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Abstract

This paper analyzes a dynamic education signaling model with dropout risk. Workers

pay an education cost per unit of time and face an exogenous dropout risk before graduation.

Since low-productivity workers’ cost of education is high, pooling with early dropouts helps

them avoid a high education cost. In equilibrium, low-productivity workers choose to endoge-

nously drop out over time, so the productivity of workers in college increases as the education

process progresses. We find that the exogenous dropout risk generates rich dynamics in the

endogenous dropout behavior of workers, and the maximum education length is decreasing

in the prior about a worker being highly productive. We also extend the baseline model by

allowing human capital accumulation.
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1 Introduction

In many markets, such as labor and financial markets, privately informed sellers face a large

number of uninformed buyers. Starting with Spence’s (1973) seminal work on education, a growing

literature explores how each seller signals his type in the market. Such signaling includes wasteful

education (Spence, 1973) and excess and inefficient shareholding of a corporation (Leland and

Pyle, 1977).1 In Spence (1973)’s education model, the worker makes a one-shot decision about

his graduation year and is able to commit to his initial choice, so he leaves school only after

graduation. However, in many markets, including the labor market, the seller makes the signaling

decision sequentially. Furthermore, unpredictable exogenous shocks may appear and prevent the

seller from fulfilling his intended signaling choice. For example, in the labor market, while some

students voluntarily choose to drop out, others drop out because of exogenous reasons such as

financial constraints.2 In other markets such as financial asset markets and housing markets, the

owner of the asset may face liquidity shocks which are driven by hedging concerns or changes to

his budget constraints.

While the dynamic signaling models have drawn attention to economists since the seminal

works by Weiss (1983) and Admati and Perry (1987), the role of exogenous shocks has not been

systematically studied in the literature. In this paper, we examine a dynamic signaling model in

which the seller may face an exogenous shock in each period. Once the shock arrives, the seller

has to trade immediately. Our goal is to show that the presence of such exogenous shocks can

generate interesting endogenous trading dynamics. Following Spence (1973), we illustrate our idea

in an education model where (1) a worker privately knows his productivity, (2) decides whether

to drop out in each period, and (3) faces an exogenous dropout risk. Once the shock arrives, the

worker has to go on the job market immediately. We interpret this exogenous dropout process as

random shocks faced by the worker, driven by exogenous problems such as financial constraints,

family needs and the arrival of utility shocks.

This paper has three main results. First, we show that the presence of the constant exogenous

dropout risk can generate time-varying endogenous dropout decisions: A worker’s dropout behav-

ior varies over the number of years he has spent in school. Hence, we provide a natural explanation

of the dropout rate-grade profile based on information asymmetry. Unfortunately, even though we

can derive the equilibrium relation between the worker’s dropout rate and their years of education

1See Riley (2001) for a survey.
2Bound and Turner (2011) report that only about half of students who begin first-level degree programs actually

obtain their degrees. According to a survey by the Bill & Melinda Gates Foundation, 52% students drop out of

college because they “just couldn’t afford the tuition and fees”, and 71% mentioned that they “needed to go to

work and make money.”
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in the discrete time model, its dynamics are hard to characterize analytically. Hence, we examine

the continuous time limit of our discrete time model. At the continuous time limit, we explicitly

show that the dropout rate of a worker decreases the longer he spends in school.

Secondly, we find that the maximum equilibrium education duration is decreasing in the prior

about the worker being highly productive. In particular, when the prior approaches one, no

wasteful education appears in any equilibrium of the game. This is a consequence of the fact that

since early dropout happens in equilibrium, the beliefs of the firms about the productivity of a

dropout are disciplined. Then, in equilibrium, the low-productivity worker endogenously drops out

with a probability high enough that it balances the incentive to drop out or to stay in education.

If there is a low ex-ante probability that the worker is a low-productivity worker, these incentives

can only be balanced during a few periods of education.

Last but not least, we extend our pure signaling model by allowing human capital accumulation.

In this extension, we consider a model in which education not only separates the high-type worker

from low-type worker but also enhances both types’ productivity. As a result, both the signaling

effect and the human capital accumulation effect contribute to the returns to education. We

characterize the equilibrium passing D1 criteria, and we illustrate that the observation of dropout

rate is helpful to quantitatively decompose the returns to education into the signaling effect and

the human capital accumulation effect.

Even though we present our model in an education signaling environment, our insights are also

useful for understanding some other environments in which sending signals is not only costly but

also time-consuming. For example, consider a firm owner who is trying to sell his firm. In order to

signal the type of the firm, the owner may wait for some time. The opportunity cost of waiting is

likely to be low if the quality of the firm is good. The risk of dropping out may be reinterpreted as

liquidity shocks or hedging considerations that force the owner to sell the firm early. The observed

dropout rate can be interpreted as transaction volume.3 Another example is given by central banks

defending themselves from currency attacks. In this case, the cost of defending may depend on

the fundamentals of the economy, known only by the central bank. As time passes, the posterior

belief about the economy being healthy increases, so the size of the attacks decreases and the

attacks eventually vanish. The exogenous shocks may result from random events in international

markets, such as a devaluation of the foreign currency used to defend against attacks.

3See Daley and Green (2013a) for an information-based theory to explain time variation in liquidity in the

financial market.
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Related Literature

This paper is related to a growing literature studying dynamic signaling games with preemptive

offers. To the best of our knowledge, the literature springs from Weiss (1983) and Admati and

Perry (1987). They argue that the static signaling model (Cho and Kreps, 1987) overlooks the

worker dropout behavior. Think of a two-type signaling model. If a separating equilibrium is

supposed to be played as predicted by Cho and Kreps (1987), once a worker arrives on the first

day of school, the separation has already happened, and firms believe that the worker has high

productivity. Hence, the worker should drop out immediately. Cho and Kreps (1987) avoid this

challenge by directly assuming that a worker can commit to his decision regarding the duration

of his education. In practice, it is hard to see where the commitment power comes from.

Nöldeke and van Damme (1990) formulate an explicitly dynamic game-theoretic version of the

signaling model. In their model, long-lived firms simultaneously make public preemptive offers to

the worker in each period, and the worker decides to accept an offer or to continue his education. As

off-equilibrium beliefs may provide incentives to the worker to continue signaling, there are many

equilibria with wasteful education, even when the commitment time of the workers is arbitrarily

small. Nonetheless, Swinkels (1999) argues that Nöldeke and Van Damme (1990)’s result crucially

depends on the fact that job offers are made publicly. Hence, he considers a model where two

short-lived firms enter and simultaneously make private preemptive offers to the worker in each

period before the worker decides on whether to continue his education. Swinkels (1999) finds that,

when the interval between consecutive offers goes to zero, the unique sequential equilibrium in

this game is a pooling one at no education. Our model is different from Nöldeke and van Damme

(1990) and Swinkels (1999) in two respects. First, neither Nöldeke and van Damme (1990) nor

Swinkels (1999) study the interaction between dropout rate dynamics and the signaling effect. In

the former, some workers do not go to school at all and the rest stay in school until graduation. No

worker drops out in between. In the latter, no one goes to school in the first place. Instead, in our

model, the return to education and the dynamics of the dropout rate are two main implications.

Second, instead of allowing firms to make preemptive offers, we assume that the informed party

(the worker) moves first, either going to the job market or not. Consequently, conditional on being

in the job market, the uninformed agents (firms) make him offers. Since dropouts cannot return

to school, there is no need to distinguish between private offers and public offers in our model.

There is a growing literature that studies dynamic signaling models with extra type-dependent

signals.4 Kremer and Skrzypacz (2007) consider a finite horizon model in which an informative

(type-dependent) signal about the type of the worker is publicly announced at the deadline. Da-

4One example of such signals is students’ GPA.
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ley and Green (2012, 2013a) and Dilme (2013) study infinite horizon dynamic signaling models

in which extra signals continuously arrive. In these models, the dynamics of the dropout rate

and wages (trade probability and price in their language) are also characterized. Their charac-

terizations depend on the presence of an extra signal. Instead, we characterize the dropout rate

dynamics and wages in a model where the type-dependent extra signal is absent, but the informed

party faces a type-independent dropout risk. Our model allows one to distinguish exogenous and

endogenous dropout behavior and address new policy issues. As we show in Section 2.5.1, as the

exogenous dropout risk shrinks, the low type is more likely to choose to drop out in the beginning

of the game, which results in new policy implications in many markets.5 Last, we study the role

of the observed dropout rate in a model with productive education: dropout data are helpful in

distinguishing the human capital accumulation effect and the signaling effect on the return to

education.

Our model is also related to the dynamic adverse selection literature, including Janssen and

Roy (2002), Camargo and Lester (2011), Hörner and Vieille (2009) and Kim (2011), in terms

of the results. In these papers, the average market quality increases over time as in our model.

However, their mechanisms are different from ours. In these models, high-type sellers value their

asset more than low-type sellers and, in equilibrium, they gain less than low-type sellers from

trade. Consequently, they are more willing to wait, and therefore initial offers are used by buyers

to screen low-types out. This contrasts with our model where high-types are willing to wait due

to their low waiting costs, while low-types strategically drop out in order to avoid high education

costs. Our mechanism crucially depends on the exogenous dropout behavior of the high-types

and the endogenous response of the low-types, and allows us to study the dropout dynamics in

education.

The rest of this paper is organized as follows. In the next section we present the model with

a type-independent dropout rate and characterize the set of equilibria. We consider a model

with human capital accumulation in Section 3. In Section 4, we conclude. All omitted proofs

are in Appendix A. In Appendix B, we study an extension in which the worker’s dropout risk is

type-dependent. In Appendix C, we consider a multiple-type extension of the baseline model.

5In the labor market, financial constraints are among the main reasons that students drop out. Hence, it is

reasonable to believe that the availability of student loans should affect the exogenous dropout rate, and therefore

the endogenous dropout choices of students who are not financially constrained. So, it is worthwhile to take such

effects into account in the related policy discussion. In financial markets, our insight implies that the government

bailout of financial institutions facing a liquidity shock has an additional cleansing effect: it reduces the exogenous

liquidity risks faced by all institutions. As a result, most owners of lemon assets hold fire sales as soon as possible

in the equilibrium, and thus the average asset quality in the market increases afterwards.
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Figure 1: Schematic representation of the timing of the model (D.O. denotes dropout).

2 Model

Time is discrete, t = 0, 1, 2, .... There is one worker who has a type θ ∈ {H,L}, which is his

private information with a common prior p0 = Pr(θ = H) ∈ (0, 1). The productivity of a type-θ

worker (henceforth, θ-worker) is Yθ. We normalize YH = 1 and YL = 0. In period 0 the worker

decides whether to go to school or not. In the rest of the periods, if the worker continues going

to school, he pays a type-contingent cost per unit of time, cθ, where 0 < cH < cL and cH < 1.

