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Abstract

The National Resident Matching program strives for a stable matching of medical

students to teaching hospitals. With the presence of couples, stable matchings need

not exist. For any student preferences, we show that each instance of a stable match-

ing problem has a ‘nearby’ instance with a stable matching. The nearby instance is

obtained by perturbing the capacities of the hospitals. Specifically, given a reported

capacity kh for each hospital h, we find a redistribution of the slot capacities k′h sat-

isfying |kh − k′h| ≤ 4 for all hospitals h and
∑

h kh ≤
∑

k′h ≤
∑

h kh + 9, such that a

stable matching exists with respect to k′. Our approach is general and applies to other

type of complementarities, as well as matchings with side constraints and contracts.

Keywords: stable matching, complementarities, Scarf’s lemma

JEL classification: C78, D47

1 Introduction

The problem of finding a stable matching was introduced by Gale and Shapley [1962] who

also identified a setting where such matchings always exist. Since then, matching theory has

become a central topic of market design, and changed the way centralized markets such as

medical matching and school choice are organized. Motivated by these applications, there

has been a flood of work, including Fleiner [2003], Hatfield and Milgrom [2005], Ostrovsky

[2008] and Hatfield and Kojima [2010], enlarging the settings in which a stable matching is
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guaranteed to exist. A common feature of these generalizations is the absence of complemen-

tarities in the preferences of each side of the market. Yet, many settings, claimed as natural

applications of these models exhibit such complementarities. Indeed, Che et al. [2014] write:

“... complementarities of preferences are a pervasive feature of many matching

markets. Firms often seek to hire workers with complementary skills. For in-

stance, in professional athletic leagues, teams demand athletes that complement

one another in skills as well as in the positions they play. Some public schools

in New York City seek diversity of their student bodies in their skill levels. US

colleges tend to exhibit a desire to assemble a class that is complementary and

diverse in terms of their aptitudes, life backgrounds, and demographics.

Unless we can get a handle on complementarities, we would not know how to

organize such markets, and the applicability of centralized matching will remain

severely limited....”

Perhaps the most well known instance of this problem is the matching of medical stu-

dents to teaching hospitals in the US. Each year at least 20,000 medical school graduates

participate in the National Resident Match Program (NRMP).1 In the absence of couples

and complementarities in hospital’s preferences, a stable matching is guaranteed to exist.

Adding couples who submit joint preference lists rules out the existence of stable matches

in some cases (see Roth [1984]).2 Nevertheless, in the NRMP it has been observed that in

spite of the presence of couples, the resulting matches are stable with respect to the reported

preferences. This phenomenon is explained in Kojima et al. [2013] and also in Ashlagi et al.

[2014]. These papers identify restrictions on applicant preferences and the proportion of

couples for which the probability a stable matching exists is high or the number of block-

ing coalitions is small as the number of agents and slots gets large. Specifically, applicant

preferences are assumed to be drawn independently from a distribution, which rules out a

1http://www.nrmp.org/wp-content/uploads/2014/04/Main-Match-Results-and-Data-2014.pdf
2In fact, the problem of determining whether a stable matching exists in this setting is NP-complete (see

Ronn [1990]).
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certain degree of heterogeneity. Moreover, the results in Kojima et al. [2013] and Ashlagi

et al. [2014] hold only when the proportion of couples approaches 0 as the market gets large.3

In this paper we propose an alternative measure of closeness to stability motivated by

Budish [2011] and Dean et al. [2006]. Specifically, how many additional resources must be

added or removed to ensure the existence of a stable matching? In the context of the NRMP

this would be how many additional residency slots are needed to ensure the existence of

a stable matching? The answer is at most 9, independent of the number of hospital slots

and medical school graduates. Importantly, unlike Kojima et al. [2013] our answer to this

question does not rely on restrictions on the proportions of couples, probabilistic assumptions

about doctor’s preferences or asymptotic arguments.

Our result applies to settings more general than the NRMP.4 To describe them, label

one side of a two-sided market, supply (teaching hospitals, schools) and the other demand

(medical students, school students). The supply side has capacity constraints. A matching

is feasible if the supply of each agent on the supply side is allocated to the demand side so

as to comply with the constraints of the application without exceeding its capacity. Call a

matching α-feasible if the supply of each agent on the supply side allocated to the demand

side differs (up or down) from its capacity by at most α.

The contribution of this paper is to establish the existence of near feasible stable match-

ings when preferences on the demand side exhibit a limited degree of complementarity. The

degree of complementarity in preferences is measured by a parameter α. Given α, we es-

tablish the existence of a (2α − 1)-feasible stable matching. We also give an algorithm for

identifying it. In the context of the NRMP with couples, α = 2. Our result implies a stable

matching in which each hospital is assigned a number of residents that differs from its re-

3In the National Resident Match Program the proportion of couples is between 5% and 10%. There are
settings where the proportion of couples is high. Biró and Klijn [2013], for example, identify a setting where
the the proportion of paired applications is almost 40%. Biró et al. [2013] shows that when the proportion
of couples is high, the method developed by Roth and Peranson [1999] for the the NRMP does not find a
stable matching most of the time.

4The model described in Section 3 captures matching with contracts and applies to matching with side
constraints, generalizing the setting in Kamada and Kojima [2014b]. This generalization is discussed in
Section 5.
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ported capacity by at most 3. This seems like a small additional number of positions to lay

on or do without. Every additional resident, according to the AMA costs a hospital about

$100,000 on average of which 40% is covered by the US government.5 Thus, it is unlikely

that any one hospital will be willing to spend the money to increase its capacity or suffer a

reduction to ensure stability. However, the total number of residencies and their distribu-

tion is determined by the Federal government (via formulae of various kinds). One might

speculate that, if in total, the extra number of positions needed is small, it might be willing

to spend for it. Hence, our next result. There is a 4-feasible stable matching such that in

total, across all hospitals, we do not reduce the number of slots and the additional number

of slots needed is at most 9. As the total number of first year residency positions in the US

is presently around 30,000, an additional 9 slots, is, in the aggregate, a small proportion of

the total.

The technique used to arrive at the result is a combination of Scarf’s lemma (Scarf [1967])

and a combinatorial optimization method, called iterative rounding, developed in Lau et al.

[2011] and Nguyen et al. [2014]. Both Scarf’s lemma and iterative rounding are constructive,

therefore, the near feasible matches we identify can be obtained by a finite time algorithm.6

In the following, we first discuss the related literature, then, rather than describe the

most general setting in which the technique applies, we begin in Section 2, for expositional

purposes, by considering the stable matching problem with couples. In Section 3 we introduce

a more general model, that might be useful in the context of matching with contracts, and

prove the main results. Section 4 further extends our results to a broader class of choice

functions. Section 5 applies the main results in Section 3 to matching problems with side

constraints. Section 6 concludes. Proofs are given in the Appendix.

5These numbers are from an AMA pamphlet in support of the current approach
to funding residency programs. http://savegme.org/wp-content/uploads/2013/01/

graduate-medical-education-action-kit.2-3.pdf
6Our approach though constructive does rely on Scarf’s lemma which is known to be PPAD complete,

Kintali [2008]. Thus, it has a worst-case complexity equivalent to that of computing a fixed point. We do not
see this as an obvious barrier to implementation. For example, building on Budish [2011], a course allocation
scheme that relies on a fixed point computation has been proposed and implemented at the Wharton School.
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Related work

Roth [1984] is one of the first papers to consider complementarities in matching problems.

That paper shows non-existence of a stable matching when some agents are couples. Subse-

quently, the design of matching in the presence of complementarities has become an impor-

tant topic. See Biró and Klijn [2013] for a brief survey. The literature has focused on the

couples setting and taken three approaches to circumventing the problem of non-existence.

The first, is by imposing restrictions on the preferences of the agents to ensure existence

of a stable matching. Examples of this are Cantala [2004], Klaus and Klijn [2005], Pycia

[2012] and Sethuraman et al. [2006]. These restrictions impose some kind of strong alignment

in agent preferences. In Klaus and Klijn [2005], for example, which focuses on matchings

with couples, it is assumed that a unilateral improvement of one partners job is considered

beneficial for the couple as well.7 Cantala [2004] and Sethuraman et al. [2006] consider an

alternative restriction motivated by geographical considerations (couples prefer to be in close

proximity to each other).

The second is to argue that instances of non-existence are rare in large markets. For

example, Kojima et al. [2013], Ashlagi et al. [2014] and Che et al. [2014] consider large (in

some cases the continuum), random markets, where agent’s preference are independently

drawn from a distribution and the fraction of couples compared with the size of the market

approaches zero. They prove that a stable matching exists with high probability in these

environments. The assumption that couples form a vanishing proportion of the population

is crucial as Ashlagi et al. [2014] show that the result does not hold when the fraction of

couples is a constant.

The third approach is to ‘ignore’ the indivisibility of agents, identify and provide inter-

pretations of ‘fractional’ stable matchings. Examples are Dean et al. [2006], Aharoni and

Holzman [1998], Aharoni and Fleiner [2003], Király and Pap [2008] and Biro and Fleiner

[2012]. Dean et al. [2006], for instance, examines a machine scheduling problem that em-

7See also the bilateral substitutes condition of Hatfield and Kojima [2010].
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beds, as a special case, a restricted instance of the stable matching problem with couples. In

that instance, couples prefer to be together rather than apart and a hospital cannot accept

just one member of the couple. Under these conditions they show how to find a 2-feasible

stable matching. The remaining papers we cite, establish the existence of a fractional stable

matching via Scarf’s lemma Scarf [1967]. Biró et al. [2013] reports on numerical experiments

that show in many cases the fractional solutions obtained from Scarf’s lemma are actually

integral and thus are stable matchings.

This paper builds on the technique of Lau et al. [2011] to show how to round the fractional

stable matchings returned by Scarf’s lemma into integral stable matchings that are near

feasible. The degree of infeasibility in these stable matchings depends, as noted earlier, on

the degree of complementarity exhibited in the preferences of one side of the market. Our

approach extends beyond matching with couples to include the general setting of multilateral

matching with contracts as well as matching with side constraints.

2 Matching with Couples

To fix ideas we begin with a description of the standard matching model with couples,

that is studied, for example, in Roth [1984] and Kojima et al. [2013]. Let H be the set

of hospitals, D1 the set of single medical graduates (who are doctors) and D2 the set of

couples. Each couple c ∈ D2 is denoted by c = (f,m). For each couple c ∈ D2 we denote

by fc and mc the first and second member of c. The set of all doctors, D is given by

D1 ∪ {mc|c ∈ D2} ∪ {fc|c ∈ D2}.

Each single doctor s ∈ D1 has a strict preference relation �s over H ∪ {∅} where ∅

denotes the outside option for each doctor. If h �s ∅, we say that hospital h is acceptable

for s. Each couple c ∈ D2 has a strict preference relation �c over H ∪ {∅} ×H ∪ {∅}, i.e.,

over pairs of hospitals including the outside option.

