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Abstract

We study an individual who faces a dynamic decision problem in which the process
of information arrival is unobserved by the analyst. We elicit subjective information
directly from choice behavior by deriving two utility representations of preferences
over menus of acts. One representation uniquely identifies information as a probabil-
ity measure over posteriors and the other identifies information as a partition of the
state space. We compare individuals who expect to learn differently in terms of their
preference for flexibility. On the extended domain of dated-menus, we show how to
accommodate gradual learning over time by means of a subjective filtration.
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1. Introduction

1.1. Motivation and overview

The study of dynamic models of decision making under uncertainty when a flow of informa-

tion on future risks is expected over time is central in all fields of economics. For example,

investors decide when to invest and how much to invest based on what they expect to learn

about the distribution of future cash flows. The concepts of value of information and value of

flexibility (option value) quantify the positive effects of relying on more precise information

structures.1

A standard dynamic decision problem has three components: the first component is a

set of states of the world that capture all relevant aspects of the decision environment. The

second component is a set of feasible intermediate actions, each of which determines the

payoff for any realized state. The third component is a description of what the decision

maker expects to learn; this component is formalized as an information structure, which is

the set of possible signals about the states that are expected to arrive over time and the

joint distribution of signals and states.

In many situations, the analyst may be confident in his understanding of the relevant

state space and the relevant set of actions. He may, however, not be aware of the information

structure people perceive. People may have access to private data which is unforeseen by

others; they may interpret data in an idiosyncratic way; or they may be selective in the data

they observe, for example by focusing their attention on specific signals. We collectively

refer to those situations as ”subjective learning”. Since information plays a key role in most

decision-making processes, if it is not observed, then it should be derived.

In this paper we show how one can infer an individual’s subjectively perceived information

structure (in addition to his subjective probabilities over states and cardinal utilities over

outcomes) solely from his observed choice behavior prior to the resolution of uncertainty. We

confine our attention to the study of two canonical ways of describing information, namely

identifying signals with the posterior beliefs they produce, and partitional-learning. For

each model, we provide an axiomatic foundation and show that the relevant parameters

are uniquely identified. The identification of anticipated arrival of information allows us to

compare the behavior of individuals who perceive different information structures. Providing

a tight link between heterogeneity in information structures and heterogeneity in behavior

can guide an applied analyst whose aim is to capture a particular heterogeneity in behavior.

Furthermore, such comparisons are the subjective versions of the comparative statics for

incremental increases in informativeness when learning is objective. Since the information

1For a comprehensive survey of the theoretical literature, see Gollier (2001, chapters 24 and 25).
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structure is identified from behavior prior to the resolution of uncertainty, it may also help an

analyst to make a probabilistic forecast of the decision maker’s behavior after all uncertainty

is resolved. Lastly, we propose a new domain that allows studying the behavioral implications

of uncertainty that is anticipated to gradually resolve over time by means of a subjective

filtration.

The standard subjective expected utility models of Savage (1954) and Anscombe and

Aumann (1963) characterize subjective probabilities from observable choices among acts

(state-contingent payoffs). These models, however, are not rich enough to also identify un-

observed information. The reason is that information has instrumental value only when some

aspect of choice can be conditioned on it, which is not the case in the static domain of acts.

For example, in environments with potentially asymmetric information, the standard model

is not equipped to distinguish which side is better informed. Simultaneously identifying

beliefs and information thus requires us to enrich the choice domain, as we now describe.2

We consider an objective state space. Actions correspond to acts, that is, state-contingent

payoffs, and preferences are defined over sets (or menus) of acts. The interpretation is that

the decision maker (henceforth DM) initially chooses among menus and subsequently chooses

an act from the menu. If the ultimate choice of an act takes place in the future, then the DM

may expect information to arrive prior to this choice. Analyzing today’s preferences over

future choice situations (menus of acts rather than the acts themselves) allows us to capture

the effect of the information the DM expects to learn via his value for flexibility (having

more future options available). The preference relation over menus of acts is thus the only

primitive of the model, leaving the information structure that the DM faces, as well as his

ultimate choice of an act, unmodeled.3

To see how our framework can address the question of subjective information acquisition,

suppose there are only two states of the world, s1 and s2, and consider the acts f, g, and h,

given by

s1 s2

f 1 0

g 0 1

h 3
4

3
4

Suppose the DM prefers committing to the act with perfect insurance over either of the

bets, that is, {h} ≻ {f} ∼ {g}. Now consider the menu of acts {f, g, h}. If the DM thinks

2In the body of the paper we will abstract from deriving the cardinal utility over outcomes and focus on
the identification of information and beliefs. We comment on this modeling choice in Remark 1, and supply
the most general model, in which all three components can be identified, in Appendix A.

3In particular, our approach does not require the analyst to collect data that corresponds to a state-
contingent random choice from menus.
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he might receive a signal that reveals (or is highly indicative of) the true state before he has

to choose an act from the menu, then flexibility is valuable and {f, g, h} ≻ {h}. If, instead,

the DM knows for sure he will not receive such a signal, then {f, g, h} ∼ {h} . Similarly, if

the agent thinks he might not receive such a signal then {f, g, h} ≻ {f, g}, while if he knows

for sure that he will receive the signal, then {f, g, h} ∼ {f, g}. Thus, what the DM expects

to know at the time of choice from the menu is reflected in his preferences over menus of

acts.

Section 2 outlines the most general model that captures subjective learning. Theorem

1 derives a subjective-learning representation that can be interpreted as follows: the DM

behaves as if he has beliefs over the possible posterior distributions over the state space

that he might face at the time of choosing from the menu. For each posterior, he expects

to choose from the menu the act that maximizes the corresponding expected utility. The

model is parameterized by a probability measure on the collection of all possible posterior

distributions. This probability measure describes the DM’s subjective information structure

and is uniquely identified from choice behavior. The axioms that are equivalent to the exis-

tence of a subjective-learning representation are the familiar axioms of Preference relation,

vNM Continuity, Nontriviality, and an appropriate version of Independence, in addition to

Domination, which implies monotonicity in payoffs, and Set monotonicity, which captures

preference for flexibility.

Identification enables us to compare different decision makers in terms of their preferences

for flexibility. We say that DM1 has more preference for flexibility than DM2 if whenever

DM1 prefers to commit to a particular action rather than to maintain multiple options, so

does DM2. Theorem 2 states that DM1 has more preference for flexibility than DM2 if

and only if DM1’s distribution of posterior beliefs is a mean-preserving spread of DM2’s.

This result is analogous to Blackwell’s (1951, 1953) comparisons of experiments (in terms

of their information content) in a domain where probabilities are objective and comparisons

are made with respect to the accuracy of information structures. To rephrase our result in

the language of Blackwell, DM1 has more preference for flexibility than DM2 if and only if

DM2 would be weakly better off if he could rely on the information structure induced by the

subjective beliefs of DM1.

A subjective-learning representation does not allow the identification of information inde-

pendently of the induced changes in beliefs. The reason is that signals do not correspond to

events in the state space. Section 3 addresses this issue by studying the behavioral implica-

tions of a (subjective) partitional information structure on a given state space. A partition of

the state space is a canonical formalization of information that ensures that the state space

4



captures all the DM expects to know about the decision problem under consideration.4 This

formalization is empirically meaningful: an outside observer who knows the state of the

world will also know the information that the decision maker will receive. Theorem 3 de-

rives a partitional-learning representation that can be interpreted as follows: the DM has in

mind a partition of the state space and prior beliefs over the individual states. The parti-

tion describes what he expects to learn before facing the choice of an alternative from the

menu. The DM’s posterior beliefs conditional on learning an event in the partition are fully

determined from the prior beliefs using Bayes’ law. For each event, the DM plans to choose

an act that maximizes the corresponding expected utility. The partition and the beliefs are

endogenous components of the model, which are uniquely identified from choice behavior.

Given the assumptions of Theorem 1, Theorem 3 requires only one additional axiom, Con-

tingent planning. Suppose the DM knows what information he will receive contingent on the

true state of the world. In this case, he is sure about the act he will choose from the menu,

contingent on the true state. The DM should then be indifferent between choosing from the

menu after learning the deterministic signal, and committing, for every state, to receive the

payoff his certain choice would have generated in that state. Axiom Contingent planning

captures this indifference.

