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Abstract

We study the nonparametric identification and estimation of a structural model

for committee decisions. Members of a committee share a common information set,

but differ in ideological bias while processing multiple information sources and in indi-

vidual tastes while weighing multiple objectives. We consider two cases of the model

where committee members have or don’t have strategic incentives for making recom-

mendations that conform with the committee decision. For both cases, pure-strategy

Bayesian Nash equilibria exist, and we show how to use variations in the common

information set to recover the distribution of members’ private types from individual

recommendation patterns. Building on the identification result, we estimate a struc-

tural model of interest rate decisions by the Monetary Policy Committee (MPC) at the

Bank of England. We find some evidence that recommendations from external commit-

tee members are less distorted by strategic incentives than internal members. There

is also evidence that MPC members differ more in their tastes for multiple objectives

than in ideological bias.

Keywords: Committee decisions, nonparametric identification, MPC at the Bank of Eng-

land

JEL: C14, D71
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1 Introduction

Public policy or business decisions are often made by committees organized to serve a

common cause. Despite the information shared through group deliberations, members of a

committee may disagree over the weights assigned to various factors in the decision-making.

In addition, members may also have strategic concerns such as whether their individual

recommendations will conform to committee decisions. As a result, committee members often

end up with distinct individual recommendations. Prominent examples include company

boards, the U.S. Supreme Court judges, and committees in charge of monetary policies at

central banks such as Monetary Policy Committee (MPC) at the Bank of England and the

Federal Open Market Committee (FOMC) at the U.S. Federal Reserve.

Understanding the mechanism that generates discrepancies in members’ recommenda-

tions is an important empirical question in its own right, because of the prevalence of com-

mittee decisions in social-economic contexts. Besides, inference of members’ idiosyncratic

preference could shed lights on policy questions such as predicting committee decisions under

counterfactual circumstances, e.g., anonymous voting in committees.

To this end, we set up a structural model of committee decisions that rationalizes dissent-

ing recommendations across committee members through their individual heterogeneities in

two dimensions. First, members do not agree on the relative importance of multiple ob-

jectives announced as the goal of the committee. Second, as the committee pool multiple

sources of information through its group deliberation, each member may decide to weigh

these sources differently in their individual perceptions about the consequence of each alter-

native. We refer to these two heterogeneities as “individual tastes for multiple objectives”

and “ideological bias towards various information sources” respectively.

We focus on committees that make binary decisions and aggregate individual recommen-

dations from its members through a majority rule. All committee members share a common

information set that includes the states of the world and an announced target consisting of

multiple objectives, as well as several sources of information that predicts the stochastic out-

come from either alternative. The common goal for the committee is to choose an action that

could minimize ex ante deviations from the announced target. We analyze the identifica-

tion and estimation of the model under two cases: one that incorporates members’ strategic

concerns about conformity to the committee decision (a.k.a. “strategic recommendations”);

and one that does not (a.k.a. “expressive recommendations”). In both cases, pure-strategy

Bayesian-Nash equilibria (PBNE) exist, and the identification of ideological bias and private

tastes are obtained by exploiting how the patterns of individual recommendations, or the

conditional choice probabilities, change with the common information set in data.

In the model with expressive recommendations, members follow a simple dominant strat-

egy in equilibrium. We show how to identify this model under a cross-sectional data environ-
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ment, where each independent committee is observed to make a single decision. Recommen-

dations from individual members and the common information set are both reported in data.

Without any strategic concern, the individual choice probabilities in equilibrium take the

form of a mixture of taste distributions, where the mixing weights correspond to the prob-

ability masses of the ideological bias. Committee members with heterogeneous tastes and

ideological bias react differently to the same changes in the common information. This allows

us to recover the distribution of two-dimensional private types from their recommendation

patterns.

Identifying the model with strategic recommendations requires a qualitatively different

argument, and a panel structure where each committee (a cross-sectional unit) makes several

decisions in multiple episodes. As in the case with expressive recommendations, members’

conditional choice probabilities are finite mixtures. However, with strategic concerns, the

component probabilities in the mixture (which condition on specific bias) depend on endoge-

nous patterns of recommendation by other members in equilibria.

We identify the model with strategic recommendations through sequential steps: First, we

apply results from Hu and Schennach (2008) and Kasahara and Shimotsu (2009) to recover

individual choice probabilities conditional on the ideological bias. The identifying power

comes from observed variations in states, targets and various sources of information that

members use to formulate their perceptions. The argument exploits identifying restrictions

in the lower-dimensional submodels. Second, we show that, under mild conditions that have

clear economic interpretations, the component probabilities are monotonic in ideological

bias. This allows us to match the identified component probabilities with specific values

of bias. In contrast to most existing literature, our monotonicity result is derived as an

implication of the structural model. Lastly, we recover the distribution of individual tastes

using continuous variation in the component choice probabilities due to changes in common

information, by imposing a minimum set of semiparametric restrictions.

This paper contributes to the literature on structural analyses of committee decisions

in several ways. First off, we model committee members’ private types and their effects on

individual recommendations in the presence of a common information set; whereas the exist-

ing literature mostly focus on the aggregation of private information among members, e.g.,

Iaryczower and Shum (2012b). Our model also differs fundamentally from structural voting

/ election models, which involve numerous decision-makers with heterogenous information

but no group deliberations. In contrast, we allow members to have a common information

set that consists of states, shared targets and sources of information that affect individual

perceptions. Instead, we rationalize differences in individual choices through idiosyncratic

bias and tastes while processing the common information. Besides, our nonparametric ap-

proach for identifying the model is innovative. The proposed method is instrumental for

understanding the process of committee decisions. Furthermore, recovery of strategic incen-
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tives in the model provides a useful framework that can be employed to address mechanism

design questions, such as efficiency of open versus anonymous committees.

Based on our identification arguments, we estimate a structural model of interest rate

decisions by the Monetary Policy Committee at Bank of England, allowing for strategic

concerns among its members. We find that all MPC members tend to put more weights on

the forecasts of the Bank than on the forecasts of outsiders in the private sector. We also

find that the recommendations from external committee members (who have no executive

responsibilities at the Bank and only offer committee service on a part-time basis) are less

distorted by strategic incentives for conformity than internal members (who hold full-time

executive positions at the Bank). A third finding is that the two types of committee mem-

bers, external and internal, differ more in their tastes for multiple objectives than in their

ideological bias.

The existing literature on committee decision-making is mainly theoretical and focus on

information aggregation.1 Our paper is closely related to an emerging literature on econo-

metric and empirical analysis of collective decision-making. Iaryczower, Lewis, and Shum

(2013) and Iaryczower and Shum (2012b,a) study decision-making of the US supreme court

where justices have incomplete information and common values. In a similar framework,

Iaryczower, Shi, and Shum (2012) analyze the effects of deliberation among justices using

an approach of partial identification. Merlo and De Paula (2010) and Kawai and Watanabe

(2013) consider nonparametric identification and estimation of ideological voters’ preferences

and partial identification of a strategic voting model respectively. As explained above, their

models differ qualitatively from our model of committee decisions. Our paper is also related

to a recent literature on non-classical measurement error and finite mixture models. Hu

and Schennach (2008) provides a general identification result for models with nonclassical

measurement error.2 Hall and Zhou (2003), Kasahara and Shimotsu (2009), and Henry,

Kitamura, and Salanié (2013) consider nonparametric identification of finite mixture models

using the identification power of covariates.

The rest of the paper is planned as follows. In Sections 2 and 3 we show identification

of models for expressive and strategic recommendations respectively. In Section 4 we apply

our model to analyze policy decisions by MPC at the Bank of England. Section 5 concludes.

2 Expressive Recommendations

Some committees are ad hoc in that they are organized for a short length of time and

only make few (or even a single) decisions. For instance, civil or criminal courts put together

one-time juries by summoning randomly chosen eligible citizens. Other committees make

1Please see Hao and Suen (2009) for a complete summary.
2See Chen, Hong, and Nekipelov (2011) for a survey of recent development in measurement error models.
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multiple decisions over its lifetime, but its members are nonetheless not subject to strate-

gic considerations such as reputation for good judgement, or conformity to group choices.

One example is the board of directors / partners in charge of major business operations in

corporations. These members are at the top of company hierarchy and therefore are hardly

constrained by concerns for promotion, etc. In this section, we analyze a structural model

where committee members make expressive recommendations, i.e. to propose actions that

minimize ex ante deviation from targets based on their individual perceptions.

2.1 The Model

Consider a cross-sectional data containing independent episodes of group decisions by

various committees, each of which may consist of a different set of members. In each episode,

all members observe some state S drawn from a distribution with a finite support S. Each

member formulates an individual perception about how a binary action d ∈ {0,1} could

affect a stochastic outcome Y ∈ RK under that state. (We use upper cases to denote random

variables and lower cases for their realized values.) The outcome space Y ⊆ RK is finite, with

cardinality Q and generic elements denoted by yq.

In each episode with a state s, the committee can access two sources of information about

how both actions could impact the distribution of Y under state s. Denote these two sources

by G(s) ≡ (G1(s),G0(s)) and H(s) ≡ (H1(s),H0(s)), where Gd(s) and Hd(s) summarize the

probability masses of Y given state s and action d according to the two sources respectively.

Specifically, the q-th coordinate in Gd(s), denoted Gq,d(s), is the probability that “Y = yq

given s and d” according to G(s). Likewise for Hq,d(s). Across all decision episodes with

states s, both Gd(s),Hd(s) are independent draws from two distinct distributions with their

supports being subsets of a connected set H ≡ {v ∈ RQ
+ ∶ ∑q vq = 1}. Such a specification

captures the uncertainty in the information available even under the same states. Both

G(s) and H(s) are common knowledge among committee members. To facilitate exposition

hereinafter, we refer to G,H respectively as “initial perception” and “empirical evidence”.

In addition, the committee is informed of a target ỹ ∈ Y in each decision episode, which is

allowed to vary across episodes. The information set available to committee members is thus

summarized by I ≡ {s, ỹ,G(s),H(s)}.

Example 1 (Corporate Board Decisions) A corporate board of directors tries to decide on

a proposal to merge with another company. Each board member makes a binary recom-

mendation to approve or deny the proposal. All members agree the merger could affect the

company’s stock price and the rate of return on assets (ROA), i.e., K = 2. (Note these two

dimensions of outcome do not move in the same direction because changes in stock prices

are affected by the post-merger debt structure while the changes in ROA are determined by
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the synergy between the production or sales forces following the merger.) The board members

agree on a common target of stock prices and ROA, denoted by ỹ ≡ (ỹ1, ỹ2).

While deliberating on the final decision, the board takes into account the industry and

market environment as well as status of both parties involved in the merger (s). They also

have access to two sources of information. These include external evaluations of possible

outcomes from an independent management consulting firm, i.e. G(s); and predictions of

consequences of merger (or non-merger) based on due-diligence by the company staff and

historical evidence from past mergers with similar features, i.e. H(s). Despite the common

goal ỹ and information from G(s),H(s), the board members hold different views about how

the proposal could affect the uncertain outcome of the new merger’s stock prices and ROA.