The worker, regardless of his type, is subject in each period to an exogenous shock that results in

the worker being forced to drop out of school with probability λ ∈ (0, 1). The exogenous dropout

behavior is interpreted as being caused by financial or utility shocks. In addition to this exogenous

dropout, the worker may decide to endogenously drop out and go on the job market voluntarily.

The timing is summarized as follows. First, nature determines the type of the worker, choosing

H with probability p0. If the worker is still in school, in period t: (1) the worker exogenously drops

out with probability λ and, if he does not exogenously drop out, decides whether to endogenously

drop out. (2) If the worker decides not to drop out, he pays the education cost and goes to the next

period. If the worker drops out, he goes on the job market. (3) In the job market, two or more

firms simultaneously make wage offers to the worker who has dropped out. Figure 1 schematically

represents the timing of the model.

As in Daley and Green (2012) we do not explicitly model the job market. Instead, we assume

that when the worker drops out in some period t, he receives the expected (equilibrium) produc-

tivity of a worker that drops out in this period. This can be easily micro-founded by assuming

that the profit of a firm that employs a θ-worker at a wage w is given by Yθ − w, and when the

firm hires no worker, its profit is zero. Hence, if there are two or more firms in the job market,

they Bertrand-compete, so they end up offering wages equal to the expected productivity of the

worker.

The utility of the θ-worker who drops out after t periods of education and accepts a wage of

w is U(w, t) = w − cθt. If the wage conditional on dropping out at some period t is wt, the value
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function of the θ-worker in period t is

V θ
t = λwt + (1− λ)W θ

t ,

where W θ
t ≡ max{wt, V θ

t+1− cθ} is his continuation value in the complementary event. The worker

will decide to endogenously drop out when wt > V θ
t+1 − cθ, stay in school when wt < V θ

t+1 − cθ,
and potentially randomize when wt = V θ

t+1 − cθ.
A dropout (behavior) strategy for the θ-worker is αθ : {0, 1, ...} → [0, 1], the probability that the

type-θ worker chooses to drop out at t conditional on reaching its decision point. It is notationally

more convenient to use sθt ≡ λ + (1 − λ)αθt (the total probability of the θ-worker dropping out

in period t) as the strategy of the worker instead of αθt . So, we will assume that the worker can

decide to drop out in period t with any probability sθt ∈ [λ, 1]. Finally, for each strategy profile,

let T θ ≡ min{t|sθt = 1} ∈ {0} ∪ N ∪∞, which is the maximum number of education periods the

θ-worker may receive under the given strategy profile.

Our equilibrium concept is analogous to that of Daley and Green (2012).6 In our case, we find

it more convenient to define the equilibrium in terms of the posterior about a worker who reached

period t being an H-worker (denoted as pt) instead of the stopping time at which he decides to

exit education:

Definition 1. An equilibrium is a strategy profile (sθ)θ=L,H , a wage process w and a belief

sequence p such that:

1. Worker Optimality. The θ-worker chooses sθ to maximize his expected payoff given w,

2. Zero Profit. If the worker drops out with education t, firms offer him the expected productivity

of a worker that drops out in period t, i.e.

wt =
pts

H
t

ptsHt + (1− pt)sLt
, (1)

and

3. Belief Consistency. When it is well defined, pt is updated following Bayes’ rule

pt+1 =
pt(1− sHt )

pt(1− sHt ) + (1− pt)(1− sLt )
. (2)

6Unlike Daley and Green (2012), we do not impose the “No (Unrealized) Deals” condition because we do not

allow the firms to make preemptive offers. In Section 2.5.2 we consider the preemptive offers case, and we will

analyze the effect of including this condition in our equilibrium concept.
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2.1 Preliminary Analysis

In our model, pooling at no education is always an equilibrium. The reason is that, as usual,

off the path of play, firms may consider that the type of a worker that goes to school is L, so no

type has incentives to receive education. However, since our goal is to study the dynamics of the

worker’s dropout behavior, we mainly focus on equilibria in which wasteful signaling is present.

To construct such equilibria, we start by providing some necessary conditions for such equilibria

to exist. Lemma 1 characterizes the behavior of the worker before the L-worker drops out for sure.

Lemma 1. In any equilibrium where TL > 0, in all periods t < TL,

1. there is positive voluntary dropout by the L-worker, that is, sLt > λ, and

2. there is no voluntary dropout by the H-worker, that is, sHt = λ.

Proof. The proof is in the appendix on page 23.

By Lemma 1, when TL > 0, the L-worker randomizes in any equilibrium in every period before

TL. Hence, the L-worker is always indifferent between dropping out and staying in school except

(possibly) in his last possible period TL. So, for all periods t < TL,

wt+1 − wt = cL . (3)

This fact implies that the wage must increase linearly before TL. Notice that the constant returns

to education are driven by the following assumptions in our model: First, the worker does not

discount the future. Second, the marginal cost of education is constant in time, and last, there

are worker types.7 Without any of these assumptions, the returns to education will be time-

varying. However, in each case, the (discounted) returns to education are still equal to the marginal

education cost of the type of the worker who (1) is still in school with positive probability, and

(2) has the lowest productivity among the types in school.

Lemma 2. In any equilibrium, TH ∈ {TL, TL + 1}.

Proof. The proof is in the appendix on page 23.

Lemma 2 shows how (exogenous) dropout disciplines the beliefs of the firms about early

dropouts. If, for example, in some period the L-worker has already dropped out for sure in a

previous period but not the H-worker, the (exogenous and endogenous) dropout must be an H-

worker. Therefore, there is no reason for him to wait, because staying in school longer is costly

and does not provide any wage increment.

7As we will show in Appendix C, when there are more than two types, the returns to education are concave.
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Remark 1. The result is implied by the presence of a dropout risk so that dropping out in each

period before TH is on the path of play. When λ = 0, Lemma 2 does not necessarily hold. The

reason is that, similarly to Cho and Kreps (1987) in a static case and and Nöldeke and van Damme

(1990) in a dynamic model with public preemptive offers, firms can impose a belief threat off the

path of play to force the H-worker to stay in school after TL + 1. Also, this result depends on the

fact that signaling is unproductive. In Section 3, we study a productive signaling model in which

Lemma 2 is no longer true.

2.2 Equilibrium Analysis

The equilibrium prediction of the game varies depending on the prior p0, so we first focus on

the game in which the worker has high productivity with a probability which is almost one, and

then consider the case where p0 is small. Lemma 3 describes the equilibrium set when the prior

p0 is close to 1.

Lemma 3. Set

p1
0 ≡

1− cH
1− (1− λ)cH

. (4)

Then, if p0 > p1
0, the only equilibrium outcome is pooling at no education.

Proof. The proof is in the appendix on page 24.

The intuition behind Lemma 3 is as follows. Because of the presence of the dropout risk, the

worker may drop out in the first period on the path of play. Firms’ beliefs about the dropout

being a high-type are pinned down by equation (1). When the prior p0 is high, firms’ posterior

is high as well, and therefore, they offer the dropout a high wage. Hence, when the prior is close

to 1, the H-worker would voluntarily drop out to take the high wage offer instead of staying in

school.

Remark 2. The result in Lemma 3 and the economic intuition above both rely on the presence

of the dropout risk. In a model where λ = 0, wasteful signaling can be supported even when the

prior about the type being high (p0) is very close to 1. The reason is that there are equilibria

in which there is no dropping out in the first period on the path of play. Since, off the path of

play, a belief threat can be imposed, early dropouts are punished with low wages so no worker

has the incentive to drop out. In our model, since the dropout risk is λ > 0, on the path of play,

the worker may drop out in any period before TH . Hence, the belief about the dropout being the

high-type is pinned down by the equilibrium requirement, λp0/(λp0 + 1− p0), which is arbitrarily

close to one when p0 is large enough.
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Remark 3. Lemma 3 implies that there is no signaling waste when p0 → 1 in any equilibrium.

Consequently, the equilibrium education length converges to that in the symmetric information

model as p0 goes to 1. The continuity result also depends on the positive dropout risk. When the

dropout risk is zero, as in Cho and Kreps (1987), a Riley-outcome-like equilibrium always exists

for any p0 < 1. In other environments, one can avoid this discontinuity result by (1) imposing a

belief-based refinement (see Mailath, Okuno-Fujiwara and Postlewaite, 1993), (2) assuming that

firms make preemptive offers (Swinkels, 1999 and Daley and Green, 2012), and (3) allowing an

extra informative signal (Daley and Green, 2013b).

Now we consider the model when p0 is smaller than p1
0. First, suppose p0 is slightly smaller

than p1
0. In such a model, the no-education pooling equilibrium trivially exists. However, there is

another (semi-separating) equilibrium in which

1. one-period education is supported on the path of play, and

2. the L-worker randomizes between no education and one-period education.

The intuition is as follows. If the L-worker endogenously drops out in period 0 with some positive

probability but the H-worker does not, the market belief about the worker who did not drop out

in period 0 is strictly greater than p0, and therefore the wage in period 1 is higher than that in

period 0. To ensure that the L-worker is indifferent between dropping out in period 0 and period

1, the wage difference between the two periods must be exactly equal to the L-worker’s marginal

cost of education, which pins down the posterior and the L-worker’s strategy. In fact, there is

another cutoff p2
0 < p1

0 such that, for any p0 ∈ (p2
0, p

1
0], there is an equilibrium where the L-worker

randomizes between receiving no education and receiving one period of education. Since p0 is still

large, p1 becomes greater than p1
0, so in the continuation game, the unique equilibrium involves all

types dropping out immediately. As a result, the maximum equilibrium education is one period.

When p0 is slightly smaller than p2
0, repeating a similar argument, we can construct equilibria

with (1) pooling at no education, (2) one-period education, and (3) two-period education. By

using an induction argument, we can construct a sequence of cutoff values pk0 where k = 1, 2, 3, ...

and pk0 > pk+1
0 such that when p0 ∈ (pk+1

0 , pk0], there exist equilibria with T periods of education

where T ≤ k. The following theorem formalizes the intuition above and characterizes possible

education lengths in the set of all equilibria:

Theorem 1. Let T ∗ ≡ d1−cH
cL
e.8 There exists a unique strictly decreasing sequence {pk0}T

∗

k=1 ∈ (0, 1)

such that for any p0 ∈ (pk+1
0 , pk0]

8dxe = min{n ∈ Z|n ≥ x} denotes the smallest integer no lower than x.
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1. there is a pooling equilibrium at no education;

2. for any 0 < T ≤ k, there is a semi-separating equilibrium lasting T periods, and

3. for any T > k, there is no equilibrium lasting T periods.

Proof. The proof is in the appendix on page 24.

Theorem 1 implies that the maximum duration of equilibrium education is non-increasing in

the prior about the worker being high productivity. As the prior goes to zero, maximum education

duration goes to its finite upper bound T ∗.

In Lemma 3 we discussed the case where p0 is close to 1. Now, consider the case in which p0 is

not close to 1. As we have shown in Lemma 1, the low-type endogenously drops out with positive

probability and the high-type does not voluntarily drop out; thus, sLt > sHt , which means that pt is

pushed up over time. The low-type indifference condition (3) implies that wt is linear before TL.