Individuals who disagree on their prior beliefs are not comparable in terms of their pref-

erence for flexibility. Since the description of information as a partition of the state space

does not depend on a specific probability distribution, a partitional-learning representation

facilitates the behavioral comparisons of such individuals. In particular, partitions can be

partially ranked in terms of their fineness, a property which provides a natural measure for

the degree of information, independently of any prior beliefs. The behavior of two individ-

uals who expect to receive different information differs in the value they derive from the

availability of binary bets. Suppose the DM prefers committing to a constant act that pays

c regardless of the state over committing to an act that offers a binary bet on state s versus

state s′ (in the sense that it pays well on s, pays badly on s′, and pays c otherwise). It may

still be the case that the DM values the binary bet as an option that is available in addition

to c. We say that DM1 values more binary bets than DM2 if for any two states s and s′ and

payoff c for which the premise above holds, whenever DM1 does not value the binary bet

as an option in addition to c, neither does DM2. Theorem 4 states that DM1 values more

binary bets than DM2 if and only if he expects to receive more information than DM2, in

the sense that his partition is finer.5

4For example, it is standard to model information as a partition of the state space in the literature on
games with incomplete information, that originated in the seminal contributions of Harsanyi (1967) and
Aumann (1976).

5An additional requirement for this comparison is that the two DMs agree on whether or not payoffs in
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We conclude by studying an individual who anticipates gradual resolution of uncertainty

over time. In many applications, the process of information acquisition over time may affect

the optimal timing of decisions. For example, an investor may decide to bear the cost of

delaying an investment with positive net present value if more information is expected to be

received about the distribution of future cash flows. To model such behavior, we introduce

the choice domain of dated-menus of the form (F, t), where F is a menu and t is the time by

which an alternative from the menu must be chosen. Suppose that fixing t, DM’s preferences

satisfy all the postulates underlying the partitional-learning representation. Furthermore,

suppose that the DM prefers to delay his choice from any menu F , in the sense that (F, t) is

weakly preferred to (F, t′) if t > t′, and he is indifferent to the timing if F is a singleton (since

then the future choice is trivial). Under these assumptions, the DM has more preference for

flexibility at time t than at t′, which means, by Theorem 4, that the partition at time t

must be finer than that at t′. Using this observation, we provide a learning by filtration

representation, which suggests that the DM behaves as if he has in mind a filtration indexed

by continuous time. Both the filtration, which is the timing of information arrival with the

sequence of partitions it induces, and the DM’s prior beliefs are uniquely determined from

choice behavior.

1.2. Related literature

To our knowledge, very few papers have explored the idea of subjective learning. Dillen-

berger and Sadowski (2012a) use the same domain as in the present paper to study the

most general representation for which signals correspond to events and the DM is Bayesian.

They characterize the class of information structures that admit such a representation as a

generalization of a set partition, which does not require deterministic signals (that is, the

true state of the world may appear in more than one event). Dillenberger and Sadowski show

that the generalized-partition model can be applied to study an individual who anticipates

gradual resolution of uncertainty over time, without extending the domain as we do in Sec-

tion 4. Takeoka (2007) uses a different approach to study subjective temporal resolution of

uncertainty. He analyzes choice between what one might term “compound menus” (menus

over menus etc.) Hyogo (2007) derives a representation that features beliefs over posteriors

on a richer domain, where the DM simultaneously chooses a menu of acts and takes an action

that might influence the (subjective) process of information arrival.

More generally, our work is part of the preferences over menus literature initiated by

state s are valuable at all. This implies that while their prior beliefs need not be the same, they should
have the same support. If, in addition, their prior beliefs are the same, then DM1 has more preference for
flexibility than DM2.
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Kreps (1979). Most papers in this literature study uncertainty over future tastes, and not

over beliefs on an objective state space. Kreps (1979) studies preferences over menus of

deterministic alternatives. Dekel, Lipman, and Rustichini (2001) extend Kreps’ domain of

choice to menus of lotteries. Our proof of Theorem 1 relies on a sequence of geometric

arguments that establish the connection between our domain and theirs. In the setting of

preferences over menus of lotteries, Ergin and Sarver (2010) provide an alternative to Hyogo’s

(2007) approach of modeling costly information acquisition. Recently, De Olivera (2012) and

Mihm and Ozbek (2012) combine the framework of the present paper with Ergin and Sarver’s

idea of costly contemplation to give behavioral foundations to rational inattention.

2. A general model of subjective learning

Let S = {s1, ..., sk} be a finite state space. An act is a mapping f : S → [0, 1]. Let F be

the set of all acts. Let K (F) be the set of all non-empty compact subsets of F , endowed

with the Hausdorff metric. Capital letters denote sets, or menus, and small letters denote

acts. For example, a typical menu is F = {f, g, h, ...} ∈ K (F). Let � be a binary relation

over K (F). The symmetric and asymmetric components of � are denoted by ∼ and ≻,

respectively. We interpret payoffs in [0, 1] to be in utils; that is, we assume that the cardinal

utility function over outcomes is known and payoffs are stated in its units. An alternative

interpretation is that there are two monetary prizes x > y, and f (s) = ps (x) ∈ [0, 1] is the

probability of getting the greater prize in state s.

Remark 1. Our analysis can be easily extended to the case where, instead of [0, 1], the range

of acts is a more general vector space. In particular, it could be formulated in the Anscombe

and Aumann (1963) setting. Since our focus is on deriving the DM’s subjective information

structure, we abstract in the main text from deriving the utility function (which is a standard

exercise) by looking directly at utility acts instead of the corresponding Anscombe-Aumann

acts. Appendix A formally provides this extension and derives the utility function, thereby

establishing the mapping between Anscombe-Aumann acts and utility acts.

The interpretation of the domain is that a menu F is chosen ex-ante according to �. This

choice is made with the understanding that at the unmodeled ex-post stage, the agent will

choose an act from F in the face of uncertainty about the true state of the world. The true

state is realized and payoffs are received in the terminal period. The ranking � is governed

by the anticipated choice from the menu, which, in turn, depends on what the DM expects to

learn before making that choice. Subjective learning is captured in the following definition

of a utility function over menus.
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Definition 1. The binary relation � has a subjective-learning representation if there

is a probability measure p on ∆(S), the space of all probability measures on S, such that

the function V : K (F) → R given by

V (F ) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s) π (s)

)
dp (π)

represents �.

A subjective-learning representation has the following interpretation: before choosing an

act from F , the DM can observe a signal, which allows him to update the prior probability

distribution over the states. Given the posterior probabilities π, the DM chooses an act

that maximizes his expected utility. Prior to observing the signal, his ex-ante expected

utility is the weighted average of these maximum expected utilities, where the weights are

the likelihood of receiving each signal. The probability distribution over posterior beliefs p

is the information structure.6 Figure 1 illustrates the timing of events and decisions.

Information:

p ∈ ∆(∆(S))

Menu Choice:
F ∈ K(F)

π ∈ ∆(S) realized

Choice from Menu:
f ∈ F

s ∈ S realized

Payoffs received

Figure 1: Subjective Learning Timeline

It is evident from the description of the model that the information structure in a

subjective-learning representation is not given to us objectively. Instead, the probability

measure p should be derived from choice behavior. To do this, we impose Axioms 1-6 below

on �, and then show that they are necessary and sufficient for the existence of a subjective-

learning representation with uniquely identified information structure p.

2.1. Axioms and representation result

We impose six axioms on the relation �. The first three are standard, and play the same

role in this paper as they do in more familiar contexts.7

6Formally p ∈ ∆(∆(S)), the set of all Borel probability measures over ∆ (S) . Note that signals in a
subjective-learning representation are identified with the posterior beliefs in the support of p.

7We refer the reader to Dekel, Lipman, and Rustichini (2001) for a discussion of these axioms in the
context of preferences over menus of lotteries.
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Axiom 1 (Preference relation). The relation � is complete and transitive.

Definition 2. Let αF+(1− α)G := {αf + (1− α) g : f ∈ F, g ∈ G}, where αf+(1− α) g

is the act that yields αf (s) + (1− α) g (s) in state s.

Axiom 2 (vNM Continuity). If F ≻ G ≻ H then there are α, β ∈ (0, 1), such that

αF + (1− α)H ≻ G ≻ βF + (1− β)H .

Axiom 3 (Nontriviality). There are F and G such that F ≻ G.

Axiom 4 (Independence). For all F, G, H , and α ∈ [0, 1],

F � G ⇔ αF + (1− α)H � αG+ (1− α)H.

In the context of choice between menus of utility acts, Axiom 4 is justified by the following

two steps: First, for any two menus F,H and α ∈ [0, 1], denote by α◦F+(1−α)◦H the lottery

which assigns F with probability α and H with probability (1−α). The vNM independence

axiom implies that for any α ∈ [0, 1], F is preferred to G if and only if α ◦F + (1−α) ◦H is

preferred to α ◦G+ (1− α) ◦H . Second, we argue that a DM who wants to obey the vNM

axioms when evaluating lotteries and acts, should be indifferent between α ◦F +(1−α) ◦H

and αF + (1− α)H . To see this, suppose the DM would choose f ∗ from F and h∗ from H .

