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Abstract

Maximizing subjective expected utility is the classic model of decision-making under uncer-

tainty. Savage (1954) provides axioms on preference over acts that are equivalent to the existence

of a subjective expected utility representation, and further establishes that such a representation

is essentially unique. We show that there is a continuum of other “expected utility” represen-

tations in which the probability distributions over states used to evaluate acts depend on the

set of possible outcomes of the act and suggest that these alternate representations can capture

pessimism or optimism. We then extend the DM’s preferences to be defined over both subjec-

tive acts and objective lotteries, allowing for source-dependent preferences. Our result permits

modeling ambiguity aversion in Ellsberg’s two-urn experiment using a single utility function

and pessimistic probability assessments over prizes for lotteries and acts, while maintaining the

axioms of Savage and von Neumann-Morganstern on the appropriate domains.

∗First version August 2011. We thank Eddie Dekel, Itzhak Gilboa, Edi Karni, Mark Machina, Larry Samuelson,
Tomasz Strzalecki, and Peter Wakker for helpful discussions and suggestions.
†Postlewaite thanks the National Science Foundation for support.
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If one has really technically penetrated a subject, things that previously seemed in com-

plete contrast, might be purely mathematical transformations of each other. —John von

Neumann (1955, p. 496).

1 Introduction

Consider a decision maker (DM) who is faced with gambles on whether it will rain more in Northern

Ghana (N) than in Southern Ghana (S) tomorrow. He is told that if the outcome is (N) he will

get $100 and if (S) he will also get $100. When asked what he thinks the probability of N is, he

responds .5. He is then told about another gamble in which the outcome for S is unchanged but

the outcome for N is increased to $1000, and is asked what he thinks the probability of N is now.

He responds that he thinks the probability of N is now .4. When asked how he can think the

probability of N can differ across the two gambles when it is the same event, DM simply says that

random outcomes tend to come out badly for him. After being offered a third gamble that gives

$100 for S and $10,000 for N, he says that faced with that gamble, he thinks the probability of N

is .2.

When faced with a choice between any two gambles, each of which specifies the amount received

conditional on the realized state, DM says that he maximizes expected utility. He has a utility

function over money, and for any two gambles (x1, x2) and (y1, y2), he will have two probability

distributions over the states, p(x1, x2) and p(y1, y2). DM’s probability assessments reflect his belief

that luck is not on his side. For each gamble he computes its expected utility under the associated

probability, and then chooses the gamble with the higher expected utility.

Confronted with such a DM, one might well judge him irrational. But would that judgment

change if one discovered that the DM’s revealed preferences satisfy Savage’s axioms? We show

below that for any preferences over acts that satisfy Savage’s axioms, there will be representations

of those preferences as described in the paragraph above: there will be a utility function over

outcomes and, for any act, a probability distribution over states that depends on the payoffs the

act generates, with preferences given by expected utility. Furthermore, the probability distribution

depends on the payoffs as in the example above: the probability of the state with the good outcome

is smaller than the Savage probability, and it decreases when the good outcome is replaced by an

even better outcome. We suggest that a DM who describes his decision-making process as above can

be thought of as pessimistic. Similarly, in addition to the multitude of pessimistic representations

of preferences that satisfy Savage’s axioms, there is a continuum of “optimistic” representations.

We may still want to characterize the DM above as being irrational, but notice that we cannot

make that determination on the basis of his choices: his preferences over acts are the same as those

of a person who uses an analogous decision process using the Savage representation utility function

and associated “standard” probability distribution. Any distinction between the rationality of
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the Savage representation and the alternative representation must be made on the basis of the

underlying process by which the DM makes decisions and not only on the decisions themselves.

We then extend the DM’s preferences to be defined over both subjective acts and objective lot-

teries. We show that in this extended domain, we can address Ellsberg (1961)’s two-urn experiment

using standard expected utility in the objective world and “pessimistic,” stake-dependent expected

utility (in the sense above) in the subjective world, while applying the same utility over prizes

in both domains. This relates to the literature on source-dependent preferences (Chew and Sagi

(2008), among others), which also addresses Ellsberg’s experiment without relaxing the appealing

axioms of Savage and vNM on the respective domains, but has been critiqued for capturing am-

biguity attitudes by a source-dependent utility function over prizes instead of different probability

assessments (see, for example, Wakker (2010, p. 337)). Indeed, we believe the latter would be more

natural in this context since, intuitively, it is the probability assessments, not the prizes, which

change when moving to the uncertainty domain.

