and there are no interior absorbing points. The optimality

equation has at least one C2 solution U that lies in the range of feasible payoffs for the long-

run player i.e. g ≤ U(X) ≤ g.
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Suppose Ξ is compact and there are no interior absorbing points. Then the optimality

equation is continuous on the set E =
{

(X,U, U ′) ∈ (X,X)× R2
}

. For any closed interval

I ⊂ (X,X), there exists a KI > 0 such that

|f(X,U, U ′)| =
∣∣∣∣ 2r

|σ∗(X,U ′)|2

(
U − g∗(X,U ′)− U ′

r
µ∗(X,U ′)

)∣∣∣∣ ≤ KI (1 + |U ′|)

for all (X,U, U ′) ∈ I ×
[
g, g
]
×R. This follows directly from the fact that X ∈ I, U ∈

[
g, g
]
,

g∗, µ∗ are bounded on (X,U ′) ∈ I×R, and the lower bound on σx. Therefore, |f(X,U, U ′)| ≤
2KI

(
1 + |U ′|2

)
. Also note that

f(X, g, 0) =
2r

|σ∗(X, 0)|2
(
g − g∗(X, 0)

)
≤ 0 ≤ f(X, g, 0) =

2r

|σ∗(X, 0)|2
(g − g∗(X, 0))

for all X ∈ Ξ. By Lemma 4, f(X,U(X), U ′(X)) has at least one C2 solution U such that

for all X ∈ Ξ, g ≤ U(X) ≤ g.

Case 3: Absorbing States. By Assumption 1, the state space can be represented as

the union of a finite number of subsets, Ξ = ∪ni=1Ξi such that for any compact proper subset

I ⊂ Ξi, there exists a cI such that σI = infb∈B,X∈I |σx (b,X)|2 > cI . By Lemmas 3 and 5,

there exists a solution on each subset Ξi.
21 Also, at each absorbing point X̃, U(X̃) = v(X̃),

by Lemma 24. Pasting the solutions on each subset together yields a continuous solution on

Ξ, which is C2 on Ξ \ Ξ̃.

Construct a Markov equilibrium: Suppose the state variable initially starts at X0

and U is a solution to the optimality equation. The action profile

(a∗, b
∗
) =

S∗(X, 0, U ′(X)/r) if X ∈ Ξ \ Ξ̃

S(X, 0, 0) if X ∈ Ξ̃

is unique and Lipschitz continuous in X and U ′. Given X0, U and (a∗t , b
∗
t )t≥0, the state

variable evolves according to the unique strong solution (Xt)t≥0 to the stochastic differential

equation

dXt = µ∗(Xt, U
′(Xt))dt+ σ∗ (Xt, U

′(Xt)) dZt

which exists since µ∗ and σ∗ are Lipschitz continuous. The continuation value evolves ac-

21It is a straightforward extension to show that a solution exists on an interval Ξi = [−∞, X1) or Ξi =
[X2,∞).
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cording to:

dU(Xt) = U ′(Xt)µ
∗(Xt, U

′(Xt))dt+
1

2
U ′′(Xt) |σ∗ (Xt, U

′(Xt))|2 dt+ U ′(Xt)σ
∗ (Xt, U

′(Xt)) dZt

= r (U(Xt)− g∗ (Xt, U
′(Xt))) dt+ U ′(Xt)σ

∗ (Xt, U
′(Xt)) dZt

on Ξ\ Ξ̃ and dU(Xt) = 0 on X ∈ Ξ̃. This process satisfies the conditions for the continuation

value in a PPE characterized in Lemma 2. Additionally, (a∗t , b
∗
t )t≥0 satisfies the condition for

sequential rationality given process (βt)t≥0 with βt = (0, U ′(Xt)) if X ∈ Ξ \ Ξ̃ and βt = (0, 0)

if X ∈ Ξ̃. Thus, the strategy profile (a∗t , b
∗
t )t≥0 is a PPE yielding equilibrium payoff U(X0).

7.5 Proof of Theorem 2

Let X0 be the initial state, and let V (X) be the upper envelope of the set of solutions to

the optimality equation. Suppose there is a PPE (at, bt)t≥0 that yields an equilibrium payoff

W0 > V (X0). The continuation value in this equilibrium must evolve according to:

dWt(S) = r
(
Wt(S)− g(at, bt, Xt)

)
dt+rβᵀyt

[
dYt − µy(at, bt, Xt)dt

]
+rβxt

[
dXt − µx(at, bt, Xt)dt

]
for some process (βt)t≥0. By sequential rationality, (at, bt) = S∗(Xt, βyt, βxt) for all t, and by

Assumption 4, these actions are unique for each (X, βy, βx). Define

ĝ(X, βy, βx) : = g(S∗(X, βy, βx), X)

µ̂(X, βy, βx) : = µ(S∗(X, βy, βx), X)