Then, the realization of the lottery α ◦F + (1−α) ◦H together with a subsequent choice of

an alternative from either F or H implies that, from the ex-ante perspective and contingent

on state s, the DM faces the lottery α ◦ f ∗ (s) + (1− α) ◦ h∗ (s). Since f ∗ (s) and h∗ (s) are

utils, the expected utility of this lottery is simply αf ∗ (s)+ (1−α)h∗ (s). The corresponding

choice of αf ∗ + (1 − α)h∗ from αF + (1 − α)H also yields utility αf ∗ (s) + (1 − α)h∗ (s),

contingent on state s. Since α◦F +(1−α)◦H and αF +(1−α)H give the same consequence

from the ex-ante perspective, the DM should be indifferent between them.

The next axiom was first proposed in Kreps (1979). It captures preference for flexibility,

that is, bigger sets are weakly preferred.

Axiom 5 (Set monotonicity). If F ⊂ G then G � F .

Axiom 5 is the observable indication of information in the model; the DM likes bigger

sets since more available options allow him to better adjust his choice to his updated beliefs.

The interpretation of f (·) as a vector of utils requires the following payoff-monotonicity

axiom.

Axiom 6 (Domination). If f (s) ≥ g (s) for all s ∈ S and f ∈ F , then F ∼ F ∪ {g}.
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We now present our first representation theorem.

Theorem 1. The relation � satisfies Axioms 1–6 if and only if it has a subjective-learning

representation. Furthermore, the probability measure p is unique.

Proof. See Appendix B.1.

A related work, Dekel, Lipman, and Rustichini (2001), analyzes choice over menus of

lotteries and provides a representation that suggests uncertainty about the DM’s tastes

(a relevant corrigendum is Dekel, Lipman, Rustichini, and Sarver (2007)). Our proof of

Theorem 1 relies on a sequence of geometric arguments that establish the connection between

our domain and theirs, as we now explain.

In DLR’s representation,8 the value of a menu of lotteries F is given by

V (F ) =
∫

u∈U

max
q∈F

(∑
z∈Zq (z) u (z)

)
dp (u) , (1)

where Z is a finite set of prizes, q is a lottery over Z, U is the set of normalized Bernoulli

functions u over Z, and p is a probability measure over U with support σ (p). The key

observation in our proof is that the set of acts on S with outcomes in [0, 1] is isomorphic to

the set of lotteries over |S|+1 pure outcomes, where each state s ∈ S is given the weight f(s)
|S|

and the additional state s|S|+1 is given the weight 1−
∑

s∈S
f(s)
|S|

. Based on this observation,

DLR’s representation in (1) is translated in our setting to a representation of the form

V (F ) =
1

|S|

∫
u∈U

max
f∈F

(∑
s∈Sf (s)u (s) +

(
|S| −

∑
s∈Sf (s)

)
u
(
s|S|+1

))
dp (u) .

We would like to interpret each u ∈ σ (p) as a probability measure over S. First, to be

consistent with our notation, let π (s) = u (s). Using Axiom 6, we show that π (s) ≥ π
(
s|S|+1

)

for all s ∈ S and for all π ∈ σ (p), which means that we can normalize π
(
s|S|+1

)
= 0 for all

π ∈ σ (p). The representation in Theorem 1 is then obtained by renormalizing each π to be

a probability measure over S, simultaneously adjusting p to keep the relative weights across

states intact.

The parameter p is uniquely identified in the representation above, because p and π are

required to be probability measures. Such natural normalization does not exist in Dekel

et al. (2001, 2007) and, therefore, they can only jointly identify the parameters in their

representation. Unique identification underlies the behavioral comparison in Section 2.2.

8We consistently refer to the version of their representation that assumes Set Monotonicity.
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2.2. More preference for flexibility and the theorem of Blackwell

Blackwell’s (1951, 1953) theorem is a fundamental result in information theory. It establishes

an equivalence between (i) a statistical condition under which information structure p is

considered more informative than another information structure, q; and (ii) the idea that,

independently of the underlying decision problem, any expected utility maximizer would

prefer using p rather than q. As we pointed out above, the information structure in our

paper is not objectively given but is derived from choice over menus of acts. Our goal in

this section is to find the behavioral comparison (in terms of preferences over menus) which

corresponds to two derived information structures that can be compared in terms of their

informativeness. In particular, we use Theorem 1 to connect a notion of preference for

flexibility with the DM’s subjective learning. In what follows, when we discuss a particular

individual i, we denote by �i his preferences and by superscript i any component of his

utility representation.

We first suggest a comparative notion of more preference for flexibility.

Definition 3. DM1 has more preference for flexibility than DM2 if for all f ∈ F and for

all G ∈ K (F),

{f} �1 G implies {f} �2 G.

Expressed in words, DM1 has more preference for flexibility than DM2 if whenever DM1

prefers to commit to a particular action rather than to retain an option to choose, so does

DM2.9,10

The next claim shows that two DMs who are comparable in terms of their preference for

flexibility must agree on the ranking of singletons.

Claim 1. Suppose DM1 has more preference for flexibility than DM2. Then {f} �1 {g} if

and only if {f} �2 {g} .

Proof. See Appendix B.2

We now compare subjective information structures in analogy to the notion of better

information proposed by Blackwell in the context of objective information. Definition 4

9Definition 3 is analogous to the notion of “more aversion to commitment” as appears in Higashi, Hyogo,
and Takeoka (2009, Definition 4.4, p. 1031) in the context of preferences over menus of lotteries.

10Definition 3 does not imply greater willingness to pay to add options to any given menu. In fact, defining
more preference for flexibility this way results in an empty relation. To see this, suppose that �1 6=�2 and,
for simplicity, that the supports of p1 and p2 are finite. Using Theorem 1, there is a posterior belief π, such
that p1 (π) > p2 (π). It is easy to construct a menu that generates payoff k − δ under belief π and payoff
k under any other belief. DM1 then would be willing to pay more than DM2 to add an act that yields
payoff k under π, hence DM2 would not have more preference for flexibility than DM1. But by a symmetric
argument, DM1 would also not have more preference for flexibility than DM2.
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below says that an information structure is better than another one if and only if both

structures induce the same prior probability distribution, and all posterior probabilities of

the latter are a convex combination of the posterior probabilities of the former.

For any p ∈ ∆(∆(S)), let σ(p) ⊂ ∆(S) denote the support of p.

Definition 4. DM1 expects to be better informed than DM2 if and only if DM1’s distribu-

tion of posterior beliefs is a mean-preserving spread of DM2’s (in the space of probability

distributions). That is, there exists a nonnegative function k : σ (p1) × σ (p2) → R+, satis-

fying
∫

σ(p1)

k (π, π′) dπ = 1 for all π′ ∈ σ (p2), such that

1. p1 (π) =
∫

σ(p2)

k (π, π′) dp2 (π′) for all π ∈ σ (p1); and

2. π′ (s) =
∫

σ(p1)

π (s) k (π, π′) dπ for all π′ ∈ σ (p2) and s ∈ S.

Note that conditions (1) and (2) imply that
∫

σ(p1)

π (s) dp1 (π) =
∫

σ(p2)

π (s) dp2 (π) for all

s ∈ S, that is, the prior is the same under both p1 and p2.

Theorem 2. If DM1 and DM2 have preferences that can be represented as in Theorem 1,

then DM1 has more preference for flexibility than DM2 if and only if DM1 expects to be

better informed than DM2.11

Proof. Blackwell (1953) establishes that DM1’s distribution of posterior beliefs is a mean-

preserving spread of DM2’s if and only if V 1 (G) ≥ V 2 (G) for any G ∈ K (F) (see Kihlstrom

(1984) or Gollier (2001) for an illustrative proof and discussion). At the same time, V 1 ({f}) =

V 2 ({f}) for any f ∈ F . Hence, V 1 ({f}) ≥ V 1 (G) implies V 2 ({f}) ≥ V 2 (G). Conversely,

suppose V 2 (G) > V 1 (G) for some G ∈ K (F) . Then continuity implies that there exists

f ∈ F with V 2 (G) > V 2 ({f}) = V 1 ({f}) > V 1 (G).

