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Abstract

This paper studies the selection of valid and relevant moments for the generalized method of

moments (GMM) estimation. For applications with many candidate moments, our asymptotic

analysis accommodates a diverging number of moments as the sample size increases. The pro-

posed procedure achieves three objectives in one-step: (i) the valid and relevant moments are

distinguished from the invalid or irrelevant ones; (ii) all desired moments are selected in one step

instead of in a stepwise manner; (iii) the parameters of interest are automatically estimated with

all selected moments as opposed to a post-selection estimation. The new method performs mo-

ment selection and e¢ cient estimation simultaneously via an information-based adaptive GMM

shrinkage estimation, where an appropriate penalty is attached to the standard GMM crite-

rion to link moment selection to shrinkage estimation. The penalty is designed to signal both

moment validity and relevance for consistent moment selection. We develop asymptotic results

for the high-dimensional GMM shrinkage estimator, allowing for non-smooth sample moments

and weakly dependent observations. For practical implementation, this one-step procedure is

computationally attractive.
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1 Introduction

In many applications of the generalized method of moments (GMM), the number of candidate

moment conditions is much larger than that of the parameters of interest. However, one typically

does not employ all candidate moment conditions due to two concerns. First, some moments may

be invalid, which cause inconsistent estimation if included. Second, some moment conditions may

be redundant. A redundant moment condition does not contain additional information to improve

estimation e¢ ciency and results in additional �nite-sample bias. Therefore, it is important to

identify the valid and relevant (non-redundant) moment conditions, especially when both concerns

are elevated in the presence of many candidate moments. This paper proposes a procedure that

consistently selects all valid and relevant moments in econometric models where the number of

candidate moments is allowed to increase with the sample size. This type of asymptotic framework

re�ects the complexity of the problem and the computation demand associated with a large number

of candidate moments.

Our method achieves consistent moment selection via an information-based adaptive GMM

shrinkage estimation. Assuming there exists a conservative set of moment conditions that iden-

ti�es the parameter of interest, the moment selection problem is embedded in a penalized GMM

(P-GMM) estimation and a novel penalty is designed to incorporate information on both moment

validity and relevance for adaptive estimation. This penalized GMM estimation not only consis-

tently selects all valid and relevant moment conditions in one step, but also simultaneously and

e¢ ciently estimates the parameters of interest by incorporating all valid and relevant moments

and leaving out all invalid or redundant ones automatically. Asymptotic results provide bounds on

the penalty level to ensure consistent moment selection and e¢ cient estimation. We analyze these

bounds as a function of the sample size and the number of moments, and provide an algorithm for

practical implementation of our procedure.

This paper develops asymptotic results for the high-dimensional GMM shrinkage estimator in a

general framework, allowing for: (i) an increasing number of candidate moments; (ii) an increasing

number of nuisance parameters; (iii) non-smooth moment functions; and (iv) weakly dependent

observations. High-level assumptions are �rst provided to capture the main characteristics of the

problem, followed by primitive su¢ cient assumptions. We develop results on consistency, rate

of convergence, super e¢ ciency, and the asymptotic distribution of the high-dimensional GMM

shrinkage estimator. A linear instrumental variable (IV) model with independent and identically

distributed (i.i.d.) observations is studied in detail to illustrate the general results.

Our paper contributes to the study of moment validity and relevance, and extends it to a high-

dimensional framework. There is a long history on the study of moment validity, starting from
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Sargan (1958), Hansen (1982), Eichenbaum, Hansen, and Singleton (1988). More recent papers

include Berkowitz, Caner, and Fang (2012), Conley, Hansen, and Rossi (2012), Doko Tchatoka and

Dufour (2012), Guggenberger (2012), Nevo and Rosen (2012), and DiTraglia (2012), among others.

There are moment selection methods in the literature which select moment conditions based on

their validity. In a seminal paper, Andrews (1999) proposes a moment selection criterion, based on a

trade-o¤ between the J statistic and the number of moment conditions, and downward and upward

testing procedures. Andrews and Lu (2001) generalize these methods and study applications to

dynamic panel models. Hong, Preston, and Shum (2003) study moment selection based on the

generalized empirical likelihood estimation. Liao (2013) proposes a GMM shrinkage procedure for

selection of valid moment conditions. These moment selection methods only take the moment

validity into account and they assume that the number of the candidate moments is �xed.

On the moment relevance, Breusch, Qian, Schmidt, and Whyhowski (1999) discuss that, even

though a moment is valid and useful by itself, it becomes redundant if its residual after projecting

onto an existing set of moment conditions does not contain additional information. For example, in

the linear IV model, an IV is redundant if it does not improve the �rst-stage regression. Im, Ahn,

Schmidt, and Wooldridge (1999) study e¢ cient estimation in dynamic panel models in the presence

of redundant moments. Hall and Peixe (2003) study the selection of relevant IVs through canonical

correlations and conduct simulations to demonstrate the importance of excluding redundant IVs

in �nite samples. Hall, Inoue, Jana, and Shin (2007) propose a moment selection criterion that

balances the information content and the number of moments. This procedure can be applied to

select relevant moments, after all invalid moments are left out in the �rst step. For applications

to DSGE models, Hall, Inoue, Nason, and Rossi (2010) propose two moment selection criteria of

this sort to select all valid and relevant impulse response functions for matching estimation. There

are moment selection methods in the literature which select IVs or moments via di¤erent criteria,

such as the mean square error or the coverage of con�dence region of the estimators of structural

parameters, see, e.g., Donald and Newey (2001), Donald, Imbens, and Newey (2009), Kuersteiner

(2002), and Inoue (2006). These selection procedures assume that all candidate moments are valid.

This paper also complements a growing literature on the application of high-dimensional meth-

ods to the IV and moment based econometric models. Most papers in this literature investigate

e¢ cient estimation in the presence of many valid IVs. Belloni, Chernozhukov, and Hansen (2010)

and Belloni, Chen, Chernozhukov, and Hansen (2012) apply Lasso-type estimation to linear models

with many IVs and show that the optimal IV is well approximated by the �rst stage shrinkage esti-

mation. The boosting method is suggested for IV selection by Bai and Ng (2009). Carrasco (2012)

studies e¢ cient estimation with many IVs by regularization techniques. Shrinkage estimation for
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homoskedastic linear IV models is considered by Chamberlain and Imbens (2004) and Okui (2011).

Gautier and Tsybakov (2011) propose a Danzig selector based IV estimator in high dimensional

models. Kuersteiner and Okui (2010) recommend using the model averaging methods to approxi-

mate the optimal IV in the �rst-stage regression. Caner and Zhang (2012) study adaptive elastic

net GMM estimation with an increasing number of parameters. Caner, Han, and Lee (2013) study

the valid IV selection and variable selection in linear IV models. Fan and Liao (2011) investigate

P-GMM and penalized empirical likelihood estimation in ultra high dimensional models where the

number of parameters increases faster than the sample size and provide a di¤erent type of as-

ymptotic results. Our paper contributes to the literature by combining the selection of valid and

relevant moments with e¢ cient estimation, proposing a new information-based adaptive penalty,

and considering a general nonlinear GMM estimation with possible non-smooth moment conditions

and temporally dependent observations.

The rest of the paper is organized as follows. Section 2 describes the three categories of moment

conditions, provides heuristic arguments on how shrinkage estimation distinguishes moments in dif-

ferent categories, and introduces the P-GMM estimator and its information-based penalty. Section

3 derives asymptotic results for the P-GMM estimator, including consistency, rate of convergence,

super e¢ ciency, and asymptotic distribution, and discusses their implications on consistent mo-

ment selection. Section 4 applies the main theory of this paper to a linear IV model. Section 5

analyzes the asymptotic magnitudes of the information-based penalty and provides suggestions for

practical implementation of the procedure. Section 6 provides �nite-sample results through simula-

tion. Section 7 concludes and discusses related topics under investigation. The Appendix contains

all the technical proofs. A separate online Supplemental Appendix contains additional supporting

materials and is available on the authors�websites.

The notations are standard. Throughout the paper, C denotes some generic �nite positive

constant; k�k denotes the Euclidean norm; A0 denotes the transpose of a matrix A; �max(A) and
�min(A) denote the largest and smallest eigenvalues of a matrix A respectively; for d1 � 1 vector
function f(x): Rd2 ! Rd1 we use @f(x)

@x0 to denote the d1 � d2 matrix whose i-th row and j-th

column element is @fi(x)@xj
where fi(�) and xj are the i-th component in f(�) and j-th component in

x respectively; for any square matrix A, A � 0 means that A is a positive semi-de�nite matrix;

for any positive integers k1 and k2, Ik1 denotes the k1 � k1 identity matrix and 0k1�k2 denotes the
k1�k2 zero matrix; A � B means that A is de�ned as B; an = op(bn) means that for any constants
�1; �2 > 0, there is Pr (jan=bnj � �1) < �2 eventually; an = Op(bn) means that for any � > 0,

there is a �nite constant C� such that Pr (jan=bnj � C�) < � eventually; �!p�and �!d�denote

convergence in probability and convergence in distribution, respectively; and w.p.a.1 abbreviates
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with probability approaching 1.

2 An Information-Based GMM Shrinkage Estimator

2.1 Three categories of moment conditions

There exists a vector of moment functions g(Z; �): Rdz � � ! Rkn for the estimation of �o 2
� � Rd� , where fZi : i = 1; :::; ng is stationary and ergodic, Z is used generically for Zi and d�

is a �xed positive integer. We allow the number of moments kn to increase with the sample size.

In particular, we are interested in applications where kn is much larger than d�. In this case, it

is not restrictive to assume that there exists a relatively small sub-vector of g(Z; �), denoted by

gS(Z; �) 2 Rk0 , for the identi�cation of �o by E [gS(Z; �o)] = 0, where E [�] denotes the expectation
operator taking with respect to the distribution of Z. We assume that k0 is a �xed positive integer

with k0 � d�. Typically, these are the moment conditions one would use without further exploring
the validity and relevance of other candidate moments. They are a �conservative�set of moment

conditions to ensure identi�cation.1 Given the identi�cation of �o, this paper proposes a moment

selection procedure that explores all other candidate moments and yields the largest set of valid

and relevant moment conditions.

Let gD(Z; �) denote all of the moments not used for identi�cation, where �D� indicates the

�doubt�on the validity and/or relevance of these moments. Without loss of generality, write

g(Z; �) =

24 gS(Z; �)

gD(Z; �)

35 : (2.1)

We also use S and D to denote the sets of indices of all moments in gS(Z; �) and gD(Z; �) respec-

tively. Let g`(Z; �) denote an element of g(Z; �) indexed by `. Given the order of the moment

conditions in (2.1), we know that S = f1; :::; k0g and D = fk0 + 1; :::; kng: A moment is valid if

E [g`(Z; �o)] = 0 for ` 2 D. Given its validity, a moment is considered to be relevant if adding it
yields a more e¢ cient estimator than the one based on E [gS(Z; �o)] = 0.

By the criteria of validity and relevance, the set D is divided into three mutually disjoint sets

D = A [B1 [B0; (2.2)

1Because �o is unknown, the conservative set of moment conditions is needed not only for the identiciation and
consistent estimation of �o but also for de�ning the valid and invalid moment conditions. For example, we may have
E [g`(Z; �1)] = 0 and E [g`(Z; �o)] 6= 0 for some moment function g`(Z; �). In this case, E [g`(Z; �)] = 0 is a valid
moment for �1 but invalid for �o. The conservative set of moment conditions uniquely identify �o and hence de�ne
valid and invalid moment conditions in g(Z; �). The consistent estimation of �o makes it possible to select the valid
moments when the moment function is evaluated at �o.
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where A indexes the set of valid and relevant moments, B1 indexes the set of invalid moments and

B0 indexes the set of valid but redundant moments. Moments in sets A and B0 are both valid,

but only those in A are relevant. Our objective is to consistently estimate the set A, leaving out

all moments indexed by the set B � B1 [B0. We use dA, dB; dB1 ; and dB0 to denote the number
of moment conditions indexed by the sets A, B, B1 and B0; respectively. Our general theory on

consistent moment selection allows dA and dB1 to increase with the sample size n and dB0 to be

bounded from above by some large but �xed integer. The theory only restricts the relative rates

of kn and n and this condition is discussed as the theory progresses.

2.2 Heuristic arguments for shrinkage-based moment selection

For the purpose of moment selection, a slackness parameter � and its true value �o are introduced:

� � E [gD(Z; �)] and �o � E [gD(Z; �o)] . (2.3)

By the de�nition of �, all candidate moments, regardless of their validity, can be transformed to

moment equalities and stacked into

E

24 gS(Z; �o)

gD(Z; �o)� �o

35 = 0: (2.4)

This set of moment conditions identi�es both �o and �o and enables their joint estimation. Our

moment selection strategy is based on the estimation of �o. For any ` = 1; :::; kn, we assume that���o;`�� � C. Below we �rst list all desired properties of the estimator for consistent moment selection,
then propose an estimator of �o that satis�es all of these properties.

Let b�n denote an estimator of �o with sample size n. Let b�n;` and �o;` denote the estimator
and true value of the slackness parameter associated with moment ` 2 D. We estimate the desired
set A based on the zero elements of b�n, i.e.,

bAn � f` : b�n;` = 0g: (2.5)

For consistent selection of all valid and relevant moments in D, the estimator b�n has to satisfy
Pr(b�n;` = 0;8` 2 A)! 1 and Pr(b�n;` = 0;8` 2 B)! 0

as the sample size n!1.
Table 2.1 summarizes the properties of the slackness parameters and their estimators for all
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Table 2.1 Moment Selection Based on Shrinkage Estimation

Category True Value Estimator Desired Property
A �valid and relevant �o;` = 0 Pr(b�n;` = 0)! 1 super e¢ ciency
B1 �invalid �o;` 6= 0 Pr(b�n;` = 0)! 0 consistency
B0 �valid but redundant �o;` = 0 Pr(b�n;` = 0)! 0 no shrinkage e¤ect

three categories. First, for the valid and relevant moment (in A), �o;` is 0 and we need its estimator

to be 0 w.p.a.1. This super e¢ ciency type of property can be achieved by shrinking the estimator

of �o;` to be 0 for ` 2 A. Second, for the invalid moment (in B1), the estimator of �o;` di¤ers
from 0 w.p.a.1 provided that it is consistent, because �o;` is di¤erent from 0 in this case. Heavy

shrinkage of �o;` toward 0 for ` 2 B1 causes estimation bias not only to �o but also to �o. To
ensure consistent estimation of �o and �o, the shrinkage e¤ect on the estimator of �o;` has to be

controlled for ` 2 B1. Third, for the redundant moment (in B0), �o;` is 0 because the moment
is valid. However, its estimator is required to be di¤erent from 0 in order to leave out redundant

moments. This is completely opposite to the requirement for set A, although �o;` = 0 in both cases.

For ` 2 B0, the shrinkage e¤ect has to be controlled to prevent the estimator of �o;` from having

point mass at 0.

To sum up, consistent moment selection requires a sparse estimation2 of the slackness parame-

ters, however, the shrinkage e¤ect has to be reduced when the moment is either invalid or redundant.

Such requirements motivate the information-based adaptive shrinkage estimation proposed in this

paper. We propose a P-GMM estimation that incorporates the measure of validity and relevance

for each moment. The resulting P-GMM estimator is shown to satisfy all the requirements above

and yields consistent moment selection.

2The sparse estimation means that the resulting estimator may have sparse solutions. That is, when the true
parameter �o has zero elements, the estimator of �o may contain components which are identically zero in �nite
samples.
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2.3 Information measure and penalized GMM estimation

For the ease of exposition, we de�ne �0 � (�0; �0) and introduce the following notations

m(Z; �) �

24 gS(Z; �)

gD(Z; �)

35 g(Z;�) �

24 gS(Z; �)

gD(Z; �)� �

35
m(�) � E [m(Z; �)] g(�) � E [g(Z;�)]
mn(�) � 1

n

Pn
i=1m(Zi; �) gn(�) � 1

n

Pn
i=1 g(Zi; �)

mS(�) � E [gS(Z; �)] �S(�) � @mS(�)/ @�
0 2 Rk0�d�

mD(�) � E [gD(Z; �)] �D(�) � @mD(�)/ @�
0 2 R(kn�k0)�d�

mS;n(�) � 1
n

Pn
i=1 gS(Zi; �) mD;n(�) � 1

n

Pn
i=1 gD(Zi; �)

�(�) �

24 �S(�) 0k0�(kn�k0)

�D(�) �Ikn�k0

35 mS+A(�) � E

24 gS(Z; �)

gA(Z; �)

35 :

(2.6)

By de�nition, the parameter space of � is An � � � B1 � � � � � Bkn�k0 , where Bj � f�j : �j =
mj+k0(�) and � 2 �g for j = 1; : : : ; kn � k0. The e¢ cient estimation and moment selection are
simultaneously achieved in the P-GMM estimation

b�n = argmin
�2An

"
gn(�)

0Wngn(�) + �n
X
`2D

!n;` j�`j
#
; (2.7)

where Wn is a kn � kn symmetric weight matrix, �n 2 R+ is a tuning parameter that controls
the general penalty level, and !n;` is an information-based adaptive adjustment for each moment

` 2 D. This is a LASSO type estimator that penalizes each individual slackness parameter �` using
its `1-norm. The `1-penalty is particularly attractive in our framework because both the GMM

criterion and the `1-penalty function are convex in �, which makes the computation of the P-GMM

estimator easy in practice.

The novelty of the P-GMM estimation in (2.7) lies in the individual adaptive adjustment !n;`

which incorporates information on both validity and relevance. This individual adjustment is crucial

because consistent moment selection requires di¤erent degrees of penalty for moment conditions in

di¤erent categories, as listed in Table 2.1. To this end, de�ne

!n;` = _�r1n;` j _�n;`j
�r2 ; (2.8)

where _�n;` � 0 is an empirical measure of the information in moment `, _�n;` is a preliminary

consistent estimator of �o;`, and r1, r2 (with r1 � r2) are user-selected positive constants. Be-

fore discussing the construction of _�n;` and _�n;`, we �rst list the implications of this individual
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adjustment on consistent selection of valid and relevant moments.

First, when data suggest the moment ` is relevant, the empirical information measure will be

large, which leads to a heavy shrinkage of �o;` toward 0. In contrast, redundant moments (B0)

are subject to small shrinkage because _�n;` is asymptotically 0 for ` 2 B0. This information-based
adjustment _�n;` di¤erentiates the relevant moments from redundant ones.

Second, when data suggest the moment ` is likely to be valid, the magnitude of the preliminary

estimator j _�n;`j will be small as _�n;` is consistent, which leads to a large penalty !n;` and hence, a
heavy shrinkage of �o;` toward 0. In contrast, invalid moments (B1) are subject to small shrinkage

toward 0, avoiding estimation bias. This validity-based adjustment j _�n;`j di¤erentiates the valid
moments from invalid ones. The application of j _�n;`j for adaptive shrinkage resembles the adaptive
LASSO penalty proposed in Zou (2006).

