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The Network Effects of Air-Travel Demand

By Yanhao Wei∗

As demand increases, airline carriers often increase flight fre-

quencies to meet the larger flow of passengers in their networks,

which reduces passengers’ schedule delays and attracts more de-

mand. Motivated by this, I study a structural model of the U.S.

airline industry accounting for possible network effects of demand.

Compared with previous studies, the model implies higher cost es-

timates, which seem more consistent with the unprofitability of the

industry; below-marginal-cost pricing becomes possible and appears

on many routes. I also study airline mergers and find that the net-

work effects can be the main factor underlying their profitability.

Keywords: Airlines, Network Effects, Flight Frequency, Merger,

Networks.
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I. Introduction

Major airline carriers in the U.S. nowadays operate large-scale networks, as illus-

trated in Figure I.1. In a carrier’s network, cities (nodes) are connected by direct

services (links). Previous empirical studies on the airline industry have been very

interested in the cost-side benefits of larger flow of passengers, i.e. more densely

traveled links may have lower marginal costs, which are termed “economies of den-

sity” (see, for example, Caves et al. (1984), Brueckner and Spiller (1994), Berry,

Carnall and Spiller, hereafter BCS (2006)). However, much of the previous stud-

ies have paid little attention to the possible demand-side benefits of larger flow,

particularly the network effects of air-travel demand.1

There can be many mechanisms that produce network effects of demand.2 The main

mechanism that motivates my study is flight frequency. In the post-deregulation

industry, airlines in the long term compete on network structure, which includes

choosing the hub locations, and in the short term compete on price, aircraft size

and flight frequency (see Alder (2001), Wei and Hansen (2007), Abdelghany and

Abdelghany (2012)3). Within a network, flows of passengers vary across links and

higher flows are mostly satisfied with higher flight frequencies; meanwhile, higher

frequencies reduces passengers’ schedule delays and implies better quality of service

(see Wei and Hansen (2005), Givoni and Rietveld (2009)). This suggests that the

value of a link, and more generally the value of the network, increases with the

number of passengers.4

This paper studies such network effects with a structural model similar to those

1Mayer and Sinai (2002) studied the network effect of hubbing: the number of routes created by adding
one new link to a hub increases with the hub size. This is different from the network effects of demand that
I study in this paper.

2For example, carriers may have incentives to introduce new services such as wifi access on their busiest
links first, because doing so creates more word-of-mouth. Carriers also respond to higher demand by using
larger aircrafts, which are usually considered more comfortable and safer.

3Alder (2001) assumes a two-stage game in which carriers choose hub-and-spoke networks in the 1st
stage and compete on price, frequency and aircraft size in the 2nd stage. The framework has been common
in the transportation research literature. Both Wei and Hansen (2007) and Abdelghany and Abdelghany
(2012) have discussion on the difference between a carrier’s strategic-level decisions such as choosing the
network structure and planning-level decisions such as schedule development.

4See Economides (1996) for a general discussion of network effects.
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Figure I.1. Networks of five major carriers in 2012Q4-2013Q1, restricted to the 100 most-visited

cities in the U.S. Links represent direct services between cities. Coordinates are longitude and

latitude.



in recent discrete-choice studies of the airline industry (for example, BCS (2006),

Peters (2006), Berry and Jia (2010)). Potential passengers choose which route to fly,

where a route is constructed by one or more links (i.e. non-stop route and connection

route). Motivated by the frequency mechanism, network effects are introduced by

allowing the flow on any link to affect the demand on all the routes that utilize the

link. For example, in Philadelphia, how frequently planes take off for Atlanta affects

not only a passenger whose destination is Atlanta, but also a passenger that is going

to make a connection in Atlanta. Meanwhile, all these passengers add to the flow

between the two cities, which is a likely determinant of the frequency. The fact that

one link usually serves multiple routes implies that there are “peer effects,” where

an increase in the demand on one route can have positive effects on the demand

of all the routes that share links with it. The peer effects depend on the exact

network structure of carrier: while a hub-and-spoke network is likely to have strong

peer effects, a purely point-to-point network will have no such effects. Because the

peer effects supplement the network effects of demand, the latter will also in general

depend on the carrier’s network structure.

I estimate the model with data from the Airline Origin and Destination Survey

(DB1B), which is a 10% sample of airline tickets from the reporting carriers in the

U.S. The identification could, in principle, face a problem similar to the “reflection”

described in Manski (1993), which can be illustrated by the extreme case of a purely

point-to-point network, where each route is isolated. In such a network, flow and

demand coincide, thus the network effects would be the influence of the demand

on itself. Similar to the use of social networks to resolve the reflection problem

(see Bramoullé et al. (2009)), the identification of the network effects in this paper

requires some asymmetry between the two ends of influence. Fortunately, the hub-

and-spoke structure provides lots of such asymmetry, as the demand on a route is

generally different from the flows on its links.

With network effects, the model implies much higher price elasticities of demand

than a model without network effects. The intuition is clear: if a carrier increases



prices, the demand will decrease, which would decrease the demand further if there

are network effects. As a result, the model implies substantially higher marginal-

cost estimates compared with previous studies. I find these estimates consistent with

the relative unprofitability of the U.S. airline industry, as indicated by the financial

reports of the major carriers.

Apart from the overall level of marginal costs, network effects also have implications

for other aspects of the cost structure. First, economies of density are found to be

both greater and more prevalent than in a model without network effects. Second,

due to peer effects, it is possible for carriers to find it optimal to price some routes

below their marginal costs. Although the carrier cannot break even on a route

with a price below marginal cost, the additional flow brought by the low price

helps stimulate demand for the other routes in the network. My estimates suggest

that the majority of connection routes5 in the U.S. are priced below marginal cost.

Interestingly, when Delta reduced the capacity at its Cincinnati hub in 2005, it

claims that “connecting traffic is the least profitable for the airline.”6

Since its deregulation, mergers have not been uncommon in the airline industry.

When two carriers combine their networks, it is likely that the merged network

will be both more densely flown and larger than either of the pre-merger networks.

The increases in flow stimulate demand through network effects, and the larger net-

work creates connection routes to serve more city-pair markets. Such considerations

would be absent in a standard merger analysis that only considers the market power

effect.7 Through simulations, I find that it is possible for both price and demand

to increase in a merger, allowing it to be fairly profitable. This result seems to fit

what happened in the 2010 United-Continental merger, in which both the overall

demand and price of United-Continental had increased relative to the industry av-

erages. It also provides a possible explanation for the recurrent merger practices in

5In this paper connection routes only include one-stop non-codeshared routes. See the Model Section
for details.

6Business Courier, September 7, 2005.
7For example, Peters (2006) focuses on the price changes caused by increases of market power in airline

mergers.



the industry.

The paper is organized as follows. Section II introduces the model. Section III

outlines the estimation method. Section IV gives a brief description of the data and

presents the estimation results along with some of their implications. Section V uses

the estimated model to study airline mergers. Section VI concludes.

II. Model

A. Carriers’ Networks

t1

t2

t3

t4

t5

t6

Figure II.1. Example of Networks. Carrier 1’s (carrier 2’s ) links are represented by the solid

(dashed) lines.

There is a set of carriers and a set of cities. A city is characterized by its location,

population, whether it is tourist destination, etc. We use N to denote the networks.

If a carrier c offers direct flights from city t to t′, we will say that link tt′c belongs

to the networks, or tt′c ∈ N . Since it is very rare that a carrier serves only one

direction between two cities (e.g. flights from Philadelphia to Los Angeles but

not the reverse), tt′c and t′tc will be regarded as the same link. In other words,

the networks are non-directed. We will also use s to denote a generic link more

compactly.