σ̂(X, βy, βx) : = σ(S∗(X, βy, βx), X)

which are Lipschitz continuous, given g, µ, σ and S∗ are Lipschitz. The process V (Xt) evolves

according to:

dV (Xt) = V ′(Xt)µ̂(Xt, βyt, βxt)dt+
1

2
V ′′(Xt) |σ̂x (Xt, βyt, βxt)|2 dt+V ′(Xt)σ̂x (Xt, βyt, βxt) dZt

on Ξ\ Ξ̃ and dV (Xt) = 0 on X ∈ Ξ̃. Define a process Dt = Wt−V (Xt) with initial condition

D0 = W0 − V (X0) > 0. Then Dt evolves with drift rDt + d(Xt, βyt, βxt), where

d(X, βy, βx) = r (V (X)− ĝ(X, βy, βx))− V ′(X)µx(X, βy, βx)−
1

2
V ′′(X) |σ̂x (X, βy, βx)|2

= r (ĝ(X, 0, V ′/r)− ĝ(X, βy, βx)) + V ′(X) (µx(X, 0, V
′/r)− µx(X, βy, βx))
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if X ∈ Ξ \ Ξ̃, where the second line follows from substituting the optimality equation for

V (X), and d(X, βy, βx) = r(ĝ(X, 0, 0)− ĝ(X, βy, βx)) if X ∈ Ξ̃, and volatility

f(X, βy, βx) =


 rβᵀy σ̂y (X, βy, βx)

(rβx − V ′(X)) σ̂x (X, βy, βx)

 if X ∈ Ξ \ Ξ̃

0 if X ∈ Ξ̃

Lemma 6. If |f(X, βy, βx)| = 0, then d(X, βy, βx) = 0.

Suppose |f(X, βy, βx)| = 0 for some (X, βy, βx). Then βy = 0 and

rβx =

V ′(X) if X ∈ Ξ \ Ξ̃

0 if X ∈ Ξ̃

The action profile associated with (X, 0, V ′(X)/r) corresponds to the actions played in a

Markov equilibrium at state X. Therefore, d(X, βy, βx) = 0.

Lemma 7. For every ε > 0, there exists a η > 0 such that either d(X, βy, βx) > −ε or

|f(X, βy, βx)| > η.

Suppose the state space is unbounded, Ξ = R, and there are no interior absorbing states.

Fix ε > 0 and suppose d(X, βy, βx) ≤ −ε. Show that there exists a η > 0 such that

|f(X, βy, βx)| > η for all (X, β) ∈ Ξ× R.

Step (a): Show there exists an M > 0 such that this is true for:

(X, β) ∈ Ωa = {Ξ× R : |β| > M }

V ′(X) is bounded and there exists a c > 0 such that |σ · y| ≥ c |y| for all (b,X) ∈ B × Ξ

and y ∈ Rd, bounding σ away from 0, so there exists an M > 0 and η1 > 0 such that

|f(X, βy, βx)| > η1 for all |β| > M , regardless of d.

Step (b): Show that there exists an X∗ > 0 such that this is true for:

(X, β) ∈ Ωb = {Ξ× R : |β| ≤M and |X| > X∗}

Consider the set Φb ⊂ Ωb with d(X, βy, βx) ≤ −ε. It must be that (βx, βy) is bounded away

from (V ′(X)/r, 0) on Φb. Suppose not. Then either (i) there exists some (X, β) ∈ Φb with

βx = V ′(X)/r and βy = 0, which implies f(X, βy, βx) = 0 and therefore d(X, βy, βx) =

0, a contradiction, or (ii) as X becomes large, the boundary of the set Φb approaches

(βx, βy) = (V ′/r, 0), which implies that for any δ1 > 0, there exists an (X, β) ∈ Φb with
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max {rβx − V ′(X), βy} < δ1. Choose δ1 so that |ĝ(X, 0, V ′(X)/r)− ĝ(X, βy, βx)| < ε/4r

and |µ̂(X, 0, V ′(X)/r)− µ̂(X, βy, βx)| < ε/4k, where |V ′(X)| ≤ k is the bound on V ′. Then

|d(X, βy, βx)| < ε/4 + ε/4 = ε/2

which is a contradiction. Therefore, there exists a η2 such that |f(X, βy, βx)| > η2 on Φb.

Then on the set Ωb, if d(X, βy, βx) ≤ −ε then |f(X, βy, βx)| > η2.

Step (c): Show this is true for:

(X, β) ∈ Ωc = {Ξ× R : |β| ≤M and |X| ≤ X∗}

Consider the set Φc ⊂ Ωc where d(X, βy, βx) ≤ −ε. The function d is continuous and Ωc

is compact, so Φc is compact. The function |f | is also continuous, and therefore achieves a

minimum η3 on Φc. If η3 = 0, then d = 0 by Lemma 6, a contradiction. Therefore, η3 > 0

and |f(X, βy, βx)| > η3 for all (X, β) ∈ Φc.

Take η = min {η1, η2, η3}. Then when d(X, βy, βx) ≤ −ε, |f(X, βy, βx)| > η. The proof

for a bounded state space is analogous, omitting step 2b. To allow for interior absorbing

points, simply apply the proof to each Ξi that doesn’t contain an absorbing point. Q.E.D.

Lemma 8. Any PPE payoff W0 is such that V1(X0) ≤ W0 ≤ V2(X0) where V1and V2 are the

upper and lower envelope of the set of solutions to the optimality equation.