These two observations imply that pt and wt will be high (close to 1) after finitely many periods.

The smaller the prior p0, the more periods of education can be supported in an equilibrium. This

suggests that the maximum education duration supported by an equilibrium is non-increasing in

p0. In Figure 2, we plot some equilibrium belief sequences pt and dropout rate ratio sequences

sLt /s
H
t .9 In each equilibrium, TL = TH = T is the “graduation period.” The H-worker’s dropout

rate is sHt = λ for all t < T and sHt = 1 at t = T . The L-worker’s dropout rate satisfies sLt ∈ (λ, 1)

for t < T , and at t = T , sLt = 1.

Notice that sLt /s
H
t may be non-monotone. The intuition can be illustrated as follows. Rewrit-

ting equation (1) yields:
sLt
sHt

=
1− wt
wt

pt
1− pt

,

so the worker’s equilibrium dropout probability is pinned down by the equilibrium wage and the

posterior. Over time, both the posterior pt and the market wage wt increase. For a fixed pt, an

increase in wt pushes sLt down, since a lower dropout probability by the L-worker is required to

generate a higher overall dropout productivity (dropout composition effect). An increase of pt for

a fixed wt, instead, pushes sLt up, since a higher dropout probability by the L-worker is required

to keep the productivity of the dropouts the same (market composition effect). When pt is large

compared with wt, the market composition effect dominates, so sLt /s
H
t may not be monotone.

9We plot sLt /s
H
t in order to have a nice-looking graph. Indeed, for example, in all plotted equilibria sHt = λ = 0.1

for t < TH and sHTH = 1, so sHt makes a big jump up at the end. Intuitively, sθt for t < TH looks like a “flow

probability” while sθTH looks like a “lump-sum probability” (See Section 2.4 for the continuous time limit). Note

also that, given pt, only the ratio sLt /s
H
t determines wt.
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Figure 2: (a) pt for different equilibria. (b) sLt /s
H
t for different equilibria. Dots having the same

shape correspond to the same equilibrium, and they are linked with a straight line for visual

clarity. The parameter values are cH = 0.032, cL = 0.097, λ = 0.1 and p0 = 0.1.

The model can predict the worker’s equilibrium dropout dynamics. Since the worker’s type

is his private information, we analyze the dynamics of the unconditional (or observed) dropout

probability, defined as follows

mt ≡ pts
H
t + (1− pt)sLt .

In equilibrium, sHt = λ for t < TL, so mt ≡ ptλ + (1− pt)sLt . The dynamics of mt are driven by

two forces. First, pt increases over time, which pushes the observed dropout rate down. Second,

the L-worker’s dropout strategy varies over time. As we show in Figure 2(b), sLt may not be

monotone over time. When sLt increases, it pushes mt up. Hence, the observed dropout rate may

go up and down over time, depending on the interaction between two forces. Unfortunately, in a

discrete time model, we cannot analytically characterize the dynamics of the worker’ dropout rate.

In Section 2.4, we analytically characterize the observed dropout dynamics at the continuous time

limit of the original model.

2.3 Refinement

Without imposing any refinement, multiple equilibria exist for most p0. The main reason we

do not have equilibrium uniqueness is the arbitrariness of belief after TH off the path of play,

similar to that in Cho and Kreps (1987). Hence, we still have belief threats that push education

duration down.

12



By imposing an appropriate criterion on beliefs off the path of play, for example D1 as defined

by Cho and Kreps (1987), one can shrink the equilibrium set.10 The spirit of these refinements

is that, off the path of play, firms put a positive probability only on the type that is most likely

to deviate. In our model, since the marginal cost of education of the H-worker is strictly smaller

than that of the L-worker, any sequence of wages off the path of play (after TH) that induces

the L-worker to deviate must also induce the H-worker to deviate. As a result, off the path of

play, firms put a positive belief only on the H-worker, i.e., pt = wt = 1 for any t > TH . Given

this belief sequence off the path of play, we will say that an equilibrium is eliminated by D1 if

wT < 1 − cH , since otherwise the H-worker would have incentives to stay in school for one more

period. If an equilibrium is not eliminated by D1, we say that it passes D1. Similarly to Nöldeke

and van Damme (1990), these concepts are not enough to select a unique equilibrium.11 The key

reason for the multiplicity is that, in our model, the education choice is an integer instead of a

real number. Consider the following case as an example.

Example 1. Suppose p0 ∈ (1 − cH , p0
1). It is easy to show that there is an equilibrium in which

sH0 = λ and sL0 = 1. Since, in this equilibrium, p1 = w1 = 1 is on the path of play, it passes D1.

However, there is another equilibrium consisting of pooling at no education, that is, sH0 = sL0 = 1,

so p0 = w0 > 1− cH . Hence, pooling at no education also passes D1.

Nevertheless, as shown below, when the length of the interval is small, the D1 criterion is

essentially unique, in the sense that the outcomes of all equilibria passing D1 become arbitrarily

close to each other.

2.4 Frequent Dropout Decision

In this section we consider the limit where the length of the interval is arbitrarily small. This

limit exercise allows us to have a clean characterization of the uniquely determined asymptotic

behavior for any sequence of equilibria with the same real duration. In particular, it allows us to

easily characterize the relationship between the observed dropout rate and years of education.

10Belief monotonicity is another refinement concept commonly used in the dynamic signaling literature (see

Swinkels, 1999 or Daley and Green, 2012). However, it does not help here. The reason is, given that λ is the same

for all players, the increase in the posterior after a deviation can be arbitrarily small, which prevents the H-worker

from deviating.
11Nöldeke and van Damme (1990) focus on equilibria that satisfy the never a weak best response (NWBR),

requirement provided by Kohlberg and Mertens (1986), and they find that the equilibrium outcome converges to

the Riley outcome when the time interval between two education decision points goes to zero. Nevertheless, in

games of this sort the set of equilibria passing NWBR coincides with the set of equilibria passing D1. See Nöldeke

and van Damme (1990) and Swinkels (1999) for further discussion.
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In our base model, which is parametrized by Γ ≡ (p0, cL, cH , λ), the implicit time length

between two consecutive periods is 1. Hence, to keep the notation simple, in this section we fix a

strictly decreasing sequence {∆n}n that converges to 0. In order to increase the dropout decision

but keep the same real effects per unit of time, we then consider a sequence of models where the

n-th model is parametrized by Γn ≡ (p0,n, cL,n, cH,n, λn) = (p0,∆nc̃L,∆nc̃H ,∆nλ̃), for some fixed

c̃L, c̃H , λ̃ ∈ R++.12

In our notation, τ corresponds to the real time, that is, it plays the same role as t in our baseline

model. Also, κ plays the role of T as the real time-length of education in a given equilibrium.

Finally, noting that ∆nT
∗
n (T ∗ is defined in Theorem 1) is the maximum real-time length of an

equilibrium when the length of the period is ∆n, we define κ∗ ≡ limn→∞∆nT
∗
n . The following

lemma characterizes the maximum real duration of an equilibrium as the decision to drop out

becomes more frequent:

Lemma 4. κ∗ exists, belongs to (0, 1
c̃L

) and is strictly decreasing in p0.

Proof. The proof is in the appendix on page 29.

Lemma 4 stands in sharp contrast to Swinkels (1999), in which the only equilibrium is pooling

at no education when the duration of the period sufficiently short. The contrast between this result

and Swinkels’ illustrates the critical role of timing in the two models. In Swinkels (1999), firms can

make preemptive offers to attract all the workers in school and end the game immediately, so that

no wasteful education is present in equilibrium. In our model, firms cannot directly disturb the

worker’s signaling process by making an in-school offer, and therefore, semi-separating equilibria

can survive.

In the next set of results we are going to use a sequence of equilibria, one in each model with

period length ∆n. We will use pnt and wnt to denote, respectively, the beliefs and wage of the n-th

equilibrium (of the model with period length ∆n) in period t. Since, when ∆n is small, both sHt
and sLt are O(∆n) (in all periods except possibly the last two), mt is also O(∆n) (in all periods

except possibly the last two). To study the dynamics of the worker’s dropout behavior at the

continuous time limit, we define the observed dropout rate as follows. Given a sequence ∆n and

m(t), define the associated observed dropout rate as m̃n
t ≡ mt

∆n
, and s̃L,nt ≡ sLt

∆n
. In the following

theorem, we characterize the continuous time limit of equilibrium belief and the observed dropout

rate.

12This limit corresponds to interpreting c̃θ to be the flow cost for each θ ∈ {L,H}, and interpreting λ̃ as the rate

at which the worker is exogenously forced to drop out. Indeed, note that the cost and the probability per unit of

real time are the same in all models (for the n-th model they are given, respectively, by
cθ,n
∆n

= c̃θ and λn
∆n

= λ̃). We

assume that c̃L > c̃H , c̃H∆1 < 1 and λ̃∆1 < 1, so our parametric assumptions hold for each model in the sequence.

14



Theorem 2. 1. For any κ ∈ [0, κ∗], there exist functions (p, w, m̃) : [0, κ]→ [0, 1]× [0, 1]×R+

such that for any sequence of equilibria with real duration of education converging to κ and

for all τ ∈ (0, κ),

lim
n→∞

pndτ/∆ne = p(τ) , lim
n→∞

wndτ/∆ne = w(τ) and lim
n→∞

m̃n
dτ/∆ne = m̃(τ) .

2. Furthermore, p solves the following equation, with p(0) = p0:

p′(τ) =
λ̃p(τ)(p(τ)− w(τ))

w(τ)
; (5)

w is given by w(τ) = p(κ)− (κ− τ)c̃L and m̃ by m̃(τ) = p(τ)
w(τ)

λ̃.

Proof. The proof is in the appendix on page 30.

As noted before, D1 selects equilibria where pnTn ∈ [1−∆nc̃H , 1] in the n-th model for n ∈ N.

As ∆n goes to zero, the last period equilibrium belief converges to 1. So, it is easy to show that

equilibria passing D1 have a real duration of κ∗ + O(∆n) (see the proof of Lemma 4). Indeed,

otherwise the last period’s beliefs are bounded away from 1 and hence are lower than 1−∆nc̃H . In

the proof of Theorem 1 (see Lemma 10) we explicitly construct for each p0 equilibria in which the

last period’s beliefs belong to [1−∆nc̃H , 1]. So, for each p0 and small ∆n > 0, there are equilibria

passing D1, and their duration is close to κ∗. Notice that the limit of the equilibrium outcome is

not the least costly separation equilibrium due to the presence of dropout risk.

At the limit where the length of the period becomes small, we can easily characterize the

dynamics of the observed dropout rate. As we mentioned before, the dropout rate of the L-worker

needs not be monotone. However, the observed dropout rate is decreasing, which is consistent

with much of the empirical evidence, for example, Hendricks and Leukhina (2013).