Each hospital h ∈ H has a fixed capacity kh > 0. The preference of a hospital h over

6



subsets of D is summarized by h’s choice function chh(.) : 2D → 2D. While a choice function

can be associated with every strict preference ordering over subsets of D, the converse is

not true. The information contained in a choice function is sufficient to recover a partial

order, only, over the subsets of D. We assume chh(.) is responsive. This means that h has

a strict priority ordering �h over elements of D ∪ {∅}. If ∅ �h d, we say d is not feasible

for h. For any set D∗ ⊂ D, hospital h’s choice from that subset, chh(D
∗), consists of the

(upto) kh highest priority doctors among the feasible doctors in D∗. Formally, d ∈ chh(D∗)

iff d ∈ D∗; d �h ∅ and there exists no set D′ ⊂ D∗ \ {d} such that |D′| = kh and d′ �h d for

all d′ ∈ D′.

A matching µ in this model describes an assignment of each single doctor to a hospital

or his/her outside option, an assignment of couples to at most two positions (in the same

or different hospitals) or their outside option, and such that the total number of doctors

assigned to any hospital h does not exceed its capacity kh. Given matching µ, let µh denote

the subset of doctors matched to h; µs and µfc , µmc denote the position(s) that the single

doctor s, and the female member, the male member of the couple c obtain in the matching,

respectively.

We say µ is individual rational if chh(µh) = µh for any hospital h; µs �s ∅ for any

single doctor s and (µfc , µmc) �c (∅, µmc); (µfc , µmc) �c (µfc , ∅); (µfc , µmc) �c (∅, ∅) for any

couple c.

We list the the ways in which different small coalitions can block a matching µ.

1. A pair s ∈ D1 and h ∈ H can block µ if h �s µ(s) and s ∈ chh(µ(h) ∪ s).

2. A triple (c, h, h′) ∈ D2×(H∪{∅})×(H∪{∅}) with h 6= h′ can block µ if (h, h′) �c µ(c),

fc ∈ chh(µ(h) ∪ fc) when h 6= ∅ and mc ∈ chh′(µ(h′) ∪mc) when h′ 6= ∅.

3. A pair (c, h) ∈ D2 ×H can block µ if (h, h) �c µ(c) and (fc,mc) ⊆ chh(µ(h) ∪ c).

Notice, restricting attention to blocking by the small coalitions listed above, is, as shown in

Roth and Sotomayor [1992] without loss when each hospital’s preferences are responsive.
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Given preference lists for single doctors and couples; a matching µ is stable with respect

to a capacity vector k if under the responsive choice functions of hospitals defined above,

µ is individually rational and cannot be blocked in any of the three ways listed above.

Theorem 2.1 Suppose each doctor in D1 has a strict preference ordering over the elements

of H ∪ {∅}, each couple in D2 has a strict preference ordering over H ∪ {∅} × H ∪ {∅}

and each hospital has responsive preferences. Then, for any reported capacity vector k, there

exists a k′ and a stable matching with respect to k′, such that
∑

h∈H kh ≤
∑

h∈H k
′
h and

maxh∈H |kh − k′h| ≤ 3.

Theorem 2.1 shows that one can perturb any reported capacity vector up or down slightly

to guarantee the existence of stable matching.8 However, in the aggregate we do not decrease

the total number of slots.

Theorem 2.1 does not limit the aggregate excess demand or supply for positions. For

example, if each hospital is over allocated by 3 slots, one would require an additional 3|H|

positions in total. The next theorem controls for this possibility.

Theorem 2.2 Suppose each doctor in D1 has a strict preference ordering over the elements

of H∪{∅}, each couple in D2 has a strict preference ordering over H∪{∅}×H∪{∅} and each

hospital has responsive preferences. Then, for any reported capacity vector k, there exists a

k′ and a stable matching with respect to k′, such that maxh∈H |kh − k′h| ≤ 4. Furthermore,∑
h∈H kh ≤

∑
h∈H k

′
h ≤

∑
h∈H kh + 9.

Under Theorem 2.1 and 2.2 it is possible for a hospital to be assigned fewer doctors than

its reported capacity. However, the condition
∑

h∈H kh ≤
∑

h∈H k
′
h, ensures that in aggregate

the matching does not ‘burn’ positions to ensure stability.

We delay the proofs of Theorem 2.1 and 2.2 to the next section, where we derive more

general results.

8If we are not permitted to decrease the number of slots in each hospital, we can apply Theorem 2.1 to
the capacities k∗h := kh +3. In this case we obtain k′ satisfying |k∗h−k′h| ≤ 3, which implies kh ≤ k′h ≤ kh +6,
such that a stable matching with respect to k′ exists.
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3 Matching with Complementaries

We now generalize the couples models. Let A,B represent the sets of agents on the demand

and supply side of the market respectively. Associated with each b ∈ B is a capacity kb. We

allow each agent a ∈ A to ‘consume’ a bundle of agents in B. In the context of matching

with couples, A would represent the set of doctors and B the set of hospitals. A single doctor

a ∈ A is interested in consuming bundles of agents in B of size at most 1. A couple in A,

however is interested in consuming a bundle of size 2, either 2 copies of the same agent in B

or two distinct agents in B.

Denote by N|B| the set of bundles. Any set containing multiple copies of different agents

in B is considered to be a bundle. For each S ∈ N|B|, let Sb denote the number of copies of

b ∈ B contained in S. The size of a bundle S is denoted size(S) and size(S) =
∑

b∈B Sb.

Given a ∈ A and S ∈ N|B|, denote by Fa,S the finite set of possible ways in which agent a

can consume the bundle S. In the matching with couples context, suppose a is a couple and

S consists of one copy each of a pair of hospitals. Then, Fa,S denotes all possible ways in

which each member of the couple a can be assigned to exactly one of the hospitals in S. A

matching in this general environment will assign to each a ∈ A a pair (f, S) where S ∈ N|B|

and f ∈ Fa,S. More generally, one can think of Fa,S as a set of possible contracts between

a ∈ A and the agents in B that provide resources to form the bundle S, i.e, {b ∈ B|Sb > 0}.9

For each agent a ∈ A let Sa be the set of feasible bundles that a can be assigned to and

let �a be her strict preference ordering over {f, S}; where S ∈ Sa; f ∈ Fa,S. We assume

agent a prefers any of the triples in Sa to her outside option.

Notice that the formulation above imposes no restriction on the degree of complementar-

ity that agent a’s preferences can exhibit. We now restrict it by assuming that each a ∈ A is

only interested in bundles of size at most α. In the couples example, α = 2. In other words,

the set of feasible bundles Sa only contains bundles of size at most α.

9See Hatfield and Milgrom [2005] for a fuller description.
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Let Φ denote the set of all triples, i.e.,

Φ = {(a, f, S)|a ∈ A, S ∈ Sa, f ∈ Fa,S}.

Given H ⊂ Φ, let Ha = {(a, f, S) : (a, f, S) ∈ H}, that is, Ha contains all triples in H

that involve a. Similarly, for each agent b ∈ B, let Hb be the set of all triples whose bundle

contains at least one good owned by b, i.e., Hb = {(a, f, S) ∈ H|Sb > 0}. Similarly,

Φa = {(a, f, S)|S ∈ Sa, f ∈ Fa,S} is the set of all triples involving a,

and

Φb = {(a, f, S)|Sb > 0} is the set of all triples involving b.

Agent b’s preference is modeled by a choice function CHb(.). For each H ⊂ Φb, CHb(H)

returns a subset of H (that does not violate b’s capacity constraint) representing b’s choice

when the elements in H are available.10

Definition 3.1 A set of triples M ⊂ Φ is a feasible matching with respect to k if

|Ma| ≤ 1 for each agent a ∈ A and and for every b ∈ B the matching M does not allocate

more than kb copies of agent b to agents in A, i.e.,

∑
(a,f,S)∈Mb

Sb ≤ kb.

The following is the analog of blocking introduced in Section 2.

Definition 3.2 A feasible matching M is blocked by a triple (a, f, S) /∈M if

(i) (a, f, S) �aMa,

(ii) for all b ∈ B such that Sb > 0 (a, f, S) ∈ CHb(Mb ∪ {(a, f, S)}).

A feasible matching M is stable if the following hold:

10We will introduce a specific class of choice function that we consider in this section in Definition 3.4.
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1)[Individual rationality] ∀ b ∈ B CHb(Mb) =Mb,

2)[No blocking] It is not blocked by any triple.

A stable matching is robust to blocking by a single triple, that is a single agent a ∈ A

and a coalition of agents in B. One might also wish to consider the possibility of blocking

by subsets of triples.

Definition 3.3 Given a feasible matching M, a nonempty, disjoint set of triples H ⊂ Φ

are said to be a blocking coalition of M if the following hold:

(i) For every a ∈ A |Ha| ≤ 1 and if |Ha| = 1, then Ha �aMa,

(ii) For every b ∈ B, Hb ⊂ CHb(Mb ∪Hb).

A feasible matching M is group-stable if the following hold:

1) [Individual rationality] ∀ b ∈ B CHb(Mb) =Mb,

2)[No blocking] There does not exist a blocking coalition H.

As in the case of couples, by limiting the preferences of agents in B we can restrict

attention to blocking by smaller coalitions. In the remainder of this section we restrict to

the class of choice function we call generalized responsive.11

Definition 3.4 A choice function CHb is generalized responsive if the following holds.

There is a strict ‘priority’ ordering �∗b over the elements in Φb. Given a H ⊂ Φb, order the

elements of H by �∗b . CHb(H) selects the elements of H in order of priority as long as doing

so is compatible with the elements already selected. In other words, the triple (a, f, S) ∈ H

will be selected by b if no triple containing a has already been selected or the capacity constraint

of b is satisfied.

Notice that CHb allows b ∈ B to express preferences over what agents b′ ∈ B an agent a is

matched to. Under generalized responsive preferences, if a matching is not blocked by any

one triple, it is not blocked by any coalition of triples. This property follows directly from

the definitions above, thus, we have the following claim.

11In Section 4 we show that the results of this section continue to hold for a much larger class of preferences.
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Claim 3.1 Assuming generalized responsive preferences for all agents in B, a matching is

stable if and only if it is group-stable.

Proof. Assume M is stable, but not group-stable. Then, there exists a blocking coalition,

H disjoint from M. Let (a, f, S) ∈ H, we have:

(i) (a, f, S) �aMa.

(ii) For every b such that Sb > 0, (a, f, S) ∈ Hb ∈ CHb(Mb ∪ Hb). Now because CHb(.) is

responsive, this implies (a, f, S) ∈ CHb(Mb ∪ (a, f, S)).

This shows that (a, f, S) blocks M, contradicting the stability of M.

Now we show how the matching problem with couples can be encoded in this general set

up. Let A be the set of doctors listed as single or couples, i.e., A = D1 ∪D2. Let B be the

set of hospitals. The main difficulty will be to represent a hospitals b’s priority ordering,

�b, over individual doctors in terms of a priority ordering, �∗b , over triples (a, S, f). Fix a

hospital b ∈ B and a triple (a, f, S).