Lemma 7 implies that whenever the drift of Dt is less than rDt − ε, the volatility is

greater than η. Take ε = rD0/4 and suppose Dt ≥ D0/2. Then whenever the drift is less

than rDt − ε > rD0/2 − rD0/4 = rD0/4 > 0, there exists a η such that |f(X, βy, βx)| > η.

Thus, whenever Dt ≥ D0/2 > 0, it has either positive drift or positive volatility, and grows

arbitrarily large with positive probability, irrespective of Xt. This is a contradiction, since

Dt is the difference of two processes that are bounded with respect to Xt. Thus, it cannot be

that D0 > 0 and it must be the case that W0 ≤ V (X0). Similarly, if V is the lower envelope

of the set of solutions to the optimality equation, it is not possible to have D0 < 0 and

therefore it must be the case that W0 ≥ V (X0). Q.E.D.

The second part of Theorem 2 follows directly from Lemma 8, and the fact that it is

possible the achieve any equilibrium payoff in the convex hull of the highest and lowest

Markov equilibrium payoff with randomization. Q.E.D.

7.6 Proof of Theorem 3

The proof proceeds in three steps.
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1. Any solution to the optimality equation has the same boundary conditions.

2. If all solutions have the same boundary conditions, then there is a unique solution.

3. When there is a unique solution, then there is a unique PPE.

Step 1a: Boundary Conditions for Unbounded Support. Suppose Ξ = R, g is

bounded and there are no absorbing points.

Lemma 9. The limits gp = limX→p g
∗(X, 0) exist for p ∈ {−∞,∞}.

The fact that g is bounded, g∗(X, 0) is Lipschitz continuous and monotone for large

enough |X| guarantees the existence of limX→p g
∗(X, 0). Q.E.D.

Lemma 10. If U(X) is a bounded solution of the optimality equation, then there exists a

δ such that for |X| > δ, U(X) is monotonic. Additionally, Up = limX→p U(X) exist for

p ∈ {−∞,∞}.

Suppose that there does not exist a δ such that for |X| > δ, U is monotonic. Then for

all δ > 0, there exists a |Xn| > δ that corresponds to a local maxima of U , so U ′(Xn) = 0

and U ′′(Xn) ≤ 0 and there exists a |Xm| > δ that corresponds to a local minima of U ,

so U ′(Xm) = 0 and U ′′(Xm) ≥ 0, by the continuity of U . Given the incentives for the

long-run player, a static Nash equilibria is played when U ′(X) = 0, yielding flow payoff

g∗(X, 0). From the optimality equation, this implies g∗(Xn, 0) ≥ U(Xn) at the maximum

and g∗(Xm, 0) ≤ U(Xm) at the minimum. Thus, the oscillation of g∗(X, 0) is at least as

large as the oscillation of U(X). This is a contradiction, as there exists a δ such that for

|X| > δ, g∗(X, 0) is monotonic.The fact that U is bounded and monotone for large enough

X guarantees the existence of limX→p U(X). Q.E.D.

Lemma 11. Suppose a function f(X) is Lipschitz continuous on R. Then any bounded

solution U of the optimality equation satisfies:

lim
X→p

inf |f(X)|U ′(X) ≤ 0 ≤ lim
X→p

sup |f(X)|U ′(X)

lim
X→p

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→p

sup f(X)2U ′′(X)

for p ∈ {−∞,∞}.

Suppose f(X) is Lipschitz continuous and limX→p inf |f(X)|U ′(X) > 0. By Lemma 31,

f is O(X), so there exists an M ∈ R and a δ1 ∈ R such that when |X| > δ1, |f(X)| ≤M |X|
Given limX→p inf |f(X)|U ′(X) > 0 , there exists a δ2 ∈ R and an ε > 0 such that when |X| >

58



δ2, |f(X)|U ′(X) > ε. Take δ = max {δ1, δ2}. Then for |X| > δ, |U ′(X)| > ε
|f(X)| ≥

ε
M |X| .

Then the antiderivative of ε
M |X| is ε

M
ln |X| which converges to∞ as |X| → ∞. This violates

the boundedness of U . Therefore limX→p inf |f(X)|U ′(X) ≤ 0. The proof is analogous for

the other case. Suppose f(X) is Lipschitz continuous and limX→∞ inf f(X)2U ′′(X) > 0.

By Lemma 31, f is O(X), so there exists an M ∈ R and a δ1 ∈ R such that when |X| >
δ1, |f(X)| ≤ M |X| and therefore, f(X)2 ≤ M2X2. There also exists a δ2 ∈ R and an ε > 0

such that when |X| > δ2, f(X)2U ′′(X) > ε. Take δ = max {δ1, δ2}. Then for |X| > δ,

|U ′′(X)| > ε
f(X)2

> ε
M2X2 . Then the antiderivative of ε

M2X2 is −ε
M2 ln |X| which converges to

−∞ as |X| → ∞. This violates the boundedness of U . Therefore limX→p inf f(X)2U ′′(X) ≤
0. The proof is analogous for the other case. Q.E.D.

