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Abstract

The problem of allocating bundles of indivisible objects without transfers arises

in the assignment of courses to students, of computing resources like CPU time,

memory and disk space to computing tasks and the truck loads of food to food banks.

In these settings the complementarities in preferences are small compared with the

size of the market. We exploit this to design mechanisms satisfying efficiency, envy-

freeness and asymptotic strategy-proofness.

Informally, we assume that agents do not want bundles that are too large. There

will be a parameter k such that the marginal utility of any item relative to a bundle

of size k or larger is zero. We call such preferences k-demand preferences. Given

this parameter we show how to represent probability shares over bundles as lotter-

ies over approximately (deterministic) feasible integer allocations. The degree of

infeasibility in these integer allocations will be controlled by the parameter k. In

particular, ex-post, no good is over allocated by at most k − 1 units.

1 Introduction

The problem of allocating bundles of indivisible objects without transfers arises in the

assignment of courses to students (Budish [2011]), of computing resources like CPU time,

memory and disk space to computing tasks (Gutman and Nisan [2012]), of truck loads of

∗This paper is a merger of Peivandi [2012] and Nguyen and Vohra [2013].
†Purdue University, nguye161@purdue.edu
‡Northwestern University, peivandi@u.northwestern.edu
§University of Pennsylvania , rvohra@seas.upenn.edu
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food to food banks (Houlihan [2006]), siblings to schools (Abdulkadiroğlu et al. [2006])

and couples to hospital residency positions (Kojima et al. [2013], Ashlagi et al. [2014]).

Many of the methods for allocating indivisible goods proposed and studied are limited

to the case of unit demand- where each agent wishes to consume at most one object. They

can be divided into two groups. In the first are mechanisms that specify a lottery over

outcomes, while in the second, mechanisms specify probability shares in objects.

Examples of the first type of mechanisms are random serial dictatorship (RSD) and

top-trading with random endowments (TTC) (Abdulkadiroğlu and Sönmez [1998],

Hashimoto [2013]). Neither mechanism explicitly randomizes over each possible outcome

given the large number of possible outcomes. Instead, they specify a procedure for assign-

ing goods to agents from a randomly chosen starting point.1 These methods are typically

strategy-proof and Pareto optimal but lack other desirable properties like ordinal effi-

ciency and envyfreeness. The second type of mechanism specifies probability shares in

objects rather than lotteries over feasible outcomes is popular. Under the unit demand

assumption, there is, by virtue of the Birkhoff-von Neuman theorem, an equivalence be-

tween probability shares and lotteries over feasible outcomes. As probability shares are in

a sense ‘easier’ to specify, these mechanisms produce outcomes with many more desirable

properties than either RSD or TTC. Examples of mechanisms in this group are Probabilis-

tic Serial (PS) and Competitive Equilibrium with Equal Incomes (CEEI) (Bogomolnaia

and Moulin [2001], Hylland and Zeckhauser [1979]).2 Compared with the first type of

mechanisms, the second type usually possess stronger efficiency and equity properties but

are generally not strategy-proof. Nevertheless, as shown in Azevedo and Budish [2012] for

example, the second type of mechanism are asymptotically strategy-proof. Generalizing

these results to settings where agents’ preferences are over bundles is difficult because the

1In RSD, for example, agents are randomly assigned a priority ordering which determines who gets to
choose first. In TTC agents are randomly assigned a good which they can then trade with others.

2The PS mechanism determines probability shares by having agents nibble away at objects at a
constant speed in order of preference until their supply is exhausted. The CEEI mechanism determines
probability shares from a Walrasian equilibrium assuming equal incomes and that the goods are divisible.
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equivalence between probability shares in objects and lotteries over outcomes does not

hold.

Generalizations of the PS and CEE mechanism have been proposed (see Che and

Kojima [2010]) and (Kojima [2009]). With some exceptions these generalizations rarely

inherit the attractive features of their antecedents unless one rules out complementari-

ties in preferences. Ruling out complementarities in preferences is problematic as they

are an essential feature of applications such as course allocation, assigning siblings to

schools. However, in many applications the ‘degree’ of these complementarities are small

compared with the size of the market. In this setting we design mechanisms in which

agents have preferences over bundles, satisfying efficiency, envyfreeness and asymptotic

strategy-proofness.

Informally, we assume that agents do not want bundles that are too large. There will

be a parameter k such that the marginal utility of any item relative to a bundle of size k

or larger is zero. We call such preferences k-demand preferences.3

Given this parameter we show how to represent probability shares over bundles as

lotteries over approximately (deterministic) feasible integer allocations. The degree of

infeasibility in these integer allocations will be controlled by the parameter k. In partic-

ular, ex-post, no good is over allocated by at most k − 1 units. Thus, these mechanisms

will be relevant when k is small relative to the available supply of each good or when the

resource constraints are ‘soft’, i.e., permit small violations. An alternative solution for

hard capacity constraints is to hold k − 1 units of each good in reserve to make up for a

shortfall.4

One setting where k will be small relative to available supply is (University) course

allocation. Each good is a course and the available supply of each good is the number of

3Our definition of k-demand is actually more general, which also allows for preferences over large
bundles, that are additive over several small bundles.

4When k = 1 we recover the well known equivalence between probability shares in goods and lotteries
over outcomes in the unit demand case.
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seats in the classroom in which the course will be conducted. Typically a student is not

able to take more than 5 courses in any term, so k = 5. This means, ex-post, we might

over allocate at most 4 seats per class. In a classroom with 20 seats, this can easily be

accommodated by adding 4 seats.

Upon this representation theorem we build a general method for obtaining mechanisms

for allocating bundles of indivisible objects which have a variety of desirable properties.

We describe two applications below.

1. Assuming cardinal k-demand preferences, we exhibit an ex-ante envy-free, asymptot-

ically efficient and asymptotically strategy-proof mechanism where no good, ex-post,

is overallocated by more than k − 1 units.

2. Assuming ordinal k-demand preferences we generalize the PS mechanism to obtain

a mechanism for allocating bundles that is envy-free, ordinally efficient, asymptot-

ically strategy-proof where no good, ex-post, is overallocated by more than k − 1

units.

The chief virtue of this method is that it allows the designer to specify the outcome in

terms of probability shares in bundles. As noted earlier, it gives one greater control over

the outcomes. Second, it allows for a succinct description of the mechanism (recall that

the set of possible outcomes is significantly larger than the number of possible bundles

that an agent can receive). Third, in a precise sense, it allows for efficient computation.

In the next section we introduce notation, the setting and the precise restriction on

preferences we impose. Subsequently we state the main result. The following sections

describe applications of this result and contrasts them with the relevant literature.
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2 Notation and Approximate Implementation

As noted earlier the equivalence between probability shares and lotteries relies on the

Birkhoff-von Neuman theorem. This section introduces an approximate generalization of

the Birkhoff- von Neuman theorem that accommodates complementarities in preferences.