Theorem 3. At the continuous time limit of all equilibria, the observed dropout rate decreases

over time.

Proof. The proof is in the appendix on page 31.

Since m̃′(τ) = −p′(τ)(s̃L(τ)− λ̃)+(1−p(τ))s̃′L(τ), as time goes on, there are two effects on the

observed dropout rate. First, there is a skimming effect: the probability of the worker being an L-

worker becomes smaller over time, since the L-worker’s dropout rate is higher than λ̃, the dropout

rate of the H-worker. Hence, this skimming effect, measured by −p′(τ)(s̃L(τ) − λ̃) < 0, pushes

the observed dropout rate down. Second, there is another effect, measured by (1 − p(τ))s̃′L(τ):

the dropout rate sL(τ) for the L-worker who is still in school may go either up or down. When it
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Figure 3: (a) The role of λ in the discrete time model: {pk0} as a function of λ. (b) The role of λ̃

in the continuous time limit: κ∗ = κ∗(p0) as a function of p0, for different values of λ̃.

goes up, it pushes the observed dropout rate up as well. However, we can show that the second

effect is always dominated by the first one, and thus the observed dropout rate is always declines

over time.

2.5 Discussion

2.5.1 The Role of Dropout Risk

The equilibrium characterization crucially depends on the presence of dropout risk. What

happens if the dropout risk is arbitrarily small? What if the worker’s dropout risk is type-

dependent? We address these issues here.

First, we consider the limit case where λ goes to zero in the discrete time model. Figure 3 (a)

plots {pk0}T
∗

k=1 for different values of λ. As we see, when λ → 0, pk0 for all k collapses to 1. This

implies that, when λ is low, for almost all priors (1) the H-worker’s dropout risk is very small, so

he graduates with high probability, (2) the L-worker is unlikely to go to school, so p1 is close to 1,

but w1 remains low due to the low λ, and (3) the maximum length of an equilibrium is T ∗. This

is consistent with the canonical signaling model, where λ = 0. In the other limit, when λ → 1,

pk0 − pk+1
0 = cL for all k > 1. This is a consequence of the fact that when λ is close to 1, so are sL

and sH . Therefore, as we see in (1), wt is close to pt for all t. Since wt increases linearly in any

equilibrium, this imposes a nearly linear evolution on pt and therefore also on pk0 .
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Second, we consider the continuous time limit when the dropout rate is small, that is, when λ̃

is small. From the equation that κ∗ satisfies (equation (9) in the proof of Lemma 4), it is easy to

see that limλ̃→0 κ
∗ = 1

c̃L
for all p0 ∈ (0, 1). Indeed, as we see in Figure 3(b), as λ̃ gets small, κ∗

converges to 1
c̃L

for all p0 ∈ (0, 1). Hence, the length of an equilibrium passing D1 approaches 1
c̃L

when the interval gets short and λ̃ gets small. This limit is consistent with the finding of Nöldeke

and van Damme (1990) that the only equilibrium that passes D1 is the least costly separating

equilibrium, found by Riley (1979), which requires an education length equal to 1
c̃L

.13

Finally, one may wonder whether it is restrictive to assume that the H-worker and the L-

worker face the same exogenous dropout risk. Without a second thought, it seems that the low-

productivity worker should have a higher probability of dropping out than the high-productivity

worker, which seems to conflict with our assumption. However, this naive intuition is based on the

total dropping-out behavior, sLt , which is driven both by the L-worker’s choices (which are related

to his productivity) and by exogenous shocks (which may not be related to his productivity). As we

have shown, on the equilibrium path, sLt ≥ sHt in each period. Yet, it is still useful to determine

whether our equilibrium characterization is robust by relaxing this homogeneous dropout risk

assumption. In Appendix B, we consider perturbations of the baseline model by considering

heterogeneous dropout risk. The equilibrium characterization is robust to such perturbations.

2.5.2 Preemptive Offers

In our model, we assume that firms cannot make preemptive offers. In a dynamic signaling

model in which firms make preemptive offers and students face no exogenous dropout risk, Swinkels

(1999) shows that the only equilibrium is pooling at no education when the time interval of a period

is sufficiently small. A natural question is what happens if firms can make preemptive offers in

the presence of exogenous dropout behavior.

As in Daley and Green (2012) we incorporate the preemptive offers in our model by requiring

the “No (Unrealized) Deals” condition in our equilibrium concept. So, for this section only, con-

sider the equilibrium concept to be the same as in Definition 1 with the following extra condition:

4. No (Unrealized) Deals. For any t and θ ∈ {L,H}, V θ
t ≥ E[Yθ′ |V θ′

t ≤ V θ
t ].

The economic intuition behind the the No (Unrealized) Deals condition is the following. Con-

sider a model where firms make offers to the worker while he is still in college. If the worker is

13The similarity between our findings and that of Nöldeke and van Damme (1990) is rooted in the similar off-

equilibrium beliefs discipline, which provides endogenous commitment to the worker. In Nöldeke and van Damme

(1990) such a beliefs discipline exists because of the observability of the previous offers, while in our work it is a

natural result of the specification of the extensive form of the stage game.
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forced to drop out in a given period t, he accepts one of the offers for sure. If the worker is not

forced to drop out, he can decide to take the offer or stay in college. Imagine that the condition

is violated and, for example, V H
t < E[Yθ′|V θ′

t ≤ V θ
t ] = pt. A firm can then deviate and offer

wt ∈ (V H
t , pt), which will be accepted by the worker with probability one (independently of her

type) and gives positive profits to the firm.

In our model, if preemptive offers are allowed, all non-pooling equilibria are destroyed as in

Swinkels (1999). The idea is that, from the penultimate period to the last period, belief updating

is slow. So firms can post an offer to attract both types of worker and obtain positive profit. In

the following, we show that, when firms can privately and frequently make preemptive offers, all

of the semi-separating equilibria we constructed do not exist.

We illustrate the idea when ∆ is small (following the notation in Section 2.4), because this is

where Swinkels’ (1999) pooling result holds. Assume that an equilibrium with T > 0 periods of

education exists. When ∆ is small, the H-worker’s value V H
T can be approximated by

−c̃H∆ + λ̃∆wT−1 + (1− λ̃∆)V H
T = −c̃H∆ + pT +O(∆2) .

The approximation holds because V H
T = pT and wT−1 = pT +O(∆). By Theorem 2, we know that

pT−1 = pT +O(∆2) (since p′(κ) = 0). Hence, for ∆ > 0 small, V H
T−1 < pT−1, so the No (Unrealized)

Deals condition is violated. Consequently, when firms can privately make preemptive offers, no

semi-separating equilibrium exists.

3 Productive Education

In the baseline model, we assume that education serves as a pure information extraction mech-

anism and does not affect the worker’s productivity. This is clearly a theoretical simplification.

In reality, going to school serves not only as a useful signaling device (signaling some of a worker’s

innate abilities, for example) but also it enhances the worker’s productivity (human capital accu-

mulation). Hence, the observed positive education-wage profile comes from both human capital

accumulation and the signaling motive of dropping out.

In such a situation, the returns to education incorporate both the signaling effect and the

human capital accumulation effect. In this section, we extend the baseline model by assuming

that getting an education can enhance the worker’s productivity. In the productive education

model, both the human capital accumulation effect and the signaling effect contribute to the

returns to education.14

14There is a large body of literature empirically studying how to distinguish human capital accumulation theory

and signaling theory, for example, Tyler, Murnane, and Willett (2000), Bedard (2001), Frazis (2002), etc. Fang
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We assume that a θ-worker with t periods of education has productivity equaling Yθ = aθ +

h (t), where θ = {H,L}, aθ captures the intrinsic productivity, and h(t) captures productivity

accumulated through education. Again, we assume that a worker’s intrinsic productivity is aH

with probability p0 and aL with probability 1 − p0, and we normalize aL = 0 and aH = 1. To

illustrate the main idea, we focus on the simplest specification of the human capital accumulation

function. We assume that there is some finite number T̂ ∈ N such that

h (t) =

{
ht

hT̂

if t < T̂ ,

otherwise,

where h ∈ (cH , cL) is the marginal human capital accumulation coefficient until T̂ .15 Notice that

the production function for human capital is concave. Also, the socially efficient outcome is that

the L-worker gets no education and the H-worker gets T̂ periods of education. When T̂ = 0,

getting an education does not enhance any worker’s productivity at all, which is the case in our

baseline model.

In this section, we focus on the case where T̂ > 0, and we will show that the obtained equilibria

are similar to those in the benchmark model. In this case, the zero-profit condition from our defi-

nition of equilibrium needs to be replaced, because now the productivity of a worker (conditional

on type) is not constant over time. Let p̂t be the posterior about the type of a worker that drops

out in period t being H, which is equal to the RHS of equation (1). Then, the condition that is

analogous to the zero profits condition is

wt = p̂t (1 + ht) + (1− p̂t)ht = p̂t + ht,

so the return to education is given by

wt+1 − wt = p̂t+1 − p̂t︸ ︷︷ ︸
(signaling)

+ h︸︷︷︸
(human capital)

where p̂t+1 − p̂t is the contribution of the signaling effect and h is the contribution of the human

capital accumulation effect.

Here Lemma 1 still holds; that is, in any equilibrium the L-worker randomizes between dropping

out and continuing in school in the first several periods. Hence, we must have wt+1 − wt = cL,

which implies that

p̂t+1 − p̂t = cL − h > 0.

(2006) estimates a static education choice model with both human capital accumulation and a signaling mechanism

and claims that the signaling effect is at most about one third of the actual college wage premium.
15More generally, most of our results would also apply if the return varied over time with ht ∈ (cH , cL) for t < T̂

and ht < cH for t ≥ T̂ . The equilibrium analysis is similar.
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We now focus on equilibria passing D1. First, we consider the case where T̂ is large.

Theorem 4. There exists TL ∈ N such that, when T̂ > TL, there is a unique equilibrium passing

D1. In the equilibrium,

1. the L-worker drops out in each period with probability sLt where sLt ∈ (λ, 1) for t < TL and

sLTL = 1, and

2. the H-worker does not voluntarily drop out before T̂ and drops out for sure in period T̂ .

Proof. The proof is in the appendix on page 32.

In contrast to the baseline model, when T̂ is large enough, there is a unique equilibrium passing

D1. The intuition for this result is as follows. Since education until T̂ is efficient for the H-worker,

he prefers to stay in school until T̂ . The L-worker, instead, keeps dropping out until some TL.

The dropout rate needs to be high enough to imply increases in p̂t equal to cL − h. Therefore,

TH > TL. This uniquely pins down the dropout rate of the L-worker, so a unique equilibrium

exists. In our baseline model, instead, we have different possible behaviors in the last two periods,

so in general equilibria passing D1 with TL = TH or TL = TH − 1 may exist.16

Theorem 4 implies that when T̂ is sufficiently large, there are two phases in the unique equi-

librium passing D1. In the first phase, the return to education is cL, and both the signaling effect

and the human capital accumulation effect contribute to it. The observed dropout rate m(t) varies

over time. In the second phase, the return to education is h, which purely comes from the human

capital accumulation effect. The observed dropout rate is constant.