Lemma 12. Suppose f(X) is Lipschitz continuous on R. Then any bounded solution U of

the optimality equation satisfies limX→p f(X)U ′(X) = 0 for p ∈ {−∞,∞}.

Suppose that limX→p sup |X|U ′(X) > 0. By Lemma 10, there exists a δ > 0 such that

U(X) is monotonic for |X| > δ. Then for |X| > δ, XU ′(X) doesn’t change sign. There-

fore, if limX→p sup |X|U ′(X) > 0, then limX→p inf |X|U ′(X) > 0. This is a contradiction.

Thus, limX→p sup |X|U ′(X) = 0. By similar reasoning, limX→p inf |X|U ′(X) = 0, and there-

fore limX→p |X|U ′(X) = 0. Suppose f(X) is O(X). Then there exists an M ∈ R and a

δ1 ∈ R such that when |X| > δ1, |f(X)| ≤ M |X|. Thus, for |X| > δ1, |f(X)U ′(X)| ≤
M |XU ′(X)| → 0. Note this result also implies that limX→p U

′(X) = 0. Q.E.D.

Lemma 13. Let U be a bounded solution of the optimality equation. Then the limit of U

converges to the limit of the static Nash payoff, Up = gp for p ∈ {−∞,∞}.

By Lemmas 9 and 10, gp and Up exist. Suppose Up < gp. The equilibrium drift µ∗(X,U ′) is

Lipschitz continuous, so by Lemma 12, limX→p U
′µ∗(X,U ′) = 0. By the Lipschitz continuity

of g∗,

lim
X→p

g∗(X,U ′) = lim
X→p

g∗(X, 0) = gp.

Plugging the above conditions in to the optimality equation,

lim sup
X→p
|σ∗(X,U ′)|2 U ′′ = lim sup

X→p
2r (U − g∗(X,U ′))− 2µ∗(X,U ′)U ′

= 2r (Up − gp) < 0

This violates Lemma 11 since σ∗ is Lipschitz continuous. A similar contradiction holds for

Up > gp. Thus, Up = gp. Q.E.D.
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Lemma 14. Any bounded solution U of the optimality equation satisfies

lim
X→p
|σ∗(X,U ′)|2 U ′′(X) = 0

for p ∈ {−∞,∞}. Note this also implies U ′′(X)→ 0, since limX→p |σ∗(X,U ′)|2 > 0.

By Lemmas 12 and 13 and the squeeze theorem,

lim
X→p

∣∣∣|σ∗(X,U ′)|2 U ′′∣∣∣ = lim
X→p
|2r (U − g∗(X,U ′))− 2µ∗(X,U ′)U ′| = 0

Step 1b: Boundary Conditions for Unbounded Support and Unbounded g.

Suppose Ξ = R, g is unbounded and there are no absorbing points. Let ψ(X, k) =

ψ(X, k)/X, and U(X) = U(X)/X, and ψ′ and ψ
′

refer to the partial derivative with re-

spect to X.

Lemma 15. For p ∈ {−∞,∞}, there exists a function ψp(k) such that

lim
X→p

ψ(X, k) = lim
X→p

ψ′(X, k) := ψp(k).

Given that g∗ and µ∗ are Lipschitz continuous, there exists M,X0 ∈ R such that∣∣ψ(X, k)
∣∣ ≤ M(1 + k) for all |X| > X0 and k ∈ R. Therefore, ψ(X, k) is bounded in

X for large enough X. By Assumption 5, ψ′(X, k) is monotone in X for large enough X. By

Lemma 30, ψ(X, k) is monotone in X for large enough X. By Lemma 28 and the fact that

ψ continuous (except possibly at 0), limX→p ψ(X, k) exists and , limX→pXψ
′
(X, k) = 0. By

Lemma 29, limX→p ψ
′(X, k) = limX→p ψ(X, k). Q.E.D.

Lemma 16. If U is a solution of the optimality equation with linear growth, then there exists

a δ such that for |X| > δ, U ′ and U are monotonic. Additionally, for p ∈ {−∞,∞},

lim
X→p

U(X) = lim
X→p

U ′(X) := Up

exist and are equal.

Suppose U ′ is not eventually monotonic. Then for any δ, there exists a k and a |Xn| , |Xm| >
δ such that U ′(Xn) = k and U ′′(Xn) ≤ 0 and U ′(Xm) = k and U ′′(Xm) ≥ 0, by the continuity

of U ′. From the optimality equation, this implies U(Xn) ≤ ψ(Xn, k) and ψ(Xm, k) ≤ U(Xm).

Thus, the oscillation of ψ(X, k) is at least as large as the oscillation of U. Given that ψ′(X, k)

is eventually monotonic, it must be that U ′ is also eventually monotonic, a contradiction.

Therefore, it must be that U ′ is monotonic. By Lemma 30, if U ′ is eventually monotonic,
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then U is also eventually monotonic. Note that U is bounded, given that U has linear

growth. Therefore, since U is eventually monotonic, bounded and differentiable, by Lemma

28, limX→p U(X) exists and limX→pXU
′
(X) = 0 for p ∈ {−∞,∞}. Therefore, by Lemma

29, limX→p U
′(X) = limX→p U(X), which establishes existence and equality. Q.E.D.

