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Abstract

This paper considers forecast combination with factor-augmented regression. In this frame-

work, a large number of forecasting models are available, varying by the choice of factors and the

number of lags. We investigate forecast combination across models using weights that minimize

the Mallows and the leave-h-out cross validation criteria. The unobserved factor regressors are

estimated by principle components of a large panel with N predictors over T periods. With

these generated regressors, we show that the Mallows and leave-h-out cross validation criteria are

asymptotically unbiased estimators of the one-step-ahead and multi-step-ahead mean squared

forecast errors, respectively, provided that N,T → ∞. (However, the paper does not establish

any optimality properties for the methods.) In contrast to well-known results in the literature,

this result suggests that the generated-regressor issue can be ignored for forecast combination,

without restrictions on the relation between N and T.

Simulations show that the Mallows model averaging and leave-h-out cross-validation aver-

aging methods yield lower mean squared forecast errors than alternative model selection and

averaging methods such as AIC, BIC, cross validation, and Bayesian model averaging. We apply

the proposed methods to the U.S. macroeconomic data set in Stock and Watson (2012) and find

that they compare favorably to many popular shrinkage-type forecasting methods.
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1 Introduction

Factor-augmented regression has received much attention in high-dimensional problems where a

large number of predictors are available over a long period. Assuming some latent factors generate

the comovement of all predictors, one can forecast a particular series by the factors rather than

by the original predictors, with the benefit of significant dimension reduction (Stock and Watson,

2002). In factor-augmented regression, the factors are determined and ordered by their importance

in driving the covariability of many predictors, which may not be consistent with their forecast

power for the particular series of interest, an issue discussed in Bai and Ng (2008, 2009). In

consequence, model specification is necessary to determine which factors should be used in the

forecast regression, in addition to specifying the number of lags of the dependent variable and the

number of lags of the factors included. These decisions vary with the particular series of interest

and the forecast horizon.

This paper proposes forecast combination based on frequentist model averaging criteria. The

forecast combination is a weighted average of the predictions from a set of candidate models that

vary by the choice of factors and the number of lags. The model averaging criteria are estimates of

the mean squared forecast errors (MSFE). Hence, the weights that minimize these model averaging

criteria are expected to minimize the MSFE. Two different types of model averaging methods

are considered: the Mallows model averaging (MMA; Hansen, 2007) and the leave-h-out cross-

validation averaging (CVAh; Hansen, 2010). For one-step-ahead forecasting, the CVAh method is

equivalent to the jackknife model averaging (JMA) from Hansen and Racine (2012). The MMA and

CVAh methods were designed for standard regression models with observed regressors. However,

dynamic factor models involve unobserved factors and their estimation creates generated regressors.

The effect of generated regressors on model selection and combination has not previously been

investigated. This paper makes this extension and provides a theoretical justification for frequentist

model averaging methods in the presence of estimated factors.

We show that even in the presence of estimated factors, the Mallows and leave-h-out cross-

validation criteria are asymptotically unbiased estimators of the one-step-ahead and multi-step-

ahead MSFE, respectively, provided that N,T → ∞. In consequence, these frequentist model

averaging criteria can be applied to factor-augmented forecast combination without modification.

Thus for model selection and combination, the generated-regressor issue can be safely ignored. This

is in contrast to inference on the coefficients, where Pagan (1984), Bai and Ng (2009), Ludvigson

and Ng (2011), and Gonçalves and Perron (2013) have shown that the generated regressors affect

the sampling distribution. It is worth emphasizing that our result is not based on asymptotic rates

of convergence (such as assuming T 1/2/N → 0 as in Bai and Ng (2006)); instead it holds because the
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focus is on forecasting rather than parameter estimation. Indeed, in the context of a non-dynamic

factor model (one without lagged dependent variables and no serial correlation) we show that the

Mallows criterion is an unbiased estimate of the MSFE in finite samples, and retains the classic

optimality developed in Li (1987), Andrews (1991), and Hansen (2007). In dynamic models our

argument is asymptotic, and we do not establish any form of optimality, but our results do not rely

on differing rates of convergence.

Our simulations demonstrate the superior finite-sample performance of the MMA and CVAh

forecasts in the sense of low MSFE. Our comparisons are quite thorough, comparing our proce-

dures with AIC selection, BIC selection, Mallows selection, cross-validation selection, approximate

Bayesian model averaging, equal weights, and the three-pass regression filter of Kelly and Pruitt

(2012). Our methods dominate the other procedures throughout the parameter space considered.

These findings are consistent with the optimality of MMA and JMA in the absence of tempo-

ral dependence and generated regressors (Hansen, 2007; Hansen and Racine, 2012). In addition,

the advantage of CVAh is found most prominent in long-horizon forecasts with serially correlated

forecast errors.

We apply the proposed methods to the U.S. macroeconomic data set in Stock and Watson

(2012) and find that they compare favorably to many popular shrinkage-type forecasting methods.

The frequentist model averaging approach adopted here extends the large literature on forecast

combination, see Granger (1989), Clemen (1989), Diebold and Lopez (1996), Henry and Clements

(2002), Timmermann (2006), and Stock and Watson (2006), for reviews. Stock and Watson (1999,

2004, 2012) provide detailed empirical evidence demonstrating the gains of forecast combination.

The simplest forecast combination is to use equal weights. Compared to simple model averaging,

MMA and CVAh are less sensitive to the choice of candidate models. Alternative frequentist forecast

combination methods are proposed by Bates and Granger (1969), Granger and Ramanathan (1984),

Timmermann (2006), Buckland, Burnham, and Augustin (2007), Burnham and Anderson (2002),

Hjort and Claeskens (2003), Elliot, Gargano, and Timmermann (2013), among others. Hansen

(2008) shows that MMA has superior MSFE in one-step-ahead forecasts when compared to many

other methods.

Another popular model averaging approach is the Bayesian model averaging (BMA; Min and

Zellner, 1993). The BMA has been widely used in econometric applications, including Sala-i-

Martin, Doppelhofer, and Miller (2004), Brock and Durlauf (2001), Brock, Durlauf, and West

(2003), Avramov (2002), Fernandez, Lay, and Steel (2001a, b), Garratt, Lee, Pesaran, and Shin

(2003), and Wright (2008, 2009). Geweke and Amisano (2011) propose optimal density combination

for forecast models. Compared to BMA, the frequentist model averaging approach here does not
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reply on priors and allows for misspecification through the balance of misspecification errors against

overparameterization. Furthermore, our frequentist model averaging approach explicitly deals with

generated-regressors, while BMA has no known adjustment.

As an alternative to the model averaging approach, forecasts can be based on one model picked

by model selection. Numerous model selection criteria have been proposed, including the Akaike

information criterion (AIC; Akaike, 1973), Mallows’ Cp (Mallows, 1973), Bayesian information

criterion (BIC; Schwarz 1978), and cross-validation (CV; Stone, 1974). Bai and Ng (2009) argue

that these model selection criteria are unsatisfactory for factor-augmented regression because they

rely on the specific ordering of the factors and the lags, where the natural order may not work

well for the forecast of a particular series. This issue is alleviated in forecast combination by the

flexibility of choosing candidate models. In addition, the above model selection procedures have not

been investigated in the presence of generated regressors; ours is the first to make this extension.