A consequence of the multiplicity of alternative representations of preferences that satisfy Sav-

age’s axioms is that existing analyses of agents’ market behavior in the face of uncertainty may have

a broader interpretation than would appear at first glance. It might have seemed as though a model

that assumed that agents maximized expected utility with “standard” stake-independent probabili-

ties had little or nothing to say about how a pessimistic agent, in the sense we outlined above, would

behave. But since the choices of the pessimistic agent depend only on the underlying preferences,

if those underlying preferences have in addition a representation with stake-independent probabil-

ities, then the pessimistic agent’s behavior conforms precisely to any predictions that come from

the standard model despite his unorthodox mental processing. In short, agents who are pessimistic

or optimistic in our sense are observationally indistinguishable from the “standard” expected util-

ity maximizing agent. This connection is, of course, based on our cognitive notion of pessimism,

which differs from other notions of pessimism that are based solely on observed choice behavior, as

discussed in Section 4.2. But it does suggest that one need not always modify the standard model

to include psychologically plausible decision processes.1

It may thus be useful to distinguish between a utility representation (or model), which is a

construct for imagining how a DM makes decisions, and choice behavior, which is the observable

data. The standard point of view is that the representation is nothing more than an analytically

convenient device to model a DM’s choices. In this approach, termed paramorphic by Wakker

(2010), the representation does not suggest that a DM uses the utility function and a probability

distribution to make choices. An alternative approach is that the models we employ should not only

1Hey (1984), for example, introduces a notion of pessimism and optimism very similar to our own: an optimist
(pessimist) revises up (down) the probabilities of favorable events and revises down (up) the probabilities of un-
favorable events. Hey incorporates consequence-dependent probabilities in a Savage-like representation, which can
generate behavioral patterns that are inconsistent with expected utility because additional restrictions are not placed
on the distorted probabilities. The notion that optimism and pessimism are inconsistent with Savage’s axioms is
implicit in his analysis, whereas our paper suggests that this is not necessarily the case.
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capture the choices agents make, but should match the underlying processes in making decisions.

Wakker (2010) lays out an argument for this approach, which he terms homeomorphic. In his words,

“we want the theoretical parameters in the model to have plausible psychological interpretations.”

This stance is also common in the behavioral economics literature, where mental processes and

psychological plausibility are of particular interest.2,3

There are some good arguments for the approach that takes the elements of the representation

as actual entities in themselves. Consider a situation in which a DM may have little or no infor-

mation about the relative likelihoods of outcomes associated with different choices she confronts.

An (unbiased) expert who is informed about those likelihoods could determine which of the choices

is best if he knew the DM’s utility function. Through a sequence of questions about choices in a

framework that the DM understands, the expert can, in principle, elicit the utility function, which

can then be combined with the expert’s knowledge about the probabilities associated with the

choices in the problem at hand in order to make recommendations. Wakker (2008, 2010) and Karni

(2009) treat problems of this type in the context of medical decision making. Under this point

of view, it may be important to understand which representation is being elicited. If a DM had

stake-dependent pessimistic beliefs but was assumed to have a “standard” Savage representation,

the elicited utility function would exhibit greater risk aversion than the true utility function. Anal-

ogously, for an optimistic DM, the elicited utility function would exhibit less risk aversion than her

true utility function.

The remainder of this paper is organized as follows. We lay out the model in Section 2 and

demonstrate how pessimistic and optimistic representations can be constructed. In Section 3 we

study the extension of the DM’s preferences to both subjective acts and objective lotteries. Section

4 discusses related work.

2 Optimism, pessimism, and stake-dependent probabilities

2.1 Two states of nature

There are two states of nature, s1 and s2. Let X ⊂ R be an interval of monetary prizes. Consider a

DM whose preferences over the set of (Savage) acts satisfy Savage’s axioms, and who prefers more

2A similar discussion appears in Karni (2011). Karni distinguishes between the definitional meaning of subjective
probabilities, according to which subjective probabilities define the DM’s degree of belief regarding the likelihood of
events, and the measurement meaning, according to which subjective probabilities measure, rather than define, the
DM’s beliefs. That is, the DM’s beliefs are cognitive phenomena that directly affect the decision-making process.

3As Dekel and Lipman (2010) note, a utility representation is, at minimum, useful for organizing our thoughts
around the elements of that representation (e.g., in terms of probabilities, utilities, and expectations). They further
argue that the ”story” of a model is relevant and may provide a reason for preferring one model to the other,
even if the two models predict the same choices. Saying that, Dekel and Lipman emphasize that while the story’s
plausibility (or lack thereof) may affect our confidence in the predictions of the model, it cannot refute or confirm
those predictions; and that even if the story suggested by the representation is known to be false, it may still be
valuable to our reasoning process.
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money to less.4 Formally, an act is a function l : {s1, s2} → X. For notational convenience, in the

text we simply denote an act by an ordered pair of state contingent payoffs, x = (x1, x2), where

xi is the payoff received in state i. Let v (x) = p1u (x1) + p2u (x2) represent the DM’s preferences

over acts. Here p = (p1, p2) is the subjective, stake-independent probability distribution.

