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Abstract

Asymmetric information is an important source of inefficiency when an asset (such

as a firm) is transacted. The two main sources of this asymmetry are the unobserved

idiosyncratic characteristics of the asset (such as future profitability) and unobserved

idiosyncratic choices (like secret price cuts). Buyers may use noisy signals (such as

sales) in order to infer actions and characteristics. In this situation, does the seller

prefer to release information fast or slowly? Is it incentive compatible? When the

market is pessimistic, is it better to give up or keep signaling? We introduce hidden

actions in a dynamic signaling model in order to answer these questions. Separation

is found to be fast in equilibrium when sending highly informative signals is more

efficient than sending lowly informative signals. When the market is pessimistic about

the quality of the asset, depending on the cost structure, the seller either “gives-up”

by stopping signaling, or the seller “rushes-out” by increasing the informativeness of

the signal. We find that the unobservability of the action causes equilibrium effort to

be too low and the seller to stop signaling too early. The model can be applied to

education where grades depend on students’ effort, which is endogenously related to

their skills.
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1 Introduction

When a heterogeneous asset (such as a firm) is transacted, the seller usually has private

information about its underlying value (or quality.) Potential buyers learn about the quality

of the asset through noisy signals (such as sales, profits, etc.) that take place over time.

Nevertheless, the seller may be able to take some unobservable action in order to change the

distribution of the signal (secret price cuts, more-than-optimal advertising, etc.). The cost

of doing so is likely to depend on the underlying value of the asset. In this environment,

under what circumstances can the high-quality sellers (partially) separate themselves from

the low-quality sellers? Is separation fast or slow? When the market is pessimistic about

the quality, is it incentive compatible for the seller to exert high effort, low effort or to stop

signaling?

We develop a model of dynamic noisy signaling with hidden actions in order to answer

the previous questions. In equilibrium, our privately informed seller is willing to actively

engage in investing in his “reputation” in order to receive a high price offer. A seller with

a high-quality asset exerts high effort in order to generate good signals in order to get high

price offers from the buyers. A seller with a low-quality asset, instead, cannot alter the

signal distribution but mimics the high-quality seller on the decision of whether or not to

accept offers, making separation more difficult.

Our dynamic game is a repetition of a static noisy-signaling game, where separation

occurs through a (noisy) costly message sent by the seller. The (high-quality) seller decides

how much effort to put into signaling. Increasing the informativeness of the signal increases

its cost, which in our model also includes a fixed cost of signaling. In equilibrium, the

different types of sellers pool on the decision to accept or reject equilibrium offers, so we

isolate the (hidden) effort choice as the source of separation in a dynamic environment. As

a consequence, different ways of intertemporal separation strategies arise, depending on the

cost structure. In particular, we find that when the cost function is (not) highly convex,

separation happens through low (high) effort choices that take place over long (short) periods

of time.

Although signaling and hidden actions have been studied separately in dynamic models

(see the literature review below), their dynamic interaction has not been previously analyzed.

Our approach allows us to endogenize both the cost of signaling and the information released

per unit of time, instead of making them fixed conditional on type. So, we are able to

analyze in a unified dynamic framework the two main sources of inefficiency that appear
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in models with asymmetric information: the non-observability of the type (idiosyncratic

characteristics) and the non-observability of effort (idiosyncratic effort choice). We find

that, in equilibrium, the effort exerted by the seller is always lower than the optimal choice,

and he stops signaling too early.

The equilibrium behavior of the seller is found to be highly dependent on how efficient it is

to increase the informativeness of the signal. When the cost of generating highly informative

signals is high (i.e., a highly convex cost function), we find the “give-up effect”; that is, when

the market is very pessimistic about the quality of the asset, the seller stops signaling.

Intuitively, separating from the low type would require revealing a lot of information, which

is too costly given the high convexity of the cost function and the fixed cost. We find that,

after some histories, signaling is highly inefficient, with the seller incurring a positive fixed

cost to generate an almost non-informative signal.

When highly informative signals are less inefficient than lowly informative signals, we

find a “rush-out effect.” In this case, effort is found to be decreasing in the posterior about

the quality of his asset being high, so the signal is more informative when the market is

pessimistic about the quality. In particular, we find that the effort is high even for (very)

low posteriors, that is, even when updating is potentially slow. The reason is that, in that

region, small increases in the posterior generate a big increase in the probability of getting

high offers (only) for the high-quality seller. This increase in the expected revenue makes

signaling attractive, and therefore, it is incentive compatible to exert high effort that makes

Bayes’ updating fast enough to compensate the cost. As a consequence, we may have a

high degree of separation even when the cost of signaling is high. Similarly, if the noise

increases, the effort increases, and even though there is more waste per unit of time, there is

more separation due to the increase in the effort. This is in sharp contrast to what is found

in static or fixed-action dynamic signaling environments. In those, as in our highly-convex

cost function case, players “give up” when beliefs are close to being degenerated toward one

of the types because of slow beliefs update in this region and also when the cost of signaling

is high.

We characterize the equilibrium structure of all Markov equilibria, and we focus our

analysis on most separating equilibria, that is, equilibria where the signal is informative in

the largest set of posteriors about the quality of the asset. We show that they are essentially

unique; that is, they have the same signal distribution and same distribution over accepted

offers. We also show that they both maximize the payoff of the high-quality sellers, making

them attractive to market-makers, and are in the spirit of most of the previous refinements.
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Additionally to the trade of non-homogeneous assets, high education is another impor-

tant application of our model. Indeed, high-level education is by nature a dynamic process

where information is progressively realized over time. Grades, prizes and test results stochas-

tically depend on the (skill-adjusted) effort of the students. Students, knowing their skills

and past history, decide how much effort they exert to affect the new signals to come. On

the other side of the market, employers use the observable signals to infer information about

the productivity of each student and use it to make her wage offers. If the (utility) cost

or the effectiveness of obtaining high grades is correlated with innate skills themselves re-

lated to productivity, differently productive students would exert different levels of effort.

Therefore, the signal history can be used to infer choices that provide information about

individual characteristics.

The organization of the paper is as follows. After this introduction, we review the related

literature. Section 2 introduces our model. In Sections 3 and 4 we discuss, respectively, the

low and high convex cost function cases. In Section 5 we analyze the observable effort case.

Section 6 concludes. An appendix contains the proofs of all lemmas and propositions of the

previous sections.

1.1 Literature Review

Our model is closely related to the dynamic signaling literature with preemptive offers,

which initially intended to provide a rationale for why unproductive education may last for

long periods of time. Indeed, as Weiss (1983) pointed out, if the signal in Spence’s (1973)

model is interpreted as the length of education, most equilibria can be destroyed if firms

make offers on the first day of class, since most of the separation has already taken place,

and can then obtain (part of) the reduction in the worker’s educational costs.1 Nöldeke

and van Damme (1990) assume that workers have different educational costs per period

and receive public offers from firms. They find that (partially) separating equilibria exist.

Swinkels (1999) introduces the possibility of private offers into the job market model and

1The static analogous to our model is a noisy signaling model, instead of a model such as Spence (1973),

where the action is perfectly observed. Noisy signaling was introduced by Matthews and Mirman (1983)

in a limit pricing model. Our “stage game” is similar to the game analyzed in de Haan et al. (2011). In

line with the dynamic signaling literature, we analyze the implications of repeated signaling in equilibrium

behavior, and the dynamics and speed of information transmission. We will point out the differences

between our results and previous findings.
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finds that no equilibrium with (partial) separation exists when the length of the interval

shrinks. Hörner and Vieille (2009) make similar arguments in a lemons environment, finding

that bargaining may end up with an impasse or delayed agreement, depending on whether

the offers are public or private. Kremer and Skrzypacz (2007) introduce the arrival of news

about the asset at some fixed time. Daley and Green (2012) introduce a continuous public

stochastic signal in a dynamic signaling model, while Kaya and Kim (2013) introduce private

signals in a lemons environment.

There are two important differences between the previous models and our model. First,

our model has two sources of payoff-relevant private information: the type and the effort.

This makes our model a repeated signaling problem, where at each period an action is chosen

by the entepreneur in order to signal the type of his firm, instead of repeated adverse

selection, where the only relevant action in each period is to accept or not the curren

offer. So, we investigate the incentives of the sellers to increase or decrease the signal

informativeness and we characterize the equilibrium speed of learning.2 Second, in the

previous dynamic models, sellers signal their type by waiting in the market (at different

costs), by rejecting (public or private) offers and (in some of them) with an exogenous

signal that depends on the type. In our model, instead, separation only comes from the

different effort choices of the different types of sellers. Therefore, our model focuses on a

different channel that generates dynamic signaling effects.

Our paper is also partially related to the literature on reputations. Indeed, our model has

one agent with an unobservable type who performs unobservable actions to pool/separate

himself with/from other types. In this literature, inaugurated by the seminal works of

Kreps and Wilson (1982) and Milgrom and Roberts (1982), the model closest to ours is in

Faingold and Sannikov (2011), set in continuous time. More recently, Board and Meyer-ter-

Vehn (2010, 2013) and Dilme (2012) also use continuous-time, hidden action models, using a

Poisson-arrival news structure. In these models firms repeatedly sell products to customers,

so they trade off current “cheating” by producing low-quality goods with future high prices

if they build reputation by producing high-quality goods. In our model, instead, there is (at

most) one transaction. So, the tradeoff for the seller is saving current costs versus receiving

high future price offers. Also, as in other dynamic signaling models, the decision to accept

2In the previous literature the speed at which information is released is fixed. In those models it seems

natural to wonder about the effects of endogenizing the information revelation speed. For example, Daley

and Green (2012) conclude their paper wondering about how optimal the market’s revelation of information

is. Our model provides answers to some of these questions.
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or reject offers acts as an extra signal.