This paper complements the growing literature on forecasting with many regressors. In addition

to those discussed above, many papers consider forecast in a data rich environment. Forni, Hallin,

Lippi, and Reichlin (2002, 2005) consider the generalized dynamic factor model and frequency

domain estimation. Bernanke, Boivin, and Eliasz (2005) propose forecast with factor-augmented

vector autoregressive (FAVAR) model. Bai and Ng (2008) form target predictors associated with

the object of interest. Bai and Ng (2009) introduce the boosting approach. A factor-augmented

VARMA model is suggested by Dufour and Stevanovic (2010). Pesaran, Pick and Timmermann

(2011) also investigate multi-step forecasting with correlated errors and factor-augmentation, but

in a multivariate framework. Stock and Watson (2012) describe a general shrinkage representation

that covers special cases like pretest, BMA, empirical Bayes, and bagging (Inoue and Kilian, 2008).

Kelly and Pruitt (2012) propose a three-pass-regression filter to handle many predictors. Tu and

Lee (2012) consider forecast with supervised factor models. Dobrev and Schaumburg (2013) propose

using regularized reduced rank regression models for multivariate forecasting with many regressors.

A comprehensive comparison among many competing methods is available in Kim and Swanson

(2010). The dynamic factor model is reviewed in Stock and Watson (2011). Ng (2011) provides an

excellent review on variable selection and contains additional references.

The rest of the paper is organized as follows. Section 2 introduces the dynamic factor model

and describes the estimators and combination forecasts. Section 3 provides a detailed description

of forecast selection and combination procedures based on the Mallows and leave-h-out cross-

validation criteria. Section 4 provides theoretical justification by showing the Mallows and leave-

h-out cross-validation criteria are asymptotically unbiased estimators of the MSFE. Monte Carlo

simulations and an empirical application to U.S. macroeconomic data are presented in Sections 5
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and 6. Summary and discussions are provided in Section 7.

Matlab and Gauss code for the simulation and empirical work reported in the paper is posted

at www.ssc.wisc.edu/~bhansen.

2 Model and Estimation

Suppose we have observations (yt,Xit) for t = 1, ..., T and i = 1, ..., N, and the goal is to forecast

yT+h using the factor-augmented regression model

yt+h = α0 + α(L)yt + β(L)0Ft + εt+h (2.1)

where h ≥ 1 is the forecast horizon and Ft ∈ Rr are unobserved common factors satisfying

Xit = λ0iFt + eit. (2.2)

The vectors λi ∈ Rr are called the factor loadings, eit is called an idiosyncratic error, and α(L) and

β(L) are lag polynomials of order p and q, respectively, for some 0 ≤ p ≤ pmax and 0 ≤ q ≤ qmax.We

assume that a sufficient number of initial observations are available in history so that the variables

in (2.1) are available for T time series observations.

In matrix notation, (2.2) can be written as

X = FΛ0 + e (2.3)

where X is T × N , F = (F1, ..., FT )
0 is T × r, Λ = (λ1, ..., λN)

0 is N × r, and e is a T × N error

matrix. For our theory we assume that the number of factors r in (2.2) is known. In practice

(including our simulations and empirical work) r can be consistently selected by the information

criteria in Bai and Ng (2002).

Our contribution is to treat the structures of α(L) and β(L) in (2.1) as unknown, and to

introduce methods to select the factors and lag structures for forecasting. Consider approximating

models for (2.1) which include up to pmax lags of yt and qmax lags of Ft. Thus the largest possible

approximating model for (2.1) includes the regressors

zt = (1, yt, ..., yt−pmax , F
0
t , ..., F

0
t−qmax)

0. (2.4)

5



Given this regressor set, write (2.1) as

yt+h = z0tb+ εt+h (2.5)

where b includes all coefficients from (2.1). Now suppose that the forecaster is considering M

approximating models indexed by m = 1, ...,M, where each approximating model m specifies a

subset zt(m) of the regressors zt. The forecaster’s m-th approximating model is then

yt+h = zt(m)
0b(m) + εt+h(m), (2.6)

or in matrix notation

y = Z(m)b(m) + ε(m). (2.7)

We do not place any restrictions on the approximating models; in particular, the models may

be nested or non-nested, and the models may include all r factors, just a subset, or even zero

factors. However, the set of models should be selected judiciously so that the total number of

models M is practically and computationally feasible. A simple choice (which we use in our

simulations) is to take sequentially nested subsets of zt. Another simple feasible choice is to set

zt(m) = (1, yt, yt−1, ..., yt−m, Fm
t , ..., Fm

t−m), where Fm
t denote the first m factors in Ft. Alterna-

tively, a relatively simple choice is to set zt(m) = (1, yt, yt−1, ..., yt−p(m), F
m
t , ..., Fm

t−q(m)) where

we separately vary p(m) among (0, 1, 2, ..., P ) and q(m) among (0, 1, 2, ..., Q) for some constants

P,Q > 0. The choice of lag structures is not critical to our treatment.

For estimation we replace the unobservable factors F by their principle component estimateeF = ( eF1, ..., eFT )0 ∈ RT×r, which is the matrix of r eigenvectors (multiplied by
√
T ) associated

with the r largest eigenvalues of the matrix XX 0/(TN) in decreasing order. Alternative methods

are available to estimate F, such as the GLS-type estimators considered by Boivin and Ng (2006),

Forni, Hallin, Lippi, and Reichlin (2005), Stock and Watson (2005), Breitung and Tenhofen (2011),

Choi (2012), and Doz, Giannone, and Reichlin (2012). Let ezt(m) denote zt(m) with the factors Ft
replaced with their estimates eFt, and set eZ(m) = (ez1(m), ..., ezT−h(m))0. The least squares estimate
of b(m) is then bb(m) = ( eZ(m)0 eZ(m))−1 eZ(m)0y with residual bεt+h(m) = yt+h − ezt(m)0bb(m). The
least squares estimate bb(m) is often called a “two-step” estimator as the regressor ezt(m) contains
the estimate eFt also known as a “generated regressor”.

The least squares forecast of yT+h by the m-th approximating model is

byT+h|T (m) = ezT (m)0bb(m). (2.8)
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Forecast combinations can be constructed by taking weighted averages of the forecasts byT+h|T (m).
These take the form

byT+h|T (w) = MX
m=1

w(m)byT+h|T (m), (2.9)

where w(m), m = 1, ...,M , are forecast weights. Let w = (w(1), ..., w(M))0 denote the weight

vector. We will require that the weights are non-negative and sum to one, e.g., 0 ≤ w(m) ≤ 1
and

PM
m=1w(m) = 1, or equivalently that w ∈ HM , the unit simplex in RM . Forecast combination

generalizes forecasting based on a single model as the latter obtains by setting w(m) = 1 for a

single model m. The forecast combination residual is bεt+h(w) =PM
m=1w(m)bεt+h(m).

3 Forecast Selection and Combination

The problem of forecast selection is choosing the forecast byT+h|T (m) from the set m = 1, ...,M.

The problem of forecast combination is selecting the weight vector w from HM . In this section we

describe the Mallows and leave-h-out cross-validation criteria for forecast selection and combination.

Factor models are distinct from conventional forecasting models in that they involve generated

regressors (the estimated factors). As shown by Pagan (1984), in general the presence of generated

regressors affects the asymptotic distribution of two-step parameter estimates such as bb(m). The
details for dynamic factor models have been worked out by Bai and Ng (2006, 2009). Bai and

Ng (2006) show that the generated regressor effect is asymptotically negligible if T 1/2/N → 0,

that is, if the cross-sectional dimension is sufficiently large so that the first-step estimation error

is of a smaller stochastic order than the second-step estimation error. Bai and Ng (2009) refine

this analysis, showing that the first stage estimation increases the asymptotic variance by a factor

related to both T and N . Consequently, they propose to adjust the boosting stopping rule for mean

squared error (MSE) minimization. The lesson from this literature is that we should not neglect

the effect of generated regressors when considering model selection.