3. Partitional learning

We now study a more parsimonious model of learning, in which signals are deterministic,

that is, they correspond to events that partition the state space. This model describes in-

formation independently of the (induced) changes in beliefs. Section 3.1 investigates the

behavioral implications of this type of learning and identifies one axiom which is both neces-

sary and sufficient to restrict the information structure in a subjective-learning representation

11The characterization of preference for flexibility via Blackwell’s comparison of information structures is
specific to our context, where this preference arises due to uncertainty about learning. Krishna and Sadowski
(2012) provide an analogous result in a context where preference for flexibility arises due to uncertain tastes.
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to produce deterministic signals. A useful application of the model is the comparison of the

behavior of two DMs who learn differently without requiring them to hold the same prior

beliefs, as analyzed in Section 3.2.

3.1. Partitional-learning representation

Suppose the DM knows what information he will receive contingent on the (unknown) true

state of the world. He can then anticipate which act he will choose from the menu, contingent

on the true state. In this case, the DM should be indifferent between choosing from the menu

after learning the signal, and committing, for every state, to receive the payoff his certain

choice would have generated in that state. This is the content of Axiom 7 below. In order to

state the axiom, we first need to define the notion of a contingent plan from a given menu.

Definition 5. Given F ∈ K (F), let CP (F ) be the collection of contingent plans that

correspond to F , that is,

CP (F ) := {g ∈ F | ∀s ∈ S there is f ∈ F with g (s) = f (s)} .

In words, a contingent plan from a menu F is an act whose outcome in any state agrees

with that of some act in F . Note that F ⊆ CP (F ).

Axiom 7 (Contingent planning). For every F ∈ K (F) there exists fF ∈ CP (F ) such

that F ∼ {fF}.

Axiom 7 requires that any menu of acts has a corresponding contingent plan which is

indifferent to it.

We now introduce the notion of a partitional-learning representation:

Definition 6. The binary relation � has a partitional-learning representation, (µ,P),

if (i) µ is a probability measure on S; (ii) P is a partition of σ (µ), the support of µ; and

(iii) the function

V (F ) =
∑

I∈Pmax
f∈F

(∑
s∈If (s)µ (s)

)

represents �.

A partitional-learning representation has the following interpretation: contingent on the

true state of the world being s, the DM is sure to learn a specific event Is, with s ∈ Is ⊂ S.

Upon learning an event, the DM calculates his posterior beliefs by excluding all states that

are not in that event and applying Bayes’ law with respect to the remaining states. The DM

then chooses the available act that maximizes the corresponding expected utility.
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It is not difficult to see that Axiom 7 is necessary for a partitional-learning representation

(µ,P). For any s ∈ σ (µ), let Is ∈ P be the unique element of the partition that includes

state s. For any menu F , an indifferent contingent plan fF ∈ CP (F ) can be constructed by

letting fF pay in state s what the optimal act in F contingent on Is pays in that state, that

is,

fF (s) =

(
argmax

f∈F

∑
s′∈Is

f (s′)µ (s′)

)
(s) .

For example, let S = {s1, s2} and F = {(1, 0) , (0.5, 0.5)}, which means that CP (F ) =

F ∪{(1, 0.5) , (0.5, 0)}.12 Let (µ,P) be a partitional-learning representation with µ (s1) = 0.5

and P = {{s1} , {s2}}. Then V (F ) = V ({(1, 0.5)}) = 0.75, that is, F ∼ {(1, 0.5)}.

It is also easy to find a general representation as in Theorem 1 that violates Axiom

7. Consider the same S and F as above, and let σ (p) = {π = (0.9, 0.1) , π′ = (0.1, 0.9)}

with p (π′) = 0.5. Then V (F ) = 0.5 × 0.9 + 0.5 × 0.5 = 0.7, whereas V ({(0.5, 0.5)}) =

V ({(1, 0)}) = 0.5, V ({(0, 0.5)}) = 0.25, and V ({(1, 0.5)}) = 0.75. This example demon-

strates that Axiom 7 is easily testable; if F is finite then the set CP (F ) is also finite and

violation of the axiom can be obtained in a finite number of observed choice situations.

Our next result establishes that such a violation of Axiom 7 can always be produced

unless signals are deterministic. That is, adding Axiom 7 to the axioms in Theorem 1 is not

only necessary, but also sufficient for a partitional–learning representation.

Theorem 3. The relation � satisfies Axioms 1–7 if and only if it has a partitional-learning

representation (µ,P). Furthermore, the pair (µ,P) is unique.

Proof. See Appendix B.3.

Theorem 3 states the conditions under which information can be uniquely identified

from choice behavior as a partition of the objective state space. This partition, which is

an endogenous component of the model, represents what the DM expects to know before a

choice from the menu has to be made. As we point out in the introduction, a partition of

the state space is a canonical formalization of information that describes signals as events in

the state space.

Axiom 7 is the behavioral criterion for determining whether the analyst can indeed confine

his attention to partitional learning. It implies that the objective state space S is large

enough, in the sense that the DM’s subjective uncertainty is measurable in S. That is, the

axiom implies that the state space captures all the DM expects to know about the decision

problem under consideration.

12For notational convenience, we denote here an act by an ordered pair of state contingent payoffs, x =
(x1, x2), where xi is the payoff received in state i.
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To illustrate why Axiom 7 is sufficient in Theorem 3, we first note that in the context of

a subjective-learning representation as in Theorem 1, receiving deterministic signals implies

that for all π, π′ ∈ σ (p), π = π′ or σ (π) ∩ σ (π′) = ∅. In that case we say that p is

partitional. Roughly, if p is not partitional, we can always find a state s, two acts f and

g with 0 < f (s) 6= g (s) > 0, and a menu F that includes f and g, such that slightly

changing either f (s) or g (s) changes V (F ). If fF ∈ CP (F ) satisfies F ∼ {fF}, then either

fF (s) 6= f (s) or fF (s) 6= g (s), or both. If, without loss of generality, the former holds,

then fF ∈ CP (Fε), but {fF} ≁ Fε, where Fε is obtained from F by reducing f (s) by ε > 0

small enough. If there happens to be fFε
∈ CP (Fε) such that Fε ∼ {fFε

}, we can proceed

inductively to construct a menu for which Axiom 7 is violated.

There are several advantages of the partitional-learning representation over the more gen-

eral subjective-learning representation. First, as we show in Section 3.2, partitional-learning

representation allows comparing individuals in terms of their preference for flexibility, even

if they hold different prior beliefs. Second, partitional-learning representation can be used to

forecast the DM’s ex-post behavior, or choice from menus. Suppose the analyst is willing to

assume that the DM’s choice from a menu is governed by the subjective learning represen-

tation of Theorem 1. At the same time, however, the analyst may disagree with the DM’s

prior over the objective state space, as elicited from the DM’s choice over menus. Suppose

the DM learns by a partition of S. In that case, while behavior conditional on receiving

each signal is fully determined by the DM’s prior (converted into a posterior using Bayes’

law), the analyst can evaluate the likelihood of each signal based on his own prior when

forecasting the DM’s choice frequencies. In particular, if the analyst has a degenerate prior

at some state of the world (he knows the true state) then he can deduce the event the DM

will learn, and consequently can predict the DM’s choice from a menu with certainty. Such

prediction is impossible if the DM does not face deterministic signals.

A third advantage is that partitional-learning can be used to analyze the welfare effects

of a change in the informational environment. Suppose, for example, that a social planner

considers a policy that would require two individuals to share their information structure.

The value of such a policy is unambiguous if both individuals learn via partition, in which

case the refined information structure relevant for each of them is simply the ‘meet’ of the

two individual partitions. If, on the other hand, subjective signals are not deterministic,

then assessing the value of the policy entails knowing the correlation between the individual

signals; this information can not be elicited solely from an individual’s choice behavior.

Lastly, the dimensionality of the parameters that describe a partitional-learning represen-

tation is significantly lower than that of the parameters used in a more general subjective-

learning representation, leading to a more tractable functional form. In particular, the
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measure µ in the specification of a partitional-learning representation is over the finite set

S, whereas the measure p that specifies a subjective-learning representation is on the multi-

dimensional vector space ∆ (S).

3.2. Comparing valuations of binary bets

As shown in Section 2.2, individuals who disagree on their prior beliefs are not comparable

in terms of their preference for flexibility. The partitional-learning representation facilitates

a behavioral comparison of the information of individuals with different priors because par-

titions can be partially ranked in terms of their fineness, independent of any prior beliefs.

The behavior of two individuals who expect to receive different information differs in the

value they derive from the availability of binary bets, as we now describe.

For c ∈ (0, 1) and s, s′ ∈ S, define the acts c+s and c+s
−s′ by

c+s (ŝ) =

{
1 if ŝ = s

c otherwise
and c+s

−s′ (ŝ) =





1 if ŝ = s

0 if ŝ = s′

c otherwise

.

Slightly abusing notation, we denote by c the constant act that always yields c.