In the combinatorial assignment problem we have a set N of agents and a set G of

goods. For each j ∈ G, the available supply of good j is an integer sj. A bundle is

captured by a non negative vector S ∈ N|G|, where the jth-coordinate Sj indicates the

number of copies of good j in the bundle S. The size of a bundle S, denoted as |S|, is

defined as the total number of items in S, i.e.,
∑

j∈G Sj.

Agent i is interested in obtaining at most one bundle. Here we will assume that the

maximum size of a single bundle is at most k. In the course allocation problem, for

example, students are agents, each good j corresponds to a course with the number of

available seats being sj. Each student requires at most 1 seat in each class. In practice

students can only consume a bundle of size at most 5, so k = 5. In the problem of assigning

couples to hospital residency positions k = 2. Each bundle consists of 2 positions in the

same hospitals or in two different but nearby hospitals.

To describe the set of feasible allocations of objects to agents let 0 ≤ xi(S) ≤ 1

denote the probability that agent i obtains bundle S. Here each agent is only interested

in bundles of size at most k, thus we assign xi(S) = 0 for all S of size larger than k. First,

because each agent receives one bundle of goods (possibly empty), any allocation must

satisfy the following constraint.

x ≥ 0

xi(S) = 0 if |S| > k∑
S

xi(S) = 1 ∀i ∈ N

(DEMAND)
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Feasibility requires that for each type of good j we do not allocate more than its

available supply: ∑
i∈N

∑
S3j

Sj · xi(S) ≤ sj ∀j ∈ G (SUPPLY)

Define approximate supply constraints:

∑
i∈N

∑
S3j

Sj · xi(S) ≤ sj + k − 1 ∀j ∈ G (SUPPLY+k-1)

Call a fractional solution x to (DEMAND-SUPPLY) implementable if it can be ex-

pressed as a convex combination of feasible integer solutions to (DEMAND-SUPPLY).

Feasible integer solutions of (DEMAND-SUPPLY) correspond to feasible allocations of

indivisible bundles (integer allocations) to agents. An implementable fractional solu-

tion can be interpreted as a lottery over feasible allocations. Generally, an x satisfying

(DEMAND-SUPPLY) is not implementable. Our main result, below, is that every x sat-

isfying (DEMAND-SUPPLY) can be implemented as a lottery over integer solutions to

(DEMAND) and (SUPPLY+k-1).

Our result is the following:

Theorem 2.1 Any (fractional) solution of (DEMAND-SUPPLY) can be implemented as

a lottery over integral allocations that satisfy (DEMAND) and (SUPPLY+k-1).

Proof:

To prove Theorem 2.1 we will need the following lemma.

Lemma 2.2 Given any (not necessarily non-negative) utility vector ui(S) and any frac-

tional vector x satisfying (DEMAND) and (SUPPLY), we can find in polynomial time an

integral vector x∗ satisfying (DEMAND) and (SUPPLY+k-1) such that u · x∗ ≥ u · x.

The proof of Lemma 2.2 is provided in Appendix B.1. It is a slight extension of a recent

result in Combinatorial Optimization Király et al. [2012]. Notice that in Király et al.

[2012], it is assumed that sj is either 0 or 1. Our proof does not require such an assumption.
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Given Lemma 2.2, the proof of Theorem 2.1 is as follows.

For ease of exposition, let Q be the polytope consisting of all real vectors satisfying

(DEMAND) and (SUPPLY); and let Ek be the set of integral solutions to (DEMAND)

and (SUPPLY+k-1).

Suppose Theorem 2.1 does not hold. Then, there is an x ∈ Q that is not in the convex

hull of Ek. Hence, there exists a hyperplane that separates x from Ek. Let u be the vector

of coefficients of that hyperplane. We can choose it so that ux > uz for all z ∈ Ek which

contradicts Lemma 2.2.

Notice, the proof of Theorem 2.1 is nonconstructive. However, based on the standard

Ellipsoid method in convex optimization, given any x ∈ Q; one can implement x as a

lottery over integral solutions of Ek in polynomial time. In Appendix B.2, we provide a

practical polynomial time algorithm to construct a lottery whose expectation is arbitrarily

close to the given vector x in Q.

3 Maximizing Social Welfare

In this section we introduce a general mechanism (called OPT) when agents have cardinal

preferences over bundles. As discussed in the introduction, in the absence of transfers,

identifying an integer allocation in (DEMAND-SUPPLY) that maximizes social welfare

subject to fairness and incentive comparability is difficult. The absence of a numeraire

good, like money, makes it difficult to discourage agents from claiming an excessively large

utility for their most preferred bundle of objects. To overcome this issue, we introduce

(interim) envy-freeness as linear constraints into the program (DEMAND-SUPPLY). We

then show how Theorem 2.1 can be used to find an approximately feasible allocation so

as to maximize weighted total social welfare. Finally, we prove that when the economy is
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large, this allocation is actually asymptotically strategy-proof.

3.1 k-demand Preferences

We first formally define k-demand preferences. If u(S) is an agent’s utility for the bundle

S ∈ N|G|, we require u(∅) = 0 and that u(·) have one of the following properties. The first

is that no agent has preferences for bundles that are too large, i.e.

u(S) = 0 ∀|S| ≥ k + 1. (1)

The second is the monotone cover of the first that allows for free disposal and ensures

monotonicity.

u(S) = max
A≤S:
{u(A) : |A| ≤ k} for S ∈ N|G|. (2)

One setting where 1 or 2 will hold is course assignment. Each good j ∈ G is a course, sj

is the number of seats in the course and each i ∈ N is a student. There is an upper limit,

k, on the number of courses any student can take. k is usually small relative to sj for

each j ∈ G. For example, k will be at most 4 while sj is usually at least 20 and frequently

much larger.

Our analysis extends to the case where agents have preferences for large bundles.

Suppose a partition P1, . . . , Pt of G such that |Pr| ≤ k for all r = 1, . . . , t. Then,

u(S) =
t∑

r=1

u(S ∩ Pr). (3)

One instance of this preferences may arise is when the objects to be allocated are bands

of spectrum. Bands of spectrum that interfere have similar frequency and are located

close to one another and so can be categorized in groups of small size. Utilities for

interfering bands need not be additive. Bands further apart do not interfere, so utilities
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for non-interfering bands can be taken to be additive.

When k = 1, (1-2) yield unit demand preferences. When k = 1, under (3), utilities are

additive. Thus, k-demand preferences for k = 1 contain the basic classes of preferences

that are substitutable. When k = |G|, k-demand preferences impose no restriction on

preferences. Intermediate values of k restrict the range of complementarities that can be

expressed.

3.2 Mechanism OPT

To implement OPT, choose a positive weight wi for each agent i and solve the linear

program of maximizing
∑

S⊆Gwi · ui(S)xi(S) subject to (DEMAND-SUPPLY) and the

envy-free condition defined below.

An allocation x satisfying (DEMAND-SUPPLY) is envy-free if

∑
S⊆G

ui(S)xi(S) ≥
∑
S⊆G

ui(S)xj(S) ∀i ∀j 6= i. (ENVY-FREE)

Formally the mechanism OPT is defined as follows.