Figure.II.1 illustrates a simple case of two carriers. The links of carrier 1 are drawn

in solid lines, while the links of carrier 2 are drawn in dashed lines. For example,

we have t1t4c1, t4t1c1 ∈ N but t1t4c2, t4t1c2 /∈ N .

A route carries a passenger from her origin city to her destination through a sequence

of links. The links are commonly called the segments of the route. More formally, a

nonstop route of carrier c that connects city t and t′ is {tt′c}, provided that tt′c ∈ N ;

while a one-stop route of carrier c that connects city t and t′ is {tt̃c, t̃t′c} for some

connection city t̃, provided that both the links are in N . We will also use j to denote

a generic route more compactly, and s ∈ j to denote that one of the links of j is s.

Since links have been defined as non-directed, so are the routes. In other words, the

reverse of a route will be regarded as the same route.

In general, a route may have more than one stop, and it can also be code-shared,

i.e. operated by different carriers on different segments. According to the Airline

Origin and Destination Survey (DB1B), only about 1% of the passengers in the U.S.

traveled on routes with more than one stop or routes that are code-shared. For

simplicity, I will not consider these types of routes.

For the demand model which I will later describe in detail, a city-pair is regarded as

a market, and the routes connecting the two cities are the“products” in the market.8

Given the demand, i.e. the number of passengers traveling on each route, the flow

on a link is simply the sum of the passengers across the routes which use the link.

More formally, let qj be the demand for j, then the flow on s is

(II.1) Fs =
∑

j:s∈j
qj

For example, in Figure II.1, in market {t1, t2} there are 3 products in total: {t1t2c1},

{t1t2c2} and {t1t5c1, t5t2c1}. The flow on link t1t2c2 is the sum of the demand on

8In many previous discrete-choice applications in the airline literature, markets have been defined as
ordered city pairs and products are the directed routes or round-trip routes flying from one city to another.
The main reason for such specification is that it allows the presence of a carrier at the origin to affect the de-
mand on a route. While it is not conceptually difficult to apply these extensions, it will considerably increase
the number of products and the computational burden when we want to treat frequency as endogenous.



two routes serving different markets: F (t1t2c2) = q({t1t2c2}) + q({t1t2c2, t2t3c2}).

B. Demand

1. Passenger Choice. — For exposition, a city-pair market m will be fixed

throughout this subsection. The “products” in the markets are the routes that

connect the two cities. The products are differentiated by travel length, price, fre-

quency, and so forth. The (indirect) utility of taking route j of individual i is

(II.2) uij = β′xj − αpj + fj + ξj + εij

where xj is a vector of observed characteristics of the route, pj is the price, fj is

a measure of the network effects on route j which I will describe below, and ξj is

a route-specific fixed-effect that captures unobserved (to us) characteristics of the

route. As functions of the city characteristics and networks, xj will include the

carrier identity, the length of the route, a dummy for nonstop, etc.; the details are

provided in the Data section.

In the frequency mechanism, the consumer demand for a route is affected by the

flight frequencies, which adjust to the flows on segments of the route. Accordingly,

I specify that for a non-stop route j = {s},

(II.3) fj = γ1 log(Fs)

where Fs, as already defined, is the flow on link s. The logarithm specification is

motivated by the diminishing reduction of delay as flight frequency increases.9 A

different motivation of the logarithm specification comes from treating a route as

the nest of its flights, whose details are given in the appendix.

9For instance, when there is only 1 flight per day between two cities, adding one more flight per day will
reduce the average interval between flights by 12 hours. However, when there are already 10 flights per day,
adding one more flight will not do much.



As to the network effects on a one-stop route, I will use a constant-elasticity-of-

substitution (CES) function to account for the effects of the flows on both of the

links. For j = {s, s′},

(II.4) fj = γ2 log

[(
Fs

τ + Fs′
τ

2

)1/τ
]

It reduces to (II.3) when the two flows are equal. Note that CES is flexible in

accommodating the differential effects of the larger and smaller of the two flows:

when τ > 1, what matters most is the larger of Fs and Fs′ ; when τ = 0, what

matters is the sum; when τ < 0, what matters most is the smaller flow. One

probably would expect τ < 0 to be the case because, acting like a bottleneck of the

route, it is usually the link with lower frequency that causes the delays.

Note that though the specifications are motivated by the frequency mechanism, they

can capture other possible sources of network effects as well. For example, to meet

increases in demand, carriers can either increase flight frequency or increase aircraft

size. Givoni and Rietveld (2009) shows that, while the priority has been given to

frequency, both means are being used in practice. Hence more dense links tend to

fly larger aircrafts, which may give rise to network effects as well because they are

usually considered safer and more comfortable.

To complete the demand model, I specify that the idiosyncratic preference εij follows

the distributional assumption necessary to generate the nested logit probabilities

(McFadden (1981)) where all the routes in the market are nested against an “outside

good” of not flying. With λ being the nesting parameter, the demand for route j is

then

(II.5) qj = M
Dλ

1 +Dλ
· e

(β′xj−αpj+fj+ξj)/λ

D



where M is the size of the market and

D ≡
∑
k:k∈m

e(β′xk−αpk+fk+ξk)/λ

where the summation is across all the routes in market m. The “demand” of the

outside good is

(II.6) q0 = M
1

1 +Dλ

Given the presence of network effects, demand is determined jointly by the discrete-

choice model and the flow-demand relation (II.1). More formally, fix the city char-

acteristics, N and ξ. (II.2)-(II.5) describe a discrete-choice model that implies a

vector of demand for any price p and flow F , where F can be either exogenously

given or given by a vector of quantities q as in (II.1). In the later case, we may

write the discrete-choice model as a function Ψ(p, q). The demand predicted by our

model is then a fixed point of Ψ(p, ·).

In the appendix I show the uniqueness of fixed point under a restriction on γ.

Unfortunately the uniqueness may not be guaranteed in general. However, I have

not encountered multiplicity in my estimation and counterfactual analysis. It is also

worth noting that the estimation, which will only rely on the local optimality of the

carriers’ pricing behaviors (i.e. first-order conditions), does not necessarily requires

the uniqueness. This is explained in the supply subsection below.

2. Network Effects. — Network effects are embedded in the notion of fixed

point. An increase in the demand (e.g. caused by a price drop) on route j will

increase the flows on its links and thus fj , which increases the mean utility of j.

This is the case even when j is an isolated route. If route j is within a network,

there are also the peer effects: an increase in the demand for j will increase the mean



utility for any of the link-sharing routes, i.e. {k| ∃s such that s ∈ k and s ∈ j}. Of

course, the subsequent increase in the demand on a “peer” route k will further affect

k itself and the peers of k, which include j, and so forth.

In particular, we can see that a link used by more routes is likely to bear a much

larger flow, not just because it sums up the demand on more routes, but also because

the flow has positive effects on the demand on these routes. This offers an explana-

tion to the substantial market-share differences among the carriers within a market.

For example, in the market between Philadelphia and Los Angeles, there are five car-

riers offering nonstop routes. Among them, US Airways obtains the largest market

share (about 40%). Indeed, Philadelphia is one of US Airways’ hubs, and there are

numerous one-stop routes in US Airways’ network that utilize its Philadelphia-LA

link.

On the other hand, network effects will not be fully captured if we let flow F

be exogenously given. Such a model is most similar to previous discrete-choice

applications, where exogenously-given flight frequencies are used as part of the utility

specification.10 11 It is easy to see that the implied price elasticities of a demand

system with network effects are much higher than that of a system without them:

if a carrier increases prices, the demand will decrease, which would decrease the

demand further if there are network effects.