They also disagree on relative weights that should be assigned to these two dimensions in the

final decision.

A member i’s individual perception about the probability that “the outcome is yq under

s and d” is formulated as:

Fq,d(s;αi) ≡ (1 − αi)Gq,d(s) + αiHq,d(s) (1)

for d ∈ {0,1}, where αi ∈ (0,1) is independently drawn from a multinomial distribution for

each i. We refer to αi as an “ideological bias”, for it captures the members’ willingness to

adjust their initial perception in response to empirical evidence or to balance information

from the two sources.

In each episode, every member i independently draws a vector of weights Wi from some

distribution with support W ⊆ RK
++. Member i recommends:

di(αi,wi;I) ≡ arg min
di∈{0,1}

EY,D∗ [∑k
wi,k(Yk − ỹk)

2∣di;αi,I] (2)

where the committee decision D∗ aggregates individual recommendations through a majority

rule. The expectation in (2) is taken with respect to the stochastic outcome Y and the group

decision D∗ given i’s perception formulated in (1). Such an expectation depends on other

members’ strategies as well as the distributions of (αi,Wi). (We provide an explicit form

of this conditional expectation in the proof of Lemma 1.) We refer to Wi as individual

“tastes”for the multiple dimensions in the outcome. These weights are heterogeneous and

capture discrepancies between members after deliberations. The individual types (αi,Wi)

are private information of each member, but their distribution is common knowledge among

all committee members.

For the rest of this section, we let the size of committees in data be fixed at an odd

number I, and maintain the following assumptions throughout the section.3

3Our method applies to the cases with an even number of members as long as the tie-breaking rule is

specified and known to econometricians.
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Assumption 1 (i) Across decision episodes and members in each committee, the individual

bias αi are independent draws from a distribution Fα over a known discrete support A ≡

{α1, ., αJ} ∈ (0,1)J ; and the tastes Wi, are independent draws from a continuous distribution

FW with positive densities over a known support W ⊆ RK
+ . (ii) αi and Wi are independent

from each other, and jointly independent from I ≡ {S, Ỹ ,G(S),H(S)}.

The exogeneity of the information set I, and in particular the empirical evidence H(S),

is instrumental for our identification methods. This condition can be satisfied even when the

empirical evidence potentially depends on the history of past states and committee decisions.

As in the example of corporate board decisions, H(S) is based on the accumulated evidence

up to the date of decisions. Thus it is subject to random shocks that vary across episodes and

may well be orthogonal to individual types (αi,Wi). By the same argument, the exogeneity

of accumulated evidence is also plausible in a panel data, where committees are observed to

make multiple decisions throughout its tenure.

That the support A is finite is relevant in environments, where members are known a

priori to belong to a small number of distinct groups with varying emphasis on both sources of

information. In this case, further assuming the elements of A are known, say, by stating that

αj ∈ A are spaced with equal distance over [0,1], serves as an approximation of the actual

data generating process (DGP). In other cases where αi is in fact continuously distributed

over [0,1] in DGP, our method below should be interpreted as showing identification for a

coarser, discretized version of the model.

Finally, note ideological bias αi could be related to observed demographics of a com-

mittee member. Examples of such demographic variables reported in data include political

affiliation, education background and professional experiences of committee members, etc.

Likewise, the distribution of tastes Wi may also depend on individual-level variables reported

in data. Nevertheless, such observed heterogeneities do not pose any conceptual challenge

to our identification exercise in that our method below extends once conditional on charac-

teristics of committee members reported in data.

2.2 The Data and Equilibrium

Consider a data set that records individual recommendations {di ∶ i = 1, .., I} from many

independent episodes of committee decisions. Each committee consists of I members and

makes a single or multiple decisions throughout the data. In the later case, the data has

some panel structure. However, there is no strategic dependence between decisions made by

the same committee across the episodes, and members’ private types are independent draws

from the same distribution, so that Assumption 1 still holds.4

4Our method in this section does not require the data to have a panel structure. The approach is

proposed in an environment where each committee is observed to make a single decision in just one episode.
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The states s and the announced targets ỹ are reported in each episode. The empirical

evidence H(⋅), is also reported in data. We also assume the data allows researchers to

observe individual and committee choice patterns conditional on the initial perception G(⋅),

at least for some realizations of state s. This holds, for instance, if there exist states of the

world s where the initial perception G(s) is known a priori, either as a result of common

sense or institutional environment. For example, potential jurors’ attitude toward a series of

legal phrases are surveyed and analyzed in Kadane (1983). Costanzo, Shaked-Schroer, and

Vinson (2010) provide a survey of jury-eligible men and women for their beliefs about police

interrogations, false confessions, and expert testimony.

This model admits a unique PBNE where all players adopt dominant pure strategies.

Fix a common information set I ≡ {s, ỹ,G(s),H(s)} and define:

δG,k(I) ≡∑q
(yqk − ỹk)

2[Gq,1(s) −Gq,0(s)]. (3)

In words, δG,k is the difference in ex ante deviation from target ỹ under the two alternatives

for a member who cares only about the k-th dimension of outcome and who puts all the

weights on the initial perception G(s) in his individual perception. Define δH,k in a similar

manner, only with G in (3) replaced by H. That is, a member who cares only about the

k-th dimension of outcome and who puts all weight on the empirical evidence would choose

di = 1 if and only if δH,k is negative.

Lemma 1 Under Assumption 1, the model of committee decisions with expressive recom-

mendations has a unique PBNE where each member i follows a dominant pure strategy:

σ∗i (αi,wi;I) ≡ 1{αi∑k
wi,kδH,k(I) + (1 − αi)∑k

wi,kδG,k(I) ≤ 0} . (4)

The existence of such a dominant pure-strategy BNE is due to two facts. First, with ex-

pressive recommendations, a member i’s objective function depends on his recommendation

di only through ex ante deviation from the target under the stochastic committee decision.

Such an ex ante deviation depends on di only through its impact on the distribution of the

committee decision D∗. Second, by construction, the probability for “D∗ = 1 conditional on

di = 1” exceeds that for “D∗ = 1 given di = 0”.

2.3 Identification of Fαi and FWi

We maintain that individual choices reported in data are generated as members adopt

dominant strategies in (4). Lemma 1 has a powerful implication for the empirical task of

On the other hand, if the data does report multiple decisions by the same committee, then by our arguments

the model is over-identified. In fact, one can then exploit the panel structure to identify a richer model

with strategic interactions, provided the empirical evidence and Wi are random draws for the same member

across different episodes. Section 3 elaborates on this idea and identifies a model with strategic interaction.
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inferring members’ type distributions: Each individual members’ decision observed from

data could be viewed as independent realizations of the decision rule in (4) with (αi,Wi)

being i.i.d. draws from some unknown distribution.

We maintain the following assumptions on the data-generating process.

Assumption 2 There exists some {s, ỹ,G(s)} such that (a) sign (∑kwi,kδG,k(I)) is known

and remains the same for all wi ∈ W; and (b) there exists (Ha,Hb) such that Pr{Di =

1∣s, ỹ,G(s),H} = 0 for all H in an open neighborhood around Ha and Pr{Di = 1∣s, ỹ,G(s),H} =

1 for all H in an open neighborhood around Hb.

Part (a) requires that under certain circumstances, individual recommendations would be

degenerate regardless of tastes Wi if based on the initial perception G only. In other words,

there are states of the world under which initial perceptions are unequivocal about which of

the two actions should be taken so as to achieve the announced target. For example, consider

a corporate board of a manufactory that deliberates over a proposed vertical merger with its

suppliers, while the announced target is to boost its stock prices while keeping the ROA at the

current level. Suppose the initial perception (e.g. an evaluation by an external management

consulting firm) suggests that under contemporary market and industry conditions there

should be a high cost synergy from the merger. Then, without further investigating empirical

evidence H(s), the board members would reach a consensus to recommend the merger given

the target, regardless of their heterogeneous tastes.

Part (b) is a joint restriction on {s, ỹ,G(s)} and the support of empirical evidence. It

requires there be “extreme evidence” H(s) under which individuals recommendations are

degenerate given the triple of states, targets and initial perceptions. This condition can be

verified using the distributions of individual choices and empirical evidence in data.

The rest of Section 1 identifies the distributions of αi and Wi, conditional on a triple

{s, ỹ,G(s)} that satisfies Assumption 2. We suppress the dependence on this triple to

simplify notations. Without loss of generality, we consider the case where (s, ỹ) is such that

a member always recommends di = 0 if based on the initial perception only (i.e. ∑kWi,kδG,k >

0). Then from (4)

Pr{Di = 1∣I} = Pr{c(Wi;I) ≤ −
1−αi

αi
} , where (5)

c(Wi;I) ≡ (∑k
Wi,kδH,k(I)) / (∑k

Wi,kδG,k(I)) . (6)

2.3.1 Visualizing individual choices

To get an overview of our main methods, it helps to visualize how private types affect

individual decisions. Suppose the outcome space is two-dimensional (K = 2), which is

common in a lot of applications including the corporate board decision example above and

the monetary policy decisions at the Bank of England below (where decisions are discretized
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into binary actions as to whether to increase the current interest rate or not). We sketch our

main arguments for J ≡ ∣A∣ = 2 and Q ≡ ∣Y ∣ = 3, i.e. with two possible types of ideological

bias and three outcome scenarios. Proofs for general cases with J > 2 and Q > 3 do not pose

new conceptual challenges and require more tedious algebra.

We begin by simplifying notations so as to facilitate our visualization. First, set Wi,1 = 1

as a scale normalization. Drop the second subscript from Wi,2 and denote its normalized

support by W ≡ [w,w]. Second, without loss of generality, let ỹ = y3 ∈ Y so that the

summation in the definition of δG,k, δH,k is reduced to ∑q=1,2. Then individual choices depend

on H(s) only through hq(s) ≡ Hq,1(s) −Hq,0(s) for q = 1,2. Likewise for G(s). Thus, with

a slight abuse of notation we write the common information set I in a different but more

succinct way as I ≡ {s, ỹ, g(s), h(s)} where g ≡ (g1, g2) and h ≡ (h1, h2) hereinafter. By

construction, the support of h is {h ∈ [−1,1]2 ∶ h1 +h2 ∈ [−1,1]}. Third, let Ri ≡ −(1−αi)/αi

and denote its support R ≡ (r1, r2). W.L.O.G., let r1 < r2, or equivalently, α1 < α2. Finally,

suppress the dependence of c(Wi;I) and Pr{Di = 1∣I} on the triple {s, ỹ, g(s)} that is

conditioned on and write them as c(Wi;h) and Pr{Di = 1∣h}, where s is also suppressed

from h(s). We also refer to h as the empirical evidence hereinafter.

For a member with (αi,Wi) = (αj,w), define an “indifference hyperplane” {h ∶ c(w;h) =

rj} (These are lines in R2 when Q = 3). Each hyperplane partitions the space of empirical

evidence into two parts: one in which the dominant-strategy for a member with (αj,w) is to

choose 1 and the other 0. While the intercepts of the hyperplanes depend on ideological bias,

their slopes depend on tastes only according to (5) and (6). For instance, given any empirical

evidence h on the lower-left side of a hyperplane associated with (αj,w), the dominant choice

for a member with (αj,w) is 1.