2 The Model

Time is continuous, t ∈ R+. There is one (potential) seller who owns an asset. The quality

(type) of the asset may be either low (L-asset/L-seller) or high (H-asset/H-seller). At each

instant in time t ∈ R+, the seller decides how much effort to exert, et ∈ R+. There is

a public noisy signal about the effort exerted. If the effort process that a seller exerts is

(et)t∈R+
the signal evolves according to the following stochastic equation

dXt = et dt + σ dBt ,

where Bt = {Bt,Ft, 0 ≤ t ≤ ∞} is standard one-dimensional Brownian motion on the

canonical probability space {Ω,F ,Q}. Let Ht be the σ-algebra generated by {Xs, 0 ≤ s ≤

t}.

The θ-seller values his own asset at Vθ, with VH > VL > 0. This is interpreted as the value

of retaining the asset for himself (i.e., not selling it). The cost of effort is type-dependent.

For each type θ ∈ Θ ≡ {L,H} it given by

cθ(e) ≡ Ie>0 c0,θ + Aθ e
α ∀θ ∈ {L,H} , (2.1)

with c0,L ≥ c0,H > 0, α > 1, α 6= 2 and AL > AH .3 For simplicity, we will restrict ourselves

to the case AL = ∞, that is, when the optimal choice of the L-seller is always et = 0.4 Even

though most of the results we obtain do not rely on this simplification, it greatly simplifies

the results presented in this paper. Since c0,L will be irrelevant for our analysis, we use c0

3Note that if the seller exerts zero effort, he does not incur any cost, and the signal is totally uninformative.

Therefore, even though waiting is technically costless, it is also useless, since relevant signaling information

is only revealed at a cost.

4The assumption that one type of agent is “handicapped” is common in the reputations literature. Indeed,

in many models in this literature there is a type that takes an action independently of the history (see, for

example, Mailath and Samuelson (2001) or Hörner (2002).) Our setting is equivalent to assuming that if

the seller chooses to incur a cost v then the drift of the signal is given by (the type-dependent efficiency-

of-signaling function) gθ(v) ≡
(v−c0,θ)

1/α

Aθ
if v ≥ c0,θ and 0 otherwise. Note that when AL = ∞, the L-seller

is totally inept (i.e., no matter what effort he exerts, he is not able to change the drift), but we allow him

to act strategically through the decision of accepting or not accepting the offer, as in the standard models

of dynamic signaling.
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Figure 1: Heuristic timing. “S” refers to the seller, “B’s” refers to the buyers.

instead of cH,0 to save notation.5

There is a competitive market with a continuum of identical competitive (potential)

buyers. The value of an asset with a given quality is common across all buyers. The value

of an H-asset to a buyer is ΠH ≡ Π > VH , while the value of an L-asset to a buyer is

normalized to be ΠL = 0. They do not observe the type of the seller and share a common

prior p0 ∈ (0, 1) about the asset’s quality being high. Buyers are risk-neutral and maximize

their expected payoff.

2.1 Strategies, Payoffs and Equilibrium Concept

Strategies and Payoffs

We define the strategies similarly as in Daley and Green (2012). In particular, we do not

directly model each buyer. Instead, we model the buyer side using an “offer process” Wt

adapted to the filtration (Ht)t≥0. As pointed in Daley and Green (2012), this can be micro-

found by interpreting Wt as the hidden offers that the seller receives from (two or more)

short-lived buyers that only observe the history of (public) signals at time t. The equilibrium

conditions on the process W ensure that it reproduces the offer process resulting from the

Bertrand competition among buyers as in, for example, Swinkels (1999).

An effort-choice strategy for the θ-seller is a stochastic process eθ = {eθ,t, 0 ≤ t ≤ ∞}

that is

1. non-negative, right-continuous6 and adapted to the filtration (Ĥt)t≥0, where Ĥt is the

5We can interpret this fixed cost of providing an extra effort to increase sales as an opportunity cost of

the time devoted to this. In the education setting, this may be regarded as the cost of attending class

(opportunity cost in salaries, for example). L-workers, instead, could already be enjoying their outside

option, by just taking the exams.

6Right-continuity ensures that when there is a jump in the effort function, the time at which it happens is

well defined. This will be particularly important when eH jumps to 0, since the signal is uninformative

there, and therefore the posterior is not updated using the signal.
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σ-algebra generated by
{(

(Xs,Ws)0≤s≤t, (eθ,s)s<t

)}

, and

2. 0 for all t if θ = L.

A pure acceptance-decision strategy for the type θ ∈ {L,H} seller is a Ĥt-adapted stopping

time, τθ : Ω′ → R+, where Ω′ =
{(

(Xs,Ws)0≤s<∞, (eθ,s)s<∞

)}

. A (mixed) acceptance-

decision strategy is a distribution over such times, which can be represented as a stochastic

process (Sθ
t )t≥0, which is right-continuous, [0, 1]-valued, increasing and Ĥt-measurable. It is

interpreted as the CDF over the type-θ seller’s acceptance time on R+ ∪ {∞}. A strategy

for the θ-seller is a pair (eθ, Sθ). If the seller accepts an offer at some time t, he leaves the

market, and the buyer makes a lump-sum payment Wt to the seller. A heuristic timing is

plotted in Figure 1.

For a fixed offer process W , the payoff for the θ-seller is composed of the flow cost of

providing effort and the lump-sum payoff when the game stops. Indeed, the θ-seller faces

the following problem

sup
eθ,τ≥0

Et

[

−
∫ τ

t
cθ(eθ,s) ds+ Iτ<∞Wτθ,t + Iτ=∞ Vθ

∣

∣ eθ
]

. (2.2)

We say that a pair (eθ, Sθ) solves (2.2) if for each τ ∈ supp(Sθ), (eθ, τ) solves (2.2). Further-

more, if (eθ, Sθ) solves (2.2), for any (t, ω) ∈ R+×Ω′ such that Sθ(ω) < 1 (so supp(Sθ) 6= 0)

we have that for all τ ∈ supp(Sθ) the continuation value for the θ-seller has the following

form:

Vθ,t ≡ E
[

−
∫ τ

t
cθ(eθ,s) ds+ Iτ<∞Wτθ,t + Iτ=∞ Vθ

∣

∣ eθ, Sθ

]

, (2.3)

which is a Ĥt-measurable function.

Note that VH,t ≥ VL,t. Indeed, the H-seller has the option of mimicking the strategy of

the L-seller. In this case the signal would have the same distribution, so the seller would

face the same expected price offers and a higher outside option, and the cost of signaling

would be the same. Also, Vθ,t ≥ Vθ for all θ ∈ {L,H}, given the option to wait at 0 cost. So,

given that the buyers’ offers will be no higher than Π, the payoff functions are well-defined.

Since there is no time discounting and no fixed cost of time if no effort is made, the

seller’s payoff is affected only by the expected price when the asset is sold, the outside

option (if he does not sell the asset) and the expected total cost of effort. Therefore, at

any moment in time, the H-seller’s tradeoff will be to exert high effort and increase the

expected price offer or to exert low effort and lower the expected price offer. The channel

that translates effort to higher expected prices is the signal, which the buyers will use to

update their beliefs about the seller.
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Beliefs Process

The payoff to a buyer who makes a price offer is given by the probability of this offer being

accepted multiplied by her asset valuation minus the price. So, we need to characterize the

buyers’ beliefs about the quality of the asset after each history in order to determine their

optimal strategy.

Let (Pt)t∈R+
be a stochastic process adapted to X t measuring the posterior of the buyers

at time t (given the previous public history) about the type of the seller being H .7 Let

Zt ≡ log( Pt

1−Pt
) be the corresponding log-likelihood ratio. Then, following Daley and Green

(2012) we can separate belief updating between updating because of the signal (Ẑt) and

because of the rejection of offers (Z̃t):

Zt = Ẑt + Z̃t .

Since, as we will see, the different types of sellers pool on the decision of rejecting offers, it

is convenient to normalize Z̃0 = 0. Note that, given our definition of the rejection strategy,

we have Z̃t = log(
SH,t−

SL,t−
). The standard Bayes’ rule is used to update Ẑt (see, for example,

Faingold and Sannikov (2011)).

Equilibria

Definition 2.1. An equilibrium in our model is a strategy profile (Sθ, eθ)θ∈{L,H}, a price

offer process W and a beliefs process P such that:

1. Sellers optimality. Given W , (eθ, Sθ) solves the θ-seller’s problem (2.2).

2. Belief Consistency. For all t such that SL,t− SH,t− < 1, Zt is obtained using Bayes’

rule.

3. Zero profit. If there exists a τ ∈ supp(SL)∪supp(SH) such that τ(ω) = t for some ω ∈

Ω′, then Wt = E[Πθ|Ht, τ̃ = t], where τ̃ is the stopping time induced by (Sθ, eθ)θ∈{L,H}.

4. No (Unrealized) Deals. For all θ, t, and ω such that Sθ,t−(ω) < 1, Vθ,t(ω) ≥ E[Πθ′ |Ht,Πθ′ ≤

Πθ].

As is common in settings where the only payoff-relevant variable for the uninformed part

of the market is the type of the informed part, we restrict ourselves to Markov strategies

and Markov equilibria with beliefs as the state variable:

7We interpret Pt as the posterior of the buyers at the moment of making the offer at time t. Therefore, Pt

does not include the information involving the rejection of the offer at time t.
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Definition 2.2. A Markov equilibrium (ME) is a public equilibrium where both the seller

and the buyers follow Markov strategies, the state variable being p = Pt, the posterior of

the buyers about the type of the seller being H .

2.2 Equilibrium Characterization

Signaling Region

From now on we will focus on Markov equilibria, and therefore we will call them simply

equilibria. The following lemma establishes an important property of Markov perfect equi-

libria:

Lemma 2.1. In any equilibrium, types pool on the acceptance-decision strategy. Also, the

signaling region R ≡
{

p
∣

∣VH(p) > max{pΠ, VH}
}

is open in [0, 1] and such that

1. there is no trade inside R: Pr(Pτ̃ ∈R) = 0; and

2. the signal is only useful in R̄: Pt /∈ R̄ ⇒ Pr(Pτ̃ = Pt) = 1.

Note that Pr(Pτθ ∈ R|θ) = 0 implies that, in equilibrium, the game never ends when

Pt ∈ R; that is, both buyer’s types reject with probability one all the (equilibrium) offers in

this region.