The Mallows (1973) criterion is a well-known unbiased estimate of the expected squared fit

in the context of homoskedastic regression with independent observations. The criterion applies

to any estimator whose fitted values are a linear function of the dependent variable y. In the

context of model selection with estimated factors, the fitted regression vector is eZ(m)bb(m) =eZ(m)( eZ(m)0 eZ(m))−1 eZ(m)0y and in the context of forecast combination the fitted regression vector
is
PM

m=1w(m)
eZ(m)( eZ(m)0 eZ(m))−1 eZ(m)0y. In both cases the fitted values are a linear function of

y if eZ(m) is not a function of y, which occurs in any non-dynamic factor model (that is, model
(2.1) without lagged dependent variables). This is because the generated regressors eZ(m) are a
function only of X. (Recall, eF are the eigenvectors of XX 0/(TN) associated with the r largest
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eigenvalues.) Consequently, the Mallows criterion is directly applicable without modification to

non-dynamic homoskedastic factor models, and Mallows selection and averaging retains the opti-

mality properties described in Li (1987), Andrews (1991), and Hansen (2007). This is a simple

yet exciting insight. It is also quite surprising given the failure of conventional inference in the

presence of generated regressors. Our intuition is that while generated regressors inflate the MSE

of the parameter estimates, they symmetrically inflate the Mallows criterion, and thus the criterion

remains informative.

Unfortunately this finite-sample argument does not apply directly to the dynamic model (2.1)

with lagged dependent variables. Therefore in the next section we use asymptotic arguments to

establish the validity of the Mallows criterion for the dynamic factor model. It follows that the

unadjusted Mallows criterion is appropriate for forecast selection and combination for dynamic

factor models.

We now describe the Mallows criterion for selection and combination. Let k(m) = dim(zt(m))

denote the number of regressors in the m-th model. The Mallows criterion for forecast selection is

CT (m) =
1

T

TX
t=1

bεt(m)2 + 2bσ2T
T

k(m), (3.1)

where bσ2T is a preliminary estimate of σ2 = Eε2t . We suggest bσ2T = (T − k(M))−1
PT

t=1 bεt(M)2
using a large approximate model M so that bσ2T is approximately unbiased for σ2. The Mallows
selected model is bm = argmin1≤m≤M CT (m) and the selected forecast is byT+h|T (bm). Numerically,
this is accomplished by estimating each model m, calculating CT (m) for each model, and finding

the model bm with the smallest value of the criterion.

For forecast combination, the Mallows criterion for weight selection is

CT (w) =
1

T

TX
t=1

Ã
MX
m=1

w(m)bεt(m)!2 + 2bσ2T
T

MX
m=1

w(m)k(m). (3.2)

The Mallows selected weight vector is obtained by finding the weight vector w which minimizes

CT (w). We can write this as bw = argmin
w∈HM

CT (w) (3.3)

and the selected forecast is byT+h|T ( bw). Following Hansen (2008) we call this the MMA forecast.

Numerically, the solution (3.3) minimizes the quadratic function CT (w) subject to a set of equality

and inequality constraints, and is easiest accomplished using a quadratic programming algorithm,

which are designed for this situation. Quadratic programming routines are available in standard
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languages including Gauss, Matlab, and R.

The Mallows criterion is simple and convenient, but it is restrictive in that it requires the error

εt+h to be conditionally homoskedastic and serially uncorrelated. The homoskedasticity restriction

can be avoided by instead using leave-one-out cross-validation as in Hansen and Racine (2012),

which is a generally valid selection criterion under heteroskedasticity. The leave-one-out cross-

validation criterion, however, still requires the error to be serially uncorrelated, yet when h > 1 the

error εt+h is generally a moving average process and thus is serially correlated.

To incorporate serial correlation, Hansen (2010) has recommended using the leave-h-out cross-

validation criterion which is the sum of squared leave-h-out prediction residuals.

To construct this criterion, define the leave-h-out prediction residual eεt+h,h(m) = yt+h −ezt(m)0ebt,h(m) where ebt,h(m) is the least squares coefficient from a regression of yt+h on ezt(m) with
the observations {yj+h, ezj(m) : j = t− h+ 1, ..., t+ h− 1} omitted. This leave-h-out residual uses
the full-sample estimated factors eFt. When h = 1 the prediction residual has the simple formulaeεt+h,h(m) = bεt+h(m)(1− ezt(m)0( eZ(m)0 eZ(m))−1ezt(m))−1. For h > 1, Hansen (2010) has shown that

it can be computed via the formula

eεt+h,h(m) = bεt+h(m) + ez0t(m)
⎛⎝ X
|j−t|≥h

ezj(m)ez0j(m)
⎞⎠−1⎛⎝ X

|j−t|<h
ezj(m)bεj+h(m)

⎞⎠ . (3.4)

The cross-validation criterion for forecast selection is

CVh,T (m) =
1

T

TX
t=1

eεt+h,h(m)2. (3.5)

The cross-validation selected model is bm = argmin1≤m≤M CVh,T (m) and the selected forecast isbyT+h|T (bm).
For forecast combination, the leave-h-out prediction residual is eεt+h,h(w) =PM

m=1w(m)eεt+h,h(m)
and the cross-validation criterion is

CVh,T (w) =
1

T

TX
t=1

eεt+h,h(w)2 = 1

T

TX
t=1

Ã
MX
m=1

w(m)eεt+h,h(m)!2 . (3.6)

The cross-validation selected weight vector minimizes CVh,T (w), that is,

bw = argmin
w∈HM

CVh,T (w). (3.7)

Similar to the Mallows combination, (3.7) is conveniently solved via quadratic programming, as the
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criterion (3.6) is quadratic in w. The cross-validation selected combination forecast is byT+h|T ( bw),
and we call this the leave-h-out cross-validation averaging (CVAh) forecast.

4 Asymptotic Theory

In this section, we provide a limited theoretical justification for the Mallows criterion and the

leave-h-out cross-validation criterion with estimated factors. In the first subsection we describe the

technical assumptions, and in the second describe the connection between in-sample fit, MSE, and

MSFE. In the third subsection we show that the Mallows criterion is an asymptotically unbiased

estimator of the MSFE in the case of one-step-ahead forecasts and conditional homoskedasticity.

In the fourth we examine the leave-h-out cross-validation criterion, and show a similar result for

multi-step forecasts allowing for conditional heteroskedasticity.

4.1 Assumptions

Let Ft = σ(yt, Ft,X1t,X2t, ..., Ft−1, yt−1,X1,t−1,X2,t−1, ...) denote the information set at time

t. Let C denote a generic constant. For a matrix A, A > 0 denotes A is positive definite.

Assumption R.

(i) E(εt+h|Ft) = 0.

(ii) (z0t, εt+h, e1t, ..., eNt) is strictly stationary and ergodic.

(iii) E||zt||4 ≤ C, Eε4t ≤ C, and E(ztz0t) > 0.

(iv) T−1/2
PT−h

t=1−h ztεt+h →d N(0,Ω), where Ω =
P
|j|<h E(ztz0t−jεt+hεt+h−j).

Assumption R(i) implies that εt+h is conditionally unpredictable at time t, but when h > 1 it

does not imply that εt+h is serially uncorrelated. This is consistent with the fact that the h-step-

ahead forecast error εt+h typically is a moving average process of order h − 1. Assumption R(ii)
assumes the data is strictly stationary and ergodic, which simplifies the asymptotic theory, and

links the in-sample fit of the averaging estimator to its out-of-sample performance. (See Section

4.2 below for details.) Assumptions R(iii)-R(iv) are standard moment bounds and the central limit

theorem, the latter satisfied under standard weak dependence conditions. The specific form of Ω

in Assumption R(iv) follows from stationarity and Assumption R(i).

Assumption F.

(i) The factors satisfy E kFtk4 ≤ C and T−1
PT

t=1 FtF
0
t →p ΣF > 0.