Combining _�n;` and _�n;`, !n;` provides a data-driven adjustment that separates the valid and

relevant moments (A) from the rest. The constants r1 and r2 (with r1 � r2) are introduced to ensure
that !n;` is small when the moment ` is redundant. Roughly speaking, the individual adjustment

!n;` is large only when the corresponding moment condition is valid and relevant. In consequence,

�o;` is estimated as 0 w.p.a.1 only for ` 2 A, yielding a consistent moment selection procedure.
Next, we discuss the construction of the empirical information measure _�n;`. For this purpose,

we �rst de�ne its population counterpart �`, which is associated with the degree of e¢ ciency im-

provement by adding the moment condition indexed by `. When the moment conditionsmS(�o) = 0

are used for GMM estimation of �o, the asymptotic variance of the optimal GMM estimator is

V �1S � �S(�o)
0
�1S (�o)�S(�o), where


S(�o) � lim
n!1

Var

"
n�

1
2

nX
i=1

gS(Zi; �o)

#
: (2.9)

Let �`(�) =
@E[g`(Z;�)]

@�0
for any ` and any �. When another moment ` 2 D is added, we can de�ne

a new variance VS+` analogously to VS but with E [gS(Z; �)] replaced by E [gS+`(Z; �)], where

gS+`(Z; �) is a vector that stacks gS(Z; �) and g`(Z; �) together, i.e.,

V �1S+` �

24 �S(�o)
�`(�o)

350
�1S+`(�o)
24 �S(�o)
�`(�o)

35 , where

S+`(�o) � lim

n!1
Var

"
n�

1
2

nX
i=1

gS+`(Zi; �o)

#
: (2.10)

It is well-known that adding a valid (but possibly irrelevant) moment condition will not decrease
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the e¢ ciency of the GMM estimator. We next show that even if a moment condition is invalid,

including this moment condition in calculating the asymptotic variance of the GMM estimator does

not decrease the "e¢ ciency" either.3

Lemma 2.1 Suppose that 
S(�o) is positive de�nite and 
S+`(�o) is an invertible matrix for any

` 2 D. Then VS � VS+` and �max(VS � VS+`) � 0 for all ` 2 D.

Because the matrix VS � VS+` is positive semi-de�nite, its eigenvalues are always non-negative.
Relevance requires that at least one of its eigenvalues is strictly larger than zero. Thus, we de�ne

�` � �max(VS � VS+`) (2.11)

as the measure of information in the moment condition indexed by ` 2 D. When �` > 0, the

moment ` is considered to be relevant. A suitable consistent estimator _�n;` is

_�n;` = �max( _Vn;S � _Vn;S+`); (2.12)

where _Vn;S and _Vn;S+` are consistent estimators of VS and VS+`, respectively.

To obtain _�n;` and _�n;` (for ` 2 D), we construct an initial GMM estimator _�0n = (_�
0
n;
_�
0
n),

de�ned as

_�n = argmin
�2An

h
g0n(�)fWngn(�)

i
; (2.13)

where fWn denotes a preliminary weight matrix (e.g., kn � kn identity matrix) which satis�es As-
sumption 1(iii) in the next section. The preliminary estimator _�n;` can be constructed using the

formula (2.12) and the preliminary estimator _�n (see Appendix C for more details). It is clear that

this initial estimator _�n can be viewed as a special P-GMM estimator by setting �n = 0 in (2.7) for

all n. Hence, as long as the tuning parameter �n = 0 satis�es the su¢ cient conditions provided in

the next section, the properties of the P-GMM estimator, e.g., consistency and rate of convergence,

also hold for the initial GMM estimator _�n.

In the online Supplemental Appendix, we provide primitive su¢ cient conditions under which the

convergence rates of _�n;` and _�n;` are derived. These stochastic properties are listed in Assumption

5.1 below as high-level assumptions. Under these high-level assumptions, the stochastic properties

of !n;` are studied in Lemma 5.1. For the theoretical analysis in Section 3 below, we derive general

bounds on the tuning parameter �n as an implicit function of !n;`. Given the stochastic order

3Note that we do not suggest estimating �o using possibly invalid moments here. In practice, the variance matrix
V �1
S+` is calculated as if the moment ` was valid, but the estimator of �o used for this calculation is based on the
conservative moment conditions S.
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of !n;`, these bounds for �n only depend on the sample size, the number of moments, and some

constants. For readers who would like to see the practical choice of �n directly, the rate of �n is

provided in (5.5) and a practical choice is suggested in (5.8).

3 Asymptotic Theory

3.1 Consistency and rate of convergence

We �rst state and discuss the assumptions for the consistency of the P-GMM estimator b�n.
Assumption 3.1 (i) mS(�) is continuous in � and for any " > 0, there exists some �" > 0 such

that

inf
f�2�: k���ok�"g

kmS(�)k > �";

(ii) sup�2� kmn(�)�m(�)k = op(1);
(iii) Wn is a real matrix with C�1 � �min(Wn) � �max(Wn) � C w.p.a.1;

(iv) the tuning parameter �n satis�es �n
P
`2B1 !n;` = op(1).

Assumption 3.1(i) is a standard identi�able uniqueness condition for �o. Assumption 3.1(ii)

is essentially a uniform law of large numbers (ULLN) and it requires uniform convergence of the

sample moments to the population moments. Assumptions 3.1(iii) imposes regularity conditions

on the weight matrix. Assumption 3.1(iv) imposes an upper bound on �n, which ensures that

the penalty is small enough such that it does not cause inconsistency of the estimator b�n. By
construction, the P-GMM criterion has two parts, where the former is a quadratic form minimized

by the true value of the parameter asymptotically and the latter is minimized by � = 0. When the

penalty is too large, it shifts the estimator of �o;` towards 0 for all ` and causes estimation bias

for �o;` 6= 0 and hence for �o. For this reason, the upper bound required by �n
P
`2B1 !n;` = op(1)

only involves the invalid moments in B1.

Lemma 3.1 Under Assumption 3.1, we have b�n !p �o.

Next, we derive the rate of convergence of the P-GMM estimator b�n, whose dimension increases
with the sample size. Let !n;B1 denote a vector that collects !n;` for all ` 2 B1 and

bn � �n k!n;B1k : (3.1)

11



Assumption 3.2 (i) There exist a sequence of constants �n ! 0 with ��1n = O(n
1
2 ) and a �xed

constant �1 > 0 such that

sup
jj���ojj��1

kmn(�)�m(�)k = Op(�n);

(ii) m(�) is continuously di¤erentiable for any � in the local neighborhood of �o;

(iii) C�1 � �min [�S(�o)0�S(�o)] and �max [�(�o)0�(�o)] � C;
(iv) max`�kn supjj���ojj��2 k�`(�)� �`(�o)k � C�2 for some �2 > 0;
(v)

p
knbn = op(1) and

p
kn�n = o(1).

Assumption 3.2(i) is a high level condition on the convergence rate of the empirical process

indexed by moment functions. When the number of moment conditions is �xed, Assumption 3.2(i)

holds with �n = n�
1
2 , following standard empirical process results; see e.g., Andrews (1994). Here,

the sequence of constants �n is introduced to allow for an increasing number of moments. Lemma

D.1 in the Appendix D provides su¢ cient conditions under which Assumption 3.2(i) holds with

�n =
p
kn=n. Assumptions 3.2(ii), 3.2(iii) and 3.2(iv) impose standard regularity conditions on

the �rst order derivative of the population moments. Assumption 3.2(v) imposes restrictions on

the dimension of the moment functions kn and the tuning parameter �n. Assumption 3.2(v) is a

su¢ cient condition for Assumption 3.1(iv) because

�n
X
`2B1

!n;`
���o;`�� �pkn�n k!n;B1k =pknbn; (3.2)

by the Cauchy-Schwarz inequality and j�o;`j � C for any ` 2 D.
For some models, it is easier to verify Assumption 3.3 below, which is a high level assumption

that can replace Assumptions 3.1 and 3.2, in conjunction with Assumption 3.1(iii).

Assumption 3.3 (i) There exists a sequence of constants �n ! 0 with ��1n = O(n
1
2 ) such that

kmn(�o)�m(�o)k = Op(�n);

(ii) for any � 2 An, C�1 k�� �ok � kgn(�)� gn(�o)k � C k�� �ok w.p.a.1.

If the data are i.i.d. and the second moment of g`(Z; �o) is bounded from above by some �nite

constant uniformly over `, Assumption 3.3(i) is satis�ed with �n =
p
kn=n. When the number kn of

moment conditions is �xed, Assumption 3.3(i) holds by the central limit theorem with �n = n�
1
2 .

Assumption 3.3(ii) essentially requires that the GMM criterion has a quadratic approximation.

Assumption 3.3 is easy to verify in the linear IV model, as illustrated in Section 4.

12



Lemma 3.2 (a) Suppose Assumptions 3.1 and 3.2 hold. Then,

kb�n � �ok = Op(�n + bn);
(b) Part (a) holds with Assumptions 3.1 and 3.2 replaced by Assumptions 3.1(iii) and 3.3.

Remark 3.1 If �n = 0 for all n, then
p
knbn = 0 for all n. Hence, if Assumptions 3.1(i)-(iii), 3.2.(i)-

(iv) and kn�2n = o(1) hold, Lemma 3.2(a) immediately implies that the initial GMM estimator _�n

de�ned in (2.13) satis�es that

k _�n � �ok = Op(�n): (3.3)

If alternative Assumptions 3.1(iii) and 3.3 hold, Lemma 3.2(b) implies the same result. The con-

vergence rate of the initial GMM estimator _�n is useful to construct the adaptive penalty and the

tuning parameter, as illustrated in Section 5.

Applying Lemma 3.2, we can show that the invalid moment conditions are not selected w.p.a.1

when the slackness parameters �o;` for any ` 2 B1 are bounded away from 0 or converge to zero

at a rate slower than �n. We consider the possibility that �o;` converges to 0 as the sample size

increases because the number of moments in B1 can diverge. To see this, �rst de�ne

dn � min
`2B1

���o;`�� : (3.4)

We have dn > 0 by de�nition. If dn � C > 0, i.e., slackness parameters for invalid moments do not
converge to 0, then using Lemma 3.2, we deduce that

Pr

�
min
`2B1

jb�n;`j > 0� � Pr

�
min
`2B1

h
j�o;`j � jb�n;` � �o;`ji > 0�

� Pr

�
dn �max

`2B1
jb�n;` � �o;`j > 0�

� Pr (C � jjb�n � �ojj > 0)! 1, as n!1 (3.5)

which immediately implies that our method does not select the invalid moment conditions w.p.a.1.

From the last inequality in (3.5), we see that the lower bound restriction min`2B1
���o;`�� � C can

be relaxed by applying the convergence rate of b�n. Speci�cally, if jjb�n � �ojj = Op(�n) and the

slackness parameters �o;` for any ` 2 B1 satisfy �n = o(dn), using the same arguments in (3.5), we
have

Pr

�
min
`2B1

jb�n;`j > 0� � Pr�dn�n > jjb�n � �ojj
�n

�
! 1; as n!1: (3.6)

Results in (3.5) and (3.6) immediately yield the following corollary.
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Corollary 3.1 (Invalid Moments) (a) Suppose Assumptions 3.1 and 3.2 hold. If we further have

dn � C for all n, then

Pr
�[

`2B1
b�n;` = 0�! 0 as n!1;

(b) Part (a) holds under Assumptions 3.1, 3.2, bn = Op(�n) and �n = o(dn);

(c) Parts (a) and (b) hold with Assumptions 3.1 and 3.2 replaced by Assumptions 3.1(iii) and 3.3.

Remark 3.2 Corollary 3.1 implies that the probability that the P-GMM estimation selects any

invalid moment condition goes to zero. Part (a) is implied by the consistency of the P-GMM

estimator when the magnitudes of the slackness parameters �o;` for any ` 2 B1 are uniformly

bounded from below. Part (b) indicates that the invalid moment conditions will not be selected

w.p.a.1 even when the magnitudes of the slackness parameters �o;` for any ` 2 B1 converge to zero
at certain rate.

3.2 Super e¢ ciency

In this section, we show that the valid and relevant moment conditions are selected w.p.a.1. The

following restrictions on �n are needed.

Assumption 3.4 �n satis�es that (i) bn = Op(�n); (ii) ��1n �nmax`2A !
�1
n;` = op(1).

Assumption 3.4(i) ensures kb�n � �ok = Op(�n). Assumption 3.4(ii) imposes a lower bound on
�n. Assumption 3.4(ii) only involves the valid and relevant moment conditions because only �` for

` 2 A is desired to be penalized heavily. This is a key condition to achieve the super e¢ ciency on
moment selection.

Theorem 3.2 (a) Suppose Assumptions 3.1, 3.2 and 3.4 hold. Then,

Pr
�[

`2A
b�n;` = 0�! 1 as n!1;

(b) Part (a) holds with Assumptions 3.1, 3.2 replaced by Assumptions 3.1(iii) and 3.3.

Theorem 3.2 shows that all valid and relevant moments are simultaneously selected w.p.a.1,

allowing for an increasing number of moments in A as n!1. Corollary 3.1 and Theorem 3.2 are

necessary but not su¢ cient to show that the set A is consistently estimated. For this purpose, it

remains to show that the redundant moments in B0 are not selected w.p.a.1.
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3.3 Asymptotic normality

In this subsection, we establish the asymptotic distribution of the P-GMM estimator. Without loss

of generality for the asymptotic results below, write �0 = (�0A; �
0
B), where �A and �B denote the

sub-vector of � that collects �` for ` 2 A and ` 2 B, respectively. Let b�A;n and b�B;n denote the
P-GMM estimators of �A and �B, respectively. Theorem 3.2 shows b�A;n = 0 w.p.a.1. It remains
to develop the asymptotic distribution of b�B;n, together with the distribution of b�n. To this end,
de�ne �0B � (�0; �0B) which is a d� + dB dimensional vector. Now we stack all moment conditions
and de�ne

g(Z;�B) �

2664
gS(Z; �)

gA(Z; �)

gB(Z; �)� �B

3775 ; (3.7)

where gA(Z; �) denotes the valid and relevant moments and gB(Z; �) denotes the invalid or redun-

dant moments. Because g(Z;�B) is linear in �B, the partial derivative of E [g(Z;�B)] with respect

to �B only depends on �. De�ne

��(�)
0 �

24 �@E[gS(Z;�)]@�0

�0 �
@E[gA(Z;�)]

@�0

�0 �
@E[gB(Z;�)]

@�0

�0
0dB�k0 0dB�dA �IdB

35 and �� � ��(�o): (3.8)

Note that the link between g(Z;�B) and g(Z;�) is that if we treat �A in � to be zero, then we

have g(Z;�) = g(Z;�B). Because the true value of �A is 0, g(Z;�o) = g(Z;�B;o) by de�nition.

Hence, the sample average of g(Z;�B;o) can be written as gn(�o).

Assumption 3.5 Let �n(�) � mn(�) �m(�). There exists a sequence of constants &n ! 0 such

that

sup
�1;�22f�2�:jj���ojj��ng

kvn(�1)� vn(�2)k
n�

1
2 + k�1 � �2k

= Op(&n) (3.9)

for some sequence �n which converges to 0 slower than �n.

Assumption 3.5 is a stochastic equicontinuity condition that accommodates non-smooth moment

conditions. Similar stochastic equicontinuity conditions are employed in Pakes and Pollard (1989),

Andrews (2002), and Chen, Linton, van Keilegom (2003), among others. Empirical process results

in Pollard (1984), Andrews (1994), and van der Vaart and Wellner (1996) can be used for the

veri�cation. When the number of moments is �xed, to ensure the root-n consistency of the GMM

estimator, it is su¢ cient to show Assumption 3.5 holds with op(1) on the right hand side.

A speci�c convergence rate &n associated with the empirical process �n(�) has to be derived

in (3.9) to accommodate an increasing number of moments. Lemma D.2 in Appendix D provides
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primitive su¢ cient conditions under which Assumption 3.5 holds with &n =
p
kn=n.

De�ne the variance of the sample moments as


n � nVar [gn(�o)] : (3.10)

For i.i.d. observations, this variance matrix is simpli�ed to E[g(Z;�o)g(Z;�o)0] for all n.

Assumption 3.6 (i) For any n 2 Rkn and knk = 1;

p
n0n


� 1
2

n gn(�o)!d N(0; 1);

(ii) C�1 � �min(
n) � �max(
n) � C for all n;

(iii) C�1 � �min(�0���) for all n.

Assumption 3.6(i) assumes a triangular array central limit theorem (CLT) for scalar random

sequences. Assumption 3.6(ii) requires that the variance matrix 
n is positive de�nite and bounded

for all n. Assumption 3.6(iii) imposes similar regularity condition on �0���.

Assumption 3.7 The tuning parameter �n satis�es that �n k!n;Bk = op(n�
1
2 ).

Assumption 3.7 imposes an upper bound on �n, which ensures that a weighted linear com-

bination of the P-GMM estimator has a mean-zero asymptotic normal distribution. Because

n�
1
2 = O(�n); we see that Assumption 3.7 implies Assumption 3.4(i). Moreover, when kn = o(n),

Assumption 3.7 implies
p
knbn = op(1) in Assumption 3.2(v).

Assumptions 3.5, 3.6, and 3.7 can be combined with Assumptions 3.1 and 3.2 to show the

asymptotic normality of the P-GMM estimator. Alternatively, they can be used together with

Assumptions 3.1(iii), 3.3, and 3.8 below for the same result.

Assumption 3.8 E [g(Z;�1;B)� g(Z;�2;B)] = ��(�1;B � �2;B) for any �1;B and �2;B.

When the moment functions are linear in �, Assumption 3.8 holds automatically.

De�ne

�n �
�
�0�Wn��

��1
(�0�Wn
nWn��)

�
�0�Wn��

��1
: (3.11)

Theorem 3.3 (a) Suppose Assumptions 3.1-3.2, 3.4-3.7 hold. If we further have
p
kn�

2
n = o(n

� 1
2 )

and &n�n = o(n�
1
2 ), then

p
n0n�

� 1
2

n (b�B;n � �B;o)!d N(0; 1)
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for any n 2 Rd�+dB with knk = 1;
(b) Part (a) holds under Assumptions 3.1(iii), 3.3-3.8, and &n�n = o(n�

1
2 ).

Remark 3.3 The asymptotic distribution of the P-GMM estimator is derived by a perturbation

technique on a local parameter space (see, e.g., Shen, 1997), which allows for non-smooth moment

functions and an increasing number of parameters.

Remark 3.4 Theorem 3.3(a) requires
p
kn�

2
n = o(n�

1
2 ); which restricts the rate at which kn

diverges to in�nity. When �n = &n =
p
kn=n, which holds under the su¢ cient conditions in

Lemmas D.1 and D.2 in the Appendix, this condition holds provided kn = o(n
1
3 ), i.e., the number

of moment conditions increases at a rate slower than n
1
3 . On the other hand, Theorem 3.3(b)

only needs &n�n = o(n�
1
2 ), which is satis�ed if kn = o(n

1
2 ), i.e., the number of moment conditions

increases at a rate slower than n
1
2 .