This implies that beliefs updating in R is driven only by the signal realization, not by

the rejection of offers. If Pt /∈ R either both types accept the corresponding equilibrium

offer with probability one, or the signal is not informative, so beliefs remain constant. We

say that an equilibrium is (partially) separating8 if R 6= ∅, and pooling otherwise.

Equilibrium Strategies

We first analyze the equilibrium behavior for a given rejection region R 6= ∅, assuming it

exists. After this, we will characterize the existence of equilibria (the conditions for existence

are obtained in Sections 3 and 4).

Consider an equilibrium with signaling region R. Let’s first consider the case p0 /∈ R.

The following lemma characterizes the equilibrium offer acceptance:

Lemma 2.2. Assume p0 /∈ R. Then,

8As usual, under a separating equilibrium, different types exert different efforts in some beliefs region. So

if p0 ∈ R, the accepted price offer will depend on the signal history, and different types will have different

distributions over accepted offers.
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immediate trade / stop signaling
t

P

1

Figure 2: Example of beliefs histories for a signaling region R = (p, p) for the two types.

In the simulation, for the same realization of the Brownian motion, the L-seller (gray line)

ends up accepting a low offer, while the H-seller (black line) ends up accepting a high offer.

1. if p0Π > VH , all offers equal p0Π and the game ends with probability one;

2. if p0Π < VH then there is no trade; and

3. if p0Π = VH then either 1. or 2. takes place.

Note that when pooling is an equilibrium in the static game (p0Π > VH) only the

signal (and therefore the effort) is used to separate types and not the decision to accept

offers. Intuitively, the L-seller has the option to not accept an offer and wait at no cost,

so, in equilibrium, the H-seller will not be able to separate himself from the L-seller by

not accepting an offer. The crucial property for this result to hold is not that waiting is

costless but that there is no common knowledge of positive gains from trade. In this case,

the low-quality seller has the option to wait without incurring any (opportunity) cost.9 This

will help us to identify the new implications of the introduction of imperfectly observable

effort as the signaling device.

Let’s now assume p0 ∈ R. Using the results from Lemma 2.1, and given a Markov perfect

equilibrium with signaling region R and an initial prior p0 ∈ R, we define the following limits

p ≡ sup
(

{0} ∪
{

p ≤ p0
∣

∣p /∈ R
})

, (2.4)

p ≡ inf
(

{1} ∪
{

p ≥ p0
∣

∣p /∈ R
})

. (2.5)

9This is not the case, for example, in Daley and Green (2012), where there is common knowledge of positive

gains from trade, and sellers do not pool on rejection strategies.
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We know by Lemma 2.2 that the value function of the H-seller at p is W ≡ max{pΠ, VH}

and at p it is W ≡ pΠ > VH .10 Note that since R is open, p < p0 < p. Then, if the initial

prior lies in the region (p, p), since Pt moves continuously inside R, the process will stop

when Pt reaches either p or p (where the seller will accept the corresponding price offer).

Figure 2 exemplifies two outcomes of the game, with the same realization of the Browinan

motion, but with different realizations of the type.

As is usual in the literature on dynamic games in continuous-time, we restrict ourselves

to equilibria where VH ∈ C2(R) ∪ C0(R̄). In this case, for a given equilibrium strategy

eH(·), the optimal effort choice of the H-seller solves the Hamilton-Jacobi-Bellman (HJB)

equation, which is given by11

0 = max
êH (p)

(

− cH(êH(p)) + µ̃(êH(p), p, eH(p)) V
′
H(p) +

1
2
σ̃(p, eH(p))

2 V ′′
H(p)

)

, (2.6)

with boundary conditions VH(p) = W and VH(p) = W , and where

µ̃(êH , p, eH) ≡
(1− p) p eH (êH − p eH)

σ2
and (2.7)

σ̃(p, eH) ≡
(1− p) p eH

σ
(2.8)

are, respectively, the drift and the volatility of the belief process Pt when Pt ∈ R. Note that

when eH = eL = 0 both the drift and the volatility of the beliefs process are 0, independent

of the effort choice ê. This is an important feature of our model that differs from the

standard dynamic signaling models: if buyers believe that the signal is uninformative, then

the seller cannot change the buyers’ beliefs through the signal.

The maximization problem (2.6) is strictly concave in êH(p) for êH(p) > 0. So, under

the assumption that R is a signaling region of an equilibrium,12 the first-order condition

(FOC) is sufficient for p ∈ R. We differentiate (2.6) with respect to êH(p), for êH(p) > 0 to

get the FOC and we get

AH α êH(p)
α−1 =

V ′
H(p) (1− p) p eH(p)

σ2
. (2.9)

10Note that if it was the case that W = VH , then also W = VH , so the revenue for the seller would be just

VH . Therefore, the H-seller would not put any effort, what would contradict p0 ∈ R.

11The HJB equation is obtained using the dynamic programming principle. Note that in equilibrium it

needs to be the case that eH(·) itself is a solution of the HJB equation.

12Recall that Lemma 2.1 ensures that eH(p) > 0 when p ∈ R. Furthermore, if R is the signaling region of an

equilibrium, the solution VH(·) of the problem (2.6) satisfies VH(p) ≥ pΠ as is required in our equilibrium

definition.
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The following lemma establishes the functional form of the policy functions:

Lemma 2.3. There is a unique eH(·) such that the solution êH(p) of the HJB equation (2.6)

satisfies êH(p) = eH(p) for all p ∈ (p, p), and it is given by

eH(p) =

(

C1 (1− p)

(2− α) p
+

2 c0
AH (α− 2)

)1/α

, (2.10)

where C1 is a constant to be determined by the boundary conditions on VH(·).

Using the FOC (2.9) and the policy function (2.10), we can find an integral expression

for VH(·):

VH(p) = W +

∫ p

p

AH ασ2 eH(q)
α−2

(1− q) q
dq . (2.11)

The boundary condition Vθ(p) = W determines the value for C1. The value function for the

L-seller is shown at (3.5). Note that VL(·) depends only on p, p and the payoffs at these

points, since it is determined only by the expected revenue.

2.3 Most Separating Equilibria

Dynamic signaling models, in general, feature a high equilibrium multiplicity. In order to

focus on some particular equilibrium, different refinements or selection criteria are used,

intended to select the equilibrium with the most separation.

Most of the equilibrium multiplicity arises from the so-called beliefs threats. These

are given by “punishments” of the buyers by lowering the posterior about the (quality of

the asset of the) seller after observing some deviation. In most of the models, the only

observable deviation is the rejection of an offer when, in equilibrium, the offer was supposed

to be accepted with probability one. In our model there is an additional “beliefs threat” due

to the hidden action. It is given by the fact that the buyers may believe that, after a given

history, the effort of (both types of) the seller is 0 thereafter, and therefore the signal becomes

useless.13 This makes it convenient to directly focus on the most separating equilibria, that

is, equilibria where the signaling region is maximized. We will see afterwards that this

equilibrium has properties similar to those of equilibria that pass the selection criteria used

in the previous models.

13This prevents refinements such as Never-a-Weak-Best-Response (used in Nöldeke and van-Damme 1990)

or Belief Monotonicity (used in Swinkels (1999) and Daley and Green (2012)) from working in our model.
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Definition 2.3. An equilibrium with signaling region R is a most separating equilibrium

(MSE) if R ⊃ R′ for any signaling region R′ of another equilibrium.

Note that if an MSE exists, it “essentially” is unique, since given our previous results the

outcome generated by a signaling region is unique.

Lemma 2.4. Let VH(·) and ṼH(·) be the payoff functions of an MSE and a non MSE,

respectively. Then VH(p) ≥ ṼH(p) for all p, and VH(p) > ṼH(p) for some p.

The previous result makes MSE particularly appealing. Indeed, markets where an MSE

is played will attract more H-sellers, since they gain the most. Also, it is easy to show that

MSE are in the spirit of most selection criteria, that prevent punishing deviations that are

more “likely” to be carried out by high types.14

Lemma 2.4 establishes that an(y) MSE is the “most preferred” by the H-sellers. There-

fore, an MSE solves the H-seller’s problem (2.6) allowing the seller to choose the boundaries

of R (and requiring VH(p) = max{VH , pΠ} for p /∈ R). This naturally leads to the following

useful technical result:

Lemma 2.5. (smooth pasting condition) Assume that there exists an MSE, and that

VH(·) is the value function for the H-seller in this equilibrium. Then VH(p) ∈ C1(0, 1).

3 Not-Very-Convex Cost Function (α < 2)

The following proposition establishes the existence of an MSE for all values of c0 and VH :

Proposition 3.1. When α < 2 there exists a unique p∗ ∈ (VH

Π
, 1) such that (0, p∗) is the

signaling region of all MSE.

Figure 3 (a) plots the value function for the H-seller in the MSE, for different values

of VH . Note that as VH gets close to Π, the signaling region increases (it always contains

(0, VH

Π
)). Hence, signaling takes place in a potentially large region of the beliefs space even

when c0 and AH are arbitrarily high. This result is not present in static models or dynamic

models where the drift is exogenous, in which the size of the region where the signaling takes

14More formally, if after the rejection of an offer that in equilibrium is accepted by all the types of the seller

a posterior is assigned to the deviator and a new equilibrium is played, only MSE ensure that the H-seller

benefits from deviating only when the L-seller also benefits from deviating.
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Figure 3: In (a), VH(·) of an(y) MSE for different values of VH , when α < 2. In (b), the

probability of reaching p, for different values of p and p (gray and black lines correspond to

the L-seller and the H-seller, respectively.)

place becomes arbitrarily small or disappears when the fixed cost rises. In our case, high

costs involve high equilibrium effort, which implies an improvement in the quality of the

signal and therefore an acceleration of the signaling process, which compensates the high

cost per unit of time. Similarly, we have the following result regarding the noise:

Corollary 3.1. Assume α < 2. Let (0, p∗(σ)) be the signaling region of the MSE for each

volatility σ. Then, if σ1 > σ2, p∗(σ1) > p∗(σ2).

