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Abstract

This paper examines the importance of realized volatility in bond yield density
prediction. We incorporate realized volatility into a Dynamic Nelson-Siegel (DNS)
model with stochastic volatility and evaluate its predictive performance on US bond
yield data. When compared to popular specifications in the DNS literature without
realized volatility, we find that having this information improves density forecasting
performance.
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1 Introduction

Existing term structure models seldom beat the random walk in terms of point prediction.

This fact, however, may not carry over to bond yield density prediction, as first pointed out

by Egorov, Hong, and Li (2006). Lack of conditional mean predictability does not imply

the same for the conditional variance. Researchers have found that time-varying volatility

exists and mean reverts in US government bond yields. This has led Egorov, Hong, and Li

(2006) to consider affine term structure models, Koopman, Mallee, and Van der Wel (2010) to

introduce a factor GARCH in the Diebold and Li (2006) Dynamic Nelson Siegel (DNS) model,

Hautsch and Ou (2012) and Hautsch and Yang (2012) to incorporate stochastic volatility

in the DNS model, and Carriero, Clark, and Marcellino (2013) to look at a shrinkage-based

vector autoregression with stochastic volatility, all in the hopes of better forecasting bond

yield densities.

In this paper, we take a different approach: introducing volatility proxy data. Specifically,

we have a DNS model for bond yields with stochastic volatility at the monthly frequency

and incorporate monthly bond yield realized volatility. We find that the higher frequency

movements of the yields in the realized volatility data contain valuable information for the

stochastic volatility and lead to significantly better density predictions, especially in the

short term.

The DNS class of models uses latent level, slope, and curvature factors to drive the

intertemporal movements of the yield curve. This reduces the high-dimensional yields to

be driven by just three factors. The level of the yield curve has traditionally been linked

to inflation expectations while the slope to the real economy. Our preferred specification

introduces stochastic volatility on these latent factors. This leads to a nice interpretation of

the stochastic volatility as capturing the uncertainty surrounding well-understood aspects of

the yield curve. It also reduces the dimension of modeling the time-varying volatility of the

yield curve. We add realized volatility by linking this data to the model-implied conditional
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volatility through a measurement equation. This brings the factor structure in modeling the

yields to the second moments as well.

We then compare this specification to several others in the DNS framework, including

random walk dynamics for the factors and stochastic volatilities and stochastic volatility

on the yield measurement equation. In a forecasting horserace on US bond yields, our

preferred specification features slight improvements in the point forecast performance and

significant gains in the density forecast performance. We also find that allowing time-varying

volatility is important for density prediction, especially in the short run. Unlike conditional

mean dynamics, modeling volatility as stationary processes rather than random walks leads

to better predictive performance. Furthermore, having stochastic volatility on the factor

equation better captures the time-varying volatility in the bond yield data when compared

to stochastic volatility on the measurement equation. Finally, in addition to the standard

forecast evaluation criterion, we also evaluate our models along economically meaningful

dimensions in the forms of forecasting empirical level, slope, and curvature.

Our paper relates to the literature in three main areas.

First, we contribute to a large literature on bond yield forecasting. Most of the work has

been done on point prediction (see Diebold and Rudebusch (2012) and Duffee (2012) for ex-

cellent surveys). There has been, however, a growing interest in density forecasting. Egorov,

Hong, and Li (2006) were the first to evaluate the joint density prediction performance of

yield curve models. They overturn the point forecasting result of the superiority in random

walk forecasts and find that affine term structure models perform better when forecasting

the entire density, especially the conditional variance and kurtosis. Hautsch and Ou (2012)

and Hautsch and Yang (2012) add stochastic volatility to the DNS model by considering an

independent AR(1) specification for the log volatilities of the latent factors. They do not do

formal density prediction evaluation of the model, but give suggestive results of the possible

improvements in allowing for time-varying volatility. Carriero, Clark, and Marcellino (2013)

find that using priors from a Gaussian no-arbitrage model in the context of a VAR with
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stochastic volatility improves short-run density forecasting performance. Building on this

previous work, we introduce potentially highly accurate volatility information into the model

in the form of realized volatility. We also extend the forecast evaluation by considering joint

density forecasting in the forms of empirical level, slope, and curvature.

Second, we also add to a growing literature on including realized volatility information in

bond yield models. Andersen and Benzoni (2010) and Christensen, Lopez, and Rudebusch

(2011) view realized volatility as a benchmark on which to compare the fits of affine term

structure models. Cieslak and Povala (2013) are interested in using realized covariance to

better extract stochastic volatility and linking the stochastic volatility to macroeconomic and

liquidity factors. These papers focus on in-sample investigations of incorporating realized

volatility in bond yield models. Our paper, on the other hand, considers the improvement

from using realized volatility in out-of-sample point and density prediction.

Finally, our paper relates to work started by Barndorff-Nielsen and Shephard (2002) in

incorporating realized volatility in models with time-varying volatility. Takahashi, Omori,

and Watanabe (2009) use daily stock return data in combination with high-frequency realized

volatility to more accurately estimate the stochastic volatility. Maheu and McCurdy (2011)

show that adding realized volatility directly into a model of stock returns can improve density

forecasts over a model that only uses level data, such as the EGARCH. Jin and Maheu (2013)

propose a model of stock returns and realized covariance based on time-varying Wishart

distributions and find that their model provides superior density forecasts for returns. There

also exists work adding realized volatility in observation-driven volatility models (Shephard

and Sheppard (2010) and Hansen, Huang, and Shek (2012)). As opposed to the other papers,

we consider a dynamic factor model with stochastic volatility on the factor equation and use

the realized volatility to help in the extraction of this stochastic volatility. In this sense,

we bring the factor structure in the conditional mean to the conditional volatility as well1.

Furthermore, we are the first paper to investigate the implications of realized volatility on

1Cieslak and Povala (2013) have a similar framework in a no-arbitrage term structure model
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bond yield density predictability.

In section 2, we introduce our preferred specification and competitor specifications. We

discuss the data in section 3. We present our estimation and forecast evaluation methodology

in section 4. In section 5, we present in-sample and out-of-sample results. We conclude in

section 6.

2 Model

We introduce the Dynamic Nelson Siegel model with stochastic volatility (DNS-SV) pro-

posed by Hautsch and Ou (2012), Hautsch and Yang (2012), and Bianchi, Mumtaz, and

Surico (2009). Then, we discuss the incorporation of realized volatility information into this

framework. Finally, we consider alternatives to our main approach.

2.1 The Dynamic Nelson-Siegel model and time-varying bond yield

volatility

Denote yt(τ) as the continuously compounded yield to maturity on a zero coupon bond with

maturity of τ periods at time t. Following Diebold and Li (2006), we consider the factor

model for the yield curve,

yt(τ) = fl,t + fs,t

(
1− e−λτ

λτ

)
+ fc,t

(
1− e−λτ

λτ
− e−λτ

)
+ εt(τ), εt ∼ N(0, Q) (1)

where fl,t, fs,t and fc,t serve as latent factors and εt is a vector that collects idiosyncratic

component εt(τ) for all maturities. As is well documented in the literature, the first factor

mimics the level of the yield curve, the second the slope, and the third the curvature. While

some authors have estimated the λ, we fix it at 0.0609, noting from Diebold and Li (2006)

and others that the value does not move around too much across time and that its estimation
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does not seem to affect the results. We assume that the Q matrix is diagonal. This leads

to the natural interpretation of a few common factors driving the comovements in a large

number of yields. All of the other movements in the yields are considered idiosyncratic. As

suggested by Diebold and Li (2006), we model the dynamic factors as independent univariate

first-order autoregressive processes, given by,

fi,t = µf,i(1− φf,i) + φf,ifi,t + ηi,t, ηt ∼ N(0, Ht) (2)

for i = l, s, c. ηt is a vector that collects the innovations to each factor and its variance-

covariance matrix Ht potentially varies over time. We also assume that idiosyncratic shocks

εt and factor shocks ηt are independent. The independent factor specification of the setup

means that the movements of the factors are unrelated to each other. While this may seem as

a tight restriction at first blush, Diebold and Rudebusch (2012) point out that the assumption

does not seem poor in so far as the factors are related to the principal components of the

yield curve. Following Hautsch and Ou (2012), (Hautsch and Yang, 2012) and Bianchi,

Mumtaz, and Surico (2009), we model the logarithm of the variance of the shocks to the

factor equation as AR(1) processes,

hi,t = µh,i(1− φh,i) + φh,ihi,t−1 + νi,t, νi,t ∼ N(0, σ2
h,i) (3)

for i = l, s, c. exp(hi,t) corresponds to the ith diagonal element of the variance-covariance

matrix Ht. Since the conditional mean dynamics of the factors are specified as independent

from each other, it makes sense to model the stochastic volatilities of the factor innovations

as independent. We call this specification the DNS-SV model (Dynamic Nelson-Siegel with

stochastic volatility).
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2.2 DNS-RV

We claim that by using high-frequency data to construct realized volatilities of the yields

it is possible to aid in the extraction of the stochastic volatilities governing the level, slope,

and curvature of the DNS-SV model. Using realized volatility to augment our algorithm

should make estimation of the stochastic volatility parameters more accurate and produce a

superior predictive distribution. Crucially, we need to find an appropriate linkage between

our volatility proxy - realized volatility - and the stochastic volatility in the model. Given

the definition of the model-implied conditional volatility, we propose

RVt ≈ V art−1(yt) = diag(ΛfHtΛ
′
f +Q)

= diag(Λ̃fH̃tΛ̃
′
f +Q)

(4)

where RVt is the realized volatility of bond yields which has the same dimension as the bond

yield vector yt and Λf is factor loading matrix given by equation 1. We write the logarithm of

volatility in deviation form h̃i,t = hi,t−µh,i for i = l, s, c. Then H̃t is a 3× 3 diagonal matrix

with each element corresponding to eh̃i,t and Λ̃f = Λf [e
µl/2, eµs/2, eµc/2]′ . The second equality

in equation 4 comes from the change in notation. 2 Insofar as realized volatility provides an

accurate approximation to the true underlying conditional time-varying volatility, equation

4 is the one that links this information to the model.

With measurement error, one can view equation 4 as a nonlinear measurement equation.

In principle, we have several tools to handle this nonlinearity, including the particle filter.