Remark 4. The specification allows us to distinguish the effect of human capital accumulation

and dynamic signaling on return to education. First, from period TL to T̂ , only the H-worker

is in school, so the return to education is h and the observed dropout rate is λ. From period

0 to TL, the return to education is cL, which is different from h. As a result, one can directly

estimate T̂ , h, cL and λ from the data on wages and the dropout rate. Second, after recovering the

parameters cL and h one can also calculate the contribution of the signaling effect on the return

to education, which is (cL − h) /cL for t < TL and zero for t ≥ TL.17

16Under this specification of human capital accumulation, the weaker refinement of belief monotonicity is enough

to select the unique equilibrium in our productive-signaling model as well.
17The simple identification strategy works because of the particular specification of the human capital accumu-

lation technology: (1) there are two parameters in the h(t) functions, and (2) human capital accumulation does

not depend on the worker’s demographic characteristics. In general, one can allow more complicated technology by

considering the general function forms of h(t) and other realistic factors, for example, worker’ race, IQ test score,

etc. However, fully exploring this issue and structurally estimating the model are beyond the scope of this paper.
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Similarly to the baseline model, we can examine the continuous time limit of the model and

obtain a clean characterization of the equilibrium education returns and the dropout rate dynamics.

We proceed similarly to Section 2.4 by fixing a sequence (∆n)n strictly decreasing to 0. Now, the

set of parameters of the model is Γ ≡ (p0, cL, cH , λ, h, T̂ ), so for each n we consider a model with

set of parameters Γn ≡ (p0,∆nc̃L,∆nc̃H ,∆nλ̃,∆nh̃,∆nκ̂).

Corollary 1. There exist some κL < κ̂ and functions (p, w, m̃) such that for any sequence of

equilibria passing D1 and τ ∈ (0, κ̂) we have

lim
n→∞

pndτ/∆ne = p(τ), lim
n→∞

wndτ/∆ne = w(τ), lim
n→∞

m̃n
dτ/∆ne = m̃(τ)

and

1. when τ < κL, w′(τ) = c̃L and m̃′(τ) < 0, and

2. when τ ∈ (κL, κ̂), w′(τ) = h̃ and m(τ) = λ̃.

The proof is similar to that of the baseline model, so it is omitted here. Notice that the return

to education is c̃L before κ̂ and becomes h̃ after κ̂, and the observed dropout rate initially declines

over time and then becomes constant after κ̂.

When T̂ is small, there exist equilibria in which the game ends later than T̂ . In such equilibria,

staying in school more than T̂ periods is socially inefficient and the worker does so purely for

signaling reasons, so only the signaling effect contributes to the return to education. In this

case, similar to the baseline model, there are multiple equilibria passing D1. However, the return

to education is cL for every period, which is observably different from the case in which T̂ is

large. Since the equilibrium construction and characterization are similar, we only provide the

characterization at the continuous time limit.

Corollary 2. Assume κ̂ < κL (defined in Corollary 1). Then, for any sequence of equilibria

passing D1 there exist functions p, w, m̃ such that for all τ ∈ (0, κL) we have

lim
n→∞

pndτ/∆ne = p(τ), lim
n→∞

wndτ/∆ne = w(τ), lim
n→∞

m̃n
dτ/∆ne = m̃(τ)

and

1. for all τ < κL, w′(τ) = c̃L and m̃′(τ) < 0, and

2. at τ = κ̂, p and m̃ are continuous but non-differentiable.
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The results in this section highlight the role of the observed dropout rate when estimating the

social returns to education. Only when no type is willing to voluntarily drop out (so dropping out

has no signaling value) will wages be determined by the increase in productivity due to education.

In this case, for example when t ∈ {TL, TL+1, ...T̂}, the observed dropout rate does not vary over

time, and the individual return to education is equal to the social return to education. If, instead,

(some) types voluntarily drop out, wages are determined by the education costs of this type. In

this case, the observed dropout rate varies over time, and the individual return to education is

greater than the social return to education.

4 Concluding Remarks

Our model constitutes a new step towards understanding of dropout behavior and its economic

implications. We find that the existence of exogenous dropout induces endogenous dropout by

the low-productivity workers. This helps us to rationalize the high observed dropout rates and

its variation over the time workers spends in school. The active dropout behavior disciplines the

market’s beliefs about dropouts. This implies that the maximum length of education is decreasing

in the prior about the worker being highly productive. In addition, the expected productivity of

workers that go on the job market is increasing in the time the worker spends in school, and the

marginal returns to education equals the low productivity worker’s marginal cost of education.

By incorporating productive education to our model, we highlight the potential role of data on

the dropout rate in decomposing the returns to education into the signaling effect and the human

capital accumulation effect.
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A Appendix: Omitted Proofs

A.1 The Proof of Lemma 1

Let’s first prove a preliminary result:

Lemma 5. (The L-worker does not beat the market) For all equilibria and t, V L
t ≤ pt.

Proof of Lemma 5. Fix an equilibrium. Let τ be the time at which the game ends. Then,

ptV
H
t + (1− pt)V L

t ≤ Et[wτ |τ ≥ t].

Note that, due to the education costs (i.e. signaling waste), there is a (weak) inequality, and it is

strict if t < TL. Also,

Et[wτ |τ ≥ t] =
∞∑
τ=t

Pr(τ, t)wτ =
∞∑
τ=t

Pr(τ, t)pt
PrH(τ, t)

Pr(τ, t)
= pt

∞∑
τ=t

PrH(τ, t) = pt .

where Pr(τ, t) denotes the conditional probability in period t that the game ends in period τ , and

PrH(τ, t) = sHτ
τ−1∏
t′=t

(1− sHt′ ) is further conditioning on the dropout being type H. The last equality

holds because the high type has strictly positive dropout rate and therefore he drops out in finite

time with probability one. Since V H
t ≥ V L

t (the H-worker can mimic the L-worker at a cheaper

price) the result holds.

Suppose there is no endogenous dropout by the L-worker in period t, then pt+1 ≤ pt ≤ wt.

But, wt ≤ WL
t = V L

t+1 − cL due to the fact that the L-worker does not voluntarily drop out. By

Lemma 5, V L
t+1 ≤ pt+1 ≤ wt; thus wt ≤ wt− cL, which is a clear contradiction. So part (1) is true.

Therefore part (2) is also true, since WH
t ≥ V H

t+1 − cH ≥ wt+1 − cH by definition of WH
t and V H

t ,

and wt+1 − cH = wt + cL − cH > wt by the indifference condition of the L-worker. Q.E.D.

A.2 The Proof of Lemma 2

Assume first TH > TL + 1. In this case, pTL+1 = 1. Using equation (1) we know wTL+1 = 1.

Since the payoff of the worker is bounded by 1, and waiting until next period is costly, the worker

is better off dropping out at TL + 1. This is a contradiction.

Lemma 1 implies that SHTL > 0, and therefore TH ≥ TL. Q.E.D.
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A.3 The Proof of Lemma 3

The wage in period t = 1 is bounded above by 1. This implies that for the H-worker to be

(weakly) willing to get one period of education, it must be the case that w0 ≤ 1−cH . This implies

that

1− cH ≥ w0 =
p0s

H
0

p0sH0 + (1− p0)sL0
≥ p0λ

p0λ+ 1− p0

.

Solving for p0 under the equality, we get that the threshold for the existence of an equilibrium

with non zero education satisfies equation (4). Q.E.D.

A.4 The Proof of Theorem 1

The proof of Theorem 1 is divided into several steps. To make the proof clear to the reader,

we note that we will be following this road map:

1. We begin defining and proving some properties of the “pull-back functions,” which will be

used to construct equilibria in the rest of the proof (lemmas 6 and 7).

2. In subsection A.4.1 we define some putative values for pk0, denoted p̃k0, and we prove by

induction that, if p0 ∈ (p̃k+1
0 , p̃k0], then there is no equilibrium with more than k periods of

education.

3. Then, in subsection A.4.2 we show that, if p0 ∈ (p̃k+1
0 , p̃k0], there exists an equilibrium where

the L-worker is indifferent on dropping out for all periods except (maybe) the last for all

T ∈ {0, ..., k − 1}.
4. Finally, in subsection A.4.3 we show that, if p0 ∈ (p̃k+1

0 , p̃k0], there exists an equilibrium with

length k. Therefore, pk0 = p̃k0.

We begin this proof by stating and proving two results that will simplify the rest of the proof

and the proofs of other results in our paper. The first one states two properties of the “pull-back

functions” Sτ (·, ·) and Mτ (·):

Lemma 6. For any τ ∈ N, let Sτ : [0, 1]2 → [0, 1] and Mτ : [0, 1]→ R be the functions defined by

Sτ (p, w) ≡ Sτ−1(p, w)Mτ (w)

Mτ (w)(1− λ) + Sτ−1(p, w)λ
, (6)

Mτ (w) ≡ w − τcL , (7)

with S0(p, w) ≡ p and M0(w) = w. Then, if w > τcL, Sτ (p, w) is continuous and strictly

increasing in both arguments.
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Proof of Lemma 6. It is obvious when τ = 1, and it holds when τ > 1 by induction argument.

The meaning of the pull-back functions is the following. Fix an equilibrium and some t > 0

where the L-worker is still present. Then, using equation (1), (2) and the indifference condition

wt = wt−1 + cL, we can obtain pt−1 and wt−1 from pt and pt−1. These take the form, respectively,

of Sτ (pt, wt) and Mτ (wt). If we apply this iteratively, we can find pt−τ = Sτ (pt, wt) and wt−τ =

Mτ (wt) for any τ ∈ {1, ..., t}. So, since by Lemma 1 the L-worker is indifferent between dropping

out or not in all periods except the last period, the pull-back functions give us the values of the

belief sequences p and w for all periods prior to a given period. The following lemma formalizes

this intuition:

Lemma 7. For any equilibrium with T > 1 periods of education and any T > τ ≥ τ ′ ≥ 0 we have

pτ ′ = Sτ−τ ′(pτ , wτ ) and wτ ′ =Mτ−τ ′(wτ ) .

Proof of Lemma 7. Note that, by Lemma 1, in all periods t < T − 1, the L-worker is indifferent

between dropping out or not and sHt = λ. This implies that if t < T − 1, wt−1 = wt − cL. We can

use equations (1) and (2), with sHt = λ, to express the posterior at time t in terms of the posterior

of worker in education and in the market at time t+ 1:

pt =
pt+1wt

wt(1− λ) + pt+1λ
=

pt+1(wt+1 − cL)

(wt+1 − cL)(1− λ) + pt+1λ
= S1(pt+1, wt+1) .