(ii) The loading λi is either deterministic such that kλik ≤ C or it is stochastic such that E kλik4 ≤
C. In either case, N−1Λ0Λ→p Σλ > 0.
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(iii) Eeit = 0, E|eit|8 ≤ C.

(iv) E(eitejs) = σij,ts, |σij,ts| ≤ σij for all (t, s), and |σij,ts| ≤ τts for all (i, j) such thatN−1PN
i,j=1 σij

≤ C, T−1
PT

t,s=1 τts ≤ C, and (NT )−1
P

i,j,t,s=1 |σij,ts| ≤ C.

(v) For every (t, s), E|N−1/2PN
i=1[eiseit − E(eiseit)]|4 ≤ C.

(vi) The variables {λi}, {Ft}, {eit} are three mutually independent groups. Dependence within each
group is allowed.

(vii) For each t, E||(NT )−1/2
PT−h

s=1−h
PN

i=1(Fs + εs+h)(eiteis − E(eiteis))||2 ≤ C.

(viii) For all (i, t), E||(NT )−1/2
PT−h

t=1−h
PN

i=1 λieitεt+h||2 ≤M, where E(λieitεt+h) = 0.

Assumption F is similar to but slightly weaker than Assumptions A-D in Bai and Ng (2006) and

Assumptions 1-4 of Gonçalves and Perron (2013).1 Assumptions F(i) and F(ii) ensure that there

are r non-trivial strong factors. This does not accommodate weak factors as in Onatski (2012).

Assumptions F(iii)-F(v) allow for heteroskedasticity and weak dependence in both the time series

and cross-sectional dimensions, an approximate factor structure as in Chamberlain and Rothschild

(1983) and Connor and Korajczyk (1986, 1993). Assumption F(vi) can be replaced by alternative

conditions, such as Assumptions D and F2-F4 of Bai (2003) and Assumptions 3(a), 3(c), and 3(d)

of Gonçalves and Perron (2013). Assumptions F(vii) and F(viii) impose weak dependence between

the idiosyncratic errors and the regression error as well as bounded moments for the sum of some

mean-zero random variables. They are analogous to Assumptions 3(b), 4(a), and 4(b) of Gonçalves

and Perron (2013), who also provide sufficient conditions under mutual independence of {λi}, {eis}
and {εt+h}. A condition similar to Assumption (vii) also is employed by Assumption F1 of Bai

(2003).

A limitation of our theory is that it requires that the number of factors r is known, and that

any approximating models uses no more than r factors. Otherwise we cannot appeal to existing

results on principle component estimation of factors. Approximating models may contain less than

r factors, but cannot contain more than the true number of factors. This restriction is consistent

with the previous literature on factor-augmented regression.

4.2 MSE and MSFE

We first show that the MSFE is close to the expected in-sample squared error. To see this, write

the conditional mean in (2.1) as μt so that the equation is yt+h = μt+ εt+h or as a T × 1 vector as
y = μ+ ε. Similarly for any forecast combination w, write bμt(w) =PM

m=1w(m)ezt(m)0bb(m) and in
vector notation y = bμ(w) + bε(w).

1Assumption F does not impose Assumption C4 of Bai and Ng (2006), Assumption 3(e) of Gonçalves and Perron
(2013), nor asymptotic convergence as in Assumptions F3 and F4 in Bai (2003). The reason is that our theory does
not require obtaining the asymptotic distribution of the estimated factors.
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The MSFE of the point forecast byT+h|T (w) is
MSFET (w) = E

¡
yT+h − byT+h|T (w)¢2

= E
³
ε2T+h + (μT − bμT (w))2´

' E
³
ε2t+h + (μt − bμt(w))2´

= σ2 + ELT (w), (4.1)

where

LT (w) =
1

T

TX
t=1

(μt − bμt(w))2
=
1

T
(μ− bμ(w))0 (μ− bμ(w)) . (4.2)

is the in-sample squared error.

In (4.1), the first equality is by definition, the second equality holds since εT+h is uncorrelated

with bμT (w), and the approximation in the third line follows from stationarity of (yt, eFt). This
approximation rests on whether the distribution of (yt, eFt) is approximately stationary. This holds
since the principle component estimate eFt is a weighted average of Xt = (X1t, ...,XNt), where the

weight is an approximately orthogonal transformation of Λ, which holds under Assumption F as

shown by Bai and Ng (2002) and Bai (2003). Combined with the stationarity and independence

conditions in Assumptions R(ii) and F(vi), it follows that (yt, eFt) is approximately stationary as
claimed.

The final equality in (4.1) shows that for any weight vector w the MSFE of the combination

forecast byT+h|T (w) is close to the expectation of LT (w), plus σ2. The Mallows and leave-h-out

cross-validation criteria are designed as estimates of LT (w)+σ2. The near equivalence with MSFE

shows that these criteria are also estimates of MSFE and are thus appropriate forecast selection

criteria.

4.3 Mallows Criterion

In this section we restrict attention to the case of one-step forecasts (h = 1) and conditional

homoskedasticity. Thus Assumption R(i) is strengthened to E(εt+1|Ft) = 0 and E(ε2t+1|Ft) = σ2.

Under these conditions we show that the Mallows criterion is an asymptotically unbiased estimate

of LT (w) + σ2.

To see this, recalling the definitions of μ and bμ(w) given in Section 4.2, we can see that bμ(w) =
12



eP (w)y = eP (w)μ+ eP (w)ε, where eP (w) =PM
m=1w(m)

eP (m) and eP (m) = eZ(m)( eZ(m)0 eZ(m))−1 eZ(m)0.
Thus the residual vector equals

bε(w) = ε+ μ− bμ(w)
= ε+

³
I − eP (w)´μ− eP (w)ε. (4.3)

We calculate that

1

T

TX
t=1

Ã
MX

m=1

w(m)bεt(m)!2 = 1

T
bε(w)0bε(w)

=
1

T
(μ− bμ(w))0 (μ− bμ(w)) + 1

T
ε0ε+ 2

1

T
(μ− bμ(w))0 ε

= LT (w) +
1

T
ε0ε+ 2

1

T
μ0
³
I − eP (w)´ ε− 2 1

T
ε0 eP (w)ε. (4.4)

It follows that

CT (w) = LT (w) +
1

T
ε0ε+

2√
T
r1T (w)−

2

T
r2T (w) (4.5)

where

r1T (w) =
1√
T
μ0
³
I − eP (w)´ ε

r2T (w) = ε0 eP (w)ε− bσ2T MX
m=1

w(m)k(m). (4.6)

This relates the Mallows criterion to the in-sample squared error LT (w).

The classical justification of CT (w) given by Mallows (1973) was that it was an unbiased estimate

of the squared error LT (w) up to a constant. From (4.5) and the fact E(T−1ε0ε) = σ2, we see that

this condition holds if Er1T (w) = 0 and Er2T (w) = 0. Given the time-series nature of the data

we cannot show exact unbiasedness, but we will show below that r1T (w) and r2T (w) converge in

distribution to mean-zero random variables and thus are asymptotically mean zero2. This allows us

to interpret the Mallows criterion CT (w) as an asymptotically unbiased estimate of the in-sample

squared error LT (w). Consequently, selecting the weight vector (or model) to minimize CT (w) is

an estimator of the minimizer of LT (w), and hence the MSFE.

This property (asymptotic unbiasedness of the criterion) is not by itself sufficient to establish

optimality, namely that the MSFE of the selected combination forecast byT+h|T ( bw) is equivalent to
2Technically, convergence in distribution by itself does not imply convergence of moments, e.g., Er1T (w) → 0,

unless the random variable r1T (w) is uniformly integrable, which is difficult to establish. However, convergence in
distribution does imply convergence of the trimmed moment limB→∞ limT→∞ Er1T (w)1 (|r1T (w)| ≤ B) = 0 so it is
reasonable to describe r1T (w) in this context as asymptotically unbiased.