To keep estimation computationally feasible, we choose to take a first order Taylor approxi-

mation of the logarithm of this equation around h̃t = 0 with respect to ht. This leads to a

set of linear measurement equations that links the realized volatility of the bond yields and

2This strategy of linking an observed volatility measure to the model is also used in other papers (Maheu
and McCurdy (2011) in a univariate model and Cieslak and Povala (2013) in a multivariate context).
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the underlying factor volatility,

log(RVt) = β + Λhh̃t + ζt, ζt ∼ N (0, S) . (5)

In the estimation, we add in measurement error ζt. We view equation 5 as an approximation

to equation 4. We call this new model the Dynamic Nelson Siegel with realized volatility

(DNS-RV) model. The only difference between this model and DNS-SV comes from aug-

menting equation 1 with a new measurement equation 5. This equation has a constant β

and a factor loading Λh. The parameter β comes from the linearization while we can inter-

pret Λh as a loading for the factor volatility used to reduce the dimension of the volatility

data, log(RVt). This very naturally extends the dynamic factor model, which transforms

high-dimensional data (yt) into a few number of factors (ft) via the factor loading matrix

Λf . The volatility factor loading (Λh) is a function of other model parameters (Λf , µh)

with the functional form given by the linearized version of equation 4.3 We can view this as

a model-consistent restriction on the linkage between the conditional volatility of observed

data, approximated by log(RVt), and the factor volatility ht. For the same reasons as in

the baseline DNS-SV model, we set the S matrix to be diagonal. These are interpreted as

idiosyncratic errors, and we therefore do not model them to be contemporaneously or serially

correlated.

In summary, the DNS-RV model introduces a new measurement equation into the state

space of the DNS-SV model.

(Measurement equation)

yt = Λfft + εt, εt ∼ N(0, Q)

log(RVt) = β + Λhh̃t + ζt, ζt ∼ N (0, S) ,

(6)

3Detailed formulas for the volatility factor loading matrix can be found in the appendix.
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Table 1 Model Specifications

Label Factors (level, slope, curvature) Conditional variance Realized volatility

RW-C Random walk Constant Not used
RW-SV Random walk log AR(1) in each factor Not used
RW-RV Random walk log AR(1) in each factor Used

DNS-C Independent AR(1) Constant Not used
DNS-SV Independent AR(1) log AR(1) in each factor Not used
DNS-RV Independent AR(1) log AR(1) in each factor Used

RW-SV-RW Random walk Random walk Not used
DNS-SV-RW Independent AR(1) Random walk Not used

DNS-ME-SV Independent AR(1) log AR(1) in measurement equation Not used
DNS-ME-RV Independent AR(1) log AR(1) in measurement equation Used

Note: We list the specifications for the DNS model considered in this paper.

(Transition equation)

fi,t = µi,f (1− φi,f ) + φi,ffi,t + ηt, ηt ∼ N(0, Ht)

hi,t = µi,h(1− φi,h) + φi,hhi,t−1 + νi,t, νi,t ∼ N(0, σ2
i,h)

(7)

for i = l, s, c. In our application, both observed bond yields (yt) and realized volatilities

(log(RV )t) are 17× 1 vectors. Moreover, both sets of variables have a factor structure with

dynamics following the transition equations.

2.3 Alternative specifications

We have four classes of alternative specifications to compare forecasts to our baseline model.

We briefly introduce them in this section and list all specifications considered in the paper

in Table 1.

2.3.1 Dynamic Nelson Siegel (DNS-C)

The first model is the standard Diebold-Li DNS model discussed at the beginning of the

paper. It does not allow for stochastic volatility. This model has been shown to forecast the

level of bond yields quite well, at times beating the random walk model of yields.
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2.3.2 Dynamic Nelson Siegel-Stochastic Volatility (DNS-SV)

The second is the DNS-SV model that adds stochastic volatility to the transition equation.

It is summarized at the beginning of this section. By allowing for stochastic volatility, this

model should improve upon the standard DNS model especially in the second moments, as

it can capture the time-varying volatility present in the bond yield data.

2.3.3 Dynamic Nelson Siegel-Random Walk (RW)

Bond yield forecasting research (e.g. van Dijk, Koopman, van der Wel, and Wright (2013)

and references therein) has shown that random walk specifications of the yield curve generally

perform quite well. Oftentimes, the no-change forecast from a current period does best among

a large group of forecasting models. It is in this sense that bond yield forecasting is difficult.

Given these results, we also augment the DNS-C, DNS-SV, and DNS-RV model classes with

random walk parameterizations of the factor processes.

Macroeconomic research (Cogley and Sargent (2005) and Justiniano and Primiceri (2008))

often specifies stochastic volatility as following a random walk. Doing so reduces the number

of parameters estimated while also providing a simple no-change forecast benchmark for time-

varying volatility. As long-horizon bond yield volatility links with macroeconomic volatility,

we also have random walk specifications for the stochastic volatilities.

2.3.4 Dynamic Nelson Siegel-Measurement Error Stochastic Volatility (+ Re-

alized Volatility) (DNS-ME)

Koopman, Mallee, and Van der Wel (2010) argue that putting the time-varying conditional

volatility on the measurement errors provides an improvement for the in-sample fit of the

DNS class of models. To evaluate whether these results extend to forecasting as well, we

model independent AR(1) specifications for the measurement error stochastic volatilities.

While following this strategy greatly increases the number of parameters estimated, it could
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improve forecasting as each yield has its own stochastic volatility process. Therefore, as

opposed to a time-varying Ht and constant Q matrix in the DNS-SV and DNS-RV setups,

now H is constant while Qt has stochastic volatility.

Qt = Diagmat(eht) (8)

hi,t − µh,i = φh,i(hi,t−1 − µh,i) + νi,t, νi,t ∼ N(0, ri), (9)

for i = 1, ..., N where N is the number of bond yields in the observation equation. ht is a

vector that collects all stochastic volatilities in measurement errors and Diagmat(·) turns a

vector into a diagonal matrix. Qt remains a diagonal matrix, as equation 8 shows. We again

model the logarithm of the variances as independent first order autoregressive processes.

We also consider incorporating realized volatility information into this model. Doing so

leads to the following relationship

RVt ≈ V art−1(yt) = diag(ΛfHΛ′f +Qt). (10)

As before, we do a first order Taylor approximation of the logarithm of this equation. We

also add in a measurement error for estimation. However, in contrast to the DNS-RV model,

we link each element in log(RVt) with individual stochastic volatility hi,t.

3 Data

We use a panel of unsmoothed Fama and Bliss (1987) U.S. government bond yields at the

monthly frequency with maturities of 3, 6, 9, 12, 15, 18, 21 months and 2, 2.5, 3, 4, 5, 6, 7, 8,

9, 10 years from January 1981 to December 2009. This dataset is provided by Jungbacker,

Koopman, and van der Wel (2013)4. To construct monthly realized volatility series, we use

4<http://qed.econ.queensu.ca/jae/datasets/jungbacker001/>

<http://qed.econ.queensu.ca/jae/datasets/jungbacker001/>
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daily U.S. government bond yield data with the same maturities from January 2, 1981 to

December 30, 2009 taken from the Federal Reserve Board of Governors with the methodology

of Gürkaynak, Sack, and Wright (2007) 5 6.

We construct the realized variance of each month’s yields using daily bond yield data.

The formula for realized variance at time t is

RVt =
D∑
d=1

(
∆yt+ d

D

)2
.

where D is the number of daily data in one time period t. This formula converges in

probability to the true conditional variance as the sampling frequency goes to infinity under

assumptions laid out in Andersen, Bollerslev, Diebold, and Labys (2003). Usually, there are

around 21 days in each month, with less depending upon the number of holidays in a month

that fall on normal trading days.

We use daily data to construct our realized volatilities for a few reasons. First, we want

to use realized volatility information starting in 1981 to use a sample period similar to

other bond yield forecasting studies. The availability of higher-frequency intraday data

begins much later. For instance, Cieslak and Povala (2013) start their estimation in 1992

for specifically this reason. Second, the month-to-month volatility movements we want the

volatility proxy to capture do not necessitate using ultra-high frequency data. Finally, while

results may improve with higher frequency data, we show that positive effects are present

even with lower frequency realized volatility.

Figure 1 plots the time series of monthly U.S. government bond yields and logarithm of

realized volatilities. All yields exhibit a general downward trend from the start of the sample.

For around the first 25 months, the realized volatility seems quite high and exhibits large time

5<http://www.federalreserve.gov/econresdata/researchdata/feds200628_1.html>
6Because most papers in the literature estimate the DNS model with unsmoothed Fama and Bliss data,

we generate and evaluate predictions for the unsmoothed Fama and Bliss data. Unfortunately, this data is
only available at the monthly frequency. Even though the two datasets use different methodologies, monthly
yield data based on the daily bond yield from Gürkaynak, Sack, and Wright (2007) is very close to the one
based on the unsmoothed Fama and Bliss method.

<http://www.federalreserve.gov/econresdata/researchdata/feds200628_1.html>
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Figure 1 U.S. Treasury Yields

(a) Yields (monthly, annualized %)

(b) Yield Realized Volatilities (Monthly, Log)

Notes: We present monthly U.S. Treasury yields with maturities of 3, 6, 9, 12, 15, 18, 21 months and 2, 2.5,
3, 4, 5, 6, 7, 8, 9, 10 years over the period January 1981 – November 2009. Monthly yields are constructed
using the unsmoothed Fama-Bliss method. Monthly yield realized volatilities are constructed based on daily
yields using Wright’s dataset. Blue shaded bars represent NBER recession dates.

variation. After around 1983, yield volatility dies down and largely exhibits only temporary

spikes in volatility. For a period of 2 years starting in 2008, the realized volatility picks up

across all yields. We attribute this to the financial crises. Another interesting feature of

log realized volatility is that it shows large autocorrelation. Its first-order autocorrelation

coefficients range from 0.59 to 0.69 and the 12th-order autocorrelation coefficients range from

0.20 to 0.31.7 This means that realized volatility data could help even for the long-horizon

7We provide tables in the supporting material for the descriptive statistics of monthly realized volatility
of bond yields.
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Table 2 Variance explained by the first five principal components (%)

Yield log(RV)

pc 1 98.16 84.30
pc 2 99.84 94.62
pc 3 99.95 98.53
pc 4 99.98 99.46
pc 5 99.98 99.85

Notes: Numbers in the table are the percentage of total variance explained by the first five principal compo-
nents for US Yield data and log(RV). log(RV) is the logarithm of the monthly realized volatility constructed
based on the daily US yield data.

forecasts that we consider in this paper.