C. Supply

Given the nature of airline operations, costs should be incurred mostly at the link

level. Nevertheless, there may be some costs at the route level. For example, check-

in only needs to be done once whether the flight is nonstop or onestop, so the cost

associated with it is not link-wise. Accordingly, I specify the marginal cost on route

10For example, BCS (2006), Peters (2006), Berry and Jia (2010).
11In general, to model frequency as an explicit decision variable in an empirical model is difficult. Fre-

quency is not just one dimension of product quality that enters both utility and cost, but also a capacity
constraint on the demand. It will be interesting for future research to demonstrate how this can be done.



j as

(II.7) mcj =
∑
s:s∈j

gs + µ′wj + ωj

where gs is the marginal cost on link s, wj is a vector of route-level characteristics

that are cost-relevant but not captured in gs(.), and ωj is a route-specific fixed-effect

that captures unobservable determinants of marginal cost.12

We need to specify a functional form for gs, which may exhibit both economies of

density and economies of distance. It is important to note that there are two senses

in which economies of distance may exist. First, regardless of the distance of flying,

a proportion of the marginal cost is attributed to passenger check-in, ground service,

taking-off and landing, etc. Second, an engineering argument suggests that larger

planes tend to be more fuel efficient (Wei and Hansen (2003)), and large-size planes

are usually used on long-distance links (Givoni and Rietveld (2009)).

To estimate both types of economies without imposing much structure, I will use a

fairly flexible functional form from BCS (2006):

(II.8) gs = η′ws + h(ds, Fs, θ)

where ws is a vector of link characteristics, and h(·) is a polynomial (including the

constant) of the link length ds and the flow Fs up to degree 3, whose coefficients are

collected in the vector θ. If ∂h/∂Fs < 0 (or ∂h/∂ds < 0), then the marginal cost

on link s is decreasing in flow (or distance), indicating that economies of density (or

economies of distance) are present.

The only part left to complete the model is the pricing behavior. I will assume

that the carriers play a Nash-Bertrand equilibrium in price. The equilibrium can

be characterized by a set of first-order conditions. Let q(p) be the demand for some

12Here I note that a specification of “marginal cost”, which is also standard in previous discrete-choice
applications, implicitly assumes that flight frequency adjusts to flow. Putting one more passenger on an
existing flight adds little costs, so most of the marginal cost should come from adding flights.



price p which is implicitly determined as fixed point of Ψ(p, ·). We have for each j,

(II.9) qj +
∑
k:k∈c

(pk −mck)(∂qk/∂pj) = 0

Note that because of the peer effects, the summation is across all the routes of

carrier c, not just those in the same market as j. We will rely on the (II.9) for the

estimation of the cost-side parameters.

First-order conditions require that a relatively small price change is not profitable

for a carrier. Hence, (II.9) will only require that q(p) is locally unique, as long as we

are willing to assume that small price changes will not entail jumps in the fixed-point

demand. As an implicit function defined by Ψ, the local uniqueness of q(p) can be

verified by checking numerically if ∂Ψ/∂q is invertible, which is always the case in

my experiences.

III. Estimation

A. Estimation Algorithm

My estimation adopts the framework of Berry, Levinsohn, and Pakes (1995) (here-

after BLP). It depends on the assumption that the unobservables ξj and ωj are

mean independent of the exogenous variables, which includes the networks N and

the city characteristics. In particular, instruments for pj , fj and Fs are needed be-

cause both price and flow are endogenous. However, there are three differences from

a standard application. First, the demand q is modeled as a fixed point. Second

and related, ∂q/∂p is computationally intensive, but needs to be evaluated for many

trial parameter values if we want to estimate the demand and cost jointly. Third,

the instrumental variable estimation on the cost side becomes inefficient as higher

order terms are added to h(·), and I use a control function approach (Petrin and

Train (2010)) to address this issue. This section explains these differences in detail.

We start by writing ξj and ωj as functions of the parameters, given the observed



demand and characteristics. First note the mean utility vj ≡ β′xj−αpj+fj+ξj can

be written as a function of λ , as it can be backed out from the observed demand

using (II.5) and (II.6). So we have

ξj = vj(λ)− β′xj − fj(γ, τ) + αpj

Next, to back out ω, we first need to find the marginal costs using the Bertrand-Nash

assumption. The f.o.c. (II.9) in matrix form is

q +D(p−mc) = 0

where

Dkj =

∂qk/∂pj if k, j ∈ c for some c

0 o.w.

Recall that the demand q(p) is a fixed point of Ψ(p, ·). Provided that ∂Ψ/∂q is

invertible, the implicit function theorem says that the demand function q(·) is locally

unique and

(III.1) ∂q′/∂p = (∂Ψ′/∂p)(I − ∂Ψ′/∂q)−1

On the right hand side, ∂Ψ′k/∂pj is the demand change on k after an incremental

price change of j, holding the prices of the other routes and the effects of flow fixed.

∂Ψ′k/∂qj is the demand change on k after an incremental change of the quantity of

passengers on j, holding the quantities on the other routes and all the prices p fixed.

This demand change is caused by network effects. It is not difficult to show that D

is a function of the parameters λ, α, γ and τ . Now we can write the marginal costs

implied by the first-order conditions as

mc = p+D(λ, α, γ, τ)−1q



Once mcj is computed, it is straightforward to find ωj with (II.7). Note that by its

definition, D can be organized into a block diagonal matrix whose inversion can be

carried out block by block.

There are two ways to compute the matrix D. The first way is direct numerical

differentiation of q(p). This amounts to computing the demand q at a perturbed

price, which is found by iterating Ψ for the fixed point at the perturbed price. The

second method uses (III.1), where both ∂Ψ′/∂p and ∂Ψ′/∂q can be obtained by

numerical differentiation. This method is faster for relatively small-size networks.

However, due to the large number of routes in the data, inverting the equally large

matrix (I−∂Ψ′/∂q), which in general is not block diagonal, is very burdensome and

prone to numerical errors. For this reason, I use the first method for the estimation.

The BLP estimator minimizes an objective function in which instruments interact

with both ξj and ωj , and the demand-side and cost-side parameters are estimated

jointly. In my application, this requires the matrix D to be computed for many trial

parameter values. Due to the large size of the networks, one computation of D can

take at least several hours. For this reason, I estimate the demand side and cost

side sequentially.

More specifically, the demand-side parameters are first estimated by minimizing

‖
∑
zjξj‖ where zj is a vector of instruments, which includes xj . Then, with D

computed at the estimated demand-side parameters, the marginal costs can be com-

puted, and the cost-side estimation amounts to a linear regression of the so-called

markup equation, which is given by (II.7) and (II.8):

(III.2) mcj =
∑
s:s∈j

h(ds, Fs, θ) + η′
∑
s:s∈j

ws + µ′wj + ωj

The typical approach is again the instrumental variable method where the instru-

ments are used to account for the endogeneity of Fs. However, I have found that the

instrumental variable estimation produces large standard errors for the coefficients

of the higher-order terms of Fs. On the contrary the OLS standard errors are much



more acceptable. So it should be a weak instrument problem on the higher-order

terms.13

For this reason, I take a control function approach, which is implemented through

two stages. In the first stage flow F is regressed on its instruments and some exoge-

nous variables, then in the second stage the markup equation (III.2) is estimated

with OLS where the residuals of the first-stage regression are added on the right

hand side. Generally speaking, the control function approach is less robust but

more efficient (see, for example, Wooldridge (2007)).

Finally. it is important to note that term (I − ∂Ψ′/∂q)−1 in (III.1) is where the

notion of fixed point enters the estimation. If we ignore network effects, or more

precisely, take flow as exogenously given, the term will not appear and instead of

(III.1) we would have

(III.3) ∂q′/∂p = ∂Ψ′/∂p

In other words, whether we allow for network effects changes the way we compute

the price elasticities, which will lead to different marginal cost estimates. In Section

4 I will display the marginal cost estimates without network effects as well.

B. Identification

The identification of most parameters is straightforward. Here, we focus on λ, γ and

τ . The nesting parameter λ is identified from changes in the total market demand

as the number of products varies across markets. In the extreme case of λ → 0,

the aggregate share of the routes remains fixed as the number of products vary. In

other words, the market total demand is inelastic. As λ moves close to 1, the total

demand in a market becomes more elastic.