Definition 7. DM1 values more binary bets than DM2 if for all s, s′ ∈ S and c ∈ (0, 1),

1. {c} ∼1 {c
+s} ⇔ {c} ∼2 {c

+s}; and

2. {c} �i

{
c+s
−s′

}
for i = 1, 2 and {c} �1

{
c+s
−s′, c

}
⇒ {c} �2

{
c+s
−s′, c

}
.

Condition (1) says that the two DMs agree on whether or not payoffs in state s are

valuable. Condition (2) says that having the bet c+s
−s′ available is valuable to DM1 whenever

it is valuable to DM2. The notion of valuing more binary bets weakens the notion of more

preference for flexibility (Definition 3); Condition (2) is implied by Definition 3 and Condition

(1) is implied by Claim 1.

A natural measure of the amount of information that a DM expects to receive is the

fineness of his partition.

Definition 8. The partition P is finer than partition Q if for every I ∈ P there is I ′ ∈ Q

such that I ⊆ I ′.

Theorem 4. If DM1 and DM2 have preferences that can be represented as in Theorem 3,

then
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(i) DM1 values more binary bets than DM2 if and only if σ (µ1) = σ (µ2) and P1 is finer

than P2.

(ii) DM1 has more preference for flexibility than DM2, if and only if µ1 = µ2 and P1 is

finer than P2.

Proof. See Appendix B.4.

Theorem 4 (i) compares the behavior of two individuals who expect to learn differently,

without requiring that they share the same prior beliefs; instead, the only requirement is

that their prior beliefs have the same support. For example, DM1 might consider himself

a better experimenter than DM2, in the sense of expecting a finer partition, even though

DM2’s prior is sharper. In contrast, and in line with Theorem 2, Theorem 4 (ii) states that

the stronger comparison of more preference for flexibility corresponds exactly to adding the

requirement that the prior beliefs are the same.

4. Subjective gradual resolution of uncertainty

In order to model a DM who expects to learn gradually over time, we now introduce the

domain of dated-menus, where the DM can choose not only among menus but also the

future time by which he will make his choice of an act from the menu. Formally, consider

the domain K (F)× [0, 1], where a typical element (F, t) represents a menu and a time by

which an alternative from the menu must be chosen. As a concrete example, consider an

investor who should choose not only whether or not, but also when to invest, in anticipation

of uncertain future profits. Delaying the investment may be costly, but it may have an option

value; equipped with more information, the investor can decide to refrain from investing if

he learns that profits are likely to be too low. If we denote by ct the cost of investment at

time t and by xs the profits if state s realized, then the pair (It, t) corresponds to the date t

option (It) to either invest, which pays xs − ct in state s, or not to invest, which pays 0 in

every state.

Let �∗ be a preference relation over K (F)× [0, 1]. For each t ∈ [0, 1], define the induced

binary relation �∗
t by G �∗

t F ⇔ (G, t) �∗ (F, t). Clearly �∗
t is a preference relation (it

satisfies Axiom 1). We assume that each �∗
t also satisfies Axioms 2–6 and hence admits a

subjective-learning representation, that is,

Vt (F ) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s)π (s)

)
dpt (π)

represents �∗
t , and pt (·) is unique.
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For each F ∈ K (F), define the induced binary relation �∗
F by t �∗

F t′ ⇔ (F, t) �∗ (F, t′).

Again, �∗
F satisfies Axiom 1. We impose on �∗

F the following additional axioms:

Axiom 8 (Preference for choosing late). For all t, t′ ∈ [0, 1] and F ∈ K (F),

t ≥ t′ ⇒ t �∗
F t′.

If the DM expects uncertainty to resolve over time, then waiting enables him to make a

more informed choice from the menu. The next axiom rules out intrinsic preference for the

timing of choice, independently of the instrumental value of information.

Axiom 9 (Time-independent singleton preferences). For all t, t′ ∈ [0, 1] and f ∈ F ,

t ∼∗
{f} t′.

Since the singleton menu {f} does not leave the DM any flexibility to adjust his choice

to new information, the time component should play no role in its evaluation.

Definition 9. The collection of measures (pt)t∈[0,1] is a gradual-learning representation

if the function V ∗ given by

V ∗ (F, t) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s) π (s)

)
dpt (π)

represents �∗, and pt is a mean preserving spread of pt′ , whenever t ≥ t′.

Theorem 5. Let �∗ be a preference relation over F× [0, 1]. The following two statements

are equivalent:

(i) For each t ∈ [0, 1], the relation �∗
t satisfies Axioms 2–6, and for each F ∈ K (F), the

relation �∗
F satisfies Axiom 8 and Axiom 9.

(ii) The relation �∗ has a gradual-learning representation. Furthermore, the collection

(pt)t∈[0,1] is unique.

Proof. See Appendix B.5.

The key idea behind the proof of Theorem 5 is the observation that Axioms 8 and 9

imply that �∗
t has more preference for flexibility than �∗

t′ whenever t > t′. The result then

follows by applying Theorem 2.

A DM who expects to learn gradually over time may face an intertemporal trade-off (as in

the example in the beginning of this section). If he anticipates late resolution of uncertainty,

he would like to postpone his decision until the uncertainty is resolved. But waiting might
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be costly, in the sense that the set of available options at that later time will be inferior to

the one available earlier. Theorem 5 suggests a way to resolve this intertemporal trade-off; it

pins down how the DM’s knowledge will be improved through time and how this improved

knowledge affects the values of different choice problems (menus).

Theorem 5 can be readily specialized to the case where for each t ∈ [0, 1], �∗
t satisfies

Axioms 2–7 and hence admits a partitional-learning representation (as in Section 3). In that

case, it captures a DM who has in mind a filtration.

Definition 10. The pair
(
µ, {Pt}t∈[0,1]

)
is a learning by filtration representation if (i)

µ is a probability measure on S; (ii) {Pt}t∈[0,1] is a filtration on σ (µ) indexed by t ∈ [0, 1];13

and

V ∗ (F, t) =
∑

I∈Pt
max
f∈F

(∑
s∈If (s)µ (s)

)

represents �∗.

Corollary 1. Let �∗ be a preference relation over F× [0, 1]. The following two statements

are equivalent:

(i) For each t ∈ [0, 1], the relation �∗
t satisfies Axioms 2–7, and for each F ∈ K (F), the

relation �∗
F satisfies Axiom 8 and Axiom 9.

(ii) The relation � has a learning by filtration representation. Furthermore, the pair(
µ, {Pt}t∈[0,1]

)
is unique.

Proof. It is sufficient to observe that under the additional Axiom 7, pt is a mean preserving

spread of pt′ if and only if Pt is finer than Pt′ and µt = µt′ .

Under the assumptions underlying the learning by filtration representation, an immediate

implication of Theorem 4 (ii) is that DM1 has more preference for flexibility than DM2 for

all t, if and only if µ1 = µ2 and he has a finer filtration, that is, the partition P 1
t is finer than

P 2
t for all t. Intuitively, DM1 has more preference for flexibility than DM2 for all t if and only

if he expects to learn earlier. Reconsider the investment example outlined in the beginning

of the section, where a menu (It, t) corresponds to the date t option to either invest, which

pays xs − ct in state s, or not to invest, which pays 0 in every state. In particular, the menu

(I0, 0) corresponds to the option of investing immediately, before any new information can

arrive. Suppose that (i) c0 = 0 and that t > t′ implies ct > ct′ ; (ii) both DMs would invest

given their initial knowledge, that is, they are indifferent between (I0, 0) and the act that

pays xs in state s; and (iii) the decision to invest can be delayed by some arbitrary but fixed

13Slightly abusing notation, we identify a filtration with a right-continuous and nondecreasing (with respect
to set inclusion) function from [0, 1] to 2σ(µ).
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amount of time t. In this case, if DM1 learns earlier than DM2, then if DM1 does not value

the option to delay the decision, neither does DM2.

Appendices

A. Anscombe and Aumann setting

Since our focus is on deriving the DM’s subjective information structure, we abstract in the

body of the paper from deriving the utility function by looking directly at utility acts. In

this appendix, we show that our analysis can be easily extended to the case where the range

of acts is the set of lotteries, known as the Anscombe and Aumann (1963) setting.

Let S be a finite state space, and X be a compact metric space. The set of all Borel

probability measures, called lotteries, on X is denoted by ∆(X), which is endowed with the

weak convergence topology. An Anscombe-Aumann act (AA-act) is a function f : S →

∆(X). Let F∗ be the set of all AA-acts. We consider preference � over the set K(F∗) of

all menus of AA-acts. A mixture operation between two menus is defined by the mixture of

two AA-acts as usual.