We now summarize some properties of the hyperplanes that are useful for the iden-

tification exercise. For any w, the two hyperplanes associated with (αj,w) for j = 1,2 are

parallel by construction. For any αj, the hyperplanes (lines) associated with different weights

w intersect at the same point, denoted by hj ≡ (hj1, h
j
2), for all w ∈W . Slopes of these hyper-

planes are negative because the support of tastes Wi is non-negative. These slopes are the

rates of substitution between the two dimensions of the empirical evidence that is required

to keep a type-(αj,w) member indifferent between two alternatives. Also, conditioning on

{s, ỹ, g(s)}, the rate of substitution is independent from the empirical evidence h and the

ideological bias αi, and is monotonic in the taste for outcomes Wi.5 The direction of mono-

tonicity of the slopes as Wi increases is determined by the target ỹ and the outcome space

Y, which is available in data.

For the rest of Section 2.3, we present our method for the case where the hyperplane

for type-(αj,w) has a greater slope (i.e. is “less steep”) than that for type-(αj,w). This is

5The slope of the hyperplane given taste w (and any αj) is ξ(w) ≡ −(a1,1 +wa1,2)/(a2,1 +wa2,2), where

aq,k ≡ (y
q
k − ỹk)

2. The sign of ∂ξ(ỹ;w)/∂w depends on the vector of aq,k’s but not on w or h.
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without loss of generality, since the ranking between these two rates is identifiable from data

as argued above. Identification under the other case follows from symmetric arguments.

The six panels in Figure 1 enumerate all possibilities regarding the positions of a generic

pair of extreme evidence ha, hb relative to the indifference hyperplanes. The “flatter” and

the “steeper” hyperplanes are associated with w and w respectively while dashed and solid

hyperplanes are associated with α1 and α2, respectively. To lay out our argument, it is

convenient to index the set of convex combinations of ha, hb, denoted H(ha, hb), by their

weights in front of hb. That is, for any h ∈ H(ha, hb),

λ(h) ≡ {λ ∶ h = (1 − λ)ha + λhb}.

For any λ ∈ [0,1], let h(λ) be a shorthand for λhb + (1 − λ)ha. Also define:

λj ≡ {λ ∶ c(w , h(λ)) = rj} and λj ≡ {λ ∶ c(w , h(λ)) = rj}.

In words, λj is the index for an h ∈ H(ha, hb) under which a member with (αj,w) is indif-

ferent between two alternatives. Hereinafter we refer to them as “indifference thresholds”

on H(ha, hb). Thus the positions of extreme evidence relative to the hyperplanes are fully

characterized by the order of these thresholds over H(ha, hb).

2.3.2 Finding out the order of indifference thresholds

To reiterate, our identification arguments condition on a triple {s, ỹ, g(s)} and a pair

of extreme evidence (ha, hb) that satisfy Assumptions 2. The first step in our method is

to order the indifference thresholds over the set of convex combinations of ha and hb, i.e.

H(ha, hb). This matters for the subsequent identification of Fαi
, FWi

, because it determines

how variations in the empirical evidence over H(ha, hb) affect individual choice probabilities

through the distributions of αi and Wi.

To see how the order of thresholds matters for the identification exercise, first consider

the case in panel (i) of Figure 1. Under hb, all members choose 1 regardless of types αi,Wi;

under ha, all choose 0. For any h ∈ H(ha, hb) to the right of the indifference hyperplane for

(α2,w) (i.e. λ(h) < λ2), the individual conditional choice probability (CCP) Pr{Di = 1∣h} is

zero. That is, all members would choose 0, regardless of their types (αi,Wi) whenever h is

sufficiently close to ha. As the evidence moves toward hb on H(ha, hb) and λ(h) crosses λ2,

members with α2 and wi close to w switch to choose 1 so that Pr{Di = 1∣h} becomes positive.

As h moves further towards hb and λ(h) crosses λ1, members with α1 and wi close enough

to w also start to choose 1. When the evidence moves further toward hb and beyond λ2, all

members with bias α2 choose 1 regardless of tastes Wi, while those with α1 and sufficiently

low wi still choose 0. The CCP becomes degenerate once the evidence moves beyond λ1 and

is sufficiently close to hb. Hence to recover Fαi
, FWi

from the CCPs, one needs to deal with
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a finite mixture of two non-degenerate distributions at least for certain range of empirical

evidence.

Next, consider panel (ii) in Figure 1. There the CCPs can not change as h vary over

a range of empirical evidence indexed between λ2 and λ1. This is because, conditional on

any such evidence h, all members with bias α2 choose 1 while all those with bias α1 choose

0, regardless of their tastes wi respectively. In comparison, the identification of Fαi
, FWi

does not require dealing with finite mixtures of non-degenerate distributions, but the main

challenge is to relate the indifference hyperplanes for different tastes wi to empirical evidence

over the set of convex combinations H(ha, hb).

To fully recover the order of the indifference thresholds, we exploit variations in the

extreme evidence. In particular, as the pair extreme evidence ha, hb move, the relative

positions of indifference thresholds will register different patterns of change, due to the

difference in the rates of substitution over the indifference hyperplanes. This can be visualized

in Figure 1 as follows. Fix hb and vary ha vertically (i.e. in the dimension of ha2 alone), the

direction of changes in the distance between the ordered indifference thresholds differ across

the six scenarios. For instance, in case (i), the distance between the first and the last

threshold becomes larger when ha2 increases and ha1, h
b are fixed; in contrast, such a distance

would diminish in case (iv) under the same movements of ha2. The following lemma formalizes

this argument by providing details about how the comparative statistics in distances between

identified thresholds differ across the six scenarios.

Lemma 2 Suppose Assumption 1 holds. For any {s, ỹ, g(s)} and any pair ha, hb that satisfy

Assumption 2, the order of {λj, λj}j=1,2 is identified.

2.3.3 Recovering Fαi
and FWi

: Cases (ii), (iii), (v) and (vi)

With the order in {λj, λj}j=1,2, we now show how to recover the distributions of αi and

W in each one of the six cases. We first consider the cases where the tripe {s, ỹ, g(s)}

conditioned on and the pair of extreme evidence (ha, hb) used are such that the order of

indifference thresholds are as shown in panels (ii), (iii), (v) and (vi) of Figure 1. These are

relatively easier cases, because the CCPs are never mixtures of non-degenerate distributions

as evidence varies over the convex combination H(ha, hb).

Assumption 3 (a) For the target ỹ, the 2-by-2 matrix [a1,1, a1,2;a2,1, a2,2] is full-rank, where

aq,k ≡ (yqk − ỹk)
2 for q = 1,2. (b) The initial perception is such that a1,1g1 + a2,1g2 and

a1,2g1 + a2,2g2 are both non-zero at state s.

Part (a) of this assumption is a mild condition on the announced goal for the committee.

Among other things, it rules out uninteresting pathological situations where individual tastes

do not matter for calculating ex ante deviations from the target outcome. Identification of
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the distribution of Wi would fail without this condition, because individual CCPs would be

independent from members’ idiosyncratic weights. Also note this condition is verifiable given

knowledge of ỹ and the outcome space Y.

Part (b) rules out another pathological case where one out of the two dimensions in

outcome does not affect individual decisions through initial perception at all. Under the

other maintained assumptions, it is sufficient for implying the monotonicity of c in w for

almost all evidence. It is possible to attain identification even under the “knife-edge” case

when part (b) fails, provided the monotonicity of c in w given ha, hb still holds. Also, it is

worth noting that part (b) can in principle be verified using data. This is because, as shown

below, the initial perceptions are identifiable from CCPs even without part (b) under other

maintained assumptions.

Proposition 1 Suppose Assumption 1 holds, and there exists {s, ỹ, g(s)} and a pair of ex-

treme evidence (ha, hb) satisfying Assumptions 2 and 3. If the order of indifference thresholds

{λj, λj}j=1,2 is as shown in panels (ii), (iii), (v) or (vi) in Figure 1, then Fαi
and FWi

are

identified.

The intuition for this result can also be visualized using the panels in Figure 1. Consider

case (ii). By varying the empirical evidence from ha to hb, one can recover the second

indifference threshold as the infimum of the subinterval ofH(ha, hb) over which the individual

CCPs is in the interior of (0,1) but invariant. In addition, the invariant CCPs over the

interval then identify probability mass function for α1. The full-rank condition in part (a) of

Assumption 3 then implies that the initial perception g(s) can be recovered using knowledge

of support of bias A. Consequently, the equations characterizing the indifference hyperplanes

are also identified. With the monotonicity of c in tastes induced by part (b) of Assumption

3, we can invert the CCPs to recover (over-identify) the distribution of idiosyncratic tastes.

2.3.4 Recovering Fαi
and FWi

: Cases (i) and (iv)

Consider case (i). Define:

λ1 ≡ sup{λ ∶ Pr{Di = 1 ∣ h = (1 − λ)ha + λhb} = 0}; and

λ4 ≡ inf{λ ∶ Pr{Di = 1 ∣ h = (1 − λ)ha + λhb} = 1}.

Knowing that λ4 = λ1 is on the indifference hyperplane for (α1,w) allows us to solve for

δG,1 + wδG,2 at {s, ỹ,G(s)}, using knowledge of α1 (and r1). Likewise, knowing λ1 = λ2

and α2 allows us to solve for δG,1 + wδG,2. These in turn allow one to solve for λ1 and λ2
using c(w;h(λ1)) = r1 and c(w;h(λ2)) = r

2. Thus all indifference thresholds {λj, λj}j=1,2 are

identified. Let λ2 ≡ λ1 and λ3 ≡ λ2.

The pair of evidence h(λ2) and h(λ1) are of particular importance for the identification

question for the following reason: For any h outside the interval between these two, ϕ(h) ≡
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Pr{Di = 1∣h} is a product of the marginal distribution of W and the probability mass

function for αi. For any h between these two, the choice pattern ϕ(h) takes the form of a

finite mixture.

To characterize the range of tastes that are involved in such a finite mixture, we introduce

the following definition and notations. For j = 1,2, define φj ∶W → [λ1, λ4] as

φj(w) = {λ ∈ [λ1, λ4] ∶ c(w,h(λ)) = r
j}.

In words, φj(⋅) describes how far the empirical evidence needs to move to the direction of hb

in order for an individual with taste w and ideological bias αj to become different between

both alternatives. The image of φj(⋅) is [λ1, λ4] by construction. For λ ∈ [λ1, λ4], the inverses

of φj(⋅) is defined as :

φ−11 (λ) ≡

⎧⎪⎪
⎨
⎪⎪⎩

c−1(r1, h(λ)) for λ ∈ (λ2, λ4)

w for λ ∈ (λ1, λ2)
;

and

φ−12 (λ) ≡

⎧⎪⎪
⎨
⎪⎪⎩

c−1(r2, h(λ)) for λ ∈ (λ1, λ3)

w for λ ∈ (λ3, λ4)
.