Parameter γ measures the magnitude of network effects. It is identified from changes

13BCS (2006) did not encounter much of the problem possibly because they included the actual flight
frequencies in their instruments, treating them as exogenous.



of the demand as the flows vary across routes. Note this requires that some links are

flown by multiple routes, otherwise we would have a “reflection” problem. This is

illustrated by the example where N is a purely point-to-point network. When this

is the case, for each route the flow and demand coincide and we would essentially

be regressing demand on itself. However, this is an extreme case. Thanks to the

hub-and-spoke, or multi-hub structure, demand on a route is generally different from

the flows on its links. This is similar to the use of social networks to resolve the

reflection problem in identifying social peer effects (Manski (1993) and Bramoullé

et al. (2009)).

Finally, parameter τ in (II.4) is identified through changes of the demand on one-

stop route as the larger/smaller of the two segment flows varies. For example, in the

extreme case τ → −∞, the variation of the larger flow has no effect on the demand.

As τ moves towards 0, the larger flow becomes more influential.

C. Instruments

Instruments are required for both flow and price. Following Peters (2006) and Berry

and Jia (2010), I treat the city characteristics and the networks N as exogenous,

and derive instruments from them. In general, this is consistent with the idea that

network structure is a long-term choice when compared with frequency and price.

I use two instruments for flow F , which can be then be used to construct the in-

struments for f . The first instrument, F IV 1, relies on the variation of “centrality”

across links. Specifically, F IV 1(s) = #{j|s ∈ j}, i.e. the number of routes that

utilize link s. For example, in Figure II.1, F IV 1(t1t2c1) = 6 and F IV 1(t1t2c2) = 2.

If a link is flown by many routes, it is likely to have a large low of passengers. The

other instrument makes use of the variation in population across nodes. Specifically,

F IV 2(s) is the market size of the end cities of s. If the ends of a link are large cities,

then it is likely that a lot of passengers will travel on it.

Standard instruments for price measure the market-level competitiveness. The BLP

instruments are the sums of the characteristics of one’s own products and the com-



petitors’ products in the same market. Along this line, I include the number of

nonstops, the sum of the lengths of the nonstops, the sum of the instruments for f

of the nonstops, and the same sums but of the onestops, the competitors’ nonstops

and the competitors’ onestops. Previous studies have also used the averages of these

characteristics, e.g. the average length of the competitors’ onestops, which I also

include. Lastly, I also include the number of carriers in the market as instruments.

IV. Data and Results

A. Data

The Airline Origin and Destination Survey (DB1B) is a 10% sample of airline tickets

from reporting carriers in the U.S. collected by the Bureau of Transportation Statis-

tics. This paper uses the DB1B-coupon and the DB1B-market data, and covers the

last quarter of 2012 and the first quarter of 2013. 14

The networks for estimation include the 100 most-visited cities and the 12 largest

carriers by passengers served. The selected sample includes roughly 90% of the

tickets in the data. The flights of the contracting carriers, i.e. carriers that did not

sell tickets but operate for the major carriers, are incorporated to the carriers for

which they operate. For the link definition, I follow Berry (1992) where a link s ∈ N

if no less than 90 passengers per quarter had been observed on that link in the data.

It roughly corresponds to a medium-sized jet flying back and forth between the city

pair once a week.

Price pj is computed as the passenger-weighted average fare on the route. There is a

non-negligible proportion (around 7%) of tickets with very low fares (e.g. $5, $15 per

passenger), which might be purchased with frequent-flyer miles. While these tickets

are included for the demand and flow, the associated fares are not included for the

price. In total, there are 39,390 routes included in the estimation. Finally, following

14My estimation restricts attention to the U.S. domestic market. However, a considerable proportion of
the operations of some carriers are international. Many of the international travelers make connections at
the domestic hubs and contribute to the flow on the networks of these carriers. Incorporating international
routes to the analysis requires world-wide survey data on air-travel itineraries, which is hardly available.



BCS (2006), the market size M will be taken as proportional to the geometric mean

of the city populations in the market for each quarter.15

Table 1—Summary Statitics of the Networks of the Five Largest Carriers

# of links # of markets

served

maximum

degree

total flow (in

million)

total
passengers

(in million)

Southwest 666 1682 55 53.6 44.6

Delta 430 3643 82 43.7 32.2

United 462 3646 86 34.3 26.6

American 240 2877 76 27.2 21.0

US Airways 291 2746 69 28.0 19.5

Some summary statistics of the networks of the five largest carriers are displayed

in Table 1. Southwest, while being the largest in terms of the number of links and

the passengers carried, serves the fewest markets, thanks to its more point-to-point

network structure. Table 2 provides the summary statistics for some of the variables

that will enter the estimation.

Given the available data, product characteristics xj will include a constant term, the

carrier dummies, the market-level characteristics, and the route-level characteristics.

At the market-level, it includes the distance of the market, the square of that dis-

tance, the numbers of cities in the market (0, 1, or 2) that fall into two categories of

tourist destinations, and the number of cities (0, 1, or 2) with congested airports.16

At the route-level, it includes a dummy for one-stop route, the length of the route,

the square of that length, the product of the segment lengths, a dummy if any air-

port at the connection is congested, and finally the carrier’s average presence at the

15The definition of city in DB1B sometimes refer to a metropolitan statistical area (MSA). In such cases
the MSA population is used. Otherwise the urban population is used. The populations of Hawaii are
argumented by the tourists, whose number exceeds that of its residents.

16First category of tourist destinations (large Cities) includes New York, LA, Washington DC, and San
Francisco; second category (Vacation & Resort) includes Las Vegas, Atlantic City, Charlotte Amalie, and
the cities in Florida and Hawaii.

Congested airports are the High-density traffic airports defined by FAA Regulations, Part 93-K. They
are: Newark and LaGuardia in New York, National in Washington, and O’Hare in Chicago.



Table 2—Summary Statistics

Mean Standard

Deviation

Min Max

xj Market distance (1000 miles) 1.36 0.83 0.00 0.00

Tourism 1 0.18 0.41 0 2

Tourism 2 0.29 0.48 0 2

Congested ends 0.14 0.36 0 2

Congested connection 0.25 0.43 0 1

One-stop 0.94 0.24 0 1

Route length (1000 miles) 1.67 0.89 0.06 7.35

Presence 0.21 0.14 0.00 0.79

pj Price ($100) 2.85 1.07 0.21 15.8

ws Congested ends 0.29 0.46 0 2

ds Distance (1000 miles) 1.01 0.70 0.06 4.96

Fs Flow (million passengers) 0.09 0.13 0.00 2.60

Note: There are 39,390 observations for xj and pj . There are 2,568 observations for ws, ds and Fs



two ends of the route. A carrier’s presence at a city is measured by the percentage

of links it serves at that city. The effect of airport presence on demand, i.e. “the

hub dominance”, was first introduced by Borenstein (1989, 1991).

On the cost side, the link characteristics ws includes the carrier dummies and the

number of congested ends of the link (0, 1 or 2); the route characteristics wj is

just a dummy capturing any cost that is not incurred link-wise. A more detailed

specification of ws may use the city dummies to control for fixed effects due to

varying degrees of congestion, landing fees, gate rents, etc. I estimated the cost

side with this alternative specification but have not found substantial changes to

the estimates.