13



the optimal MSFE, or that
E
¡
yT+h − byT+h|T ( bw)¢2
inf

w∈HM
MSFET (w)

−→ 1.

In the context of independent observations this has been established for Mallows selection by Li

(1987) and for Mallows combination by Hansen (2007). This holds if the remainder terms in (4.5)

are of smaller order than LT (w), uniformly in w ∈ HM . We have not established such uniformity,

but note that the remainder terms are of order Op(T
−1/2) and Op(T

−1), respectively, while LT (w)

converges to a non-zero limit for any w which does not put full weight on the true model (and thus

for any w when the true model is of infinite order). Therefore, in this sense as well we can view

CT (w) as a reasonable estimate of LT (w) and hence of the MSFE.

We now establish our claim that r1T (w) and r2T (w) converge in distribution to mean-zero

random variables. First, define

r01T (w) =
1√
T
μ0 (I − P (w)) ε

=
MX

m=1

w(m)
1√
T
μ0 (I − P (m)) ε (4.7)

and

r02T (w) = ε0P (w)ε− σ2
MX

m=1

w(m)k(m)

= σ2
MX

m=1

w(m)
¡
σ−2ε0P (m)ε− k(m)

¢
(4.8)

where P (w) =
PM

m=1w(m)P (m) with P (m) = Z(m) (Z(m)0Z(m))−1 Z(m)0. These are analogs for

the case of no generated regressors.

Take r01T (w). Notice that μ = Zb where Z = (z1, ..., zT )0 and b is the true coefficients in (2.5).

Then under Assumption R, for each m,

1√
T
μ0 (I − P (m)) ε =

1√
T
b0Z 0 (I − P (m)) ε→d S1(m) ∼ N(0, σ2Q(m)), (4.9)

where Q(m) = plimT−1b0Z 0 (I − P (m))Zb. Thus

r01T (w)→d ζ1(w) =
MX

m=1

w(m)S1(m), (4.10)

a weighted sum of mean-zero normal variables, and thus Eζ1(w) = 0.
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Now take r02T (w). Under Assumption R, E(εt+1|Ft) = 0 and E(ε2t+1|Ft) = σ2, thus for each m,

T−1Z(m)0Z(m)→p V (m) = E(zt(m)z0t(m)), T−1/2σ−1Z(m)0ε→d S2(m) ∼ N(0, V (m)), and hence

σ−2ε0P (m)ε = σ−2ε0Z(m)
¡
Z(m)0Z(m)

¢−1
Z(m)0ε→d S2(m)

0V (m)−1S2(m) = ξ(m) ∼ χ2k(m).

It follows that

r02T (w)→d σ
2

MX
m=1

w(m) (ξ(m)− k(m)) = ζ2(w), (4.11)

a weighted sum of chi-square random variables centered at their expectations, and hence Eζ2(w) =

0.

Finally, we show that r02T (w) − r2T (w) = op(1) from which it follows that r2T (w) →d ζ2(w).

The argument to show that r01T (w) − r1T (w) = op(1) is similar so omitted. Observe that if bσ2T is
estimated using a large model which includes the true lags as a special case (or if the number of

lags increases with sample size) then bσ2T →p σ
2. Next, write

ε0 eP (m)ε
=
h
T−1/2ZH(m)

0ε+AT

i0 £
T−1ZH(m)

0ZH(m) +B1T +B01T +B2T
¤−1 h

T−1/2ZH(m)
0ε+AT

i
,

AT = T−1/2
³ eZ(m)− ZH(m)

´0
ε,

B1T = T−1
³ eZ(m)− ZH(m)

´0
ZH(m),

B2T = T−1
³ eZ(m)− ZH(m)

´0 ³ eZ(m)− ZH(m)
´
, (4.12)

and ZH(m) = Z(m)H(m) for some full-rank block-diagonal matrix H(m) that transforms the

factor column spaces in Z(m).3 Let CNT = min[N
1/2, T 1/2]. By Lemma A.1 of Bai and Ng (2006),

B1T = Op(C
−1
NT ) and B2T = Op(C

−1
NT ) under Assumptions R and F, showing that the estimated

factors approximately span the column spaces of the true factors in large sample. By Lemma A.1

of Gonçalves and Perron (2013), AT = Op(C
−1
NT ), under Assumptions R and F.

4 Because AT , B1T ,

and B2T are all negligible as N,T →∞, it follows that ε0 eP (m)ε = ε0P (m)ε+op(1). Combined with

the consistency of bσ2T we conclude that r02T (w)− r2T (w) = op(1) when N,T →∞ as desired.

The arguments above are analogous to those in Bai and Ng (2006) on the effect of factor

estimation on confidence intervals. However, the above results hold without imposing the strong

3The exact form of H(m) is based on the transformation matrix H defined in Lemma A.1 of Bai and Ng (2006),
with adjustments that each approximate model only involves a subset of all factors and their lags. In addition, H(m)
is block-diagonal, where the upper-left block associated with the lags of yt is an identity matrix. As such, H(m) only
rotates the columns of factors and their lags.

4Assumptions R and F imply all assumptions in Bai and Ng (2006) and Gonçalves and Perron (2013) used to
obtain the desired results.
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T 1/2/N → 0 condition used in Bai and Ng (2006).

We have established the following result.

Theorem 1 Suppose h = 1, E(ε2t+1|Ft) = σ2, and Assumptions R and F hold. For fixed M and

w, and N,T →∞,

CT (w) = LT (w) + T−1ε0ε+ 2T−1/2r1T (w)− 2T−1r2T (w),

where

r1T (w)→d ζ1(w),

r2T (w)→d ζ2(w),

Eζ1(w) = 0 and Eζ2(w) = 0.

Theorem 1 shows that for one-step homoskedastic forecasting, the Mallows criterion CT (w) is

equal to the in-sample squared error LT (w) plus σ2 and terms of smaller stochastic order with

asymptotic zero means. As discussed above, this means that we can interpret CT (w) as an asymp-

totically unbiased estimator of ELT (w) + σ2 ' MSFET (w). This holds for any weight vector w,

and holds even though the regressors are estimated factors. This result is similar to the theory of

Hansen (2008) for forecast combination without estimated factors.

With the generated regressors, the in-sample squared error LT (w) and the Mallows criterion

CT (w) are both inflated. However, Theorem 1 shows that the in-sample squared error and the

Mallows criterion are inflated symmetrically, leaving the Mallows criterion to be informative as

usual.

While Theorem 1 establishes that the Mallows criterion is asymptotically unbiased for the

MSFE, it does not establish that the selected weight vector is asymptotically efficient in the sense

of Shibata (1980), Ing and Wei (2005), or Schorfheide (2005) for forecast selection, or Hansen (2007)

in the case of model averaging. In particular, Ing and Wei (2005) show that in an infinite-order

autoregressive (AR) model with i.i.d. innovations, the AR order selected by the Akaike or Mallows

criterion is asymptotically optimal in the sense of minimizing the one-step-ahead MSFE among all

candidate models. No similar result exists for forecast combination, and a rigorous demonstration

of optimality is beyond the scope of this paper. Nevertheless, the asymptotic unbiasedness of the

Mallows criterion shown in Theorem 1, the existing optimality results on Mallows model averaging,

and the optimality theory of Ing and Wei (2005) together suggest that Mallows forecast combination

in the presence of estimated factors is a reasonable weight selection method.
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4.4 Multi-Step Forecast with Leave-h-out Cross Validation Averaging

When h > 1 or the errors are possibly conditionally heteroskedastic the Mallows criterion

applies an incorrect parameterization penalty. Instead, following Hansen (2010) we recommend

the leave-h-out cross-validation criterion for forecast selection and combination. In this section we

provide a theoretical foundation for this criterion in the presence of estimated factors.