Both the yields and realized volatilities do seem to exhibit a factor structure, meaning that

each set of series co-move over time. In fact, a principal components analysis shows that the

first three factors for yields explain 99.95% of the variation in the US yield curve. The first

three factors for realized volatilities explain 98.53% of the variation (Table 2). Even though

the fact that U.S. bond yield can be explained by the first few principal components is well

documented, it is interesting that the same feature carries over for the realized volatility of

U.S. bond yields.

4 Estimation/Evaluation Methodology

4.1 Estimation

We perform a Gibbs sampling Markov Chain Monte Carlo algorithm for 15000 draws. We

keep every 5th draw and burn in for the first 5000 draws. Due to our linearization approxima-

tion in introducing realized volatility, all specifications that we consider can be sampled by

using the method for the stochastic volatility state space model developed in Kim, Shephard,

and Chib (1998). Details of the state space representation and the estimation procedure can

be found in the appendix. Details on the prior can be found in the appendix as well, although

we comment that our choice of prior is loose and does not impact the estimation results.
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We highlight the difference in estimation procedure due to the additional measurement

equation for the realized volatility. Roughly speaking, there are two sources of information

for the latent volatility factor ht. The first source is from the latent factor, ft. To see this,

one can transform the transition equation for ft as the following.

log
(
(fi,t − µi,f (1− φi,f )− φi,ffi,t)2

)
= hi,t + log(x2i,t), xi,t ∼ N(0, 1)

for i = l, s, c. This is common to both DNS-SV and DNS-RV. The second source is from

equation 6 which relates log(RVt) with ht and is unique to DNS-RV. Following Kim, Shep-

hard, and Chib (1998), we approximate log(x2i,t) with mixture of normals. Then, conditional

on other parameters and data, extraction of ht amounts to running a simulation smoother

in conjunction with the Kalman filter with and without equation 6.

4.2 Forecast evaluation

We consider model performance along both the point and density forecasting dimensions.

The appendix contains further details on the Bayesian simulation algorithm we use to gen-

erate the forecasts. We begin forecasting on February 1994 and reestimate the model in an

expanding window and forecast moving forward two months at a time. For every forecast

run at a given time t, we forecast for all yields in our dataset and for horizons ranging from

1 month to 12 months ahead. This leads to a total of 94 repetitions.

Point forecast

To evaluate the point prediction, we use the Root Mean Square Forecast Error (RMSE)

statistic.

RMSEM
τ,ho =

√
1

F

∑(
ŷMt+ho(τ)− y(τ)t+ho

)2
(11)
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Call the yield τ forecast at horizon ho made by model M as ŷMt+ho(τ) and y(τ)t+ho the

realized value of the yield at time t+ho. F is the number of forecasts made. Then, equation

11 provides the formula for the RMSE. To gauge whether there are significant differences in

the RMSE, we use the Diebold and Mariano (1995) t-test of equal predictive accuracy.

Density forecast

The log predictive score (Geweke and Amisano (2010)) gives an indication of how well a

model performs in density forecasting.

LPSMτ,ho =
1

F

∑
log p(yt+ho(τ)|yt,M) (12)

p(yt+ho(τ)|yt,M) denotes the ho-step ahead predictive distribution of yield τ generated by

model M given time t information. Following Carriero, Clark, and Marcellino (2013), we

estimate the log predictive density by a kernel density estimator using MCMC draws for

parameters and latent states and compute the p-value for the Amisano and Giacomini (2007)

t-test of equal means to gauge whether there exist significant differences in the log predictive

score.

5 Results

We first present in-sample results of the model, focusing on time-varying volatility. Then,

we move to point and density forecasting results. Finally, we discuss our empirical factor

prediction exercise.

5.1 In-sample

We first present the full sample estimation from January 1981 - November 2009. We focus

on how adding realized volatility information alters the model. Adding in second-moment
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Table 3 Posterior Estimates of Parameters on ht Equation

DNS-SV DNS-RV

5% 50% 95% 5% 50% 95%

µh,l -4.40 -2.56 -1.48 -4.19 -3.92 -2.21
µh,s -3.41 -2.30 -1.67 -3.22 -2.85 -1.94
µh,c -1.48 -0.96 -0.47 -2.18 -1.88 -1.39

φh,l 0.93 0.98 0.999 0.58 0.66 0.73
φh,s 0.92 0.97 0.995 0.57 0.64 0.72
φh,c 0.81 0.92 0.98 0.39 0.49 0.60

σh,l 0.01 0.03 0.08 0.41 0.75 0.92
σh,s 0.01 0.04 0.10 1.27 1.72 2.64
σh,c 0.02 0.09 0.27 1.30 1.78 4.30

Notes: Posterior moments are based on estimation sample from January 1981 to November 2009.

information does not significantly change conditional mean dynamics, so we relegate our

discussion of the extracted factors to the supporting material8. Our extracted factors are

similar to those found in Diebold and Li (2006).

The stochastic volatility dynamics deserve some more precise discussion. Figure A-1 shows

the volatility estimate from the DNS-C, DNS-SV, and DNS-RV models. The fluctuations of

the extracted stochastic volatilities in both the DNS-SV and DNS-RV models show that there

exists conditional time-varying volatility in the data. Relative to the DNS-SV specification,

adding in realized volatility data makes the extracted stochastic volatility much less persis-

tent and more variable. This leads to a lower autoregressive parameter and higher innovation

standard deviation estimates for all of the stochastic volatility processes (Table 3). The DNS-

RV model also delivers lower stochastic volatility mean estimates. These differences lead to

differences in forecasting. For example, the lower autoregressive parameter in the DNS-RV

model means that it predicts faster mean reversion of the stochastic volatilities relative to

the DNS-SV model and the lower long-run mean estimate implies that the DNS-RV model

produces a tighter density prediction in the long run. The smoothed stochastic volatilities

from the DNS-SV model, however, generally captures the low-frequency movements of those

8All other in-sample estimation results are in the supporting material
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Figure 2 Stochastic volatility for bond yield factors

Level Factor Volatility

DNS-RV DNS-SV

Slope Factor Volatility

DNS-RV DNS-SV

Curvature Factor Volatility

DNS-RV DNS-SV

Notes: Posterior median of log stochastic volatility (ht) for bond yield factors from DNS-RV (left column)
and DNS-SV (right column). Red dotted line is volatility level estimated from DNS-C. Blue band is 80%
credible interval. Estimation sample is from January 1981 to November 2009.
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from the DNS-RV model.

We argue that this difference in the stochastic volatilities matters for density forecasting.

The high-frequency data used to construct the realized volatilities brings information that

the low-frequency monthly yield data misses. By having more accurate estimates of the

current level of time-varying volatility and process parameters, the DNS-RV model both

starts off forecasting at a more accurate point and better captures the dynamics of the data

moving forward.

5.2 Point prediction

Table 4 shows the RMSE of selected maturities for 1, 3, 6, and 12-step ahead predictions.

The second column has the calculated RMSE values for the RW-C model. All other values

reported are ratios relative to the RW-C RMSE. Values below 1 indicate superior performance

relative to the random walk benchmark. Stars in the table indicate significant gains relative

to the RW-C model. As expected, RMSE increases as the forecasting horizon lengthens.

The models with random walk dynamics in the factors do well for short-horizon forecasts

but deteriorate when compared to the stationary models as the prediction horizon lengthens.

In general, all RMSE values have numbers close to 1, reproducing the well-known result in

the bond yield forecasting literature on the difficulty in beating the no-change forecast. As

alluded to in the previous section, adding in time-varying second moments does not largely

impact point predictions, although the DNS-RV model forecasts middle maturities well across

all horizons. For 12-month horizon forecasts, the DNS-C and DNS-ME-RV models also do

well for short maturity yields.

5.3 Density prediction

Table 5 shows the density evaluation result in terms of log predictive score. Similar to the

RMSE table, the RW-C column gives the value of the log predictive score for the random
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Table 4 RMSE comparison

Maturity RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW DNS-ME-SV DNS-ME-RV

1-step-ahead prediction
3 0.267 0.992 1.011 1.004 1.034** 1.007 0.991 1.038** 1.071 0.953**
12 0.229 1.005 1.002 1.076** 1.055** 1.003 1.002 1.060** 1.070** 1.072**
36 0.274 1.001 0.996 1.015 1.020 0.990 1.001 1.025 1.010 1.012
60 0.274 1.000 0.995 1.003 1.010 0.987 1.000 1.013 1.002 1.004
120 0.277 1.001 0.996 0.988 0.989 0.999 1.000 0.988 0.986 0.997

3-step-ahead prediction
3 0.506 1.002 1.011 1.036 1.066** 1.018 1.002 1.069** 1.055 1.024
12 0.537 1.002 0.999 1.072 1.073** 0.999 1.002 1.077** 1.064 1.063
36 0.580 1.000 0.998 1.022 1.036 0.990 0.999 1.040 1.018 1.018
60 0.551 1.000 0.998 1.004 1.017 0.986 0.999 1.021 1.005 1.004
120 0.489 1.000 0.998 0.982 0.987 0.995 1.000 0.988 0.987 0.987

6-step-ahead prediction
3 0.932 1.000 1.002 1.003 1.047 1.007 0.999 1.048 1.010 1.000
12 0.915 1.001 1.001 1.040 1.065 0.999 1.000 1.068 1.036 1.034
36 0.881 1.001 1.001 1.017 1.041 0.987 1.000 1.046 1.011 1.011
60 0.819 1.000 0.998 0.998 1.016 0.978 1.000 1.020 0.997 0.997
120 0.665 0.999 0.992* 0.977 0.982 0.980 0.998 0.986 0.981 0.980

12-step-ahead prediction
3 1.592 1.002* 0.999 0.936** 1.013 0.991 1.000 1.015 0.943** 0.940*
12 1.476 1.001 0.999 0.975 1.034 0.991 1.000 1.036 0.976 0.975
36 1.242 1.001 1.001 0.997 1.043 0.979** 1.001 1.046 0.993 0.993
60 1.069 1.002 1.000 0.997 1.031 0.967* 1.001 1.033 0.994 0.994
120 0.833 1.002 0.998 0.976 0.994 0.966 1.001 0.994 0.980 0.976

Notes: The first column shows the RMSE based on the RW-C. Other columns show the relative RMSE
compared to the first column. The RMSE from the best model for each variable and forecast horizon is in
bold letter. Units are in percentage points. Divergences in accuracy that are statistically different from zero
are given by * (10%), ** (5%), *** (1%). We construct the p-values based on the Diebold and Mariano
(1995) t-statistics with a variance estimator robust to serial correlation using a rectangular kernel of h − 1
lags and the small-sample correction proposed by Harvey, Leybourne, and Newbold (1997).

walk case while the numbers for the other models are differences relative to that column.