• If a is a single doctor and S a single position in hospital b, then, f is redundant and

taken to be a NULL element. Set (a, f, S)|b := a.

• If a represents a couple and S a bundle that contains 1 position at hospital b and 1

position at hospital b′, then, f represents which member of the couple is assigned to b

and b′. Let (a, f, S)|b be the member assigned to b .

• If a represents a couple and S a bundle that contains 2 positions at hospital b, then f

is redundant and is taken to be a NULL element. Among the two members of a, let

(a, f, S)|b denote the lower ranked of the pair according to h’s priority ordering �h.

We extend the ordering �b over doctors to an ordering �∗b over triples (a, f, S) ∈ Φb as

follows: given two triples (a, f, S), (a′, f ′, S ′) ∈ Φb where a 6= a′ we set (a, f, S) �∗b (a′, f ′, S ′)

if (a, f, S)|b �b (a′, f ′, S ′)|b. However, here it is possible that indifference occur when we
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combine the two members. In this case we will use the preference of the couple to break tie.

That is, for (a, f, S), (a, f ′, S ′) ∈ Φb and (a, f, S)|b = (a, f ′, S ′)|b we set (a, f, S) �∗b (a, f ′, S ′)

if (a, f, S) �a (a, f ′, S ′). Under this priory ordering, we obtain the following result.

Claim 3.2 (Biró et al. [2013]) Let M be a stable matching with respect to the priory

ordering {�∗b}b∈B. Then,M is stable in the couples problem with respect to the ordering {�b

}b∈B.

Proof. See Appendix A.1.

The converse of Lemma 3.2 is false in the sense that a matching stable with respect

{�b}b∈B need not be stable with respect to {�∗b}b∈B.

3.1 Existence of Near Feasible Stable Matches

In the remainder of this section we show the existence of near feasible stable matches. Our

main result is the following.

Theorem 3.1 Suppose each agent b ∈ B has generalized responsive preferences, and each

agent a ∈ A is interested in bundles of size at most α. For any capacity vector {kb|b ∈ B}

the following are true:

• There exists a capacity vector {k̄b|b ∈ B} satisfying maxb∈B |kb − k̄b| ≤ 2α − 1 and∑
b∈B kb ≤

∑
b∈B k̄b, such that a stable matching with respect to k̄ exists.

• There exists a capacity vector {k̂b|b ∈ B} satisfying maxb∈B |kb−k̂b| ≤ 2α and
∑

b∈B kb ≤∑
b∈B k̂b ≤

∑
b∈B kb+(2α+1)α−1 such that a stable matching with respect to k̂ exists.

Moreover, the near feasible matches identified above can be determined by a finite time algo-

rithm.

Corollary 3.1 Theorems 2.1 and 2.2 are implied by Theorem 3.1.
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Proof. In the residency matching with couples, α = 2. Substituting this into Theorem 3.1

and according to Claim 3.2, we obtain Theorems 2.1 and 2.2.

Remark. In some applications, the agents in B (i.e. hospitals) are partitioned into different

classes that may represent different regions and their regional capacity constraints in addition

to capacity constraints for each b ∈ B.12 The proof of Theorem 3.1 extends to this case.

Namely, if there is a partition of B in to regions, then there is a stable matching that allocates

at most (2α + 1)α− 1 items more than the total reported capacity in each region.

The proof of Theorem 3.1 employs Scarf’s lemma. To state the lemma we need the

following definition.

Definition 3.5 Let Q be an n×m nonnegative matrix and r ∈ Rn+. Denote P = {x ∈ Rm+ :

Qx ≤ r}. Associated with each row i ∈ [n] of Q is a strict order �i over the set of columns

j for which qi,j > 0. A vector x ∈ P dominates column j if there exists a row i such that

qix = ri and k �i j for all k ∈ [m] such that qi,k > 0 and xk > 0. Here qi represents the ith

row of matrix Q. In this case, we also say x dominates column j at row i.

We use the following version of Scarf’s lemma due to Király and Pap [2008]:

Lemma 3.1 (Scarf [1967]) Let Q be an n×m nonnegative matrix, r ∈ Rn+ and P = {x ∈

Rm+ : Qx ≤ r}. Then, P has a vertex that dominates every column of Q.

To apply Scarf’s lemma we require a linear inequality representation of the set of match-

ings M. Let xa,f,S = 1 if the bundle S is assigned to a according to f ∈ Fa,S and zero

otherwise. To ensure each agent a is assigned at most one bundle:

∑
(f,S)

xa,f,S ≤ 1 for every agent a ∈ A. (1)

12See Kamada and Kojima [2014b] for an example.
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To ensure we satisfy b’s capacity constraint:

∑
(a,f,S)∈Φ

Sb · xa,f,S ≤ kb for every agent b ∈ B. (2)

Now, relax the condition that xa,f,S ∈ {0, 1} to xa,f,S ≥ 0 and let Qx ≤ r be the matrix

representation of (2) and (1). Notice, each row corresponds to an element of A ∪ B and

each column of Q corresponds to a triple (a, f, S). Each row a ∈ A orders the columns

(a, f, S) according to �a. Each a ∈ B orders the columns (a, f, S) according to the priority

ordering �∗b .

According to Lemma 3.1 there exists a vertex x∗ ≥ 0 that dominates all columns of Q.

Thus, for every triple (a0, f 0, S0), at least one of the following is true:

1.
∑

(f,S) x
∗
a0,f,S = 1, and there is no triple (a0, f, S) for which x∗a0,f,S is positive but

(a0, f 0, S0) �a0 (a0, f, S)

2. There exists b ∈ B, such that S0 contain at least one copy of b (i.e, S0
b ≥ 1) and

∑
(a,f,S)∈Φ

Sb · x∗a,f,S = kb.

Furthermore, b assigns weakly higher priority to all triples (a, f, S) ∈ Φb such that

x∗a,f,S > 0 than to (a0, f 0, S0).

Therefore, if x∗ is an integral vector, then, x∗ is a stable matching because the conditions

above rule out a blocking triple (a0, f 0, S0). Unfortunately, the polytope defined by (1) and

(2) is not integral. We take advantage of x∗’s structure to construct a near feasible stable

matching. The following observation is important for our results.

Lemma 3.2 Let x∗ ∈ P dominate every column of Q. Let x̄ be a {0, 1} vector whose support
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is a subset of x∗’s support, i.e, x∗a,f,S = 0 ⇒ x̄a,f,S = 0, such that

⌊∑
(f,S)

x∗a,f,S

⌋
≤

∑
(f,S)

x̄a,f,S ≤
⌈∑

(f,S)

x∗a,f,S

⌉
∀a ∈ A. (3)

Let k̄ be the following capacity vector

k̄b =


∑

(a,f,S)∈Φ Sb · x̄a,f,S if
∑

(a,f,S)∈Φ Sb · x∗a,f,S = kb

kb, otherwise.

Then, x̄ is a stable matching with respect to k̄.

Proof. Using the fact that x∗ dominates all columns of Q, we will show that under the new

capacity k̄, x̄ dominates all columns of Q.

Given any triple (a0, f 0, S0), x∗ dominates (a0, f 0, S0) either at a0 or at a b ∈ B where

S0
b > 0. Suppose first x∗ dominates (a0, f 0, S0) at a0. Then,

∑
(f,S) x

∗
a,f,S = 1, and a0 weakly

prefers all the triples containing a0 in the support of x∗ to (a0, f 0, S0). Because x̄ is a 0− 1

vector on the support of x∗, a0 also weakly prefers all the triples containing a0 in the support

of x̄ to (a0, f 0, S0). However, because x̄ is an integral vector rounded from x∗, it is possible

that there is no triples containing a0 in x̄. But this cannot be because (3) guarantees that∑
(f,S) x

∗
a,f,S = 1 ⇒

∑
(f,S) x̄a,f,S = 1. Hence, x̄ dominates (a0, f 0, S0) at a0.

Next, suppose x∗ dominates (a0, f 0, S0) at b. This implies
∑

(a,f,S)∈Φ Sb · x∗a,f,S = kb, and

b weakly prefers all triples (a, f, S) in the support of x∗ for which S contains at least one

copy of b to (a0, f 0, S0). Hence, when the capacity at b is k̄b, x̄ dominates (a0, f 0, S0) at b.

Therefore, when the capacity of b is k̄b, x̄ dominates all triples (a, f, S), which shows

that the matching corresponding to x̄ is a stable matching with respect to the new capacity

vector k̄.

Lemma 3.2 provides the main ingredient to prove our result. The next lemma shows that

a given fractional vector x∗ can be rounded into a 0-1 vector x̄ whose support is a subset
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of x∗’s support such that (3) is satisfied and k̄ is close to k. Furthermore, this rounding

procedure can accommodate aggregate constraints as well.

Lemma 3.3 Let x∗ be a (fractional) nonnegative vector satisfying

∑
(f,S)∈Φ

x∗a,f,S ≤ 1 for every a ∈ A. (4)

∑
(a,f,S)∈Φ

Sb · x∗a,f,S ≤ kb for every b ∈ B (5)

Suppose x∗a,f,S = 0 whenever
∑

b∈B Sb > α, then for every cost vector c the following are

true.

(A): There exists a 0− 1 vector x̄ such that

x∗a,f,S = 0⇒ x̄a,f,S = 0 (6)

c · x̄ ≥ c · x∗ (7)⌊∑
(f,S)

x∗a,f,S

⌋
≤

∑
(f,S)

x̄a,f,S ≤
⌈∑

(f,S)

x∗a,f,S

⌉
∀a ∈ A (8)

⌊ ∑
(a,f,S)∈Φ

Sb · x∗a,f,S
⌋
− 2α + 1 ≤

∑
(a,f,S)∈Φ

Sb · x̄a,f,S ≤
⌈ ∑

(a,f,S)∈Φ

Sb · x∗a,f,S
⌉

+ 2α− 1 ∀b ∈ B

(9)

(B): There exists a 0− 1 vector x̂ such that

x∗a,f,S = 0⇒ x̂a,f,S = 0 (10)

c · x̂ ≥ c · x∗ (11)⌊∑
(f,S)

x∗a,f,S

⌋
≤

∑
(f,S)

x̂a,f,S ≤
⌈∑

(f,S)

x∗a,f,S

⌉
∀a ∈ A (12)

⌊ ∑
(a,f,S)∈Φ

Sb · x∗a,f,S
⌋
− 2α ≤

∑
(a,f,S)∈Φ

Sb · x̂a,f,S ≤
⌈ ∑

(a,f,S)∈Φ

Sb · x∗a,f,S
⌉

+ 2α ∀b ∈ B (13)

∑
(a,f,S)∈Φ

x̂(a,f,S) · size(S) ≤
⌈ ∑

(a,f,S)∈Φ

x∗(a,f,S) · size(S)
⌉

+ (2α + 1)α− 1 (14)
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Proof. See Appendix B.