First, it is helpful to understand that an h-step-ahead forecast is actually based on a leave-h-

out estimator, so a leave-h-out cross-validation criterion is a quite natural estimate of the MSFE.

To see this, recall that the h-step-ahead forecast is byT+h|T (m) = ezT (m)0bb(m), where bb(m) is the
least-squares estimate computed from the sample {yt+h, ezt(m) : t = 1−h, ..., T −h}. Also, recall the
definition of the leave-h-out estimator ebT,h(m), which is the least squares coefficient from the same

sample with the observations {yj+h, ezj(m) : j = T − h+ 1, ..., T + h− 1} omitted. Comparing the
estimation sample with the omitted observations, there is no intersection. That is, bb(m) = ebT,h(m)
and the point forecast can be written as byT+h|T (m) = ezT (m)0ebT,h(m). It follows that the forecast
error is yT+h − byT+h|T (m) = yT+h − ezT (m)0ebT,h(m) = eεT+h,h(m), which is identical to the leave-h-
out prediction residual. Similarly the combination forecast error is yT+h− byT+h|T (w) = eεT+h,h(w),
the leave-h-out prediction residual. It follows that the MSFE of the point forecast equals

MSFET (w) = E
¡
yT+h − byT+h|T (w)¢2 = EeεT+h,h(w)2. (4.13)

The MSFE equals the expected squared leave-h-out prediction residual. As the cross-validation

criterion is simply the sample average of the squared leave-h-out prediction residuals, it is natural

to view the cross-validation criterion as an estimator of the expectation Eeεt+h,h(w)2 and hence
MSFET (w).

To push this analysis further, let the leave-h-out fitted values be written as eμt+h,h(m) =ezt(m)0ebt,h(m) and eμt+h,h(w) =PM
m=1w(m)ezt(m)0ebt,h(m). Then we can write the leave-h-out pred-

ication residuals as eεt+h,h(w) = yt+h − eμt+h,h(w). Using vector notation, eεh(w) = ε+ μ− eμh(w) so
with a little algebra we obtain

CVh,T (w) =
1

T
eεh(w)0eεh(w)

= eLT (w) +
1

T
ε0ε+

2√
T
er1T (w) (4.14)
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where

eLT (w) =
1

T

TX
t=1

(μt − eμt,h(w))2
=
1

T
(μ− eμh(w))0 (μ− eμh(w)) (4.15)

is the in-sample squared error from the leave-h-out estimator, and

er1T (w) = 1

T 1/2
(μ− eμh(w))0 ε

=
MX
m=1

w(m)
1

T 1/2

T−hX
t=1−h

³
μt − ezt(m)0ebt,h(m)´ εt+h. (4.16)

As in the decomposition (4.12), we can replace ezt(m) with zHt(m) = H(m)0zt(m), where H(m)

is the rotation matrix for the factor space, adding an error of only op(1). Decomposing further, we

find er1T (w) = er01T (w) + er2T (w) + er3T (w) + op(1) (4.17)

where

er01T (w) = MX
m=1

w(m)
1

T 1/2

T−hX
t=1−h

¡
μt − zHt(m)

0b(m)
¢
εt+h, (4.18)

er1T (w) = MX
m=1

w(m)
1

T 1/2

T−hX
t=1−h

zHt(m)
0
³
b(m)−bb(m)´ εt+h, (4.19)

er2T (w) = MX
m=1

w(m)
1

T 1/2

T−hX
t=1−h

zHt(m)
0
³bb(m)−ebt,h(m)´ εt+h, (4.20)

and b(m) = (EzHt(m)zHt(m)
0)−1 E(zHt(m)yt+h) is the projection coefficient from the regression of

yt+h on zHt(m).

We now examine (4.18), (4.19) and (4.20). First, as in (4.9) and (4.10),

er01T (w)→d ζ1(w), (4.21)

a mean-zero normal random variable. Second, a little re-writing shows that

er1T (w) = MX
m=1

w(m)
1

T 1/2
ε0ZH(m)

³
b(m)−bb(m)´ = op(1). (4.22)
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Third,

|er2T (w)| ≤ MX
m=1

w(m)
1

T

T−hX
t=1−h

kzHt(m)εt+hkmax
t

√
T
°°°bb(m)−ebt,h(m)°°°

= op(1) (4.23)

where the final bound holds by Lemma 1 presented at the end of this section. This establishes that

(4.20) is op(1).

We have established the following result.

Theorem 2 Suppose Assumptions R and F hold. For any h ≥ 1, fixed M and w, and N,T →∞,

CVh,T (w) = eLT (w) + T−1ε0ε+ 2T−1/2er1T (w),
where

r1T (w)→d ζ1(w),

and Eζ1(w) = 0.

Theorem 2 is similar in form to Theorem 1. It shows that CVh,T (w) is an asymptotically

unbiased estimate of eLT (w), the in-sample squared error from the leave-h-out estimator, plus σ2.

This holds for any weight vector w, even though the regressors are estimated factors, for any forecast

horizon h, and allows for conditional heteroskedasticity. Theorem 2 extends Theorem 2 of Hansen

(2010) to forecasting with factor-augmentation.

An apparent difference between Theorems 1 and 2 is that Theorem 1 shows that the Mallows

criterion is an estimator of the in-sample squared error LT (w) while Theorem 2 shows that the

CV criterion is an estimator of the leave-h-out squared error eLT (w). In the context of leave-1-out

cross-validation, however, as shown by Li (1987) and Hansen and Racine (2012), the difference is

asymptotically negligible, and the same carries over to the leave-h-out case under the stationarity

and finite fourth moment conditions in Assumptions R and F.

The conventional Mallows criterion imposes an incorrect penalty when the error εt+h is serially

correlated (which occurs when h > 1) or conditionally heteroskedastic. This insight suggests

that the performance of the Mallows criteria will deteriorate when the serial dependence of the

forecast error is strong and the forecast horizon is long, and this is confirmed by our simulations.

An alternative solution is to use an alternative penalty (e.g., a robust Mallows criterion). We

recommend the leave-h-out cross-validation criterion as it makes this adjustment automatically,
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works well in finite samples, and is conceptually straightforward to generalize to more complicated

settings.

The following Lemma was used for the proof of Theorem 2. It states that leave-h-out estimators

are uniformly close to full sample estimators.

Lemma 1 If ut is strictly stationary and ergodic, E kutk2 < ∞, and g(u) is continuously differ-

entiable at μ = Eut, then for the full-sample estimator bμ = T−1
PT

t=1 ut and leave-h-out estimatoreμt,h = (T + 1− 2h)−1P|j−t|≥h uj ,

max
1≤t≤T

°°°√T (g(bμ)− g(eμt,h))°°° = op(1). (4.24)

We now establish Lemma 1. First, we observe that stationarity plus E kutk2 <∞ implies that

max
1≤t≤T

kutk = op(T
1/2). (4.25)

This result can be shown via Markov’s inequality. For details, see Hall and Heyde (1980, equation

(5.30)) or Hansen (2013, Theorem 5.12.1).

Second, since

bμ− eμt,h = 1− 2h
T (T + 1− 2h)

TX
t=1

ut +
1

T + 1− 2h
X

|j−t|<h
uj ,

then

max
1≤t≤T

kbμ− eμt,hk ≤ Op(T
−1) +

2h

T + 1− 2h max
1≤t≤T

kutk = op(T
−1/2) (4.26)

the final bound using (4.25). Equation (4.24) follows by an application of the Delta method.