Axioms 1, 2, 4, and 5 can be directly translated into the current setting. To reformulate

Axiom 6, for all f, g ∈ F∗, we say that f dominates g if {f(s)} � {g(s)} for all s ∈ S. That

is, a dominant act f gives the DM a better lottery in terms of commitment ranking in every

state of the world. The following is an analogue of Axiom 6:

Axiom 10 (Domination*). If f dominates g and f ∈ F , then F ∼ F ∪ {g}.

Since a dominated act always gives less utilities no matter what information arrives in

the future, it is never chosen over a dominant act. Therefore, the DM does not care about

adding a dominated act into a menu, as described in the axiom.

The appropriate version of Axiom 3 is

Axiom 11 (Nontriviality*). there exist lotteries ℓ, ℓ′ ∈ ∆(X) with {ℓ} ≻ {ℓ′}.

Now suppose that preference � over K(F∗) satisfies Axioms 1, 2, 4, 5, 10, and 11. By

Axioms 1, 2, 11, and 4, there exists a non-constant mixture linear function u : ∆(X) → [0, 1]

representing the commitment preference over ∆(X). By using this utility function as a

measuring rod, for any f ∈ F∗, we can define the corresponding utility act u(f) : S → [0, 1]

by u(f)(s) := u(f(s)) for all s. Furthermore, for all F ∈ K(F∗), define the corresponding

menu in K(F) by Fu := {u(f) ∈ F | f ∈ F}. The induced preference over K(F) is defined

as Fu � Gu if and only if F � G.
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The following proposition states that the Anscombe-Aumann setting can be reduced to

our setting of utility acts. A proof is omitted.

Proposition 1. If Preference � over K(F∗) satisfies Axioms 1, 2, 4, 5, 10, and 11, then the

induced preference over K(F) satisfies Axioms 1–6.

In order to conduct interpersonal comparisons about information structures, it suffices

to assume that two individuals �i, i = 1, 2, have the same risk preference, that is, for all

ℓ, ℓ′ ∈ ∆(X), {ℓ} �1 {ℓ
′} if and only if {ℓ} �2 {ℓ

′}. Then, without loss of generality, we can

assume that their risk preferences are represented by the same expected utility function u

over ∆(X), and adopt the same interpersonal comparisons as in the previous sections.

B. Proofs

B.1. Proof of Theorem 1

It is easily verified that any binary relation � with a subjective-learning representation

satisfies the axioms. We proceed to show the sufficiency of the axioms.

We can identify F with the set of all k−dimensional vectors, where each entry is in [0, 1].

For reasons that will become clear below, we now introduce an artificial state, sk+1. Let

F ′ :=
{
f ′ ∈ [0, 1]k × [0, k]

∣∣∣
∑k+1

i=1 f
′ (si) = k

}
.

Note that the k+ 1 component in f ′ equals k−
∑k

i=1f
′ (si). For f

′ ∈ F ′, denote by f ′k ∈ F

the vector that agrees with the first k components of f ′. Since F and F ′ are isomorphic,

we can look at a preference relation on K (F ′), �∗, defined by: F ′ �∗ G′ ⇔ F � G, where

F :=
{
f ∈ F

∣∣f = f ′k for some f ′ ∈ F ′
}
and analogously for G.

Claim 2. The relation �∗ satisfies the independence axiom.

Proof. Using the definition of �∗ and Axiom 4, we have, for all F ′, G′, and H ′ in K (F ′)

and for all α ∈ [0, 1],

F ′ �∗ G
′ ⇔ F � G ⇔ αF + (1− α)H � αG+ (1− α)H ⇔

(αF + (1− α)H)′ �∗ (αG+ (1− α)H)′ ⇔ αF ′ + (1− α)H ′ �∗ αG
′ + (1− α)H ′.

Let

F ′′ :=
{
f ′ ∈ [0, k]k+1

∣∣∣
∑k+1

i=1 f
′ (si) = k

}
.
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Let F k+1 :=
{(

k
k+1

, ..., k
k+1

)}
∈ K (F ′). Observe that for F ′′ ∈ F ′′ and ε < 1

k2
, εF ′′ +

(1− ε)F k+1 ∈ K (F ′). Define �∗∗ on K (F ′′) by F ′′ �∗∗ G′′ ⇔ εF ′′ + (1− ε)F k+1 �∗

εG′′ + (1− ε)F k+1 for all ε < 1
k2
.

Claim 3. The relation �∗∗ is the unique extension of �∗ to K (F ′′) that satisfies the inde-

pendence axiom.

Proof. Note that the (k + 1)-dimensional vector
(

k
k+1

, ..., k
k+1

)
∈ intF ′ ⊂ F ′′, hence F k+1 ⊂

intF ′ ⊂ F ′′. We now show that �∗∗ satisfies independence. For any F ′′, G′′, H ′′ ∈ K (F ′′)

and α ∈ [0, 1],

F ′′ �∗∗ G
′′ ⇔ εF ′′ + (1− ε)F k+1 �∗ εG

′′ + (1− ε)F k+1 ⇔

α
(
εF ′′ + (1− ε)F k+1

)
+ (1− α)

(
εH ′′ + (1− ε)F k+1

)

= ε (αF ′′ + (1− α)H ′′) + (1− ε)F k+1 �∗

α
(
εG′′ + (1− ε)F k+1

)
+ (1− α)

(
εH ′′ + (1− ε)F k+1

)

= ε (αG′′ + (1− α)H ′′) + (1− ε)F k+1 ⇔ αF ′′ + (1− α)H ′′ �∗∗ αG
′′ + (1− α)H ′′.

The first and third ⇔ is by the definition of �∗∗. The second ⇔ is by Claim 2.14 This

argument shows that a linear extension exists. To show uniqueness, let �̂ be any linear

extension over K (F ′′) of �. By independence, F ′′ �̂ G′′ ⇔ εF ′′ + (1− ε)F k+1 �̂ εG′′ +

(1− ε)F k+1. Since �̂ extends �∗, they must agree on K (F ′). Therefore,

εF ′′ + (1− ε)F k+1 �̂ εG′′ + (1− ε)F k+1 ⇔ εF ′′ + (1− ε)F k+1 �∗ εG
′′ + (1− ε)F k+1.

By combining the two equivalences above, we conclude that defining �̂ by F ′′ �̂ G′′ ⇔

εF ′′ + (1− ε)F k+1 �∗ εG
′′ + (1− ε)F k+1 is the only admissible extension of �∗.

The domain K (F ′′) with the Hausdorff metric is formally equivalent to that of Dekel,

Lipman, Rustichini, and Sarver (2007, henceforth DLRS) with k + 1 prizes. (The unit

simplex is obtained by rescaling all elements of F ′′ by 1/k, that is, by redefining F ′′ as{
f ′ ∈ [0, 1]k+1 :

∑k+1
i=1 f

′ (si) = 1
}
.) Applying Theorem 2 in DLRS,15 one obtains the follow-

14The (=) sign in the third and in fifth lines are due to the fact that F k+1 is a singleton menu. For a
singleton menu {f} and α ∈ (0, 1) ,

α {f}+ (1− α) {f} = {f}

while, for example,

α {f, g}+ (1− α) {f, g} = {f, g, αf + (1− α) g, αg + (1− α) f} ,

is not generally equal to {f, g} .
15DLRS provide a supplemental appendix which shows that, for the purpose of the theorem, their stronger

continuity assumption can be relaxed to the weaker notion of vNM continuity used in the present paper.
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ing representation of �∗∗:

V̂ (F ′′) =
∫

M(S)

max
f ′′∈F ′′

(∑
s∈S∪{sk+1}

f ′′ (s) π̂ (s)
)
dp̂ (π̂) ,

where M (S) :=
{
π̂
∣∣∣
∑

s∈S∪{sk+1}
π̂ (s) = 0 and

∑
s∈S∪{sk+1}

(π̂ (s))2 = 1
}
. Given the nor-

malization of π̂ ∈ M (S), p̂ (·) is a unique probability measure. Note that V̂ also represents

�∗ when restricted to its domain, K (F ′).

We aim for a representation of � of the form

V (F ) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s)π (s)

)
dp (π) ,

where f (·) is a vector of utils and p (·) is a unique probability measure on ∆ (S), the space

of all probability measures on S.

We now explore the additional constraint imposed on V̂ by Axiom 6 and the definition

of �∗.

Claim 4. π̂ (sk+1) ≤ π̂ (s) for all s ∈ S, p̂−almost surely.