Remark. Notice, the x̂ obtained in part (B) of Lemma 3.3 satisfies an additional constraint

compared to part (A): all agents in A do not consume more than (2α + 1)α − 1 units in

excess of the total supply. On the other hand, for each individual b ∈ B, the bound in (13)

is slightly worse than the bound in (9) of part (A).

Proof of Theorem 3.1 The proof follows from Lemma 3.2 and 3.3. In particular, starting

from the vertex x∗ found using Scarf’s lemma, we use Lemma 3.3 to obtain x̄ and x̂ and

construct k̄ and k̂, respectively, according to Lemma 3.2. In fact, the proof is constructive.

Scarf [1967] gives a finite algorithm for identifying a dominating vertex in Lemma 3.1. Our

Lemma 3.3 is established via a polynomial time algorithm. Therefore, the near feasible

matches we identify can be constructed in finite time.

However, Lemma 3.3 does not guarantee that
∑

b k̄b ≥
∑

b kb and
∑

b k̂b ≥
∑

b kb. In

particular, in order to apply Lemma 3.3, we need to specify a cost vector c. We will carefully

choose c so that those conditions are satisfied.

Given a fractional solution x∗ found using Scarf’s lemma, let B∗ be a subset of B where

the capacity constraint for agent b ∈ B∗ binds. That is,

∑
(a,f,S)∈Φ

Sb · x∗a,f,S = kb for b ∈ B∗.

Let the cost of the triple (a, f, S), denoted ca,f,S, be the total number of items in B∗ contained

in S, i.e,

ca,f,S :=
∑
b∈B∗

Sb.

The total cost of x∗ is

c · x∗ =
∑

(a,f,S)∈Φ

∑
b∈B∗

Sb · x∗(a,f,S) =
∑
b∈B∗

∑
(a,f,S)∈Φ

Sb · x∗(a,f,S) =
∑
b∈B∗

kb.
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According to Lemma 3.3, the rounding procedure does not reduce the total cost, thus

c · x̄ ≥ c · x∗ =
∑
b∈B∗

kb and c · x̂ ≥ c · x∗ =
∑
b∈B∗

kb.

Notice, in Lemma 3.2, for b ∈ B∗ k̄b =
∑

(a,f,S)∈Φ Sb · x̄(a,f,S), therefore,

c · x̄ =
∑

(a,f,S)∈Φ

∑
b∈B∗

Sb · x̄(a,f,S) =
∑
b∈B∗

∑
a,f,S∈Φ

Sb · x̄(a,f,S) =
∑
b∈B∗

k̄b.

Thus, ∑
b∈B∗

k̄b ≥
∑
b∈B∗

kb.

Furthermore, we do not alter the capacities for agents outside of B∗, i.e., k̄b = kb for b ∈

B \B∗. Hence,

∑
b∈B

k̄b =
∑
b∈B∗

k̄b +
∑

b∈B\B∗
k̄b ≥

∑
b∈B∗

kb +
∑

b∈B\B∗
kb =

∑
b∈B

kb.

Similarly, for the rounding procedure of k̂, we also obtain
∑

b k̂b ≥
∑

b kb.

4 Optimization Based Choice Function

In this section we introduce a new class of choice functions that subsumes the responsive

choice function in Section 3. The example below motivates this class.

Example 1 There is one hospital with capacity 2, one couple of doctors (m, f) and two

single doctor s1, s2. The preferences of the hospital are (m, f) � s1 � s2 � (m, ∅) �

(∅, f). Here (m, f), (m, ∅) and (∅, f) represent the hospital hiring both members, only the

male and only the female, respectively. Given a subset of the available choices, i.e., H ⊂

{(m, f), s1, s2, (m, ∅), (∅, f)}, what would be reasonable choices of the hospital?
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First of all, under the responsiveness assumption as in Section 3,

CH({(m, f), s1, s2, (m, ∅), (∅, f)}) = {(m, f)} and CH({(m, f), s1} = {(m, f)}.

Now suppose these preferences corresponded to the following cardinal utilities:

V ((m, f)) = 4;V (s1) = 3;V (s2) = 2;V ((m, ∅)) = 1;V ((∅, f)) = 1/2.

If utility is additive between s1, s2, a more reasonable choice would give

CH({(m, f), s1, s2, (m, ∅), (∅, f)}) = {s1, s2} and CH({(m, f), s1}) = {(m, f)}.

The choice function consistent with utility maximization can be represented in the fol-

lowing way. Given a subset of candidates H ⊂ {(m, f), s1, s2, (m, ∅), (∅, f)}, the hospital’s

choice, CH(H), is a subset of H and defined as {τ ∈ H : xτ = 1}, where x is the solution of

the following optimization problem.

max
∑
τ∈H

V (τ) · xτ

s.t :
∑
τ∈H

cτ · xτ ≤ 2

x(m,f) + x(m,∅) + x(∅,f) ≤ 1

xτ ∈ {0, 1}

Here cτ is the number of positions needed for τ . In particular, c(m,f) = 2, cs1 = cs2 = 1; and

c(m,∅) = c(∅,f) = 1.

Notice the choice function defined above does not only captures the complementarity be-

tween m and f , but also among (m, f), s1 and s2. In particular, CH({(m, f), s1, s2}) =

{s1, s2} and CH({(m, f), s1}) = CH({(m, f), s2}) = {(m, f)}, thus, CH(.) does not satisfy
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substitutablity.13

Using the same notation as in Section 3, we define the class of optimization based choice

functions for each b ∈ B. First, for a triple (a, f, S) ∈ Φb,
14 let V b

a,f,S 	 0 be the utility that

b enjoys when a consumes {S, f}.

Definition 4.1 Given a subsetH ⊂ Φb, an optimization based choice function, CHb(H),

is defined as {(a, f, S) ∈ H|xa,f,S = 1}, where xa,f,S ∈ {0, 1} is the solution of the following

problem.

max
∑

(a,f,S)∈H

V b
a,f,S · xa,f,S

s.t :
∑

(f,S):(a,f,S)∈H

xa,f,S ≤ 1 ∀ a ∈ A

∑
(a,f,S)∈H

xa,f,S · Sb ≤ kb

xa,f,S ∈ {0, 1}

If there are multiple solutions, we break ties lexicographically. Choose the first solution in a

lexicographical order for a fixed linear order �tieb over Φb.

It can be shown that generalized responsive preferences are a special case of optimization

based choice functions. Optimization-based choice functions can encode knapsack problem,

thus given H, finding CH(H) is an NP-hard problem. In the following we give a necessary

condition to check if H∗ = CH(H), which we use later.

Lemma 4.1 Given H∗ ⊂ H ⊂ Φb such that for every a there is at most 1 triple (a, f ∗, S∗) ∈

H∗, i.e, |H∗a| ≤ 1, furthermore,
∑

(a∗,f∗,S∗)∈H∗ S
∗
b = kb; in addition, for every (a∗, f ∗, S∗) ∈

13A choice function models substitute preference if x ∈ CH(H) and x 6= y ∈ H, then x ∈ C(H \ y). See
Hatfield and Kominers [2012], for example, for a discussion.

14 Recall that Φb contains all the triples, for which the third member, S, contains at least 1 copy of the
good owned by b.
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H∗ and every (a, f, S) ∈ H \ H∗

V b
(a∗,f∗,S∗)

S∗b
>
V b

(a,f,S)

Sb

or
V b

(a∗,f∗,S∗)

S∗b
=
V b

(a,f,S)

Sb
and (a∗, f ∗, S∗) �tieb (a, f, S),

then CHb(H) = H∗.

Proof. Appendix A.2

We introduce a stability concept stronger than stable, but weaker than group-stable, as

defined in Definition 3.2 and 3.3.

Definition 4.2 Given a feasible matchingM, an agent b ∈ B and a nonempty set of triples

H ⊂ Φb are said to be a blocking coalition of M if the following conditions hold

1) H ⊂ CHb(Mb ∪H)

2) For all (a, f, S) ∈ H: (a, f, S) �aMa

3) For all (a, f, S) ∈ H and all b′ such that Sb′ > 0: (a, f, S) ∈ CHb′(Mb′ ∪ {(a, f, S)}).

A feasible matching M is strongly stable if the following conditions hold:

1) [Individual rationality] ∀ b ∈ B, CHb(Mb) =Mb.

2)[No blocking] There does not exist a blocking coalition (b,H).

Strong stability differs from stability in that considers blocking by subsets of triples.

However, unlike group-stability, the coalition of triples must share a common agent in B.

The interpretation of such coalition is that the agent b is the “initiating” blocker, and other

agents b′ ∈ B involved with the potential deviation of agents in H are passive. Thus, strong

stability allows certain joint deviations to happen, but rules out deviations more complex

involving larger groups. 15

15In the application of matching with couples our notion of strong stability is similar, but slightly stronger
than the one defined in Kojima et al. [2013].
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Under optimization based preferences, stable matches are not necessarily strongly stable.

The example below illustrates this.

Example 2 There are two hospitals h1 and h2, each with 2 positions. There is one couple

(m, f) and two single doctors s1, s2. Both s1, s2 prefer h1 over h2. The couple’s preference

ordering is

(h1, h1) �mf (h2, h2) �mf (h1, h2) �mf (h2, h1) �mf

(h1, ∅) �mf (h2, ∅) �mf (∅, h1) �mf (∅, h2) �mf (∅, ∅).

The choice function of the hospital h1 is defined as in example 1. Hospital 2’s has gen-

eralized responsive preferences (as defined in Definition 3.4), where the preference order is

s1 �h2 s2 �h2 (m, f) �h2 (m, ∅) �h2 (∅, f).

Consider the matching in which (m, f) is matched with h1 and s1, s2 are matched with h2.

This matching is unblocked but not stable. In particular, if both s1, s2 would like to switch

to h1, then h1 would choose s1, s2 over (m, f). However if only one of the agents s1 or s2

would like to switch to h1, hospital h1 still prefers the couple.

Example 2 shows that by generalizing the choice function we further restrict the set of

stable matches. Nevertheless, if we relax the capacity constraints slightly, strongly stable

matchings still exist.

Theorem 4.1 If each agent b ∈ B has an optimization based choice function and each agent

a ∈ A is interested of bundles of size at most α, then for any capacity vector {kb|b ∈ B} the

following is true.

• There exists a capacity vector {k̄b|b ∈ B} satisfying maxb∈B |kb − k̄b| ≤ 2α − 1 and∑
b kb ≤

∑
b k̄b such that a strongly stable matching with respect to k̄ exists.
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• There exists a capacity vector {k̂b|b ∈ B} satisfying maxb∈B |kb− k̂b| ≤ 2α and
∑

b kb ≤∑
b k̂b ≤

∑
b kb + (2α + 1)α − 1 such that a strongly stable matching with respect to k̂

exists.