B. Parameter Estimates

1. Demand Side. — Column 2 in Table 3 presents the demand-side parameter

estimates. The nesting parameter is estimated at 0.55, which is close to the estimates

in previous discrete-choice studies of air-travel demand.17 The rest of the parameters

in the demand model are estimated with the expected signs, and all the standard

errors are small. In particular, the price coefficient is estimated to be -0.52. The

implied aggregate price elasticity (without considering network effects), which is the

percentage change in total demand when all products’ prices increase by 1 percent,

is 1.43. Gillen et. al. (2003) conducted a survey that collected 85 demand elasticity

estimates from cross-sectional studies. The elasticities ranged from 0.181 to 2.01,

with a median of 1.33.18 My estimate thus seems reasonable.

The effects of flow on demand are substantial. For nonstop routes, γ1 = 0.39. This

means that if we look at an isolated nonstop route in a large market, hypotheti-

cally “doubling the flow” will increase demand by roughly 30%. On the other hand,

one-stop routes are even more flow-dependent (γ2 = 0.52), which could reflect that

17For example, The estimate in Peters (2006) is 0.595. The estimate in BCS is 0.605 for the single-type
passenger configuration.

18In the study, all 85 estimates were conducted between 1981 and 1986, which are slightly dated, and
most of the estimates represent U.S. city-pair routes. The study is also used by Berry and Jia (2010) to
compare with their estimated elasticity, which is 1.67 for 2006.



Table 3—Parameter Estimates (except for the carrier dummies)

Demand

OLS

Demand

IV

Cost

OLS

Cost
CF

Fixed Flow

Cost

CF

λ Nesting 0.56 (.00) 0.55 (.00)

α Price -0.23 (.02) -0.52 (.02)

γ Nonstop 0.56 (.01) 0.39 (.02)

One-stop 0.66 (.01) 0.52 (.01)

τ CES -0.21 (.02) -0.60 (.05)

β Constant -3.18 (.04) -3.56 (.06)

Tourism 1 0.04 (.01) 0.12 (.01)

Tourism 2 0.34 (.01) 0.34 (.01)

Mkt. distance 1.70 (.03) 1.34 (.04)

Mkt. distanceˆ2 -0.13 (.01) -0.08 (.01)

Congested ends -0.16 (.01) -0.07 (.01)

Congested conn. -0.21 (.01) -0.22 (.01)

One-stop -1.79 (.03) -1.42 (.06)

Route length -1.55 (.05) -1.16 (.04)

Route lengthˆ2 0.11 (.01) 0.10 (.02)

Seg. length prod. -0.09 (.01) -0.09 (.01)

Presence -0.37 (.04) 0.41 (.06)

µ Constant 0.06 (.03) -0.04 (.02) 0.06 (.03)

η Congested ends 0.02 (.01) 0.00 (.00) 0.01 (.00)

θ Constant 1.01 (.02) 0.22 (.02) 0.95 (.02)

Distance 0.53 (.05) 0.53 (.05) 0.60 (.05)

Distanceˆ2 0.00 (.03) 0.01 (.03) -0.02 (.03)

Distanceˆ3 0.01 (.00) 0.01 (.00) 0.02 (.00)

Flow -1.18 (.13) -0.57 (.13) -1.29 (.12)

Flowˆ2 0.94 (.15) 1.10 (0.18) 1.84 (.18)

Flowˆ3 -0.30 (.03) -0.33 (.05) -0.51 (.05)

Distance·Flow 0.03 (.23) 0.31 (.24) 0.32 (.24)

Distanceˆ2·Flow -0.14 (.09) -0.25 (.09) -0.21 (.09)

Distance·Flowˆ2 0.69 (.16) 0.51 (.20) -0.44 (.20)

Note: See the Data section for variable definitions, and see Table 2 for the summary statistics of the variables.



passengers care more about the frequencies on one-stops. This is reasonable because

the frequencies on a one-stop also affect not only the delay between a passenger’s

desired departure time and the time of a flight, but also the the delay at the con-

nection.

The substitution parameter τ in the CES function is negative (-0.60), which means

that on a one-stop route the smaller of the two flows has more influence on the

demand. This is plausible because delays are most likely to be caused by the segment

with lower frequency, which acts like a bottleneck of that route.

For comparison, Column 1 in Table 3 provides the estimates without instrumenting

for price and frequency.19 First, we see that the price coefficient α is underestimated.

This is expected because, for both pricing and cost reasons, the unobserved quality

in ξj is likely to be positively correlated with pj . Second, the network effects γ

are overestimated. This is because ξj , positively correlated with the demand on

j, is likely also positively correlated with the flows on j. Apart from these two

important differences, all the parameters, with the only exception of the coefficient

on the airport presence, are estimated to have the same signs as in Column 2. The

negative sign on the airport presence can be caused by the biases in α and γ, as

presence is positively correlated with both price and flow.

Column 1 in Table 4 displays the carrier dummy estimates on the demand side. We

see that the legacy carriers in general are preferable to the low-cost airlines (e.g.

Southwest, AirTran).

2. Supply Side. — Column 5 in Table 3 presents the cost-side parameter estimates

using the control function approach. Note the relatively large standard errors on

the higher-order terms of flow, which, as explained, would be even worse if an

instrumental variable approach is used here.

19This is a OLS regression of the utility equation (II.2), except that, to identify λ, an orthogonality
condition between ξj and the number of routes in the market is added.



Table 4—Carrier Dummy Estimates

Demand

IV

Cost

CF

β / η Southwest 0 0

Delta 0.17 (.02) 0.16 (.01)

United 0.25 (.02) 0.17 (.01)

American 0.22 (.02) 0.17 (.01)

US Airways 0.30 (.02) 0.21 (.01)

JetBlue 0.02 (.03) -0.09 (.02)

AirTran 0.13 (.03) -0.28 (.01)

Alaska 0.73 (.04) 0.16 (.03)

Frontier -0.01 (.03) -0.29 (.01)

Hawaiian 1.20 (.11) -0.09 (.06)

Spirit -0.45 (.06) -0.60 (.02)

Virgin American 0.11 (.07) -0.11 (.03)

Note: The carrier constants of Southwest are set at zero.

Recall that parameter µ measures the route-level marginal cost that is unrelated

to the number of segments of the route. For example, it may capture the costs

associated with passenger check-in. In Column 5 it is estimated to be 0.06, which

translates into about 2-4% of the marginal cost of a typical flight. Parameter η

captures the additional costs of using congested airports. Its estimate is small but

positive, indicating that it is slightly more costly to fly between the cities with

high-density traffic airports.

Parameter θ is a vector of coefficients of the polynomial of flow and distance h(·).

Given the flexible functional form of h(·), it is hard to directly interpret these coef-

ficients. In the next subsection I discuss the implications of the estimates of θ, and

compare the estimates with those in Column 4, which ignores network effects.

To see the significance of the control function approach, Column 3 in Table 3 presents

the same regression as that in Column 5, except that OLS is used. (III.2). Compared

with Column 5, it overestimates economies of density. This should be expected as



the unobserved cost ωj is likely to be negatively correlated with the flows on j.

Finally, Column 2 in Table 4 displays the carrier dummy estimates on the cost

side. We see that the legacy carriers in general incur higher marginal costs than the

low-cost airlines.

C. Implications of the Estimates

1. Marginal Costs and Comparison with Accounting Data. — The first two

columns in Table 5 display, for the five largest carriers, the implied costs per passen-

ger miles (CPM) based on the marginal cost estimates in Column 4 and 5 in Table

3, respectively. CPM divides a carrier’s variable cost by its total passenger miles,

where the variable cost is found by integrating the estimated marginal costs. We see

that accounting for network effects more or less doubles the estimated CPM. Recall

this is because the implied price elasticities are much higher when network effects

are present, which translate into smaller markups and higher marginal costs.