Lemma 17. Suppose a function f(X) is Lipschitz continuous on R. Then any solution U

of the optimality equation with linear growth satisfies:

lim
X→p

inf |f(X)|U ′′(X) ≤ 0 ≤ lim
X→p

sup |f(X)|U ′′(X)

for p ∈ {−∞,∞}.

Suppose f(X) is Lipschitz continuous and limX→p inf |f(X)|U ′′(X) > 0. Then f has

linear growth, so there exists an M ∈ R and a δ1 ∈ R such that when |X| > δ1, |f(X)| ≤
M |X| Given limX→p inf |f(X)|U ′′(X) > 0 , there exists a δ2 ∈ R and an ε > 0 such that

when |X| > δ2, |f(X)|U ′′(X) > ε. Take δ = max {δ1, δ2}. Then for X > δ, U ′′(X) >
ε

|f(X)| ≥
ε

M |X| . Then the antiderivative of ε
M |X| is ε

M
ln |X| which converges to ∞ as X → p.

Therefore, U ′ must grow unboundedly large as X → p, which violates the result that U has

linear growth. Therefore limX→p inf |f(X)|U ′′(X) ≤ 0. The proof is analogous for the other

case. Q.E.D.

Lemma 18. Suppose a function f(X) is Lipschitz continuous on R.. Then any solution U

of the optimality equation with linear growth satisfies

lim
X→p

f(X)U ′′(X) = 0

for p ∈ {−∞,∞}.

Suppose that limX→p sup |X|U ′′(X) > 0. By Lemma 29, there exists a δ > 0 such

that U ′(X) is monotonic for |X| > δ. Then for |X| > δ, |X|U ′′(X) doesn’t change sign.

Therefore, if limX→p sup |X|U ′′(X) > 0, then limX→p inf |X|U ′′(X) > 0. This is a contra-

diction. Thus, limX→p sup |X|U ′′(X) = 0. By similar reasoning, limX→p inf |X|U ′′(X) = 0,

and therefore limX→p |X|U ′′(X) = 0. Suppose f(X) has linear growth. Then there exists

an M ∈ R and a δ1 ∈ R such that when |X| > δ1, |f(X)| ≤ M |X|. Thus, for |X| > δ1,

|f(X)U ′′(X)| ≤ M |XU ′′(X)| → 0. Note this result also implies that limX→p U
′′(X) = 0.

Q.E.D.

Lemma 19. Suppose U is a solution of the optimality equation with linear growth. Then

lim
X→p

U ′(X) = lim
X→p

U(X) = kp
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for p ∈ {−∞,∞}, where kp is the unique fixed point of ψp(k).

Consider p ∈ {−∞,∞} and let U be a solution of the optimality equation. Note that

|σ∗(X,U ′)|2 /X has linear growth, given that σ∗ is Lipschitz continuous. Therefore, by

Lemma 18,

lim
X→p

|σ∗(X,U ′)|2

X
U ′′(X) = 0

which, from the optimality equation, implies

lim
X→p

U(X)− ψ(X,U ′) = 0

From Lemma 16 that limX→p U
′(X) = limX→p U(X) = Up exists, and given that ψ is con-

tinuous and has a limit at p, limX→p ψ(X,U ′) = limX→p ψ(X,Up) = ψp(Up). Therefore,

Up − ψp(Up) = 0, and Up must be a fixed point of ψp(k).

By Assumption 5, g∗ and µ∗ are additively separable in (X, k). Therefore, ψp(k) has a

unique fixed point:

kp = lim
X→p

g1(X)

X
+
kp
r

µ1(X)

X

⇒ kp = lim
X→p

rg1(X)/X

r − µ1(X)/X

and Up = kp. Q.E.D.

Lemma 20. Suppose U is a solution of the optimality equation with linear growth. Then

lim
X→p

U(X)− yLp (X) = 0

for p ∈ {−∞,∞}, where

yLp (X) : = −r exp

(∫
r

µ1(X)
dX

)∫
exp

(
−
∫

r

µ1(X)
dX

)
g1(X)

µ1(X)
dX + φp

and φp = g2(kp) + kp
r
µ2(kp).
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Suppose U is a solution to the optimality equation with linear growth. From the opti-

mality equation, the separability of g∗ and µ∗, and the Lipschitz continuity of σ2 :

U =
σ2(X,U ′)

2r
U ′′ + g1(X) + g2(U ′) +

U ′

r
(µ1(X) + µ2(U ′))

⇒ lim
X→p

U − U ′

r
µ1(X)− σ2(X,U ′)

2r
U ′′ − g1(X) = lim

X→p
g2(U ′) +

U ′

r
µ2(U ′)

⇒ lim
X→p

U − U ′

r
µ1(X)− g1(X) = φp

Consider the linear, non-homogenous ODE

y − µ1(X)

r
y′ = g1(X) + φp (2)

The general solution to Equation 2 is

y =

(
−r
∫ (

1

f(x)

)
g1(x)

µ1(x)
dx+ c

)
f (x) + φp

where

f (x) = exp

(∫
r

µ1(x)
dx

)
and c is a constant. By Assumption 3, µ1 is O(X) with a growth rate slower than r. Let m

be the asymptotic growth rate of µ1.