5 Finite Sample Investigation

In this section, we investigate the finite-sample MSFE of the MMA and CVAh methods. The

data generating process is analogous to that considered in Bai and Ng (2009), but we focus on

linear models and add moving average dynamics to the multi-step forecast error. Let Fjt denote

the jth component of Ft. For j = 1, ..., r, i = 1, ...,N, and t = 1, ..., T, the approximate factor model
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is

Xit = λiFt +
√
reit,

Fjt = αjFjt−1 + ujt,

eit = ρieit−1 + �it, (5.1)

where r = 4, λi ∼ N(0, rIr), αj ∼ U [0.2, 0.8], ρi ∼ U [0.3, 0.8], (ujt, �it) ∼ N(0, I2), i.i.d. over t, for

all j and i. The values of αj and ρi are drawn once and held fixed over simulation repetitions. The

regression equation for forecast is

yt+h = β1F2t + β2F4t + β3F2t−1 + β4F4t−1 + β5F2t−2 + β6F4t−2 + εt+h,

εt+h =
h−1X
j=1

πjvt+h−j , (5.2)

where vt ∼ N(0, 1), i.i.d. over t, and {vt} is independent of {ujs} and {�is} for any t and s.

As such, only two factors and their lags are relevant for forecasting. The parameters are β =

(β1, ..., β6) = c[0.5, 0.5, 0.2, 0.2, 0.1, 0.1], where c is a scaling parameter ranging from 0.2 to 1.2 for

h = 1. For multi-step forecasting, the moving average parameter π ranges from 0.1 to 0.9 and the

scale parameter c is held at 1. The sample size is N,T = 100 and 10,000 simulation repetitions are

conducted. The programs are written in Matlab and are available on our website.

While the true number of factors is r = 4, we treat this as unknown, and therefore start by

selecting the number of factors r̃ using the information criterion ICp2 recommended by Bai and

Ng (2002)5, where the number of feasible factors is taken to be from 0 to 10. The first r̃ factors

are then placed in the vector eFt. Given this set of factors, the set of candidate regressors for model
averaging and model selection is

Zt = (1, yt, ..., yt−pmax , eF 0t , ..., eF 0t−pmax) (5.3)

Feasible models are constructed sequentially given the ordering in (5.3). Thus the first model sets

zt(1) = 1, the second model sets zt(2) = (1, yt), etc., yielding a total of M = (1 + pmax) (1 + r̃)

sequentially nested models. All model selection and model averaging are performed over this set

of models. For our primary results we set pmax = 4, though for robustness we report results for

pmax = 0, pmax = 2, and pmax = 9.

We compare the MSFE of a wide set of model averaging and model selection methods. The

5We use the Matlab code provided by Serena Ng on her website to select the number of factors.
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Figure 1. Relative MSFE to least-squares forecast with all regressors for h = 1, 4, 8, and 12. CVAh is leave-h-out
cross-validation averaging. MMA is Mallows model averaging. BMA is Bayesian model averaging. CVh is model
selection with leave-h-out cross-validation. BIC is model selection with Bayesian information criterion.

model averaging methods include leave-h-out cross-validation averaging (CVAh), jackknife model

averaging (JMA), Mallows model averaging (MMA), Bayesian model averaging (BMA), and simple

averaging with equal weights.6 The model selection methods include leave-h-out cross-validation,

jackknife cross-validation, Mallows model selection, AIC, BIC.

For nearly all parameter values investigated, and all forecast horizons, we found that leave-h-

out cross-validation averaging (CVAh) has the best performance with the smallest MSFE, with the

second lowest MSFE achieved by MMA. In some cases the differences in MSFE are quite large.

To compactly report our comparisons, we display the (normalized) MSFE of a selection of the

procedures in Figure 1, where dominated procedures were omitted. To make the graphs easier to

read we normalize the MSFE by the MSFE for the least-squares forecast with all regressors in Zt.

Thus a value smaller than 1 implies superior performance relative to unconstrained least-squares.

6Our BMA weights are set as w(m) = exp(−BIC(m)/2)/ M
i=1 exp(−BIC(i)/2), where BIC(m) is the BIC for

the m-th model. This is an approximate BMA for the case of equal model priors, and diffuse model priors on
parameters.
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As stated earlier, Figure 1 shows that CVAh has the best overall performance, followed by

MMA. For the one-step-ahead forecast, CVAh and MMA are comparable. They dominate all other

methods except when the scale parameter c is around 0.2, an extreme situation with very low

signal-to-noise ratio in the forecast equation.

For the multi-step forecasts, the advantage of CVAh is prominent when the forecast horizon

is long and the serial dependence in the forecast error is strong. For example, when h = 8 and

π = 0.8, the relative MSFE for CVAh is 80%, around 10% smaller than that for model selection by

BIC or cross-validation, 7% smaller than that for BMA, and 3% smaller than that for MMA.

For robustness, we tried different values for the largest number of lags pmax (0, 2, and 9) and

display the results in Figures A1-A4 in the appendix. (When pmax = 0, the possible regressor set

is (1, yt, eFt).) The general character of the results is unchanged.
In addition, in these figures we add simple (equal) averaging, denoted by EQ. What is quite

striking about simple averaging is that its performance is very sensitive to pmax. Equal weighting

has low MSFE for pmax = 4, but is high for other choices (in particular for pmax = 0). The method

is inherently non-robust to the class of models being averaged.

6 Empirical Application

In this section, we apply the CVAh, MMA, JMA, and simple averaging to forecast U.S. macro-

economic series and compare them to various shrinkage-type methods discussed in Stock and Wat-

son (2012). We adopt the approach in Stock and Watson (2012) that considers using a large

number of potential principle components. Our results complement those in Stock and Watson

(2012) by adding frequentist forecast combination methods to the list covered by their shrinkage

representation, such as pretest methods, Bayesian model averaging, empirical Bayes, and bagging.

The data set, taken from Stock and Watson (2012), consists of 143 U.S. macroeconomic time

series with quarterly observations from the second quarter of 1960 to the last quarter of 2008. The

series are transformed by taking logarithm and/or differencing as described in Table B.1 of Stock

and Watson (2012). The principle component estimates of the factors are computed from the 109

lower-level disaggregate series and all 143 series are used as the dependent variables to be forecast.

As in Stock and Watson (2012), all forecasting models contain a fixed set of 4 lagged dependent

variables. The models differ by the number of included factors. The number of factors included

in each model ranges from 0 to r = 50 for the rolling window forecast, and up to r = 100 for the

cross-validation forecast. The models are nested as is standard in factor models.