Table 5—Comparison with Accounting Data: CPM

CPM (cents) Cost CF

Fixed Flow

Cost CF 10-Q filing

All top 5 7.0 14.8 10.4 ∼ 16.3

Southwest 3.4 12.8 7.4 ∼ 13.9

Delta 7.7 15.7 11.9 ∼ 17.2

United 9.4 15.7 9.5 ∼ 15.6

American 7.2 13.9 10.5 ∼ 16.6

US Airways 8.2 16.7 13.9 ∼ 19.1

Note: “CPM” = cost per passenger miles. Last column provides a lower bound and a upper bound that are
based on the 10-Q filings for the first quarter of 2013. See the main text for details.

I compare the cost estimates to the income statements in the five carriers’ 10-Q filings

for the first quarter of 2013.20 It is noted that though my estimation has focused on

20These filings are available at the Securities and Exchange Commission website: www.sec.gov, or at
Bloomberg Businessweek: investing.businessweek.com.



Table 6—Comparison with Accounting Data: Profit Margins

Profit Margin (%) Cost CF

Fixed Flow

Cost CF 10-Q filing

All top 5 138 13 4 ∼ 39

Southwest 380 26 14 ∼ 54

Delta 127 12 -1 ∼ 30

United 74 5 3 ∼ 42

American 111 10 6 ∼ 40

US Airways 128 12 3 ∼ 29

Note: Last column is based on the 10-Q filings for the first quarter of 2013. Revenues are the reported
passenger revenues (Cargo and Other revenues are not included); costs are calculated in the same way as in
Table 5. The lower bound and the upper bound correspond to the bounds in the last column of Table 5.

the domestic market, among these five carriers, only Southwest’s operations were

domestic only. Unfortunately the other four carriers do not provide separate income

statements for international and domestic operations. Given that the majority of

their revenues were likely from the domestic market21, I believe that these income

statements can still serve as useful benchmark. It is also noted that accounting

practices generally are not geared toward reporting the economic notion of marginal

cost. Nonetheless, as suggested by Einav and Levin (2010), the imperfectness of the

accounting data should not prevent researchers from using them to cross-check their

analyses, or even test their hypotheses (see e.g. Nevo (2001)).

The last column in Table 5 reports the CPM bounds that are based on the carriers’

10-Q filings. The upper bound is calculated from the reported operation costs,

excluding the following items: Depreciation and Amortization, Profit Sharing, Other

Expenses and Special Charges. Since salaries and rents can be relatively fixed, I

provide a lower bound that further excludes the related items: Salaries and Benefits,

Landing Fees and Airport Rents, and Other Rents. Note that this should be a fairly

loose lower bound, because salaries are partly operation-dependent (e.g. pilots’

21For example, American Airlines states in the 10-Q that about 60% of its passenger revenues are derived
from domestic operations.



earnings depend on the hours of flying) but have to be excluded as a whole, and

landing fees, again operation-dependent, have to be excluded together with airport

rents. For both bounds, total passenger miles are directly taken as reported in the

filings.

Without network effects, I estimate the overall CPM for the top five carriers to be

7 cents. Berry and Jia (2010) finds a similar but slightly lower estimate of 6 cents

for all the carriers. Compared with the accounting bounds, these estimates seem

too small. Moreover, for each of the five carriers, the CPM estimate in Column

1 is below the accounting lower bound. On the other hand, the CPM estimates

with network effects (Column 2) fall within the accounting bounds with only one

exception (United).

The U.S. airline industry is relatively unprofitable.22 The low cost estimates ob-

tained without network effects seem to have difficulty in capturing this important

feature. This observation is further confirmed in Table 6, which compares the es-

timated profit margins with the margins calculated from the 10-Q filings. We see

that the estimates obtained with network effects, presented in Column 2, are more

consistent with the accounting data.

2. Economies of Distance and Economies of Density. — Recall that the polyno-

mial h(·, θ) captures economies of distance and economies of density. As to economies

of distance, the coefficients of the distance-squared and distance-cubed are both

close-to-zero, as you can see in Column 4 and 5 of Table 3. In fact, the polyno-

mial is mostly linear in distance within the range of the data points. However, the

estimate for the polynomial constant in either column is positive, indicating that

there is a “fixed” positive marginal cost even when the flight distance is close to zero.

The “fixed” marginal cost captures the costs associated with airport rents, ground

services, taking-off and landing, etc. that are incurred regardless of the distance of

22As noted by David Barger, CEO of JetBlue: “The U.S. airline industry has not, in aggregate, made a
single penny of profit in its 99 years of existence.” - Aviationweek, Feb, 2013. Also see discussions in Berry
and Jia (2010) for recent developments.



flying. Hence, the marginal cost per mile is decreasing, and it is in this sense that

my estimates indicate economies of distance.

Table 7—Estimates of economies of density

Cost OLS Cost CF

Fixed Flow

Cost CF

% of links with ∂h/∂Fs < 0 99% 91% 97%

Average ∂h/∂Fs -1.13 -0.40 -0.97

Note: The unit of the derivative is dollar per 10,000 passengers.

As to economies of density, Table 7 display the percentage of links on which economies

of density are present (i.e. ∂h/∂Fs < 0), and the average derivative ∂h/∂Fs across

all the links, based on the estimates from Column 3, 4 and 5 in Table 3, respec-

tively. With network effects, 97% of the links exhibit economies of density, and the

marginal cost is reduced by $0.97 for each 10,000 additional passengers on average.

Without network effects, economies of density are estimated to be less prevalent and

smaller (91% and $0.40).

To understand why the network effects imply larger economies of density, note that

when the flows on a route are large, it is often the case that there are many other

link-sharing routes that contribute to the flows. On such a route, when there is

a price drop on the route, the direct increase in demand will often correspond to

only small percentage increase in the flows, which is unlikely to entail much further

increases in demand. This means that when network effects are present, the price

elasticities on routes with large flows tend to be smaller than those on other routes,

so are the implied marginal costs.

3. Route-level Negative Marginal Profits. — Based on the estimates in Col-

umn 5 of Table 3, negative marginal profit is present on 78% of the routes, accounting

for 19% of the passengers in the data. In general, pricing below marginal cost is



suboptimal because increasing the price lowers the demand, which by the negative

marginal profit, would lead to an increase in profit. However, with the peer effects

present, increasing the price will in addition have negative effects on the demand

for other routes, on which the marginal profits may be positive. In other words,

although the carrier cannot break even on a route with price below marginal cost,

the additional flow brought by the low price helps stimulate demand for the other

routes, especially the link-sharing routes, in the network.

Interestingly, the routes with negative marginal profits are all one-stop. This is

mostly likely because a one-stop, with two links, generally has more link-sharing

routes than a non-stop. As mentioned, the negative marginal profits on one-stop

routes seems to match the claim that“connecting traffic is the least profitable for the

airline,” made by Delta when it reduced the capacity that mostly served connection

passengers at its Cincinnati hub.

As a comparison, without network effects, the estimates in Column 4 of Table 3

imply positive marginal profits on all the routes, and in addition, roughly the same

level of marginal profits on nonstops and one-stops.

More generally speaking, pricing below marginal cost in a certain market may be

very well explained if we also take into account related markets. A good example

can be found in Benkard (2004), where he studies the industry dynamics of wide-

bodied aircrafts and finds that short-run negative marginal profits are possible as

a way to speed up production and reduce future cost. Another example is Skype,

who provides the instant message service for free possibly in hopes of creating more

users for its Internet phone-calling service.

V. Merger

Mergers have not been uncommon in the U.S. airline industry. Given that the air-

line industry is relatively unprofitable, it begs the questions from the companies’

perspective: whether and if so why a merger is a solution to the unprofitability.

This section starts with a discussion on the factors that may affect merger outcomes



in important ways, then conducts several simulation exercises to quantitatively un-

derstand the effects of these factors.