Definition 3.1 Given positive weights wi, i ∈ N , let x∗ be an optimal solution of

max{
∑
i∈N

∑
S⊆G

wi · ui(S)xi(S) : s.t. (DEMAND), (SUPPLY ), (ENV Y − FREE)},

(LIP)

(If there are multiple solutions, select one with a fixed tie-breaking rule.)

By Theorem 2.1, x∗ can be implemented as a lottery over integral assignments satis-

fying (DEMAND) and (SUPPLY+k-1). The mechanism OPT takes as input a report of

each agents utility function and returns the optimal (fractional) solution to program (LIP)

and implements it as a lottery.

In the section below we show that if (LIP) has a unique optimal solution, one can
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implement x∗ in a way that is asymptotically strategy-proof.5 Thus, under this condition

mechanism OPT is approximately efficient subject to ex-ante envy-free, and asymptoti-

cally strategy-proof.

Mechanism OPT has several attractive properties. It easy to implement (can be

computed in time polynomial in |N |, |G| and k), furthermore it gives the designer control

over the outcome through selection of the weights wi. For example, by choosing wi = 1

for all i, mechanism OPT selects an allocation of maximum social welfare among the

envy-free outcomes. For another choice of the wi’s, mechanism OPT can implement the

CEEI mechanism of Hylland and Zeckhauser [1979] (as well as a generalization).

To see this, consider the original CEEI mechanism, where agents are restricted to unit

demands. In the CEEI mechanism, agents are endowed with equal amounts of a budget of

fictitious money and a competitive equilibrium of that economy is determined. Under the

unit demand restriction, the Birkhoff-von Neumann theorem implies that the competitive

equilibrium allocation can be implemented as a lottery. It is well known that the CEEI

mechanism is pareto efficient and ex-ante envy-free. Thus, there exists positive weights

{wi}i∈N (Negishi weights) such that this competitive equilibrium allocation maximizes

weighted social welfare subject to ex-ante envy-freeness. Hence, OPT with the Negishi

weights can implement the CEEI mechanism.

The idea extends to the case of of k-demand preferences. Namely, if we allow for the

fractional assignment of bundles of objects, and give each agent the same fictitious budget,

market-clearing prices exist (see Appendix A for a short proof based on an appeal to the

celebrated results of Arrow-Debreu-McKenzie). This fractional assignment while feasible

may not be implementable. Under Theorem 2.1 it can be implemented so that it over

allocates each good by at most k − 1 units. This is a generalization of the CEEI mech-

anism, which we call the bundled competitive equilibrium from equal income B-CEEI

5The assumption that (LIP) has a unique optimal solution is a mild one because we can always
guarantee this by perturbing wi slightly.

10



mechanism. Notice that an equilibrium allocation of bundles can always be obtained by

maximizing a suitable weighted sum of utilities subject to (DEMAND), (SUPPLY), fur-

thermore an outcome of a competitive equilibrium with equal budgets is envy-free. Thus,

our mechanism OPT with the proper weights wi can implement the outcome of the B-

CEEI mechanism. From this construction, it is easy to see that the B-CEEI mechanism

is approximately efficient, ex-ante envy-free. Furthermore, as we show later, it is also

asymptotically strategy-proof.

It is instructive to compare the B-CEEI mechanism to Budish’s (Budish [2011]) gen-

eralization of the CEEI mechanism, call it the A-CEEI mechanism. It is a deterministic

mechanism for the combinatorial assignment problem based on computing an approximate

competitive equilibrium from approximately equal incomes. Thus, the preference informa-

tion required of agents is ordinal rather than cardinal as in our case. Budish’s mechanism

returns an allocation that is approximately efficient, approximately envy-free in an ex-

post sense, asymptotically strategy-proof and, like ours, violates the resource constraints.

Budish bounds the violation in terms of the Euclidean distance (O(
√

min{2k, |G|}|G|))

between the supply vector and the vector of the number of goods allocated, unlike the

bound on the maximum violation in each type of goods considered in this paper. The two

bounds are not comparable.

Recently, Akbarpour and Nikzad [2014] also considered an approximate implementa-

tion for problems, where several quotas are imposed on agents and objects. Their model

restricts agents to linear utilities over objects, and the approximation results only hold

probabilistically rather than ex-post.

Hashimoto [2013] proposes a generalization of the RSD mechanism that also yields an

outcome that is approximately feasible. The error bound is multiplicative and so weaker

than ours which is additive.

In the next subsection we introduce notation to define precisely what is meant by

asymptotic strategy-proofness as well as prove that the mechanism just described is
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asymptotically strategy-proof.

3.3 Asymptotic Strategy-Proofness

We assume each agent i ∈ N has one of a finite number of types Θ. For each type θ ∈ Θ,

let nθ be the number of agents of type θ. The type of an agent encodes their preferences

which are represented by a von-Neuman Morgenstern utility function defined on bundles

of goods. In our main applications (course allocation) we assume, for simplicity only, that

each agent wishes to consume at most one copy of each good.

For an agent of type θ ∈ Θ, let uθ(S) ≥ 0 be his utility for bundle S ⊆ N|G|. We will

also use the notation uθi (S) (or for short ui(S) ) for the utility of agent i for bundle S

when his type is θ. We assume that an agent’s utility depends exclusively on his type and

outcome. Furthermore, we assume for each type of agent, the utility function satisfies

either (1), (2) or (3). Without loss of generality, we also assume uθ(∅) = 0 for all type θ.

Given a lottery (a probability distribution) over a set of bundles, an agent’s utility is his

expected utility from the lottery.

Given a type profile an allocation is envy-free if all agents weakly prefer the lottery

assigned to them to any lottery assigned to another. That is,

uθi(xi) ≥ uθi(xj).

Let A denote the set of (approximately) feasible allocations. Recall that N is the set

of agents. For every |N | > 0, a mechanism Φ(N) is a mapping from a profile of agents’

types to a lottery over (approximately) feasible allocations. More precisely,

Φ(N) : ΘN → ∆(A).

Without ambiguity, we sometimes use Φ instead of Φ(N) for short.
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It will be useful to consider a mechanism from the perspective of an agent i. Let

Φ
(N)
i : Θ×ΘN−1 → ∆(Ai),

where Ai denotes the possible bundles that agent i obtains, and Φi(θi, θ−i) denotes the

lottery over bundles that agent i receives when he reports θi and other agents report θ−i.

A mechanism is Φ is strategy-proof if it is optimal for each agent to truthfully report

their type given any vector of type reports of the other agents, that is

uθi(Φi(θi, θ−i)) ≥ uθi(Φi(θ
′
i, θ−i)).

A mechanism is ε- strategy-proof if it is “almost’’ optimal for each agent to report

truthfully given any vector of reports by the other agents, that is

uθi(Φi(θi, θ−i)) ≥ uθi(Φi(θ
′
i, θ−i))− ε.

Finally, we define asymptomatic strategy-proofness. Φ is asymptotically strategy-

proof if for any ε > 0 there exists a constant n0 such that Φ is ε-strategy-proof whenever

there are at least n0 agents reporting r to Φ for each every type r ∈ Θ.