Case (i): If m ∈ [0, r), then f(x) is not O(X), and therefore, any solution yL that is

O(X) must have c = 0.

yL = −rf (x)

∫ (
1

f(x)

)
g1(x)

µ1(x)
dx+ φp

Conclude that there is a unique solution yL that has linear growth.

Case (ii) If m < 0, then limX→∞ f(x) = 0, and c does not affect the limit properties of

y. Therefore, limX→∞ yL− y = 0 for all c, and it is without loss of generality to consider the

limit properties of yL.

Let U be a solution to the optimality equation with linear growth. Then, given that

there is a unique solution yL with linear growth to Equation 2, it must be that:

lim
X→p

U − yL = 0
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Note this implies that any two solutions with linear growth U and V have the same boundary

conditions, limX→p U − V = 0. Q.E.D.

Step 1c: Boundary Conditions for Bounded Support. Suppose Ξ =
[
X,X

]
a

closed and bounded interval, and there are no absorbing points.

Lemma 21. Any bounded solution U of the optimality equation has bounded variation.

Suppose U has unbounded variation. Then there exists a sequence (Xn)n∈N that cor-

respond to local maxima of U , so U ′(Xn) = 0 and U ′′(Xn) ≤ 0. Given the incentives

for the long-run player, a static Nash equilibria is played when U ′(X) = 0, yielding flow

payoff g∗(X, 0). From the optimality equation, this implies g∗(Xn, 0) ≥ U(Xn). Likewise,

there exists a sequence (Xm)m∈N that correspond to local minima of U , so U ′(Xm) = 0 and

U ′′(Xm) ≥ 0. This implies g∗(Xm, 0) ≤ U(Xm). Thus, g∗ also has unbounded variation.

This is a contradiction, since g∗(X, 0) is Lipschitz continuous. Q.E.D.

Lemma 22. Suppose a function f(X) is Lipschitz continuous on
[
X,X

]
with f(X) =

f(X) = 0. Then any bounded solution U of the optimality equation satisfies

lim
X→p

inf f(X)U ′(X) ≤ 0 ≤ lim
X→p

sup f(X)U ′(X)

lim
X→p

inf f(X)2U ′′(X) ≤ 0 ≤ lim
X→p

sup f(X)2U ′′(X)

for p ∈
{
X,X

}
.

Let f(X) be a Lipschitz continuous function on
[
X,X

]
with f(p) = 0 and suppose

limX→p inf |f(X)|U ′(X) > 0. Given f(X) is O (p−X), there exists an M ∈ R and a δ1 > 0

such that when |p−X| < δ1, |f(X)| ≤ M |p−X|. Given limX→p inf |f(X)|U ′(X) > 0 ,

there exists a δ2 ∈ R and an ε > 0 such that when |p−X| < δ2, |f(X)|U ′(X) > ε. Take

δ = min {δ1, δ2}. Then for |p−X| < δ, U ′(X) > ε
|f(X)| ≥

ε
M |p−X| . Then the antiderivative of

ε
M |p−X| is ε

M
ln |p−X| which diverges to −∞ as X → p. This violates the boundedness of

U . Therefore limX→p inf |f(X)|U ′(X) ≤ 0.

Let f(X) be a Lipschitz continuous function on
[
X,X

]
with f(p) = 0 and suppose

limX→p inf f(X)2U ′′(X) > 0. f(X) is O (p−X), so there exists an M ∈ R and a δ1 > 0

such that when |p−X| < δ1, |f(X)| ≤ M |p−X|.and therefore, f(X)2 ≤ M2 (p−X)2.

There also exists a δ2 ∈ R and an ε > 0 such that when |p−X| < δ2, f(X)2U ′′(X) > ε.

Take δ = min {δ1, δ2}. Then for |p−X| < δ, U ′′(X) > ε
f(X)2

> ε
M2(p−X)2

. The second

antiderivative of ε
M2(p−X)2

is −ε
M2 ln |p−X| which converges to −∞ as X → p. This violates

the boundedness of U . Therefore limX→∞ inf f(X)2U ′′(X) ≤ 0. The proof is analogous for

the other case. Q.E.D.
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Lemma 23. Suppose f(X) is Lipschitz continuous on
[
X,X

]
with f(X) = f(X) = 0.

Then any bounded solution U of the optimality equation satisfies limX→p f(X)U ′(X) = 0

for p ∈
{
X,X

}
.