In words, for any given h(λ) and αj, the function φ−1j (⋅) returns a cutoff value in individual

taste w beyond which a member with αj would vote for Di = 1. The reported cutoff is

censored at the boundaries of support W by construction. Let w0 ≡ w and w0 ≡ w so that

λ3 = φ2(w0) and λ2 = φ1(w0). Define w1 ≡ φ−11 (λ3) and w1 ≡ φ−12 (λ2). By construction,

w1 > w0 while w1 < w0. Of course, the values for w1 and w1 depend on the triple {s, ỹ, g(s)}

conditioned on and the extreme evidence {ha, hb} considered. Both w1 and w1 have an intu-

itive economic interpretation. Recall that the function c under Assumption 3 is monotonic

in W for almost all pairs of extreme evidence. Then for any evidence h between h(λ4) and

h(λ3), an application of the law of total probability suggests ϕ(h) ≡ Pr(Di = 1∣h) equals

Pr{W ≤ w∗}Pr{αi = α
1} +Pr{αi = α

2}

for some w∗ located on [w0,w1]. Likewise, for any h between h(λ2) and h(λ1), ϕ(h) ≡

Pr(Di = 1∣h) equals:

Pr{W ≤ w′}Pr{αi = α
2}

for some w′ located on [w1,w0]. We show identification under the following condition, which

is sufficient but not necessary.

Assumption 4 w1 < w1.

This is a joint restriction on the triple {s, ỹ, g(s)} and the pair of extreme evidence

(ha, hb) conditioned on. Essentially it requires that, as the evidence varies over the set of
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convex combinations H(ha, hb), the ranges of evidence that lead to non-degenerate CCPs

are sufficiently apart for the two bias types. In other words, the ranges of evidence H(ha, hb)

covered by the two sets of indifference hyperplanes for α1 and α2 (i.e. [λ1, λ3] and [λ2, λ4] in

panel (i) of Figure 1) must be sufficiently non-overlapping. With the indifference thresholds

identified above, this condition is verifiable. It is also worth noting that for our identification

method to apply, we only need the support of empirical evidence to contain one such pair.

Proposition 2 Suppose Assumption 1 holds, and there exists {s, ỹ, g(s)} and extreme ev-

idence (ha, hb) satisfying Assumptions 2, 3 and 4. If the order of indifference thresholds

{λj, λj}j=1,2 is as shown in panels (i) or (iv) in Figure 1, then Fαi
and FWi

are identified.

Identification can also be established for the more general case where Assumption 4 fails.

Proof under this scenario requires more tedious algebra and is presented in the Appendix B

for the sake of completeness.

2.3.5 Discussions about estimation

With the model identified nonparametrically, one can use sieve maximum likelihood esti-

mator (MLE) to jointly estimate the probability mass function for αi and the distribution of

Wi. That is, let Fn denote an appropriately chosen sequence of sieve spaces for continuous

cumulative distribution functions over W such that as n → ∞, Fn becomes dense in the

parameter space for FW . Let P ≡ {p ∈ [0,1]∣A∣ ∶ ∑j≤∣A∣ pj = 1} denote the parameter space of

the probability mass function for ideological bias. Define:

(p̂, F̂ ) = arg max
p∈P,F ∈Fn

1

N
∑

N

n=1 L̂n(p,F )

where n indexes the cross-sectional units of independent committees and N is the sample

size; and

L̂n(p,F ) ≡∑
I

i=1 log∑j≤∣A∣ pjψj(In, F )dn,i[1 − ψj(In, F )]1−dn,i

where In is the common information in the n-th committee in data; dn,i is the recom-

mendation by member i in committee n; and ψj(I, F ) is the probability that a mem-

ber chooses 1 conditional on the common information I and an ideological bias αi = αj

when the distribution of individual tastes is F . That is, ψj(I, F ) is the probability that

“αj∑kWi,kδH,k(I) + (1 − αj)∑kWi,kδG,k(I) ≤ 0” when the distribution of Wi is F . Condi-

tions for consistency of sieve MLE, as well as discussions on appropriate choices of the sieve

space Fn, are provided in Shen (1997), Chen and Shen (1998) and Ai and Chen (2003).

3 Strategic Recommendations

Committees are often scheduled to make multiple decisions, and the members could be

motivated by career concerns (e.g. promotion, re-election, or reputation, etc). Thus members
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may care about how likely their recommendations conform with the final committee decision.

Such a strategic incentive could lead them to deviate from what would be the decision under

expressive recommendation. The strategic interaction between members depends on how the

committee aggregates individual recommendations into a group decision. In what follows,

we focus on identification when committees adopt a simple majority rule. Our method can

be applied under alternative rules for aggregating individual decisions, as long as these rules

are known to researchers.

3.1 The Model

Consider a panel data with each cross-sectional unit being an independent committee (C)

that makes decisions in several episodes l = 1, ..., L. (We suppress indices for committees to

simplify notations.) Individual recommendations in each episode are also observed in data.

Each committee aggregates individual choices by a majority rule known to all members:

That is,

D∗
l = max

d∈{0,1}
∑i∈C 1{Di,l = d},

where D∗
l and Di,l are committee and member i’s decisions in episode l respectively. To

simplify exposition, suppose the size of committees ∣C∣ are fixed throughout the data.6

Members’ payoffs are similar to that in Section 2.1, except for an additional incentive

to conform with the final committee decision. Let Il ≡ {Sl, Ỹl,Gl(Sl),Hl(Sl)} denote the

random common information set in episode l. In a Bayesian Nash Equilibrium, a member i

chooses Di,l(αi,wi,l;Il) ∈ {0,1} in episode l as:

arg min
di,l∈{0,1}

{ED∗ [1(D∗
l /= di,l)∣di,l;αi,Il] +EY,D∗ [∑k

wi,l,k(Yl,k − ỹl,k)
2∣di,l;αi,Il]} , (7)

where wi,l,k is the weight i puts on the k-th objective in episode l. The expectation in (7)

is taken with respect to (Yl,D∗
l ) given i’s perception in (1). Such an expectation depends

on other members’ strategies and the joint distribution of types (αi,Wi)i∈C. The first term

in (7) captures strategic incentives, or “career concerns”. We have normalized the weight

on this term to 1, so that wi,l,k are interpreted as weights on the outcome relative to the

strategic incentive.7 Similar specifications were used in Levy (2007) and Bergemann and

Morris (2013).

We need to refine the assumptions on the information available to the committee and

individuals in the current context of panel data structure.

6If data report different number of members across committees, our method applies after conditioning

on sizes of committees.
7This is an innocuous normalization because by construction the scale of unobserved weights cannot be

identified, just as in the model of expressive recommendations.
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Assumption 5 (a) Across members i and episodes l, the tastes Wi,l ≡ (Wi,l,k)
K
k=1 are in-

dependent draws from a continuous distribution FWi∣Il with positive densities over a known

support W ⊆ RK
+ . (b) The tenure of each committee is partitioned into several intervals, each

of which consists of m consecutive episodes. For each i, αi is fixed within an interval. Across

the intervals, αi are i.i.d. draws from a multinomial distribution Fαi
that is independent from

Il. (c) αi and Wi are independent given Il, with Fαi
, FWi∣Il being common knowledge among

committee members.

Part (a) is motivated by the reality that individual tastes Wi,l are affected by group

deliberations in each episode, but often remain idiosyncratic regardless of the pooled infor-

mation. We allow such idiosyncrasies to be correlated with the common information set

Il. Part (b) captures the fact that members’ bias is more persistent than tastes for different

objectives. One reason for this is that members need time to get experienced before changing

the weights that they apply to two sources of information. For instance, one of the sources

of information is updated every m periods. Another reason is that the length of service for

each member is in unit of m episodes, and thus personnel changes always occur at the end

of an interval with m episodes. (See Example 2 for details.)

Assumption 6 (a) Members in the same committee share the same initial perception G(Sl),

which is fixed within each interval of m episodes, but across intervals are i.i.d. draws from

some distribution over H conditional on realizations of Sl. (b) Across all episodes (within

and across intervals), the empirical evidence Hl(Sl) are i.i.d. draws from some distribution

over H conditional on realizations of Sl.

As with expressive recommendations, our identification method can be extended to ac-

commodate committee- and member-level heterogeneities that are reported in data. Also,

our identification method below can be extended to allow for heterogeneity in members’

initial perceptions, as long as such heterogeneity can be conditioned on in data.

Let aq,k(ỹl) ≡ (yqk − ỹl,k)
2 and Fl,q,d(s;αi) ≡ αiHl,q,d(s) + (1 − αi)Gq,d(s), where ỹl is the

target announced for episode l; Hl,q,d(s) denotes in episode l, the probability that Y = yq

given s and d according to empirical evidence and this is similar to Hq,d defined in Section

2. Applying the law of iterated expectations to the second term in the objective function in

(7), we can rewrite the minimization problem in (7) equivalently as:

max
di,l∈{0,1}

Pr(D∗
l = di,l∣di,l;αi,Il) −∑

k,q

wi,l,k[aq,k(ỹl)( ∑
d∈{0,1}

Fl,q,d(sl;αi)Pr(D∗
l = d∣di,l,Il))]. (8)

where Pr(D∗
l = di,l∣di,l;αi,Il) depends on strategies adopted by other members than i.

Example 2 (Monetary Policy at the Bank of England) The Monetary Policy Committee

(MPC) at the Bank of England meets monthly to set an interest rate they judge will minimize

17



ex ante deviation of future outcomes from the targeted inflation and GDP. That is, for each

episode (month), the target is two dimensional, i.e. ỹl = {p̃l, π̃l} with p̃l being the targeted

GDP and π̃l the targeted inflation rate. (See for example Besley, Meads, and Surico (2008).)

The weights that i assigns to GDP and inflation, relative to strategic incentives, are given

by wi,l,1 and wi,l,2 respectively.

Each member formulates an updated perception Fl,q,d(s;αi) about how actions affect the

stochastic outcome of GDP and inflation rate. Such a perception is a weighted average of

two most relevant sources of information: two sets of forecasts of inflation and output under

various interest rates, one by MPC and the other by outsiders (i.e. non-MPC professionals

in the private financial sector). The forecasts by outsiders are reported quarterly, while

the forecasts for MPC members are adjusted through their monthly deliberations prior to

decisions. The length of service in the committee varies across members.

We now establish the existence of symmetric Bayesian Nash equilibria in the model. As

before, we condition on the common information Il and suppress it from notations. A pure

strategy profile is defined as σ ≡ (σi)i∈C, where σi ∶ A ⊗W → {0,1}. Let πi(di, αi,wi,l;σ−i)

denote the ex ante payoff for a member i, given his choice di and types (αi,wi,l) and others’

strategies σ−i ≡ {σj}j/=i.

Definition 1 A profile σ is a PBNE at Il in the model of committee decisions with strategic

recommendations if for all i and (αi,wi,l),

σi(αi,wi,l;Il) = arg max
di∈{0,1}

πi(di, αi,wi,l;σ−i,Il)

where σ−i ≡ (σj)j/=i. A PBNE is symmetric if σi = σj for all i, j.