Definition 3.2 Φ is asymptotically strategy-proof if for any ε > 0 there exists a

constant n0 such that if ~θ satisfies |{i|θi = r}| ≥ n0 for all r ∈ Θ, then

uθi(Φi(θi, θ−i)) ≥ uθi(Φi(θ
′
i, θ−i))− ε.

Our definition of asymptotic strategy-proofness is similar in spirit to the notion of

‘strategy-proofness in the large’ introduced by Azevedo and Budish [2012]. To define this

notion assume agents’ reports are drawn independently from a distribution over the type

set Θ with full support. A mechanism is strategy-proof in the large if it is ε strategy-proof
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when the number of agents is large enough. In fact, any mechanism that is asymptotically

strategy-proof in our sense will also be strategy-proof in the large.

Theorem 3.3 Set wi to be the same for each type of agents and suppose (LIP) has an

unique optimal solution x∗ implementable by a lottery x̄. Then, the mechanism OPT that

takes as input a report of each agents type and returns x̄ is asymptotically strategy-proof.

Proof: Recall that the set of types, Θ, is finite. Let θi be the type reported by agent i,

and let nθ be the number of agents reporting type θ. Also let wθi be the weight that the

mechanism chooses for an agent of type θi.

Consider the following program for finding a utilitarian allocation that is envy-free:

max
∑
i∈N

∑
S⊆G

wθi · uθi(S)xθii (S) (4)

∑
S⊆G

xθii (S) ≤ 1 ∀i ∈ N (5)

∑
i∈N

∑
S3j

xθii (S) ≤ sj ∀j ∈ G (6)

∑
S⊆G

uθi(S)xθii (S) ≥
∑
S⊆G

uθi(S)x
θj
j (S) ∀i, j (7)

Recall, that we can set xθii (S) = 0 whenever |S| > k. Call (4-7) the disaggregate

formulation.

Introduce variables yθ(S) to denote the ‘aggregate’ amount of bundle S that all

agents reporting θ get. Namely if we consider an anonymous solution of (4-7), that is

xθii (S) = x
θj
j (S) whenever θi = θj = θ, then yθ(S) = nθx

θi
i (S). Now consider the following

‘aggregate’ formulation.

max
∑
θ∈Θ

∑
S⊆G

wθ · uθ(S)yθ(S) (8)

∑
S⊆G

1

nθ
yθ(S) ≤ 1 ∀θ ∈ Θ (9)
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∑
t∈Θ

∑
S3j

yθ(S) ≤ sj ∀j ∈ G (10)

1

nθ

∑
S⊆G

uθ(S)yθ(S) ≥ 1

nθ′

∑
S⊆G

uθ(S)yθ
′
(S) ∀θ, θ′ ∈ Θ. (11)

To show that our mechanism is asymptotically strategy-proof, we need to prove that

for every ε > 0, there exists no such that if nθ ≥ n0 for all θ ∈ Θ, then no agent can

improve his utility by more than ε.

Suppose agent i of type p pretends to be of type q. We will show that the impact on

the allocations of the other agents from this misreport can be computed by solving (8-11)

with a perturbed right hand side.

If agent i of type p pretends to be of type q then the number of agents reporting p is

decreased by one and the number of agents reporting q is increased by 1. Let n′θ be the

number of agents reporting type θ in this case, then

n′p = np − 1;n′q = nq + 1;n′θ = nθ ∀θ 6= p, q

Thus, the aggregate program becomes

max
∑
θ∈Θ

∑
S⊆G

wθ · uθ(S)yθ(S) (12)

∑
S⊆G

1

n′θ
yθ(S) ≤ 1 ∀θ ∈ Θ (13)

∑
θ∈Θ

∑
S3j

yθ(S) ≤ sj ∀j ∈ G (14)

1

n′θ

∑
S⊆G

uθ(S)yθ(S) ≥ 1

n′θ′

∑
S⊆G

uθ(S)yθ
′
(S) ∀θ, θ′ ∈ Θ. (15)

Compare program (12)-(15) to program (8)-(11). If both np and nq are large enough

then the objective function and the constraints of both program are close to each other.
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Thus, as np and nq go to infinity, the maximum value of (12)-(15) converges to the

maximum value of (8)-(11). Furthermore, because of the assumption that (8)-(11) has

an unique maximizer, the solution of (12)-(15) will converge to that unique maximizer,

otherwise the maximum value of (12)-(15) would not converge to the maximum value of

(8)-(11).

Thus, there exists n0 such that if both np and nq are at least n0 then (12)-(15) also has

a unique solution. Furthermore, as n0 increases the solution of (12)-(15) is converging to

the solution of (8)-(11). In other words, if n0 is large enough, the agent who misreports

their type can only change their allocation by O(ε). Thus, by the envy-free constraint,

their utility changes by at most O(ε). This shows that the mechanism is asymptotically

strategy-proof according to Definition 3.2.

4 Generalizing the Probabilistic Serial Mechanism

Mechanism OPT required that agents communicate cardinal preferences. This is some-

times criticized as impractical. Hence, in this section we turn our attention to mechanisms

that rely on ordinal information alone. Our goal is to generalize the well known Prob-

abilistic Serial PS mechanism for allocating indivisible goods when agents have strict

preferences and unit demands (introduced by Bogomolnaia and Moulin [2001]). The PS

mechanism begins with each agent consuming, at the same constant rate, their most pre-

ferred object. When the supply of an object is exhausted, agents consuming that object

switch to consuming the next available object on their preference list. At termination, the

fraction of each object an agent has consumed determines their probability shares in the

relevant object. These probability shares can be implemented as a lottery over feasible

allocations. It is well known that the PS mechanism is envy-free, ordinally efficient and

asymptotically strategy-proof. We define ordinal efficiency for the case when agents have
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preferences over bundles rather than single objects.

Assume, for this section only, that agents have strict preferences over bundles. Let ≺i

be agent i’s ordinal preference ranking over acceptable bundles. As each agent receives a

lottery over allocations we extend a preference ordering over bundles to a partial ordering

over lotteries of bundles via stochastic dominance. Recall that a lottery over allocations

induces probability shares x over bundles that satisfy (DEMAND) and (SUPPLY). Thus,

we may identify each lottery with a solution of (DEMAND) and (SUPPLY).6 An allocation

x satisfying (DEMAND) and (SUPPLY) weakly stochastically dominates an allocation y

for agent i, if for all B ⊆ G: ∑
S�iB

xi(S) ≥
∑
S�iB

yi(s).

Allocation x stochastically dominates y for agent i, if the above inequality holds strictly for

some bundles S. A mechanism is ordinally efficient if there is no other random assignment

that weakly stochastically dominates the mechanism’s allocation with respect to all agents

preferences over bundles.

As preferences in this section are ordinal, the notion of strategy-proofness and envy-

freeness from Section 3.3 must be modified. An ordinal mechanism is strategy-proof if

for any agent, the allocation resulting from misreporting is stochastically dominated by

the allocation from truthfull reporting, with respect to agent’s true preference. A mecha-

nism is envy-free if for all agents, the allocation assigned to him stochastically dominates

all other agents’ assignments, with respect to his preference. A mechanism is weakly

strategy-proof if for each agent, his allocation from truthful reporting is not stochastically

dominated by the allocation produced by a misreport, with respect to his true preference.