Using this formula recursively and the fact that Sτ (p, w) = Sτ−1(S1(p, w),M1(w)) we obtain the

desired result.

A.4.1 Constructing the Upper Bound on the Length

Define the sequence p̃k0 ≡ Sk−1(p1
0, 1− cH), where p1

0 is defined in (4). Our goal is to show that

p̃k0 has the same properties as pk0 (stated in the statement of the theorem), so pk0 = p̃k0. We are

going to prove first, by induction, that if p0 ∈ (p̃k+1
0 , p̃k0], then there is no equilibrium with more

than k periods of education:

Step 1 (proof for k = 0 periods of education): By Lemma 3 there is no equilibrium with

education for p0 > p1
0. Also, in the same proof, it is shown that for all equilibria in this region,

w0 = p0 ≥ p1
0 > 1− cH =M0(1− cH).

Step 2 (proof for k = 1 period of education): Assume that p0 is such that there is an

equilibrium with 1 period of education. Then, w0 ≤ w1
0 = 1− cH (at least the H-worker has to be

willing to wait). Using Bayes’ update (equations (1) and (2)) we can express w0 ≡ w0(p0, s
L
0 , s

H
0 )
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and p1 = p1(p0, s
L
0 , s

H
0 ). Therefore, using these equations, we can write p0 in terms of w0, p1 and

sH0 in the following way:

p0 = p−1(p1, w0, s
H
0 ) ≡ p1w0

w0(1− sH0 ) + p1sH0
.

The RHS of the previous expression is maximized when sH0 = λ. Therefore, if an equilibrium ends

with a length of two periods, the initial prior is at most p1
0 ≡ 1−cH

1−cH(1−λ)
.

Step 3 (induction argument for k > 1): Here assume the induction hypothesis: assume

that k is such that if p0 ∈ (p̃k0, p̃
k−1
0 ] there is no equilibrium with more than k − 1 periods of

education and, if an equilibrium has k− 1 periods of education, then w0 ≤ wk−1
0 ≡Mk−2(1− cH).

Assume that p0 is such that there exists some equilibrium with k periods of education. Denote

the beliefs sequences for this equilibrium p and w. Note that, by the induction hypothesis, p1 ≤
pk−1

0 and w1 ≤ wk−1
0 , since the continuation play after 1 is itself an equilibrium with initial prior

p1. Since k > 2, by Lemma 1, the H-worker is strictly willing to wait in period 0, so sH0 = λ,

and the L-worker randomizes in period 0. Then, w0 = w1 − cL ≤ wk−1
0 − cL = wk0 . Therefore, by

Lemma 7, p0 = S1(p1, w1), and that this is increasing in both arguments. So, the maximum value

it can take is p̃k0 ≡ S1(p̃k−1
0 , wk−1

0 ).

Step 4 (T ∗ is the limit): Note that T ∗ is such that

wT
∗+1

0 ≤ 0 < wT
∗

0 .

Then, since wT
∗+1

0 ≤ 0, there is no equilibrium longer than T ∗ periods of education.

A graphical intuition of the proof can be found in Figure 4. It graphically represents both p̃T0
and wT0 used in the proof.

A.4.2 Constructing L-equilibria

We prove a result similar to Theorem 1 about the set of equilibria where the L-worker is

indifferent in all periods. For each p0 ∈ (0, 1), we use T̃L(p0) to denote the maximum number

of education periods of an equilibrium where the L-worker is indifferent to dropping out in all

periods except (maybe) the last. We name these equilibria L-equilibria. The following lemma

shows that, for any p0 ∈ (0, 1), there is a finite integer k such that, for each T = 0, 1, ..., k there is

an L-equilibrium that lasts for T periods of education, and no L-equilibrium with a length more

than k.

Lemma 8. Define T ∗∗ ≡ d1−cL
cL
e, pL,k0 ≡ Sk(1, 1) for k = 0, ..., T ∗∗ and pL,T

∗∗+1
0 ≡ 0. If p0 ∈

(pL,k+1
0 , pL,k0 ] for some k = 0, ..., T ∗∗, then T̃L(p0) = k. Furthermore, for each T ≤ T̃L(p0), there

is a unique L-equilibrium with T periods of education.
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Francesc Dilme (University of Pennsylvania) Indifference in Reputations August 20, 2013 2 / 2Figure 4: Maximum length of equilibria as a function of the prior p0. As we see, this function is

left continuous and decreasing.

Proof of Lemma 8. Fix some p0 ∈ (0, 1). If p0 > Sk(1, 1) for some k ≤ T ∗∗ there is no L-

equilibrium with k periods of education. Indeed, if there was one (ending at pk = wk), then

p0 = Sk(pk, pk). But since Sk(pk, pk) is strictly increasing in pk and p0 > ST (1, 1), then p0 > Sk(p, p)
for all p ∈ [0, 1]. This is clearly a contradiciton. Note also that, in an L-equilibrium with T periods

of education, wT − w0 = TcL ≤ 1. Since (T ∗∗ + 1)cL > 1, we have T̃ (p0) < T ∗∗ + 1,.

Fix k < T ∗∗, p0 ∈ (pL,k+1
0 , pL,k0 ] and T ≤ k. Note that ST (p, p) is continuous and strictly

increasing when p > TcL for any T ≤ T ∗∗ and limp↘TcL ST (p, p) = 0.18 So, since p0 ≤ Sk(1, 1) ≤
ST (1, 1), there exists a unique pT ∈ (TcL, 1) such that p0 = ST (pT , pT ). Furthermore, there is an

equilibrium with length T with pt = ST−t(pT , pT ) and wt =MT−t(pT ). The argument for k = T ∗∗

is analogous.

Lemma 9. For any k ≤ T ∗∗, we have pL,k0 ∈ (p̃k+1
0 , p̃k0).

Proof of Lemma 9. Note first that

p10︷ ︸︸ ︷
1− cH

1− (1− λ)cH
>

p1,L0︷ ︸︸ ︷
1− cL

1− (1− λ)cL
= S1(1, 1) > S1(p1

0, 1− cH)

By definition, for k > 1, pk0 = Sk−1(p1
0, 1− cH) = S1(pk−1

0 ,Mk−2(1− cH)) and pk,L0 = Sk−1(p1,L
0 , 1−

cL) = S1(pk−1
0 ,Mk−2(1 − cL)). Also, note that Mk(1 − cH) > Mk(1 − cL) > Mk+1(1 − cH).

Therefore, since S1(·, ·) is strictly increasing in both arguments, we have pL,k0 ∈ (p̃k+1
0 , p̃k0).

18Note that, if T ≤ T ∗∗ then TcL < 1, and, by definition,MT (TcL) = 0. Using the definition of Sτ (·, ·), we have

that ST (cLT, cLT ) = 0.
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A.4.3 Constructing H-equilibria

Lemma 8 implies that for any p0 ∈ (0, 1), an L-equilibrium lasting for at most k periods can

be constructed, where k satisfies that p0 ∈ (pL,k+1
0 , pL,k0 ]. However, Lemma 9 shows that pL,k0 < p̃k0.

For p0 ∈ (pL,k0 , p̃k0], there is no L-equilibrium lasting for k periods. The question now is whether

there is any other equilibrium that lasts for k periods in this last region. Lemma 10 shows that

the answer to this question is yes.

An equilibrium that lasts for T > 0 periods of education is an H-equilibrium if and only if,

in equilibrium, the L-worker strictly prefers dropping out in period T − 1. In other words, in an

H-equilibrium pT = 1. Note that each equilibrium is either an L-equilibrium or an H-equilibrium,

and never both.

Lemma 10. If p0 ∈ (pL,k0 , p̃k0], there exists an H-equilibrium of length k, for k ∈ {1, ..., T ∗∗}. If

p0 ∈ (p̃k+1
0 , pL,k0 ], there exists an L-equilibrium of length k, for k ∈ {1, ..., T ∗ − 1}.

Proof of Lemma 10. For p0 ∈ (p̃k+1
0 , pL,k0 ] the proof of the previous lemma tells us that there

exists an L-equilibrium of length k. To prove the case p0 ∈ (pL,k0 , p̃k0], we define the function

g : (p1,L
0 , p1

0]→ (1− cL, 1− cH ], which is given by

g(p) ≡ λp

λp+ 1− p .

Then for all p0 ∈ (pL,k0 , pk0] there exists a unique f(p0) ∈ (p1,L
0 , p1

0] such that p0 ≡ Sk−1(f(p0), g(f(p0))).

Indeed, we have that limp↘p1,L0
g(p) = 1− cL and g(p1

0) = 1− cH . So, we have

lim
p↘pL,10

Sk−1(p, g(p)) = pL,k1 and Sk−1(p1
0, g(p1

0)) = p̃k0 .

Since w(·) is continuous and strictly increasing, Sk−1(·, ·) is continuous in both arguments and

strictly increasing, then there exists such f(p0), and is unique.

Let’s construct one equilibrium with k education periods when p0 ∈ (pL,k0 , p̃k0], for k ≤ T ∗ − 1.

Our claim is that it can be defined by pk = wk = 1, pt = St−1(f(p0), g(f(p0))) and wt = g(f(p0))−
cL(k − t− 1), for t ∈ {0, ..., k − 1}. To prove that, we show that the corresponding strategies are

well defined. Note that, if the L-worker is indifferent in period 0, we have

sLt =
1

1 + (1−λ)(1−pt)wt
λpt(1−wt)

=
λ

1− (1−λ)(pt−wt)
pt(1−wt)

.

The first equality shows that sLt < 1. The second equality shows that, if p1
t > wt, then sLt > λ,

which is equivalent to p2
0 < p1

0, which is true as long as wt > 0. Since, when k < T ∗, w0 =

g(f(p0))− cL(k − 1) > 0, the result holds in this case.
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Figure 5: Partition construction

Finally, there are two possible cases. If T ∗∗ = T ∗, we know from the previous lemma that

there exists an L-equilibrium with length T ∗∗ in (0, pL,T
∗

0 ). If T ∗∗ = T ∗ − 1 then there exists

some p ∈ (p1,L
0 , p1

0] such that g(p) = T ∗∗cL. Indeed, in this case 1 ≤ T ∗cL < 1 − cH + cL, so

T ∗∗cL ∈ (1 − cH , 1 − cL]. Therefore, we can use the same argument as for p0 ∈ (pL,k0 , p̃k0], for

k ≤ T ∗ − 1. The idea of the partition construction can be summarized in Figure 5.

Finally, note that the set {p̃k0}T
∗+1

k=0 is such that p̃k0 > p̃k+1
0 for all k. Furthermore, for all

0 ≤ k ≤ T ∗ and 0 ≤ T ≤ k, if p0 ∈ (p̃k+1
0 , p̃k0], there exists an equilibrium with T periods of

education and no equilibrium with a length larger than k. So, pk0 ≡ p̃k0, for k = 0, ..., T ∗ + 1,

satisfies the statement of Theorem 1, and therefore its proof is complete. Q.E.D.