We first characterize best response functions for committee members. Let pd,di(σ−i)

denote the probability that the committee chooses d given i’s decision di and others’ strategies

σ−i. With (αi,Wi,l) independent across i, we have p1,1(σ−i) > p1,0(σ−i) regardless of σ−i due

to the simple majority rule. It follows from p1,di = 1 − p0,di that i’s best response to σ−i is:

σi(αi,wi,l;σ−i,Il) ≡ 1{αi∑k
wi,l,kδH,k(Il)) + (1 − αi)∑k

wi,l,kδG,k(Il)) ≤
p1,1(σ−i)−p0,0(σ−i)
p1,1(σ−i)−p1,0(σ−i)} ,

(9)

where δH,k and δG,k are functions of Il defined as in (3).8 Note the L.H.S. of the inequal-

ity in (9) summarizes i’s perception of the difference in ex ante deviations under the two

alternatives, in the absence of any strategic concerns.

8To see this, note that p1,di(σ−i) = 1− p0,di(σ−i) by construction. Using this fact, one can write the part

of the objective function in (8) that depends on di as:

pdi,di(σ−i) − p1,di(σ−i)∑k,q
wi,l,kaq,k(ỹl)∆Fl,q(sl;αi)

where ∆Fl,q(s;αi) ≡ Fl,q,1(s;αi) −Fl,q,0(s;αi).
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Let φ(⋅ ;Il) ≡ Pr{αi∑kwi,l,kδH,k(Il) + (1 − αi)∑kwi,l,kδG,k(Il) ≤ ⋅ ∣ Il} and φ′(⋅ ;Il) be

its derivative with respect to the first argument. Define a mapping ϕ ∶ (0,1) → (−∞,+∞)

such that ϕ(τ) equals the R.H.S. of the inequality in (9) when all others j /= i follow the

same pure strategy which leads to Pr(Dj,l = 1∣σj) = τ . The form of ϕ depends on the size

of the committee. (We present a close form for ϕ when the number of members ∣C∣ = 3 in

Appendix C.) Nevertheless, ϕ(λ)→ −∞ as λ→ 0 and ϕ(λ)→ +∞ as λ→ 1 by construction,

regardless of the committee size.9 Let ϕ ○ φ denote the composition of the two functions.

Lemma 3 Under Assumptions 5 and 6, the model of committee decisions with strategic

recommendations has a symmetric PBNE at Il if either (a) W is bounded; or (b) there

exists η > 0 and a pair (κ0, κ1) ⊂ R1 such that dϕ○φ(κ;Il)
dt > 1 + η for all κ > κ1 or κ < κ0.

We sketch the proof of the lemma in the text. By construction, a symmetric PBNE at

Il is characterized by some κ∗ ∈ R that solves:

ϕ ○ φ(κ∗;Il) − κ
∗ = 0. (10)

The composite function ϕ○φ is continuous given Il due to our maintained assumptions. Also

recall that ϕ(λ) → −∞ as λ → 0; and ϕ(λ) → +∞ as λ → 1. If the support W is bounded,

then the L.H.S. of (10) must be negative if evaluated at some κ sufficiently small, and must

be positive at some κ sufficiently large. The Intermediate Value Theorem implies there exists

κ∗ that solves (10). On the other hand, if W is unbounded, then the L.H.S. of the inequality

in (9) has unbounded support. Condition (b) in Lemma 3 ensures that the derivative of

ϕ ○ φ eventually remains sufficiently greater than 1 in both tails. This guarantees a fixed

point exists in (10) as the absolute value of κ becomes sufficiently large. (Condition (b) is

a restriction on the tail behavior of the distribution of the index on the L.H.S. of (9). In

Appendix C, we provide an example of sufficient conditions that imply (b).)

In general, the model of strategic recommendations admits multiple PBNE because (10)

could well admit multiple solutions for a given Il. For the rest of the paper, we follow

the convention of literature on empirical games (e.g. Bajari, Hong, Krainer, and Nekipelov

(2010) and Lewbel and Tang (2013)), and assume that data-generating process only involves

a single PBNE. That is, a single equilibrium is being played across all committees (games)

indexed by the same information Il.

For the rest of Section 3, we maintain that committee members’ recommendations in

data are rationalized by the symmetric PBNE defined in Definition 1. Our goal is to recover

the distributions of ideological bias αi and tastes Wi,l from the distributions of individual

recommendations Di,l and committee decisions D∗ as well as the information Il. This is

9To see this, suppose ∣C∣ = 2n + 1. Then p1,1 − p1,0 = (
2n
n
)τn+1(1 − τ)n−1, which converges to 0 as τ

approaches 0 or 1. On the other hand, p1,1−p0,0 = p1,1+p1,0−1, which converges to 1 as τ → 1 and converges

to −1 as τ → 0.
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done in three steps. First, recover type-specific CCPs Pr(Di,l = di,l∣αi;Il) and the probability

masses for αi as the components and weights of a finite mixture respectively, up to unknown

values of αi. Second, show the “type-specific” CCPs are monotonic in αi. Together with the

first step, this implies the distribution of αi and the type-specific CCPs are fully recovered.

Third, identify the distribution of Wi,l using variations in type-specific CCPs Pr(Di,l =

di,l∣Il;αi) due to continuous changes in Il.

3.2 Recovering type-specific CCPs

The first step of identification exploits the panel structure of the data. Under Assump-

tions 5 and 6, the private types (αi,Wi,l) and the common information Il are both drawn

every m episodes in the data. Thus for identification purposes, we consider the DGP equiv-

alently as one in which each cross-sectional unit (i.e. an independent committee) is observed

to make decisions in L = m episodes. For the rest of this section, we maintain that, for a

known sl, the realizations of G(sl) can be effectively conditioned on in data. Among other

things, this happens when G(sl) is observed for a subset of the state space S. For instance, in

the application of monetary policy decisions at the Bank of England in Section 4, the initial

perception refers to quarterly forecasts of policy outcomes by outsiders, which is reported in

data.

Let X denote the support of the common information set Il ≡ {Sl, Ỹl, G(Sl), Hl(Sl)}

(that is, X ≡ S × Y ×H ×H where S and Y are finite and H is infinite). Let the lower case

xl ≡ {sl, ỹl,G(sl),Hl(sl)} ∈ X denote a realization of Il. Let dti ≡ (di,l)1≤l≤t, for all 1 ≤ t ≤ L.

That is, dti denotes i’s decisions up to the t-th episode in the cross-sectional unit. Likewise,

let st, ỹt, Gt(st) ≡ (G(sl))1≤l≤t and Ht(st) ≡ (Hl(sl))1≤l≤t denote the history of states, targets,

and empirical evidence, respectively up to the t-th episode for all 1 ≤ t ≤ L. Note there is no

subscript l for G(⋅) as a function of states sl, because the initial perception is fixed across

episodes l under Assumption 6 (a). Let xt denote the history of the common information

{st,ỹt,Gt
(st),Ht

(st)} for 1 ≤ t ≤ L.

Assumption 7 (a) For all l ≤ L and all dl−1i ,xl and αi, the transition function of xl satisfies

Pr(xl∣dl−1i ,xl−1;αi) = Pr(xl∣di,l−1, xl−1); and (b) For all xl−1 and di,l−1, Pr(xl∣di,l−1, xl−1) > 0

for all xl on the support of Il.

Part (a) of Assumption 7 requires the transition of the common information set (states,

targets, initial perception and empirical evidence) to follow a first-order Markov process that

is stationary (time-homogenous).10 In the example of MPC at the Bank of England, such

10This condition is in fact not necessary for the main result in the current subsection (Lemma 4): When

transitions between s, ỹ,G,H are episode-dependent, arguments in Proposition 4 of Kasahara and Shimotsu

(2009) can be applied to identify the probability mass function of ideological bias and the conditional choice
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stationarity holds when each committee member’s choices depend on the current information

set of states in the same way across multiple episodes. Part (b) states that starting from any

combinations of past state, target, decision and empirical evidence, any state and empirical

evidence are reachable in the subsequent episode with positive probability. This assumption

is empirically verifiable from the data.

It follows from Assumption 7 that type-specific CCPs Pr(di,l∣dl−1i ,xl;αi) only depend

on the contemporary information set xl and ideological bias αi, and is stationary (time-

homogenous). To see this, recall by construction a member’s decision in episode l is a

function of Wi,l, αi and Il. With αi fixed across multiple episodes and with Wi,l independent

across l and orthogonal to the history I l−1, the type-specific CCPs Pr(Di,l = 1∣xl,dl−1i ;αi)

must be a function of xl and αi only. Its time-homogeneity then follows from the assumption

that Wi,l are i.i.d. draws from the same distribution across episodes.

Thus by the law of total probability and Assumption 7, the joint distribution Pr(dLi ,x
L)

can be written as:

∑
αi∈A

ραi
Pr(dLi ,x

L ∣ αi) = ∑
αi∈A

ραi
Pr(di,1, x1 ∣ αi)

L

∏
l=2

Pr(xl∣di,l−1, xl−1)Pr(di,l∣xl;αi)

where ραi
denotes the probability mass at αi.

Recent development of nonparametric identification of similar models of finite mixture

can be found, for example, in Hu and Schennach (2008) and Kasahara and Shimotsu (2009).

Hence decisions of committee members, when heterogeneous ideological bias αi is fixed in

multiple episodes, are analogous to dynamic discrete choices with unobserved time-variant

individual heterogeneity. Therefore this step of identification applies the method from Kasa-

hara and Shimotsu (2009) to recover the type-specific CCPs Pr(di,l∣xl;αi) and ραi
. Similar

to Kasahara and Shimotsu (2009), define:

P̃r(dLi ,x
L) ≡

Pr(dLi ,x
L)

∏l=2,.,L Pr(xl∣di,l−1, xl−1)
=∑

αi

ραi
Pr(di,1, x1 ∣ αi) ∏

l=2,.,L
Pr(di,l∣xl,αi) (11)

where the L.H.S. is directly identifiable from data. As in Kasahara and Shimotsu (2009),

integrating out subvectors in (dLi ,x
L) leads to submodels. For instance, integrating out all

in (dLi ,x
L) but (di,1, x1) leads to P̃r(di,1, x1) = ∑αi

ραi
Pr(di,1, x1∣αi); while integrating out

all in (dLi ,x
L) but (di,2, x2) leads to P̃r(di,2, x2) = ∑αi

ραi
Pr(di,2∣x2,αi). Using the first two

periods of observations, we obtain P̃r(di,1, x1, di,2, x2) = ∑
αi

ραi
Pr(di,1, x1 ∣ αi)Pr(di,2∣x2,αi).