Remark 3.5 Theorem 3.3, in conjunction with the Cramér-Wold device, yields the asymptotic

distribution of b�n. To see this, let 0n;d� = (0d� ;0
0
dB
) where d� 2 R

d� . We have 0n;d��B = 0d��

because �0B = (�
0; �0B). Let 

�
n;d�

= �
1=2
n n;d� jj�

1=2
n n;d� jj

�1, which satis�es jj�n;d� jj = 1. Applying
Theorem 3.3, we get

(�n;d�)
0pn��1=2n (b�B;n � �B;o)!d N(0; 1)

which implies that

jj�1=2n n;d� jj
�1pn0d�(b�n � �o)!d N(0; 1): (3.12)

This asymptotic distribution can be applied to conduct inference for the parameter of interest �o.

Let


S+A;n � Var

24n� 1
2

nX
i=1

0@ gS(Zi; �o)

gA(Zi; �o)

1A35 ; (3.13)

a variance matrix that involves all valid and relevant moments. Suppose that Wn satis�es

W�1
n � 
n

 = op(1); (3.14)

then we can use Assumptions 3.1(iii) and 3.6(iii) to show that4

���0n;d� h�n � ��0�
�1n ����1i n;d� ��� = op(1); (3.15)

4The formal proof is in the Supplemental Appendix of the paper.
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where

0n;d�
�
�0�


�1
n ��

��1
n;d� = 

0
d�

��
@mS+A(�o)

@�0

�0

�1S+A;n

�
@mS+A(�o)

@�0

���1
d� : (3.16)

The matrix in the middle of the right hand side of (3.16) is the variance of the infeasible �oracle�

estimator one would get with the complete knowledge of which moments are valid and relevant.

Hence, the P-GMM estimator of �o is as e¢ cient as the oracle estimator asymptotically.

Remark 3.6 When �n = 0, by the same arguments used to show Theorem 3.3, we obtain

p
n0�;n�

� 1
2

�;n( _�n � �o)!d N(0; 1) (3.17)

for any �;n 2 Rd�+kn with
�;n = 1, where

��;n �
�
�(�o)

0Wn�(�o)
��1 �

�(�o)
0Wn
nWn�(�o)

� �
�(�o)

0Wn�(�o)
��1 . (3.18)

This together with Assumptions 3.1(iii), 3.2(iii) and C�1 � �min [�(�o)0�(�o)] immediately implies
the root-n normality of the preliminary estimator _�n.

Let n;` 2 Rd�+dB be a selection vector such that 0n;`�B = �n;` for any ` 2 B0. Using arguments
similar to those employed to derive (3.12), we can show

jj�1=2n n;`jj�1
p
nb�n;` !d N(0; 1) for any ` 2 B0: (3.19)

Because b�n;` has an asymptotic normal distribution for any individual ` 2 B0, the probability thatb�n;` = 0 approaches 0 for any individual ` 2 B0. This result is particularly important for leaving
out valid but redundant moments, which is not covered by Corollary 3.1. Corollary 3.4 states that

all redundant moments are left out w.p.a.1 by the moment selection procedure.

Corollary 3.4 (Redundant Moments) (a) Under the conditions of Theorem 3.3(a),

Pr
�[

`2B0
b�n;` = 0�! 0 as n!1;

(b) Part (a) holds under the conditions of Theorem 3.3(b).

Remark 3.7 Combining Corollary 3.1, Theorem 3.2, and Corollary 3.4, we conclude that

Pr( bAn = A)! 1 (3.20)
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as n!1; where the estimator bAn is de�ned in (2.5). The P-GMM estimation achieves consistent

moment selection under assumptions and conditions speci�ed above.

Remark 3.8 The assumption that B0 is a �nite set is important for our argument to show Corollary

3.1. By the Bonferroni inequality, we have

Pr
�[

`2B0
b�n;` = 0� � X

`2B0

Pr
�b�n;` = 0� : (3.21)

As there are only �nite many elements in B0, to prove the result in Corollary 3.1, it is su¢ cient to

have for any ` 2 B0,
Pr
�b�n;` = 0�! 0 as n!1, (3.22)

which follows from (3.19) because a random variable with an asymptotic normal distribution put

zero mass at any given point w.p.a.1.5

Remark 3.9 Although the procedure can leave out moment conditions that are redundant to S,

one potential limitation is that some moments in A might be redundant to the rest of A combined

with S. That is, there could be a subset A0 � A which contains the valid and relevant moments
to S, while the rest of the moments in A, de�ned as Ac0, are redundant to A0 [ S.6 To deal with
this potential redundancy problem, we can use a two step procedure that selects A in the �rst step

and selects A0 out of A in the second step. The second step is similar to the �rst step but with a

sequential information measure that takes into account the potential redundancy to A0 [ S. This
sequential information measure is de�ned as

��` � �max(VS+A` � VS+A`�`) (3.23)

for ` = 1; :::; dA, where

A` � fj 2 A : j < ` and ��j > 0g [ fj 2 A : j � `g; (3.24)

VS+A` is de�ned similarly to VS+` in (2.10) but with g`(Z; �) replaced by gA`(Z; �), and VS+A`�`

is de�ned similarly to VS+A` but with g`(Z; �) taken out of gA`(Z; �). It is key that the set A`
5The proposed method can be extended to consistent moment selection with an increasing number of moments in

B0 if one can derive the rate at which Pr(b�n;` = 0)! 0 uniformly over ` 2 B0:
6 It is clear that in the general scenario, the non-redundant set A0 in A may not be unique. However, any non-

redundant set in A can be uniquely determined by an order among the moments in A. That is, if we order the
moments in A and delete the redundant moments by investigating the moments from the �rst to the last, we get
a non-redundant set A0 determined by the order. We implicitly impose an order on the moments in A and our
calculation of the empirical information measure below follows this order.
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excludes those moments that are redundant to their predecessors. By de�nition, we set ��` = 0 for

any ` 2 Ac0. Using the empirical analog of ��` , the P-GMM estimation can be used to consistently

select A0 provided that Ac0 is a �nite set.
7

4 Example: A Linear IV Model

In this section, we study a linear IV model to illustrate the general assumptions of the previous

section. Consider the model

Yi = Xi�o + ui;

Xi =

k0X
j=1

�jZ1;i(j) +

1X
j=k0+1

�jZ1;i(j) + vi; (4.1)

where Yi, Xi are scalar endogenous variables and Z1;i(j) for j 2 Z+ � f1; 2; :::g are the excluded
exogenous variables. For any vector Z, we use Z(j) to denote the j-th component of Z. We assume

that

E[uiZ1;i(j)] = 0 and E[viZ1;i(j)] = 0 for all j: (4.2)

For example, equation (4.1) can be obtained from the following conditional mean model

Xi = h(!i) + vi with E [ (ui; vi)j!i] = (0; 0): (4.3)

In this example, Z1;i(j) are the basis functions in the series expansion h(!i) =
P1
j=1 �jpj(!i), i.e.,

Z1;i(j) = pj(!i) for j 2 Z+. Moment conditions in (4.2) are implied by the conditional moment
restrictions in model (4.3).

We assume that an econometrician has the �rst k0 IVs Z�i � (Z1;i(1); :::; Z1;i(k0))
0 to con-

struct moment conditions for identi�cation of �o. The valid and relevant IVs Z1;i � (Z1;i(k0 +

1); :::; Z1;i(k0 + dA))
0 are mixed with invalid IVs Z2;i � (Z2;i(1); :::; Z2;i(dB1))

0 and irrelevant IVs

Z3;i � (Z3;i(1); :::; Z3;i(dB0))0. For this linear IV model, we have moment functions

gS(Zi; �) = (Yi �Xi�o)Z�i (4.4)

7This is a heuristic argument based on proofs in this paper. A formal proof for this modi�ed sequential procedure
is beyond the scope of this paper and left for future research. Also note that the two step procedure is needed to
ensure that moment conditions in A0 which may be redundant to the moments in B1 will not be ruled out.
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for consistent estimation of �o and the following moment conditions for selection

gA(Zi; �) = (Yi �Xi�o)Z1;i;

gB1(Zi; �) = (Yi �Xi�o)Z2;i;

gB0(Zi; �) = (Yi �Xi�o)Z3;i: (4.5)

De�ne Z 0i � (Z 01;i; Z 02;i; Z 03;i). Let kn = k0 + dA + dB1 + dB0 denote the number of all available
IVs when the sample size is n. In this example, we assume kn = o(n

1
2 ). We next provide su¢ cient

conditions for Assumptions 3.3, 3.5, 3.6, and 3.8, when the moment conditions are constructed from

this linear IV model.

Condition 4.1 (i) fYi; Xi; Z�i ; Zigi�n is a triangular array of i.i.d. process;
(ii) E[u2i

��Z�i ] � C and E[u2i
��Zi] � C for all n;

(iii) E[X4
i ] � C, E[Z�i (j)4] � C; and E[Zi(j)4] � C for all n;

(iv) E[Z1;i(j)Z1;i(k)] = �j;k where �j;k denotes the Kronecker�s delta;

(v)
Pk0
j=1 �

2
j > 0,

E[XiZ2;i] < C; and E[XiZ3;i] = 0 for all n.
The triangular array assumption is imposed because the number of IVs may increase with the

sample size. Condition 4.1(ii) requires that the conditional second moments of the error term ui

given the IVs are uniformly bounded. Condition 4.1(iii) requires that the fourth moments of the

endogenous variable Xi and the IVs are bounded from above uniformly. Condition 4.1(iv) implies

that the valid and relevant IVs are orthonormalized, which is a normalization condition (see, e.g.,

Newey, 1997). Condition 4.1(v) contains three restrictions. The �rst restriction
Pk0
j=1 �

2
j > 0 en-

sures that the conservative IVs Z�i can be used to identify and consistently estimate �o. The second

restriction implies that the aggregated information contained in the invalid IVs Z2;i is bounded

from above. The last restriction indicates that the irrelevant IVs Z3;i contains no information

about the endogenous variable Xi.

Lemma 4.1 Under Condition 4.1,

(a) kmn(�o)�m(�o)k2 = Op(kn=n);
(b) kgn(�)� g(�o)k2 � C[1 +Op(kn=n) +Op(

p
kn=n)] k�� �ok2;

(c) kgn(�)� g(�o)k2 � C[1 +Op(kn=n) +Op(
p
kn=n)] k�� �ok2;

(d) Assumption 3.5 is satis�ed with &n =
p
kn=n.

Lemma 4.1(a) implies Assumption 3.3(i) holds with �n =
p
kn=n. Lemmas 4.1 (b) and 4.1 (c)

and kn = o(n
1
2 ) imply Assumption 3.3(ii). Because �n =

p
kn=n and kn = o(n

1
2 ), Lemma 4.1(d)

implies that &n�n = knn�1 = o(n�
1
2 ), which is required by Theorem 3.3(b).
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By de�nition, we write


n = E

240@ uiZ
�
i

uiZi � �o

1A0@ uiZ
�
i

uiZi � �o

1A035 �
0@ 
0;n 
1;n


01;n 
2;n

1A (4.6)

where


0;n �

0@ E
�
u2iZ

�
i Z

�0
i

�
E
�
u2iZ

�
i Z

0
1;i

�
E
�
u2iZ1;iZ

�0
i

�
E
�
u2iZ1;iZ

0
1;i

�
1A ,


01;n �
�
E
�
u2iZ�1;iZ

�0
i

�
E
�
u2iZ�1;iZ

0
1;i

� �
,


2;n � E
�
u2iZ�1;iZ

0
�1;i

�
� �B;o�0B;o; and Z 0�1;i � (Z 02;i; Z 03;i). (4.7)

Let 
11n � 
0;n � 
1;n
�12;n
01;n and 
22n � 
2;n � 
01;n
�10;n
1;n.

Condition 4.2 (i) E[u4i
��Z�i ] � C and E[u4i

��Zi] � C for all n;

(ii) �max(E[Z�1;iZ 0�1;i]) � C for all n;

(iii) �min(

11
n ) � C�1 and �min(
22n ) � C�1 for all n.

Condition 4.2(i) is stronger than Condition 4.1(i). The �nite conditional fourth moment of the

error term is a regularity condition for showing asymptotic normality of plug-in series estimator

in conditional mean models, see, e.g., Newey (1997). Condition 4.2(ii) imposes a upper bound for

the largest eigenvalue of E[Z�1;iZ 0�1;i] which is also a mild condition. To see the intuition behind

Condition 4.2(iii), we write


0;n � 
1;n
�12;n
01;n = E
h
u2i (Z1;i � 
1;n
�12;nZ�1;i)(Z1;i � 
1;n


�1
2;nZ�1;i)

0
i

(4.8)

where uiZ1;i � 
1;n
�12;nuiZ�1;i is the residual of the projection of uiZ1;i on the space spanned by
uiZ�1;i. Hence, �min(


11
n ) � C�1 implies that for any random variable 0Z1;iui generated by some

linear combination of Z1;iui, the optimal mean square linear prediction error based on the set of

variables uiZ�1;i is bounded from below by some �xed constant for all n. The similar intuition

applies to the restriction �min(

22
n ) � C�1. Hence, Condition 4.2(iii) requires that the distance

between the Hilbert spaces generated by uiZ1;i and uiZ�1;i is bounded away from zero for all n.

Lemma 4.2 Under Conditions 4.1 and 4.2, Assumptions 3.6 and 3.8 are satis�ed.
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5 Selection of the Tuning Parameter

The asymptotic results established in previous sections provide restrictions on the tuning parameter

�n. These restrictions are implicit in the sense that they depend on the individual information-

based adaptive penalties !n;` de�ned in (2.8), whose asymptotic magnitudes rely on the validity

as well as relevance of the moment condition ` by construction. In this section, we analyze these

individual penalties and provide an explicit formula for the tuning parameter �n.

Speci�cally, we consider the case where

�n = &n = k
1
2
nn

� 1
2 . (5.1)

These speci�c rates apply under the su¢ cient conditions in Lemma D.1 and Lemma D.2 in the

Appendix. Our goal is to choose �n that satis�es the upper bound

�n

�
n
1
2 k!n;Bk

�
= op(1); (5.2)

and the lower bound

��1n

�
k
1
2
nn

�1=2max
`2A

!�1n;`

�
= op(1); (5.3)

Under (5.1), conditions in (5.2) and (5.3) imply Assumptions 3.1(iv), 3.2(v), 3.4, and 3.7.

Assumption 5.1 (i) max`2D
�� _�n;` � �o;`�� = Op(�n);

(ii) max`2D j _�n;` � �o;`j = Op(�n);
(iii) For any ` 2 B0,

�� _�n;` � �o;`�� = Op(n� 1
2 ) and

p
n( _�n;` � �o;`)!d N(0; �

2
`) with �

2
` > 0;

(iv) max`2A j��1o;` j � C, max`2B1
���o;`�� � C; and max`2B1 j��1o;` j � C.

Assumption 5.1(i) imposes a restriction on the convergence rate of the empirical information

measure. Assumption 5.1(ii) is implied by (3.3), because

max
`2D

��� _�n;` � �o;`��� �  _�n � �o � k _�n � �ok = Op(�n): (5.4)

Assumption 5.1(iii) is standard because the assumptions are on individual moments. The root-n

normality of _�n;` is implied by (3.17) and the Cramer-Wold device. Assumption 5.1(iv) imposes

bounds on
���o;`�� for ` 2 A and ���o;`�� for ` 2 B1.

Su¢ cient conditions for Assumptions 5.1(i) and 5.1(iii) are provided in the Supplemental Ap-

pendix.

Remark 5.1 In Appendix C, we show that the tuning parameter speci�ed in (5.5) below also allows
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min`2A
���o;`�� and min`2B1 ���o;`�� to go to zero at certain rate as kn !1, which relaxes Assumption

5.1(iv).

Lemma 5.1 Suppose Assumption TU holds.

(a) The upper bound in (5.2) is satis�ed if �nk
1
2
nn

1
2 = o(1) and �nn

1+r2�r1
2 = o(1);

(b) The lower bound in (5.3) is satis�ed if ��1n k
1+r2
2

n n�
1+r2
2 = o(1):

Remark 5.2 By choosing r1 � r2, Lemmas 5.1(a) only requires that �nk
1
2
nn

1
2 = o(1). On the other

hand, Lemma 5.1(b) requires that ��1n k
1+r2
2

n n�
1+r2
2 = o(1). To balance these two rates, we set

�n = ck
r2
4
n n

� 1
2
� r2

4 (5.5)

where c is some �nite positive constant.

Remark 5.3 Given r1 and r2 and r1 > r2, we propose a plug-in loading constant based on the

argument in Liao (2013): bc`;n = 2jjW 1
2
n (`)b�njj for any ` 2 D (5.6)

whereW
1
2
n (`) denotes the `-th row of the matrixWn, and b�n is an estimator of the following matrix

�n = Ikn �W
1
2
n ��

�
�0�Wn��

��1
�0�W

1
2
n (5.7)

based on a preliminary P-GMM estimation with �n = 2k
r2
4
n n

� 1
2
� r2

4 . To sum up, we propose using

the tuning parameter b�n;` = 2jjW 1
2
n (`)b�njjk r24n n� 1

2
� r2

4 (5.8)

for the `-th moment condition in D.

6 Simulation

For �nite-sample investigation, we consider a simple linear regression model

Y1 = Y2�o + u; (6.1)

where Y1; Y2 2 R are endogenous and �o 2 R is the parameter of interest. Valid and relevant

IVs ZS 2 R2 are available for the identi�cation of �o. In addition, a vector of candidate IVs

ZD = (ZA; ZB0;ZB1) 2 RK are considered, where ZA 2 RdA (dA = 2) are valid and relevant,

ZB0 2 RdB0 (dB0 = K=2 � 1) are redundant, and ZB1 2 RdB1 (dB1 = K=2 � 1) are invalid. We
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consider K = 10, 30, and 50 in the experiments. The relationship between Y2 and (ZS ; ZA) is

Y2 = �
0
SZS + �

0
AZA + v (6.2)

where �S and �A are dS � 1 and dA � 1 real vectors respectively.
The simulated samples are generated in the following way. First we generate

(ZS ; ZA; ZB0 ; Z
�
B1 ; u; v) � N(0;�); where � = diag(�AS ;�B;�uv) (6.3)

where �AS , �B and �uv are 4 � 4, (K � 2) � (K � 2) and 2 � 2 variance-covariance matrices
respectively. By construction, (ZS ; ZA; ZB0 ; Z

�
B1
) are all valid, but only ZS and ZA are relevant

based on (6.2). The invalid IVs ZB1 are obtained by contaminating Z
�
B1
with the structural error

u. Speci�cally,

ZB1(`) = Z
�
B1(`) + c` � u; (6.4)

where c` is a real constant, ZB1(`) and Z
�
B1
(`) are the `-th element of ZB1 and Z

�
B1
, respectively.

The structure of (6.4) indicates that the degree of endogeneity of an invalid IV varies with the

coe¢ cient c`, which is given below.

Parameters in the data generating process are as follows: (i) �o = 0:5; (ii) �S = (�o; 0:1)0, where

the value �o = 0:1 or 0:3 to experiment di¤erent identi�cation strength; (iii) �A = (0:5; 0:5); (iv)

�AS is a 4 � 4 matrix with the (i; j)-th element being 0:2ji�jj; (v) �B is an (K � 2) � (K � 2)
identity matrix; (vi) �u;v is a 2�2 matrix with diagonal elements (0:5; 1) and o¤-diagonal elements
(0:6; 0:6); (vii) for co = 0:2 or 0:5 and ` = 1; :::; (K=2� 1), the coe¢ cients in (6.4) are

c` = co +
(`� 1)(c� co)
K=2� 1 ; (6.5)

where c = 2:4 sets a large upper bound. A larger value of co is associated with stronger endogeneity

of the invalid IVs.