We now consider a different representation of the same preferences, in which the probability

distribution is stake-dependent : that is, the probability assigned to each state i is Pi(x; p). We look

for a representation v̂ of the form

v̂ (x) = P1 (x; p) û (x1) + P2 (x; p) û (x2) , (1)

where P2 (x; p) = 1 − P1 (x; p). Recall that v̂ and v represent the same preferences if and only if

each is a monotonic transformation of the other. Consider a strictly increasing (and for simplicity,

differentiable) function f : R → R, and define v̂ = f ◦ v. Then, we seek a probability distribution

P (x; p) and a utility function over prizes û such that (1) is satisfied. By considering the case that

the outcomes in the two states are the same (that is, the case of constant acts), note that (1)

implies that v̂ (z, z) = û (z) = f(v(z, z)) = f (u (z)) for all z. Then the desired representation (1)

simplifies to

v̂(x) = f (v (x)) = P1(x; p)f (u (x1)) + (1− P1(x; p)) f (u (x2)) .

Solving for P1(x; p), we get

P1 (x; p) =
f (v (x))− f (u (x2))

f (u (x1))− f (u (x2))

for x1 6= x2. Note that P1(x; p) is always between zero and one because, by properties of expected

utility, v(x) is always between u(x1) and u(x2). As x1 → x2, P1(x; p) converges to p1. Naturally,

P2(x; p) := 1 − P1(x; p). When x1 > x2, the denominator of P1(x; p) is positive. Thus, when f is

convex, Jensen’s inequality implies that

P1(x; p) ≤ p1f(u(x1)) + (1− p1)f(u(x2))− f(u(x2))

f(u(x1))− f(u(x2))
= p1.

The probability of the bigger prize is thus distorted down. Similarly, when f is concave, the

probability of the bigger prize is distorted up. (An analogous characterization holds when x2 > x1:

the probability of the smaller prize is distorted up when f is convex, and distorted down when f is

concave). Stated differently, the pessimist holds beliefs that are first-order stochastically dominated

by the standard Savage distribution, while the optimist holds beliefs that first-order stochastically

dominate it.

4Although Savage’s original work applies only to the case where the state space is not finite, it has been shown
how to derive a Savage-type representation when there are only a finite number of states (see, e.g., Wakker (1984) or
Gul (1992)).
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For specific classes of convex and concave functions, we can say more. Without loss of generality,

we assume for the proposition below that the utility level u(x) is positive for each x ∈ X.

Proposition 1. Consider x1 6= x2 and the transformation f(z) = zr. Then ∂Pi(x;p)
∂xi

< 0 for r > 1,

and ∂Pi(x;p)
∂xi

> 0 for r ∈ (0, 1).5

The proof appears in the appendix. The case r = 1 corresponds to the standard Savage

formulation in which there is no stake-dependent probability distortion. When r > 1, the DM’s

probability assessments reflect a stronger notion of pessimism. The better the consequence in any

state, the less likely he thinks that this state will be realized. In particular, improving the best

outcome reduces his assessment of its probability (as in the example in the introduction). Similarly,

making the worst outcome even worse increases his assessment of its probability. When r ∈ (0, 1)

the comparative statics are flipped. For the optimist, the better is the best outcome, the more

likely the DM thinks it is; and the worse is the worst outcome, the less likely he thinks it is. By

construction, however, choice behavior in either case is indistinguishable from that of a DM with a

Savage-type representation.

Remark 1. Based on Aumann’s 1971 exchange of letters with Savage (reprinted in Drèze (1987)),

the following argument has often been used to point out that the Savage representation could have

multiple state-dependent expected utility representations, leaving the (single) probability distribution

ill-defined. Consider a Savage representation of the form p1u (x1) + p2u (x2). Then for any p̂

with the same support as p, this expression is equal to p̂1û (x1, s1) + p̂2û (x2, s2), where û (xs, s) :=
psu(xs)

p̂s
is a state-dependent utility function. This means that the Savage probability distribution

is only unique under the assumption of state-independent utility. Notice that the same “multiply-

and-divide” approach cannot be used to generate stake-dependent probabilities. To see this, fix

a strictly positive utility function over prizes, u and let p(s, xs) := psu(xs)
u(xs)

. While the expected

utility p1u (x1) + p2u (x2) is the same as p(s1, x1)u (x1) + p(s2, x2)u (x2), note that p(s, xs) is not

a probability distribution unless we normalize it by p(s1, x1) + p(s2, x2). However, that scaling

factor is not a constant – it generically depends on the stakes in all states (that is, unless u is a

scalar multiple of u). Therefore, the resulting utility representation no longer represents the same

preferences as the original Savage representation.

2.2 The general case

We have shown above how to construct a continuum of “expected utility” representations using

distorted probabilities when there are two-states of nature. Under any of these representations,

the certainty equivalent of each act is the same as that under the original Savage representation.