A higher value indicates larger log predictive score and better density forecasting results.

We present p-values based on Amisano and Giacomini (2007) comparing the hypothesis of

equal log predictive score of the DNS-RV with those of the alternative models in table 6. As

opposed to the point prediction results, three interesting findings emerge when we consider

the log predictive score.

First, for the short-run horizon, having realized volatility gives significant gains in den-

sity prediction. This is on top of a large improvement in log predictive score from adding

stochastic volatility, which Carriero, Clark, and Marcellino (2013) find. Table 6 shows that

the DNS-RV model has significantly higher log predictive score values for one- and three-
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Table 5 Log predictive score comparison

Maturity RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW DNS-ME-SV DNS-ME-RV

1-step-ahead prediction
3 -0.538 0.205 0.343 0.008 0.198 0.375 0.181 0.173 0.048 0.102
12 -0.357 0.211 0.304 -0.009 0.195 0.316 0.189 0.172 0.012 0.013
36 -0.318 0.129 0.158 0.000 0.118 0.176 0.111 0.104 0.022 0.017
60 -0.265 0.109 0.077 -0.001 0.098 0.105 0.098 0.088 0.019 0.015
120 -0.248 0.110 0.111 0.011 0.121 0.110 0.106 0.108 0.048 0.037

3-step-ahead prediction
3 -1.061 0.183 0.302 0.016 0.165 0.322 0.151 0.133 0.036 0.061
12 -0.985 0.107 0.195 -0.012 0.064 0.196 0.089 0.045 0.007 0.010
36 -0.951 0.027 0.053 -0.002 -0.002 0.067 0.013 -0.018 0.009 0.007
60 -0.882 0.013 0.016 0.003 -0.011 0.035 0.007 -0.015 0.011 0.010
120 -0.779 0.033 0.020 0.014 0.033 0.031 0.036 0.038 0.027 0.029

6-step-ahead prediction
3 -1.485 0.048 0.157 0.028 0.023 0.159 0.033 0.005 0.038 0.053
12 -1.417 0.010 0.065 0.000 -0.058 0.066 0.000 -0.082 0.008 0.012
36 -1.342 -0.017 0.021 0.001 -0.077 0.030 -0.039 -0.095 0.010 0.012
60 -1.263 -0.031 0.008 0.010 -0.072 0.018 -0.045 -0.083 0.016 0.016
120 -1.100 0.031 0.049 0.023 0.038 0.061 0.029 0.033 0.036 0.034

12-step-ahead prediction
3 -1.940 -0.096 0.031 0.091 -0.098 0.041 -0.096 -0.119 0.086 0.094
12 -1.850 -0.071 -0.012 0.048 -0.147 -0.004 -0.089 -0.168 0.048 0.051
36 -1.688 -0.017 -0.001 0.023 -0.122 0.019 -0.049 -0.137 0.032 0.033
60 -1.560 0.005 0.036 0.024 -0.068 0.066 -0.011 -0.073 0.034 0.036
120 -1.387 0.099 0.151 0.030 0.101 0.193 0.098 0.092 0.047 0.045

Notes: The first column shows the log predictive score based on the RW-C. Other columns show the difference
of log predictive score from the first column. Log predictive score differences represent percentage point
differences. Therefore, a difference of 0.1 corresponds to a 10% more accurate density forecast. The log
predictive score from the best model is in bold letter for each variable and forecast horizon.

month ahead predictions for short term maturities when compared to most competitors.9 By

producing improved estimates of the current state of volatility, we would expect that short

horizon forecasts have the largest gain. The improved density forecasting performance for

the DNS-RV and RW-RV models continues even up to a 6-month forecasting horizon. At

one year ahead, most models with realized volatility have their volatility processes returning

close to the unconditional mean, so the gain diminishes.

Second, comparing RW-SV to RW-SV-RW, RW-RV to RW-RV-RW, and DNS-SV to DNS-

SV-RW shows that given a fixed conditional mean specification, a random walk specification

on conditional volatility dynamics in general leads to poorer results. This illustrates the fact

that even though conditional mean dynamics of bond yields approximate a random walk in

9We also compute the model confidence set of Hansen, Lunde, and Nason (2011) and find the similar
result. See the supporting material for the model confidence set.
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Table 6 Log predictive score comparison: p-values

Maturity RW-C RW-SV RW-RV DNS-C DNS-SV RW-SV-RW DNS-SV-RW DNS-ME-SV DNS-ME-RV

1-step-ahead prediction
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00
36 0.00 0.22 0.01 0.00 0.18 0.10 0.11 0.01 0.01
60 0.08 0.93 0.02 0.10 0.88 0.87 0.72 0.17 0.15
120 0.07 0.99 0.94 0.11 0.82 0.93 0.98 0.30 0.22

3-step-ahead prediction
3 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.03 0.93 0.00 0.01 0.02 0.00 0.00 0.00
36 0.20 0.31 0.28 0.22 0.18 0.21 0.12 0.29 0.27
60 0.53 0.60 0.27 0.59 0.37 0.51 0.34 0.67 0.66
120 0.60 0.96 0.64 0.77 0.96 0.91 0.87 0.94 0.97

6-step-ahead prediction
3 0.12 0.04 0.93 0.25 0.04 0.02 0.03 0.24 0.32
12 0.38 0.28 0.98 0.44 0.15 0.20 0.12 0.45 0.50
36 0.57 0.16 0.74 0.64 0.19 0.09 0.16 0.73 0.75
60 0.77 0.20 0.74 0.90 0.18 0.12 0.14 0.98 0.97
120 0.35 0.52 0.78 0.55 0.64 0.51 0.59 0.68 0.66

12-step-ahead prediction
3 0.76 0.10 0.82 0.70 0.30 0.06 0.25 0.70 0.66
12 0.97 0.23 0.80 0.38 0.41 0.11 0.36 0.34 0.35
36 0.72 0.02 0.17 0.92 0.43 0.00 0.38 0.69 0.72
60 0.10 0.00 0.26 0.44 0.34 0.00 0.32 0.51 0.56
120 0.01 0.00 0.39 0.05 0.26 0.00 0.23 0.07 0.07

Notes: This table presents the p-values from Amisano and Giacomini (2007) tests comparing the hypothesis
of equal log predictive score of the DNS-RV with alternative models. Bold letter indicates p-values less than
5%. Test statistics are computed with a variance estimator robust to serial correlation using a rectangular
kernel of h− 1 lags and the small-sample correction proposed by Harvey, Leybourne, and Newbold (1997).

our sample, conditional volatility dynamics exhibit mean reversion. Bond yields therefore

do have forecastability, although simply looking at the conditional mean dynamics do not

reveal this fact strongly.

Third, an alternative specification for introducing stochastic volatility into the model

by putting it on the measurement equation does not forecast as well as the specification

with stochastic volatility on the transition equation. The measurement error specifications

give consistent improvements in the log predictive score over and above constant volatility

models, although they have a similar log predictive score pattern as DNS-C. Comparing

DNS-SV to DNS-ME-SV shows that for short horizon forecasts, DNS-SV performs better

whereas for longer horizon forecasts, DNS-ME-SV does better. A similar story holds when

looking at DNS-RV and DNS-ME-RV, although DNS-RV does better even up to 6-month
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horizon forecasts with mixed 12-month horizon results.

One fact holding back the performance of the measurement error specifications is that

the measurement error variance explains a small portion of total bond yield variance. For

example, the ratio of the standard deviations of smoothed measurement errors to the stan-

dard deviations of smoothed factors in the DNS-ME-SV model is often below 3 percent and

never above 8 percent 10. In figure 3, we see that the model with stochastic volatility on the

measurement errors does not generate movements in the conditional time-varying volatility

in various middle maturity yields. In fact, the conditional variances of the 1-year, 3-year,

5-year, and 8-year maturities are nearly on top of the black dotted line, which is the variance

of the yields implied by the DNS-C model. Therefore, putting time-varying volatility in the

measurement errors does not drastically change the model-implied predictive distributions.

This explains why the density forecasting performance for this class of models mimics that

of the DNS-C model.

In contrast, the figure 3 shows that putting stochastic volatility in the transition equation

can better capture time-varying volatility. The DNS-SV model-implied time-varying volatil-

ity consistently fits the narrative evidence of the Great Moderation from the mid-1980’s until

the mid-2000’s. It also picks up the increases in volatility from the early 2000’s recession

and recent financial crises.

5.4 Forecasting empirical factors

A popular decomposition that we use as well to model the yield curve involves the level,

slope, and curvature factors. The empirical counterparts of these factors are the 10-year

yield for the level, 10-year minus 6-month spread for the slope, and 6-month + 10-year

− 2∗5-year linear combination for the curvature. As discussed in Diebold and Rudebusch

10This fact is similar across different model specifications. The values from all models are presented in
the supporting materials.
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Figure 3 Stochastic variance of individual yield

Based on DNS-SV and ME-SV

3 month maturity 1 year maturity 3 year maturity

5 year maturity 8 year maturity 10 year maturity

Notes: Red dotted line: Conditional variance from DNS-SV. Blue solid line: Conditional variance from
DNS-ME-SV with 80% credible interval. Black dotted horizontal line: Conditional variance from DNS-C.
Estimation sample is from January 1981 to November 2009.

(2012), the level factor is related to inflation expectations while the slope factor corresponds

to the business cycle.