Without loss of generality, let {1,2,⋯,B} denote a set of realized values for Il. Denote the

type-specific CCPs Pr(Di,1 = 1,I1 = x∣ αi = αj) by ξjx, for j ∈ {1,2,⋯, ∣A∣} and x ∈ {1,2,⋯,B};

and denote Pr(Di,l = 1∣Il = x,αi = αj) by ζjx. The observed joint probabilities of choice, state

probabilities up to unknown values of αi but under additional assumptions similar to Assumption 8. Nev-

ertheless, this condition simplifies follow-up arguments in subsequent steps in Sections 3.3 and 3.4.
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and empirical evidence at period 1, period 2, and the first two periods are denoted by χx ≡

P̃r(Di,1 = 1,I1 = x), χ∗x = P̃r(Di,2 = 1,I2 = x), and χx,x′ = P̃r(Di,1 = 1,I1 = x,Di,2 = 1,I2 = x′),

respectively. Furthermore, define:

U ≡

⎛
⎜
⎜
⎝

1 ξ11 ... ξ1B
⋮ ⋮ ⋱ ⋮

1 ξ
∣A∣
1 ... ξ

∣A∣
B

⎞
⎟
⎟
⎠

, V ≡

⎛
⎜
⎜
⎝

1 ζ11 ... ζ1B
⋮ ⋮ ⋱ ⋮

1 ζ
∣A∣
1 ... ζ

∣A∣
B

⎞
⎟
⎟
⎠

,Q ≡

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 χ∗1 ... χ∗B
χ1 χ1,1 ⋯ χ1,B

⋮ ⋮ ⋱ ⋮

χB χ1,B ... χB,B

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Assumption 8 (a) There exist a set of values for Il, denoted by {1,2,⋯,B}, such that B

> ∣A∣ and both U and V are full rank; and (b) there exists some x∗ ∈ {1,2,⋯,B} such that

ζjx∗ > 0 and ζjx∗ ≠ ζ
j′

x∗ for all j, j′ ∈ {1,2, ..., ∣A∣} with j /= j′.

The full-rank condition Assumption 8(a) is analogous to that imposed in Kasahara and

Shimotsu (2009) for identification. It requires xl ≡ {sl, ỹl,G(sl),Hl(sl)} to vary sufficiently

in order to achieve identification. With xl being continuous, Assumption 8(a) only requires

there exists a finite set of values on its support X where the full-rank condition holds.

This assumption is in line with Assumption 2 that requires sufficient variations of empirical

evidence. Assumption 8 (b) is a condition of non-degeneracy: there exists some states,

targeted outcomes, and empirical evidence under which committee members of different

types make different decisions. It also implies that the initial perception and the empirical

evidence cannot be too close to each other. To see this, consider the extreme case where

G(sl) = Hl(sl) for all l ≤ L Then the updated perception, as a weighted average of the two,

would be the same for members of all types. For MPC in the Bank of England, G and Hl are

forecasts by outsiders and MPC, respectively, and the difference between them is observed

to be apparent.

As shown in Kasahara and Shimotsu (2009), the variation in Il helps to recover the

distribution of αi, the cardinality of A, and the choice probability Pr(Di,l = di,l∣Il;αi). The

results are summarized in the following lemma.

Lemma 4 (Application of Propositions 1 and 3 in Kasahara and Shimotsu (2009)) Suppose

Assumptions 5, 6, 7 and 8 hold and L ≥ 3. Then ∣A∣ = Rank(Q), and the probability mass

function ραi
and the stationary choice patterns Pr(Di,l = 1∣xl;αi) are identified for all xl ∈ X

up to unknown values of αi.

Proof of this lemma follows from the same arguments for Proposition 1 and 3 in Kasahara

and Shimotsu (2009). A subtle difference is that in our setting we do not require members’

ideological bias αi to be fixed during their tenure in the committee, as stated in Assumption 5.

Instead, we only require that αi is known to be fixed within small intervals that partition the

tenure of a committee member. This is essential for analyzing committees when the member
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compositions vary frequently (e.g., external members in MPC at the Bank of England often

serve two to three years). Consequently, members tend to adjust their bias in processing

multiple sources of information, due to deliberations with new members, etc.

The identifying power is from variations in the common information set, which imply

different restrictions in various lower-dimensional submodels. For example, given the car-

dinality of the set of values considered in {1,2, .,B} and the number of episodes L, we

would derive BL restrictions in the submodels by integrating out subvectors in the history

of common information.

Finally, it is worth noting that the full-rank and non-degeneracy in 7 are only required

to hold for some realizations of Il while the identification results apply to all realizations of

the common information set on the support X .

3.3 Ordering type-specific CCPs

It remains to order the type-specific CCPs according to realizations of αi on the support

A). Our approach in this step differs qualitatively from that used in earlier papers that

nonparametrically identify finite mixture models (e.g., in An, Hu, and Shum (2010) and An

(2010)). In those papers, the conditions for ordering are either given exogenously by the

underlying theoretical model or directly imposed as an assumption on component probabili-

ties. In contrast, in this subsection, we provide conditions on model primitives which imply

the monotonicity of type-specific CCPs in αi.

Assumption 9 (a) Wi,l is independent from Il with support W ≡ (0,∞)K. (b) There exists

x∗ ∈ X such that there exists no w ∈W so that members with Wi,l = w are indifferent between

the two alternatives regardless of αi.

Part (a) in Assumption 9 further strengthens part (a) in Assumption 5. Thus the private

types αi and Wi,l are independent from each other, and are jointly independent from the

common information set Il. Assumption 9 (b) requires that decisions made by the commit-

tee members of different ideological bias diverge enough. It is implied by more primitive

restrictions on the model structure. (See Appendix C for details.)

Lemma 5 Suppose Assumption 5 (c) holds. Let Il = x∗ satisfy Assumption 8 (b) and

Assumption 9. Then Pr(Di,l = 1∣Il = x∗, αi) is monotonic in αi, and the direction of mono-

tonicity is identified.

The main insight underlying this lemma is that the set of tastes wi,l causing a member

to choose 1 changes monotonically as individual bias αi increases. Independence between

Wi,l, αi and Il, together with the positive densities of Wi,l, imply type-specific CCPs must be
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monotonic in αi. Furthermore, the direction of monotonicity is determined by the common

information available in data.

We now sketch the intuition for Lemma 5 for the case with a two dimension outcome

K = 2. It helps to visualize individual choices on the support of tastes W. Below, we

drop subscripts l from xl ≡ {sl, ỹl,G(sl),Hl(s)} and Wi,l for simplicity. Let AHdi,k be i’s ex

ante deviation from the k-th dimension of the target conditional on his choice di and the

empirical evidence H. That is, AHdi,k ≡ ∑q aq,k(ỹ) (∑d∈{0,1}Hq,dp∗d,di(x)), where p∗d,di(x) is the

probability that D∗ = d when Di = di and I ≡ x. Define AGdi,k similarly. Note p∗d,di is directly

identifiable from data in equilibrium. Under our assumptions, αi,Wi and Il are mutually

independent, and type-specific CCPs in equilibrium are:

Pr(Di = 1∣I = x;αi) = Pr{∑k
Wi,kCk(x;αi) ≤ t(x)} (12)

where Ck(x;αi) ≡ αi (AH1,k −A
H
0,k)+(1−αi) (A

G
1,k −A

G
0,k) for k = 1,2; and t(x) ≡ p∗1,1(x)−p

∗
0,0(x).

That is, for a member with bias αi, Ck(x;αi) is the difference in ex ante deviation from targets

in the k-th dimension between the two alternatives.

For any x, Pr(Di = 1∣I = x;αi) is visualized in Figure 2 as the probability mass over the

half-space {wi ∶ ∑kwi,kCk(x;αi) ≤ t(x)} in W . With individual tastes independent from bias

and the common information, the ordering of Pr(Di = 1∣I = x;αi) in αi depends on the slopes

and intercepts of indifference hyperplanes ∑kWi,kCk(x;αi) = t(x). (These hyperplanes are

collections of all members with αi who are indifferent between the two alternatives under x.)

By construction, these hyperplanes, indexed by αi, either have the same slope or all intersect

at the same point.

Part (b) of Assumption 8 requires that, given I = x∗, changes in αi affect how the support

W is partitioned by the hyperplane (or a line in R2). Part (b) of Assumption 9 rules out

uninteresting cases where some members with certain tastes (Wi) are indifferent between

both alternatives regardless of bias. In other words, part (b) of Assumption 9 requires the

intersection of bias-specific hyperplanes, if exists, must be outside the support of tastes W.

These two conditions, together with the independence between Wi and αi,Il, ensure changes

in αi always result in monotonic changes in the set of tastes in favor of an action, which in

turn leads to monotonic changes in Pr(Di = 1∣I = x∗;αi).

It remains to find out the direction of monotonicity in type-specific CCPs, which depends

on how intercepts and slopes of indifference hyperplanes vary with αi. The latter in turn are

determined by ex ante deviations due to each one of the two sources of information alone

(i.e. Ck(x; 1) and Ck(x; 0)). The direction of monotonicity is identified since the intercepts

and slopes are directly observed from the data.

To sum up, Pr(Di = 1∣I = x∗;αi) is identified from Lemma 4 and is shown to be ordered

in αi by Lemma 5. If the specific values for the elements on the support A are known, it

would then follow from Lemma 4 that the probability masses ραi
, or weights in the finite
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mixture (11), are identified.

3.4 Identifying the distribution of Wi

Having identified the type-specific CCPs Pr(Di = di∣I = x;αi) for all x and bias αi, we

next recover the joint distribution of Wi. As before, we drop subscripts l from Il and Wi,l,k,

and focus our analysis on the case with K = 2 for simplicity. To attain identification, we

need to introduce additional structural and technical conditions. For any x on the support

of I and any γ ∈ R1
+ and v ∈ R1, define:

Λ(x, v, γ;αi) ≡
t(x)−C2(x;αi)v−C1(x;αi)γ−C2(x;αi)γ

C1(x;αi) .

Assumption 10 (a) Wi,1 = Wi,0 + ηi,1 and Wi,2 = Wi,0 + ηi,2, where Wi,0 is continuously

distributed over W0 ⊂ R+ and is independent from αi and I; and ηi,k ∈ R1 is continuously

distributed over support [η
k
, ηk] for k = 1,2 with a known p.d.f. fηk(⋅). (b) Define:

K(γ, x;αi) ≡ ∫
η2

η
2

I(γ, v)fη1 (Λ(x, v, γ;αi)) fη2(v)dv,

where I(γ, v) ≡ I{ t(x)−C2(x;αi)v−C1η1
C1(x;αi)+C2(x;αi) ≤ γ ≤

t(x)−C2(x;αi)v−C1η1
C1(x;αi)+C2(x;αi) }. Then for some α ∈ A, the func-

tion K(⋅, ⋅;α) has the following property: “If δ is a bounded function with domain W0 and

∫W0
K(w,x;α)δ(w)dw = 0 for all x on the support of I, then δ(w) = 0 almost everywhere

over W0.” (c) The support for ideological bias A is known.