Proof. We use the optimization based choice function of each b ∈ B to induce a priority

ordering over Φb for all b ∈ B. Subsequently, we invoke Scarf’s lemma to obtain a frac-

tional dominating solution x∗ and use the rounding Lemma 3.3 to get an approximate stable

matching as in the proof of Theorem 3.1.

Given (a, f, S), (a′, f ′, S ′) ∈ Φb (therefore Sb, S
′
b > 0), we define the priority order �b as

follows:

If
V b

(a,f,S)

Sb
>
V b

(a′,f ′,S′)

S ′b
, then (a, f, S) �b (a′, f ′, S ′).

If
V b

(a,f,S)

Sb
=
V b

(a′,f ′,S′)

S ′b
and (a, f, S) �tieb (a′, f ′, S ′), then (a, f, S) �b (a′, f ′, S ′),

where �tieb is a fixed order that is used for a tie-breaking rule in Definition 4.1. For simplicity,

in the remaining of the proof, we assume V b
a,f,S are generic, and thus, we do not need to use

the tie-breaking rule. The proof easily extends to include such tie-breaking conditions.

Consider

∑
(f,S)

xa,f,S ≤ 1 for every agent a ∈ A

∑
(a,f,S)∈Φ

Sb · xa,f,S ≤ kb for every agent b ∈ B

xa,f,S ≥ 0.

Scarf’s lemma tells us that the linear system above has a dominating vertex x∗ with respect

to {�a, a ∈ A} and {�b, b ∈ B} as defined above.

We need the following lemma.
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Lemma 4.2 Let x̄ be a {0, 1} vector whose support is a subset of x∗’s support, i.e, x∗a,f,S =

0 ⇒ x̄a,f,S = 0, such that

⌊∑
(f,S)

x∗a,f,S

⌋
≤

∑
(f,S)

x̄a,f,S ≤
⌈∑

(f,S)

x∗a,f,S

⌉
∀a ∈ A. (15)

Let k̄ be the following capacity vector

k̄b =


∑

(a,f,S)∈Φ Sb · x̄a,f,S if
∑

(a,f,S)∈Φ Sb · x∗a,f,S = kb

kb, otherwise.

If each agent in B has an optimization based choice function, x̄ is a feasible matching with

respect to k̄ that is strongly stable.

Once Lemma 4.2 is proved, we can again use Lemma 3.3 to show the existence of an

approximate stable matching as in Theorem 3.1. Thus, it remains to show Lemma 4.2.

Proof of Lemma 4.2 The proof of Lemma 4.2 is similar to that of Lemma 3.2. However,

in Lemma 3.2 preferences of b ∈ B are assumed to be responsive. Thus, according to

Claim 3.1 it was enough to check that x̄ is not blocked by any triple. Here, because of

optimization-based choice functions, we will need a more elaborate argument.

Let M be the matching corresponding to x̄, that is M = {(a, f, S) : x̄a,f,S = 1}. If M

is not strongly stable, there exists a blocking coalition (b,H), where b ∈ B and non-empty

H ⊂ Φb disjoint from M such that

(i) H ⊂ CHb(Mb ∪H).

(ii) (a, f, S) �aMa for all (a, f, S) ∈ H, and

(iii) for all (a, f, S) ∈ H as well as b 6= b′ ∈ B such that Sb′ > 0: (a, f, S) ∈ CHb′(Mb′ ∪

(a, f, S)).

We first show that if (ii) and (iii) hold then x∗ dominates all triples in H at b.
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Now (ii) implies that x∗ cannot dominate (a, f, S) at a for any (a, f, S) ∈ H. This is

true because if x∗ dominates (a, f, S) at a, then
∑

f ′,S′ x
∗
a,f ′,S′ = 1 and for all x∗a,f ′,S′ > 0 :

(a, f ′, S ′) �a (a, f, S) which implies that
∑

f ′,S′ x̄a,f ′,S′ = 1, and thus ∅ 6= Ma �a (a, f, S),

contradicting (ii).

Similarly, because of (iii) x∗ cannot dominate (a, f, S) at b′ for any b′ 6= b such that Sb′ > 0.

To see why, assume not. Then,
∑

a′,f ′,S′∈Φ S
′
b′ · x∗a′,f ′,S′ = kb′ and for all x∗a′,f ′,S′ > 0, Sb′ > 0 :

(a′, f ′, S ′) �b′ (a, f, S). This implies

∑
(a′,f ′,S′)∈M

S ′b′ = k̄b′ ∀ (a′, f ′, S ′) �b′ (a, f, S) for all(a′, f ′, S ′) ∈Mb′ .

Thus
V b

(a′,f ′,S′)

S ′b′
>
V b

(a,f,S)

Sb′
∀ (a′, f ′, S ′) ∈Mb′ .

However, according to Lemma 4.1 (a, f, S) /∈ CHb′(Mb′ ∪ (a, f, S)), which contradicts (iii).

Now, because x∗ dominates all triples in H, x∗ dominates H at b. This implies

∑
(a,f,S)∈Φ

Sb · x∗a,f,S = kb (16)

(a′, f ′, S ′) �b (a′′, f ′′, S ′′) ∀(a′, f ′, S ′) ∈ Φb with x∗a′,f ′,S′ > 0 and ∀(a′′, f ′′, S ′′) ∈ H. (17)

From (16), (17), we prove that H 6⊂ CHb(Mb ∪ H), contradicting (i), which proves the

Lemma.

Because the matching M is on the support of x∗, if (17) is true then

(a′, f ′, S ′) �b (a′′, f ′′, S ′′) ∀(a′, f ′, S ′) ∈Mb and ∀(a′′, f ′′, S ′′) ∈ H.

This implies

V b
(a′,f ′,S′)

S ′b
>
V b

(a′′,f ′′,S′′)

S ′′b
∀(a′, f ′, S ′) ∈Mb and ∀(a′′, f ′′, S ′′) ∈ H. (18)
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Furthermore because of (16), and the definition of k̄, we have

∑
(a,f,S)∈M

Sb = k̄b. (19)

From (18) and (19) if the capacity of b is k̄b, and the choice function of b is defined

as in Definition 4.1 then according to Lemma 4.1, CHb(Mb ∪ H) = Mb. This shows the

contradiction with (i).

5 Matching with Side Constraints

In this section we show how our methods can be applied to matching problems with side

constraints. To illustrate, we consider a residency matching problem with regional caps, and

will show how the approach extends to other types of side constraints. The matching problem

with regional caps was identified by Kamada and Kojima [2014b] and is motivated by a need

to ensure a sufficiency of medical residents in less ‘attractive’ locations. We discuss it because

the obstacle to existence of a stable matching here does not arise from complementarity in

preferences but the interaction between the regional capacity constraints and the capacity

constraints of each hospital.

We describe the model of Kamada and Kojima [2014b] in our notation. As before let

A be the set of doctors, B the set of hospitals; kb is the capacity of hospital b. Denote by

{�a}a∈A the preferences of doctors over B ∪ {∅}. Note, there are no couples.

Denote by {�b}b∈B the preferences of hospitals over A∪ {∅}.16 Hospitals preferences are

assumed to be responsive.

There is a partition of the set of hospitals B = B1

⊎
· · ·

⊎
Bp. Each element of the

partition Bi corresponds to a region and has a capacity Ki. For each b ∈ B let π(b) be the

index of the region that b is in, that is, b ∈ Bπ(b).

16 If ∅ �a b then b is not feasible for a; if ∅ �b a then a is not feasible for b.
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If M⊂ {A×B} let Ma0 = {b|(a0, b) ∈M}; Mb0 = {a|(a, b0) ∈M}.

Definition 5.1 M is a feasible matching if :

M⊂ {(a, b)|a ∈ A;∈ B; b �a ∅; a �b ∅}

|Ma| ≤ 1 ∀a ∈ A; |Mb| ≤ kb ∀b ∈ B;
∑
b∈Bi

|Mb| ≤ Ki ∀i ∈ [p]

Strong stability in this setting is defined as follows.17

Definition 5.2 A doctor-hospital pair (a, b) strongly blocks a feasible matching M if:

i. b �aMa

ii. a ∈ CHb(Mb ∪ {a})

iii. If under M, a is currently unmatched, or matched outside region π(b), then∑
b′ ∈ Bπ(b)|Mb′| ≤ Kπ(b) − 1.

A feasible matching M is strongly stable if there is no strong blocking pair.

Kamada and Kojima [2014b] show that a strongly stable matching need not exist in this

setting. Furthermore, a mechanism that chooses a strongly stable match when it exists will

not be strategy proof. For this reason they propose the following relaxation:

Definition 5.3 A doctor-hospital pair (a, b) weakly blocks a feasible matching M if:

i. a prefers b to the current hospital Ma: b �aMa

ii. a ∈ CHb(Mb ∪ {a})

iii. the cap for the region of the hospital is not full:
∑

b′ ∈ Bπ(b)|Mb′| ≤ Kπ(b) − 1.

A feasible matching M is weakly stable if there is no weak blocking pair.

A weakly stable matching M allows for a blocking pair (a, b) where b is in the same

region as the hospital, Ma, that a is currently matched with. A strongly stable matching

rules out such blocking pairs. Here we show the existence of a near feasible strongly stable

matching.

17Strong stability in this section is defined as in Kamada and Kojima [2014b] and is different from that
notion defined in Section 4.
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• For each region i, introduce a dummy hospital ri with capacity Ki.

• Extend each doctor-hospital pair (a, b) to a triple (a, {b, rπ(b)}) that is {b, rπ(b)} is the

bundle that a consumes.

• Extend the preferences of agents in A and B over the triples (a, {b, rπ(b)}) in the obvious

way.

• Endow each dummy hospital ri with responsive preferences. The underlying priority

ordering is constructed as follows. For each a ∈ A, order the elements {(a, {b, ri})|b ∈

Bi; a �b ∅; b �a ∅} according to �a. Subsequently, concatenate these lists.

There is a one-to-one correspondence between the matching defined in Definition 5.1 and the

matching in our general framework. Given a feasible matchingM let M̂ be the corresponding

match involving triples (a, {b, rπ(b)}).

Claim 5.1 If M̂ is a stable matching in this framework with responsive preferences, then

its corresponding matching M is a strongly stable as in Definition 5.2.

Proof. Given a stable matching M̂ in the generalized framework, assume for a contradiction

that its corresponding M is not strongly stable as in Definition 5.2.

Let (a, b) be a strong blocking pair. We show (a, {b, rπ(b)}) is a blocking triple for M̂.

This is true because the preferences of a and b do not change, therefore both a, b will ‘accept’

(a, {b, rπ(b)}).

Now, if under matching M region π(b)’s capacity is not full, then so is the hospital rπ(b)

under M̂. Thus, rπ(b) can continue to accept (a, {b, rπ(b)}).