5One can find convex or concave functions outside this class for which the result does not hold. As an example,
suppose f(z) = 3z2 − z3 if z ∈ (0, 1] and f(z) = −1 + 3z for z ∈ (1,∞), which is a convex function. For u(x) = x,

p = (1/2, 1/2), x1 ∈ (0, 1) and x2 = 1/4, notice that ∂P1(x;p)
∂x1

= 1
8

+ 27+18x1
44+16x1(11−4x1)

> 0.
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While the computation of alternative representations is particularly simple in the two-state case,

the multiplicity of representations does not depend on there being only two states. We next show

this can be done for any finite number of states.6

Let S = {s1, ..., sn} be the set of states and let x = (x1, ..., xn) ∈ Rn be an act, where xi

corresponds to the outcome in state si. Consider a Savage expected utility representation, with

p the probability vector and u the utility function over prizes. We look for a stake-dependent

probability distribution P (x; p) and a representation of the form

v̂ (x) =
∑n

i=1
Pi(x; p)û (xi) . (2)

For v̂ to represent the same preferences as the Savage expected utility function v, there must exist

an increasing transformation f such that v̂ = f ◦ v. As before, this implies that

v̂ (x) = f (v (x)) =
∑n

i=1
Pi(x; p)f (u (xi)) . (3)

Including the above equation and the obvious restriction that
∑n

i=1 Pi(x; p) = 1, we have two

equations with n unknowns. While this sufficed for a unique solution (given u and û) in the case n =

2, when n ≥ 3 there will generally be many ways to construct a probability distortion, corresponding

to different ways a DM might allocate weight to events. More specifically, for an act x, let ce(x;u, p)

be the certainty equivalent of x given a utility function u(·) and a probability distribution p:

u(ce(x;u, p)) =
∑n

i=1 piu (xi). Consider a transformation f which is convex (concave). Since f ◦ u
is less risk averse than u, ce(x; f ◦ u, p) > ce(x;u, p) whenever x is non-degenerate (the reverse

inequality holds if f is concave). We define

P(x, p, u, f) =
{
q ∈ [0, 1]n :

∑n

i=1
qi = 1 and ce(x; f ◦ u, q) = ce(x;u, p)

}
to be the set of probability distributions with the property that for any q ∈ P(x, p, u, f), the

certainty equivalent of f ◦u with respect to the lottery q equals that of u with respect to the Savage

distribution p. Thus P(x, p, u, f) is the set of probability distributions that for the given prizes

yield expected utility equal to the certainty equivalent, that is, the indifference curve in the space of

probabilities that corresponds to that expected utility. Figure 1a illustrates this with the Machina-

Marschak triangle for the case n = 3 (the probability of the highest prize x3 is on the vertical

axis and the probability of the worst prize x1 is on the horizontal axis). The line P(x, p, u, f) is

the set of probabilities for which expected utility is equal to ce(x;u, p), and must pass through a

point lying below p. Otherwise, the certainty equivalent of p under f ◦ u would be higher than

the certainty equivalent under u. The distortions in the bolded portion of P(x, p, u, f) in Figure

1a are pessimistic: they lie southeast of p on the indifference curve P(x, p, u, f), and are thus both

first-order stochastically dominated by p and deliver the same certainty equivalent under f ◦ u as

6Alternatively, it can be done for simple (finite support) acts on a continuum state space.
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p	  

s3	  

s2	   s1	  

P(x,p,u,f)	  

Pessimis1c	  
distribu1ons	  	  

(a) Possible distortions.

p	  

P(x;p)	  

s3	  

s2	   s1	  

(b) Closest to Savage.

Figure 1: Constructing a pessimistic representation in the case n = 3. In the figures, x3 > x2 > x1.
The x-axis represents p1, the y-axis represents p3, and p2 = 1− p1 − p3.

does the Savage representation.

As is apparent from the figure, there are multiple ways to select a pessimistic probability

distortion. We will demonstrate one simple mapping from acts to pessimistic beliefs. For any two

probability distributions q, q′ over S, let d (q, q′) be the Euclidean distance between them:

d
(
q, q′

)
=

√∑n

i=1
(qi − q′i)

2.

We associate with any act the probability distribution in P(x, p, u, f) that is of minimal distance

to the Savage distribution p:

P (x; p) = arg min
q∈P(x,p,u,f)

d (p, q) . (4)

This mapping is illustrated in Figure 1b for the case n = 3 and convex f . Note that the Savage

distribution p first-order stochastically dominates P (x; p). This property is true for any convex

f .7 It can be analogously shown that for any concave f (the case of optimism), the probability

distribution P (x; p) constructed according to (4) will first-order stochastically dominate the Savage

distribution p. The argument above is valid independently of the ranking of the three prizes, that is,

P (x; p) is a continuous function of the act. Different rankings generate different indifference curves,

7This can be shown geometrically. Fix any act x and consider a Machina-Marschak triangle oriented as before.
Given the orientation of the triangle, the slope of the line P(x, p, u, f) is positive. Consequently, if we draw both the
vertical line from p down to P(x; p, u, f), as well as the horizontal line passing through p, the angle formed between
each of these lines and the indifference curve P(x; p, u, f) is less than 90◦. Thus, the point P (x; p) for which the line
between p and P (x; p) is exactly 90◦ must lie to the southeast of p (if it exists; otherwise the closest point is on the
boundary of the triangle, southeast of p).
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but a pessimist will always shift weight (relative to Savage) towards bad states, and the optimist

will always shift weight towards good states. The argument also holds for any finite number of

states n.