A mechanism is weakly envy-free if no agent’s allocation is stochastically dominated by

the allocation of another agent.

Ours is not the first paper to extend the PS mechanism beyond the unit demand case.

6Note that each solution of (DEMAND) and (SUPPLY) does not correspond to a lottery over alloca-
tions.
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See for example, Kojima [2009] and Budish et al. [2013]. Our generalization of the PS

mechanism differs from these papers in the kind of complementarities in preferences we

allow. Those papers assume that agents rank lotteries over assignments based on first or-

der stochastic dominance on single objects. As the example below shows, in their setting,

an agent with responsive cardinal preferences may prefer a utility-dominated (as defined

in those papers) lottery. This assumption allows these papers to abstract away from the

implementability problem caused by complementarities in ordinal preferences.

Example: There are two objects a and b each with two copies. Agent i has the following

cardinal preference for bundles:

ui({a, a}) = 6, ui({a, b}) = 5, ui({b, b}) = 2, ui({a}) = 1, ui({b}) = 0.5

The ordinal preference associated with this cardinal preference is responsive. Consider

the following two lotteries:

A: agent i receives bundle {a, a} with probability half and bundle {b, b} with probability

half.

B: agent i receives bundle {a, b} with probability 0.99 and {b, b}, with probability 0.01.

Under the preferences defined in Kojima [2009] and Pycia [2011], agent i prefers lottery

A to lottery B, since under lottery A agent i has a higher chance of receiving copies of

object a. However, agent i has a higher expected utility for lottery B.

4.1 Natural Probabilistic Serial Mechanism

A natural generalization of the PS mechanism for non-unit demand is to have agents con-

sume bundles rather than individual objects. When the supply of an object is exhausted

agents switch to their most preferred bundle not containing objects whose supply has

been exhausted. This mechanism, which we call the Natural Probabilistic Serial (NPS)

mechanism, returns probability shares in bundles. Therefore, it produces outcomes that,
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in general, cannot be implemented. Kojima [2009] and Budish et al. [2013] circumvent

this difficulty by assuming preferences satisfy first order stochastic dominance on single

objects. In this restricted case, the NPS mechanism reduces to the PS mechanism. How-

ever, if we assume preferences satisfy the k-demand condition, we may invoke Theorem

2.1. Under these conditions the NPS mechanism is envy-free, ordinally efficient, asymp-

totically strategy-proof and overallocates each good by at most k− 1 units. These results

along with a formal description of the NPS mechanism are stated below.

To define the NPS mechanism formally, let t(0) = 0 ≤ t(1) ≤ t(2) ≤ t(v) ≤ t(v + 1)...

be the instances in time when the supply of at least one good falls to zero. At time t(v),

the set of goods in non-zero-supply is denoted G(v). Initially, G(0) = G. Let mj(v) be

the total number of copies of object j in all agents’ most preferred bundles (from among

bundles with objects from G(v)). Moreover, let zv be a deterministic allocation where

each agent is allocated his best most preferred bundle of objects in G(v).7 Use zvj to denote

the number of copies of object j consumed in the allocation zv. The NPS mechanism can

be represented by the following steps:

• Starting with available supply of G(v − 1), the latest time at which the current

supply of good j would be exhausted is

tj(v) = sup{t ∈ [0, 1]|zv−1
j +mj(v − 1)(t− t(v − 1)) ≤ nj}.

• Therefore, the first instance at which any good is exhausted is t(v) = minj∈G(v−1) tj(v).

• At time t(v), the set of goods with non-zero supply is

G(v) = G(v − 1) \ {j ∈ G(v − 1)|tj(v) = t(v)}.
7Agents are allowed to receive multiple copies of an object in G(v).

19



•

zvj = zv−1
i +mj(v − 1)(tj(v)− tj(v − 1))

• The allocation returned by the NPS mechanism at time t(v) is

NPS(v) = NPS(v − 1) + (t(v)− t(v − 1))zv−1.

• NPS terminates at time t(v) where v is the smallest index such that t(v) = 1.

Theorem 4.1 The NPS mechanism is envy-free, weakly strategy-proof and under k-

demand preferences can be implemented so that it overallocates each good by at most

k − 1 units.

Proof: The first two items admit a proof similar to the proof of Theorem 1 and Proposi-

tion 1 in Bogomolnaia and Moulin [2001]. The last item follows from Theorem 2.1 as the

probability shares produced by NPS satisfy (DEMAND) and (SUPPLY).

Though the NPS mechanism is not in general strategy-proof, it possesses this property

asymptotically. To discuss the behavior of the NPS mechanism in large economies, we

formally define large economies. The definition given here of the q−economy is similar

to the definition in Che and Kojima [2010]. For each q ∈ N, the set of objects in the

q−economy is G and the set of agents is Nq. Each object j ∈ G in the q− economy has

sqj ≥ k copies. Furthermore, limq→∞ s
q
j = ∞ for all j ∈ G. The set of agents, Nq, is

partitioned into r subsets, Πq
θ for 1 ≤ θ ≤ r. Agents in the set Πq

θ are said to have type

θ. Agents with the same type θ have the same preference ranking over bundles in the q−

economy.

We assume that the number of copies of each object and the number of agents of each

type grow at the same rate as q.
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Assumption 4.1 For some positive real numbers (n∗j)j∈G and non-negative real numbers

(m∗θ)1≤θ≤r the following holds: limq→∞
nqj
q

= n∗j and limq→∞
|Πθq |
q

= m∗θ ∈ R, ∀1 ≤ θ ≤ r.

Definition 4.2 Allocation x ε−stochastically dominates y for agents i with respect to

ordinal preference �i if, ∑
S�iB

xi(S) + ε
∑
S�iB

yi(S).

An ordinal mechanism is asymptotically strategy-proof if for all ε > 0 there exists Q > 0

large enough such that: for all agents and q > Q, the allocation that is returned from

truthful reporting ε−stochastically dominates any misreport in the q−economy.

Theorem 4.3 Under k-demand preferences the NPS mechanism has the following prop-

erties:

1. It is asymptotically implementable.

2. It produces ordinally efficient probabilistic allocations.

3. It is weakly strategy-proof.

4. It is envy-free.

5. It is asymptotically strategy-proof.

Proof: Propostition 4.1 states the first three properties. The fourth property follows

from an asymptotic equivalence between the NPS mechansim and the RSD mechanism

that generalizes Che and Kojima [2010]. To prove it, we first define a continuum economy

as the limit of the q-economy as q → ∞. Let NPS∗ be the NPS mechanism in the

continuum economy. We show that the NPS and RSD mechanisms converge to NPS∗.