By Lemma 22, limX→p inf |p−X|U ′(X) ≤ 0 ≤ limX→p sup |p−X|U ′(X). Suppose,

without loss of generality, that limX→p sup |p−X|U ′(X) > 0. Then there exist constants k

and K such that |p−X|U ′ crosses the interval (k,K) infinitely many times as X approaches

p. Additionally, there exists an L > 0 such that

|U ′′(X)| =

∣∣∣∣2r [U(X)− g∗(X,U ′)]− 2µ∗(X,U ′)U ′(X)

|σ∗(X,U ′)|2

∣∣∣∣ ≤ ∣∣∣∣L1 − L2 |p−X|U ′(X)

(p−X)2

∣∣∣∣
≤

∣∣∣∣L1 − L2k

(p−X)2

∣∣∣∣ =
L

(p−X)2

This implies that

∣∣[(p−X)U ′(X)]
′∣∣ ≤ |U ′(X)|+ |(p−X)U ′′(X)| =

(
1 +

∣∣∣∣(p−X)
U ′′(X)

U ′(X)

∣∣∣∣) |U ′(X)|

≤
(

1 +
L

k

)
|U ′(X)|

where the first line follows from differentiating (p−X)U ′(X) and the subadditivity of the

absolute value function, the next line follows from rearranging terms, the third line follows

from the bound on |U ′′(X)| and (p−X)U ′(X) ∈ (k,K). Then

U ′(X) ≥
∣∣[(p−X)U ′(X)]′

∣∣(
1 + L

k

)
Therefore, the total variation of U is at least K−k

(1+L
k )

on the interval |p−X|U ′(X) ∈ (k,K),

which implies that U has unbounded variation near p. This is a contradiction. Thus,

limX→p sup(p − X)U ′(X) = 0. Likewise, limX→p inf(p − X)U ′(X) = 0, and therefore

limX→p(p − X)U ′(X) = 0. Then for any function f(X) that is O(p − X), |f(X)U ′(X)| ≤
M1 |(p−X)U ′(X)| → 0, and therefore limX→p f(X)U ′(X) = 0. Q.E.D.

Lemma 24. Let U be a bounded solution of the optimality equation. Then limX→p U(X) =

g∗(p, 0) for p ∈
{
X,X

}
.

Suppose not. By Lemma 21 and the continuity of U , limX→p U(X) = U (p) exists.

Suppose U (p) < g∗(p, 0). The function µ∗(X,U ′) is Lipschitz continuous. By Lemma
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23 and the assumption that µx(a, b, p) = 0 for all a, b ∈ A,B, limX→p µ
∗(X,U ′)U ′(X) =

0. Additionally, by the Lipschitz continuity of g∗, limX→p g
∗(X,U ′) = g∗(p, 0). From the

optimality equation,

lim sup
X→p
|σ∗(X,U ′)|2 U ′′ = lim sup

X→p
[2r (U − g∗(X,U ′))− 2µ∗(X,U ′)U ′]

= 2r (U(p)− g∗(p, 0)) < 0

which violates Lemma 11 since σ∗ is Lipschitz continuous and σ(b, p) = 0 for all b ∈ B.

Thus, U(p) = g∗(p, 0). Q.E.D.

Lemma 25. Any bounded solution U of the optimality equation satisfies

lim
X→p

∣∣∣|σ∗(X,U ′)|2 U ′′∣∣∣ = 0

Applying Lemmas 23 and 24 and the squeeze theorem,

lim
X→p

∣∣∣|σ∗(X,U ′)|2 U ′′∣∣∣ = lim
X→p
|2r (U − g∗(X,U ′))− 2µ∗(X,U ′)U ′| = 0.

The above analysis directly carries over to a state space that is bounded from one side,

or contains a finite number of interior absorbing points.

Step 2: Uniqueness of Solution to Optimality Equation. The first lemma follows

directly from Lemma C.7 in Faingold and Sannikov (2011).

Lemma 26. If two bounded solutions of the optimality equation, U and V , satisfy U(X0) ≤
V (X0) and U ′(X0) ≤ V ′(X0), with at least one strict inequality, then U(X) < V (X) and

U ′(X) < V ′(X) for all X > X0. Similarly if U(X0) ≤ V (X0) and U ′(X0) ≥ V ′(X0), with at

least one strict inequality, then U(X) < V (X) and U ′(X) > V ′(X) for all X < X0.

The proof is analogous to the proof in Faingold and Sannikov (2011), defining X1 =

inf
{
X ∈ [X0, X) : U ′(X) ≥ V ′(X)

}
.

Note it’s possible for two solutions to be parallel / cross once, and then converge to the

same limit slope despite the slope of one solution always remaining strictly higher than the

other.

Lemma 27. There exists a unique solution U to the optimality equation.

Suppose U and V are both solutions to the optimality equation. Suppose V (X) > U(X)

for some X ∈ Ξ. Let X∗ be the point where V (X)−U(X) is maximized, which is well-defined
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given U and V are continuous functions and limX→p U(X)−V (X) = 0 for p ∈
{
X,X

}
. Then

U ′(X∗) = V ′(X∗) and V (X∗) > U(X∗). By Lemma 26, V ′(X) > U ′(X) for all X > X∗, and

V (X)−U(X) is strictly increasing, a contradiction since X∗ maximizes U(X)−V (X). The

proof for X is analogous. Q.E.D.