A. Discussion

There are two possible scenarios after a consolidation. In the first scenario, the two

carriers, while jointly maximizing profits, remain operating their respective networks

separately. In this case, the merger is modeled as equivalent to a bilateral collusive

arrangement between the two companies (a point noted by Baker and Bresnahan

(1985)). This seems to be the case for the 2010 Southwest-AirTran merger. In the

second scenario, a single consolidated carrier operates the combined networks, where

the overlapping links are merged and the set of routes is re-generated. This is the

case in, for example, the 2008 Delta-Northwest merger, the 2011 United-Continental

merger, and the 2013 American-US Airways merger. Figure V.1 depicts the United-

Continental networks before and after merger.

There are several factors to be considered in an airline merger evaluation. First is the

market power. Antitrust regulators are often mostly concerned with the potential

increases in price caused by reduction of competition, which has also been the focus

of many merger analyses in the economics literature (for the airline industry, see

Kim and Singal (1993), Peters (2006)).

Secondly, the network effects of demand can play important role in mergers. With

network effects, the companies may need to be more careful about raising prices

as the decreases in demand will have further negative effects on demand. More

importantly, when networks are combined, the merged links will bear traffics from

both of the two pre-merger networks, making the flows on the combined network

likely more dense than either of the pre-merger networks. For the example depicted

by Figure V.2, both the passengers between t1 and t2 and between t2 and t4 may

benefit from a second-type merger, as the flow on the t2t3 segment of their connection

flights will increase. Consumer benefits as such are often emphasized by airlines to

justify mergers. For example, for its ongoing merger with US Airways, American
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Figure V.1. Networks of United and Continental before and after merger, restricted to the

25 most-visited cities in the U.S. Coordinates are longitude and latitude.
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Figure V.2. Example of Merger. Carrier 1’s (carrier 2’s ) links are represented by the solid

(dashed) lines.

Airlines claims that it will bring customers “a stronger airline that offers greater

schedule options”.23 24

The third factor is the possible creation of more routes. Of course, this can only

happen in a second-type merger, where routes are re-generated from the larger

combined network. In the example in Figure V.2, a one-stop route between t1 and

t4 will be created after the networks are combined, making it possible to fly between

the two cities, which would be unserved otherwise. As a matter of fact, the other

consumer benefit stated by the American Airlines for its merger is “access to more

destinations”.

The forth factor is also unique to the second-type merger. Combining the overlap-

ping routes in the pre-merger networks indicates some loss of product differentiation.

In the example in Figure V.2, the two nonstop routes between t2 and t3, once com-

bined, will be seen as a single product by the consumers. In our model, the degree

of product differentiation is captured by the nesting parameter λ.25

23By Scott Kirby, President of American Airlines. See http://www.usairways.com/en-
US/aboutus/pressroom/newamerican.html?cint=update 21132.

24Richard (2003) has been the only analysis that considers the frequency changes after a merger. However,
it did not consider the peer effects.

25Another consideration which may play a role in mergers but here I do not focus on, is economies of
density. In general, they work in favor of the second-type merger where links are usually more densely flown.
See Brueckner and Spiller (1991). Removing economies of density does not change the qualitative results of
this section.



It is important to note that these factors do not act independently. For example,

while new routes are created in a second-type merger, the additional demand brought

by these routes will stimulate the demand on the existing ones through the network

effects; even disregarding the new routes, a second-type merger is argued in favor of

by the network effects and argued against by the loss of differentiation, it is hence

unclear if combining networks is better in terms of profitability. As an attempt to

quantitatively understand the effects of these factors, I conduct several simulation

exercises.

B. Simulation Method

The method makes use of the estimated model, and applies the Bertrand-Nash

equilibrium to simulate the outcomes.26 The results will, of course, depend on the

specific pre-merger network structures. Ideally, I would like to use the observed

networks as large as those in the estimation to produce results most relevant to the

industry. Unfortunately, as explained below, such large networks would render the

computation virtually infeasible. Therefore I will use smaller networks that capture

the multi-hub structure in the industry as much as possible. The purpose of the

exercises is not to provide the most pertinent predictions, but to understand how

each factor affects the profitability of either type of merger.

More specifically, for given sets of carriers and cities, the city characteristics, and the

networks, one can compute a set of equilibrium prices under the estimated model27,

by searching a solution to the first-order conditions (II.9). The equilibrium demand,

flow and marginal costs can all be readily computed once the equilibrium prices are

found. We will compare the equilibria before and after a merger, where the merger

changes the set of products and ownerships according to the identities of the two

consolidating carriers and the type of the merger.

26Applications of this approach include Nevo (2000), Dubé (2004) and Peters (2006). The method is useful
in evaluating the short-run post-merger industry outcome. In the medium to long-run, industry dynamics
may become more relevant (see Benkard, et. al. (2010)).

27More precisely, the estimated effects of route characteristics on demand and the effects of both route
and link characteristics on marginal costs. The carrier fixed-effects and route-specific random fixed-effects
are ignored.



The algorithm for equilibrium is presented in the appendix. Basically it starts with a

guess of prices and iteratively updates it with (II.9) until a solution is found. There

are two aspects of computational burden. First, as pointed out in Section III.A, the

computation of ∂q/∂p can be very expensive, and moreover, it needs to be computed

many times as the algorithm searches for a solution. Second, the time needed for

convergence towards a solution seems to increase with the magnitude of network

effects. These make it very burdensome to compute equilibrium for large hub-and-

spoke or multi-hub networks, because such networks typically have large-size ∂q/∂p

and considerable peer effects.

To be computationally feasible and to capture the multi-hub structure in the in-

dustry, I use the U.S. airline networks in 2010 right before United’s acquisition of

Continental, restricted to 5 major legacy carriers (i.e. Delta, United, American, US

Airways, and Continental) and the 25 most-visited cities. Since the restriction is

a considerable simplification of the large networks observed in the industry, from

this point on I feel obligated to state these airline names with quotation marks. I

simulate two mergers, one between “United” and “Continental”, the other between

“American” and “US Airways”.

C. Results

Table 8 displays the results from the “Continental” - “United” merger simulation,

including the percentage changes of total profits, total passenger miles (PM), revenue

per passenger mile (RPM), cost per passenger mile (CPM), and the average flow

across links. The numbers inside the parentheses are the corresponding percentage

changes averaged across the other carriers. The last two rows of the table display

the number of links and routes of the merged carrier. In the same manner, Table 9

displays the results from the “American” - “US Airways” merger simulation.

Column 2 in both tables displays the results for a first-type merger, where the carriers

resume separate operations on their respective networks. We see here that the main

force at work is the market power: as two carriers merge and jointly maximize their



Table 8— “Continental” - “United” Merger Simulation.

Separate

Fixed Flow

Separate Combined w/o

new routes

Combined

Profits (%) 0.9 (0.6) 2.2 (0.9) 10.8 (-1.1) 14.4 (-2.4)

PM (%) -3.7 (-0.1) -5.9 (1.1) 1.9 (0.3) 6.0 (-0.6)

RPM (%) 2.3 (0.5) 1.4 (-0.1) 1.4 (-0.4) 1.5 (-0.4)

CPM (%) 0.2 (0.0) 0.6 (-0.1) 0.4 (-0.1) 0.7 (-0.1)

Flow dens. (%) -3.3 (-0.2) -5.2 (1.0) 14.0 (0.1) 19.9 (-0.8)

# Links 144 144 131 131

# Routes 1244 1244 1208 1294

Note: PM is total passenger miles, RPM is revenue per passenger mile, and CPM is cost per passenger mile.
The numbers outside the parentheses are for the merged airlines, while the numbers in the parentheses are
the averages across the other carriers.