The difficulty in our case, compared with Che and Kojima [2010], arises because of the

complementarities in agents’ preferences. In the unit demand case, once consumption of

an objects begins, it continues until exhaustion. In our case, consumption of an object
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occurs in fits and starts. Therefore, a simple adaptation of their proof is not possible. We

show equivalence by proving that the available supply of each object at each step of the

mechanism converges. For a complete proof, see Appendix C .8
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A Appendix A

A.1 Equilibrium Existence in B-CEEI

In this section we show how to use standard Arrow-Debreu-Mckenzie arguments to estab-

lish the existence of market clearing prices in the Hylland and Zeckhauser setting when

agents have non-unit demands. Recall that an agent i ∈ N who consumes a fraction

xi(S) of bundle S ⊆ G enjoys a utility of
∑

S⊆G ui(S)xi(S) where ui(S) is the utility

derived from bundle S. Equivalently, if we give agent i the vector z ∈ [0, 1]|G|, where zj

is interpreted to be the fraction of good j, agent i’s utility can be represented as

Ui(z) = max
∑
S⊆G

ui(S)xi(S)

s.t.
∑
S3j

xi(S) ≤ zj ∀j ∈ G

xi(S) ≥ 0 ∀i ∈ N, ∀S ⊆ G
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Notice, Ui(z) is concave in z. It follows immediately from the usual arguments that there

must exists prices that clear the market.

B Appendix B

B.1 Proof of Lemma 2.2

Recall that we have the following constraints.

x ≥ 0

xi(S) = 0 if |S| > k∑
S

xi(S) = 1 ∀i ∈ N

(DEMAND)

Feasibility requires that for each type of good j we do not allocate more than its

available supply: ∑
i∈N

∑
S3j

Sj · xi(S) ≤ sj ∀j ∈ G (SUPPLY)

Define approximate supply constraints:

∑
i∈N

∑
S3j

Sj · xi(S) ≤ sj + k − 1 ∀j ∈ G (SUPPLY+k-1)

The proof uses the following algorithm called the Iterative Rounding Algorithm (IRA).

Let P be the polytope defined by (DEMAND) and (SUPPLY ). The IRA takes as input

an extreme point, x∗ ∈ arg max{u·x : x ∈ P} where u ≥ 0 and ui(S) = 0 for all i ∈ N and

S ⊆ G such that |S| > k. It then rounds x∗ into a 0-1 vector x̄ that satisfies (DEMAND)

and (SUPPLY+k-1).

Beginning with x∗, we remove from (DEMAND-SUPPLY) all variables xi(S) for which
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x∗i (S) = 0. In other words, a variable that is zero in x∗ will be rounded down to zero

and fixed at that value in all subsequent iterations. Similarly, remove from (DEMAND-

SUPPLY) all variables xi(S) for which x∗i (S) = 1 and adjust the right hand sides of

(SUPPLY) accordingly. In other words, a variable set to 1 (or 0) by x∗ is fixed at 1 (or

0) in all subsequent iterations. In the system that remains pick a non-negative extreme

point that optimizes the vector u and repeat. At some iteration, when the remaining

supply of good j is s′j, we may obtain an extreme point with no variable set to 1. Call it

y.

The main observation here is that, in this case there must exist a j ∈ G such that

∑
i∈N

∑
S3j

Sj · dy∗i (S)e ≤ s′j + k − 1.

For each such j, remove the corresponding constraint (SUPPLY) and in the relaxed system

find an extreme point that optimizes u and repeat. Stop once all variables have been fixed

at either 0 or 1 and denote the resulting 0-1 vector by x̄.

There are three observations to be made about x̄.

1. At each iteration, inequality (DEMAND) holds. Thus, x̄ satisfies (DEMAND).

2. At each iteration, the original program is (possibly) relaxed. Thus, u · x̄ ≥ u · x∗.

3. Because x̄i(S) = 1 only if x∗i (S) > 0, it follows that for the inequalities in (DE-

MAND) thrown away,
∑

i∈N Sj ·
∑

S3j x̄i(S) ≤ sj + k − 1.

We need to show that if we have not found an integral solution in the iterative process,

then we will find a constraint j that can be thrown away. In particular, we need to prove

the following.

Lemma B.1 Let ui(S) be any utility function. Let S0(i),S1(i) be the set of bundles that

xi(S) forall S ∈ S0(i) have been fixed to be 0, and xi(S) for all S ∈ S1(i) have been fixed

to be 1, respectively.
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Let x∗ be an extreme point the linear program

max{u·x : x satisfies (DEMAND) and (SUPPLY), xi(S) = 0∀S ∈ S0(i);xi(S) = 1∀S ∈ S1(i)}.

Assume that x∗i (S) < 1 for all i ∈ N and S such that S /∈ S0(i) ∪ S1(i). (In other words,

x∗i (S) has not been fixed). Then, there exists a j ∈ G such that

∑
i∈N

∑
S:j∈S

Sjdx∗i (S)e ≤ sj + k − 1.

This lemma will guarantee that if we cannot round all the variable, then we can find a

constraint to throw away and resolve the linear program. To prove Lemma B.1, we will

use the following property of an extreme point of a linear program:

The number of non-zero variables in an extreme point x∗ is equal to the num-

ber of linearly independent and binding constraints in (DEMAND) and (SUP-

PLY).

To prove the lemma, assume the contradiction that for all j ∈ G 0 < x∗i (S) < 1 for all

i, S that xi(S) has not been fixed to be 0 or 1, and
∑

i∈N
∑

S∈S:j∈S Sjdx∗i (S)e > sj +k−1.

Because
∑

i∈N
∑

S:j∈S Sjdx∗i (S)e is an integral value, thus we have

∑
i∈N

∑
S:j∈S

Sjdx∗i (S)e ≥ sj + k. (16)

we will derive a contradiction to the property of the extreme point above.

Given the extreme point x∗, where we credit each non-zero variable x∗i (S) with a single

token. We then redistribute these tokens to the binding, linearly independent constraints

in a particular way. We show that if (16) holds then each binding constraint will get at

least one token, and there is one token left over. This shows that the number of non-zero

variable x∗i (S) is larger than the number of binding, linearly independent constraints,
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which is a contradiction.

We redistribute the tokens given as follows. Credit x∗i (S) fraction of the tokens to

the constraint corresponding to agent i (DEMAND). Credit Sj
1−x∗i (S)

k
to each constraint

corresponding to each good j ∈ S. Notice that this is feasible because the size of each

bundle is
∑

j∈G Sj ≤ k.

If the constraint corresponding to agent i binds then the number of tokens this con-

straint is credited with is
∑

S xi(S) = 1. Now, consider a binding constraint corresponding

to good j, we have. ∑
i∈N

∑
S3j

Sjxi(S) = sj. (17)

The total tokens that this constraint obtains is

∑
S,i∈N :x∗i (S)>0

Sj
1− x∗i (S)

k
=

1

k

∑
S,i∈N :x∗i (S)>0

Sj −
1

k

∑
i∈N

∑
S3j

Sjxi(S).

From (16) and (17) this number of tokens is at least

1

k
(sj + k − sj) = 1.

Thus, any binding constraint j (DEMAND) is credited with at least 1 token.

Hence, we have shown that the amount of tokens given at the beginning (which is the

number of non-zero x∗ variables) has been redistributed to the binding constraints, so

that each is credited with at least 1 token. Thus the number of non-zero x∗ variables is

at least the number of binding constraints.