Step 3: Uniqueness of PPE. When there is a unique solution to the optimality

equation, it is obvious to see that there is a unique Markov equilibrium, by Theorem 1. It

remains to show that there are no other PPE. When there is a unique Markov equilibrium,

Theorem 2 implies that in any PPE with continuation values (Wt)t≥0, it must be the case

that Wt = U(Xt) for all t. Therefore, it must be that the volatility of the two continuation

values are equal and actions are uniquely specified by S∗(X, 0, U ′(X)/r). Q.E.D.

7.7 Intermediate Results

Lemma 28. Suppose a function f is bounded and there exists a δ such that for |X| > δ, f

is monotonic. Then for p ∈ {−∞,∞}, limX→p f(X) exists. If f is also differentiable, then

limX→pXf
′(X) = 0.

The first result is a standard result in analysis. For the second, suppose that limX→pXf
′(X) 6=

0. Suppose that limX→∞ inf |X| f ′(X) > 0. Given limX→∞ inf |X| f ′(X) > 0 , there exists

a δ ∈ R and an ε > 0 such that when |X| > δ, |X| f ′(X) > ε. Then for |X| > δ,

f ′(X) > ε
|X| . Then the antiderivative of ε

|X| is ε ln |X| which converges to ∞ as |X| →
p. This violates the boundedness of f . Therefore limX→p inf |X| f ′(X) ≤ 0. Similarly,

limX→p sup |X| f ′(X) ≥ 0. Suppose that limX→p sup |X| f ′(X) > 0. There exists a δ > 0

such that f(X) is monotonic for |X| > δ. Then for |X| > δ, |X| f ′(X) doesn’t change sign.

Therefore, if limX→p sup |X| f ′(X) > 0, then limX→p inf |X| f ′(X) > 0. This is a contradic-

tion. Thus, limX→p sup |X| f ′(X) = 0. By similar reasoning, limX→p inf |X| f ′(X) = 0, and

therefore limX→p |X| f ′(X) = 0. Note this result also implies that limX→p f
′(X) = 0. Q.E.D.

Lemma 29. Suppose a function f is differentiable. Define f (X) = f (X) /X. For p ∈
{−∞,∞}, if limX→p f(X) = M and limX→pXf

′
(X) = 0, then limX→p f

′(X) = M . In

other words,

lim
X→p

f ′(X) = lim
X→p

f(X)

Suppose f (X) = f (X) /X, limX→p f(X) = M and limX→pXf
′
(X) = 0. Then

f
′
= (1/X)(f ′ − f)

⇒ lim
X→p

f ′ = lim
X→p

Xf
′
+ f = M

67



Q.E.D.

Lemma 30. If f is a twice continuously differentiable function and there exists a δ such

that for |X| > δ, f ′ is monotonic, then there exists a δ2 such that for |X| > δ2, f/X is

monotonic.

Let f(X) = f/X. Note that

f
′

= (1/X)(f ′ − f)

f
′′

= (1/X)(f ′′ − 2f
′
)

and f
′

= 0. when f ′ = f, with a maximum if f ′′ ≤ 0 and a minimum if f ′′ ≥ 0. Let f ′ be

monotonically increasing for X > δ i.e. f ′′ ≥ 0 for all X > δ. From f
′′

= (1/X)(f ′′− 2f
′
), if

f
′
< 0 and f ′′ ≥ 0, then f

′′
> 0 and f

′
is increasing. Suppose there exists a δ2 > δ such that

f
′
(δ2) ≥ 0. Then, by continuity of f

′
and the fact that f

′
< 0 and f ′′ ≥ 0⇒ f

′′
> 0, it is not

possible to have f
′
< 0 for X > δ2. Therefore, f ′ ≥ 0 for all X > δ2 and f is monotonically

increasing for all X > δ2. Otherwise, f
′
< 0 for all X > δ, and therefore f is monotonically

decreasing for all X > δ. The proof is similar when f ′ is monotonically decreasing. Q.E.D.

Lemma 31. Convergence rate of Lipschitz functions.

1. Suppose a function f(x) is Lipschitz continuous on R. Then there exists a K ∈ R and

a δ ∈ R such that when |x| > δ, |f(x)| ≤ K |x|.

2. Suppose a function f(x) is Lipschitz continuous on [x, x] ⊂ R. Then for any x∗ ∈
[x, x], f (x)− f (x∗) is O(x− x∗) as x→ x∗.

Suppose f(x) is Lipschitz continuous on R. Then there exists a K1 ∈ R such that for all

x1, x2 ∈ R, |f(x2)− f(x1)| ≤ K1 |x2 − x1| and ∃K2 ∈ R , |f(0)| ≤ K2. Then

|f(x)| ≤ |f(x)− f(0)|+ |f(0)| ≤ K1 |x|+K2

Therefore, there exists a K and an x∗ such that for |x| > x∗, |f(x)| ≤ K |x|.
Suppose f(x) is Lipschitz continuous on [x, x] with Lipschitz constant K ∈ R. Then

|f(x)− f(x)| ≤ K |x− x|. Note that f(x) is a constant. Therefore, f(x)− f(x) is O(x− x)

as x→ x. As a special case, this implies that if f(x) = 0, then f(x) is O(x− x). Q.E.D.
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