If under matching M region π(b) is at capacity, then in order for (a, b) to be a strong

blocking pair of M, a’s current match, b∗ must be in the same region as b, that is b∗ =Ma

and π(b) = π(b∗). Because a’s preferences are aligned and rπ(b)’s, rπ(b) will also prefers

(a, {b, rπ(b)}) to (a, {b∗, rπ(b)}). However, rπ(b)’s preferences are responsive, rπ(b) will reject

the latter to accept the former.
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This shows that (a, {b, rπ(b)}) is a blocking triple for M̂, a contradiction.

From this and Theorem 3.1 we obtain:

Theorem 5.1 Given a hospital capacity vector k and a regional capacity vector K; there

exists a strongly stable matching with respect to capacity vectors (k′, K ′) such that maxb |kb−

k′b| ≤ 3 and maxi |Ki −K ′i| ≤ 3.

The regional cap example shows how one may handle other types of side constraints

with upper quotas. For example, limits on numbers enrolled in particular specializations, or

numbers with certain characteristics (gender, race) admitted. One simply introduces dummy

hospitals for each such side constraint, and extends the bundle in the appropriate way. For

example, if in addition to the cap constraints above, a constraint on gender is also considered,

then add two dummy hospital m (male) and f (female) and extend (a, {b, rπ(b)}) to either

(a, {b, rπ(b),m}) or (a, {b, rπ(b), f}) depending on the gender of a. Notice, unlike Budish et al.

[2013] and Kamada and Kojima [2014a], we do not need to impose the hierarchical structure

on these side constraints. If the number of such constraints is small relative to the size of

the market, the ‘bundles’ will be small and we will obtain near feasible stable matchings.

In the residency matching problem with regional caps, hospitals are divided into disjoint

set of regions. This additional structure allows us to get better handle on which hospital’s

capacity needs to be modified.

Define a hospital to be either urban or rural depending on the relation of the cap con-

straint with the total capacities of all hospitals in the region. Call a region i urban if

Ki <
∑

b∈Bi kb and rural otherwise.18Hospitals in urban and rural regions are called urban

and rural, respectively.

We show that only the capacities of the urban hospitals and the regions that contain

them need to be modified to guarantee the existence of a strongly stable match. Thus, this

18Kamada and Kojima [2014b] provides data for the cap constraints in the Japanese Residency Matching
Program. For major cities such as Tokyo and Osaka the government imposes a cap constraint that is
significantly smaller than the total available positions in these areas.
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might suggest a method for a better implementation of the basic idea behind the Japanese

Residency Matching Program, which introduces cap constraints for urban regions to ensure

a sufficiency of medical residents in promote areas. Namely, the unavoidable instability

of a matching caused by strict regions cap constraints can be avoided with more flexible

constraints.

Theorem 5.2 Given a hospital capacity vector k and a regional capacity vector K; there

exists a strongly stable matching with respect to capacity vectors (k′, K ′) such that maxb |kb−

k′b| ≤ 3 and maxi |Ki −K ′i| ≤ 3, furthermore k′b = kb for all rural hospitals.

Proof. See appendix C.

6 Conclusion

A key goal in the design of centralized matching markets is to eliminate the incentive for par-

ticipants to contract outside of the market. This is formalized as stability and is considered

crucial for the long-term sustainability of a market. In the presence of complementarities,

stable matchings need not exist and limits the applicability of centralized matching. Others

have responded to this challenge by weakening the notion of stability. We instead, weaken

‘feasibility’ and establish the existence of near feasible stable matchings in the presence of

complementarities.
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T. Király and J. Pap. Kernels, stable matchings, and scarfs lemma. Working paper, Egerváry
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Appendix

A Omitted Proofs

A.1 Proof of Claim 3.2

The proof is by contradiction. Let M be a stable matching in the general set-up, assume

the corresponding assignment µ in the residency matching with couples is not stable. This

means that at least one of the three items below obtains.

1. A pair s ∈ D1 and h ∈ H can block µ if h �s µ(s) and s ∈ chh(µ(h) ∪ s).

2. A triple (c, h, h′) ∈ D2 × H × H with h 6= h′ can block µ if (h, h′) �c µ(c), fc ∈

chh(µ(h) ∪ fc) and mc ∈ chh′(µ(h′) ∪mc).

3. A pair (c, h) ∈ D2×H can block µ if (h, h) �c µ(c) and (fc,mc) ⊆ chh(µ(h)∪{fc,mc}).

The first type of blocking coalition corresponds to a triple (a, f, S) where a is a single student

s, f is redundant (NULL), and S is a single slot in the hospital h. We need to show that if

s ∈ chh(µ(h) ∪ s), then in the general setup (a, f, S) ∈ CHh(Mh ∪ (a, f, S)).

Now, because chh(.) is a responsive choice function over individual doctors, s ∈ chh(µ(h)∪

s) implies that s is among the best kh candidates among µ(h) ∪ s. Therefore, even when

some other members of µ(h) form pairs they cannot improve their rank in the new �∗b order,

because �∗b ranks these couples according to their worst member. Hence, the corresponding

triple (a, f, S) would still be selected in the choice function, that is (a, f, S) ∈ CHh(Mh ∪

(a, f, S)).

For the second type of blocking coalition, the proof is exactly the same as above.
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In the third type of blocking coalition, the pair (fc,mc) and a hospital h correspond

to (a, f, S), where a represents the couple, S contains 2 positions in h, and f is NULL.

Because (fc,mc) ⊆ chh(µ(h) ∪ c), both fc and mc are among the kh best candidates, thus

even when represented by the triple (a, f, S), both members are still ranked highly among

Mh ∪ (a, f, S). Hence, if CHh is generalized responsive, (a, f, S) will be selected, that is

(a, f, S) ∈ CHh(Mh ∪ (a, f, S)). This shows that if (fc,mc), h blocks a matching µ, then

(a, f, S) blocks M.

A.2 Proof of Lemma 4.1

According to Definition 4.1, CHb(H) = {(a, f, S) ∈ H|xa,f,S = 1}, where xa,f,S ∈ {0, 1} is

the solution of the following problem.

max
∑

(a,f,S)∈H

V b
a,f,S · xa,f,S (20)

s.t :
∑

(f,S):(a,f,S)∈H

xa,f,S ≤ 1 ∀ a ∈ A

∑
(a,f,S)∈H

xa,f,S · Sb ≤ kb

xa,f,S ∈ {0, 1}

If there are multiple solutions, we break ties lexicographically. Choose the first solution in a

lexicographical order for a fixed linear order �tieb over Φb.

Let

β = min
(a∗,f∗,S∗)∈H∗

V b
(a∗,f∗,S∗)

S∗b
> 0

and

λa,f,S := min{0, V b
(a,f,S) − βSb}

Let x∗ be the solution corresponding to H∗, that is x∗a,f,S = 1 iff (a, f, S) ∈ H∗. It is
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straightforward to check that the primal solution x∗ and the dual (λ, β) satisfy the comple-

mentary slackness condition of the linear relaxation of (20), where we replace xa,f,S ∈ {0, 1}

by 0 ≤ xa,f,S ≤ 1. Thus, x∗ is the optimal solution of the above optimization problem.

It remains to verify that among all optimal solutions, H∗ is the first according to the

tie breaking rule �tieb . First, if
V b
(a,f,S)

Sb
> β then (a, f, S) is in all optimal solutions of (20).

Second, if
V b
(a,f,S)

Sb
< β, then (a, f, S) cannot be in any optimal solution of (20). Third, for an

(a, f, S) ∈ H\H∗ such that
V b
(a,f,S)

Sb
= β, by the assumption, we know that if (a∗, f ∗, S∗) ∈ H∗

such that
V b

(a∗,f∗,S∗)

S∗b
=
V b

(a,f,S)

Sb
,

then, (a∗, f ∗, S∗) �tieb (a, f, S). Therefore, H∗ = CHb(H).

B Rounding Technique: Proof of Lemma 3.3

B.1 Iterative Rounding

The proof is based on a combinatorial optimization method called iterative rounding. The

iterative rounding algorithm tries to identify an x ∈ arg max{c · x : Dx ≤ d, x ≥ 0} that is

integral. Choose an xopt ∈ arg max{c · x : Dx ≤ d, x ≥ 0}. If it is integral, we are done.

If not, the iterative rounding method will eliminate one or more constraints and resolve the

linear program.

The algorithm starts from a given x∗ ≥ 0 such that Dx∗ ≤ d, and executes the following

steps.

Step 0: Initiate xopt := x∗.

Step 1: If xopt is integral, stop and output xopt, otherwise continue to either Step 2a or 2b.

Step 2a: If any coordinate of xopt is integral, fix the value of those coordinates, and update

the linear program.
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To describe the updated linear program, let C and C be the set of columns of D that

correspond to the non-integer and integer valued coordinates of xopt, respectively. Let

DC , and DC be the sub-matrix of D that consists of columns in C and the complement

C, respectively. Similarly, for a vector x, let xC and xC be the sub-vector of x that

consists of all coordinates in C and C.

The updated linear program is:

max cC · xC

s.t DC · xC ≤ d−DC · x
opt

C
.

In other words, we replace c by cC ; x by xC ; D by DC and d by d−DC ·x
opt

C
, and move

to Step 3.

Step 2b If all coordinates of xopt are fractional, then delete certain rows of D (to be specified

later) and the corresponding constraints from the linear program. Update the linear

program, move to Step 3.

Step 3 Solve the updated linear program {max c · x subject to Dx ≤ d} to get an extreme

point solution. Let this be the new xopt and return to Step 1.

Lemma B.1 Assume that whenever the algorithm passes Step 1 and has not terminated, it

can either enter Step 2a, or will find at least one row of the current D to delete in Step 2b.

Then, the algorithm will terminate in a finite number of steps and output a 0-1 vector.

Furthermore, if xOUT is the output, then, c · xOUT ≥ c · x∗.

Proof. In Step 2a, we fix at least one coordinate and update the linear program, thus at

least one column of the matrix is eliminated. In Step 2b, on the other hand, we delete at

least one row. D is a finite matrix. Thus, the algorithm can only execute Step 2a and

Step 2b a finite number of times. Therefore, if the assumption in Lemma B.1 holds, then,

the algorithm has to terminate.
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Observe that after each iteration of the algorithm, we eliminate some constraints and

resolve the linear program, thus the objective function cannot decrease.

Therefore, c · xOUT ≥ c · x∗.

To prove Lemma 3.3, given the fractional vector x∗ we will set up two linear programs

corresponding to part A and part B of Lemma 3.3. We first show that x∗ is a feasible solution

of each of these programs. Then, apply the iterative rounding algorithm that uses certain

row elimination rules for Step 2b. We describe these rules later.

In order to show that the iterative rounding algorithm will terminate, we will need the

following result.

Lemma B.2 Given nonnegative integers da ≤ d̄a for all a ∈ A,

F = {x : da ≤
∑
(f,S)

xa,f,S ≤ d̄a for all a ∈ A}

is an integral polytope. That is for any c, the linear program maxx∈P c · x has an integral

optimal solution.