Part (a) of Assumption 10 allows members’ private tastes on different dimensions to be

correlated. Part (b) requires that, at least for some αi, a bounded completeness condition is

satisfied by K(⋅, ⋅;αi). It is a joint restriction on the densities of ηi,1 and ηi,2 as well as model

elements involved in t(x), C2(x;αi) and C1(x;αi). Completeness is a common condition in

nonparametric identification of structural models, e.g., see Andrews (2011). Recently, Hu

and Shiu (2012) provide sufficient conditions under which a conditional density is complete.

Part (c) is necessary for subsequent identification arguments. Since the cardinality of A

is identified above, part (c) could be replaced by some weaker shape restrictions, such as

that require elements in A to be equally spaced. With knowledge of A, the results from the

previous two subsections imply the probability mass function of αi is fully identified.

Proposition 3 Suppose Assumptions 5, 6, 7, 8, 9, and 10 hold. The distribution of Wi,0 is

identified.

The intuition for this result is as follows. By changing variables between ηi,1 and the

argument for the C.D.F. of Wi,0 in the definition of the type-specific CCPs of (12), we can

recast this definition in the form of an integral equation:

ϕ(x;αi) = ∫
∞

−∞
FW0 (γ)K(γ, x;αi)dγ, (13)
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where ϕ(x;αi) ≡ −
Pr(Di=1∣I=x;αi)C1(x;αi)

C1(x;αi)+C2(x;αi) and FW0 is the C.D.F. for Wi,0 (see Appendix A for

details). The completeness condition in part (b) then guarantees that there exists a unique

solution of FW0(⋅) to (13).

3.5 Discussions about estimation

Estimation of the distributions of αi and Wi,0 in the model with strategic recommenda-

tions takes several steps. We first estimate the cardinality of A as the rank of the matrix Q

defined in Section 3.2. We then estimate the probability masses of αi and the distribution

FW0(⋅) using a sieve maximum likelihood estimator (MLE).

Lemma 4 states ∣A∣ = rank(Q). This rank can be estimated using a sequential estimator

(Robin and Smith (2000)), which is constructed from a sequential test of the null hypotheses

Hr: rank(Q)= r against the alternative hypothesis H ′
r: rank(Q)> r, r = 0,1,⋯, ∣A∣ − 1. The

estimator r̂ can be explicitly defined as r̂ ≡ minr∈{0,1,⋯,r−1}{r ∶ Hi is rejected, i = 0,1,⋯, r −

1;H ′
r is not rejected}. The critical regions are obtained based on the result that the limiting

distribution of the test statistic is a weighted average of χ2-distributions for each step of

testing. Allowing the significance level of each step to depend on sample size appropriately,

it can be shown (Theorem 5.2 in Robin and Smith (2000)) that the rank of Q can be

consistently estimated.

Having estimated the cardinality of A, we employ a two-step procedure to estimate

the probability masses of αi and the distribution of Wi,0. First, estimate the equilibrium

probability that the committee decision is d given committee i’s decision is di, i.e. p∗d,di .

Then estimate the distributions of αi and W0 by a sieve MLE. For any x ∈ X , the objective

p∗1,1 is estimated as:

p̂1,1(x) ≡ p̂(dl = 1∣di,l = 1, x) =
ĝ(dl = 1, di,l = 1, x)

ĝ(di,l = 1, x)
.

ĝ(dl = 1, di,l = 1, x) and ĝ(di,l = 1, x) are kernel estimators. Also, p∗0,0(x) is estimated by

p̂0,0(x) in a similar fashion. The uniform consistency of p̂d,di(x) under some regularity

conditions follows from standard arguments, such as in Fan and Yao (2005). Consequently,

t(x) and Ck(x), k = 1,2 can also be consistently estimated using p̂d,di(x). Second, estimate

the distribution of αi and Wi,0 jointly using sieves MLE and the first-stage estimates. Let

∣C∣ be the number of members in a committee C (which, W.L.O.G., is fixed across cross-

sectional units), P ≡ {p ∈ [0,1]∣A∣ ∶ ∑j≤∣A∣ pj = 1} be the parameter space for the probability

mass function for ideological bias, and let Fn denote an appropriately chosen sequence of

sieves space for continuous distributions over W0 such that as n →∞, Fn becomes dense in

the parameter space for FW0 . Then the sieve MLE is given by

θ̂ ≡ (p̂, F̂ ) = arg max
p∈P,F ∈Fn

∑
N

n=1∑
∣C∣
i=1 log L̂i,n(p,F ) (14)
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where i indicates committee member, n indexes the cross-sectional units of independent

committees and N is the sample size; and L̂i,n is the estimated likelihood based on the

conditional distribution of individual and committee decisions given the common information

throughout L episodes observed for committee n.

L̂i,n(p,F ) =

∣A∣
∑
j=1
pj {

L

∏
l=1

[∫

∞

0
F (γ) K̃(γ, xn,l;α

j)dγ]
di,l

[1 − ∫
∞

0
F (γ) K̃(γ, xn,l;α

j)dγ]
1−di,l

} ,

where

K̃(γ, xn,l;α
j) ≡ −

Ĉ1(xn,l;α
j)+Ĉ2(xn,l;α

j)
Ĉ1(xn,l;αj) K̂(γ, xn,l;α

j),

and K̂(⋅) is the estimator of K(⋅) for given known form of fηk(⋅), k = 1,2 as well as the

estimates t̂(⋅) and Ĉk(⋅) from the first step.

Similar to the estimation of expressive recommendations, conditions for consistency of the

sieve MLE, as well as discussions on appropriate choices of the sieve space Fn, are provided in

Shen (1997), Chen and Shen (1998) and Ai and Chen (2003). Our estimator θ̂ is consistent, as

long as the objective function in (14), despite preliminary estimation errors in t̂(⋅) and Ĉk(⋅),

satisfies the conditions listed in those references. We leave a formal proof and the derivation

of additional technical conditions needed for consistency to future research. Instead, we

adopt a parametric approach for estimation in the empirical section below. Finally, note

our estimator can be generalized to be conditional on individual heterogeneities that are

reported in data.

4 Empirical Application

We illustrate our methodology by analyzing the decisions of the Bank of England’s Mon-

etary Policy Committee (MPC). The committee is made up of nine members. Five of them

are internal members, who hold full-time executive positions in the Bank; and the other

four are external who have no executive responsibilities and mostly work part time. The

committee meets every month to vote for an interest rate. Individual recommendations by

members of MPC are aggregated using a simple majority rule.

A growing literature on MPC focus on explaining the discrepancies in the recommenda-

tions from different members by their observed characteristics. However, it has been shown

that these observed individual characteristics of the members are not sufficient for explaining

difference in their recommendation patterns.11

We estimate a structural model of MPC decisions, which rationalizes heterogenous recom-

mendations within MPC by the members’ idiosyncratic bias and tastes, as well as strategic

11Besley, Meads, and Surico (2008) and Harris, Levine, and Spencer (2011) demonstrate that neither the

type of membership nor background characteristics fully explain the difference in voting pattern.
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career concerns. To the best of our knowledge, this marks the first effort to analyze MPC

decisions by explicitly modeling its members’ unobserved tastes and ideological bias. That

said, the main goal of this section is to provide an illustrating example for our method, rather

than a thorough analysis of MPC decisions as such.

4.1 The data and empirical specification

The data we use are compiled from several sources: (1) Individual committee members’

voting records are collected from the publicly available “Minutes of MPC Meetings” from

the Bank of England, which contain 187 monthly meetings from June 1997 to June 2013

involving 32 committee members (13 internal and 19 external). Each committee member

is observed with his votes and membership types (external or internal). In most of the

voting periods, committee members vote for two different rates (with only 8 exceptions out

of 187). Therefore we transform members’ choices to a binary variable di,l ∈ {0,1}, with 0

being “choose a lower interest rate” and 1 being “vote for a higher interest rate”. (2) The

quarterly forecasts of MPC and outsiders on inflation and output, which are published in

the Bank of England’s quarterly Inflation Report starting from August 1997. The Bank of

England carries out a survey in each quarter just before an Inflation Report which presents

the summary of the survey. The survey asks a group of external forecasters (other than MPC

members) from financial institutions mainly based in the City of London for their prediction

of inflation, output growth, etc., under various interest rates. Because the institutions that

participate in the survey are prominent and the sample size is fairly large, the outsiders’

forecasts can be taken as a good measure of conventional wisdom. Following the literature,

we use the forecasts formulated on an assumption of a constant interest rate. (3) Historical

data of inflation rates (monthly) and GDP (quarterly) are from Office for National Statistics

(ONS).

Our sample contains the data from the three sources above between August 1998 and

June 2013,12 which accounts for 60 quarters or 180 months (include the emergency MPC

meeting in September 2001). Table 1 presents summary statistics for the voting records and

membership of committee members.

The purpose of the monthly MPC meeting is to set an interest rate to achieve a two-

dimensional target: inflation and GDP, i.e., (ỹl, π̃l), where ỹl is the targeted GDP growth

rate while π̃l is the targeted inflation rate. The GDP target ỹl is measured as the potential

GDP growth rate using Hodrick-Prescott filter (with a smoothing parameter set to be 1600)

from the Bank of England’s vintage data of GDP.13 The inflation target π̃l is 2.5% up to De-

cember 2003 and 2.0% after that.14 Similarly, the state sl contains the current inflation rate

12August 1998 is the first month that the complete forecasts of both MPC and outsiders are available.
13See Robert and Prescott (1980) for details of the method.
14The targeted inflation rate was moved from 2.5 to 2 percent in January 2004 when the targeted inflation
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and growth rate of GDP. The empirical evidence Hl(y, π∣s, d) and MPC’s initial perception

G(y, π∣s, d) are constructed from the forecasts of MPC and outsiders, respectively. The sup-

port of state S is discretized as values {(yhigh, πhigh), (yhigh, πlow), (ylow, πhigh), (ylow, πlow)}.

Given targets (ỹ, π̃), state s = (y, π), empirical evidence H and initial perception G, a

member chooses an interest rate by solving the problem in equation (8) and his decision is

determined by the individual taste Wi,1,Wi,2 and ideological bias αi, where Wi,1 and Wi,2

capture the weights the member imposes on GDP and inflation relative to career concerns,

respectively. We assume that a member’s ideological bias is unchanged in a quarter and

independent across quarters, while individual tastes are i.i.d. across months. Let Wi,k =

Wi,0+ηi,k for k = 1,2, where ηi,k are i.i.d. draws from truncated standard normal distribution

between [−2,2] for k = 1,2. The distribution of Wi,0 depends on the type of membership

(Ei=1 if the member is external and Ei = 0 otherwise) and is specified as gamma distribution

with parameter (ae, be) for e ∈ {0,1}. The support of individual bias αi, A is specified as

{α1, α2, α3} = {1/4,1/2,3/4} to capture how members balance MPC and outsiders’ forecasts.

The distribution of αi also depends on Ei, and its probability masses are denoted as Pr(αi =

αj ∣Ei = e) = pj,e for 1 ≤ j ≤ 3 and e = 0,1.

These parametric specifications satisfy some main identifying conditions in Section 3.