The logic behind the result is clear. When noise increases, separation requires a higher

effort. In our model, for a not-very-convex cost function, a high effort makes the signaling

less inefficient. So, even though there is more waste per unit of time, the signal is more

informative, so the H-seller is able to signal the quality of his asset less inefficiently.15

There are two other features of the MSE that are not standard in the previous literature.

The first is that the effort function is always decreasing, even when p is small. In particular,

this implies that the H-seller has incentives to provide high effort even when belief updating

is small. The second is that the signaling region’s lower bound is 0; that is, the H-seller

prefers to keep signaling even when the market is very pessimistic. These features are not

present in models with exogenous information revelation. The reason is that low posteriors

15de Haan et al. (2011) show that, in a static signaling model, high types increase their effort when the

noise increases. In their model, this increase drives a more wasteful signal, and if the level of noise is

high enough separating equilibria cease to exist. In our model effort increases when noise increases only

if highly-informative signals are less inefficient. In this case this increases the ability of the H-seller to

separate himself from the L-seller, so high noise does not compromise the existence of separating equilibria.
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imply slow belief updating, so (at least) one type of seller accepts offers with positive

probability and/or stops signaling. Therefore, it is worth analyzing these two features

separately.

Corollary 3.2. When α < 2, the effort exerted by the seller (e∗H(·) in (2.10)) is decreasing.

In order to understand this, let’s decompose the value function into two parts, VH(p) =

EP (p) − Ec(p). The second part, Ec(p), is the expected cost of signaling. The first part,

EP (·), reflects the expected revenue from the sale (or keeping the asset). Using Bayes’ rule,

we find that the expected revenue takes the following form

EP (p) ≡
p (p− p)

p (p− p)
W +

p (p− p)

p (p− p)
W . (3.1)

If we differentiate the expected revenue we get

E ′
P (p) =

p p (W −W )

p2 (p− p)
.

Note that when p is small, small increases in p lead to large increases in the expected

revenue. This provides high incentives for the seller to exert effort. Nevertheless, as we

know, belief updating is, in general, slow when beliefs are close to 0. As we will see in

Section 5, high effort makes signaling less inefficient, so the increase in the expected payoff

(expected revenue minus cost) compensates the slow updating.

In order to have an intuition as to why the lower bound in the signaling region is p = 0,

we focus our analysis on the limit c0 → 0. This analysis is relevant since eH(p) is very high

when p is low, so for low posteriors the fixed cost is very small compared with the variable

cost.

3.1 No-Fixed-Cost Limit

None of the previous results in Section 3 relies on the fact that c0 > 0. So, we can easily

compute the effort policy function for c0 = 0, which now can be explicitly solved for an

interval signaling region (p, p):

e∗H(p) =

(

(α− 2) (W −W )

AH α2 σ2
(

h(p)− h(p)
)

)
1

α−2
(

1− p

p

)
1

α

(3.2)

where

h(p) ≡

(

p

1− p

)
2−α
α

. (3.3)
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Note that when α < 2, h is increasing, h(0) = 0 and limp→1 h(p) = ∞. The value functions

VH(·) and VL(·) take the following form

VH(p; p, p,W ,W ) =
h(p)− h(p)

h(p)− h(p)
(W −W ) +W , (3.4)

VL(p; p, p,WL,W ) =
(p− p) (1− p)

(1− p) (p− p)
(W −WL) +WL , (3.5)

where WL is the value function of the L-seller at p. Note that VL is given by the expected

revenue conditioning on exerting zero effort (since the cost is 0). We can use the previous

formulae to provide a result analogous to Proposition 3.1, with an explicit form of p∗.

Proposition 3.2. When α < 2 and c0 = 0, the signaling region of the MSE is R = (0, p∗),

with

p∗ ≡
α− 1

α

(

1 +

√

1 +
(2− α)αVH

(α− 1)2Π

)

∈

[

2 (α− 1)

α
, 1

]

. (3.6)

Again, we have that the lower bound of R is p = 0. One could think that this is a

consequence of the assumption that the L-seller does not incur a cost by waiting, so he,

with some positive probability, stays in R forever, while the H-seller reaches p in finite time

with probability 1. Nevertheless this is not the case, since as we show in Appendix B the

L-seller reaches p = 0 in finite time. This may seem counterintuitive since when a signal

is random and there is no event that happens with positive probability under one type’s

strategy and with 0 probability under the other type’s strategy, complete information is

hardly achievable in finite time.

In order to have an intuition about the previous result, let’s define the stochastic process

Yt ≡
(

Pt

1−Pt

)1/β
, for some β ∈ (1, α). Note that Yt is increasing and concave in Pt and Yt = 0

when Pt = 0. Using a standard stochastic calculus, it is easy to verify that the drift of Y

when the effort is et = 0 (denoted µL
Y,t) and the variance of Y (σ2

Y,t independently of the

type) are given by

µL
Y,t = −

(β − 1)C2
2 Y

1− 2β
α

t

2 β2 σ2
and σ2

Y,t =
C2

2 Y
2− 2β

α
t

β2 σ2
,

where C2 is the constant in e∗H(p) = C2 ((1− p)/p)1/α for the optimal signaling region (see

(3.2)). Note that the drift of Yt when et = 0 is negative and increases in absolute value

when p → 0. Conversely, the variance shrinks to 0 as Yt → 0. Therefore, Yt (and also Pt)

17



hits 0 in finite time when et = eL,t = 0. The drift of Yt when the effort is eH,t is given by

µH
Y,t =

(β + 1)C2
2 Y

1− 2β
α

t

2 β2 σ2
.

Note that in this case the drift is positive and becomes arbitrarily large when Yt is small,

so the H-seller stays away from 0.16

Intuitively, when Pt (or Yt) gets close to 0, there is a balance between two opposite

incentives. The first is to exert low effort due to the slow updating of beliefs. The second

is to exert high effort, since the expected revenue function gets steeper. In models with a

fixed effort (or signal informativeness), slow beliefs updating forces the seller to “give up.”

In our model, instead, when the cost function is not very convex, high effort increases the

speed of beliefs updating and makes signaling more efficient. In equilibrium this increases

the incentive to exert effort and the equilibrium effort. As we will see, this is not the case

when the cost function is very convex.

This result should not be considered a continuous-time rarity. Even though in discrete-

time versions of this model buyers are never perfectly convinced in finite time about the

type of the seller, as the time interval gets short they become arbitrarily convinced. Indeed,

numerical simulations show that for each length of the period ∆ > 0, the signaling region

of the MSE takes the form R(∆) = (p(∆), p(∆)), and is such that lim∆→0 p(∆) = 0. Since

when p(∆) is low the effort is large for low posteriors, beliefs are updated very quickly,

and p(∆) can be reached in a relatively short time. Also, as can be seen from the explicit

effort and value functions (equations (3.2-3.5)), these converge pointwise when we consider

signaling regions with p → 0.

4 Very-Convex Cost Function (α > 2)

The following proposition establishes the existence of equilibria in this case and introduces

equilibria where the signaling region is composed of two open intervals instead of one:

16It may be helpful for the reader to realize that Pr(
∫ min{τL,t}

0 eH(Ps)dPs = ∞|θ = L) > 0 for a finite

t, but if θ = H , Pr(
∫min{τL,t}

0
eH(Pt)dPt = ∞|θ = H) = 0. Intuitively, when Pt decreases, the signal

becomes more informative. Therefore, (very) low posteriors are reachable with (very) small probability

when et = eH(Pt), and this keeps the expected cost for the H-seller low. When et = 0, instead, Pt reaches

low posteriors with a higher probability, so eH(Pt) reaches very high values more frequently.
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Figure 4: In (a), R as a function of c0 for a fixed VH . In (b), R as a function of VH , for

different values of c0.

Proposition 4.1. Assume α > 2. Then there is a unique MSE. Also, there exist 0 < c̃0 < c̄0

such that if c0 ∈ (c̃0, c̄0) the signaling region for the MSE is the union of two disjoint open

non-empty intervals, and it is formed by one open non-empty interval otherwise.

In Figure 4 (a) we see that when c0 is low, the signaling region is close to (0, 1); that

is, the equilibrium is close to be fully separating. In the limit c0 → 0 the signaling waste

disappears, and the model converges to the full information analogous. As c0 gets larger,

R shrinks, and the seller stops signaling when beliefs are either low or high (that is, when

signaling is slow enough that does not compensate to pay the fixed cost of signaling). When

the fixed cost passes some given cutoff (depicted as c̃0), the signaling region splits in two,

one containing p̃− (defined in the proof of Lemma A.1 in the Appendix) and the other

containing VH

Π
. In the first region fast beliefs updating makes the signal valuable, so the

seller exerts effort. This region shrinks as c0 increases and vanishes when c0 ≥ c̄0. In the

second region (the lower region), the signal is valuable due to the kink in the boundary

conditions. Even of signaling is very costly, the kink in the continuation value of a model

without signaling make some signaling worth. As c0 gets large this region shrinks but never

disappears. In this limit, for most initial beliefs, p0, the asset is sold at p0Π (if p0 >
VH

Π
) or

the seller does not accept any offer (if p0 < VH), independently of his type.

In Figure 4 (b) we plot R as a function of VH , for two different values of c0. Again,

we see that the higher the cost, the smaller the region where signaling takes place, for any

value of VH ∈ (0,Π). When c0 is large (larger than c̄0, represented by the black area),

R is an interval for all values of VH . This interval is small when beliefs are either low or
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high (beliefs updating is slow), and big for intermediate values of the posterior, where fast

beliefs updating makes signaling worthwhile. When c0 is lower than c̄0 (gray area), instead,

Proposition 4.1 establishes that, if VH is small enough, R is split in two parts, as explained

in the previous paragraph.

4.1 Increasing Effort

We found in Section 3 that, when α < 2, the effort is decreasing in p. The rationale was

that the H-seller gets scared when p is low, so he exerts a high (and more efficient) effort

in order to avoid a low offer. This is no longer the case when α > 2.