For each speci�cation of (�o; co;K), we generate i.i.d. observations with sample size n = 250,

n = 2; 500 and n = 5; 000. To construct the information-based penalty in (2.8), the user-selected

constants are r1 = 3 and r2 = 2: The preliminary estimator _�n;` is constructed by sample analogs

of the variance matrix and the preliminary estimator _�n;` follows from (2.13). The weight matrix

Wn is de�ned as

W�1
n =

1

n

"
nX
i=1

g(Z; _�n)g(Z; _�n)
0

#
(6.6)

where _�n is de�ned in (2.13) with identity weight matrix, g(Z;�n) is constructed using the IVs
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(ZS ; ZA; ZB0;ZB1). The number of simulation repetition is 5,000. The projected scaled sub-gradient

method (active-set variant) method proposed in Schmidt (2010) is employed to solve the minimiza-

tion problem in the GMM shrinkage estimation.

Table 6.1. Performance of Moment Selection by GMM Shrinkage Estimation

�o = 0:1, K = 10
n=250 n=2,500 n=5,000

co=0.2 .011 .495 .482 .012 .000 .906 .092 .002 .000 .951 .049 .000
co=0.5 .002 .497 .489 .012 .000 .906 .092 .002 .000 .951 .049 .000

�o = 0:3, K = 10
n=250 n=2,500 n=5,000

co=0.2 .001 .687 .184 .128 .000 .961 .027 .012 .000 .982 .014 .004
co=0.5 .000 .687 .184 .129 .000 .961 .027 .012 .000 .982 .014 .004

�o = 0:1, K = 30
n=250 n=2,500 n=5,000

co=0.2 .021 .132 .834 .013 .000 .701 .297 .002 .000 .828 .171 .001
co=0.5 .007 .133 .847 .013 .000 .701 .297 .002 .000 .828 .171 .001

�o = 0:3, K = 30
n=250 n=2,500 n=5,000

co=0.2 .001 .398 .467 .135 .000 .902 .086 .011 .000 .945 .051 .004
co=0.5 .000 .398 .468 .135 .000 .902 .086 .011 .000 .945 .051 .004

�o = 0:1, K = 50
n=250 n=2,500 n=5,000

co=0.2 .025 .052 .910 .013 .000 .558 .440 .002 .000 .731 .268 .001
co=0.5 .009 .052 .927 .013 .000 .558 .440 .002 .000 .731 .268 .001

�o = 0:3, K = 50
n=250 n=2,500 n=5,000

co=0.2 .001 .241 .622 .136 .000 .849 .141 .010 .000 .918 .076 .006
co=0.5 .000 .241 .623 .136 .000 .849 .141 .010 .000 .918 .076 .006

Note: For each parameter combination, four numbers are reported. The �rst number is the probability of "selecting
any invalid IVs". The second number is the probability of "selecting all valid and relevant IVs". The third number is
the probability of "selecting all valid and relevant IVs plus some redundant IVs". The fourth column is the probability
of all other events.

Table 6.1 presents the �nite-sample performances of the moment selection by the GMM shrink-

age estimation. We �rst look at the case with strong identi�cation (�o = 0:3), strong endogeneity of

invalid IVs (co = 0:5), and small sample size (n = 250). In this case, the probabilities of any invalid

IVs being selected are small for K = 10, 30; and 50. Hence, the shrinkage procedure succeeds in

selecting only the valid IVs. The number of the moment conditions a¤ect the probabilities of valid
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and/or relevant moment conditions to be selected. When K = 10, with a probability of 0:69, ZA is

the set of IVs selected and with a probability of 0:19, ZA plus some elements in ZB0 are selected.

This implies that with a probability of 0:88, the shrinkage procedure selects all of the valid and

relevant IVs. When K increases, the probability of selecting ZA alone decreases and the probability

of selecting ZA plus some elements in ZB0 increases. For example, when K = 50, the probability of

selecting ZA drops to 0:24, while the probability of selecting ZA plus some elements in ZB0 increases

to 0:62. When sample size is n = 2500, the probabilities of selecting ZA are 0:96 with K = 10, 0:90

with K = 30 and 0:85 with K = 50, whereas the probabilities of selecting invalid IVs are 0 and the

probabilities of selecting redundant IVs are as low as 0:14 even with K = 50. When sample size is

n = 5000, the probabilities of selecting ZA are larger than 0:90 and the probabilities of selecting

invalid or redundant IVs are close to zero. Reducing the degree of identi�cation and reducing the

degree of endogeneity for the invalid IVs both make moment selection more challenging. In the

extreme case with relatively weak identi�cation (�o = 0:1) and weak endogeneity (co = 0:2), the

procedure is robust at not including any invalid IVs but tend to include some redundant ones. The

probability of including redundant IVs is reduced signi�cantly when sample size increases.

The P-GMM estimator proposed in this paper produces an automatic estimate of �o in the

shrinkage estimation. Table 6.2 summaries �nite-sample properties of this estimator denoted by

�automatic�in Table 6.2, and compares it with several alternative estimators8. Some of the alter-

native estimators are infeasible, but serve as good benchmarks. To show the e¢ ciency improvement

by using more relevant and valid IVs, we compare the �automatic�estimator with a �conservative�

estimator, which only uses ZS without further exploring information in other candidate IVs. This

comparison shows that the �automatic�estimator enjoys smaller standard deviation and root mean

square error (RMSE) than the �conservative� estimator in all scenarios considered. To show the

�nite-sample improvement by excluding redundant IVs, the �automatic�estimator is compared to

a �pooled�estimator, which uses all valid IVs ZS , ZA; and ZB0 . This comparison indicates that the

�automatic�estimator has smaller �nite-sample bias. Note that this �pooled�estimator is actually

infeasible because it excludes all invalid IVs and include all valid IVs. Table 6.1 suggests that there

is a non-negligible probability that some valid and relevant IVs are not selected when the sample

size is moderate, which is why the standard deviation of the �automatic�estimator is slighter larger

than that of the �pooled�estimator for n = 250. This di¤erence disappears for n = 2500. To show

the importance of excluding invalid IVs, the �automatic�estimator is compared to an �aggressive�

estimator, which uses all candidate IVs regardless of their validity. This comparison suggests that

including invalid IVs increases �nite-sample bias as expected. The �post-shrinkage� estimator is
8We only present �nite sample properties of various GMM estimators with K = 50 here. More simulation results

are available in the Supplemental Appendix of the paper.
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the GMM estimator uses all IVs selected by the shrinkage procedure. The di¤erence between the

�automatic� estimator and the �post-shrinkage� estimator is small. Finally, an important com-

parison is between the �automatic� estimator and the infeasible �oracle� estimator, which uses

the desirable IVs ZS and ZA. This comparison indicates that the �nite-sample properties of the

�automatic�estimator are comparable to those of the �oracle�estimator, even for a small sample

size, and the two are basically the same when the sample size is large.

In sum, the GMM shrinkage estimator proposed in this paper not only produces consistent

moment selection, as indicated in Table 6.1, but also automatically estimate the parameter of

interest. Table 6.2 shows that this �automatic� estimator dominates all other feasible estimators

and it is comparable to the ideal but infeasible �oracle� estimator in terms of �nite-sample bias

and variance.

7 Conclusion

This paper studies moment selection when the number of moments diverges with the sample size,

allowing for both invalid and redundant moments in the candidate set. We show that the moment

selection problem can be transformed to a P-GMM estimation problem, which consistently selects

the subset of valid and relevant moments and automatically estimates the parameter of interest. In

consequence, the P-GMM estimator is not only robust to the potential mis-speci�cation introduced

by invalid moments but also robust to the possible �nite-sample bias introduced by redundant

moments.

An interesting and challenging question related to this paper is inference on the parameter of

interest �o when moment selection is necessary. Although the asymptotic distribution developed

in this paper can be used to conduct inference on �o, this limiting distribution ignores the moment

selection error in �nite sample. As a result, a robust inference procedure with correct asymptotic

size is an important issue for the P-GMM estimator. This is related to the post model selection

inference problem investigated by Leeb and Pötscher (2005, 2008), Andrews and Guggenberger

(2009, 2010), Guggenberger (2010), Belloni, Chernozhukov, and Hansen (2011), and McCloskey

(2012), among others. Robust inference on the parameter of interest is beyond the scope of this

paper and investigated in future research.
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Appendix
In this appendix, for any two sequences an and bn, we use an . bn to denote that an � Cbn

where C is some �xed �nite positive constant.

A Proofs of Main Results in Sections 2 and 3

Proof of Lemma 2.1. For the ease of notation, we write

�S � �S(�o), �` � �`(�o), 
S � 
S(�o) and 
S+` � 
S+`(�o): (A.1)

By de�nition, we write


S+` �

0@ 
S 
S;`


`;S 
`

1A (A.2)

where 
S is the leading k0 � k0 sub-matrix of 
S+`, 
` is the last diagonal element of 
S+` and

S;` = 


0
`;S are corresponding sub-matrices of 
S+`.

By the inverse formula of a block matrix, we have


�1S+`

24 
S 
S;`


`;S 
`;S

�1
S 
S;`

35
�1S+` =
24 
�1S 0ko�1

01�ko 0

35 ; (A.3)

which further implies that

V �1S+` � V
�1
S =

24 �S
�`

3500@
�1S+` �
24 
�1S 0ko�1

01�ko 0

351A24 �S
�`

35
=

24 �S
�`

350
�1S+`
0@
S+` �

24 
S 
S;`


`;S 
`;S

�1
S 
S;`

351A
�1S+`
24 �S
�`

35
=

24 �S
�`

350
�1S+`
24 0ko�ko 0ko�1

01�ko 
` � 
`;S
�1S 
S;`

35
�1S+`
24 �S
�`

35 ; (A.4)

where


` � 
`;S
�1S 
S;` = lim
n!1

Var

"
n�

1
2

nX
i=1

�
g`(Zi; �o)� g0S(Zi; �o)
�1S 
S;`

�#
� 0: (A.5)

This implies that V �1S+` � V
�1
S � 0 and hence VS � VS+`. The second result is an immediate

implication of the �rst.
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Proof of Lemma 3.1. Recall �n(�) = mn(�) �m(�). Note that �n(�) = gn(�) � g(�) for any
� 2 A, and �n(�o) = gn(�o) because g(�o) = 0. Hence, by Assumptions 3.1(ii) and 3.1(iii), we get

gn(�o)
0Wngn(�o) = �n(�o)

0Wn�n(�o) = op(1): (A.6)

The de�nition of b�n implies that
gn(b�n)0Wngn(b�n) + �nX

`2D
!n;`

���b�n;`��� � gn(�o)0Wngn(�o) + �n
X
`2D

!n;`
���o;`�� : (A.7)

Let mn;S(b�n) and mn;D(b�n) denote the subvectors of mn(b�n) associated with moments in S and D;
respectively. The inequality in (A.7) implies

mn;S(b�n)2 + mn;D(b�n)� b�n2 = kgn(b�n)k2 = op(1); (A.8)

because (i) �n
P
`2D !n;`

���b�n;`��� � 0; (ii) gn(�o)
0Wngn(�o) = op(1) by (A.6); (iii) �o;` = 0 for

` =2 B1; (iv) �n
P
`2B1 !n;`

���o;`�� = op(1) by Assumption 3.1(iv) and j�o;`j < C for all `; and (iv)

�min(Wn) � C�1 w.p.a.1 by Assumption 3.1(iii).
Using the triangle inequality and result in (A.8), we have

op(1) =
mn;S(b�n) � ���mS(b�n)� mS;n(b�n)�mS(b�n)��� ; (A.9)

which combined with Assumption 3.1(ii) implies that jjmS(b�n)jj = op(1). Under Assumption 3.1(i),
jjmS(b�n)jj = op(1) implies that b�n !p �o.

Proof of Lemma 3.2. We �rst prove part (a). Because �n!n;` � 0 for all `, the triangle

inequality and the Cauchy-Schwarz inequality imply that,

�n
X
`2B1

!n;`
���o;`��� �n X

`2B1

!n;`

���b�n;`��� � bn b�n � �o : (A.10)

Combining the inequalities in (A.7) and (A.10) and using the fact that �n!n;` � 0 and �o;` = 0 for
` =2 B1, we obtain

gn(b�n)0Wngn(b�n) � bn b�n � �o+ gn(�o)0Wngn(�o): (A.11)
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By Assumption 3.1(iii) and gn(�o)
0Wngn(�o) = Op(�

2
n) under Assumption 3.2(i), we havemS;n(b�n)2 + mD;n(b�n)� b�n2 . bn b�n � �o+Op(�2n) (A.12)

w.p.a.1.

To derive the rate of convergence of b�n; we next study the two terms in the left hand side of
(A.12) and link them to jjb�n � �ojj. First, note thatmS;n(b�n)2 =

mS;n(b�n)�mS(b�n) +mS(b�n)�mS(�o)
2

�
mS(b�n)�mS(�o)

2 � 2mS(b�n)�mS(�o)
mS;n(b�n)�mS(b�n)

=
mS(b�n)�mS(�o)

2 �Op(�n)mS(b�n)�mS(�o)
 ; (A.13)

where the �rst equality holds because mS(�o) = 0; the inequality follows from an expansion of the

quadratic term and the Cauchy-Schwarz inequality, the Op(�n) term in the last equality follows

from Assumption 3.2(i) and the consistency of b�n. By the mean value theorem,
mS(b�n)�mS(�o) = �S(�o)(b�n � �o) + h�S(e�n)� �S(�o)i (b�n � �o) (A.14)

where �S(e�n)0 = h�1(e�1;n)0; :::;�k0(e�k0;n)0i and e�`;n is some value between b�n and �o for any ` 2 S.
By the Cauchy-Schwarz inequality, the consistency of b�n and Assumption 3.2(iv),h�S(e�n)� �S(�o)i (b�n � �o) � �S(e�n)� �S(�o)b�n � �o . b�n � �o2 (A.15)

w.p.a.1. Using Assumption 3.2(iii), we have

�S(�o)(b�n � �o) . b�n � �o ; (A.16)

which together with (A.14), (A.15), the consistency of b�n and the Cauchy-Schwarz inequality implies
that

mS(b�n)�mS(�o)
2 = (b�n � �o)0�S(�o)0�S(�o)(b�n � �o) + op(1)b�n � �o2 : (A.17)

The above equality combined with Assumption 3.2(iii) further implies that

b�n � �o . mS(b�n)�mS(�o)
 . b�n � �o (A.18)
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w.p.a.1. Combining results in (A.13) and (A.18), we have w.p.a.1,

mS;n(b�n)2 & b�n � �o2 �Op(�n)b�n � �o : (A.19)

To study the second term on the left hand side of (A.12), we can write

mD;n(b�n)� b�n =
h
mD;n(b�n)�mD(b�n)i+ hmD(b�n)� b�ni

= Op(�n) +mD(b�n)� b�n
= Qn �

hb�n � �oi ; where
Qn �

h
mD(b�n)� �oi+Op(�n) (A.20)

following the consistency of b�n and Assumption 3.2(i). Then,
bn

b�n � �o+Op(�2n) �
mD;n(b�n)� b�n2

�
b�n � �o2 + jjQnjj2 � 2jjQnjjb�n � �o ; (A.21)

where the �rst inequality follows from (A.12) and the second inequality follows from (A.20) and

the Cauchy-Schwarz inequality. Reorganizing (A.21), we obtain

b�n � �o2 � (2jjQnjj+ bn)b�n � �o+ jjQnjj2 �Op(�2n) � 0 (A.22)

which implies b�n � �o . mD(b�n)�mD(�o)
+ bn +Op(�n) (A.23)

using the de�nition of Qn in (A.21) and �o = mD(�o).

Combining the inequalities in (A.12), (A.19) and (A.23), we get

b�n � �o2 �Op(�n)b�n � �o . bn mD(b�n)�mD(�o)
+Op(�2n + b2n): (A.24)

By the mean value theorem,

mD(b�n)�mD(�o) =
h
�D(e�n)� �D(�o)i (b�n � �o) + �D(�o)(b�n � �o) (A.25)

where �D(e�n)0 = h�k0+1(e�k0+1;n)0; :::;�kn(e�kn;n)0i and e�`;n is some value between b�n and �o for any
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` 2 D. Note that Assumption 3.2(iv) implies that

h�D(e�n)� �D(�o)i (b�n � �o) .pkn b�n � �o2 : (A.26)

Under Assumption 3.2(iii), we have
�D(�o)(b�n � �o)2 . jjb�n � �ojj2. Therefore,

mD(b�n)�mD(�o)
 .pkn b�n � �o2 + b�n � �o (A.27)

by the triangle inequality and the Cauchy-Schwarz inequality. Combining (A.24) and (A.27) yields

h
1�Op(

p
knbn)

i b�n � �o2 � Op(bn + �n)b�n � �o+Op(�2n + b2n): (A.28)

As
p
knbn = o(1), the inequality above impliesb�n � �o = Op(bn + �n): (A.29)

Applying the results in (A.27) and (A.29) to (A.23), we obtain

b�n � �o . Op(bn + �n) +pknOp(b2n + �2n) = Op(bn + �n); (A.30)

where the last equality follows from
p
kn(bn + �n) = op(1) under Assumption 3.2(v). Combining

the results in (A.29) and (A.30), we get the result in part (a).

We next prove part (b). We �rst note that

gn(b�n)0Wngn(b�n)� gn(�o)0Wngn(�o)

= [gn(b�n)� gn(�o)]0Wn [gn(b�n)� gn(�o)] + 2 [gn(b�n)� gn(�o)]0Wngn(�o)

& kgn(b�n)� gn(�o)k2 � kgn(b�n)� gn(�o)k kgn(�o)k
& kb�n � �ok2 � kgn(�o)k kb�n � �ok (A.31)

w.p.a.1, where the �rst inequality follows from Assumption 3.1(iii) and the Cauchy-Schwarz in-

equality and the second inequality holds by Assumptions 3.3(ii). Combining the inequalities in

(A.11) and (A.31), we obtain

kb�n � �ok2 � kgn(�o)k kb�n � �ok . bn kb�n � �ok ; (A.32)

which together with Assumptions 3.3(i), implies kb�n � �ok = Op(�n + bn).
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Proof of Theorem 3.2. Let e` be a kn-dimensional vector with the `-th entry being 1 and others

being 0. By the Karush�Kuhn�Tucker (KKT) optimality condition, b�n;` = 0 if
��e0`Wngn(b�n)�� < �����n!n;`2

���� : (A.33)

Hence,

Pr
�b�n;` = 0, ` 2 A� � Pr�max

`2A

����e0`Wngn(b�n)
�n!n;`

���� < 1

2

�
: (A.34)

To obtain the desired result, it remains to show

max
`2A

����e0`Wngn(b�n)
�n!n;`

���� = op(1): (A.35)

Following Assumption 3.1(iii),

0 < C�1 � e0`WnWne` � C <1 (A.36)

for any ` w.p.a.1. By the Cauchy-Schwarz inequality and the inequalities in (A.36),

max
`2A

����e0`Wngn(b�n)
�n!n;`

���� � max`2A

ke0`Wnk
�n!n;`

kgn(b�n)k . kgn(b�n)k
�n

max
`2A

!�1n;` (A.37)

w.p.a.1. By the triangle inequality,

kgn(b�n)k � kg(b�n)k+ �n(b�n) = kg(b�n)k+Op(�n); (A.38)

where the equality follows from Assumption 3.2(i). Note that

kg(b�n)k2 =
mS(b�n)�mS(�o)

2 + mD(b�n)� b�n2
.

mS(b�n)�mS(�o)
2 + mD(b�n)�mD(�o)

2 + b�n � �o2 (A.39)

which together with (A.18), (A.27), Lemma 3.2,
p
kn(�n+ bn) = o(1) and bn = Op(�n) implies that

kgn(b�n)k = Op(�n). This combined with Assumption 3.4(ii) and (A.37) implies that (A.35) holds.
Next, we prove part (b). Under Assumption 3.3, we have

kgn(b�n)k � kgn(b�n)� gn(�o)k+ kgn(�o)k
. kb�n � �ok+ kgn(�o)k = Op(�n); (A.40)

where the �rst inequality follows from the triangle inequality, the second inequality is by Assumption
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3.3(ii) and it holds w.p.a.1, the last equality is by Assumptions 3.3(i), 3.4(i), and Lemma 3.2(b).