Table 9— “American” - “US Airways” Merger Simulation.

Separate

Fixed Flow

Separate Combined w/o

new routes

Combined

Profits (%) 1.2 (1.3) 3.6 (2.6) 20.7 (-2.5) 25.6 (-4.5)

PM (%) -6.7 (0.9) -8.4 (2.5) 4.4 (-0.4) 9.4 (-1.9)

RPM (%) 4.8 (0.2) 2.0 (-0.0) 3.8 (-0.5) 2.0 (-0.0)

CPM (%) 0.2 (-0.0) 0.3 (-0.1) -0.3 (-0.1) 0.1 (-0.0)

Flow dens. (%) -6.6 (-0.7) -6.6 (-0.7) 23.0 (-0.4) 29.8 (-2.0)

# Links 103 103 175 175

# Routes 1656 1656 1561 1813

Note: See the notes for Table 8.



profits, they raise prices (RPM), which leads to decreases in demand (PM). Overall,

the profit increases are relatively small (2.2% and 3.6%).

Column 4 in both tables displays the results for a second-type merger. We see that

by combining their networks, carriers are able to achieve much higher profit increases

(14.4% and 25.6%). Perhaps more importantly, in both simulations, even though the

merged carrier raises prices, it is still able to see increases in demand. The qualitative

result seems to fit what happened in the United-Continental merger: Comparing the

second quarter of 2012 with the second quarter of 2010, the average price of United-

Continental increased by 14.5%, about 1 percentage point higher than the average

of the other major carriers; the total domestic passengers of United-Continental

increased by 10%, about 7 percentage points higher than the average of the other

major carriers.28

The large magnitude of increases in flow density in both second-type mergers (19.9%

and 29.8%) indicate that network effects are an contributing factor to the profitabil-

ity. Column 3 further confirms this by displaying the results from simulating the

same mergers as in Column 4 except for that they only allow post-merger routes

that overlap with those in the pre-merger networks, which removes the effect of

route creation. Nevertheless, we see that the profit increases are much larger than

those of the first-type mergers, suggesting that network effects are able to overcome

the loss of product differentiation in a second-type merger.

As a final comparison, Column 1 displays the results of first-type mergers using

the model without network effects.29 We see that the profit increases are very

small. Note that it can be a far-fetched exercise to use the model without network

effects to simulate second-type mergers, because the model does not determine flow

endogenously and thus has to assign flows to the combined network by some devised

rules.

28These statistics are estimated from the DB1B data. United acquired Continental in October, 2010.
The integration of operations was completed in 2012.

29More specifically, it uses the model where flow is exogenously given, and the corresponding estimates.
The flows entering the utility are kept fixed throughout the merger. This is similar to the merger analyses
where possible changes in flight frequencies are ignored.



VI. Conclusion

By accounting for the network effects of demand, this paper offers new insights

into the structure and profitability of the airline industry. Compared with previ-

ous studies, the paper finds higher estimates of marginal costs, which seem more

consistent with the relative unprofitability of the industry. With the peer effects

present, below-marginal-cost pricing becomes possible and is found on many routes

in the U.S. The paper also looks into the role of network effects in airline mergers,

and finds that, in a merger, carriers can obtain higher profit increases by combining

their networks rather than resuming separate operations.

Like other discrete-choice studies of the industry, the analysis in this paper, while

focusing on the relation among price, flow, demand and cost structure, takes the

networks as given. There have been some works in economics that explicitly study

the network choices of airline carriers. Hendricks et al. (1999) studies carriers’

network choice in a duopoly environment. Benkard et al. (2010) estimate the entry

decisions of carriers in a dynamic setting. These two lines of research should be

seen complementary, as the demand and cost structure are the building blocks of

the preferences behind the carriers’ choices. That being so, it would be interesting

for future research to explore whether and how the presence of network effects has

caused the hub-and-spoke to emerge as the dominant feature of airline networks.



VII. Appendix

1. Logarithm Specification. — We focus on the within-nest (i.e. conditional on flying) choice as

described in Section II.B, where a product has been defined as a route. Now suppose that product is defined

as a flight. For example, if there are 10 flights per week flying between the city pair on route j, then the 10

flights are separate products in the market. Suppose that the mean utility of taking flight ` on route j is wj .

This is, of course, a simplification as the flights on the same route may have different prices and unobserved

characteristics. Using a nested logit model where the nests are the routes, the choice probability of nest j is

(
∑
`∈j e

wj/γ)γ∑
k(
∑
`∈k e

wk/γ)γ
=

e(γ log(nj)+wj)∑
k e

(γ log(nk)+wk)

where nj is the number of flights (or, the flight frequency) on route j. Hence it is equivalent to treating the

mean utility of route j as (wj + γ log(nj)). This motivates the logarithm specification in (II.3) and (II.4).

2. Uniqueness of fixed point. — I first present an easy-to-obtain bound on the parameters that

guarantees uniqueness, then I offer a description of my computational experiences.

Proposition Let γ = max(γ1, γ2). If parameters are such that γ/λ ≤ 1/2, the fixed point of Ψ(p, ·) is

unique.

Proof Let q∗ � 0 be a fixed point of Ψ, and q � 0 be some other demand. Define a “distance” measure:

σ(q, q∗) = max
j

{
max

{
q(j)

q∗(j)
,
q∗(j)

q(j)

}}

Note that σ is always no less than 1, and σ = 1 means q = q∗. Note that the distance is also defined for

any two positive vectors with the same length. For any j, we have

Ψj(p, q) =

(∑
k∈m ewk/λ+fk/λ

)λ−1
ewj/λ+fj/λ

1 +
(∑

k∈m ewk/λ+fk/λ
)λ

where wj ≡ β′xj −αpj + ξj , and fj is specified as a function of q through (II.3), (II.4) and (II.1), which we

write as f = φ(q). Let f∗ = φ(q∗). It is not difficult to see that

σ
(
ef , ef

∗)
≤ σ(q, q∗)γ



It is also not difficult to see that

Ψj(p, q)

q∗j
=

Ψj(p, q)

Ψj(p, q∗)
< σ

(
ef , ef

∗)2/λ

An easy loose bound of σ(Ψ(p, q), q∗) is then obtained:

σ(Ψ(p, q), q∗) < σ(q, q∗)2γ/λ

If γ/λ ≤ 1/2, then the above implies that q cannot be a fixed point. Since q is any demand, we conclude

that q∗is the unique fixed point. Furthermore, Ψ acts like a contraction in terms of the “distance” defined

by σ, and iteration of it converges to the fixed point. �

The result above does not apply to the estimates of Table.3. But it shows that for a range of reasonable

parameter values, the uniqueness of demand can be easily guaranteed. In computation, I iterate Ψ(p, ·) to

find a fixed point. In my experiences, as long as γ < λ, different starting points always lead to the same

limit. When γ > λ, the iteration typically diverges.

3. Computation of Equilibrium. — With the network effects, or more precisely, the peer effects,

prices in one market may affect the demand on another market. Hence it does not seem plausible to solve

for equilibrium prices market by market. Instead, they need to be found all together. My algorithm is

presented below. For small-size networks, it runs quickly and often converges easily. For larger networks,

the computation becomes more burdensome and the convergence becomes much more difficult. It is worth

noting that damping the update of price can be helpful for convergence.

1) Start with a initial price vector p0, which contains the prices for all the routes in the networks.

2) Enter iteration L: Find the fixed-point demand q corresponding to pL by iterating Ψ(pL, ·).

3) With price pL and demand q given, compute the matrix D (see Sec.III.A) and the vector of marginal

costs mc. Then update the price using the first-order conditions (II.9): pL+1 = mc−D−1q.

4) Exit if
∥∥pL − pL+1

∥∥ is adequately small, go to Step 2 otherwise.
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