Given that many people think about the yield curve in terms of these three factors, we also

provide point and density forecasting results in this dimension. Considering this dimension

provides a unique challenge for our models, as they must jointly predict the future movements

of the yields correctly. This is an aspect of multivariate forecasting not present in a univariate

context.

Table 7 shows the RMSE values relative to the RW-C benchmark. In the short-run,

RW-RV does well for slope and curvature and DNS-RV does well for curvature. All values,

however, are not significantly different from a random walk, largely replicating the result for



This Version: November 4, 2013 25

the individual yields. As the forecasting horizon increases, the stationary models begin to

forecast well, as also pointed out in Duffee (2011). This is in line with results we find for the

stationary models when forecasting the individual yields.

For the short- and long-run forecasts, allowing for time-varying volatility or adding realized

volatility does not help in point prediction. Note that from table 4, adding in realized

volatility largely improves the point prediction results when comparing DNS-SV to DNS-

RV. This fact does not hold when forecasting the empirical factors. We believe there may

be two factors at play that lead to this result. First, DNS-RV occasionally underperforms

DNS-SV in forecasting the 10-year yield, an important component in the empirical factors.

Second, joint prediction brings in the importance of the covariance between the yields. The

root mean square error of the slope forecast, for example, depends on the RMSEs of the

6-month and 10-year yields, but also on the covariance between the errors of the two series.

Specifically, a negative covariance between the forecast errors of the two series worsens

RMSE. A negatively correlated forecast error could also cause the negative DNS-RV result.

Perhaps by modeling the covariance between the yields more seriously and adding realized

covariance data, second moment information could improve point forecasts.

For the density forecasts, allowing for stochastic volatility helps improve the joint predic-

tion, especially in the short-run. Its effect diminishes as the horizon gets longer, similar to

the individual yield results. In contrast to the individual yield prediction results, the random

walk assumption on stochastic volatility no longer hurts prediction. Incorporating realized

volatility information, however, worsens the density prediction of slope and curvature, al-

though the difference is not significant for slope. A potential explanation for this result is

that by only adding realized volatility information, we weight the DNS-RV estimates of ht

too strongly towards matching the individual variances of the yields, while neglecting the

covariances. Adding realized covariance here could also reverse this fact.
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Table 7 RMSE comparison: Empirical factors

Factor RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW DNS-ME-SV DNS-ME-RV

1-step-ahead prediction
Level 0.277 1.001 0.996 0.988 0.989 0.999 1.000 0.988 0.986 0.997
Slope 0.295 0.995 0.984 1.014 1.008 1.007 0.998 1.010 1.020 0.999

Curvature 0.263 1.001 0.968 1.018 0.995 0.983 1.004 0.995 0.991 1.034

3-step-ahead prediction
Level 0.489 1.000 0.998 0.982 0.987 0.995 1.000 0.988 0.987 0.987
Slope 0.489 0.999 0.995 1.023 1.018 1.027 1.001 1.018 1.023 1.020

Curvature 0.438 1.003 0.999 0.982 0.955* 0.997 1.003 0.955* 0.974 0.996

6-step-ahead prediction
Level 0.665 0.999 0.992* 0.977 0.982 0.980 0.998 0.986 0.981 0.980
Slope 0.773 1.000 0.996 0.989 1.012 1.034 1.000 1.012 0.990 0.991

Curvature 0.651 1.002 1.004 0.930 0.915*** 0.995 1.002 0.915*** 0.930 0.942

12-step-ahead prediction
Level 0.833 1.002 0.998 0.976 0.994 0.966 1.001 0.994 0.980 0.976
Slope 1.254 1.000 0.998** 0.917 0.985 1.013 1.000 0.986 0.920** 0.922**

Curvature 0.827 1.002** 1.003 0.908 0.923* 0.969 1.002*** 0.922* 0.905 0.918

Notes: The first column shows the RMSE based on RW-C. Other columns show the relative RMSE compared

to the first column. The RMSE from the best model is in bold letter. Units are in percentage points.

Empirical factor is defined as: Level: 10-year yield, Slope: 10Y-6M spread, Curvature: 6M+10Y-2*5Y.

Divergences in accuracy that are statistically different from zero are given by * (10%), ** (5%), *** (1%).

We construct the p-values based on the Diebold and Mariano (1995) t-statistics with a variance estimator

robust to serial correlation using a rectangular kernel of h− 1 lags and the small-sample correction proposed

by Harvey, Leybourne, and Newbold (1997).

6 Conclusion

We investigate the effects of introducing realized volatility information on US bond yield

density forecasting. We compare the performance of our benchmark model DNS-RV with

a variety of different models proposed in the literature and find that the DNS-RV model

produces superior density forecasts, especially for the short-run. In addition to this, incorpo-

rating time-varying volatility in general improves density prediction, time-varying volatility

is better modeled as a stationary process as opposed to a random walk, and time-varying

volatility in the factor equation generates better density predictions when compared to time-

varying volatility on the measurement equation.

The results for the joint forecasting performance show that there exists promising future

work to be done in this area. Key in joint forecasting performance is capturing the correct

time-varying covariance in the yields. Perhaps explicitly modeling correlation between the
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Table 8 Log predictive score: Empirical factors

Factor RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-RV-RW DNS-SV-RW DNS-ME-SV DNS-ME-RV

1-step-ahead prediction
Level -0.248 0.110 0.111 0.011 0.121 0.110 0.106 0.108 0.048 0.037
Slope -0.250 0.130 0.104* -0.003 0.115 0.078 0.134 0.126 0.050 0.061

Curvature -0.133 0.052** 0.008 -0.007 0.062** 0.005 0.056** 0.065** 0.037 0.010

3-step-ahead prediction
Level -0.779 0.033 0.020 0.014 0.033 0.031 0.036 0.038 0.027 0.029
Slope -0.744 0.063 0.053 -0.015 0.037 0.022 0.060 0.038 0.007 0.015

Curvature -0.605 0.040* 0.003 0.023 0.098*** 0.007 0.043** 0.103*** 0.031 0.014

6-step-ahead prediction
Level -1.100 0.031 0.049 0.023 0.038 0.061 0.029 0.033 0.036 0.034
Slope -1.180 -0.255 -0.064 0.008 -0.182 -0.101 -0.141 -0.175 0.006 0.002

Curvature -0.995 -0.034 -0.006 0.069 0.066* 0.003 -0.031 0.069** 0.061 0.045

12-step-ahead prediction
Level -1.387 0.099 0.151 0.030 0.101 0.193 0.098 0.092 0.047 0.045
Slope -1.683 -0.630 -0.057 0.044 -0.687 -0.088 -0.289 -0.364 0.019 0.017

Curvature -1.234 -0.062 -0.031 0.077 -0.034 0.021 -0.077 -0.032 0.077 0.061

Notes: For this table, we perform a one-sided test with the alternative hypothesis that the alternative model
has larger log predictive score than DNS-RV. The first column shows the log predictive score based on RW-C.
Other columns show the difference of log predictive score from the first column. The log predictive score
from the best model is in bold letter. Empirical factor is defined as: Level: 10-year yield, Slope: 10Y-6M
spread, Curvature: 6M+10Y-2*5Y. Log predictive score differences represent percentage point differences.
Therefore, a difference of 0.1 corresponds to a 10% more accurate density forecast. Gains in accuracy that
are statistically different from zero are given by * (10%), ** (5%), *** (1%). We construct the p-values
based on the Diebold and Mariano (1995) t-statistics with a variance estimator robust to serial correlation
using a rectangular kernel of h − 1 lags and the small-sample correction proposed by Harvey, Leybourne,
and Newbold (1997).

stochastic volatility innovations in conjunction with using realized covariance data could lead

to large gains in joint density forecasting.
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Appendices

A State Space Representation

For completeness, we present the full specification of the state space form of the model.

We give a detailed explanation of these equations in sections 2.1 and 2.2 of the main text.

Consider a set of bond yields yt = {yt(1), ..., yt(N)}′. τj is the maturity in months of bond

yield j and λ is the point of maximal curvature.

yt =



1 1−e−λτ1
λτ1

1−e−λτ1
λτ1

− eλτ1

. . .

. . .

1 1−e−λτN
λτN

1−e−λτN
λτN

− eλτN




lt

st

ct

+ εt (A.1)

εt ∼ N(0, Q) (A.2)

log(RVt) = β + Λhh̃t + ζt (A.3)

ζt ∼ N (0, S) (A.4)


lt − µl

st − µs

ct − µc

 =


φl 0 0

0 φs 0

0 0 φc



lt−1 − µl

st−1 − µs

ct−1 − µc

+ ηt (A.5)

ηt ∼ N(0, Ht) (A.6)
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Ht =


ehl,t 0 0

0 ehs,t 0

0 0 ehc,t

 (A.7)

hi,t − µi,h = φi,h(hi,t−1 − µi,h) + ei,t (A.8)

ei,t ∼ N(0, σ2
i,h) (A.9)

for i = l, s, c and Q and S are diagonal matrix.

B Measurement Equation for RV: Derivation and Ap-

proximation

Equation A.3 is the linearized version of the nonlinear measurement equation that comes

from adding realized volatility information to the dynamic factor model. We perform a

first-order approximation of the logarithm of the following equation

RVt ≈ V art−1(yt) = diag(ΛfHtΛ
′
f +Q)

= diag(Λ̃fH̃tΛ̃
′
f +Q)

(A.10)

where we write the logarithm of volatility in deviation form h̃i,t = hi,t − µh,i for i = l, s, c.

Then H̃t is a 3 × 3 diagonal matrix with each element corresponding to eh̃i,t and Λ̃f =

Λf [e
µl/2, eµs/2, eµc/2]′ . We first derive the nonlinear measurement equation that links the

realized volatility with underlying factor volatility. Our derivation is similar to Maheu and

McCurdy (2011) but we derive it under the dynamic factor model framework. Then, we
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describe the approximation to get the linearized measurement equation for RVt.

Derivation of the measurement equation We assume that the RVt has a log-Normal

distribution (element-wise). Then we have

Et−1[RVt] = exp

(
Et−1 log(RVt) +

1

2
V art−1(log(RVt))

)
= diag(Λ̃fH̃tΛ̃

′
f +Q).

where the second equality is from Corollary 1 of Andersen, Bollerslev, Diebold, and Labys

(2003) and we assume that RVt is an unbiased estimator for the quadratic variation. Taking

logarithm on both sides gives,

Et−1 log(RVt) +
1

2
V art−1(log(RVt)) = log

(
diag(Λ̃fH̃tΛ̃

′
f +Q)

)
.