3 Risky lotteries and uncertain acts

Consider a DM who is faced with choice objects, some of which are lotteries with objective proba-

bilities and others that are subjective acts as in Savage. Suppose the DM’s preferences are defined

over the union of L1, the set of (purely objective) simple lotteries over the set of prizes X, and F ,

the set of (purely subjective) Savage acts over X. On the subdomain of subjective acts, the DM

satisfies the axioms of Savage, leading to a subjective expected utility representation with Bernoulli

function v and probability distribution p. On the subdomain of objective lotteries, the DM satisfies

the axioms of vNM, leading to an expected utility representation with Bernoulli function u. Each

of the two subdomains contains deterministic outcomes: for any outcome x ∈ X, F contains the

constant act that gives x in every state, and L1 contains the lottery that gives x with probability

1. It is natural to assume that the DM is indifferent between these two objects. More formally,

suppose the DM’s preferences � are defined over the domain Ψ = L1∪F .8 The assumptions above

imply that for any ξ ∈ Ψ, there is an increasing transformation h such that the DM’s preferences

over the domain Ψ are represented by

U (ξ) =

{
h (
∑

x π (x)u (x)) for ξ = π ∈ L1∑
s psv (l (s)) for ξ = l ∈ F

, where h(u(x)) = v(x) for all x ∈ X. (5)

To discuss ambiguity aversion in the context of Equation (5), consider the hypothetical two-urn

experiment introduced by Ellsberg (1961). There are two urns each containing 100 balls which

could be black or red. The composition of Urn 1 (the ambiguous urn) is unknown. Urn 2 (the risky

urn) contains exactly 50 red and 50 black balls. The DM can bet on the color of the ball drawn

from an urn. Ellsberg predicts that given either urn, most people would be indifferent between

betting on either red or black – indeed, by symmetry, it is reasonable to assume that the two

colors are equally likely in Urn 1. Yet, he predicts that people would prefer bets based on Urn 2

to corresponding bets based on Urn 1, because they would prefer knowing the exact probability

distribution. For a DM with a representation of the form (5), such a preference occurs if and only

8Note that this domain is essentially a strict subset of the domain of Anscombe and Aumann (1963), in which
the outcome of an act in every state is an objective lottery. This domain is similar to the one used in Chew and
Sagi (2008). Using their language, the sets L1 and F can be thought of as two different sources of uncertainty, on
which the DM’s preferences may differ. This domain allows us to talk about ambiguity while abstracting from the
multistage feature of Anscombe and Aumann (1963)’s model.
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if v is more concave than u (as seen using Jensen’s inequality).9,10

Note that it is impossible to keep u and v the same without assuming ambiguity neutrality, as

preferences are entirely characterized by the utility for prizes under the conventions of the expected

utility representation. A natural focal point, however, is for the DM’s utility over prizes (which

captures his tastes for the ultimate outcomes) to be consistent across the objective and subjective

domains; that is, u = v. Simply put, the prizes are the same in both domains; it is only the

probabilities that differ in the two situations.

Our model, on the other hand, may attribute the DM’s ambiguity aversion (in the sense of pre-

ferring bets on the risky urn to bets on the ambiguous urn) to pessimistic probability assessments,

rather than a change in his utility for prizes. Indeed, observe that if U(·) in Equation (5) represents

the DM’s preferences, so does Û = h−1 ◦ U . If v = h ◦ u, where h is concave, we apply our previ-

ous results of Section 2 using the convex transformation h−1. That is, there exists a pessimistic,

stake-dependent probability distribution P (·; p) that is first-order stochastically dominated by the

Savage distribution p, such that the utility representation Û = h−1 ◦ U may be written as

Û (ξ) =

{ ∑
x π (x)u (x) for ξ = π ∈ L1∑

s Ps(ξ; p) u (l(s)) for ξ = l ∈ F
.

Analogously, if a DM is discovered to be “ambiguity loving, ”then he may be viewed as an optimist

using the same utility function over prizes in both domains. Much in the same way that probabilities

are identified under Savage’s convention of state-independent utility for prizes (as discussed in

Remark 1), we may detect the presence of optimism or pessimism under the convention of source-

independent utility for prizes. In that sense, our approach is different than that of Chew and Sagi

(2008), who also use source-dependent expected utility on a similar domain to address ambiguity

aversion. In their work, ambiguity aversion is captured by the source-dependent curvature of the

utility for prizes.11

In principle, one may be able to use preferences on objective lotteries and subjective acts to

determine whether a DM distorts probabilities, and suggest a comparative measure of pessimism.