Corollary 4.1. Assume α > 2. In any MSE with signaling region R, eH(·) is increasing

on R.

We find that when the cost function is very convex, the equilibrium effort is increasing

in the posterior. Now, exerting a high effort is not efficient (see Section 5.1 for the optimal

effort). So, the “rush out” effect is substituted by a “give up” effect; that is, now the seller

gets discouraged when p is close to p. Intuitively, when p gets lower, updating is slow, and

because the high convexity of the cost function implies that exerting a high effort is very

costly, the seller “gives up” and stops signaling.

In all equilibria when α < 2, the infimum of the signaling region R is some p > 0 where

V H(p) = VH . By the smooth pasting condition (Lemma 2.5) we have that limp→p V
′H(p) =

0, and then, by the first-order condition (2.9) we have limp→p eH(p) = 0. So, we have a

region of the belief space where the effort exerted by the seller is arbitrarily small, even

when c0 is large. This may be surprising, since in our model small effort implies slow

revelation of information, and the presence of the fixed cost seems to require information

revelation to be fast in order to make it worthwhile. It is easy to see (similar to what we did

in Section 3.1) that Pt reaches p with positive probability, independently of the type. Also,

limp→p e
′
H(p) = +∞, so the region where the effort is small is itself very small.17 Hence,

when the posterior gets close to p, the seller “gives up” by choosing low effort. This happens

in a region small enough that is abandoned (either by hitting p or by p increasing) very

quickly, so the fixed cost incurred is not large.

17Formally, eH(p) is O(ε) only if p− p is O(εα). Since α > 2, p− p converges to 0 faster than eH(p).
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5 Observable Effort

In order to understand the previous results we consider a variation of our model where

the effort made by the seller is observable. This will help us to investigate the distortion

generated by the unobservability of the effort but keep the unobservability of the type.

We assume that now the effort put into signaling is observable by the buyers. In order

to allow the L-seller to mimic the H-seller,18 in this section we assume that he can (pretend

to) make an observable effort at 0 cost, but that effort leaves the drift of X unchanged.

Instead, if the H-seller makes an observable effort e > 0, he incurs a cost cH(e), but the

drift of X is e as before.19

Proposition 5.1. Assume α < 2. Fix a signaling region R and assume effort is observable.

Fix a strictly positive policy function eH(·) ∈ C1(R) and let VH(p, eH) be the corresponding

value function of the H-seller at p. Then, VH(p, λ eH) > VH(p, eH) for all λ > 1 and p ∈ R.

The intuition for the previous result is as follows. The HJB equation for the problem

with observable effort is the same as that for our main model (given in (2.6)) replacing eH(p)

by êH(p) (since now the seller fully internalizes the effect of his choice on the equilibrium

strategy). Since the maximum is reached when the maximand is equal to 0, the solution

would be the same if the maximand was divided by êH(p). In this case we would have

0 = max
êH

(

− AH êα−2
H − c0 ê

−2
H +

p (1− p)2

σ2
V ′
H(p) +

p2 (1− p)2

2 σ2
V ′′
H(p)

)

. (5.1)

So, increasing êH does not change the drift of the volatility of this new problem, but reduces

the cost (both the fixed and the variable cost, since α < 2). Therefore, in the limit where

êH → ∞, VH(·) converges to the expected revenue (EP (·) defined in (3.1)).

When α > 2 the high convexity of the cost function prevents exerting a very high effort

from being efficient (notice that, in equation (5.1), if α > 2 an increase in êH still lowers

the fixed cost but now increases the variable cost). Instead, in the absence of a fixed cost,

the seller would want to exert a very low effort and let the information be slowly revealed

18Since effort is observable and eL(·) ≡ 0 when AL = ∞, any observation of effort higher than 0 would lead

to perfect knowledge of the type.

19This construction is similar to Stackelberg action, often used in the reputations literature. The Stackelberg

action of a player is the action that he would choose if, at the beginning of the game, he could publicly

commit taking this action each period (without considering the incentive constraints in each period’s

game). Here, we allow for a full strategy, not just a single action.
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over time. Nevertheless, the presence of the fixed cost requires a high flow of information in

order to make exerting effort worthwhile. The following proposition establishes the optimal

effort when α > 2.

Proposition 5.2. Assume α > 2. There exists a maximal signaling region R̄ such that, for

any signaling region R ⊂ R̄, the optimal observable effort choice by H-sellers is given by

eH(p) = eOE
∗ ≡

(

2 c0
AH (α− 2)

)
1

α

. (5.2)

Note that the optimal effort choice is constant. Since e 7→ cH(e) is convex for e > 0 and

the seller puts the same value on all instants of time, it is optimal for him to spread the

same effort across all histories.

The optimal cost per unit of time is α c0
α−2

. This does not depend on the value of AH or σ.

If, for example, σ increases, the incentive to signal is reduced. This is compensated with a

steeper value function, which implies a reduction in the signaling region. So, the signaling

technology (given by g(·) in footnote 4 and σ) affects the optimal cost only through the

curvature of g. Changes in AH and σ, instead, only change the decision to stop or keep

signaling.

We can compare the functional form of the effort in our main model with unobserv-

able effort (equation (2.10)) with the case when the effort is perfectly observable (equation

(5.2)). It is clear that there is a distortion in the effort choice, since C1 > 0 (see the proof

of Corollary 4.1). This distortion makes the effort choice inefficiently low when effort is

unobservable. The inefficiency is larger when p is small (interpreted as the “give up” effect).

Hence, both when α < 2 and when α > 2 the effort is unobservable the equilibrium

choice is inefficiently low. This is a consequence of the extra information asymmetry given

by the unobservability of the effort. Nevertheless, when α < 2 the inefficiency is more severe

for high posteriors (“rush-out effect” when p is low), while when α > 2 it is more severe

when p is low (“give-up effect”). As one can expect given the fixed cost of signaling, in both

cases the distortion in the effort choice generates inefficiently small signaling regions.

Remark 5.1. Proposition 5.2 allows us to recover the case where the drift is constant

but type dependent (eOE
∗ for H-sellers and 0 for L-sellers) and there is a cost per

unit of time. Indeed, models in the literature where the drift depends on the type

(but not on the effort), such as Daley and Green (2012), can be reinterpreted as

optimal behavior when the effort (but not the type) is observable.
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6 Conclusions

We fully characterize the equilibria of a model with dynamic signaling and hidden actions.

By introducing unobservable effort, the model provides insights into how the interaction

between different sources of asymmetric information affects the signal dynamics.

Our repeated signaling environment allows us to investigate when and how much the

seller is willing or able to inform buyers about the quality of the asset. We find that if

highly informative signals are very costly, signaling is more efficient when the market is

optimistic, and when the market is pessimistic the seller “gives up” on signaling. When the

cost function is not very convex, instead, the fear of receiving a bad offer makes exerting

high effort more credible, so the seller “rushes out” the low posterior area by increasing

the speed of information transmission. In both cases, by comparing our results with an

observable-effort model, we find that the unobservability of the effort leads to inefficiently

low effort choices and acceptance decisions by the seller.

The endogenous revelation of information has some implications that differ from those

obtained in static signaling models or dynamic models without effort. We find that high

separation between types may take place even if the cost of signaling, the outside option,

or the noise is high. In some equilibria, high-quality sellers avoid for sure low offers by

increasing effort after unfortunate bad signals (which make the market pessimistic). Also,

despite the presence of a fixed cost, equilibrium effort choices may be arbitrarily low.

Future research shall be devoted to generalizing the results to allow low types to exert

effort and to introduce additional types. Introducing productive signaling (such as produc-

tive education) may also introduce new tradeoffs, since the uninformed side of the market

will value effort as something more than just a separation device.
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A Appendix: Omitted Proofs

Proof of Lemma 2.1 (page 10)

Proof. Assume first that VH,t = VH . In this case, no offers higher than VH are made in

equilibrium with positive probability (i.e. Pr(Wτ̃ > VH) = 0). Otherwise, the H-seller

could wait and with some probability receive such offers, and therefore obtain a payoff

strictly higher than VH . By the No (Unrealized) Deals condition, we have that VH,t ≥ Pt Π.

If Pt <
VH

Π
then it is clear that no offer is made in equilibrium. If, instead, Pt =

VH

Π
, offers

may be made with positive probability, and given that VL < VH , if such an offer is made, it

is accepted with probability one by the two types of the seller.

Assume now VH,t > VH . Given that at all moments in time VL,t ≥ VL > ΠL = 0,

it is clear that L-assets are never traded in isolation (given the Zero-Profits condition).
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This implies that trade will happen only if Wt = VH,t. Since, by the No (Unrealized)

Deals we have that VH,t ≥ PtΠ, it follows that trade happens inside R only if the H-

seller accepts with higher probability than the L-seller. So, there must exist histories where

VH,t = VL,t > PtΠ. Let’s normalize t = 0 and assume that an equilibrium exists such

that VH,0 = VL,0 > P0Π. Assume first that, in such equilibrium, the probability of one of

the players not accepting any offer is 0. In this case, given the zero profits condition, we

have that E0[Wτ̃ ] = P0Π, which is a contradiction. So, at least one of the types has to

reject all offers with positive probability. If the L-seller rejects all offers with some positive

probability φL > 0, her payoff is V0,L = (1−φL)E0[Wτ̃ |L]+φL VL. Nevertheless, in this case

the H-seller can mimic the strategy and obtain (1 − φL)E0[Wτ̃ |L] + φL VH > V0,L, which

is a contradiction. Finally, if only the H-seller rejects all offers with positive probability

φH > 0, then limt→∞ E0[Pt|τ̃ = ∞] → 1 but limt→∞ E0[VH,t|τ̃ = ∞] = VH , which is again a

contradiction, since at every instant VH,t ≥ PtΠ. So, Pr(Pτ̃ ∈ R) = 0. So types pool on the

acceptance decision.

When VH,t = PtΠ then trade happens only if the proportion both the L-seller and the

H-seller accept the offer with at same rate. This implies that the acceptance strategy does

not affect the beliefs updating. Given that both types of the seller pool on the acceptance

strategy, Pt is a continuous process, and therefore so is VH,t (and the value function VH(p)).