Proof. Suppose there exists some event E ⊂ M (S) with p̂ (E) > 0 and π̂ (sk+1) > π̂ (s) for

some s ∈ S and all π̂ ∈ E. Let f ′ = (0, 0, ..., 0, ε, 0, ..., k− ε) , where ε is received in state s

and k− ε is received in state sk+1. Let g
′ = (0, 0, ..0, 0, 0, ..., k). Then {f ′, g′} ≻∗ {f

′}. Take

F ′ = {f ′} (so that F ′ ∪ {g′} ≻∗ F
′). But note that Axiom 6 and the definition of �∗ imply

that F ′ ∼∗ F
′ ∪ {g′}, which is a contradiction.

Given our construction of V̂ , there are two natural normalizations that allow us to replace

the measure p̂ on M (S) with a unique probability measure p on ∆ (S).

First, since sk+1 is an artificial state, the representation should satisfy π (sk+1) = 0,

p−almost surely. For all s ∈ S and for all π̂, define ξ (π̂ (s)) := π̂ (s) − π̂ (sk+1). Since
∑k+1

i=1 f
′ (si) = k and ξ simply adds a constant to every π̂,

argmax
f ′′∈F ′′

(∑
s∈S∪{sk+1}

f ′′ (s) ξ (π̂ (s))
)
= argmax

f ′′∈F ′′

(∑
s∈S∪{sk+1}

f ′′ (s) π̂ (s)
)

for all π̂ ∈ σ (p̂). Furthermore, by Claim 4, ξ (π̂ (s)) ≥ 0 for all s ∈ S, p̂−almost surely.

Second, we would like to transform ξ ◦ π̂ into a probability measure π. Let

π (s) := ξ (π̂ (s)) /
(∑

s′∈Sξ (π̂ (s′))
)
.

(recall that ξ (π̂ (sk+1)) = 0). Since this transformation affects the relative weight given to
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event E ⊂ M (S) in the representation, we need p to be a probability measure on E that

offsets this effect. The identification result in DLRS implies that this p is unique and can be

calculated via the Radon-Nikodym derivative

dp (π)

dp̂ (π̂)
=

∑
s∈Sξ (π̂ (s))∫

M(S)

(∑
s∈Sξ (π̂ (s))

)
dp̂ (π̂)

.

Therefore, � is represented by

V (F ) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s)π (s)

)
dp (π) ,

and the measure p is unique.

B.2. Proof of Claim 1

Let G = {g} for some g ∈ F . Applying Definition 3 implies that if {f} ∼1 {g} then

{f} ∼2 {g}. That is, any indifference set of the restriction of �1 to singletons is a subset of

some indifference set of the restriction of �2 to singletons. The linearity (in probabilities)

of the restriction of V i (·) to singletons implies that these indifference sets are planes that

separate any n–dimensional unit simplex, for n ≤ (|S| − 1). Therefore, the indifference sets

of the restriction of �1 and �2 to singletons must coincide. Since the restrictions of �1 and

of �2 to singletons share the same indifference sets and since both relations are monotone,

they must agree on all upper and lower contour sets. In particular, {f} �1 {g} if and only

if {f} �2 {g}.

B.3. Proof of Theorem 3

First observe that any partitional-learning representation (µ,P) (Definition 6) can be written

as a subjective-learning representation (Definition 1), where the information structure p has

the property that π = π′ or σ (π) ∩ σ (π′) = ∅ for all π, π′ ∈ σ (p). In this case we say

that p is partitional. If p is partitional, then for all s ∈ S with
∫

∆(S)

π (s) dp (π) > 0, the

prior probability µ is defined by µ (s) := p (πs) πs (s), where πs ∈ ∆(S) denotes the unique

posterior such that s ∈ σ (πs).

For any F ∈ K (F), let CP (F ) be the collection of contingent plans that correspond to

F , that is,

CP (F ) := {g ∈ F | ∀s ∈ S there is f ∈ F with g (s) = f (s)} .
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Let ICP (F ) be the contingent plans that are indifferent to F ,

ICP (F ) := {g ∈ CP (F ) | {g} ∼ F } .

We now show that any partitional-learning representation satisfies Axiom 7.

Claim 5. If p is partitional, then for every F ∈ K (F), ICP (F ) 6= ∅.

Proof. Suppose that p is partitional. Using Theorem 1, for any set F we have

V (F ) =
∑

π max
f∈F

(
∑

sf (s)π (s)) p (π)

=
∑

smax
f∈F

(
∑

s′f (s′) πs (s
′)) p̃ (s) ,

where p̃ is a probability distribution over S such that for all π ∈ σ (p),
∑

s∈σ(π)p̃ (s) = p (π).

Let

fs = argmax
f∈F

(
∑

s′f (s′) πs (s
′))

and let fF be an act such that for all s,

fF (s) = fs (s) .

Clearly fF ∈ CP (F ). We have,

V ({fF}) =
∑

s

∑
s′fF (s′) πs (s

′) p̃ (s)

=
∑

s′fF (s′)
∑

sπs (s
′) p̃ (s)

=
∑

s′fs′ (s
′)
∑

ππ (s′) p (π)

=
∑

s′fs′ (s
′)µ (s′)
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and

V (F ) =
∑

s max
f∈F

(
∑

s′f (s′)πs (s
′)) p̃ (s)

=
∑

s

∑
s′fs (s

′) πs (s
′) p̃ (s)

=
∑

s′

∑
sfs (s

′) πs (s
′) p̃ (s)

=
∑

s′

∑
s∈σ(πs′)

fs (s
′) πs (s

′) p̃ (s) (since πs′ (s) = 0 if s /∈ σ (πs′) )

=
∑

s′

∑
s∈σ(πs′)

fs′ (s
′) πs (s

′) p̃ (s) (fs = fs′ since πs = πs′ if s ∈ σ (πs′) )

=
∑

s′fs′ (s
′)
∑

s∈σ(πs′)
πs (s

′) p̃ (s)

=
∑

s′fs′ (s
′)µ (s′) (since πs′ (s) = 0 if s /∈ σ (πs′) ).

Therefore V (F ) =
∑

s′fs′ (s
′)µ (s′) = V ({fF}), which means that fF ∈ ICP (F ).

The next two claims establish that Axiom 7 implies a partitional-learning representation.

We first show that Axiom 7 implies that the cardinality of the support of p, σ (p), is bounded

above by the number of states.

Claim 6. |σ (p)| ≤ |S|.

Proof. Suppose |σ (p)| > |S| . Let {πi ∈ σ (p)}i=1,..,|S|+1 be a set of |S|+ 1 arbitrary beliefs.

For small enough ε > 0, there is a collection of acts {f i
0}i=1,..,|S|+1 such that for all i and

j 6= i, π ∈ Nε (πi), the ε neighborhood of πi, implies

∑
sf

i
0 (s)π (s) >

∑
sf

j
0 (s)π (s) .

Because of the strict inequality, we can assume that f j
0 (s) 6= f i

0 (s) for any j 6= i and all

s ∈ S. Let F0 = {f i
0}i=1,..,|S|+1. Then |CP (F0)| = (|S|+ 1)|S| < ∞. If ICP (F0) = ∅ we

immediately have a violation of Axiom 7. Suppose instead that |ICP (F0)| = k > 0.

Proceed inductively as follows: Suppose F(l−1) =
{
f i
(l−1)

}
i=1,..,|S|+1

where f j

(l−1) (s) 6=

f i
(l−1) (s) for any j 6= i and all s ∈ S. Further, suppose that

∣∣ICP
(
F(l−1)

)∣∣ ≤ k − l + 1, and

that there is ε > 0, such that for all i and j 6= i, π ∈ Nε (πi) implies

∑
sf

i
(l−1) (s)π (s) >

∑
sf

j

(l−1) (s) π (s) . (2)

Arbitrarily pick an act g ∈ ICP
(
F(l−1)

)
. Since

∣∣F(l−1)

∣∣ > |S|, there exists i∗ ∈ {1, .., |S|+ 1}

such that g (s) 6= f i∗

(l−1) (s) for any s. For any δ > 0 and an act f , let f − δ be the act such

that

(f − δ) (s) = max {f (s)− δ, 0} .
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Let

f i
l :=

{
f i
(l−1) if i 6= i∗

f i
(l−1) − ε if i = i∗

and Fl := {f i
l }i=1,..,|S|+1. By Equation (2) f i

(l−1) is a maximizer in F(l−1) under πi, and hence

V (Fl) < V
(
F(l−1)

)
= V ({g}) .

For ε > 0 small enough and for all i and j 6= i, f j
l (s) 6= f i

l (s) for all s ∈ S, and π ∈ Nε (πi)

still imply
∑

sf
i
l (s)π (s) >

∑
sf

j
l (s) π (s) .