For example, take two decision makers with identical Savage preferences over subjective acts, that

9To see this, observe that by applying h−1, Û (ξ) =

{ ∑
x π (x)u (x) for ξ = π ∈ L1

h−1
(∑

s psh(u (l(s)))
)

for ξ = l ∈ F , also represents

the DM’s preferences. For acts and lotteries with two possible outcomes as in Ellsberg’s example, and for which
π(x) = ps = 1

2
for every x, s, a direct application of Jensen’s inequality says that

∑
x

1
2
u (x) > h−1

(∑
s

1
2
h(u (l(s)))

)
for all prizes x, l(s) if and only if h−1 is convex, which in turn holds if and only if v is a concave transformation of u.

10This also corresponds to Ghirardato and Marinacci’s (2002) definition of ambiguity aversion. According to their
definition, the DM is more risk averse in uncertain settings than in objective settings if there exists a probability
distribution p over S, such that for all π ∈ L1 and l ∈ F , l � π implies that µl,p � π, where µl,p is the objective
lottery under which the prize l(s) is received with probability p(s). The intuition behind this axiom is that if the DM
prefers an act to a given lottery, it would also be better to simply receive that “act” with the objective probabilities
that would ultimately be specified by the Savage distribution.

11The idea of capturing attitude towards ambiguity entirely through the utility function also appears in Klibanoff
et al. (2005) and Ergin and Gul (2009), among others.
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is, both individuals admit a Savage representation 〈v, p〉 . However, they have different preferences

over objective lotteries, with utility over prizes u1 and u2, respectively. Under the model above,

each DM distorts probabilities differently, with DMi’s distortion function fi given by ui ◦ v−1. If f1

is more convex than f2 – or equivalently, u1 is more convex than u2 – then DM1 is more pessimistic

than DM2. To illustrate using our minimum-distance example from Section 2.2 (see Equation (4)),

define the level of pessimism of DMi as min
q∈P(x,p,v,fi)

d (p, q), that is, the minimum distance between

Savage’s p and the point in the simplex that generates the same preferences given DMi’s distortion

function fi. Observe that u1 is more convex than u2 iff min
q∈P(x,p,v,f1)

d (p, q) > min
q∈P(x,p,v,f2)

d (p, q) for

any vector of prizes x. If ui = v, that is, if the Savage and the vNM utility functions coincide,

then DMi is not pessimistic. This is in line with the idea that the Ellsberg paradox captures the

relative, not absolute, extent of pessimism in the uncertainty domain versus the risk domain; see,

for example, Wakker (2010, Chapter 11).

4 Discussion and related literature

4.1 Stake-dependent probabilities in other models

While our approach differs from that taken by other researchers, it is quite standard in the lit-

erature on ambiguity aversion to model the DM as though he evaluates outcomes according to

expected utility, with an unvarying utility function and a probability distribution that depends

on the outcome being evaluated. Consider, for example, one of the most widely known models of

decision making under uncertainty, the maxmin expected utility with non-unique prior model of

Gilboa and Schmeidler (1989). In their model, the DM behaves as though there is a set of possible

probabilities that can be used, along with a fixed utility function, to compute the expected utility

of any act. For any act, the probability used is the one that yields the lowest expected utility

among those in their set. If the set of possible probabilities is a singleton, their model reduces to

the standard model with stake-independent probabilities. A DM who is uncertain about the exact

probability distribution to use (that is, a DM for whom the set of possible probabilities is not a

singleton), will use probabilities that typically vary with the act in question. This is illustrated

in Figure 2, where the shaded region is the set of probabilities the DM thinks possible. Orienting

the Machina-Marschak triangle as before, with x3 > x2 > x1, the probability that minimizes the

expected utility over that set is q. If the prize x3 decreases, the indifference map becomes steeper

and the probability that minimizes expected utility over the same shaded set moves up along the

boundary. Observe that when there are at least three states and the set of probabilities the DM

thinks possible is strictly convex, there will be a continuous function that assigns to each act a

unique, stake-dependent probability which the DM uses to compute expected utility, just as is the

case with the “least distance” mapping described in the previous section.

Thus, both the maxmin expected utility model of Gilboa and Schmeidler (1989) and our model

10



s3	  

s2	   s1	  

q	  

Figure 2: The indifference curve through the probability distribution that minimizes expected
utility when x1 < x2 < x3, as in Gilboa and Schmeidler (1989). If the indifference map becomes
steeper (e.g., if x3 decreases), then the distribution moves from q to a point further up the boundary
of the probability set.

capture the choice behavior of agents who adapt the probability used in the expected utility calcula-

tion to the outcome being evaluated. There is, of course, a major difference between the two models:

the choices of agents who employ the maxmin method of choosing probabilities will typically vi-

olate Savage’s axioms on the subjective domain, while ours satisfy those axioms by construction.

The consequence, of course, is that the maximin expected utility model can generate behavior that

cannot arise in our model.