This combined with Assumption 3.4(ii) and (A.37) implies that (A.35) holds.

Proof of Theorem 3.3. Let "n be a sequence of constants such that (i) "n = o(n�
1
2 ); (ii)

�n k!n;Bk = Op("n), (iii) &n�n = o("n) (and (iv)
p
kn�

2
n = O("n) for the proof of part (a)). Such

a sequence can be constructed because �n k!n;Bk = o(n�1=2); &n�n = o(n�1=2); (and
p
kn�

2
n =

o(n�1=2) for part (a)). De�ne b��B;n = b�B;n + "nu�n; (A.41)

where u�n = (�
0
�Wn��)

�1�n, 
�
n 2 Rd�+dB and k�nk � C. Because the smallest eigenvalues of Wn

and �0��� are bounded from below by Assumptions 3.1(iii) and 3.6(iii), ku�nk � C. Hence,

k"nu�nk
2 = "2n ku�nk

2 = Op("
2
n) = op(n

�1). (A.42)

Write b��0B;n = (b��0n ; b��0B;n), then
b��B;n � b�B;n = k"nu�nk = Op("n) and (A.43)b��B;n � �B;o � kb�B;n � �B;ok+ k"nu�nk = Op(�n): (A.44)

For any �0B = (�
0; �0B), we de�ne

gn(�B) =
1

n

nX
i=1

g(Zi; �B) and g(�B) = E [g(Z;�B)] ; (A.45)

where g(Z;�B) is de�ned in (3.7). By the de�nition of b�n,
gn(b�n)0Wngn(b�n) + �nX

`2D
!n;`

���b�n;`��� � gn(b��B;n)0Wngn(b��B;n) + �nX
`2B

!n;`

���b��n;`��� (A.46)

where b��n;` is the element of b��B;n corresponding to b�n;` for any ` 2 B. By Theorem 3.2, the left

hand side of (A.46) satis�es

gn(b�n)0Wngn(b�n) + �nX
`2D

!n;`

���b�n;`��� = gn(b�B;n)0Wngn(b�B;n) + �nX
`2B

!n;`

���b�n;`��� (A.47)

36



w.p.a.1. The triangle inequality and Cauchy-Schwarz inequality imply that������nX
`2B

!n;`

����b��n;`���� ���b�n;`����
����� � �nX

`2B
!n;`

���b��n;` � b�n;`���
= �n"n

X
`2B

!n;`
��u�n;`�� � �n"n k!n;Bku�n;B = Op("2n), (A.48)

where u�n;B � (u�n;d�+1; :::; u
�
n;d�+dB

)0 is the vector of perturbation on �B and the Op("2n) follows

from jju�n;Bjj � C and �n k!n;Bk = Op("n). Combining (A.46), (A.47) and (A.48) yields

gn(b��B;n)0Wngn(b��B;n)� gn(b�B;n)0Wngn(b�B;n) � Op("2n): (A.49)

We next prove part (a). De�ne

I1;n = �n(b��n)� �n(b�n): (A.50)

Because g(Z;�B) is linear in �,

gn(�B) = g(�B) + �n(�) (A.51)

for any �0B = (�
0; �0B). Applying the equality above, we obtain

gn(b��B;n)� gn(b�B;n) = g(b��B;n)� g(b�B;n) + I1;n, (A.52)

which implies that

gn(b��B;n)� gn(b�B;n)2 � 2g(b��B;n)� g(b�B;n)2 + 2 kI1;nk2 : (A.53)

By the mean value theorem,

g(b��B;n)� g(b�B;n)2 =
�b��B;n � b�B;n�0��(e��n)0��(e��n) �b��B;n � b�B;n�

=
�b��B;n � b�B;n�0��(�o)0��(�o) �b��B;n � b�B;n�
+
�b��B;n � b�B;n�0 h��(e��n)� ��(�o)i0 h��(e��n)� ��(�o)i �b��B;n � b�B;n�

+2
�b��B;n � b�B;n�0 h��(e��n)� ��(�o)i0 ��(�o) �b��B;n � b�B;n� (A.54)

where the �rst equality is a mean value expansion with e��n between the �rst d� elements of b��B;n
and b�B;n, (e��n may vary element by element for the vector). Next, we show each term on the right
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hand side of the second equality of (A.54) is Op("2n). Under Assumption 3.2(iii), we see that

0���
0
� = (

0
d�
;00dA ; 

0
dB
)
�
�(�o)

0�(�o)
�
(0d� ;0

0
dA
; 0dB )

0 � C kk2 (A.55)

for any  = (0d� ; 
0
dB
)0 2 Rd�+dB , which implies that �max(�

0
���) � C. Under (A.55) andb��B;n � b�B;n = Op("n), we have

�b��B;n � b�B;n�0��(�o)0��(�o) �b��B;n � b�B;n� . b��B;n � b�B;n2 = Op("2n): (A.56)

By the Cauchy-Schwarz inequality and kn�2n = o(1), we have

�b��B;n � b�B;n�0 h��(e��n)� ��(�o)i0 h��(e��n)� ��(�o)i �b��B;n � b�B;n�
�

b��B;n � b�B;n2 ��(e��n)� ��(�o)2
= knOp(�

2
n)
b��B;n � b�B;n2 = op("2n) (A.57)

where the �rst equality is by jj��(e��n)���(�o)jj = Op(pkn�n), which in turn holds by Assumption
3.2(iv) and jje��n��ojj = Op(�n). Using (A.55), the Cauchy-Schwarz inequality, Assumption 3.2(iv),
and kn�2n = o(1), we have�����b��B;n � b�B;n�0 h��(e��n)� ��(�o)i0 ��(�o) �b��B;n � b�B;n�����

�
b��B;n � b�B;n��(e��n)� ��(�o)��(�o)(b��B;n � b�B;n)

.
b��B;n � b�B;n2 ��(e��n)� ��(�o)

=
p
knOp(�n)

b��B;n � b�B;n2 = op("2n): (A.58)

Combining the results in (A.54), (A.56), (A.57), and (A.58), we deduce that

g(b��B;n)� g(b�B;n)2 = Op("2n): (A.59)

Using Assumption 3.5, jjb��n � b�njj = Op("n); ��1n = O(n
1
2 ); and &n�n = o("n), we have

kI1;nk = Op(n�
1
2 &n + "n&n) = Op(n

� 1
2 &n) = op("n); (A.60)

which together with (A.52), (A.59), and Assumption 3.1(iii) implies that

�
gn(b��B;n)� gn(b�B;n)�0Wn

�
gn(b��B;n)� gn(b�B;n)� . gn(b��B;n)� gn(b�B;n)2 = Op("2n) (A.61)
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where the inequality holds w.p.a.1. We can rewrite the inequality (A.49) to obtain

Op("
2
n) � gn(b��B;n)0Wngn(b��B;n)� gn(b�B;n)0Wngn(b�B;n)

=
�
gn(b��B;n)� gn(b�B;n)�0Wn

�
gn(b��B;n)� gn(b�B;n)�

+2
�
gn(b��B;n)� gn(b�B;n)�0Wngn(b�B;n): (A.62)

Applying the results in (A.61) and (A.62), we obtain

�
gn(b��B;n)� gn(b�B;n)�0Wngn(b�B;n) � Op("2n): (A.63)

De�ne

I0;n = �n(b�n)� �n(�o): (A.64)

Then

gn(b�B;n) = gn(�o) + g(b�B;n)� g(�o) + I0;n: (A.65)

Plugging (A.65) into (A.63) and using the de�nition of I1;n in (A.50) yields

Op("
2
n) �

�
g(b��B;n)� g(b�B;n)�0Wn [gn(�o) + g(b�B;n)� g(�o)]
+An +Bn + Cn, where

An = I 01;nWn[gn(�o) + g(b�B;n)� g(�o)];
Bn = [g(b��B;n)� g(b�B;n)]0WnI0;n;

Cn = I 01;nWnI0;n. (A.66)

We next study the terms An, Bn and Cn one by one. By the triangle inequality and the Cauchy-

Schwarz inequality,

jAnj �
��I 01;nWngn(�o)

��+ ��I 01;nWn[g(b�B;n)� g(�o)]��
�

��I 01;nWnI1;n
�� 12 ��gn(�o)0Wngn(�o)

�� 12
+
��I 01;nWnI1;n

�� 12 ��[g(b�B;n)� g(�o)]0Wn[g(b�B;n)� g(�o)]�� 12 : (A.67)

By arguments similar to those used to show (A.59), we can show

kg(b�B;n)� g(�o)k2 = Op(�2n): (A.68)

Using Assumptions 3.1(iii) and 3.2(i), the results in (A.60), (A.67), (A.68), and &n�n = o("n), we
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have

jAnj = Op(n�
1
2 &n�n) = op(n

� 1
2 "n): (A.69)

To study Bn and Cn; �rst note that

kI0;nk = Op(n�
1
2 &n + �n&n) = op("n); (A.70)

where the �rst equality follows from Assumption 3.5 and jjb�n � �ojj = Op(�n) and the second

equality follows from ��1n = O(n
1
2 ) and &n�n = o("n). By the Cauchy-Schwarz inequality, (A.59)

and (A.70),

jBnj �
��g(b��B;n)� g(b�B;n)]0Wng(b��B;n)� g(b�B;n)]�� 12 ��I 00;nWnI0;n

�� 12 = op("2n): (A.71)

By the Cauchy-Schwarz inequality, (A.60) and (A.70),

jCnj �
��I 01;nWnI1;n

�� 12 ��I 00;nWnI0;n
�� 12 = op("2n): (A.72)

Putting together (A.66), (A.69), (A.71), and (A.72) and using "n = o(n�1=2); we obtain

�
g(b��B;n)� g(b�B;n)�0Wn [gn(�o) + g(b�B;n)� g(�o)] � op(n� 1

2 "n) (A.73)

Next, we consider the mean-value expansions for g(b��B;n) � g(b�B;n) and g(b�B;n) � g(�o) in
(A.73). First,

g(b��B;n)� g(b�B;n) = ��(e��n) �b��B;n � b�B;n�
= ��(�o)(b��B;n � b�B;n) + h��(e��n)� ��(�o)i (b��B;n � b�B;n)
= ��(�o)(b��B;n � b�B;n) +Op(pkn�n"n); (A.74)

where the �rst equality is a mean value expansion with e��n between the �rst d� elements of b��B;n
and b�B;n, (e��n may vary element by element for the vector), the second equality is obvious, and
the third equality follows from the Cauchy-Schwarz inequality, jj��(e��n) � ��(�o)jj = Op(

p
kn�n),

which in turn holds by Assumption 3.2(iv) and jje��n � �ojj = Op(�n); and b��B;n � b�B;n = Op("n).
Similarly, we have

g(b�B;n)� g(�o) = ��(�o)(b�B;n � �B;o) +Op(pkn�2n): (A.75)
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Plugging (A.74) and (A.75) into (A.73), we obtain

op(n
�1=2"n) � (b��B;n � b�B;n)0��(�o)0Wn[gn(�o) + ��(�o)(b�B;n � �B;o)] +D1 +D2

= (b��B;n � b�B;n)0��(�o)0Wn[gn(�o) + ��(�o)(b�B;n � �B;o)] + op(n� 1
2 "n); (A.76)

because

jD1j �
����(b��B;n � b�B;n)0 h��(e��n)� ��(�o)i0Wn [gn(�o) + g(b�B;n)� g(�o)]����

� Op(
p
kn�n"n) [kgn(�o)k+ kg(b�B;n)� g(�o)k]

= Op(
p
kn�

2
n"n) = op(n

� 1
2 "n); (A.77)

and

jD2j �
���(b��B;n � b�B;n)0��(�o)0Wn

h
��(e�n)� ��(�o)i (b�B;n � �B;o)���

= Op("n)Op(
p
kn�

2
n) = op(n

� 1
2 "n) (A.78)

for some e�n between the �rst d� elements of b��B;n and �0 and e�n may vary element by element
for the vector. The �rst inequality in (A.77) holds by the Cauchy-Schwarz inequality, the third

equality in (A.74), and Assumption 3.1(iii), the �rst equality in (A.77) follows from Assumption

3.2(i) and (A.68), and the second equality in (A.77) holds because
p
kn�

2
n = O("n) and "n =

o(n�1=2); as stated at the beginning of the proof. Results in (A.78) holds by similar arguments

using
b��B;n � b�B;n = Op("n), kb�B;n � �B;ok = Op(�n) and ��(e�n)� ��(�o) = Op(pkn�n).

The results in (A.76) immediately gives

op("nn
� 1
2 ) � (b��B;n � b�B;n)0��(�o)0Wn[gn(�o) + ��(�o)(b�B;n � �B;o)] (A.79)

which together with b��B;n � b�B;n = "nu�n = "n(�0�Wn��)
�1�n implies that

�0n (�
0
�Wn��)

�1�0�Wn[
p
ngn(�o) +

p
n��(�o)(b�B;n � �B;o)] � op(1) (A.80)

where �n 2 Rd�+dB with k�nk � C. Next, de�ne b��B;n = b�B;n�"nu�n and using the same arguments
in deriving (A.80), we deduce that

�0n (�
0
�Wn��)

�1�0�Wn[
p
ngn(�o) +

p
n��(�o)(b�B;n � �B;o)] � op(1); (A.81)
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which combined with (A.80), implies that

���0n (�0�Wn��)
�1�0�Wn[

p
ngn(�o) +

p
n��(�o)(b�B;n � �B;o)]�� = op(1): (A.82)

The approximation in (A.82) can be rewritten as

p
n�0n (b�B;n � �B;o) = ��0n (�0�Wn��)

�1�0�Wn

1
2
n

�p
n


� 1
2

n gn(�o)

�
+ op(1): (A.83)

Let n 2 Rd�+dB be an arbitrary vector with knk = 1. Let

�0n � 0n�
� 1
2

n and 0n � 0n�
� 1
2

n (�0�Wn��)
�1�0�Wn


1
2
n : (A.84)

It is clear that

knk2 = 0nn = 0n�
� 1
2

n �n�
� 1
2

n n = 1 (A.85)

and

k�nk
2 = �0n 

�
n = 

0
n�

�1
n n � C (A.86)

where the last inequality is by knk = 1; (A.55), and Assumptions 3.1(iii), 3.6(ii), and 3.6(iii).

Hence, we deduce that

p
n0n�

� 1
2

n (b�B;n � �B;o) = �0n �pn
� 1
2

n gn(�o)

�
+ op(1)!d N(0; 1); (A.87)

where the weak convergence is by Assumption 3.6(i).

We next prove part (b). Using Assumption 3.3(ii) and (A.43), we get

gn(b��B;n)� gn(b�B;n) = Op(b��B;n � b�B;n) = Op("n) (A.88)

which together with the expression in (A.62) implies that

gn(b��B;n)0Wngn(b��B;n)� gn(b�B;n)0Wngn(b�B;n)
= 2

�
gn(b��B;n)� gn(b�B;n)�0Wngn(b�B;n) +Op("2n): (A.89)

By Assumption 3.8,

gn(b��B;n)� gn(b�B;n) = g(b��B;n)� g(b�B;n) + I1;n = ��(b��B;n � b�B;n) + I1;n (A.90)
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and similarly,

gn(b�B;n)� gn(�o) = g(b�B;n)� g(�B;o) + I0;n = ��(b�B;n � �B;o) + I0;n: (A.91)

By Assumption 3.5, jjb��n � b�njj = Op("n), jjb�n � �ojj = Op(�n); and &n�n = o("n), we have
kI1;nk = Op(n�

1
2 &n) and kI0;nk = Op(&n�n) = op("n). (A.92)

Applying (A.90), (A.91), and (A.92), we have

�
gn(b��B;n)� gn(b�B;n)�0Wngn(b�B;n)

= (b��B;n � b�B;n)0�0�Wn[gn(�o) + ��(b�B;n � �B;o)] + (b��B;n � b�B;n)0�0�WnI0;n

+I 01;nWn[gn(�o) + ��(b�B;n � �B;o)] + I 01;nWnI0;n

= (b��B;n � b�B;n)0�0�Wn[gn(�o) + ��(b�B;n � �B;o)] + op(n� 1
2 "n); (A.93)

following (A.43), (A.55), Assumption 3.1(iii), "n = o(n�
1
2 ) and Op(n�

1
2 &n�n) = op(n

� 1
2 "n). Apply-

ing (A.89) and (A.93) in (A.49) and using b��B;n � b�B;n = "nu�n = "n(�0�Wn��)
�1�n; we obtain

�0n (�
0
�Wn��)

�1�0�Wn[
p
ngn(�o) +

p
n��(�o)(b�B;n � �B;o)] � op(1) (A.94)

as in (A.80). The rest of the proof is the same as that of part (a) and hence is omitted.

B Proofs on Linear IV Model

Proof of Lemma 4.1. By de�nition,

gS(Z; �) = (Yi �Xi�)Z�i and gS(Z; �) = (Yi �Xi�)Zi: (B.1)

We write

kmn(�o)�m(�o)k2 =

0@ 1
n

Pn
i=1 uiZ

�
i

1
n

Pn
i=1 uiZi � �o

1A00@ 1
n

Pn
i=1 uiZ

�
i

1
n

Pn
i=1 uiZi � �o

1A
=

 1n
nX
i=1

uiZ
�
i


2

+

 1n
nX
i=1

uiZi � �o


2

: (B.2)
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Using Conditions 4.1(i), 4.1(ii), and 4.1(iii), we get

E

24 1n
nX
i=1

uiZ
�
i


2
35 = 1

n

k0X
j=1

E
h
juiZ�i (j)j

2
i
� k0C

n
(B.3)

and

E

24 1n
nX
i=1

uiZi � �o


2
35 = 1

n

X
j2D

E
h
juiZi(j)j

2
i
� knC

n
: (B.4)

Using the upper bounds in (B.3) and (B.4), and the expression in (B.2), we can invoke the Markov

inequality to deduce that

kmn(�o)�m(�o)k2 = Op(kn=n): (B.5)

This proves part (a).