Now, the equality obtains only if for every nonzero x∗i (S), the size of bundle S is

exactly k, that is
∑

j∈G Sj = k. Furthermore, the constraint corresponding to agent i as

well as all the constraint corresponding to for all j ∈ S bind. However, this case one can

show that the set of binding constraints is not linearly independent. To see this, consider
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the sum of all the binding constraints in SUPPLY:

∑
j∈G

∑
i,S:S3j

Sjx
∗
i (S) =

∑
j∈G

sj.

Because for each x∗i (S) > 0,
∑

j∈S Sj = k, this sum can be rewritten as

k ·
∑
i,S

x∗i (S) =
∑
j

sj.

This last expression is the sum of all the constraints in (DEMAND), contradicting lin-

ear independence of the binding constraints. By this we have shown that the number

of nonzero variables in an extreme point solution is larger than the number of linearly

independent binding constraints.

B.2 An Algorithm To Construct a Lottery

Recall that Theorem 2.1 shows that any x ∈ Q can be expressed as a convex combination

of points in Ek. In this section we show how to (approximately) decompose any x ∈ Q

into a convex combination of points in Ek.

Assume Ek is bounded with diameter D. Denote by |x − y| the Euclidean distance

between x and y. Recall that we have a subroutine that will for any fractional x ∈ Q and

any cost vector c, return an integral x̄ ∈ Ek such that cx̄ ≥ cx.

Given this subroutine, we exhibit a polynomial time algorithm that for a given point

x ∈ Q, finds at most d+1 integral points in Ek whose convex hull is arbitrarily close to x.

The algorithm also returns a lottery over these d + 1 integral vectors whose expectation

is close to x.
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Given a fractional solution x ∈ Q. Let

B(x, δ) = {z : satisfying (DEMAND) and |z − x| ≤ δ}

We assume there exists δ > 0 such that B(x, δ) ⊂ Q. Notice that for our purpose,

this assumption is without loss of generality, because otherwise we can always choose x′

in the interior of Q close to x.

Given an allowable error ε > 0, the algorithm is the following.

Algorithm In each step maintain a subset S of points in Ek. Each iteration consists of

the following steps.

1. Compute y ∈ conv(S) that is closest to x. If |y − x| < ε, the algorithm terminates.

2. Otherwise, because y is the closest point to x in S, y lies in a hyperplane of conv(S).

Thus, there exists a subset S ′ ⊂ S of size at most d such that y ∈ conv(S ′). (Recall

d is the dimension).

Consider z = x + δ x−y
|x−y| . Notice, z ∈ Q because B(x, δ) ∈ Q. Use the rounding

algorithm to find an integral z′ ∈ Ek, such that

< z, x− y > ≤ < z′, x− y > .

3. Update S := S ′ ∪ {z′}; and repeat.

To show that the algorithm terminates in polynomial time, we show that after each

iteration, the distance |x− y| is reduced by at least a constant factor. To prove this, let

y′ be the point in the interval [z′, y] that is closest to x. We will prove the following.

Claim B.2 There exists 0 < γ < 1 that depends on D and δ such that |x − y′| <

(1− γ)|x− y|
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Figure 1:

Proof: Let t be the point in the interval (z′, y) such that < t− z, x− y >= 0. Because

< z, x− y >≤< z′, x− y >, such a t exists. See Figure 1.

Now,

|x− y|2

|x− y′|2
=
|t− y|2

|t− z|2
=
|t− z|2 + (|x− z|+ |x− y|)2

|t− z|2
≥ |t− z|

2 + δ2

|t− z|2

We have |t − z| ≤ |z′ − z|. Furthermore, because the diameter of Ek is D, |z′ − z| ≤ D.

Thus, |t− z| ≤ D.

Hence, we obtain

|x− y|2

|x− y′|2
≥ D2 + δ2

D2

Thus, there exists 0 < γ < 1, depending on D and δ such that

|x− y′| < (1− γ)|x− y|,

which is what we need to prove.
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The claim above shows that after each iteration the distance between x and y is

reduced by at least a factor of (1− γ). Consider K = ln(D/ε)
γ

, we have

D(1− γ)K ≤ ε,

Thus, after at most K iterations, the algorithm will terminate.

C Appendix C

The proof is adapted from Che and Kojima [2010]. First we define a continuum economy,

which is the natural candidate for what the limit of a q-economy might be as q →∞. For

each object j ∈ G, there is a mass s∗j of this object. The set of agents, N∗, is an interval

of real numbers partitioned into d intervals (Π∗θ)1≤θ≤d. Each point in N∗ corresponds to

an agent. For each 1 ≤ θ ≤ d, the length of Π∗θ is m∗θ. Agents find bundles of size more

than k unacceptable. The set of all bundles of size no more than k is denoted B∗. For

each 1 ≤ θ ≤ d, agents in Π∗θ have the same preference ranking of bundles in B∗ as do

agents with type θ in a q− economy.

An allocation in the continuum economy is a function x : N∗ × B∗ → [0, 1]. The

allocation is deterministic if the range of x is {0, 1}. A deterministic allocation is imple-

mentable if (i) agents are allocated to at most one bundle, and (ii) for all objects j ∈ G

the measure of agents allocated to bundles that include object j (including all copies of

a in all bundles) does not exceed s∗j . That is,
∫
N∗

∑
S∈B∗ xi(S)|S|jdi ≤ s∗j for all j ∈ G.

Here |S|j is the number of copies of object j in the set S.

An allocation in the continuum economy is implementable if it can be represented as

a probability distribution over implementable deterministic allocations. Similarly, we can
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define feasibility for allocations: x is feasible if

∫
N∗

∑
S∈B∗

xi(S)|S|jdi ≤ s∗j

for all j ∈ G and for all i ∈ N∗,
∑

S∈B∗ xi(S) ≤ 1. If agents with the same type receive the

same assignment, the assignment is called symmetric. Note that in a continuum economy,

feasibility and implementability are equivalent.

The extension of the NPS mechanism to the continuum economy is called NPS∗ and

is defined as follows: for step v = 0, let G∗(0) = G∗, t∗(0) = zv = 0. Let mi(v) denote

agent i’s most preferred bundle from objects in G∗(v). Let mj(v) =
∫
i∈N∗ |m

i(v)|jdi be

the mass of object j in agents’ most prefered bundle. Given G∗(v − 1), t∗(v − 1), zv−1 for

all j ∈ G:

1. t∗j(v) = sup{t ∈ [0, 1]|zv−1
j +mj(v − 1)(t− t(v − 1)) ≤ s∗j}.

2. The first instance at which any good is exhausted is t∗(v) = minj∈G∗(v−1) t
∗
j(v).

3. At time t∗(v), the set of goods with non-zero supply is

G∗(v) = G∗(v − 1) \ {j ∈ G∗(v − 1)|t∗j(v) = t∗(v)}.