Assume the conditional variance of the RVt is constant and write Et−1[log(RVt)] = log(RVt)+

ζt where11 ζt ∼ N (0, S). Then we get

log(RVt) = β̃ + log(diag(Λ̃fH̃tΛ̃
′
f +Q)) + ζt, ζt ∼ N (0, S). (A.11)

where β̃ can be viewed as the conditional variance of log realized volatility plus potential

bias caused by the assumption we made.

Linearization We present the derivation of equation 5. We linearize the equation A.11 for

ith element around h̃j,t = 0 to get

log(RVi,t) = βi + νi

(
3∑
j=1

Λ̃2
f,i,jh̃j,t

)
+ ζt, ζt ∼ N (0, S).

11Distribution of ζt is obtained by assuming that RVt follows a log-Normal distribution.
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where

βi = β̃i + log(Λ̃2
f,i +Qi,i)

νi =
1(

Λ̃2
f,i +Qi,i

) .

νi

(∑3
j=1 Λ̃2

f,i,jh̃j,t

)
corresponds to Λh,ih̃t and Λ̃2

f,i,j is the (i, j)th element of Λ̃2
f in equation

5. Note that β 6= β̃ as β is the constant term from the linearized equation while β̃ is from

the nonlinear one.

C Estimation Procedure

Presented is the algorithm for the Gibbs sampling. We draw 15000 samples, saving every

5th draw, with the first 5000 draws as burn-in. The priors we choose for the model are all

extremely loose. They are presented in table A-1.

Because of the assumption of independent AR(1) factor and stochastic volatility processes,

the algorithm simplifies slightly. A general multivariate case, however, is a trivial extension.

Call Θ∗ = {µf , φf , µh, φh, β,Q, S, σ2
h, f1:T , h1:T}, the parameters on which we would like

to perform inference. Note that as is standard in Bayesian estimation, we use the data

augmentation method and consider ft and ht as random vectors.

1. Initialize Θ∗.

We do so using the Hautsch and Yang (2012) estimates where possible. For S, we

initialize with the identity matrix. For each element of β, we initialize at 0. For the

factors and stochastic volatilities we draw each element from a normal distribution.

Enter into iteration i:
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2. (Drawing Q|Θ∗−Q) Since Q is diagonal, we draw the diagonal elements one at a time.

Each element of the diagonal term on Q is distributed as an inverse gamma distribu-

tion.12

3. (Drawing β, S|Θ∗−β,S) We can likewise draw β and the diagonal elements of S equation-

by-equation. It is a standard linear regression normal-inverse gamma framework.

4. (Drawing f1:T |Θ∗−f1:T ) The Carter and Kohn (1994) multi-move Gibbs sampling pro-

cedure with stochastic volatility can be used to draw the level, slope, and curvature

factors.

5. (Drawing µf , φf |Θ∗−µf ,φf ) Because we specify the factors and stochastic volatilities

to have independent AR(1) processes, we can separate the drawing of the parameters

for each factor. Drawing the parameters equation-by-equation is possible through the

linear regression with stochastic volatility laid out in Hautsch and Yang (2012).

6. (Drawing h1:T |Θ∗−h1:T ) We have a measurement equation made up of two parts. The

first part uses the Kim, Shephard, and Chib (1998) method to transform the level,

slope, and curvature factor equations. The measurement equation defined by the level

factor is

log((lt − (1− φl,h)µl,h − φl,hlt−1)2) = hl,t + log(x2l,t) (A.12)

We approximate the error term using a mixture of normals as in Kim, Shephard, and

Chib (1998).

The second part is the realized volatility measurement equation.

Therefore, equations A.13 and A.3 define the measurement equation:

f ∗t = µh + I3×3(ht − µh) + log(x2t ) (A.13)

12For DNS-RV, Q enters in the realized measurement equation (equation A.3). In this case, we draw Q
using the Metropolis-Hastings algorithm with a proposal distribution as an inverse gamma distribution.
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The transition equation is


hl,t − µl,h

hs,t − µs,h

hc,t − µc,h

 =


φl,h 0 0

0 φs,h 0

0 0 φc,h



hl,t−1 − µl,h

hs,t−1 − µs,h

hc,t−1 − µc,h

+ et (A.14)

Because of our linear approximation of the nonlinear measurement equation, we can

simply use the standard Kalman Filter along with the Carter and Kohn (1994) multi-

move Gibbs simulation smoother with time-varying measurement mean and innovation

volatility to draw h1:T .

7. (Drawing µh, φh, σ
2
h|Θ∗−µh,φh,σ2

h
) We use a standard linear regression normal-inverse

gamma framework to draw the parameters equation-by-equation13.

D Forecasting Procedure

Presented in equations A.15 - A.17 is the forecasting algorithm that we use. Because we are

performing Bayesian analysis, we explicitly take into account the parameter uncertainty when

generating our forecasts. We first draw parameters from the relevant posterior distributions

(j) and then simulate 10 trajectories of data given the parameter values (k). We do so for

2000 parameter draws for a total of 20000 simulated data chains from which to compare to

the realized data (Del Negro and Schorfheide (2013)). Note that for the DNS-C model, we

would not have equation A.17 and the Ht would become H.

ŷj,kt = Λf


lj,kt

sj,kt

cj,kt

+ ε̃j,kt , ε̃j,kt ∼ N
(
0, Qj

)
(A.15)

13Here relies on the specifics of the linearization for our realized volatility measurement equation. Note
that we linearize that equation around the previous draw’s µh. This means we do not have to take this
equation into account when drawing our new µh.
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lj,kt − µ

j
l

sj,kt − µjs

cj,kt − µjc

 =


φjl 0 0

0 φjs 0

0 0 φjc



lj,kt−1 − µ

j
l

sj,kt−1 − µjs

cj,kt−1 − µjc

+ η̃j,kt , η̃j,kt ∼ N
(

0, Hj,k
t

)
(A.16)

hj,ki,t − µ
j
i,h = φji,h(h

j,k
i,t−1 − µ

j
i,h) + ẽj,ki,t , ẽj,ki,t ∼ N

(
0,
(
σji,h
)2)

(A.17)

j = 1, ..., 2000

k = 1, ..., 10

t = T, ..., T + 12

where T is the beginning of the forecasting period.

E Prior Specification

We present prior distributions in table A-1.



Table A-1 Prior Distribution

Parameter Description Dim. Dist. Para(1) Para(2)

H Variance of the measurement error
(yt).

17× 1 IG 0 0.001

µf Long-run mean parameter for ft. 3× 1 N 0 100
φf AR(1) coefficient for ft. 3× 1 N 0.8 100
µh Long-run mean parameter for ht. 3× 1 N 0 100
φh AR(1) coefficient for ht. 3× 1 N 0.8 100
σ2
h Variance of the innovation for the

ht.
3× 1 IG 0.01 2

β Intercepts in the RV measurement
equation. Only used for MRV

17× 1 N 0 100

S Variance of the measurement error
RV . Only used for MRV

17× 1 IG 0 0.001

σ2
f Variance of the innovation for the

ft. Only used for models without
time-varying volatility

3× 1 IG 0.1 2

Note: a) All prior distributions are independent. For example, prior distributions for elements in H are
independent from each other and follow the inverse gamma distribution.
b) Dim: Dimension of the parameters.
c) IG: Inverse gamma distribution. Para(1) and Para(2) mean scale and shape parameters, respectively.
d) N: Normal distribution. Para(1) and Para(2) stand for mean and variance, respectively.
e) Priors for φf and φh are truncated so that the processes for factors and volatilities are stationary.
f) MRV is the set of models with realized volatility data.



F Supporting Material (Not for publication)

F.1 Descriptive statistics of data

Table A-2 Descriptive Statistics (Yields)

Maturity mean std min max ρ̂(1) ρ̂(12) ρ̂(24)

3 5.35 3.14 0.04 16.02 0.97 0.65 0.39
6 5.52 3.17 0.15 16.48 0.98 0.66 0.40
9 5.64 3.19 0.19 16.39 0.98 0.67 0.42
12 5.75 3.19 0.25 16.10 0.98 0.69 0.44
15 5.87 3.21 0.38 16.06 0.98 0.70 0.46
18 5.95 3.20 0.44 16.22 0.98 0.71 0.47
21 6.03 3.19 0.53 16.17 0.98 0.71 0.49
24 6.06 3.15 0.53 15.81 0.98 0.72 0.50
30 6.18 3.11 0.82 15.43 0.98 0.73 0.52
36 6.29 3.08 0.98 15.54 0.98 0.74 0.54
48 6.48 3.02 1.02 15.60 0.98 0.75 0.57
60 6.60 2.94 1.56 15.13 0.98 0.76 0.59
72 6.73 2.92 1.53 15.11 0.98 0.77 0.61
84 6.81 2.84 2.18 15.02 0.98 0.77 0.61
96 6.90 2.81 2.11 15.05 0.98 0.78 0.63
108 6.95 2.79 2.15 15.11 0.98 0.78 0.63
120 6.95 2.72 2.68 15.19 0.98 0.77 0.63

Notes: For each maturity we present mean, standard deviation, minimum, maximum and the j-th order
autocorrelation coefficients for j = 1, 12, and 24.
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Table A-3 Descriptive Statistics (log realized volatility)

Maturity mean std min max ρ̂(1) ρ̂(12) ρ̂(24)

3 -3.05 1.29 -5.33 1.10 0.65 0.31 0.19
6 -3.35 1.21 -6.66 0.64 0.69 0.28 0.18
9 -3.24 1.10 -5.90 0.47 0.66 0.23 0.10
12 -3.11 1.02 -5.76 0.41 0.63 0.21 0.04
15 -2.99 0.96 -5.68 0.36 0.61 0.20 0.01
18 -2.89 0.93 -5.59 0.29 0.61 0.20 -0.01
21 -2.81 0.90 -5.52 0.20 0.60 0.20 -0.02
24 -2.75 0.88 -5.46 0.11 0.60 0.20 -0.03
30 -2.66 0.85 -5.34 -0.04 0.59 0.20 -0.03
36 -2.61 0.83 -5.23 -0.12 0.60 0.21 -0.03
48 -2.57 0.79 -5.02 -0.19 0.61 0.22 -0.02
60 -2.57 0.77 -4.84 -0.22 0.61 0.23 -0.01
72 -2.58 0.76 -4.67 -0.25 0.61 0.25 0.00
84 -2.59 0.76 -4.66 -0.21 0.62 0.27 0.00
96 -2.61 0.75 -4.66 -0.18 0.63 0.29 0.01
108 -2.62 0.75 -4.66 -0.17 0.64 0.30 0.01
120 -2.63 0.75 -4.65 -0.18 0.66 0.31 0.01

Notes: For each maturity we present mean, standard deviation, minimum, maximum and the j-th order
autocorrelation coefficients for j = 1, 12, and 24.
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F.2 In-sample estimation (posterior moments)

We denote {y1, y2, y3, ..., y16, y17} = monthly U.S. Treasury yields with maturities of (3, 6, 9,

12, 15, 18, 21 months and 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10 years.