For any �, we can write

gn(�)� gn(�o) =

0@ �1
n

Pn
i=1XiZ

�
i 0k0�(kn�k0)

�1
n

Pn
i=1XiZi �Ikn�k0

1A (�� �o) � �n(�� �o): (B.6)

Moreover, we get

kgn(�)� gn(�o)k2 = (�� �o)0�
0
n�n(�� �o): (B.7)

De�ne �n � E
�
�n
�
. Then

�n � �n =

0@ �1
n

Pn
i=1XiZ

�
i + E [XiZ�i ] 0k0�(kn�k0)

�1
n

Pn
i=1XiZi + E [XiZi] 0(kn�k0)�(kn�k0)

1A : (B.8)

Using the Hölder inequality, the Cauchy-Schwarz inequality and Conditions 4.1(i) and 4.1(iii), we

get

E

24 1n
nX
i=1

XiZ
�
i � E [XiZ�i ]


2
35 = 1

n

k0X
j=1

E
h
jXiZ�i (j)� E[XiZ�i (j)]j

2
i

� 1

n

k0X
j=1

E
h
jXiZ�i (j)j

2
i
�

q
E
�
X4
i

�Pk0
j=1

p
E [jZ�i (j)j4]

n
� Ck0

n
: (B.9)
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Similarly, we have

E

24 1n
nX
i=1

XiZ
0
i � E

�
XiZ

0
i

�
2
35 = 1

n

X
j2D

E
h
jXiZi(j)� E[XiZi(j)]j

2
i

� 1

n

X
j2D

E
h
jXiZi(j)j

2
i
�

q
E
�
X4
i

�P
j2D

p
E [jZi(j)j4]

n
� Ckn

n
: (B.10)

Using the upper bounds in (B.9) and (B.10) and the expression in (B.8), we invoke the Markov

inequality to deduce that �n � �n2 = Op(kn=n): (B.11)

De�ne

�1;n � E [XiZ�i ] and �2;n = E [XiZi] : (B.12)

Then,

�0n�n =

0@ E [XiZ�0i ]E [XiZ�i ] + E [XiZ
0
i]E [XiZi] E [XiZ 0i]

E [XiZi] Ikn�k0

1A
=

0@ �01;n�1;n + �
0
2;n�2;n �02;n

�2;n Ikn�k0

1A (B.13)

=

0@ 1 �02;n

0(kn�k0)�1 Ikn�k0

1A0@ �01;n�1;n 01�(kn�k0)

0(kn�k0)�1 Ikn�k0

1A0@ 1 01�(kn�k0)

�2;n Ikn�k0

1A :
By Conditions 4.1(iv) and 4.1(v), we know that �01;n�1;n > 0; and hence �

0
n�n is positive de�nite.

Let �n;� be a eigenvalue of �0n�n with �n;� 6= 1. Then

0 = det

240@ �01;n�1;n + �
0
2;n�2;n � �n;� �02;n

�2;n (1� �n;�)Ikn�k0

1A35
= det

240@ �01;n�1;n+�
0
2;n�2;n��n;�

1��n;�
�02;n
1��n;�

�2;n
1��n;� Ikn�k0

1A35 (1� �n;�)kn�k0+1
=

�
�01;n�1;n + �

0
2;n�2;n � �n;� �

�02;n�2;n

1� �n;�

�
(1� �n;�)kn�k0 ; (B.14)
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where the last equality holds by det(ABC) = det(A) det(B) det(C) with

A =

0@ 1
�02;n
1��n;�

0(kn�k0)�1 Ikn�k0

1A = C 0 and B =

0@ �01;n�1;n+�
0
2;n�2;n��n;�

1��n;� � �02;n�2;n
(1��n;�)2 01�(kn�k0)

0(kn�k0)�1 Ikn�k0

1A :
(B.15)

From (B.14), we know that �n;� satis�es

�2n;� � (1 + �01;n�1;n + �02;n�2;n)�n;� + �01;n�1;n = 0: (B.16)

The above equation has the following two solutions

�n;� =
�n �

q
�2n � 4�1;n�01;n
2

; (B.17)

where �n � 1 + �01;n�1;n + �02;n�2;n. This implies that the eigenvalues of �0n�n are bounded from
below by min(�n;�; 1) and bounded from above by max(�n;�; 1). Under Conditions 4.1(iv) and

4.1(v),

�01;n�1;n = E
�
XiZ

�0
i

�
E [XiZ�i ] =

k0X
j=1

�2j (B.18)

and

�02;n�2;n = E
�
XiZ

0
i

�
E [XiZi] =

k0+dAX
j=k0+1

�2j + E
�
XiZ

0
2;i

�
E
�
XiZ2;i

�
!

1X
j=k0+1

�2j + lim
n!1

E �XiZ2;i�2 : (B.19)

Using the results in (B.18), (B.19) and the inequality

�n +
q
�2n � 4�01;n�1;n � �n +

p
�2n = 2�n; (B.20)

we deduce that

�n;�;� �
2�1;n�

0
1;n

�n +
q
�2n � 4�01;n�1;n

�
�01;n�1;n

1 + �01;n�1;n + �
0
2;n�2;n

!
Pk0
j=1 �

2
j

1 +
P1
j=1 �

2
j + limn!1

E �XiZ2;i�2 as n!1: (B.21)

By E
�
X2
i

�
� C and Condition 4.1(iv), we see that

P1
j=1 �

2
j � C, which together with

Pk0
j=1 �

2
j > 0
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and limn!1
E �XiZ2;i�2 < C implies that the smallest eigenvalue of �0n�n is bounded from below

uniformly in n. Next, using the results in (B.18), (B.19) and the inequality in (B.20), we have

�n;�;+ �
�n +

q
�2n � 4�01;n�1;n
2

� 1 + �01;n�1;n + �02;n�2;n

! 1 +
1X
j=1

�2j + lim
n!1

E �XiZ2;i�2 , (B.22)

which together with
P1
j=1 �

2
j � C and limn!1

E �XiZ2;i�2 < C implies that the largest eigen-

value of �0n�n is bounded from above uniformly in n. Hence, for some constant C;

C�1 � �min(�0n�n) � �max(�0n�n) � C for all n. (B.23)

Using the inequalities in (B.23) and

k�n(�� �o)k =
�
(�� �o)0�0n�n(�� �o)

� 1
2 ; (B.24)

we deduce that

k�� �ok . k�n(�� �o)k . k�� �ok : (B.25)

Note that

(�� �o)0�
0
n�n(�� �o)� (�� �o)0�0n�n(�� �o)

= (�� �o)0(�n � �n)0(�n � �n)(�� �o) + 2(�� �o)0(�n � �n)0�n(�� �o): (B.26)

Using the triangle inequality, the Cauchy-Schwarz inequality, (B.11), (B.23), and (B.25), we obtain

(�� �o)0�
0
n�n(�� �o)

� (�� �o)0�0n�n(�� �o) +
���(�� �o)0�0n�n(�� �o)� (�� �o)0�0n�n(�� �o)���

. k�� �ok2 +
�n � �n2 k�� �ok2 + k�� �ok�n � �n k�n(�� �o)k

.
h
1 +Op(kn=n) +Op(

p
kn=n)

i
k�� �ok2 ; (B.27)
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which proves the result claimed in (b). Similarly,

(�� �o)0�
0
n�n(�� �o)

� (�� �o)0�0n�n(�� �o)�
���(�� �o)0�0n�n(�� �o)� (�� �o)0�0n�n(�� �o)���

& k�� �ok2 �
�n � �n2 k�� �ok2 � k�� �ok�n � �n k�n(�� �o)k

&
h
1 +Op(kn=n) +Op(

p
kn=n)

i
k�� �ok2 ; (B.28)

which proves the result claimed in (c).

Finally, we verify the claim in part (d). For any �1, �2 with k�1 � �2k � �, we can use the

Cauchy-Schwarz inequality to deduce that

kvn(�1)� vn(�2)k =


0@ 1

n

Pn
i=1XiZ

�
i � E[XiZ�i ]

1
n

Pn
i=1XiZi � E[XiZi]

1A (�2 � �1)


�
�n � �n k�1 � �2k (B.29)

which together with (B.11) implies that

sup
�1;�22f�2�:jj���ojj��ng

kvn(�1)� vn(�2)k
n�

1
2 + k�1 � �2k

� sup
�1;�22f�2�:jj���ojj��ng

�n � �n k�1 � �2k
k�1 � �2k

=
�n � �n = Op(pkn=n): (B.30)

This �nishes the proof.

Proof of Lemma 4.2. We �rst show that Assumption 3.6(ii) is satis�ed. Under Conditions

4.1(ii) and 4.2(ii), for any  2 RdB1+dB0 we have

0
2;n = E
�
u2i 

0Z�1;iZ
0
�1;i

�
� (0�B;o)2 � C0E

�
Z�1;iZ

0
�1;i

�
 � C0

which implies that �max(
2;n) � C. Similarly, using Conditions 4.1(ii) and 4.1(iv), we have

�max(
0;n) � C. Using Aronszajn�s inequality (see, e.g., Theorem III.2.9 in Bhatia, 1997 or Theo-

rem 1.2 in the Supplemental Appendix of this paper) and the fact that 
n is positive de�nite, we

know that

�max(
n) � �max(
0;n) + �max(
2;n) � C: (B.31)
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By the inverse formula of partitioned matrix,


�1n =

0@ (
11n )
�1 �
�10;n
1;n(
22n )�1

�(
22n )�1
01;n
�10;n (
22n )
�1

1A : (B.32)

Using the Aronszajn�s inequality, Condition 4.2(iii), and the fact that 
n is positive de�nite, we

have

�max(

�1
n ) � �max((
11n )�1) + �max((
22n )�1) � C; (B.33)

which implies that �min(
n) � C�1. This together with (B.31) yields

C�1 � �min(
n) � �max(
n) � C (B.34)

which shows Assumption 3.6(ii).

To verify Assumption 3.6(i), we only need to check the Lindeberg�s condition of the triangular

array CLT. For this purpose, we de�ne

�i;n � n�
1
20n


� 1
2

n g(Zi; �o); (B.35)

where n 2 Rkn with knk = 1, and

g(Zi; �o) �

0@ uiZ
�
i

uiZi � E[uiZi]

1A : (B.36)

For any random variable U with �nite fourth moment, we can use monotonicity of the expectation

operator and the inequality U2IfU > 1g � U4 to deduce that

E
�
U2IfU > 1g

�
� E

�
U4
�
: (B.37)

Using the inequality above and Condition 4.1(i)

nX
i=1

E
�
�2i;nIf�i;n > �g

�
= n�2E

h�
�i;n=�

�2
If�i;n=� > 1g

i
� 1

n�2
E

"����0n
� 1
2

n g(Zi; �o)g(Zi; �o)
0

� 1
2

n n

����2
#
: (B.38)

As n
0
n is semi-positive de�nite with eigenvalues 0 and 1, we know that for any symmetric matrix
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A, there is

(0nAn)
2 = (0nA)n

0
n(

0
nA)

0 � 0nA2n; (B.39)

which can be applied to show that

E

"����0n
� 1
2

n g(Zi; �o)g(Zi; �o)
0

� 1
2

n n

����2
#

� 0n

� 1
2

n E
h�
g(Zi; �o)g(Zi; �o)

0�2i
� 1
2

n n
0
n


�1
n n: (B.40)

Under Assumption 3.6(ii) (which has been veri�ed above), we have

E

"����0n
� 1
2

n g(Zi; �o)g(Zi; �o)
0

� 1
2

n n

����2
#

.
E h�g(Zi; �o)g(Zi; �o)0�2i � E hkg(Zi; �o)k4i ; (B.41)

where the �rst inequality is by (B.40), 0n

�1
n n � C; and the Cauchy-Schwarz inequality, the

second inequality is by the Jensen�s inequality and the Cauchy-Schwarz inequality. Next note that

E
h
kg(Zi; �o)k4

i
= E

h�
g(Zi; �o)

0g(Zi; �o)
�2i

= E
h��u2iZ�0i Z�i + (uiZi � �o)0 (uiZi � �o)��2i

. E
h��u2iZ�0i Z�i ��2i+ E h��(uiZi � �o)0 (uiZi � �o)��2i ; (B.42)

where

E
h��(uiZi � �o)0 (uiZi � �o)��2i

= E
����u2i �Z 01;iZ1;i + Z 03;iZ3;i�+ �uiZ2;i � �B1;o�0 �uiZ2;i � �B1;o����2�

. E
h��u2iZ 01;iZ1;i��2i+ E h��u2iZ 03;iZ3;i��2i+ E �����uiZ2;i � �B1;o�0 �uiZ2;i � �B1;o����2� : (B.43)

Combining the inequalities in (B.42) and (B.43) and applying the Cauchy-Schwarz inequality, we

get

E
h
kg(Zi; �o)k4

i
. kn

k0+dAX
j=1

E
�
u4iZ

4
1;i(j)

�
+ kn

dB0X
j=1

E
�
u4iZ

4
3;i(j)

�
+ kn

dB1X
j=1

E
h��uiZ2;i(j)� �B1;o(j)��4i

. kn(k0 + dA + dB0 + dB1) = k
2
n (B.44)
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where the second inequality follows from Condition 4.2(i). The result in (B.44), together with

(B.38) and (B.41), implies that

nX
i=1

E
�
�2i;nIf�i;n > �g

�
. k2n
n�2

= o(1): (B.45)

Hence the the Lindeberg�s condition holds in the linear IV model, which veri�es Assumption 3.6(i).

Using the eigenvalue bounds in (B.23) and the arguments used to show (A.55), we deduce that

Assumption 3.6(iii) is also satis�ed.

Finally, Assumption 3.8 holds automatically in this linear model. This �nishes the proof.

C Proof of Results in Section 5

When the data are i.i.d. we use the preliminary estimator _�n in (2.13) to de�ne

_�S;n �
1

n

nX
i=1

@gS(Zi; _�n)

@�0
, _
S;n �

1

n

nX
i=1

gS(Zi; _�n)gS(Zi; _�n)
0,

_�S+`;n �
1

n

nX
i=1

@gS+`(Zi; _�n)

@�0
, _
S+`;n �

1

n

nX
i=1

gS+`(Zi; _�n)gS+`(Zi; _�n)
0: (C.1)

The estimators of variance matrices VS and VS+` are thus constructed as

_Vn;S � _�0S;n _

�1
S;n
_�S;n and _Vn;S+` � _�0S+`;n _


�1
S+`;n

_�S+`;n: (C.2)

The empirical information measure is de�ned using the above variance estimators and formula

(2.12).

Proof of Lemma 5.1. (a) By the de�nition of k!n;B1k, the triangle inequality and the Cr-
inequality,

n�2n k!n;B1k
2 = n�2n

X
`2B1

_�2r1n;` j _�n;`j
�2r2 . n�2n

X
`2B1

�2r1o;` +
�� _�n;` � �o;`��2r1h

j�o;`j � j _�n;` � �o;`j
i2r2 (C.3)

which together with max`2B1 j _�n;` � �o;`j = Op(�n) and
���o;`�� � C�1 for all ` 2 B1, implies that

n�2n k!n;B1k
2 . n�2n

X
`2B1

j�o;`j�2r2
h
�2r1o;` +

�� _�n;` � �o;`��2r1i (C.4)
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w.p.a.1. Using max`2B1
�� _�n;` � �o;`�� = Op(�n), and the inequality above, we deduce that

n�2n k!n;B1k
2 . n�2n

X
`2B1

j�o;`j�2r2�2r1o;` + n�
2
n

X
`2B1

j�o;`j�2r2
�� _�n;` � �o;`��2r1

. n�2nkn + n�
2
nknOp(�

2r1
n ) = op(1); (C.5)

where the last equality follows from r1 > 0 and n
1
2k

1
2
n�n = o(1). By the de�nition of k!n;B0k,

n�2n k!n;B0k
2 = n�2n

X
`2B0

_�2r1n;` j _�n;`j
�2r2 = n1+r2�r1�2n

X
`2B0

��pn � _�n;` � �o;`���2r1���pn� _�n;` � �o;`����2r2 ; (C.6)

which together with max`2B0
�� _�n;` � �o;`�� = Op(n

� 1
2 ) and

p
n
�
_�n;` � �o;`

�
!d N(0; �

2
` ) implies

that

n�2n k!n;B0k
2 = n1+r2�r1�2nOp(1) = op(1); (C.7)

where the last equality is by n
1+r2�r1

2 �n = o(1). The desired result holds because jj!n;Bjj2 =
jj!n;B0 jj2 + jj!n;B1 jj2:

(b). By the de�nition of !n;` and the triangle inequality,

knmax`2A !
�2
n;`

n�2n
=

kn

n�2n
max
`2A

_�
2r2
n;`

_�2r1n;`
� kn

n�2n
max
`2A

��� _�n;` � �o;`���2r2���o;` � �� _�n;` � �o;`����2r1
. kn

n�2n
max
`2A

j�o;`j�2r1
��� _�n;` � �o;`���2r2 (C.8)

w.p.a.1, where the last inequality follows frommax`2A
�� _�n;` � �o;`�� = Op(�n) andmax`2A j��1o;` j � C.

Using the inequality above, max`2A j��1o;` j � C and jj _�n � �ojj = Op(�n), we have

knmax`2A !
�2
n;`

n�2n
. kn

n�2n

 _�n � �o2r2 = kn

n�2n
Op(�

2r2
n ) = Op(n

�1��2n kn�
2r2
n ); (C.9)

which together with �n =
p
kn=n, k1+r2n n�1�r2��2n = o(1) implies that

knmax`2A !
�2
n;`

n�2n
= op(1).

As discussed in Remark 5.1, the tuning parameter speci�ed in (5.5) allows for the case that

min`2A
���o;`�� and min`2B1 ���o;`�� go to zero as kn !1. To see it, suppose Assumptions 5.1(i), (ii),

(iii) hold and the following restrictions

max
`2A

�����1o;` ��� = o(n r2
4r1 k

� 1
2r1

� r2
4r1

n ) and max
`2B1

�����1o;` ��� = o(n 1
4k
� 1
2r2

� 1
4

n ), (C.10)
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are satis�ed. Using the restrictions above and the arguments in the proof of Lemma 5.1, we deduce

that

n�2n k!n;B1k
2 . n�

r2
2 k

1+
r2
2

n max
`2B1

���o;`���2r2 = o(1); (C.11)

when �n is as speci�ed in (5.5) and moreover,

knmax`2A !
�2
n;`

n�2n
. kn

n�2n
max
`2A

��� _�n;` � �o;`���2r2
j�o;`j2r1

= Op(n
� r2

2 k
1+

r2
2

n )max
`2A

j�o;`j�2r1 = op(1); (C.12)

which implies that the tuning parameter in (5.5) also ensures that the lower bound is satis�ed.

D Some Su¢ cient Conditions

Let a.e. abbreviates almost everywhere. For any moment function g`(Z; �) and any � 2 �, we
de�ne g�;`(Z; �) =

@g`(Z;�)
@�0

. By de�nition, g�;`(Z; �) is a 1 � d� vector with the i-th element being
@g`(Z;�)
@�(i) , where �(i) denotes the i-th element of � for any i = 1; :::; d�. We use g��;`(Z; �) denote the

d� � d� matrix whose (i; j)-th element being @2g`(Z;�)
@�(i)@�(j) , where �(i) and �(j) (i; j = 1; :::; d�) denote

the i-th and j-th elements of � respectively.