This implies that R is open relative to [0, 1]. Finally, if there is an equilibrium and t such

that eH,t > 0 and Pt /∈ R̄, then VH(p) = p would be a solution of the equation (2.6), for

some êH = eH , and we will show that it is not the case.

Proof of Lemma 2.2 (page 10)

Proof. Trivial using the fourth paragraph of the proof of Lemma 2.1.

Proof of Lemma 2.3 (page 13)

Proof. Note that the second derivative of the maximand of (2.6) with respect to ê is −α (α−

1)AH êα−2
H < 0, so the first order condition is sufficient for optimality. Therefore, we impose

the equilibrium condition êθ(p) ≡ eθ(p) in the FOC (2.9), so we get

−αAH eH(p)
α−1 =

p (1− p) eH(p) V
′(p)

σ2
⇒ V ′(p) =

ασ2 AH eH(p)
α−1

p (1− p)
.
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Now, plugging this expression into the maximand of (2.6) we have a first order differential

equation for eH(p), given by

0 = −c0 +
α−2
2

AH eH(p)
α−1 (eH(p) + α (1− p) p e′H(p)) .

The general solution of this equation is given by equation (2.10).

Proof of Lemma 2.4 (page 14)

Proof. Let R be the signaling region of an MSE, and R̃ ⊂ R the signaling region of another

equilibrium. Note that if p0 /∈ R̃ then ṼH(p) = max{VH , p0Π} ≤ VH(p0). So, assume that

p0 ∈ R̃. Since both R and R̃ are open, there exist some intervals (p, p) ⊂ R and (p̃, p̃) ⊂ R̃

such that p, p /∈ R, p̃, p̃ /∈ R̃ and p0 ∈ (p̃, p̃) ⊂ (p, p). If p = p̃ and p = p̃ then trivially

VH(p0) = ṼH(p0). Otherwise, assume p̃ > p and p̃ = p. As is shown in the proof of Lemma

2.5, the value function VH(·) follows the equation (A.1), for some C1. We can write it

explicitly as VH(p; p, C1). It is easy to verify that
∂V ′

H (p;p,C1)

∂C1
< 0. Therefore, there exists

some C̃1 > C1 such that VH(p̃; p, C̃1) = max{p̃Π, VH}, so we have that ṼH(p) = VH(p̃; p, C̃1).

Finally, given that ∂VH (p;p,C1)
∂C1

< 0, we have that ṼH(p0) < VH(p0). If p̃ ≥ p and p̃ < p we

can repeat the process, keeping p constant and decreasing p to p̃, by writing VH(·) in therms

of p instead of p. Note that if R̃ is a strict subset of R then there exist p ∈ R′ such that

ṼH(p) < VH(p).

Proof of Lemma 2.5 (page 14)

Proof. Assume that an MSE exists and let R be its signaling region. Suppose p0 ∈ R and

define p and p as in (2.4) and (2.5). Note that by the definition MSE there is no equilibrium

such that its signaling region contains p. We assume VH(p) = pΠ and VH(p) = pΠ (the

other possible case, when VH(p) = VH , is proved analogously). Then, from the FOC (2.9)

and the form of the policy function (2.10), there exists some constant C1 such that

VH(p) ≡ VH(p, p) = pΠ−

∫ p

p

AH ασ2

(1− q) q

(

C1 (1− q)

(2− α) q
−

2 c0
(2− α)AH

)
α−2

α

dq . (A.1)

For p′ ∈ (0, 1), define p
∗
(p′) ≡ sup{p < p′|VH(p, p

′) ≤ pΠ}. Note that p = p
∗
(p).

Note that since VH(p) ≥ pΠ for all p ∈ R and VH(·) ∈ C1(R), we have limp↓p V
′
H(p) ≥ Π

and limp↑p V
′
H(p) ≤ Π. We need to show that for the MSE these weak inequalities are

equalities, instead.
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Assume first limp↓p V
′
H(p) > Π and limp↑p V

′
H(p) < Π. Note that ∂VH (p,p)

∂p
= Π−V ′

H(p) > 0.

Therefore, p
∗
(p) is decreasing, and since limp↓p V

′
H(p) > Π exists in a neighborhood of p. So,

since VH(p, p) is increasing in p, for ε > 0 small enough (p
∗
(p+ ε), p+ ε) ∋ p is the signaling

region of some equilibrium. This contradicts the assumption that p is not in the signaling

region of any equilibrium.

Now consider the case V ′
H(p) > Π and V ′

H(p) = Π (a similar argument can be used when

V ′
H(p) = Π and V ′

H(p) < Π). It is easy to see that now VH(p) = V H(p, p) where

V H(p, p) ≡ pΠ−

∫ p

p

Π p q
2

α
−2 (1− p)2/α (1− q)−1

(

2 (2− α)−1 k (p− q)((1− p) p)
α

2−α + (1− q) p
)

2−α
α

dq (A.2)

where k ≡ c0
(

ΠA−2/α

ασ2

)
α

2−α . Simple algebra shows that

∂2V H(p, p)

∂p2
> 0 ⇔

∂V H(p, p)

∂p
> 0

⇔ k − (α (1− p)− 1) ((1− p) p)
α

α−2 > 0 .

The first condition is a necessary condition for (p, p) to be an equilibrium when ∂
∂p
V H(p, p) =

Π. Indeed, since VH(p, p) > pΠ for p ∈ (p, p) and V H(p, p) = pΠ, V H(·, p) must be convex

at p = p. Using simple algebra we find that when α < 2, there exists a unique p† such

that ∂2V H (p,p)
∂p2

> 0 iff p > p†. For α > 2, as we will see in the proof of Proposition 4.1 (and

Lemma A.1), ∂2V H(p,p)
∂p2

< 0 in a (maybe empty) interval contained in (0, α−1
α

) that contains

p̃− (defined in (A.5)). Therefore, since by assumption VH(p) = pΠ, it must be the case that

p > p̃−, so ∂2V H(p′,p′)
∂p2

> 0 for p′ > p.

For α < 2, the value function (A.2) is well defined for all p ∈ (0, 1). In this case, p can be

increased to p+ε, for ε > 0 small, such that p
∗
(p+ε) exists, and satisfies ∂

∂p
VH(p, p+ε) > Π.

Since VH(p, p+ ε) > VH(p, p) for all p, p
∗
(p+ ε) < p. This, by a similar argument as before,

contradicts the assumption that p does not belong to the signaling region of any competitive

equilibrium.

When α > 2, the term inside the parenthesis of the denominator of (A.2) may not be well

defined. It is easy to see that it is well defined for p ≥ p. In particular, given p, either the

denominator is well defined for all p or there exists some function 0 < p̃0(p) < p such that

it is not well defined for p < p̃0(p) and well defined otherwise. Furthermore, if p̃0(p) exists,

it is continuous in p and limp→p̃0(p)
∂
∂p
VH(p, p) = 0. Since, by assumption, ∂

∂p
V (p, p) >, then

p > p̃0(p) if p̃0(p) exists. Now, using the same argument as in the case where α < 2, p

can be increased by ε > 0 small such that (p
∗
(p + ε), p + ε) is the signaling region of an

equilibrium. This contradicts our initial assumption.
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Proof of Proposition 3.1 (page 14)

Proof. We will prove this proposition by explicitly constructing the equilibrium. Define

V H(·, ·) and p† as in the proof of Lemma 2.5. Since limp→0 V H(0, p) = 0 and V H(p, p) is

decreasing in p when p < p†, we have that V H(0, p
†) < 0. Furthermore, by simple visual

inspection we see that limp→1 V H(0, p) = Π. Therefore, by continuity and since V H(p, p) is

increasing in p when p > p†, for each VH there exists a unique p∗(VH) ∈ (p†, 1) such that

V H(0, p∗(VH)) = VH .

Let’s show that there is an equilibrium with signaling region R = (0, p∗(VH)). Let’s

denote VH∗(p) ≡ V H(p, p∗(VH)). Then, since the boundary conditions are satisfied, we only

need to show that VH∗(p) ≥ max{pΠ, VH} for all p ∈ (0, p∗(VH)). Since V ′
H∗(p) > 0 and

VH∗(0) = VH , we only have to verify that VH∗(p) ≥ pΠ for all p ∈ (0, p∗(VH)). First, taking

derivatives in the expression (A.2) we have that

V ′′
H∗(p∗(VH)) > 0 ⇔ p∗(VH) > p† .

Second, let’s find the solutions of the equation V ′
H∗(p) = Π other than p = p∗(VH). Simple

algebra transforms this equation into finding the zeros of f(·), where

f(p) ≡
2 k (p− p)

2− α
− (1− p) p

α
α−2

+1 (1− p)
α

α−2 + (1− p) (1− p)
α

α−2 p
α

α−2
+1 ,

where p ≡ p∗(VH). Let’s show that it has at most one solution lower than p. In order for the

previous equation to have more than one solution in (0, p∗(VH)), the second derivative must

have at least one zero in (0, p∗(VH)). Nevertheless, if we take the second derivative it is easy

to see that it does not have any zero in (0, p∗(VH)) for α < 2. Then, since V ′
H∗(0) = ∞, it

must be the case that VH∗(p) > pΠ for all p ∈ (0, p∗(VH)). Indeed, if it was not the case,

there must exist p̃′1, p̃
′
2 ∈ (0, p∗(VH)) such that VH∗(p) < 0 for p ∈ (p̃′1, p̃

′
2) and

VH∗(p̃
′
1) = p̃′1Π , VH∗(p̃

′
2) = p̃′2Π , V ′

H∗(p̃
′
1) ≤ Π and V ′

H∗(p̃
′
2) ≥ Π .

Continuity of V ′
H∗(·) implies that there exist p̃1, p̃2, p̃3 ∈ (0, p∗(VH)) such that V ′

H∗(p̃1) =

V ′
H∗(p̃2) = V ′

H∗(p̃3) = Π and 0 < p̃1 < p̃′1 < p̃2 < p̃′2 < p̃3 < p∗(VH). But this contradicts the

fact that f(·) only has one zero in (0, p∗(VH)). So, there is an equilibrium with signaling

region R = (0, p∗(VH)).