Table A-4 Posterior moments of H

RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW

y1 5% 0.064 0.063 0.060 0.063 0.063 0.488 0.063 0.063
50% 0.074 0.072 0.068 0.072 0.072 0.610 0.072 0.072
95% 0.085 0.083 0.080 0.083 0.082 0.760 0.083 0.083

y2 5% 0.008 0.008 0.010 0.008 0.008 0.157 0.008 0.008
50% 0.010 0.009 0.012 0.009 0.009 0.202 0.009 0.009
95% 0.012 0.011 0.015 0.011 0.011 0.284 0.011 0.011

y3 5% 0.002 0.002 0.004 0.002 0.002 0.043 0.002 0.002
50% 0.003 0.003 0.005 0.002 0.002 0.067 0.002 0.003
95% 0.004 0.003 0.006 0.003 0.003 0.138 0.003 0.003

y4 5% 0.003 0.003 0.004 0.003 0.003 0.018 0.003 0.003
50% 0.004 0.004 0.005 0.004 0.004 0.038 0.004 0.004
95% 0.005 0.005 0.005 0.005 0.005 0.097 0.005 0.005

y5 5% 0.006 0.006 0.006 0.006 0.007 0.017 0.006 0.006
50% 0.007 0.007 0.007 0.007 0.007 0.035 0.007 0.007
95% 0.008 0.009 0.008 0.009 0.009 0.086 0.009 0.009

y6 5% 0.006 0.006 0.005 0.006 0.006 0.016 0.006 0.006
50% 0.006 0.006 0.006 0.006 0.007 0.034 0.007 0.007
95% 0.007 0.008 0.007 0.007 0.008 0.083 0.008 0.008

y7 5% 0.004 0.004 0.004 0.004 0.004 0.015 0.004 0.004
50% 0.005 0.005 0.005 0.005 0.005 0.033 0.005 0.005
95% 0.006 0.006 0.005 0.006 0.006 0.080 0.006 0.006

y8 5% 0.002 0.002 0.002 0.002 0.002 0.014 0.002 0.002
50% 0.002 0.002 0.003 0.002 0.002 0.033 0.002 0.002
95% 0.003 0.003 0.003 0.003 0.002 0.082 0.002 0.003

y9 5% 0.002 0.002 0.002 0.002 0.002 0.013 0.002 0.002
50% 0.002 0.002 0.003 0.002 0.002 0.029 0.002 0.002
95% 0.003 0.003 0.003 0.003 0.003 0.075 0.003 0.003

y10 5% 0.002 0.002 0.003 0.002 0.002 0.011 0.002 0.002
50% 0.003 0.003 0.003 0.003 0.003 0.026 0.003 0.003
95% 0.003 0.003 0.003 0.003 0.003 0.068 0.003 0.003

y11 5% 0.004 0.004 0.004 0.004 0.004 0.009 0.004 0.004
50% 0.004 0.004 0.004 0.004 0.004 0.021 0.004 0.004
95% 0.005 0.005 0.005 0.005 0.005 0.059 0.005 0.005

y12 5% 0.003 0.003 0.004 0.003 0.003 0.007 0.003 0.003
50% 0.004 0.004 0.004 0.004 0.004 0.017 0.004 0.004
95% 0.004 0.004 0.005 0.004 0.004 0.049 0.004 0.004

y13 5% 0.004 0.004 0.005 0.004 0.004 0.006 0.004 0.004
50% 0.005 0.005 0.006 0.005 0.005 0.013 0.005 0.005
95% 0.005 0.005 0.006 0.005 0.005 0.038 0.005 0.005

y14 5% 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.003
50% 0.004 0.004 0.005 0.004 0.004 0.011 0.004 0.004
95% 0.005 0.004 0.006 0.004 0.004 0.032 0.004 0.004

y15 5% 0.003 0.002 0.004 0.003 0.002 0.004 0.002 0.002
50% 0.003 0.003 0.005 0.003 0.003 0.011 0.003 0.003
95% 0.004 0.004 0.006 0.004 0.004 0.031 0.004 0.004

y16 5% 0.006 0.007 0.007 0.006 0.007 0.006 0.007 0.007
50% 0.007 0.008 0.008 0.008 0.008 0.012 0.008 0.008
95% 0.009 0.009 0.010 0.009 0.009 0.028 0.009 0.009

y17 5% 0.012 0.012 0.012 0.012 0.013 0.016 0.013 0.012
50% 0.014 0.014 0.014 0.014 0.014 0.029 0.014 0.014
95% 0.016 0.016 0.016 0.016 0.017 0.053 0.017 0.017

Notes: Variance of the measurement error. Not applicable to DNS-ME-SV and DNS-ME-RV. Estimation
sample is from January 1981 to November 2009.
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Table A-5 Posterior moments of parameters related to ft

RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW DNS-ME-SV DNS-ME-RV

µf,l 5% 0.00 0.00 0.00 -7.28 -5.83 -17.48 0.00 -5.44 -7.20 -7.40
50% 0.00 0.00 0.00 4.63 4.57 -5.47 0.00 4.71 4.41 4.37
95% 0.00 0.00 0.00 7.86 7.17 2.15 0.00 6.94 7.83 7.79

µf,s 5% 0.00 0.00 0.00 -4.28 -4.04 -1.14 0.00 -4.28 -4.47 -4.49
50% 0.00 0.00 0.00 -2.54 -0.88 2.92 0.00 -0.98 -2.55 -2.59
95% 0.00 0.00 0.00 -1.43 6.93 13.81 0.00 6.46 -1.50 -1.43

µf,c 5% 0.00 0.00 0.00 -2.64 -2.13 -6.31 0.00 -1.78 -2.97 -2.91
50% 0.00 0.00 0.00 -0.82 -0.52 0.16 0.00 -0.42 -0.87 -0.79
95% 0.00 0.00 0.00 0.92 0.84 8.66 0.00 0.70 1.26 1.33

φf,l 5% 1.00 1.00 1.00 0.98 0.98 0.99 1.00 0.98 0.98 0.98
50% 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.99
95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

φf,s 5% 1.00 1.00 1.00 0.94 0.97 0.99 1.00 0.97 0.94 0.94
50% 1.00 1.00 1.00 0.96 0.99 1.00 1.00 0.99 0.96 0.97
95% 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.99

φf,c 5% 1.00 1.00 1.00 0.92 0.91 0.97 1.00 0.90 0.92 0.93
50% 1.00 1.00 1.00 0.95 0.95 0.99 1.00 0.94 0.96 0.96
95% 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.98 0.99 0.99

σf,l 5% 0.10 0.10 0.98 0.99 0.98 0.09 0.09
50% 0.12 0.11 0.99 1.00 0.99 0.11 0.10
95% 0.13 0.13 1.00 1.00 1.00 0.12 0.12

σf,s 5% 0.16 0.16 0.16 0.15
50% 0.19 0.19 0.18 0.17
95% 0.22 0.21 0.20 0.19

σf,c 5% 0.42 0.43 0.40 0.37
50% 0.49 0.51 0.46 0.44
95% 0.57 0.59 0.54 0.51

Notes: Estimation sample is from January 1981 to November 2009.
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Table A-6 Posterior moments of parameters related to ht

RW-C RW-SV RW-RV DNS-C DNS-SV DNS-RV RW-SV-RW DNS-SV-RW

µh,l 5% -4.75 -4.11 -4.40 -4.19 0.00 0.00
50% -2.55 -3.85 -2.56 -3.92 0.00 0.00
95% -1.11 -1.76 -1.48 -2.21 0.00 0.00

µh,s 5% -3.39 -3.22 -3.41 -3.22 0.00 0.00
50% -2.30 -2.82 -2.30 -2.85 0.00 0.00
95% -1.69 -1.74 -1.66 -1.94 0.00 0.00

µh,c 5% -1.47 -2.25 -1.48 -2.18 0.00 0.00
50% -0.97 -1.93 -0.96 -1.88 0.00 0.00
95% -0.53 -1.45 -0.47 -1.39 0.00 0.00

φh,l 5% 0.93 0.59 0.93 0.58 1.00 1.00
50% 0.98 0.66 0.98 0.66 1.00 1.00
95% 1.00 0.73 1.00 0.73 1.00 1.00

φh,s 5% 0.92 0.56 0.92 0.57 1.00 1.00
50% 0.97 0.65 0.96 0.64 1.00 1.00
95% 0.99 0.72 1.00 0.72 1.00 1.00

φh,c 5% 0.74 0.40 0.81 0.39 1.00 1.00
50% 0.91 0.50 0.92 0.49 1.00 1.00
95% 0.98 0.61 0.98 0.60 1.00 1.00

σh,l 5% 0.01 0.39 0.01 0.41 0.01 0.01
50% 0.03 0.72 0.03 0.75 0.01 0.01
95% 0.08 0.88 0.08 0.92 0.03 0.03

σh,s 5% 0.01 1.29 0.01 1.27 0.01 0.01
50% 0.03 1.75 0.04 1.72 0.02 0.03
95% 0.10 3.00 0.10 2.64 0.06 0.05

σh,c 5% 0.01 1.41 0.02 1.30 0.01 0.01
50% 0.12 2.00 0.09 1.78 0.03 0.03
95% 0.40 4.00 0.27 4.30 0.09 0.09