Proof. Each variable appears with a non-zero coefficient in at most one constraint. The

non-zero coefficient has the value 1, making the constraint matrix totally unimodular.
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B.2 Proof of part A of Lemma 3.3:

Consider the following program.

PROGRAM A: max c · x such that :

xa,f,S = 0 if x∗a,f,S = 0

xa,f,S ≤ 1⌊∑
(f,S)

x∗a,f,S

⌋
≤

∑
(f,S)

xa,f,S ≤
⌈∑

(f,S)

x∗a,f,S

⌉
∀a ∈ A (A1)

∑
(a,f,S)

Sb · xa,f,S ≤
⌈ ∑

(a,f,S)

Sb · x∗a,f,S
⌉
∀b ∈ B (A2)

∑
(a,f,S)

Sb · xa,f,S ≥
⌊ ∑

(a,f,S)

Sb · x∗a,f,S
⌋
∀b ∈ B. (A3)

We apply the iterative rounding algorithm to this program, and start with x∗ at Step 0.

Clearly, x∗ satisfies all the constraints in PROGRAM A. Our row elimination rule we will

only delete constraints of type (A2) and (A3).

Consider an intermediate step of the algorithm. Assume the current linear program is

PROGRAM A’: max c · x such that :

xa,f,S = 0 if (a, f, S) /∈ H

xa,f,S ≤ 1

da ≤
∑
(f,S)

xa,f,S ≤ d̄a ∀a ∈ A (A1’)

∑
(a,f,S)∈H

Sb · xa,f,S ≤ d̄b ∀b ∈ B′ (A2’)

∑
(a,f,S)∈H

Sb · xa,f,S ≥ db ∀b ∈ B′′. (A3’)

Here H corresponds to the set of active columns; B′∪B′′ corresponds to the set of remaining

constraints of type (A2) and (A3). Notice all da, d̄a, db, d̄b are integral.
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Let xopt be an optimal solution of PROGRAM A’. Without loss of generality assume

none of the coordinates of xopt are integral; otherwise by fixing those integral values we can

continue to update and reduce the size of the linear program.

Claim B.1 Given an optimal solution xopt of PROGRAM A’. If NONE of the coordinates

of xopt are integral, then, there exists a b such that either19

∑
(a,f,S)∈H

Sb · dxopta,f,Se ≤ d̄b + 2α− 1

or

0 =
∑

(a,f,S)∈H

Sb · bxopta,f,Sc ≥ db − (2α− 1).

Assume that Claim B.1 is true. Apply the iterative rounding algorithm with the following

row elimination rule for Step 2b:

• Eliminate any constraint b of type (A2’) if
∑

(a,f,S) Sb · dx
opt
a,f,Se ≤ d̄b + 2α− 1.

• Eliminate any constraint b of type (A3’) if 0=
∑

(a,f,S) Sb · bx
opt
a,f,Sc ≥ db − (2α− 1).

To show that with this elimination rule the algorithm will terminate, notice that if no

constraints of type (A2’) or (A3’) remain, according to Lemma B.2, the linear program has

an integral solution, and thus the algorithm terminates at Step 1. Assume the algorithm

does not terminates at Step 1. Because of Claim B.2, we can always proceed either to Step

2a or 2b. Thus according to Lemma B.1 the algorithm has to end in a finite number of steps.

Let x̄ be the output of this algorithm. We show that x̄ satisfies (6)-(9).

Once coordinate xa,f,S is fixed, it is never changed in subsequent iterations. Thus, (6) is

true because if x∗a,f,S = 0, then that variable is fixed to be 0 in all subsequent iterations of

the algorithm.

Because of Lemma B.1, c · x̄ ≥ c · x∗, thus (C1) is true.

19Notice, because all coordinates of xopt are fractional, they are less than 1. Therefore, bxopt
a,f,Sc = 0.
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(8) is not violated because we do not eliminate such constraints during the algorithm.

Finally we need to show (9), that is

⌊ ∑
(a,f,S)

Sb · x∗a,f,S
⌋
− 2α + 1 ≤

∑
(a,f,S)

Sb · x̄a,f,S ≤
⌈ ∑

(a,f,S)

Sb · x∗a,f,S
⌉

+ 2α− 1 ∀b ∈ B.

Notice that the constraints that were eliminated during the execution of the algorithm satisfy

the conditions in Claim B.1, and once coordinate xa,f,S is fixed, it is never changed in

subsequent iterations. Therefore, the above inequalities must hold.

As x̄ satisfies (6)-(9), this suffices to prove part A of Lemma 3.3.

It remains to prove Claim B.1.

Proof of Claim B.1 This proof is an extension of Király et al. [2012].20 Given the extreme

point xopt, assume none its coordinates are integral, i.e, 0 < xopta,f,S < 1.

We credit each non-zero variable xopta,f,S with a single token. We then redistribute these

tokens to the binding, linearly independent constraints in a particular way.

Suppose for a contradiction that the conclusion of Claim B.1 is false. Because all db, d̄b

are integral, the contracdiction assumption means that for all b:

∑
(a,f,S)∈H

Sb · dxopta,f,Se ≥ d̄b + 2α and 0 ≤ db − 2α.

We show that each binding constraint will get at least one token, and there will be

one token left over. This shows that the number of non-zero variables in xopt exceeds the

number of binding, linearly independent constraints, which contradicts the fact that xopt is

an extreme point.

We redistribute the tokens as follows:

1. Credit 1/2 of the tokens of xopta,f,S to the constraint corresponding to agent a (A1’).

20We generalize Király et al. [2012] to allow Sb > 1. Our counting technique is also different, which allows
us to extend the proof to part B of Lemma 3.3.
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2. Credit Sb[
1−xopta,f,S

2α
] to each constraint of type (A2’) corresponding to each b ∈ B′.

3. Credit Sb[
xopta,f,S

2α
] to each constraint of type (A3’) corresponding to each b ∈ B′′.

Notice that this is feasible because the size of each bundle is at most α. The total of

number of tokens debited from each xopta,f,S is

1/2 +
∑
b

Sb
1− xopta,f,S

2α
+
∑
b

Sb
xopta,f,S

2α
≤ 1/2 +

(
∑

b Sb)

2α
= 1/2 +

size(S)

2α
≤ 1.

Consider an agent a such that
∑

(f,S) x
opt
a,f,S = 1. As all components of xopta,f,S are fractional,

there are at least 2 positive xopta,f,S. Each of them contributes 1/2 a token, thus, the constraint

corresponding to agent a gets at least 1 token.

Consider an agent b ∈ B′′ and suppose its corresponding constraint of type (A3’) binds.

Then, the number of tokens it gets is

∑
a,f,S

Sb
xopta,f,S

2α
=
db
2α
.

Because of the contradiction assumption, db ≥ 2α, this constraint gets at least 1 token.

Now suppose a constraint of type (A2’) for agent b ∈ B′ binds. Then, the number of

tokens it gets is ∑
a,f,S

Sb
1− xopta,f,S

2α
=

∑
(a,f,S) Sb · dx

opt
a,f,Se − d̄b

2α
.

As assumed,
∑

(a,f,S) Sb · dx
opt
a,f,Se ≥ d̄b + 2α, this constraint gets at least 1 token.

Hence, the amount of tokens given at the beginning (which is the dimension of xopt) have

been redistributed to the binding constraints, so that each is credited with at least 1 token.

Thus the dimension of xopt is at least the number of binding constraints.

Now, equality obtains only if for every nonzero xopta,f,S, size(S) = α. Furthermore, the

constraint corresponding to agent a as well as all constraints corresponding to all b ∈ B bind.

In this case one can show that the set of binding constraints is not linearly independent. To
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see this, consider the sum of all the binding constraints of type (A1’). The coefficient of each

variable will be 1. On the other hand, in the sum of all the constraints of type (A2’), the

coefficient of each variable xa,f,S > 0 is size(S). However, each bundle consumed contains

exactly α items. Thus each coefficient is α.

By this we have shown that the number of nonzero variables in an extreme point solution

is larger than the number of linearly independent binding constraints.

B.3 Proof of part B of Lemma 3.3

The proof of part B is similar to the previous proof of part A.

Consider the following program.

PROGRAM B: max c · x such that :

xa,f,S = 0 if x∗a,f,S = 0

xa,f,S ≤ 1⌊∑
(f,S)

x∗a,f,S

⌋
≤

∑
(f,S)

xa,f,S ≤
⌈∑

(f,S)

x∗a,f,S

⌉
∀a ∈ A (B0)

∑
(a,f,S)

Sb · xa,f,S ≤
⌈ ∑

(a,f,S)

Sb · x∗a,f,S
⌉
∀b ∈ B (B1)

∑
(a,f,S)

Sb · xa,f,S ≥
⌊ ∑

(a,f,S)

Sb · x∗a,f,S
⌋
∀b ∈ B. (B2)

∑
(a,f,S)

x(a,f,S) · size(S) ≤
⌈ ∑

(a,f,S)

x∗(a,f,S) · size(S)
⌉

(B3)

We apply the iterative rounding algorithm to this program, and start with x∗ at Step 0.

Clearly, x∗ satisfies all the constraints in PROGRAM B. In the row elimination rule we will

only delete the constraints of type (B1), (B2) and (B3).
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Consider an intermediate step of the algorithm. The current linear program is either

PROGRAM B’: max c · x such that :

xa,f,S = 0 if (a, f, S) /∈ H

xa,f,S ≤ 1

da ≤
∑
(f,S)

xa,f,S ≤ d̄a ∀a ∈ A (B0’)

∑
(a,f,S)∈H

Sb · xa,f,S ≤ d̄b ∀b ∈ B′ (B1’)

∑
(a,f,S)∈H

Sb · xa,f,S ≥ db ∀b ∈ B′′. (B2’)

∑
(a,f,S)∈H

x(a,f,S) · size(S) ≤ d (B3’)

or one without constraint (B3’).21 Without loss of generality, we assume that the current

linear program has such a constraint, otherwise the proof is the same as in part A.

As in the proof of part A, H corresponds to the set of active columns; B′∪B′′ corresponds

to the set of remaining constraints of type (B1) and (B2).

Again, we assume xopt to be the optimal solution of the PROGRAM B’ and all the

coordinates of xopt are fractional, that is, 0 < xopt < 1. With this we have the following.

Claim B.2 Let xopt be the optimal solution of the PROGRAM B’ such that all coordinates

of xopt are fractional, then, one of the following is true:

C1: there exists b ∈ B′ such that
∑

(a,f,S)∈H Sb · dx
opt
a,f,Se ≤ d̄b + 2α

C2: there exists b ∈ B′′ such that 0 =
∑

(a,f,S)∈H Sb · bx
opt
a,f,Sc ≥ db − 2α

C3:
∑

(a,f,S)∈Hdxopt(a,f,S)e · size(S) ≤ d+ (2α + 1)α− 1.

First assume that Claim B.2 is true, then we can prove part (B) as follows. Apply the iterative

21Notice all d, da, d̄a, db, d̄b are integral.
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rounding algorithm to PROGRAM B above with the row elimination rule corresponding to

the conditions C1, C2 and C3 as in Claim B.2.