Using a similar argument as in the proof of Lemma 2.5, we can argue that if there

is an equilibrium with signaling region R′ and supR′ > supR, there must exist another

equilibrium with signaling region R̃′ such that supR′′ > supR′, satisfying the smooth
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pasting condition. Nevertheless, as we have just seen, the equilibrium defined is the only

one that satisfies them.

Proof of Corollary 3.1 (page 15)

Proof. The value function for any equilibrium is given by (A.2), and let VH(p; p̄, k) denote

the function defined in this equation where we explicitly write k as an argument. Note that

when α < 2, k ≡ k(σ) (defined in the proof of Lemma 2.5) is decreasing in σ. Therefore, if

σ increases, the integrand of the expression (A.2) increases for each given q (keeping p̃ the

same). So, since σ1 > σ2, VH(0; p∗(σ2), k(σ1)) < VH(0; p∗(σ2), k(σ2)) = VH . Hence, since

VH(0; p, k(σ1)) is increasing in p, we have that p∗(σ1) > p∗(σ2).

Proof of Corollary 3.2 (page 16)

Proof. Since 2 c0
AH (α−2)

< 0, it must be the case that C1 < 0 in order for the term inside the

power function to be non-negative. This makes eH(·) clearly decreasing.

Proof of Proposition 3.2 (page 17)

Proof. The proof is the same as the one for Proposition 3.1. In Proposition 3.1 the result

is proven for c0 > 0, but the argument still applies for c0 = 0. The particular value of

p∗ is obtained by solving the equation ∂
∂p
VH(p∗; 0, p∗, VH , p∗Π) = Π (using the definition

(3.4).)

Proof of Proposition 4.1 (page 18)

Proof. We begin with a technical lemma useful which is to construct the signaling region of

the MSE:

Lemma A.1. There exists c̄0 > 0 such that if c0 < c̄0 there is a unique non-empty interval

(p
∗
, p∗) such that if VH is small enough (p

∗
, p∗) is the signaling region of an equilibrium with

V ′
H(p∗) = V ′

H(p∗) = Π. If c0 ≥ c̄0, no interval with the previous properties exists.

Proof. Note that in all equilibria with R 6= ∅ there must be a p̃ ∈ R such that V ′
H(p̃) = Π

and V ′′
H(p̃) < 0. Indeed, consider a p ∈ R and define p and p as in (2.4) and (2.5). Note

that equilibrium conditions require VH(p) > pΠ for p ∈ (p, p), limp↓p V
′
H(p) ≥ Π and

30



limp↑p V
′
H(p) ≤ Π. So, since V ′

H(·) ∈ C1(p, p), using standard calculus (mean value theorem)

we know that there must exist at least one p̃ such that V ′
H(p̃) = Π and V ′′

H(p̃) < 0.

Assume that an equilibrium exists and consider p̃ satisfying the previous conditions.

Then, given the form of the policy function (2.10), there must exist some ṽ such that the

value function VH(p) ≡ VH(p; p̃, ṽ) takes the following form:

VH(p; p̃, ṽ) ≡ ṽ +

∫ p

p̃

Π p̃ q
2

α
−2 (1− p̃)2/α (1− q)−1

(

2 (2− α)−1 k (p̃− q) ((1− p̃) p̃)
α

2−α + (1− q) p̃
)− 2−α

α

dq , (A.3)

where k ≡ c0
(

ΠA−2/α

ασ2

)
α

2−α as in the proof of Lemma 2.5. Note that VH(p̃; p̃, ṽ) = ṽ and
∂
∂p
VH(p̃; p̃, ṽ) = Π. If we twice differentiate it with respect to p we find

∂2

∂p2
VH(p̃; p̃, ṽ) =

2Π ((1− p̃) p̃)
−α
α−2

α p̃ (1− p̃)

(

k − (α (1− p̃)− 1) ((1− p̃) p̃)
α

α−2

)

. (A.4)

Note that the first term in the RHS of the expression is clearly positive. The second term

in the RHS is k when p̃ = 0, p̃ = α−1
α

and p̃ = 1. If we differentiate this term, we see that

it is strictly convex in the region (0, α−1
α

) and concave otherwise. Therefore, the minimum

of the second term of the RHS of (A.4) is in the region (0, α−1
α

), and it can be shown that

it is reached at

p̃− ≡
1

2 +
√

α−2
α−1

. (A.5)

Therefore, using the definition of k, a necessary condition for VH(p; p̃, ṽ) to be concave at p̃

is that

c0 < c̄0 ≡

(

ΠA
−2/α
H

ασ2

)
α

α−2

(α (1− p̃−)− 1) ((1− p̃−) p̃−)
α

α−2 . (A.6)

So, the previous condition is necessary for the existence of p̃ ∈ R satisfying V ′
H(p̃) = Π and

V ′′
H(p̃) < 0, that itself is a necessary condition for the existence of equilibria. Then, c0 < c̄0

is a necessary condition for the existence of equilibria.

Let’s show that c0 < c̄0 is also a sufficient condition for the existence of equilibria.

Assume c0 < c̄0, so p̃ exists such that ∂
∂p
VH(p̃; p̃, ṽ) = Π and ∂2

∂p2
VH(p̃; p̃, ṽ) < 0. If we make

ṽ higher (close enough to p̃Π), standard calculus guarantees that there exist p < p̃ and

p > p̃ such that VH(p; p̃, ṽ) = pΠ, VH(p; p̃, ṽ) = pΠ and VH(p; p̃, ṽ) > pΠ for all p ∈ (p, p).

Since R = (p, p) satisfying the previous conditions is the signaling region of an equilibrium,

c0 < c̄0 is a sufficient condition for an equilibrium to exist.
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Note that VH(p; p̃, ṽ) is well defined as long as the term inside the parenthesis of the

denominator is non-negative. It is easy to verify that it is non-negative if p is in the

neighborhood of p̃, so the previous argument is valid. Note also that if p̃ is large, the term

in the denominator is not well defined for low q. Since the exponent of this term is negative

when α > 2, this corresponds to the derivative of VH with respect to p being 0.

Assume that c0 < c̄0, fix an equilibrium and p̃ satisfying the previous properties. Let’s

define ṽ− ≡ inf{ṽ|VH(p; p̃, ṽ) > pΠ ∀p < p̃} and ṽ+ ≡ inf{ṽ|VH(p; p̃, ṽ) > pΠ ∀p > p̃}.

Note that since limp→1 VH(p; p̃, ṽ) = ∞, we have p̃Π < ṽ+ < ∞. Assume ṽ+ ≤ ṽ− (the

other case is analogous). By continuity, there exists some p such that VH(p; p̃, ṽ+) = pΠ.

Note that p is unique. Indeed, by the previous argument ∂2

∂p2
VH(p; p̃, ṽ+) has two zeros when

c0 < c̄0 (one lower than p̃ and one higher than p̃), and p must be higher than the higher

zero, so ∂2

∂p2
VH(p; p̃, ṽ+) > 0.

Since VH(p; p̃, ṽ) ∈ C1(p̃, 1), it must be the case that ∂
∂p
VH(p; p̃, ṽ+) = Π, and therefore

VH(p; p̃, ṽ+) = V H(p, p), where V H is defined in (A.2). Recall that V H(p, p) is increasing

and continuous in p. Furthermore, by assumption (since ṽ− > ṽ+), there exists some p < p̃

such that V H(p, p) = p. Define p∗ = inf{p|V H(p, p) > pΠ ∀p < p}. Using standard

calculus, it is easy to prove that there exists some p
∗
< p∗ such that V H(p∗, p∗) = p

∗
Π and

∂
∂p
V H(p∗, p∗) = Π.

(Continuation of the proof of Proposition 4.1)

Let’s fix p ∈ (0, VH

Y
) and define

ṼH(p, p) ≡ VH +

∫ p

p

2
1

α α σ2A
2/α
H c

α−2

α
0 (q − p)

α−2

α

(α− 2)1−
2

α (1− p)1−
2

α (1− q) q2−
2

α

dq . (A.7)

It is easy to see that this is the value function corresponding to C1 =
2 p c0

AH (1−p)
in (A.1), using

p as the integration limit instead of p and changing pΠ by VH in the front of the expression.

Note that ṼH(p, p) = VH and ∂
∂p
ṼH(p, p) = 0. Note also that ∂2

∂p2
ṼH(p, p) > 0 when p > p

is close to p. Therefore, if we choose p close enough to VH

Π
, it is easy to show that there

exists some p > VH

Π
such that ṼH(p, p) = max{VH , pΠ} and ṼH(p, p) > pΠ for all p ∈ (p, p).

Therefore, a competitive equilibrium (with signaling region R = (p, p)) exists.

Using simple algebra it is easy to show that ∂
∂p
ṼH(p, p) < 0. Furthermore, we see that

limp→0 ṼH(p, p) = ∞ for all p > 0 and limp→1 ṼH(p, p) = ∞ for all p > 0. Also, twice

differentiating (A.7), we see that ∂2

∂p2
ṼH(p, p) has at most 2 zeros. Therefore, there exist one

and at most two pairs of values (p
1
, p1) and (p

2
, p2), with p1 < p2, such that ṼH(pi, pi) = pi Π,
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∂
∂p
ṼH(pi, pi) = Π and ∂2

∂p2
ṼH(pi, pi) > 0 for i ∈ {1, 2}. Note also that if (p

i
, pi) exists for

some i ∈ {1, 2}, then ṼH(p, pi) = V H(p, pi), where V H is defined in (A.2).