For any act h ∈ CP
(
F(l−1)

)
, let

h′ (s) =

{
h (s) if h (s) 6= f i∗

(l−1) (s)

h (s)− ε if h (s) = f i∗

(l−1) (s)
.

Note that h′ ∈ CP (Fl) if and only if h ∈ CP
(
F(l−1)

)
. In particular, g ∈ CP (Fl). Fur-

thermore, g /∈ ICP (Fl) and, for ε > 0 small enough, h′ /∈ ICP (Fl) if h /∈ ICP
(
F(l−1)

)
.

Therefore, |ICP (Fl)| ≤ k − l. Terminate the induction whenever ICP (Fl) = ∅, which is a

violation of Axiom 7. Note that the induction will terminate in at most k steps.

For proving the next claim, we need to use the notion of saturated menus (initially

introduced in Dillenberger and Sadowski (2012a, Definition 4)), that we now describe.

Given f ∈ F , let fx
s be the act

fx
s (s′) =

{
f (s′) if s′ 6= s

x if s′ = s
.

Let σ (f) := {s ∈ S |f (s) > 0} = {s ∈ S |f 0
s 6= f }.

Definition 11. A menu F ∈ K (F) is saturated if it satisfies

(i) for all f ∈ F and for all s ∈ σ (f), F ≻ (F\ {f}) ∪ {f 0
s };

(ii) for all f ∈ F and s /∈ σ (f), there exists ε > 0 such that F ∼ F ∪ f ε
s for all ε < ε;

and

(iii) if G * F then F ∪G ∼ (F ∪G) \ {g} for some g ∈ F ∪G.

Claim 7. If ICP (F ) 6= ∅ for every F ∈ K (F), then p is partitional.

Proof. We prove the contrapositive of Claim 7, that is, we show that if p is not partitional,

then there exists F ∈ K (F) such that ICP (F ) = ∅. Claim 6 implies that σ (p) is finite
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and hence, by Claim 1 in Dillenberger and Sadowski (2012a), a saturated menu exists.

Dillenberger and Sadowski (2012a, Claim 2) show that every element in a saturated menu is

a unique maximizer for a belief in σ (p). Therefore, there is a saturated menu F0 for which

f 1, f 2 ∈ F0 implies that either f 1 (s′) 6= f 2 (s′) or f 1 (s′) = f 2 (s′) = 0 for all s′ ∈ S. If

ICP (F0) = ∅ we immediately have a violation of Axiom 7. Assume then that |ICP (F0)| =

k > 0.

Suppose p is not partitional. Then there are π, π′ ∈ σ (p), π 6= π′, and a state s such that

s ∈ σ (π)∩ σ (π′). This implies that in any saturated menu F , there are acts f 1 and f 2 such

that for i = 1, 2, f i (s) > 0 and F ≻ (F\ {f i}) ∪
{
f
if i(s)−ε
s

}
for any ε > 0 (see Definition

11).

Proceed inductively as follows: suppose F(l−1) is a saturated menu such that (i) f 1, f 2 ∈

F(l−1) implies that either f 1 (s′) 6= f 2 (s′) or f 1 (s′) = f 2 (s′) = 0 for all s′ ∈ S; and (ii)∣∣ICP
(
F(l−1)

)∣∣ ≤ k − l + 1. Pick any g ∈ ICP
(
F(l−1)

)
and note that there is f ∈ F(l−1)

with g (s) 6= f (s) > 0. Let Fl :=
(
F(l−1)\ {f}

)
∪
{
f

f(s)−ε

s

}
. For ε > 0 small enough, Fl is

saturated, and f 1, f 2 ∈ Fl implies f 1 (s′) 6= f 2 (s′) or f 1 (s′) = f 2 (s′) = 0 for all s′ ∈ S. For

any act h ∈ CP
(
F(l−1)

)
, let

h′ (s′) =

{
h (s′)− ε if s′ = s and h (s) = f (s)

h (s′) otherwise
.

Note that h′ ∈ CP (Fl) if and only if h ∈ CP
(
F(l−1)

)
. In particular, g ∈ CP (Fl). For

ε > 0 small enough, h′ /∈ ICP (Fl) if h /∈ ICP
(
F(l−1)

)
and g /∈ ICP (Fl), as {g} ∼ F(l−1) ≻

Fl. Therefore, |ICP (Fl)| ≤ k − l. Terminate the induction whenever ICP (Fl) = ∅, which

is a violation of Axiom 7. Note that the induction will terminate in at most k steps.

This concludes the proof of Theorem 3.

B.4. Proof of Theorem 4

(i) Let � be represented as in Theorem 3 and the acts c+s and c+s
−s′ as defined in the text.

We make the following two observations: first, {c+s} ∼ {c} if and only if s /∈ σ (µ). Second,

using the property that conditional on any I ∋ s, s′,

Pr (s |I )

Pr (s′ |I )
=

µ (s)

µ (s′)
,
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{c} ≻
{
c+s
−s′

}
implies that

∑
ŝ∈I c

+s
−s′ (ŝ)µ (ŝ) > c

∑
ŝ∈I µ (ŝ) if and only if s ∈ I but s′ /∈ I.

These are the only events in which DM expects to choose c+s
−s′ from

{
c, c+s

−s′

}
. We have

V
({

c, c+s
−s′

})
=

{
µ (s) + (1− µ (s)) c {s, s′} * I for all I ∈ P

c otherwise
,

and {c} �
{
c+s
−s′

}
if and only if {s, s′} ⊆ I for some I ∈ P.

By the first observation, Definition 7 (1) is equivalent to the condition σ (µ1) = σ (µ2).

By the second observation, Definition 7 (2) is equivalent to the condition that, for all s and

s′, and for any c such that {c} �i

{
c+s
−s′

}
for i = 1, 2, {s, s′} ⊆ I for some I ∈ P1 implies

{s, s′} ⊆ I for some I ∈ P2. In other words, P1 is finer then P2.

(ii) In the context of Theorem 3, a mean-preserving spread of the information structures

is equivalent to having a finer partition with the same µ. The result is thus an immediate

corollary of Theorem 2.

B.5. Proof of Theorem 5

We start with the following claim that guarantees the existence of a utility representation

for �∗.

Claim 8. There exists U : K (F)× [0, 1] → R that represents �∗ .

Proof. It is enough to show that there exists a countable �∗ −dense subset of K (F)× [0, 1].

Note that a countable �∗
t −dense subset is given by {{c} |c ∈ Q ∩ [0, 1]}. We claim that

for some t̂ ∈ [0, 1], Ψ := {{c} |c ∈ Q ∩ [0, 1]} ×
{
t̂
}

is a countable �∗ −dense subset in

K (F)× [0, 1]. First, Ψ is obviously countable. Now we need to show that if (F, t) ≻∗

(G, t′) then we can find
(
{c} , t̂

)
∈ Ψ such that (F, t) ≻∗

(
{c} , t̂

)
≻∗ (G, t′). By Axiom

6, {1} �∗
t F �∗

t {0} , and since �∗
t on {c} is strictly monotone, there exists {cF} ∼∗

t F .

Using Axiom 9, (F, t) ∼∗ ({cF} , t) ∼∗
(
{cF} , t̂

)
≻∗

(
{cG} , t̂

)
∼∗ ({cG} , t

′) ∼∗ (G, t′),

which means that cF > cG and that there is c ∈ Q ∩ [0, 1] with cF > c > cG, such that

(F, t) ≻∗
(
{c} , t̂

)
≻∗ (G, t′).

Let U represent �∗. For each t, denote by Ut the restriction of U to (·, t). Since both Ut

and Vt represents �∗
t , there exists a strictly monotone function Γt, such that Vt = Γt ◦ Ut.

But since Vt ({c}) = Vt′ ({c}) for all {c}, for any t′ we also have Vt′ = Γt ◦ Ut′ , hence Γt

is independent of t. Without loss of generality, we can take Γ to be the identity function,

which means that the function V ∗ satisfying V ∗ (F, t) = Vt (F ) represents �∗. By Axiom 9,

V ∗ ({f} , t) = V ∗ ({f} , t′) for all t, t′ ∈ [0, 1], and by Axiom 8, V ∗ (F, t) ≥ V ∗ (F, t′) for all

F ∈ K (F) and t ≥ t′.
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Claim 9. If t ≥ t′ then �∗
t has more preference for flexibility than �∗

t′ .

Proof. If V ∗ ({f} , t) ≥ V ∗ (F, t) then V ∗ ({f} , t′) = V ∗ ({f} , t) ≥ V ∗ (F, t′).

Finally, by Theorem 2, �∗
t has more preference for flexibility than �∗

t′ if and only if pt is

a mean preserving spread of pt′ . This concludes the proof of Theorem 5.
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