A.5 The Proof of Lemma 4

We will do the proof by first fixing the maximum real time and solving for the corresponding

p0, and then showing that for all p0 there exists a unique limit for the maximum real time. Fix

κ̄∗ ∈ (0, 1
c̃L

). In order to save notation, consider a strictly decreasing sequence ∆n such that
κ̄∗

∆n
∈ N for all n ∈ N. Using Bayes’ rule, we have the following equation relating p

κ̄∗/∆n,L
0 and

p
κ̄∗/∆n−1,L
0 (defined in Lemma 8):19

1

p
κ̄∗/∆n,L
0

=
λ̃∆n

1− c̃Lκ̄∗
+

1− λ̃∆n

p
κ̄∗/∆n−1,L
0

=

κ̄∗/∆n∑
m=0

λ̃∆n(1− λ̃∆n)m

1− c̃L(κ̄∗ −m∆n)
+ (1− λ̃∆n)κ̄

∗/∆n . (8)

When ∆n is small, each term of the sum can be approximated as follows

λ̃∆n(1− λ̃∆n)m

1− c̃L(κ̄∗ −m∆n)
=

λ̃e−λ̃s

1− c̃L(κ̄∗ − s)∆n +O(∆2
n)

where s ≡ m∆n. The last term of the RHS of equation (8) satisfies limn→∞(1−λ̃∆n)κ̄
∗/∆n = e−λ̃κ̄

∗
.

Since each term in the sum is a bounded function (note that s ranges from 0 to κ̄∗) multiplied by

19We use pκ̄
∗,L

0 defined in Lemma 8 instead of pκ̄
∗

0 for simplicity. Lemma 9 and the fact that p
κ̄∗/∆n

0 − pt/∆n−1
0 =

O(∆n) guarantee that p
κ̄∗/∆n,L
0 and p

κ̄∗/∆n

0 will be asymptotically equal.
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∆n, at the limit ∆n ↘ 0 the sum converges to the integral, so we have

1

p̃0(κ̄∗)
≡ lim

n→∞

1

p
κ̄∗/∆n,L
0

= e−λ̃κ̄
∗

+

∫ κ̄∗

0

e−λ̃sλ̃

1− c̃L(κ̄∗ − s)ds .

Note that the RHS of the previous expression is equal to 1 when κ̄∗ = 0. Differentiating it with

respect to κ̄∗ we find, when κ̄∗ > 0,

d

dκ̄∗
1

p̃0(κ̄∗)
= −e−λ̃κ̄∗λ̃+ e−λ̃κ̄

∗
λ̃+

∫ κ̄∗

0

e−λ̃sλ̃

(1− c̃L(κ̄∗ − s))2
ds > 0 .

Therefore, pκ̄
∗

0 ∈ (0, 1) when κ̄∗ ∈ (0, 1
c̃L

).

Note that, for each p0 ∈ (0, 1), there exists a unique κ̄∗ such that p̃0(κ̄∗) = p0. Indeed,

limκ̄∗→0 p̃0(κ̄∗) = 1, limκ̄∗→1/c̃L p̃0(κ̄∗) = 0 and p̃0(·) is strictly increasing in (0, 1
c̃L

). Therefore, for

each p0 there exists a unique κ∗ ≡ p̃−1
0 (p0) that satisfies the conditions of the lemma. It is given

by the solution of

1

p0

= e−λ̃κ
∗

+

∫ κ∗

0

e−λ̃sλ̃

1− c̃L(κ∗ − s)ds . (9)

Note that since for each set of parameters equilibria passing D1 are those with most periods of

education, their real length is κ∗ +O(∆n). Q.E.D.

A.6 The Proof of Theorem 2

Let’s first prove that pTn converges to some p(κ) ∈ [p0, 1]. Proceeding similarly as in the proof

of Lemma 4, we use Bayes’ rule to write:20

1

pTn−1

=
(1− λ̃∆n)−1

pTn−2

− λ̃∆n(1− λ̃∆n)−1

wTn−2

=
(1− λ̃∆n)−(Tn−1)

p0

−
Tn−1∑
m=1

λ̃(1− λ∆n)−m

wTn−2 − (m− 1)∆c̃L
∆n .

Rearranging terms we have

1

p0

=
e−λ̃κ

pnTn
+

∫ κ

0

eλ̃(s−κ)λ̃

pnTn − c̃L(κ− s)ds+O(∆n) , (10)

where we used that wnTn−2 = pnTn−1 +O(∆n). Note that the RHS of (10) is decreasing in pnTn . Also,

it is increasing in τ , since w0 < p0 and its derivative with respect to τ equals to

− λ̃
p0

+
λ̃

w0

+O(∆n) > 0 .

20This can be easily obtained by writing pTn−1 and wTn−2 in terms of pTn−2, and then using the fact that for all

t ≤ Tn−2 we have sHt = λ̃∆n.
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So, the RHS of (10) is asymptotically lower than 1
p0

when κ < κ∗ and pnTn = 1, since the equality

holds for κ = κ∗. Also, if κ > 0 and pnTn = p0 the RHS of (10) is larger than p0. Indeed, it would

be equal to p0 if κ = 0 and as we know the RHS of (10) is increasing in κ. Therefore, there exists

a unique limit of pnTn , and is strictly lower than 1 when κ < κ∗.

Note that the convergence of wt is an immediate consequence of the fact that pTn is convergent.

Indeed, we have that limn→∞wTn = limn→∞ pTn = p(κ). By Lemma 1, we have wndτ/∆ne =

pnTn − (κ− τ)c̃L +O(∆n) or, in real time, w(τ) = p(κ)− (κ− τ)c̃L.

To prove the convergence of p is given by just reproducing the same argument that we used in

the beginning of this proof to prove the convergence of pnTn . In this case, replacing Tn by dτ/∆ne,
equation (10) is transformed into

1

p0

=
e−λ̃τ

pndτ/∆ne
+

∫ τ

0

eλ̃(s−τ)λ̃

pnTn − c̃L(κ− s)ds+O(∆n) .

Therefore, we can solve for pndτ/∆ne in the previous expression in order to have the limit of the

sequence pndτ/∆ne. Finally, differentiating the previous expression with respect to τ gives us the

desired expression (5).

Finally, using Bayes’ rule, it is easy to verify that mt = ptλ
wt

when t < Tn. Therefore, trivially,

m̃(τ) = p(τ)λ̃
w(τ)

for all τ ∈ (0, κ∗). Q.E.D.

A.7 The Proof of Theorem 3

From Theorem 2 we can differentiate m̃(τ) and we get

m̃′(τ) = λ̃
p′(τ)w(τ)− p(τ)w′(τ)

w(τ)2
= −λ̃p(τ)

(
c̃L − (p(τ)− w(τ))λ̃

)
w(τ)2

.

Note that m̃′(τ) is positive only if p(τ)− w(τ) ≥ c̃L
λ̃

. If we differentiate p(τ)− w(τ) we have

d

dτ

(
p(τ)− w(τ)

)
=
p(τ)(p(τ)− w(τ))λ̃

w(τ)
− c̃L .

Since p(τ)−w(τ) is continuous and p(κ∗)−w(κ∗) = 0, if p(τ)−w(τ) ≥ c̃L
λ̃

for some τ ∈ (0, κ∗) it

must be the case that p(τ ∗)− w(τ ∗) = c̃L
λ̃

for some τ ∗ ∈ (0, κ∗). This implies that

d

dτ

(
p(τ)− w(τ)

)∣∣∣∣
τ=τ∗

=
c̃2
L

λ̃w(τ ∗)
> 0 .

This clearly implies that such τ ∗ does not exist. Therefore, m̃′(τ) < 0 for all τ ∈ (0, κ∗). Q.E.D.
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A.8 The Proof of Theorem 4

First note that, in any equilibrium passing D1, the length of education (i.e. max{TL, TH})
must be no lower than T̂ . Otherwise, if a worker deviates and drops out at max{TL, TH}+ 1, for

some ε > 0 small, he should be considered an H-worker, and so should receive a wage offer of 1 +

(max{TL, TH}+1)h. Nevertheless, the wage at max{TL, TH} is no larger than 1+max{TL, TH}h,

so the deviation is profitable for the H-worker.

Let’s assume TL < T̂ .21 In any equilibrium passing D1, the H-worker do not voluntarily drop

out in period t where TL ≤ t < T̂ . The reason is that when t > TL, pt = 1, so for the H-worker,

the marginal return to education is h which is greater than the marginal cost cH . In the period

TL, we have that sLTL = 1, which implies

p̂TL =
pTLλ

pTLλ+ 1− pTL
⇒ pTL =

p̂TL

p̂TL(1− λ) + λ
≡ f(p̂TL) .

Note that limp̂
TL
→1 f(p̂TL) = 1. Furthermore, note that p̂TL needs to be such that the L-worker

wants to drop out, so

p̂TL + hTL ≥ 1 + h(TL + 1)− cL ⇒ p̂TL ≥ 1 + h− cL .

So, using a technique similar to the one used in Theorem 1, for each p̂ ∈ [1 + h − cL, 1) we

can construct a sequence of p and p̂ using the pull-back functions defined in Lemma 6, now with

cL−h instead of cL in equation (7). Indeed, proceeding similarly, it is easy to show that for every

p̂ ∈ [1 + h − cL, 1) the sequence (pp̂τ ≡ Sτ (f(p̂), p̂ − cL + h))τ is such that for any pp̂τ 6= pp̂
′

τ ′ for

all p̂ 6= p̂′ ∈ [1 + h − cL, 1) and τ, τ ′ ∈ N. Also, given that S1(1, 1 − cL + h) = f(1 − cL + h), it

is easy to show (proceeding similarly to Lemma 10) that for all p0 ∈ (0, 1) there exists a unique

p̂ ∈ [1 + h− cL, 1) and τ ≥ 0 such that p0 = Sτ (f(p̂), p̂− cL + h). Q.E.D.

21This is true, for example, if 1 + T̂ h < T̂ cL, that is, if L-worker prefer to drop out at 0 than wait until T̂ .
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B Appendix: Type-Dependent Dropout Risk

Here we consider a model in which a worker’s dropout rate is correlated with his productivity.

It turns out that our predictions in Section 2 are robust. There are three relevant cases: (1)

λH > λL ≥ 0, (2) λL > λH > 0, and (3) λL ≥ λH = 0.

B.1 λH > λL ≥ 0 Case

The first case we consider is λH > λL ≥ 0; that is, the H-worker exogenously drops out at a

higher rate than the L-worker. The following lemma implies that the equilibrium set in this case

coincides with the base model when λ = λH :

Lemma 11. Assume that λH > λL ≥ 0. Then, (sL, sH , w, p) is an equilibrium if and only if it is

also an equilibrium in the benchmark model with λ = λH .

Proof. We first prove that Lemma 1 (which holds when λH = λL) is still valid when λH ≥ λL. Let

T be the last period t before TL where sLt ≤ sHt . In this case

pT+1 ≤ pT ≤ wT .