Note that two pairs {(p
i
, pi)}i∈{1,2} with the previous properties exist only if c0 ≤ c̄0,

where c̄0 is defined in Lemma A.1. Indeed, assume otherwise, that is, two pairs exist and

c0 > c̄0. Then, since V H(p, p) is increasing in p, is the case that V H(pj, pi) ≤ pj Π for

some i and j such that i, j ∈ {1, 2}, i 6= j. Assume it is true for i = 2 (the other case is

analogous). Since ∂2

∂p2
V H(p, p2) > 0, there exists some p ∈ [p1, p2) such that V H(p, p2) = pΠ

and V H(p, p2) > pΠ for all p ∈ (p, p2). Therefore, there exists a competitive equilibrium

with signaling region (p, p2), which contradicts Lemma A.1. Furthermore, it is easy to show

that if two pairs exist (and therefore c0 < c̄0), it must be the case that p1 < p̃− < p2, where

p̃− is defined in (A.5).

Then, we have the following cases:

1. If c0 > c̄0, only one pair exists (assume it is i ∈ {1, 2}). Note that, by Lemma A.1, no

competitive equilibrium with signaling region (p
0
, p0) exists such that VH(p0) = p

0
Π

and VH(p0) = p0Π. Therefore, the only equilibrium satisfying the smooth pasting

condition is (p
i
, pi).

2. If c0 < c̄0 let (p
0
, p0) be the signaling region in Lemma A.1. We have two cases:

• If p2 > p0 then (p
2
, p2) is the signaling region of a competitive equilibrium.

Indeed, since the boundary conditions are satisfied, we only need to verify that

ṼH(p, p2) > max{VH , pΠ} for all p ∈ (p
2
, p2). Since ∂

∂p
ṼH(p, p2) > 0 for all

p > p
2
, we only need to verify that ṼH(p, p2) > pΠ for all p ∈ (p

2
, p2). Assume

otherwise, that is, assume there is some p̃ ∈ (p
2
, p2) such that ṼH(p̃, p2) ≤ p̃Π.

Since ṼH(p, p2) = V H(p, p2) and V H(p, p) is increasing in p, a similar argument

as the one used in the proof of Lemma A.1 shows that there must an equilibrium

with signaling region (p
3
, p3), with p3 > p2, such that ∂

∂p
V H(p3, p3) = Π. As we

see saw in the proof of Lemma A.1, this is unique, which implies that p3 = p0.

Nevertheless, we have p0 = p3 > p2, which is a contradiction. Also, since Ṽ (p, p)

is decreasing in p, we have (p
1
, p1) ⊂ (p

2
, p2).

• If p2 ≤ p0, it must be the case that p1 ≤ p
0
. Indeed, otherwise there exists

some p̃ ∈ (p
1
, VH

Π
) such that V H(p̃, p0) = VH and V H(p, p0) > max{VH , pΠ} for

p ∈ (p̃, p
0
). Since V H(p, p) is increasing in p, there exists some p4 = inf{p >

p0|V H(p̃0(p), p) > VH}, where p̃0(p) is defined as in the proof of Lemma 2.5.

It is easy to show that (p̃0(p4), p4) satisfies the same conditions as (p̃2, p2), and
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since there are only two pairs that satisfy those conditions and p4 ≥ p0 > p̃− >

p1, it must be the case that p4 = p2. This contradicts our assumption, since

p2 = p4 > p0 ≥ p2. Furthermore, if p2 < p0, there is some p̃ ∈ (p
2
, p2) such

that Ṽ (p̃, p
2
) < p̃Π. The reason is that Ṽ (·, p

2
) = V (·, p2), p

2
< p

0
< p2,

V (p
0
, p0) = p

0
Π and V (p, p) is increasing in p. Finally, if p2 = p0 then p1 = p

0

and p
1
= p

2
. Therefore, in this case, the equilibrium that satisfies the smooth

pasting condition with biggest signaling region equal to the union of the (disjoint)

intervals (p
0
, p0) and (p

1
, p1).

In each case it can be shown that the corresponding is an MSE using a similar argument

as in the proof of Lemma 2.5. Indeed, it is easy to see that if any of them is not an MSE,

there must exist an equilibrium with a bigger signaling region satisfying the smooth pasting

condition. Nevertheless, as we have shown, each of the proposed equilibria is the one with

the biggest signaling region among all equilibria satisfying the smooth pasting condition.

Proof of Corollary 4.1 (page 20)

Proof. First assume VH small enough, and assume c0 < c̄0. As is shown in the proof of

Lemma A.1, equation (A.3) must hold in any equilibrium at some p̃ such that V ′′
H(p̃) < 0.

It is easy, from this equation, to see that C1 in equation (2.10) takes the following form:

C1 =
4 c0 k (1− p)

AH p̃ (α− 2)
(

(α− 2)((1− p̃) p̃)
α

α−2 − 2 k
)

where k is defined in the proof of Lemma A.1. Using equation (A.4) (imposing V ′′
H(p̃) < 0)

it is easy to see that C1 > 0. Therefore, eH(·) defined in (2.10) is increasing.

If VH > 0 we have (at least) one interval (p
1
, p1) such that VH(p1) = VH and eH(p1) = 0.

Therefore, in this interval C1 =
2 c0 p

1

AH (1−p
1
)
> 0, we have that eH(·) is increasing in (p

1
, p1). If

we have two intervals, then the limits in the second ones are those when VH is small enough,

so the previous part of the proof holds.

Proof of Proposition 5.1 (page 21)

Proof. Fix a p0 ∈ R and define p and p as in (2.4) and (2.5). Fix eH ∈ C1(p, p) positive.

The equation for the value function for the H-seller exerting effort eH is given, in (p, p) by

the following HJB equation

0 = −AH eH(p)
α +

(p− 1)2 p (p V ′′
H(p) + 2 V ′

H(p))

2 σ2
eH(p)

2 , (A.8)
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and boundary conditions VH(p) = W and VH(p) = W . Let VH(p, eH(·)) be its solution.

Let’s consider the following decomposition: VH(p, eH) ≡ Vh(p) + Vt(p, eH). We assume that

p V ′′
h (p) + 2 V ′

h(p) = 0, and we impose Vh(p) = W and Vh(p) = W . This leads to

Vh(p) = W +
(p− p) p

(p− p) p
(W −W ) .

This is exactly the expected payoff when the signaling waste is 0 (note that the homoge-

neous equation is “as if” AH = 0), which coincides with the expected accepted price offer

conditional on being type H (we can see this using the formula (3.1)). Note that Vt(p; eH)

must satisfy (A.8) and Vt(p; eH) = Vt(p; eH) = 0. Consider λ > 1. Then, it is the case that

Vt(p, λ eH) = λα−2 Vt(p, eH) < Vt(p, eH) .

This is true because both Vt(p, λ eH) and Vt(p, λ eH) satisfy the same equations and boundary

conditions (equal to 0 at the boundary). Therefore, increasing the effort by a factor λ > 1,

the absolute value of Vt(p, λ e) is reduced by a factor λα−2 < 1. Finally, note that Vt(p, λ e) <

0 ∀p ∈ (p, p). Indeed, it is the solution of a boundary problem with negative flow payoff

and with 0-value at the boundary. So, by increasing the effort we increase VH , we make it

asymptotically equal to Vh, that is, signaling waste asymptotically disappears.

Proof of Proposition 5.2 (page 22)

Proof. The problem of maximizing the value function of the H-seller can be written as a

regular stochastic control problem, since now there is no incentive constraint:

0 = max
eH(p)

(

− c0 − AH eH(p)
α +

(p− 1)2 p (p V ′′
H(p) + 2 V ′

H(p))

2 σ2
eH(p)

2

)

.

The First Order Condition of the previous equation is

0 = −αAH eH(p)
α−1 +

(p− 1)2 p (p V ′′
H(p) + 2 V ′

H(p))

2 σ2
2 eH(p) .

Note that since α > 2 the Second Order Condition is satisfied. Using the previous two

equations to solve for eH(p) it is easy to verify that the statement of the proposition is true

(note that the terms of both equations involving p are identical).

B Expected Stopping Times

In this section we compute the expected stopping times in the case α < 2 and c0 = 0. Fix

an equilibrium with signaling region R ≡ (p, p). Let Tθ(p) be the expected time before an
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TL, TH

pp1 p2 1

Figure 5: Expected stopping times. Gray and black lines correspond to L-sellers and H-

sellers, respectively.

offer is accepted, that is

Tθ(p0) ≡ E
[

τθ
∣

∣ p0, et=eθ(Pt)
]

= E
[∫ τθ

0
ds
∣

∣ p0, et=eθ(Pt)
]

.

Therefore, Tθ(·) can be thought of as the value function for a flow payoff of 1 while the

project is active and 0 when it stops. Hence, Tθ(·) satisfies the following HJB equation:

0 = 1 + µ̃(eθ(p), p, e(p)) T
′
θ(p) +

1
2
σ̃(p, e(p))2 T ′′

θ (p) ,

with boundary conditions Tθ(p) = Tθ(p) = 0. The previous equation can be analytically

solved. We focus on the limiting case p → 0, since this is the relevant case for the MSE.

After some amount of algebra, TH and TL can be expressed in the following way

TH(p|p = 0) =
1

2 + α

(

(2− α) (pΠ− VH)

ααAH σα

)
2

2−α
(

1−
h(p)

2

2−α

h(p)
2

2−α

)

,

TL(p|p = 0) =
1

2− α

(

(2− α) (pΠ− VH)

ααAH σα

)
2

2−α
(

(1− p) p

p (1− p)
−

h(p)
2

2−α

h(p)
2

2−α

)

,

where h(·) is defined at (3.3). Figure 5 (b) plots these functions for different values of

p. We see that TH(0) 6= 0. Even though for each p > 0 we have TH(p) = 0, we have

limp→0 TH(p) > 0 for all p > 0. The rationale, as we explained in Section 3.1, is that

limp→0 eH(p) = ∞, so in the limit the unbounded effort around 0 generates a “wall” in the

beliefs.20

20The fact that there is a pointwise convergence when p → 0 both for Vθ(·) and Tθ(·) reinforces the conjecture

(that is verified numerically) that the equilibrium described in Proposition 3.2 is the limit of equilibria in

a sequence of discrete-time versions of our model. Even though the fact that p = 0 can be reached in finite

time is only true in the continuous-time model, it is asymptotically true in the sequence of equilibria.
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