Notes: Parameters related to ht. Not applicable to DNS-C, RW-C, DNS-ME-SV and DNS-ME-RV. Estima-
tion sample is from January 1981 to November 2009.
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Table A-7 Posterior moments of parameters related to ht for ME-SV model

µh φh σ2
h

DNS-ME-SV DNS-ME-RV DNS-ME-SV DNS-ME-RV DNS-ME-SV DNS-ME-RV

y1 5% -4.80 -4.28 5% 0.91 0.91 5% 0.14 0.04
50% -3.61 -3.45 50% 0.95 0.95 50% 0.23 0.08
95% -2.50 -2.92 95% 0.99 0.98 95% 0.36 0.13

y2 5% -5.75 -5.79 5% 0.89 0.91 5% 0.03 0.01
50% -4.88 -5.03 50% 0.95 0.95 50% 0.07 0.03
95% -4.14 -4.62 95% 0.99 0.99 95% 0.14 0.06

y3 5% -6.28 -5.77 5% 0.53 0.88 5% 0.00 0.00
50% -5.48 -5.55 50% 0.96 0.93 50% 0.01 0.01
95% -4.96 -5.35 95% 1.00 0.98 95% 0.04 0.02

y4 5% -6.52 -5.60 5% 0.24 0.87 5% 0.00 0.00
50% -5.43 -5.43 50% 0.96 0.92 50% 0.01 0.01
95% -4.65 -5.26 95% 1.00 0.97 95% 0.02 0.01

y5 5% -7.89 -5.35 5% 0.95 0.86 5% 0.01 0.00
50% -5.40 -5.12 50% 0.98 0.92 50% 0.02 0.01
95% -4.15 -4.93 95% 1.00 0.97 95% 0.04 0.02

y6 5% -10.34 -5.69 5% 0.97 0.88 5% 0.00 0.01
50% -5.95 -5.39 50% 0.99 0.93 50% 0.01 0.02
95% -5.14 -5.14 95% 1.00 0.97 95% 0.02 0.04

y7 5% -9.71 -6.07 5% 0.97 0.89 5% 0.00 0.01
50% -6.16 -5.67 50% 0.99 0.94 50% 0.01 0.03
95% -5.46 -5.37 95% 1.00 0.98 95% 0.01 0.06

y8 5% -8.41 -6.01 5% 0.92 0.84 5% 0.00 0.00
50% -5.92 -5.85 50% 0.98 0.91 50% 0.01 0.01
95% -5.03 -5.68 95% 1.00 0.96 95% 0.01 0.02

y9 5% -7.06 -6.29 5% 0.93 0.87 5% 0.00 0.01
50% -6.11 -5.98 50% 0.97 0.93 50% 0.01 0.03
95% -5.63 -5.73 95% 1.00 0.97 95% 0.03 0.06

y10 5% -8.33 -5.89 5% 0.95 0.83 5% 0.00 0.00
50% -5.91 -5.71 50% 0.98 0.90 50% 0.01 0.01
95% -5.00 -5.56 95% 1.00 0.95 95% 0.01 0.02

y11 5% -7.80 -5.88 5% 0.95 0.86 5% 0.01 0.02
50% -5.53 -5.55 50% 0.98 0.92 50% 0.02 0.05
95% -0.82 -5.27 95% 1.00 0.96 95% 0.05 0.09

y12 5% -8.28 -5.68 5% 0.95 0.84 5% 0.00 0.01
50% -5.69 -5.50 50% 0.98 0.91 50% 0.01 0.01
95% -4.91 -5.31 95% 1.00 0.96 95% 0.02 0.04

y13 5% -8.00 -6.12 5% 0.95 0.88 5% 0.01 0.03
50% -5.48 -5.60 50% 0.99 0.94 50% 0.03 0.06
95% 0.85 -5.20 95% 1.00 0.98 95% 0.06 0.10

y14 5% -9.18 -6.51 5% 0.97 0.92 5% 0.01 0.03
50% -5.94 -5.77 50% 0.99 0.96 50% 0.02 0.05
95% -2.26 -5.14 95% 1.00 0.99 95% 0.04 0.08

y15 5% -8.72 -6.07 5% 0.96 0.88 5% 0.00 0.01
50% -5.95 -5.69 50% 0.99 0.93 50% 0.01 0.03
95% -2.15 -5.36 95% 1.00 0.98 95% 0.03 0.07

y16 5% -9.02 -6.04 5% 0.96 0.89 5% 0.01 0.03
50% -5.84 -5.42 50% 0.99 0.94 50% 0.01 0.06
95% -4.57 -4.92 95% 1.00 0.98 95% 0.04 0.11

y17 5% -6.53 -5.66 5% 0.93 0.91 5% 0.04 0.04
50% -5.02 -4.87 50% 0.97 0.95 50% 0.07 0.07
95% -3.06 -4.25 95% 1.00 0.99 95% 0.14 0.12

Notes: Parameters related to ht. For DNS-ME-SV and DNS-ME-RV. Estimation sample is from January
1981 to November 2009.
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F.3 Extracted factors (ft)

Figure A-1 Extracted factors

Level Factor

DNS-C Various specifications

Slope Factor

DNS-C Various specifications

Curvature Factor

DNS-C Various specifications

Notes: Left columns: Factors estimated from the DNS-C model with 80% credible intervals. Right column:
Estimated factors from the various specifications. Shaded bars on the right panel are NBER recession dates.
1) Factors are very similar to each other. 2) Factors are very accurately estimated. Estimation sample is
from January 1981 to November 2009.
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F.4 Relative importance (ratio in %) of variation between the

measurement error and ft.

Table A-8 Relative importance (ratio in %) of variation between the measurement error and
ft.

Maturity DNS-C DNS-SV DNS-RV DNS-ME-SV DNS-ME-RV

3 7.72 7.73 7.77 7.95 7.66
6 2.54 2.54 2.80 2.78 2.56
9 1.13 1.12 1.60 1.55 1.51
12 1.80 1.81 1.90 1.73 1.85
15 2.24 2.26 2.22 2.13 2.09
18 2.05 2.06 2.04 2.00 1.94
21 1.77 1.78 1.75 1.75 1.74
24 1.29 1.29 1.35 1.36 1.34
30 1.31 1.28 1.44 1.43 1.41
36 1.43 1.42 1.52 1.39 1.42
48 2.04 2.04 2.11 2.08 2.10
60 1.70 1.71 1.85 1.72 1.69
72 2.18 2.18 2.43 2.32 2.25
84 1.96 1.95 2.24 2.13 2.19
96 1.48 1.45 2.01 1.51 1.64
108 2.74 2.78 2.92 2.57 2.66
120 4.04 4.07 4.11 3.92 4.16

Notes: We calculate std(et)
std(ft)

∗ 100 where et is measurement error and ft is a vector level, slope, and curvature

factor. This table is to show that variation in the measurement equation is relatively smaller than variation
in the factor component. Sizes of variation from the measurement error is about 1% ∼ 8 % of the variation
from the factors. Mostly they are below 3% except 3 month and 10 year bond yields. This evidence supports
that time-varying volatility in the transition equation (factor equation) plays much larger role in prediction.
Calculated at the posterior median. Estimation sample is from January 1981 to November 2009.
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F.5 Model confidence set

Table A-9 Model Confidence Set (5%) Based on the log predictive score

Maturity List of Models

1-step-ahead prediction
3 DNS-RV
12 RW-RV DNS-RV
36 DNS-RV
60 DNS-SV DNS-RV RW-SV
120 DNS-RV RW-SV RW-RV DNS-SV

3-step-ahead prediction
3 RW-RV DNS-RV
12 DNS-SV RW-SV-RW RW-SV RW-RV DNS-RV
36 RW-C DNS-SV DNS-ME-RV DNS-ME-SV RW-SV-RW RW-SV RW-RV DNS-RV
60 DNS-SV-RW DNS-SV RW-C DNS-C RW-SV-RW DNS-ME-RV DNS-ME-SV RW-RV RW-SV DNS-RV
120 RW-RV DNS-ME-SV DNS-ME-RV RW-SV DNS-RV DNS-SV RW-SV-RW DNS-SV-RW

6-step-ahead prediction
3 DNS-SV DNS-ME-SV RW-SV DNS-ME-RV RW-RV DNS-RV
12 DNS-SV-RW DNS-SV DNS-C RW-C RW-SV-RW DNS-ME-SV RW-SV DNS-ME-RV RW-RV DNS-RV
36 DNS-SV-RW DNS-SV RW-SV-RW RW-SV DNS-C RW-C DNS-ME-SV DNS-ME-RV RW-RV DNS-RV
60 DNS-SV-RW RW-SV-RW DNS-SV RW-SV RW-C RW-RV DNS-C DNS-ME-RV DNS-ME-SV DNS-RV
120 RW-SV-RW DNS-C RW-SV DNS-SV-RW DNS-ME-RV DNS-ME-SV DNS-SV RW-RV DNS-RV

12-step-ahead prediction
3 RW-RV DNS-RV DNS-ME-SV DNS-C DNS-ME-RV
12 DNS-SV-RW DNS-SV RW-SV-RW RW-SV RW-RV RW-C DNS-RV DNS-C DNS-ME-SV DNS-ME-RV
36 DNS-SV-RW DNS-SV RW-SV-RW RW-SV RW-RV RW-C DNS-C DNS-RV DNS-ME-SV DNS-ME-RV
60 DNS-ME-SV RW-RV DNS-ME-RV DNS-RV
120 DNS-ME-RV DNS-ME-SV RW-SV RW-SV-RW DNS-SV-RW DNS-SV RW-RV DNS-RV

Notes: This table lists a subset of forecasting models that includes the best models (in terms of the log
predictive score) at the 5% confidence level. Specifically, we define the difference in the log predictive score
for model i and j as

dij,t = LPSi,t − LPSj,t

and define µij = E[dij,t]. Then, the set of best forecasts is defined as,

M∗ = {i ∈M : µij ≥ 0, ∀j ∈M}.

We follow Hansen, Lunde, and Nason (2011) to construct the model confidence set. We construct p-values
using the stationary bootstrap with 10,000 replications and the average window length 12. Computation is
based on the MFE Toolbox provided by Kevin Sheppard.
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