Furthermore, since the L-worker is voluntarily dropping out at time T + 1, this implies wT ≤
wT+1 − cL. Nevertheless, since sLT+1 ≥ sHT+1, we have wT+1 ≥ pT+1, which is a contradiction, since

wT+1 ≤ pT+1 ≤ pT ≤ wT ≤ wT+1 − cL .

So, when λH ≥ λL, it is still true that sLt > sHt in all periods of all equilibria before TL.

Therefore, relaxing of the constraint λL = λH = λ to λL ≤ λH = λ does not introduce new

equilibria. Trivially, it does not destroy any equilibria, since in the model λL = λH = λ, in all

equilibria, sLt > λ for all equilibria and period t ≤ TL.

The intuition behind this lemma is that, in our original model, by Lemma 1, the endogenous

dropout rate of the L-worker is positive in all periods before (maybe) the last. So, the constraint

sLt ≥ λ was never binding in equilibrium. Therefore, all equilibria from the base model for λ = λH

are also equilibria for the case λH > λL ≥ 0. On the other hand, for any equilibrium in the case

where λH > λL, let α̃Lt denote the low type’s strategy. It must be true that s̃Lt ≥ λH − λL. Define

ŝLt = s̃Lt − (λH − λL) ≥ 0. One can easily verify that ŝLt can be supported in an equilibrium of the

game with a symmetric exogenous dropout rate, λ = λH .
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Figure 6: Endogenous dropout rate of the L-worker

B.2 λL > λH > 0 Case

As we can see in Figure 6, sL may be non-monotone. In particular, there are some equilibria

where it is initially decreasing and then increasing and finally it goes down again. Now, sL is

restricted to be no lower than λL > λH . We may guess that this constraint will be potentially

binding in two connected regions, one for large w and the other for intermediate values. In any

equilibrium, when this constraint is binding, both types strictly prefer to wait. Different from the

benchmark model, the equilibrium belief pt still goes up since λL > λH . After some periods, the

constraint may become not binding anymore, and the L-worker starts to play a mixed strategy

again. However, the equilibrium characterization in the benchmark model can not survive for

some parameters. Fortunately, the following theorem shows that the equilibrium characterization

in the benchmark model still works when λL is not significantly larger than λH .

In other to compare models, we denote the set of parameters as (p0, cL, cH , λL, λH). Note that

in our original problem the set of parameters is (p0, cL, cH , λ, λ).

Theorem 5. Given a set of parameters for our original model (p0, cL, cH , λ, λ) there exists ε > 0

such that the sets of equilibria of all model with parameters (p0, cL, cH , λL, λH) with λH = λ and

λL = (λ, λ+ ε] are identical.

Proof. We first prove that if ε > 0 is small enough, the model parameters (p0, cL, cH , λ+ε, λ) does

not have more equilibria than the model with parameters (p0, cL, cH , λ, λ). Note that Lemma 5

still holds (the H-worker can imitate the strategy of the L-worker). Now we try to prove a result
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analogous to Lemma 1. Assume that the L-worker is not voluntarily dropping out in period t, so

his dropout rate is λ+ ε. We then have two cases:

1. First assume that the dropout rate of the H-worker is larger than λ+ ε, so wt > pt. In this

case, since Lemma 5 is still valid (i.e. V L
t ≤ pt) the L-worker strictly wants to drop out, so

we obtain again a contradiction.

2. Assume now that sH ∈ [λ, λ + ε]. In this case pt+1 = pt + O(ε) and wt = pt + O(ε), so

wt − pt+1 = O(ε). Then, using the same logic as in the proof of Lemma 1, we have

wt ≤ WL
t ≤ V L

t+1 − cL ≤ pt+1 − cL .

Therefore, wt − pt+1 ≤ −cL. But this is inconsistent with wt − pt+1 = O(ε).

That proves that, if ε > 0 is small enough, the model with λH = λ and λL = λ+ ε does not have

more equilibria than for the case ε = 0.

Let’s prove the converse, that is, that if ε > 0 is small enough model with parameters

(p0, cL, cH , λ, λ) does not have more equilibria than the model with parameters (p0, cL, cH , λ+ε, λ).

Assume by contradiction that there exists a strictly decreasing sequence {εn > 0}n∈N converging to

0 such that, for each n, there exists an equilibrium in the model with parameters (p0, cL, cH , λ, λ)

and some tn reached with positive probability such that sLtn ∈ [λ, λ + εn). This implies ptn+1 =

ptn +O(εn) and wtn = ptn +O(εn), so wtn − ptn+1 = O(εn).22 So,

wtn = WL
tn = V L

tn+1 − cL ≤ ptn+1 − cL .

This, again, is a contradiction.

B.3 λL ≥ λH = 0 Case

In this case, there is no exogenous drop out by the H-worker. Our main mechanism in the

benchmark model is not present here. Indeed, in our benchmark model, as is proven in Lemma

1, the L-worker uses the fact that the H-worker exogenously drops out to mimic him in order to

save the high cost of education. Since the H-worker exogenously drops out, early dropout cannot

be punished too much, constraining the belief threats by the firms. This is no longer true when

λH = 0, so the set of equilibria is qualitatively different from the λH > 0 case.

22Using some abuse of notation, ptn and wtn denote the corresponding posteriors in the n-th equilibrium of the

sequence.
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C Appendix: Multiple Types

Now we consider the N > 2 types case in which θ ∈ {1, 2, 3, ..., N} with a prior pθ0, where∑N
θ=1 p

θ
0 = 1. The type θ worker has a cost of waiting cθ, cθ > cθ+1. The productivity of θ is Y θ,

Y θ < Y θ+1. All types exogenously drop out with probability λ.

The equilibrium concept is the same as in Definition 1 but adapted to the fact that now we

have many types. Note that firms’ offers depend only on the expected productivity and not on

other moments of the productivity distribution. This fact helps us to keep our definition simple:

Definition 2. An equilibrium is a strategy profile (sθ)θ=1,...,N , a wage process w and N belief

sequences pθ, for θ = 1, ..., N , such that:

1. the θ-worker chooses sθ ∈ [λ, 1] to maximize her expected payoff given w;

2. if a worker drops out with education t, firms offer

wt =

∑N
θ=1 p

θ
ts
θ
tY

θ∑N
θ=1 p

θ
ts
θ
t

; and (11)

3. when it is well defined, pθt is updated according to the Bayes’ rule

pθt+1 =
pθt (1− sθt )∑N

θ′=1 p
θ′
t (1− sθ′t )

. (12)

Let T θ be the last time the θ-worker is in school. The following theorem shows that our insight

into the binary-type model can be easily extended to a multiple-types model.

Theorem 6. Under the previous assumptions, in any equilibrium:

1. in each period t, there is at most one type, indifferent to dropping out,

2. more productive types stay longer in education, T θ ≤ T θ+1,

3. there is positive voluntary dropout in all periods, and

4. the wage wt is concave in t.

Proof. 1. Assume that, in period t, there are two types θ1, θ2 ∈ Θ, with cθ1 < cθ2 , and both

are indifferent between dropping out or not. Let τ1 and τ2 denote, respectively, the stopping
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times of the continuation strategies that make players indifferent on dropping out or not.23

Then, we have

wt = E[wτθ2 − c
θ2τθ2 ] ≥ E[wτθ1 − c

θ2τθ1 ] > E[wτθ1 − c
θ1τθ1 ] = wt .

The first (weak) inequality is from the optimality of the θ2-worker. The strict inequality

is because E[τθ1 ] > 0 and cθ1 < cθ2 . The equalities come from the fact that i-worker with

i ∈ {1, 2} are indifferent between dropping out (and getting wt) or staying and following τi.

Therefore, we have a contradiction.

2. Assume there exists θ1, θ2 ∈ Θ such that θ1 < θ2 and T θ1 > T θ2 . Let τθ1 be the stopping

time of the continuation strategy after T θ2 , given by the strategy of θ1. Then, note that

wT θ2 ≥ E[wτθ1 − c
θ2τθ1 ] > E[wτθ1 − c

θ1τθ1 ] ≥ wT θ2 .

This is clearly a contradiction. The first inequality comes from the optimality of the θ2-

worker choosing to drop out at T θ2 (since they could deviate to mimic the θ1-worker). The

second inequality is given by the fact that since θ1 < θ2, cθ2 < cθ1 and since T θ1 > T θ2 ,

E[τθ1 ] > 0. The last inequality comes from the optimality of the θ1-worker choosing to drop

out at T θ1 > T θ2 (since they could deviate to mimic the θ2-worker).

3. Define Θt = {θ|T θ ≥ t} and θt = min{Θt}. We proceed as in the proof of Lemma 5. Now

we have

Et[wτ |τ ≥ t] =
∞∑
τ=t

Pr(τ, t)wτ =
∞∑
τ=t

Pr(τ, t)

∑
θ Y

θsθτp
θ
t Pr θ(τ, t)

Pr(τ, t)

=
∑
θ

pθtY
θ

∞∑
τ=t

sθτ Pr θ(τ, t) =
∑
θ

pθtY
θ ,

where Pr(τ, t) and Pr θ(τ, t) = sθτ
τ−1∏
t′=t

(1− sθt′) are defined as in the proof of Lemma 5.

Note that, by the previous result,

N∑
θ=θt

pθtV
θ
t = Et[wτ |τ ≥ t]−

N∑
θ=θt

pθt c
θτ θ(t) < Et[wτ |τ ≥ t] ,

where τ θ(t) is the stopping time for the θ-worker conditional on reaching t. Since V θ
t ≤ V θ+1

t

(since the (θ+ 1)-worker can mimic the θ-worker at a lower cost), and
∑N

θ=θt
pθt = 1 we have

that V θt
t < wt.

23For this proof, for a given strategy, it is convenient to use the random variable τ , which gives the duration of

the game.
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Assume that in period t there is no voluntary dropout. In this case, wt =
∑

θ p
θ
tY

θ
t . Since

we just showed Vθt <
∑

θ p
θ
tY

θ
t , the θt-worker strictly prefers to drop out, which is a contra-

diction.

4. Note that, by part 3 of this theorem, we have that wt+1−cθt ≤ wt. Furthermore, wt+1−cθt+1 ≥
wt. This implies that wt+1 − wt+1 ∈ [cθt+1 , cθt ]. Since cθ is decreasing in θ and, by part 2 of

this theorem, the θt-worker is (weakly) increasing in t, wt is concave in t.

Most features of the two-type model are preserved. However, note that under many types we

have decreasing returns to education instead of linear ones, since lower types are skimmed out

before higher types in equilibria. This pattern of decreasing returns to education is consistent with

many empirical studies, for example, Frazis (2002), Habermalz (2003), Heckman et al. (2008) and

Manoli (2008). The equilibrium construction in multiple-type models is almost identical to that

in the two-type model and thus is omitted.
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