4.2 Behavioral notions of optimism and pessimism

In this paper we discuss a cognitive notion of optimism and pessimism. A number of papers dis-

cuss optimism and pessimism as behavioral phenomena that are incompatible with expected utility.

Wakker (1990), for example, defines pessimism through behavior (similarly to uncertainty aversion)

and shows that within the rank-dependent expected utility (RDU) model, pessimism (optimism)

holds if greater decision weights are given to worse (better) ranks. (See also Wakker (2001)). In con-

trast to our model, in Wakker’s model changes in outcomes affect decision weights only when ranks

change. Two recent papers also investigate behavioral notions of pessimism. Using the Anscombe

and Aumann (1963) framework, Dean and Ortoleva (2012) suggest a generalized notion of hedging,

which captures pessimism and applies to both objective risk and subjective uncertainty. Gumen,

Ok, and Savochkin (2012) introduce a new domain which allows subjective evaluations of objective

lotteries. They use their framework to define a general notion of pessimism for objective lotteries

in a way reminiscent of uncertainty aversion for subjective acts. Their definition of pessimism is

not linked to any specific functional form and hence applies to a broader class of preferences than

11



just the RDU (as in Wakker). It also can incorporate stake-dependent probabilities.

4.3 Other related literature

The observation that the Savage-type representation and the optimist (or pessimist) can support

the same underlying preferences, and hence cannot be distinguished by simple choice data, is related

to general comments about model identification. In a series of papers, Karni (2011 and references

therein) points out that the identification of probabilities in Savage’s model rests on the (implicit)

assumption of state-independent utility, and proceeds to propose a new analytical framework within

which state independence of the utility function has choice-theoretic implications.12 In the context

of preference over menus of lotteries, Dekel and Lipman (2011) point out that a stochastic version

of Gul and Pesendorfer (2001)’s temptation model is observationally equivalent to a random Strotz

model. Chatterjee and Krishna (2009) show that a preference with a Gul and Pesendorfer (2001)

representation also has a representation where there is a menu-dependent probability that the choice

is made by the tempted (the “alter-ego”) self, and otherwise the choice is made by the untempted

self. Spiegler (2008) extends Brunnermeier and Parker’s (2005) model of optimal expectations by

adding a preliminary stage to the decision process, in which the DM chooses a signal from a set

of feasible signals. Spiegler establishes that the DM’s behavior throughout the two-stage decision

problem, and particularly his choices between signals in the first stage, is indistinguishable from

those of a standard DM who tries to maximize the expectation of some state-dependent utility

function over actions. In the context of preferences over acts, Strzalecki (2011) shows that for the

class of multiplier preferences, there is no way of disentangling risk aversion from concern about

model misspecification. Consequently, he points out that “...policy recommendations based on such

a model would depend on a somewhat arbitrary choice of the representation. Different represen-

tations of the same preferences could lead to different welfare assessments and policy choices, but

such choices would not be based on observable data.” Some of the papers above suggest additional

choice data that is sufficient to distinguish between the models. For example, in Dekel and Lip-

man (2011) as well as in Chatterjee and Krishna (2009), the two indistinguishable models predict

different choices from menus, suggesting that data on second-stage choice is needed.

4.4 Can our model be distinguished from Savage’s?

In the spirit of the papers above, can we find a domain of choice in which optimism and pessimism

may be distinguished both from each other and from a simple expected utility maximizer? One

might think that a person with pessimistic (or optimistic) beliefs could be identified on the basis of

12Grant and Karni (2005) argue that there are situations in which Savage’s notion of subjective probabilities (which
is based on the convention that the utilities of consequences are state-independent) is inadequate for the study of
incentive contracts. For example, in a principal-agent framework, misconstrued probabilities and utilities may lead
the principal to offer the agent a contract that is acceptable yet incentive incompatible.
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choice by confronting the DM with choices over acts whose prizes are based on objective probabil-

ities; for example, by soliciting enough responses to questions of the sort “Which do you prefer: a

lottery that gives you $100 with probability .5 and $0 with probability .5 or getting $40 for sure?”

The responses to such questions would allow one to elicit the DM’s utility function, and once this

is known, one can determine whether the DM has stake-dependent probabilities over subjective

events. (See the discussion in Section 3). This argument, however, presumes that the DM takes

these probabilities at face value. Her choices will depend on the likelihoods in her mind of getting

the various prizes. She may well think “I’m very unlikely to get the $100 if I take the gamble -

I never win anything.” There is no compelling reason to believe that a pessimistic or optimistic

DM’s mental assessment of the likelihood of an event can be controlled by arguing what the DM

“should” believe. This is reminiscent of a point in Pesendorfer (2006), who questions whether it

is reasonable in the face of a failure of one aspect of the standard model to assume that the other

aspects continue to apply.