Lemma D.1 Suppose (i) the observations are i.i.d.; (ii) g`(Z; �) is di¤erentiable in � a.e. for

` = 1; :::; kn; (iii)

max
`�kn

E
�
sup
�2�

kg`(Z; �)k2 + sup
�2�

k@g�;`(Z; �)k2
�
� C; (D.1)

and (iv) � is compact. Then Assumption 3.2(i) holds with �n =
p
kn=n.

Proof of Lemma D.1. De�ne F = fg`(Z; �) : � 2 �g. By Lemma 2.13 of Pakes and Pollard
(1989), F is a Euclidean class with the envelope F = sup�2� jg`(Z; �)j + C sup�2� jjg�;`(Z; �)jj for
some positive constant C under assumptions (ii), (iii) and (iv) of Lemma D.1. For the de�nition

of Euclidean class, see (2.7) of Pakes and Pollard (1989). By the maximal inequality (Section 4.3

of Pollard, 1989), for any ` and any n

E

24sup
�2�

�����n�1
nX
i=1

g`(Zi; �)� E [g`(Z; �)]
�����
2
35 � Cn�1: (D.2)

Hence,

E

24sup
�2�

n�1
nX
i=1

g(Zi; �)� E [g(Z; �)]

2
35 � Ckn

n
; (D.3)
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which implies

sup
�2�

n�1
nX
i=1

g(Zi; �)� E [g(Z; �)]
 = Op(pkn=n) (D.4)

by the Markov inequality.

Lemma D.2 Suppose (i) conditions of Lemma D.1 hold; (ii) g`(Z; �) is twice di¤erentiable in �

a.e. for ` = 1; :::; kn; (iii)

max
`�kn

E
�
sup
�2�

kg��;`(Zi; �)k2
�
� C: (D.5)

Then, (a) Assumption 3.5 holds with &n =
p
kn=n; (b) &n�n = o(n�

1
2 ) holds if kn = o(n

1
2 ).

Proof of Lemma D.2. De�ne

�`;n(�) = n
�1

nX
i=1

g`(Zi; �)� E [g`(Z; �)] ; (D.6)

which is continuously di¤erentiable with respect to � a.e. Let �1; �2 2 � denote two di¤erent points
in �: By the mean value expansion,

�`;n(�1)� �`;n(�2) =

24n�1 nX
i=1

@g`(Zi;e�n;`)
@�0

�
@E
h
g`(Z;e�n;`)i
@�0

35 (�1 � �2) (D.7)

where e�n;` is some value between �1 and �2. We have max`�kn E[ sup�2� j@g`(Z;�)@�(j) j] � C for j =

1; :::; d� by assumption (iii) of Lemma D.1. Hence, by the dominated convergence theorem, we can

exchange "E" and "@" to obtain

@E [g`(Z; �)]
@�0

= E
�
@g`(Z; �)

@�0

�
for any � 2 �; (D.8)

which together with (D.7) implies that

�`;n(�1)� �`;n(�2) =
"
n�1

nX
i=1

g�;`(Zi;e�n;`)� E[g�;`(Zi;e�n;`)]
#
(�1 � �2): (D.9)

It follows that

k�n(�1)� �n(�2)k2 =
X
`�kn

k�`;n(�1)� �`;n(�2)k2 (D.10)

�

0@X
`�kn

n�1
nX
i=1

g�;`(Zi;e�n;`)� E[g�;`(Zi;e�n;`)]

2
1A k�1 � �2k2
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by the Cauchy-Schwarz inequality.

Applying the proof of Lemma D.1 with g`(Z; �) replaced by g�;`(Z; �), under assumptions (i),

(iii), (iv) of Lemma D.1 and assumption (iii) of Lemma D.2, we obtain

E

n�1
nX
i=1

g�;`(Zi;e�n;`)� E[g�;`(Zi;e�n;`)]

2

� E

24sup
�2�

n�1
nX
i=1

g�;`(Zi; �)� E [g�;`(Z; �)]

2
35 � C

n
(D.11)

for all n and `. It follows that

E

24X
`�kn

n�1
nX
i=1

g�;`(Zi;e�n;`)� E[g�;`(Zi;e�n;`)]

2
35 � Ckn

n
; (D.12)

which in turn implies

X
`�kn

n�1
nX
i=1

g�;`(Zi;e�n;`)� E[g�;`(Zi;e�n;`)]

2

= Op(kn=n) (D.13)

by the Markov inequality.

Combining (D.10) and (D.13), we obtain

sup
�1;�22f�2�:jj���ojj��ng

kvn(�1)� vn(�2)k
n�

1
2 + k�1 � �2k

� sup
�1;�22�

kvn(�1)� vn(�2)k
k�1 � �2k

= Op(
p
kn=n): (D.14)

This veri�es Assumption 3(i) with &n =
p
kn=n. Part (b) holds because �n&n = kn=n = o(n�

1
2 )

when kn = o(n
1
2 ).
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This supplemental appendix provides some auxiliary materials for "Select the Valid and Relevant

Moments: An Information-Based LASSO for GMM with Many Moments"(cited as CL (2012) in

this appendix). Section 1 presents and discusses two matrix algebra theorems that are used in

the proof of CL (2012) . Section 2 shows that the shrinkage estimator of �o is as e¢ cient as the

oracle estimator asymptotically. The pointwise and uniform convergence rates of the empirical

information measure are established in Section 3. Some additional simulation results are in Section

4.

The notations in this appendix are consistent with those in CL (2012). Throughout the appen-

dix, C denotes some generic �nite positive constant; k�k denotes the Euclidean norm; A0 denotes
the transpose of a matrix A; �max(A) and �min(A) denote the largest and smallest eigenvalues of

a matrix A; respectively; for any square matrix A, A � 0 means that A is a positive semi-de�nite
matrix; for any positive integers k1 and k2, Ik1 denotes the k1 � k1 identity matrix and 0k1�k2
denotes the k1 � k2 zero matrix; A � B means that A is de�ned as B; an = op(bn) means that for

any constants �1; �2 > 0, there is Pr (jan=bnj � �1) < �2 eventually; an = Op(bn) means that for any
� > 0, there is a �nite constant C� such that Pr (jan=bnj � C�) < � eventually; for any two sequences
an and bn, we use an . bn to denote that an � Cbn where C is some �xed �nite positive constant;
�!p�and �!d�denote convergence in probability and convergence in distribution, respectively;

and w.p.a.1 abbreviates with probability approaching 1.
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1 Two Useful Theorems

For any symmetric k � k real matrix A, we write its eigenvalues in decreasing order:

�1(A) � �2(A) � � � � � �k(A): (1.1)

By de�nition, �1(A) = �max(A) and �k(A) = �min(A). Let k�ks denote the operator norm:

kAks = sup
kxk�1

kAxk (1.2)

for any real matrix A. The following theorem is useful for theoretical results in CL (2012).

Theorem 1.1 (Weyl�s Eigenvalue Perturbation Theorem) Let A and B are k�k symmetric
real matrices. Then

max
1�j�k

���j(A)� �j(B)�� � kA�Bks :
Theorem 1.1 is a simpli�ed version of Corollary III.2.6 in Bhatia (1997), which allows A and B

to be Hermitian matrices. Because kAks � kAk for any �nite dimensional matrix A, this theorem
directly implies that

max
1�j�k

���j(A)� �j(B)�� � kA�Bk (1.3)

for any k � k symmetric real matrices A and B.

Theorem 1.2 (Aronszajn�s Inequality) Let C be an k � k symmetric real matrix partitioned
as

C =

24 A X

X 0 B

35 ;
where A is a k0 � k0 matrix. Let the eigenvalues of A, B; and C be �1(A) � � � � � �k0(A),

�1(B) � � � � � �k�k0(B); and �1(C) � � � � � �k(C); respectively. Then,

�i+j�1(C) + �k(C) � �i(A) + �j(B)

for all i; j with i+ j � 1 � k.

Theorem 1.2 is a simpli�ed version of Theorem III.2.9 in Bhatia (1997), which allows A to be a

Hermitian matrix. Let i = j = 1 and C be a positive de�nite matrix, then we can use Aronszajn�s

Inequality to show

�max(C) = �1(C) � �1(C) + �k(C) � �1(A) + �1(B) = �max(A) + �max(B); (1.4)
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which implies that the largest eigenvalue of C is bounded from above by the sum of the largest

eigenvalues of A and B. The inequality (1.4) is used in the linear IV example of CL (2012).

2 Variance of the P-GMM Estimator

In this section, we prove the claims in Remark 3.5 of CL (2012) and demonstrate the shrinkage es-

timator is as e¢ cient as the oracle estimator asymptotically. Using the Cauchy-Schwarz inequality,

we deduce that

���0n;d� h�n � ��0�Wn��
��1i

n;d�

���
=
���0n;d� ��0�Wn��

��1
�0�Wn(
n �W�1

n )Wn��
�
�0�Wn��

��1
n;d�

���
�
0n;d� ��0�Wn��

��1
�0�Wn

2 W�1
n � 
n

 (2.1)

where 0n;d� = (0d� ;0
0
dB
) and d� 2 R

d� . Using �max(�
0
���) � C; which is shown in the proof of

Theorem 3.3 of CL (2012), Assumptions 3.1(iii) and 3.6(iii) in CL (2012), we have

C�1 . �min
�
�0�Wn��

�
� �max

�
�0�Wn��

�
. C (2.2)

w.p.a.1. Hence, we deduce that

0n;d� ��0�Wn��
��1

�0�Wn

2
= 0n;d�

�
�0�Wn��

��1
�0�W

2
n��

�
�0�Wn��

��1
n;d�

. 0n;d�n;d� = 
0
d�
d� ; (2.3)

which together with (2.1) and
W�1

n � 
n
 = op(1) implies that���0n;d� h�n � ��0�Wn��

��1i
n;d�

��� = op(1): (2.4)

Moreover, using similar arguments, we deduce that

���0n;d� h��0�
�1n ����1 � ��0�Wn��
��1i

n;d�

���
=
���0n;d� ��0�
�1n ����1 �0� �Wn � 
�1n

�
��
�
�0�Wn��

��1
n;d�

���
�
0n;d� ��0�
�1n ����1 �0�0n;d� ��0�Wn��

��1
�0�

W�1
n � 
n

 = op(1): (2.5)
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Hence, when Wn is an asymptotically e¢ cient weight matrix, the variance of
p
n0d�(

b�n � �0) can
be approximated by 0n;d�

�
�0�


�1
n ��

��1
n;d� .

Recall that

�0� �

24 �@E[gS+A(Z;�o)]@�0

�0 �
@E[gB(Z;�o)]

@�0

�0
0dB�(k0�dA) �IdB

35 (2.6)

and


n � Var

2664n� 1
2

nX
i=1

0BB@
gS(Zi; �o)

gA(Zi; �o)

gB(Zi; �o)

1CCA
3775 =

24 
S+A;n 
AB;n


BA;n 
B;n

35 ; (2.7)

where 
S+A;n denotes the leading (k0 + dA) � (k0 + dA) submatrix of 
n, 
B;n denotes the last
dB � dB submatrix of 
n, 
AB;n and 
BA;n are de�ned accordingly. Let 
11S+A;n and 
22B;n denote
the leading (k0 + dA)� (k0 + dA) and last dB � dB submatrices of 
�1n respectively, that is


11S+A;n =
�

S+A;n � 
AB;n
�1B;n
BA;n

��1
and 
22B;n =

�

B;n � 
BA;n
�1S+A;n
AB;n

��1
: (2.8)

Then we can write


�1n =

24 
11S+A;n �
�1S+A;n
AB;n
22B;n
�
�1B;n
BA;n
11S+A;n 
22B;n

35 =
24 
11S+A;n 
12AB;n


21BA;n 
22B;n

35 : (2.9)

Hence, we have

�0�

�1
n �� =

24 M11
n M12

n

M21
n M22

n

35 (2.10)

where M22
n = 
22B;n,

M11
n =

�
@E [gS+A(Z; �o)]

@�0

�0

11S+A;n

�
@E [gS+A(Z; �o)]

@�0

�
+

�
@E [gB(Z; �o)]

@�0

�0

21BA;n

�
@E [gS+A(Z; �o)]

@�0

�
+

�
@E [gS+A(Z; �o)]

@�0

�0

12AB;n

�
@E [gB(Z; �o)]

@�0

�
+

�
@E [gB(Z; �o)]

@�0

�0

22B;n

�
@E [gB(Z; �o)]

@�0

�
;

M12
n = �

�
@E [gS+A(Z; �o)]

@�0

�0

12AB;n �

�
@E [gB(Z; �o)]

@�0

�0

22B;n =M

210
n : (2.11)

Let ���;n denote the leading d� � d� submatrix of
�
�0�


�1
n ��

��1. Using the inverse formula of
4



partitioned matrix, we have

���;n =
�
M11
n �M12

n (M
22
n )

�1M21
n

��1
; (2.12)

where

M12
n (M

22
n )

�1M21
n =

��
@E [gS+A(Z; �o)]

@�0

�0

12AB;n(


22
B;n)

�1 +

�
@E [gB(Z; �o)]

@�0

�0�
�
�

21BA;n

�
@E [gS+A(Z; �o)]

@�0

�
+
22B;n

�
@E [gB(Z; �o)]

@�0

��
=

�
@E [gS+A(Z; �o)]

@�0

�0

12AB;n(


22
B;n)

�1
21BA;n

�
@E [gS+A(Z; �o)]

@�0

�
+

�
@E [gS+A(Z; �o)]

@�0

�0

12AB;n

�
@E [gB(Z; �o)]

@�0

�
+

�
@E [gB(Z; �o)]

@�0

�0

21BA;n

�
@E [gS+A(Z; �o)]

@�0

�
+

�
@E [gB(Z; �o)]

@�0

�0

22B;n

�
@E [gB(Z; �o)]

@�0

�
: (2.13)

Hence,

M11
n �M12

n (M
22
n )

�1M21
n

=

�
@E [gS+A(Z; �o)]

@�0

�0 �

11S+A;n � 
12AB;n(
22B;n)�1
21BA;n

��@E [gS+A(Z; �o)]
@�0

�
: (2.14)

By de�nition,


11S+A;n � 
12AB;n(
22B;n)�1
21BA;n

= 
11S+A;n � 
�1S+A;n
AB;n

22
B;n(


22
B;n)

�1
�1B;n
BA;n

11
S+A;n

= 
11S+A;n � 
�1S+A;n
AB;n

�1
B;n
BA;n


11
S+A;n

= 
�1S+A;n

�

S+A;n � 
AB;n
�1B;n
BA;n

�

11S+A;n = 


�1
S+A;n; (2.15)

which together with (2.14) implies that

M11
n �M12

n (M
22
n )

�1M21
n =

�
@E [gS+A(Z; �o)]

@�0

�0

�1S+A;n

�
@E [gS+A(Z; �o)]

@�0

�
: (2.16)

In CL (2012), we de�ne that

@mS+A(�o)

@�0
=
@E [gS+A(Z; �o)]

@�0
: (2.17)
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Hence, using (2.12) and (2.16) we get

���;n =

��
@mS+A(�o)

@�0

�0

�1S+A;n

�
@mS+A(�o)

@�0

���1
: (2.18)

This proves the claim in Remark 3.5 of of CL (2012).

3 Empirical Information Measure

In this section, we study the stochastic properties of the empirical information measure under the

assumption that the data are i.i.d. Recall that

_�S;n � 1

n

nX
i=1

@gS(Zi; _�n)

@�0
, _
S;n �

1

n

nX
i=1

gS(Zi; _�n)gS(Zi; _�n)
0,

_�S+`;n � 1

n

nX
i=1

@gS+`(Zi; _�n)

@�0
, _
S+`;n �

1

n

nX
i=1

gS+`(Zi; _�n)gS+`(Zi; _�n)
0: (3.1)

The estimators of the variance matrices VS and VS+` are thus constructed as

_Vn;S � _�0S;n _

�1
S;n
_�S;n and _Vn;S+` � _�0S+`;n _


�1
S+`;n

_�S+`;n: (3.2)

The empirical information measure is de�ned as

_�n;` = �max( _Vn;S � _Vn;S+`): (3.3)

For any moment function g`(Z; �) and any � 2 �, we de�ne g�;`(Z; �) = @g`(Z;�)
@�0

. By de�nition,

g�;`(Z; �) is a 1�d� vector with the k-th element being @g`(Z;�)
@�(k) , where �(k) denotes the k-th element

of � for any k = 1; :::; d�. We use g��;`(Z; �) denote the d��d� matrix whose (k; j)-th element being
@2g`(Z;�)
@�(k)@�(j) , where �(k) and �(j) (k; j = 1; :::; d�) denote the k-th and j-th elements of � respectively.

Assumption 3.1 (i) The preliminary estimator _�n satis�es

p
n( _�n � �o) = Op(1);
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(ii) g`(Z; �) is twice di¤erentiable in � a.e. for any ` 2 D; (iii) for any ` 2 D

E

"
sup

f�2�:k���ok��g
kg�;`(Z; �)k4

#
� C; (3.4)

E

"
sup

f�2�:k���ok��g
kg��;`(Z; �)k2

#
� C; (3.5)

(iv) E
�
g4` (Z; �o)

�
� C for any ` 2 D; (v) 
S(�o) and 
S+`(�o) are �nite and positive de�nite

matrices for any ` 2 D.

Lemma 3.1 Under Assumption 3.1, we have
�� _�n;` � �o;`�� = Op(n� 1

2 ) for any ` 2 D.

Lemma 3.1 establishes the convergence rate of individual empirical information measure. This

result is su¢ cient for studying the properties of the penalized GMM estimator when the number

kn of moment conditions is �xed. However, when kn is divergent, such a "pointwise" result will not

be enough. We next establish a strong result which provides the convergence rate of the empirical

information measure uniformly over ` 2 D. The following conditions are needed.

Assumption 3.2 (i) min`2D �min (
S+`) � C�1 for all n; (ii)

max
`�kn

E

"
sup

f�2�:k���ok��g
kg�;`(Z; �)k4

#
� C; (3.6)

max
`�kn

E

"
sup

f�2�:k���ok��g
kg��;`(Z; �)k2

#
� C; (3.7)

(iii) max`�kn E
�
g4` (Z; �o)

�
� C.

Lemma 3.2 Under Assumptions 3.1 and 3.2, we have max`2D
�� _�n;` � �o;`�� = Op(pkn=n).

Proof of Lemma 3.1. It is clear that the matrices VS , VS+`, _Vn;S and _Vn;S+` are d� � d�
symmetric real matrices. For the ease of notation, let 
S � 
S(�o) and 
S+` � 
S+`(�o). Invoking
Weyl�s Eigenvalue Perturbation Theorem and the triangle inequality, we obtain

�� _�n;` � �o;`�� = ����max( _Vn;S � _Vn;S+`)� �max(Vn;S � Vn;S+`)
���

�
 _Vn;S � VS � ( _Vn;S+` � VS+`)

�
 _Vn;S � VS+  _Vn;S+` � VS+` (3.8)

7



which implies that

max
`2D

�� _�n;` � �o;`�� �  _Vn;S � VS+max
`2D

 _Vn;S+` � VS+` : (3.9)

The above inequality is useful to establish the convergence rate of _�n;`.