Given this set of models, we use both selection and averaging approaches to construct forecasts.
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Table 1. Relative RMSE to DFM5, Rolling Forecast, Twindow = 100, rmax = 50

h = 1 h = 2 h = 4
percentile 0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.500 0.750

CVAh 0.983 1.003 1.016 0.962 0.992 1.014 0.964 0.985 1.012
JMA 0.983 1.003 1.016 0.962 0.996 1.013 0.972 0.994 1.020
MMA 0.992 1.009 1.031 0.974 1.004 1.025 0.975 1.007 1.034
EQ 0.999 1.030 1.061 0.982 1.011 1.046 0.967 0.999 1.030
BMA 0.993 1.014 1.053 0.976 1.009 1.038 0.979 1.014 1.047
OLS 1.061 1.110 1.179 1.024 1.087 1.135 1.015 1.066 1.113
Pretest 1.007 1.048 1.091 1.003 1.030 1.082 1.011 1.048 1.084
Bagging 0.996 1.022 1.060 0.982 1.011 1.043 0.984 1.016 1.052
Logit 0.999 1.027 1.071 0.988 1.019 1.052 0.982 1.022 1.064

Table 2. Relative RMSE to DFM5, Cross Validation, Subsample 1985-2008

h = 1 h = 2 h = 4
percentile 0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.500 0.750

CVAh 0.974 0.992 1.007 0.956 0.981 0.996 0.923 0.958 0.981
JMA 0.974 0.992 1.007 0.958 0.980 0.998 0.924 0.961 0.985
MMA 0.982 0.998 1.014 0.960 0.986 1.008 0.928 0.966 0.995
EQ 0.988 1.022 1.050 0.967 1.004 1.035 0.941 0.978 1.007
BMA 0.965 0.991 1.013 0.953 0.983 1.006 0.924 0.964 0.999
OLS 1.038 1.084 1.159 1.009 1.080 1.138 0.964 1.051 1.113
Pretest 0.965 0.990 1.019 0.963 0.987 1.019 0.937 0.977 1.010
Bagging 0.966 0.995 1.019 0.960 0.983 1.016 0.938 0.968 1.007
Logit 0.957 0.987 1.012 0.949 0.976 1.010 0.922 0.964 0.998

The averaging methods include leave-h-out cross-validation, jacknife model averaging, Mallows

model averaging, equal weights, and exponential BIC weights (BMA). The programs are written

in Gauss and are available on our website.

The MSFE is computed in two ways: a rolling pseudo out-of-sample forecast method and a

cross-validation method. The length of the rolling window is 100. We report relative root mean

squared error (RMSE) relative to the dynamic factor model with 5 factors (DFM-5). Stock and

Watson (2012) show that DFM-5 improves upon AR(4) model in more than 75% of series and the

shrinkage methods offer little or no improvements over DFM-5 on average. Hence, DFM-5 serves

as a good benchmark for the comparison.

Tables 1-2 can be viewed as extensions of Table 2 and Table S-2A in Stock and Watson (2012),

with four frequentist model averaging methods added to existing results. The results on BMA,

pretest, bagging, and logit are taken from Stock and Watson (2012), where the details on these

methods are available. Three forecast horizons, h = 1, 2, 4, are considered. Entries in the Tables
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are percentiles of distributions of RMSEs over the 143 variables being forecast. A value smaller

than 1 at the median implies that the method considered is superior to DFM-5 for more than half

of all series.

Table 1 reports relative RMSE computed using the rolling forecasts. It shows that for h = 4,

CVAh improves upon DFM-5 by at least 1.5% for half of all series and by at least 3.6% for one-fourth

of all series. In contrast, Table 2 of Stock and Watson (2012) showed that the shrinkage methods

they considered were inferior to DFM-5 for more than half of all series. JMA (equivalently, CVA1)

is only slightly inferior to CVAh and MMA is comparable to other shrinkage methods. The simple

averaging with equal weights, denoted by EQ, performs better than most shrinkage methods, but

not as well as CVAh. The same trend holds for h = 2, although the difference is not as significant

as that for h = 4. When h = 1, all averaging and shrinkage methods are comparable to DFM-5.

As a robustness check, in Table A1 in the appendix, we report the RMSE of CVAh, MMA,

JMA, and EQ relative to DFM-5 with the alternative window sizes of 75 and 125. We found that

the RMSE do not vary much with the window size and CVAh generally out performs DFM-5.

Table 2 reports relative RMSE computed using the cross-validation method. It shows that for

h = 4, CVAh improves upon DFM-5 by at least 4.2% for half of all series and by at least 1.9%

for three-fourth of all series. In this case, other shrinkage methods also offer improvements upon

DFM-5 for some series, but no method does so for as many as three-fourth of all series, according to

Table S-2A in Stock and Watson (2012). A category analysis as in Stock and Watson (2012) shows

that these frequentist forecast combination methods also tend to do well when some shrinkage

methods show improvements and there remain hard-to-forecast series.

7 Conclusion

This paper proposes frequentist model averaging approach for forecast combination with the

factor-augmented regression, where the unobserved factors are estimated by the principle compo-

nents of a large panel of predictors. The Mallows model averaging (MMA) and the leave-h-out

cross-validation averaging (CVAh) criteria are shown to be approximately unbiased estimators of

the MSFE in one-step and multi-step forecasts, respectively, provided N,T →∞ in the panel data.

Thus, the generated regressor issue is negligible, without any requirement on the relative size of N

and T. Monte Carlo simulations and empirical application support the theoretical result that these

frequentist model averaging criteria are designed to mirror the MSFE such that the weight vector

selected approximately minimizes the MSFE.

The forecast combination methods proposed in this paper can be extended and adapted to a
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broader class of applications. One extension is to generalize the single variable forecast to the

multivariate forecast in the factor-augmented vector autoregressive (FAVAR) model by Bernanke,

Boivin, and Eliasz (2005). Second, nonlinear factor-augmented regression should be considered, as

discussed in Bai and Ng (2009). Finally, interval forecast based on model averaging is an important

but challenging topic (Leeb and Pötscher, 2003, 2008). These topics should be investigated in

future research.
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Figure A1. Relative MSFE for h = 1, 4, 8, and 12 when pmax = 0. (No lags of yt and eFt are used.) The
normalization is the same as in Figure 1. CVAh is leave-h-out cross-validation averaging. MMA is Mallows
model averaging. BMA is Bayesian model averaging. EQ is equal weight simple averaging. CVh is model
selection with leave-h-out cross-validation. BIC is model selection with Bayesian information criterion.
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Figure A2. Relative MSFE for h = 1, 4, 8, and 12 when pmax = 2. The normalization is the same as in Figure
1. CVAh is leave-h-out cross-validation averaging. MMA is Mallows model averaging. BMA is Bayesian model
averaging. EQ is equal weight simple averaging. CVh is model selection with leave-h-out cross-validation. BIC is
model selection with Bayesian information criterion.
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Figure A3. Relative MSFE for h = 1, 4, 8, and 12 when pmax = 4. The normalization is the same as in Figure
1. CVAh is leave-h-out cross-validation averaging. MMA is Mallows model averaging. BMA is Bayesian model
averaging. EQ is equal weight simple averaging. CVh is model selection with leave-h-out cross-validation. BIC is
model selection with Bayesian information criterion.
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Figure A4. Relative MSFE for h = 1, 4, 8, and 12 when pmax = 9. The normalization is the same as in Figure
1. CVAh is leave-h-out cross-validation averaging. MMA is Mallows model averaging. BMA is Bayesian model
averaging. EQ is equal weight simple averaging. CVh is model selection with leave-h-out cross-validation. BIC is
model selection with Bayesian information criterion.
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Table A1. Relative RMSE to DFM5, Rolling Window Forecast

h = 1 h = 2 h = 4

percentile 0.250 0.500 0.750 0.250 0.500 0.750 0.250 0.500 0.750

Twindow = 75, rmax = 40

CVAh 0.985 1.005 1.017 0.975 0.998 1.022 0.963 0.988 1.016

JMA 0.985 1.005 1.017 0.974 1.001 1.021 0.972 0.996 1.019

MMA 0.992 1.008 1.026 0.983 1.009 1.024 0.975 1.000 1.024

EQ 0.995 1.018 1.042 0.986 1.014 1.037 0.977 1.002 1.025

Twindow = 125, rmax = 50

CVAh 0.974 1.000 1.020 0.964 0.991 1.025 0.945 0.983 1.016

JMA 0.974 1.000 1.020 0.965 0.996 1.027 0.956 0.998 1.032

MMA 0.983 1.008 1.029 0.972 1.000 1.044 0.961 1.000 1.042

EQ 0.997 1.028 1.061 0.971 1.015 1.059 0.957 1.002 1.042
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