Another approach for attempting to distinguish the models would be to study the DM’s behavior

after receiving additional information, such as a signal about the true state. This involves specifying

a somewhat arbitrary updating rule for optimists and pessimists. Since the DM is distorting the

subjective probability distribution p, the most standard choice that comes to mind is to distort the

Bayesian updated subjective probability distribution (this is similar to the choice of Spiegler (2008)

in extending Brunnermeier and Parker’s (2005) model to include signals). The updated beliefs of

the optimist or pessimist would lead to choices that would, once again, be indistinguishable from an

expected utility maximizer using Bayesian updating. Other choices of updating rules (for example,

performing a Bayesian update on the distortion) may well lead to different behaviors. In general,

it is not immediately clear why an individual who views the likelihood of events as dependent upon

their consequences would employ standard Bayesian updating.

4.5 A reduced form interpretation

The analysis above has modeled the DM as maximizing expected utility with probabilities that

differ as prizes change, where an outside observer may understand that the probabilities cannot

differ. One can imagine situations in which the probability of a state in fact does change as a

prize increases. Consider a DM who is about to perform a task that yields high stakes upon

succeeding. But the high stakes may increase his anxiety and stress, which, in turn, reduces the

probability of success.13 If the DM can foresee his performance anxiety and were to bet on his

success, then he will bias down that probability. Alternatively, suppose that the probability of

success depends monotonically on the amount of effort the DM exerts. In a stylized principal-agent

model, the principal, who likes to induce the agent to exert high effort, will need to incentivize

him by increasing the stakes. If the agent responds to these incentives and puts higher effort, then

13Ariely (2010) found that potentially large bonuses may lower employee performance due to stress.
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the probability of success is indeed higher. More generally, one can think of a situation in which

the agent simply believes that he can affect the probabilities by putting more effort. Our notion of

optimism captures such a situation, without explicitly modeling the effort dependence; the higher

the stakes are, the more likely the DM believes the good state occurs.14

14A related idea appears in Drèze (1987). Drèze develops a decision theory with state-dependent preferences and
moral hazard, based on the Anscombe and Aumann model, in which the reversal of order assumption (which requires
indifference between ex-ante and ex-post randomization) is relaxed. The DM might display preferences for ex-ante
randomization (that is, preferences to knowing the outcome of a lottery before the state of nature becomes known) if
he believes that he can influence the outcome by his (unobserved) actions. Drèze derives a representation that entails
the maximization of subjective expected utility over a convex set of subjective probability measures.
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Appendix

Proof of Proposition 1

We start with some mathematical preliminaries. Consider {s1, s2}. Suppose that s1 occurs with

probability p1 and s2 occurs with probability p2 = 1− p1. Let a 6= b be two positive real numbers.

Define two random variables, X and Y as follows: X has value a in state s1 and b in state s2; and

Y has value a in state s2 and b in state s1. We claim that for any number s,

(ab)s = E
[
X−s

]−1
E [Y s] . (6)

To show this, note that

E
[
X−s

]−1
E [Y s] =

(
p1a
−s + p2b

−s)−1 (p1b
s + p2a

s)

=
(p1b

s + p2a
s)

(p1a−s + p2b−s)
=
asbs (p1b

s + p2a
s)

(p1bs + p2as)
= (ab)s .

We focus on the derivative of P1 (x1, x2; p1) with respect to x1, since the other case is identical.

Taking the derivative and simplifying, we find that using the transformation f (z) = zr, equals

∂P1 (x1, x2; p1)

∂x1
=
ru′ (x1)

[
u (x1)

r u (x2)
r − (p1u (x1) + p2u (x2))

r−1 (p2u (x1)
r u (x2) + p1u (x2)

r u (x1))
]

u (x1) (u (x1)
r − u (x2)

r)2
.

Since r, u′ (x1) , u (x1) , u (x2) > 0, the sign of ∂P1(x1,x2;p1)
∂x1

equals the sign of

u (x1)
r u (x2)

r − (p1u (x1) + p2u (x2))
r−1 (p2u (x1)

r u (x2) + p1u (x2)
r u (x1)) .

Let a = u (x1) and b = u (x2). Factoring out ab, the last expression has the sign of

ar−1br−1 − E [X]r−1E
[
Y r−1] .

Using (6) with s = r − 1, this is equivalent to E
[
X1−r]−1E [Y r−1] − E [X]r−1E

[
Y r−1], which

has the same sign as E
[
X1−r]−1 − E [X]r−1.

For the case r > 1, we would like to show that E
[
X1−r]−1−E [X]r−1 < 0, or equivalently, that

E
[
X1−r]−1 < E [X]r−1. Applying Jensen’s inequality to the convex transformation g (x) = x1−r,

we get E
[
X1−r] > E [X]1−r, or E

[
X1−r]−1 < E [X]r−1. For the case r ∈ (0, 1), we want to

show that E
[
X1−r]−1 − E [X]r−1 > 0, or equivalently, that E

[
X1−r]−1 > E [X]r−1. Applying

Jensen’s inequality to the concave transformation g (x) = x1−r, we get E
[
X1−r] < E [X]1−r, or

E
[
X1−r]−1 > E [X]r−1.
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