As d� is a �xed integer, for the ease of notation, we assume that d� = 1 in the rest of the

proof. When d� > 1, a complete proof can be conducted by applying the same argument element

by element. By de�nition, we can write

_Vn;S � VS =
�
_�S;n � �S

�0
_
�1S;n

_�S;n + �
0
S

�
_
�1S;n � 


�1
S

�
_�S;n + �

0
S


�1
S

�
_�S;n � �S

�
: (3.10)

By the triangle inequality and the Cauchy-Schwarz inequality, we have

 _Vn;S � VS �
 _�S;n � �S _
�1S;n _�S;n
+ k�Sk

 _
�1S;n � 
�1S  _�S;n
+ k�Sk


�1S  _�S;n � �S : (3.11)

By the mean value theorem,

_�`;n � �` =
1

n

nX
i=1

g�;`(Z; _�n)� E [g�;`(Z; �o)]

=
1

n

nX
i=1

g�;`(Z; �o)� E [g�;`(Z; �o)] +
1

n

nX
i=1

g��;`(Z;e�`;n)( _�n � �o); (3.12)

where e�`;n is some value between _�n and �o. Using (3.4) and the Markov inequality,
1

n

nX
i=1

g�;`(Z; �o)� E [g�;`(Z; �o)] = Op(n�
1
2 ) (3.13)

for any ` 2 S. By the consistency of _�n, we know that e�`;n 2 f� 2 � : k� � �ok � �g w.p.a.1. We
next show that

sup
f�2�:k���ok��g

 1n
nX
i=1

g��;`(Z; �)� EZ [g��;`(Z; �)]
 = Op(n� 1

2 ): (3.14)
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Using (3.5), the Markov inequality and the Maximum inequality (Section 4.3 of Pollard, 1989),

Pr

 ����� 1n
nX
i=1

g��;`(Z;e�`;n)� EZ hg��;`(Z;e�`;n)i
����� �Mn� 1

2

!

� Pr

 
sup

f�2�:k���ok��g

����� 1pn
nX
i=1

(g��;`(Z; �)� E [g��;`(Z; �)])
����� �M

!

.
E
h
supf�2�:k���ok��g jg��;`(Z; �)j

2
i

M2
. 1

M2
(3.15)

where M is any large positive constant, which proves (3.14). Hence using Assumptions 3.1(i),

3.1(iii), and (3.14), we have

1

n

nX
i=1

g��;`(Z;e�`;n)( _�n � �o) = EZ hg��;`(Z;e�`;n)i ( _�n � �o) + op(n� 1
2 ) = Op(n

� 1
2 ); (3.16)

where EZ [�] denotes the expectation taking with respect to Z, which together with (3.12) and (3.13)
implies that  _�`;n � �` = Op(n� 1

2 ) (3.17)

for any ` 2 S. This together with the fact that dS = k0 is a �xed integer yields _�S;n � �S2 =X
`2S

 _�`;n � �` = Op(n� 1
2 ): (3.18)

By the de�nition of _
S;n and 
S , we can write

_
S;n � 
S =
1

n

nX
i=1

gS(Zi; _�n)gS(Zi; _�n)
0 � E

�
gS(Z; �o)gS(Z; �o)

0� : (3.19)

By the mean value theorem,

1

n

nX
i=1

g`(Zi; _�n)gk(Zi; _�n)� E [g`(Z; �o)gk(Z; �o)]

=
1

n

nX
i=1

g`(Zi; �o)gk(Zi; �o)� E [g`(Z; �o)gk(Z; �o)]

+(_�n � �o)0
1

n

nX
i=1

g�;`(Zi;e�1;n)gk(Zi;e�1;n)
+(_�n � �o)0

1

n

nX
i=1

g�;k(Zi;e�1;n)g`(Zi;e�1;n) (3.20)
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for any `; k 2 S, where e�1;n is some value between _�n and �o. Using Assumption 3.1(iv), the
Hölder�s inequality and the Markov inequality,

1

n

nX
i=1

g`(Z; �o)gk(Z; �o)� E [g`(Z; �o)gk(Z; �o)] = Op(n�
1
2 ): (3.21)

By the consistency of _�n, we know that e�1;n 2 f� 2 � : k� � �ok � �g w.p.a.1. Using the Cauchy-
Schwarz inequality and the triangle inequality, we get 1n

nX
i=1

g�;`(Zi;e�1;n)gk(Zi;e�1;n)
 =

 1n
nX
i=1

g�;`(Zi;e�1;n)gk(Zi; �o)


+

 1n
nX
i=1

g�;`(Zi;e�1;n) hgk(Zi;e�1;n)� gk(Zi; �o)i


�

vuut 1

n

nX
i=1

g�;`(Zi;e�1;n)2
vuut 1

n

nX
i=1

g2k(Zi; �o)

+

vuut 1

n

nX
i=1

g�;`(Zi;e�1;n)2
vuut 1

n

nX
i=1

g�;k(Zi;e�2;n)2  _�n � �o (3.22)

where e�2;n is some value between e�1;n and �o. By Assumption 3.1(iv) and the Markov inequality,
we have

1

n

nX
i=1

g2` (Zi; �o) = Op(1) for all `: (3.23)

We next show that

sup
f�2�:k���ok��g

����� 1n
nX
i=1

kg�;`(Zi; �)k2 � EZ
h
kg�;`(Zi; �)k2

i����� = Op(n� 1
2 ). (3.24)

Using (3.4), the Markov inequality and the Maximum inequality (Section 4.3 of Pollard, 1989),

Pr

 
sup

f�2�:k���ok��g

����� 1n
nX
i=1

jg�;`(Zi; �)j2 � EZ
h
jg�;`(Zi; �)j2

i����� �Mn� 1
2

!

.
E
h
supf�2�:k���ok��g jg�;`(Z; �)j

4
i

M2
. 1

M2
(3.25)
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which implies that (3.24) holds. Using Assumption (3.4) and the result in (3.24), we have

1

n

nX
i=1

���g�;`(Zi;e�j;n)���2
=

1

n

nX
i=1

���g�;`(Zi;e�j;n)���2 � EZ ����g�;`(Zi;e�j;n)���2�+ EZ ����g�;`(Zi;e�j;n)���2�
= Op(1) for any ` and any j = 1; 2: (3.26)

Using the results in (3.22), (3.23), (3.26), and Assumption 3.1(i), we have

1

n

nX
i=1

g�;`(Zi;e�1;n)gk(Zi;e�1;n)( _�n � �o) = Op(n� 1
2 ): (3.27)

Similarly, we can show that

1

n

nX
i=1

g�;k(Zi;e�1;n)g`(Zi;e�1;n)( _�n � �o) = Op(n� 1
2 ): (3.28)

Combining the results in (3.19), (3.20), (3.21), (3.27), and (3.28), we have

 _
S;n � 
S = Op(n� 1
2 ): (3.29)

By the Jensen�s inequality and assumption (3.4),

k�Sk2 =
X
`2S

kE [g�;`(Z; �o)]k2 �
X
`2S

E
h
kg�;`(Z; �o)k2

i
< C: (3.30)

Now, using Assumption 3.1(iv), the results in (3.11), (3.18), (3.29), and (3.30), we deduce that

 _Vn;S � VS = Op(n� 1
2 ). (3.31)

Similarly, we can show that
 _Vn;S+` � VS+` = Op(n� 1

2 ) for any ` 2 D, which together with (3.31)
and the inequality in (3.9) implies that

�� _�n;` � �o;`�� = Op(n� 1
2 ) for any ` 2 D.

Proof of Lemma 3.2. To obtain the desired result, we use the inequality in (3.9). Note that we

have shown jj _Vn;S � VS jj = Op(n�
1
2 ) in the proof above. Let �n =

p
kn=n. It remains to show

max
`2D

 _Vn;S+` � VS+` = Op(�n): (3.32)
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To this end, we write the equality

_Vn;S+` � VS+` =
�
_�S+`;n � �S+`

�0
_
�1S+`;n

�
_�S+`;n � �S+`

�
+�0S+` _


�1
S+`;n

�
_�S+`;n � �S+`

�
+
�
_�S+`;n � �S+`

�0
_
�1S+`;n�S+`

��0S+` _
�1S+`;n
�
_
S+`;n � 
S+`

�

�1S+`�S+`: (3.33)

Below we show (i) max`2D jj _�S+`;n��S+`jj = Op(�n); (ii) max`2D jj _
S+`;n�
S+`jj = Op(�n); (iii)
min`2D �min( _
S+`;n) � C�1 w.p.a.1; and (iv) max`2D k�S+`k � C. They are su¢ cient to obtain

max`2D jj _Vn;S+` � VS+`jj = Op(�n) by the triangle inequality and the Cauchy-Schwarz inequality.
First, by the triangle inequality, we get

 _�S+`;n � �S+` � �S+`;n( _�n)� �S+`;n(�o)+ k�S+`;n(�o)� �S+`(�o)k : (3.34)

Recall that by de�nition, _�S+`;n = �S+`;n( _�n), where the subscript n indicates sample average, and

�S+` = �S+`(�o), which is the population version evaluated at the true value. Using the Bonferroni

inequality and the Markov inequality, we deduce that

Pr

�
max
`2D

k�S+`;n(�o)� �S+`(�o)k �M�n
�

�
X
`2D

Pr (k�S+`;n(�o)� �S+`(�o)k �M�n)

�
X
`2D

E
h
k�S+`;n(�o)� �S+`(�o)k2

i
M2�2n

(3.35)

where M is any positive constant. As kn = k0 + dD and �S+`;n(�o) and �S+`(�o) only have

(k0 + 1) columns, we obtain

X
`2D

E
h
k�S+`;n(�o)� �S+`(�o)k2

i
M2�2n

=
X
`2D

nE
h
k�S+`;n(�o)� �S+`(�o)k2

i
M2kn

�
max`2D E

h
n k�S+`;n(�o)� �S+`(�o)k2

i
M2

�
(k0 + 1)max`�kn E

h
kg�;`(Z; �o)k2

i
M2

(3.36)
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where the �rst inequality holds by dD � kn and the second inequality holds because the observa-
tions are i.i.d. and nE[ k�S+`;n(�o)� �S+`(�o)k2] is bounded by (k0 + 1)max`�kn E[ kg�;`(Z; �o)k

2].

Combining the results in (3.35), (3.36), and assumption (3.6) yields

Pr

�
max
`2D

k�S+`;n(�o)� �S+`(�o)k �M�n
�
. 1

M
: (3.37)

As M can be su¢ ciently large, we get

max
`2D

k�S+`;n(�o)� �S+`(�o)k = Op(�n): (3.38)

As d� is a �xed integer, for the ease of notation, we assume that d� = 1 in the rest of the

proof. When d� > 1, a complete proof can be conducted by applying the same argument element

by element. To show max`2D
�S+`;n( _�n)� �S+`;n(�o) = Op(�n), we note that by the mean value

theorem,
1

n

nX
i=1

g�;`(Zi; _�n)�
1

n

nX
i=1

g�;`(Zi; �o) =
1

n

nX
i=1

g��;`(Zi;e�n)( _�n � �o) (3.39)

for any `, where e�n is some value between _�n and �o. We can write
1

n

nX
i=1

g��;`(Zi;e�n)( _�n � �o)
=

"
1

n

nX
i=1

g��;`(Zi;e�n)� EZ hg��;`(Z;e�n)i
#
( _�n � �o)

+EZ
h
g��;`(Z;e�n)i ( _�n � �o): (3.40)

By the Cauchy-Schwarz inequality, the Jensen�s inequality, and Assumptions 3.1(i), and (3.7),

max
`�kn

EZ hg��;`(Z;e�n)i ( _�n � �o)
�
 _�n � �omax

`�kn
EZ
hg��;`(Z;e�n)i

�
 _�n � �omax

`�kn
E

"
sup

f�2�:k���ok��g
kg��;`(Z; �)k

#
= Op(n

� 1
2 ): (3.41)

We next show that

max
`�kn

"
1

n

nX
i=1

g��;`(Zi;e�n)� EZ hg��;`(Z;e�n)i
#
= Op(�n): (3.42)
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Using (3.7), the Bonferroni inequality, the Maximum inequality (Section 4.3 of Pollard, 1989) and

the Markov inequality,

Pr

 
max
`�kn

����� 1n
nX
i=1

g��;`(Zi;e�n)� EZ hg��;`(Z;e�n)i
����� �M�n

!

�
X
`�kn

Pr

 
sup

f�2�:k���ok��g

����� 1n
nX
i=1

g��;`(Zi; �)� E [g��;`(Z; �)]
����� �M�n

!

�
X
`�kn

E
h
supf�2�:k���ok��g jg��;`(Z; �)j

2
i

M2kn
. 1

M2
(3.43)

which shows (3.42). Using Assumptions 3.1(i), the results in (3.40), (3.41), and (3.42), we get

max
`�kn

 1n
nX
i=1

g��;`(Zi;e�n)( _�n � �o)
 = Op(�n): (3.44)

Combining the results in (3.39) and (3.44) yields

max
`2D

�S+`;n( _�n)� �S+`;n(�o)
� (k0 + 1)max

`�kn

 1n
nX
i=1

g��;`(Zi;e�n)( _�n � �o)
 = Op(�n); (3.45)

which together with (3.38) further implies that

max
`2D

 _�S+`;n � �S+` = Op(�n): (3.46)

Second, by the triangle inequality, we get

 _
S+`;n � 
S+` � 
S+`;n( _�n)� 
S+`;n(�o)+ k
S+`;n(�o)� 
S+`(�o)k : (3.47)

By Assumption 3.2(iii) and similar arguments used in showing (3.38), we have

max
`2D

k
S+`;n(�o)� 
S+`(�o)k = Op(�n): (3.48)

14



Next we show max`2D

S+`;n( _�n)� 
S+`;n(�o) = Op(�n). By the mean value theorem, for any

`, j � kn, there is

1

n

nX
i=1

g`(Zi; _�n)gj(Zi; _�n)�
1

n

nX
i=1

g`(Zi; �o)gj(Zi; �o)

=
1

n

nX
i=1

g�;`(Zi;e�n)gj(Zi;e�n)( _�n � �o)
+
1

n

nX
i=1

g�;j(Zi;e�n)g`(Zi;e�n)( _�n � �o): (3.49)

Using the mean value theorem and the Cauchy-Schwarz inequality, we have 1n
nX
i=1

g�;`(Zi;e�n)gj(Zi;e�n)� 1

n

nX
i=1

g�;`(Zi;e�n)gj(Zi; �o)


=

 1n
nX
i=1

g�;j(Zi;e�n)g�;`(Zi;e�1;n)
e�n � �o

�

vuut 1

n

nX
i=1

g�;j(Zi;e�n)2
vuut 1

n

nX
i=1

g�;`(Zi;e�1;n)2 e�n � �o : (3.50)

Using similar arguments in showing (3.42), but replacing assumption (3.7) with assumption (3.6),

we have

max
j�kn

"
1

n

nX
i=1

g�;j(Zi;e�n)2 � EZ �g�;j(Zi;e�n)2�
#
= Op(�n) (3.51)

which together with Assumptions 3.1(i) and (3.6) further implies that

max
j�kn

1

n

nX
i=1

g�;j(Zi;e�n)2 e�n � �o
= max

j�kn

����� 1n
nX
i=1

g�;j(Zi;e�n)2 � EZ �g�;j(Zi;e�n)2�
����� e�n � �o

+max
j�kn

EZ
�g�;j(Zi;e�n)2� e�n � �o

= Op(�n): (3.52)

By the same arguments, we have

max
`�kn

1

n

nX
i=1

g�;`(Zi;e�1;n)2 e�n � �o = Op(�n): (3.53)
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Combining the results in (3.50), (3.52), and (3.53), we have

max
`;j�kn

 1n
nX
i=1

g�;`(Zi;e�n)gj(Zi;e�n)� 1

n

nX
i=1

g�;`(Zi;e�n)gj(Zi; �o)
 = Op(�n): (3.54)

By the Cauchy-Schwarz inequality,

 1n
nX
i=1

g�;`(Zi;e�n)gj(Zi; �o)
 �

vuut 1

n

nX
i=1

g�;`(Zi;e�n)2
vuut 1

n

nX
i=1

g2j (Zi; �o): (3.55)

By Assumption 3.2(iii), the Bonferroni inequality and the Markov inequality,

max
j�kn

1

n

nX
i=1

g2j (Zi; �o) = Op(1): (3.56)

Using the result in (3.51) and assumption (3.6), we have

max
`�kn

1

n

nX
i=1

g�;`(Zi;e�n)2 � max
`�kn

"
1

n

nX
i=1

g�;`(Zi;e�n)2 � EZ �g�;`(Zi;e�n)2�
#

+max
`�kn

EZ
�g�;`(Zi;e�n)2�

= Op(1) (3.57)

which together with (3.55) and (3.56) implies that

max
`;j�kn

 1n
nX
i=1

g�;`(Zi;e�n)gj(Zi; �o)
 = Op(1): (3.58)

Under Assumption 3.1(i) and (3.58),

max
`;j�kn

 1n
nX
i=1

g�;`(Zi;e�n)gj(Zi; �o)
 _�n � �o = Op(�n): (3.59)

By the same arguments,

max
`;j�kn

 1n
nX
i=1

g�;j(Zi;e�n)g`(Zi; �o)
 _�n � �o = Op(�n): (3.60)
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Combining the results in (3.49), (3.59) and (3.60), we have

max
`;j�kn

����� 1n
nX
i=1

g`(Zi; _�n)gj(Zi; _�n)�
1

n

nX
i=1

g`(Zi; �o)gj(Zi; �o)

����� = Op(�n) (3.61)

which together with the fact that 
S+`;n(�) only has (k0 + 1)2 many components implies that

max
`2D


S+`;n( _�n)� 
S+`;n(�o) = Op(�n): (3.62)

This combined with (3.47) and (3.48) further yields

max
`2D

 _
S+`;n � 
S+` = Op(�n): (3.63)

Using the Weyl�s eigenvalue perturbation theorem, we have

����min � _
S+`;n�� �min (
S+`)��� �  _
S+`;n � 
S+` � max
`2D

 _
S+`;n � 
S+` (3.64)

which implies that

�min

�
_
S+`;n

�
� �min (
S+`)�max

`2D

 _
S+`;n � 
S+` = �min (
S+`)�Op(�n): (3.65)

Combining the above inequality with Assumption 3.2(i), we have

min
`2D

�min

�
_
S+`;n

�
� min

`2D
�min (
S+`)�Op(�n) �

1

2C
w.p.a.1. (3.66)

Under (3.6) and the fact that k0 + 1 is a �xed integer, we deduce that

max
`2D

k�S+`k2 = max
`2D

X
j2S[f`g

kE [g�;j(Z; �o)]k2

� (k0 + 1)max
j�kn

kE [g�;j(Z; �o)]k2 � C: (3.67)

This completes the proof.

4 Some Extra Simulation Results
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