4.

zvj = zv−1
j +mj(v − 1)(t∗(v)− t∗(v − 1))

5. The allocation returned by the NPS∗ mechanism at time t(v) is

NPS∗(v) = NPS∗(v − 1) + (t∗(v)− t∗(v − 1))zv−1.

6. NPS terminates at time t∗(v) where v is the smallest index such that t∗(v) = 1 and

outputs NPS∗(v) as the final allocation.
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NPS in the q−economy, denoted by NPSq, is defined similarly. For any object j ∈ G

and any subset of goods S ⊆ G, let mi(S) be agent i′s most preferred bundle, consisting

of objects in S. Let mi
j(S) be the number of copies of object j in mi(S), that is, mi

j(S) =

(mi(S))j. Set mq
j(S) =

∑
i∈Nq m

i
j(S)which is the total number of copies of object j in all

agents’ preferred bundles.

1. tqj(v) = sup{t ∈ [0, 1]|zv−1
j (q) +

mqj (G(v−1))

q
(t− tq(v − 1)) ≤ sj

q
}.

2. tq(v) = minj∈G(v−1) t
q
j(v).

3. G(v) = G(v − 1) \ {j ∈ G(v − 1)|tqj(v) = tq(v)}

4. zvj (q) = zv−1
j (q) +

mqj (G(v−1))

q
(tq(v)− tq(v − 1)).

5. NPSq(v) = NPSq(v − 1) + (tq(v)− tq(v − 1))zv−1(q)

6. The terminal step occurs at the smallest v that satisfies tq(v) = 1.

C.1 Convergence of NPSq to NPS∗

Let tqj and t∗j be the exhaustion date of object j in NPSq and NPS∗, respectively. To

prove that NPSq converges to NPS∗, it is enough to show that the stock of object j at

time t∗j in NPSq is of order of o(q) and before that it is of the order of O(q), this implies

that the exhaustion dates of objects in the q−economy converges to their corresponding

dates in NPS∗.

As the supply of multiple objects can become exhausted at the same time, the set

{t∗(1), t∗(2), t∗(3), ..., t∗(v∗)}, will contain some duplicates. Let the distinct values in the

set {t∗(1), t∗(2), t∗(3), ..., t∗(v∗)} be {t1, t2, ..., tg} and ordered so that t1 < t2 < t3 < ... <

tg. Set t∗(vi) = ti. Note g may not be equal to v∗. Let Ar ⊆ G be the set of objects

whose supply is exhausted at time tr in the NPS∗ mechanism. Let sqj(t) and s∗j(t) be the

supply of object j at time t in NPSq and NPS∗, respectively. Also, assume NPS∗(t) and
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NPSq(t) are the allocation of the NPS algorithm at time t in the continuum economy

and the q−economy respectively. We prove the following by induction:

1. For all r ≤ g and all j ∈ G, limq→∞
sqj (tr)

q
= s∗j(tr).

2. For all r ≤ g, limq→∞NPS
q(tr) = NPS∗(tr).

For r = 1, note that at the beginng since all objects are available, all agents are allocated

their most preferred bundle. Therefore, t1 = minj∈G
s∗j (0)

mj(G)
. Note that for all j ∈ G the

supply of object j at time t1 in NPSq is sqj(0)− t1mq
j(G). Hence,

lim
q→∞

sqj(0)− t1mq
j(G)

q
= s∗j(0)− t1mj(G) = s∗j(t1).

Assume statements 1 and 2 are true for r−1, we prove them for r. For all ε > 0, we show

there exists large enough Q > 0 such that for all q > Q, | s
q
j (tr)

q
− s∗j(tr)| < ε.

Given ε1, let Q1 be such that

|
sqj(tr−1)

q
− s∗j(tr−1)| < ε1 (18)

for all q > Q1 and j ∈ G. If j ∈ Aτ for some τ ≤ r − 1, then the availability of object j

at time tr−1 is at most ε1q. Therefore, objects in Aτ will be allocated for at most |G|ε1q
ϑq

period of time, where ϑq = minA⊂G minj∈A{mq
j(A)|m∗j(A) 6= 0}. Note that if m∗j(A) 6= 0,

then mq
j(A) = O(q). Therefore, ϑq = O(q). Let ϑ∗ = limq→∞

q|G|
ϑq

. Let Q2 be such that

q|G|ε1
ϑq
≤ 2ϑ∗ε1 = ε2 for all q > Q2. Choose ε1 such that ε1 + ε2 = ε1(2ϑ∗ + 1) < tr − tr−1.

For all q > max{Q1, Q2}, the NPS mechanism in the q−economy at tr−1 + ε1 + ε2 would

allocate the same bundles as NPS∗. This allocation would end when the supply of one of

the objects is exhausted, call this date τ qr . This date is within the ε1 +ε2 neighbourhood of

mina∈G∗(vr−1)
sqa(tr−1)

mqa(G∗(vr−1))
+ tr−1. Note that limq→∞

sqj (tr−1)

mqa(G∗(vr−1))
= s∗a(tr−1)

m∗j (G∗(vr−1))
. For ε3 > 0
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let Q3 be such that for all q > Q3, | sqj (tr−1)

mqj (G
∗(vr−1))

− s∗j (tr−1)

m∗j (G∗(vr−1))
| < ε3. Therefore if q >

max{Q1, Q2, Q3}, then |τ qr − tr| < ε1 + ε2 + ε3. Note that if q > max{Q1, Q2, Q3}, then

NPSq and NPS∗ allocate the same bundles in the interval of [tr−1, tr] except for a period

with length at most ε1 + ε2 + ε1 + ε2 + ε3. Hence,

|
sqj(tr)

q
− s∗j(tr)| ≤

k(ε1 + ε2 + ε1 + ε2 + ε3)|N q|
q

(19)

Since limq→∞
|Nq |
q

exists, choosing εis small enough for this case proves the inductive steps.

C.2 Convergence of RSDq to NPS∗

Let fi ∈ [0, 1] be the draw of agent i. Consider all agents whose draws are in the interval

(t′, t]. Let m̂q
j(A, t

′, t) be the total number of copies of object j in all agents’ preferred

bundles who’s random draw is in (t′, t]. Following Che and Kojima [2010], the RSDq

mechanism can be represented by the following step.

• t̂qj(v) = sup{t ∈ [0, 1]|ẑqj (v − 1) +
m̂qj (Ĝ

q(v−1),t̂q(v−1),t)

q
(t− t̂q(v − 1)) ≤ sqj

q
}.

• t̂q(v) = minj∈Ĝq(v−1) t̂
q
j(v).

• Ĝq(v) = Ĝq(v − 1) \ {j ∈ Ĝq(v − 1)|t̂qj(v) = t̂q(v)}

• ẑqj (v) = ẑqj (v − 1) +
m̂qj (Ĝ(v−1),t̂q(v−1),t̂q(v))

q
(t̂q(v)− t̂q(v − 1)).

• With the terminal step the minv that satisfies t̂q(v) = 1.

Since fis are uniformly distributed, the weak law of large number implies that limq→∞
m̂qj (A,t

′,t)

q
=

m∗j(A)(t′− t). Similar arguments as in the previous case establishes the asymptotic equiv-

alence.
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