First, if there are no constraints of type (B1’), (B2’) or (B3’) left, then according to

Lemma B.2, the linear program has an integral solution, and thus the algorithm terminates

at Step 1. Second, according to Claim B.2, after Step 1, if has not terminated, the algorithm

can always proceed to either Step 2a or 2b. Therefore because of Lemma B.1 the algorithm

will end in a finite number of steps.

Let x̂ be the output of the algorithm. The remainder of the proof shows that x̂ must

satisfy (10)–(14) is analogous to the proof of part (A). It remains to show Claim B.2.

Proof of Claim B.2 The proof is similar to that of Claim B.1, but a more elaborate redis-

tribution of tokens is employed. We first assume that the claim is not true. Because d, db, d̄b

are all integral, this means that for all remaning constraints:

• 0 =
∑

(a,f,S)∈H Sb · bx
opt
a,f,Sc ≤ db − 2α− 1

•
∑

(a,f,S) Sb ·
⌈
xopta,f,S

⌉
≥ d̄b + 2α + 1

•
∑

(a,f,S)∈Hdxopt(a,f,S)e · size(S) ≥ d+ (2α + 1)α

Again, credit each fractional xopta,f,S with one token. We redistribute this token as follows.

Credit α+1
2α+1

xopta,f,S + α
2α+1

(1− xopta,f,S) tokens to the constraint corresponding to agent a in

the constraints of type (B0’).

Credit Sb
1−xopta,f,S

2α+1
tokens to each constraint of type (B1’) corresponding to each b

Credit Sb
xopta,f,S

2α+1
tokens to each constraint of type (B2’) corresponding to each b

Credit
1−xopta,f,S

2α
to each constraint of type (B3’).

It is easy to check that the sum of these tokens is at most 1, because for every S,

size(S) =
∑

b Sb ≤ α.

As in the the proof of Claim B.1, consider an agent b ∈ B. If its corresponding constraint
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of type (B2’) binds then the amount of tokens it gets is

∑
a,f,S

Sb
xopta,f,S

2α + 1
=

db
2α + 1

.

Thus, if db ≥ 2α + 1, then, this constraint gets at least 1 token.

Consider a constraint of type (B1’) for an agent b ∈ B. If this constraint is binding, then,

the amount of tokens it gets is

∑
a,f,S

Sb
1− xopta,f,S

2α + 1
=

∑
(a,f,S) Sb ·

⌈
xopta,f,S

⌉
− d̄b

2α + 1
.

Notice the above equality is true because we assume 0 < xopta,f,S < 1, and thus dxopta,f,Se = 1.

Thus, if
∑

(a,f,S) Sb ·
⌈
xopta,f,S

⌉
≥ d̄b + 2α + 1, then this constraint gets at least one token.

Consider constraint (B3’). If it binds, the amount of tokens it gets is

∑
a,f,S

1− xopta,f,S

2α + 1
=

∑
a,f,S

size(S)− size(S) · xopta,f,S

size(S)(2α + 1)
≥

∑
(a,f,S) size(S) ·

⌈
xopta,f,S

⌉
− d

α(2α + 1)
.

Therefore, if
∑

(a,f,S) size(S) · dxopta,f,Se − d ≥ (2α+ 1)α, this constraint also gets at least one

token.

Finally, for a constraint corresponding to an agent a. The total tokens that it gets is

α + 1

2α + 1

∑
f,S

xopta,f,S +
α

2α + 1

∑
f,S

(1− xopta,f,S).

Since, all xopta,f,S are fractional, if the constraint corresponding to agent a binds, then
∑

(f,S) xa,f,S =

1. Thus,

α + 1

2α + 1

∑
f,S

xopta,f,S =
α + 1

2α + 1
.
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Furthermore, for such a, there are at least 2 positive xopta,f,S, otherwise xopta,f,S = 1, therefore

α

2α + 1

∑
f,S

(1− xopta,f,S) ≥ α

2α + 1
(2−

∑
f,S

xopta,f,S) =
α

2α + 1
.

Combining these inequalities, we obtain that the constraint corresponding to agent a also

gets at least one token. The remainder of the proof shows if all the inequalities above hold

at equality, then these binding constraints are linearly dependent as in the the proof of

Claim B.1.

C Proof of Theorem 5.2

The proof of this theorem is analogous to the proof of Theorem 3.1. Using the construction

of dummy hospitals as described in Section 5, we transform the problem into our general

framework described in Section 3.

For a rural region Bi, because
∑

b∈Bi kb ≤ Ki, we can ignore the cap for this region, and

therefore omit the dummy hospital corresponding to this constraint.

Thus, a possible match between a doctor a and a urban hospital b corresponds to the

triple (a, {b, rπ(b)}). However, a possible match between a doctor a and a rural hospital b

will correspond to (a, {b}), that is the match between a and b in the usual sense.

Let x∗ be the fractional solution found using Scarf’s lemma for this setting. All we need

to show is that x∗ can be rounded into an integral vector x̄ such that:

For every urban hospital b:

⌊ ∑
(a,{b,rπ(b)})

x∗(a,{b,rπ(b)})

⌋
− 3 ≤

∑
(a,{b,rπ(b)})

x̄(a,{b,rπ(b)}) ≤
⌈ ∑

(a,{b,rπ(b)})

x∗(a,{b,rπ(b)})

⌉
+ 3,

which guarantees that we do not change the capacity of any urban hospital by more than 3.
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For every dummy hospital ri:

⌊ ∑
(a,{b,ri})

x∗(a,{b,ri})

⌋
− 3 ≤

∑
(a,{b,ri})

x̄(a,{b,ri}) ≤
⌈ ∑

(a,{b,ri})

x∗(a,{b,ri})

⌉
+ 3,

which guarantees that we do not change the cap of any urban region by more than 3. For

every rural hospital b:

⌊ ∑
(a,{b})

x∗(a,{b})

⌋
≤

∑
(a,{b})

x̄(a,{b}) ≤
⌈ ∑

(a,{b})

x∗(a,{b})

⌉
,

which guarantees that we do not change the capacity of any rural hospital. Finally, for every

doctor a:

⌊ ∑
(a,{b,rπ(b)})

x∗(a,{b,rπ(b)}) +
∑

(a,{b})

x∗(a,{b})

⌋
≤

∑
(a,{b,rπ(b)})

x̄(a,{b,rπ(b)}) +
∑

(a,{b})

x̄(a,{b})

∑
(a,{b,rπ(b)})

x̄(a,{b,rπ(b)}) +
∑

(a,{b})

x̄(a,{b}) ≤
⌈ ∑

(a,{b,rπ(b)})

x∗(a,{b,rπ(b)}) +
∑

(a,{b})

x∗(a,{b})

⌉
,

which guarantees that if in x∗ a doctor a is always matched to a hospital, that is
∑

(a,{b,rπ(b)}) x
∗
(a,{b,rπ(b)})+∑

(a,{b}) x
∗
(a,{b}) = 1, then doctor a will be matched in x̄.

The existence of such a x̄ can be derived by the iterative rounding procedure. For this

procedure to work the following lemma is at the core of the argument.
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Claim C.1 Consider the following linear program.

PROGRAM C: max c · x such that :

x(a{b,rπ(b)) = 0;x(a,{b}) = 0 if (a{b, rπ(b)) and (a, {b}) /∈ H

x(a{b,rπ(b)) ≤ 1;x(a,{b}) ≤ 1

da ≤
∑

(a{b,rπ(b))

x(a{b,rπ(b)) +
∑

(a,{b})

x(a,{b}) ≤ d̄a ∀a ∈ A (C0)

db ≤
∑

(a,{b})

x(a,{b}) ≤ d̄b for all rural hospital b (C1)

∑
(a{b,rπ(b))∈H

x(a{b,rπ(b)}) ≤ d̄b for urban hospital b ∈ B′ (C2)

∑
(a{b,rπ(b))∈H

x(a{b,rπ(b)}) ≥ db for urban hospital b ∈ B” (C3)

∑
(a{b,ri)∈H

x(a{b,ri}) ≤ d̄ri for dummy hospital ri ∈ I ′ (C4)

∑
(a{b,ri)∈H

x(a{b,ri}) ≥ dri for dummy hospital ri ∈ I ′′ (C5)

where H is the set of indexes (columns)of active variables, and B′;B′′; I ′; I ′′ are the set of

active constraints.22 Let xopt be an extreme solution of this program, and assume all active

coordinates of xopt are fractional, then there exists b ∈ B′ ∪ B” or ri ∈ I ′ ∪ I ′′ such that at

least one of the following is true.

•
∑

(a{b,rπ(b)})∈Hdx
opt
(a{b,rπ(b)})

e ≤ d̄b + 3

•
∑

(a{b,rπ(b)})∈Hbx
opt
(a{b,rπ(b)})

c ≥ db − 3

•
∑

(a{b,ri})∈Hdx
opt
(a{b,ri})e ≤ d̄ri + 3

•
∑

(a{b,ri})∈Hbx
opt
(a{b,ri})c ≥ dri − 3

The proof of this claim is similar to Claim B.1, and so is omitted.

22This corresponds to the updated linear program obtained at the beginning of stage 3 during the iterative
algorithm.
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With Claim C.1, the proof of Theorem 5.2 is as follows. Given a fractional solution x∗

corresponding to the solution of Scarf lemma, we apply the iterative rounding algorithm to

the linear program C, where

da =
⌊ ∑

(a{b,rπ(b))

x∗(a{b,rπ(b)) +
∑

(a,{b})

x∗(a,{b})

⌋
; d̄a =

⌈ ∑
(a{b,rπ(b))

x∗(a{b,rπ(b)) +
∑

(a,{b})

x∗(a,{b})

⌉
;

db =
⌊ ∑

(a,{b})

x∗(a,{b})

⌋
; d̄b =

⌈ ∑
(a,{b})

x∗(a,{b})

⌉
for all rural hospitals b;

db =
⌊ ∑

(a{b,rπ(b))

x∗(a{b,rπ(b)})

⌋
; d̄b =

⌈ ∑
(a{b,rπ(b))

x∗(a{b,rπ(b)})

⌉
for all urban hospitals b;

and dri =
⌊ ∑

(a{b,ri)

x∗(a{b,ri})

⌋
; d̄ri =

⌈ ∑
(a{b,ri)

x∗(a{b,ri})

⌉
for all dummy hospitals ri.

Clearly x∗ is a feasible solution to this linear program. According to Claim C.1, if there still

exists a constraint of type (C2); (C3); (C4) or (C5), and the algorithm has not terminated,

we can always eliminate one such constraint without violating it by more than 3. When

no such constraint exists, only constraints of type (C0) and (C1) remain. However, these

are standard bipartite matching constraints, and thus an integral solution exists. Therefore,

the iterative rounding procedure will terminate in this case and gives us the desired integral

vector x̄.
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