Assumptions 5 holds because the ideological bias is assumed to be fixed in a quarter and

independent across quarters, and the tastes are i.i.d. across individuals and months. Assump-

tion 6 holds due to the institutional fact that forecasts by outsiders are available quarterly

while those by MPC members are updated monthly. We verify Assumption 9 in the context

of parametric specification in the next subsection.

4.2 Estimation and results

We maintain that committee members’ recommendations are rationalized as solutions to

(8) in each observation.15 Our objective is to estimate the parameters in the distribution

of committee members’ heterogenous tastes and ideological bias. The estimation is based

on equation (13) and completed in two steps: first, the difference of probabilities t(x) ≡

p∗1,1(x) − p
∗
0,0(x) is parametrized and estimated, then the probability masses of αi and the

distribution FW0 are estimated in the second step.

We take a different approach from the estimation strategies in previous section to estimate

t(x). For this purpose, we first express p∗d,di(x) as a function of individual choice probabilities

for both external and internal members, denoted by λInt(x) ≡ Pr(di = 1∣Ei = 0, x) and

index was changed from the retail price index excluding mortgage interest payments (RPIX) to the index of

consumer prices (CPI).
15Our model of MPC’s objective function is in line with the literature. For example, in Geraats (2009),

policymakers’ objective is to minimize the loss function Wi,t = −
αi

2
(πt −π

∗)2 − 1−αi

2
(yt − y

∗)2, where αi is an

individual’s weight put on inflation.
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λExt(x) ≡ Pr(di = 1∣Ei = 1, x), respectively.16 We adopt a logit form for the individual

choice probabilities for both external and internal members with parameters θj and ϑj(j =

0,1,2,3,4):

λExt(x) ≡ Pr(di = 1∣Ei = 1, x) =
exp{θ0+∑4

j=1 θjωj}
1+exp{θ0+∑4

j=1 θjωj}
,

λInt(x) ≡ Pr(di = 1∣Ei = 0, x) =
exp{ϑ0+∑4

j=1 ϑjωj}
1+exp{ϑ0+∑4

j=1 ϑjωj}
,

where ωj(j = 1,2,3,4) is directly recovered from data and it describes how committee mem-

bers aggregate the two sources of information H and G, targets, and possible outcomes to

solve their optimization problem.

ωj ≡

⎧⎪⎪
⎨
⎪⎪⎩

∑{q∶yq /=ỹ} aq,k(ỹ)[Hq,1(s) −Hq,0(s)] for j = k,

∑{q∶yq /=ỹ} aq,k(ỹ)[Gq,1(s) −Gq,0(s)] for j = k + 2, k = 1,2.

The validity of Assumption 9 is verified by our data. To do so, we estimate Ck(⋅, ⋅) and t(⋅)

using data on voting records and states as above. Then for all common information set x in

data, we solve for the solutions (wi,1,wi,2) for the system of equations: wi,kCk(x;αi) = t(x)

for all αi ∈ A. The solutions, which are based on preliminary estimates of Ck(⋅, ⋅) and t(⋅), are

sufficiently bounded away from the first quadrant in R2 with absolute values large relative to

the standard errors. As is shown in Figure 2 in the appendix, this suggests our data satisfies

Assumption 9.

Table 2 summarizes the estimated parameters, with the standard errors obtained through

bootstrap resampling. (We draw B = 200 bootstrap samples from the data, and the standard

errors in the table are reported as the empirical standard deviation from the 200 estimates

calculated from the bootstrap samples. ) The results reveal the pattern of members’ using

information available for their decisions. Overall, there is evidence that external and in-

ternal members process various sources of information in a similar manner. Especially, the

outsiders’ forecasts of GDP play a less important role in decision-making for both types of

members (θ4 and ϑ4 are both insignificant). On the other hand, external members care more

about inflation than external members (ϑ1 is significantly larger than θ1).

Based on the results of t(x), we estimate the parameters of committee members’ tastes

and ideological bias in the second step using MLE. Let θ ≡ {(ae, be)e, (pj,e, pj,e)j,e}, e = 0,1; j =

1,2,3, xt = {st, ỹt,Gt(st),Ht(st)} denote the information set available at episode t as before.

The log-likelihood function is given by

L =
9

∑
i=1

60

∑
t̃=1

logLi,t̃(θ),

16For example, for each internal member (Ei = 0),

pInt1,1 (x) ≡ Pr(D∗
= 1∣Di = 1,Ei = 0, x) = Pr{at least 4 out of eight others choose 1 ∣ Ei = 0, x},

and this probability can be easily expressed as a function of individual choice probabilities.
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where the summation indexed by i and t̃ are w.r.t. individuals and quarters, respectively.

The function Li,t̃(⋅) is defined as

Li,t̃(θ) =∑j
pj,ei {∏

3t̃

t=3(t̃−1)+1 [∫
∞

0
Φj,ei(γ, xt; θ)dγ]

di,t

{1 − [∫

∞

0
Φj,ei(γ, xt; θ)dγ]}

1−di,t
} ,

where

Φj,ei(γ, xt; θ) ≡ FW0 (γ;aei , bei) K̃ei(γ, xt;α
j)

with K̃ei(γ, x;αj) ≡ −C1(x;αi)+C2(x;αi)
C1(x;αi) Kei(γ, x;αj), and Kei(γ, x;αj) is defined as in the pre-

vious subsection and depends on membership. A computational difficulty arises because it

is impractical to evaluate Li,t̃(θ) analytically for a given θ. Hence we first use Monte Carlo

simulation to get an estimate of Φj,ei(γ, xt; θ),

Φ̂j,ei (xt; θ) ≡
1

M

M

∑
m̃=1

Φj,ei(γm̃, xt; θ),

where (γm̃)m̃≤M are chosen grid points on the support of fη1 and fη2 . Our estimator is thus

expressed as

θ̂ = arg max
θ
∑i,t̃

log L̂i,t̃(θ)

where

L̂i,t̃(θ) ≡∑j
pj,ei {∏

3t̃

t=3(t̃−1)+1 {di,t [Φ̂j,ei (xt; θ)] + (1 − di,t) [1 − Φ̂j,ei (xt; θ)]}} . (15)

Tables 3 and 4 summarize the bootstrap estimates of the sampling distribution of our sieve

MLE for parameters in the distributions of ideological bias and individual tastes. They are

both based on the empirical distribution of sieve MLE estimates from B = 200 bootstrap

samples. Table 3 reports the estimated sampling distribution of our estimator for the prob-

ability mass of αi. With higher probabilities, both types of members put more weights on

MPC forecasts than on outsiders’ forecasts. That is, Pr(α = 75%) > max{Pr(α = 25%),

Pr(α = 50%)} for both types of members. Besides, there is little chance that the members

weigh both evidence equally (i.e. Pr(α = 50%) is not statistically significant for both types

of members). In addition, the results imply that internal members focus slightly more on

MPC’s forecasts than external members and this is consistent with the estimates of the logit

model in the first step.

Table 4 reports the estimated sampling distribution of our estimator for the parame-

ters in the distribution of FWi
. To better interpret the estimated distribution of committee

members’ tastes, we plot the point estimate for the CDF of tastes for both types using the

estimated parameters in Figure 3. Recall that Wi,k, k = 1,2 describes the importance of GDP

and inflation relative to career concerns in members’ decisions. The point estimates in Fig-

ure 3 are consistent with a hypothesis that the external members’ recommendations are less

distorted by strategic incentives than internal members. In other words, internal members
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care more about the chance that their recommendations conform to the final committee deci-

sions. This new finding in MPC’s decisions illustrates that the existence of external members

helps to alleviate possible distortions in committee decisions due to strategic incentives for

conformity. The results also explain that the heterogeneous recommendation patterns of

different types of members are mostly ascribed to the difference in how they weigh multiple

dimensions in the target, rather than the difference in how they process various sources of

information.

5 Concluding Remarks

We study the identification and estimation of a structural model of committee decisions

when the members have two-dimensional private types: how they process different sources of

information (ideological bias); and how they weigh multiple dimensions in the target outcome

(tastes). A motivation for the model is the need to explain why committee members who

share the same target and information could end up making different recommendations.

Our model also allows for interactions between members with strategic concerns, such as

conformity to the group decision. We show how to nonparametrically recover the distribu-

tions of members’ private types from members’ decisions and sources of common information

used in decisions. The identification arguments differ qualitatively for cases with and without

strategic concerns. An empirical analysis of MPC decisions at the Bank of England suggests

the heterogeneous patterns of recommendations among different types of committee mem-

bers are ascribed more to heterogeneous tastes for multi-dimensional objectives than to the

difference in bias towards various sources of information.

There are a few directions for future research. First, we investigate the models with

expressive and strategic recommendations, while leaving out a test of one model against the

other. It will be interesting to test which model better describes committee members’ be-

havior. Second, decision makers in our model have a deterministic objective function, which

describes their view on how their decisions affect the outcomes, while allowing committee

members have multiple views enables us to further investigate committee decision-making in

the framework of “robust decision-making”. Third, our empirical analysis of MPC focus on

the explanation of heterogeneous voting patterns, while more detailed studies will provide

useful policy implications. For example, our framework allows us to investigate the effects

of committee size, composition of the committee, whether the committee is transparent or

secretive, etc.
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Appendix

A Proofs

Proof of Lemma 1. First, we characterize the best response of a member i who has types

(αi,wi) when other members adopt generic strategies σ−i ≡ {σj}j/=i, with σj mapping from

the support of αj,Wj to binary actions {0,1}. Suppress I from notations throughout the

proof. Let pd′,di be i’s belief about the chance that his decision is adopted by the committee.

That is,

pd′,di(σ−i) ≡ Pr(D∗ = 1∣di;σ−i) = ∑
{d−i∶D∗(di,d−i)=d′}

⎛

⎝
∏
j/=i

Pr(Dj = dj ∣σj)
⎞

⎠
(A.1)

where D∗(d) ≡ arg maxd∗∈{0,1}∑i 1(di = d
∗) denotes the majority rule. Then i’s objective

function is:

∑
k

⎧⎪⎪
⎨
⎪⎪⎩

wi,k

⎡
⎢
⎢
⎢
⎢
⎣

∑
{q∶yq /=ỹ}

(yqk − ỹk)
2 [Fq,1(αi)p1,di(σ−i) +Fq,0(αi)(1 − p1,di(σ−i))]

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

where Fq,di(αi) ≡ αiHq,di + (1 − αi)Gq,di , and the dependence on s is suppressed in Gq,di and

Hq,di . By removing the terms that do not depend on di, member i’s optimization problem

is equivalent to:

arg min
di∈{0,1}

∑k
{wi,k[αiδH,k + (1 − αi)δG,k]}p1,di(σ−i).

Thus member i would choose di = 1 if and only if

[p1,1(σ−i) − p1,0(σ−i)]∑k
wi,k[αiδH,k + (1 − αi)δG,k] ≤ 0.

But note that p1,1 > p1,0 regardless of other members strategies σ−i, which follows from the

definition of pd′,di(σ−i) in (A.1) and the fact that {d−i ∶ D∗(1,d−i) = 1} must be a strict

subset of {d−i ∶ D∗(0,d−i) = 1}. Hence i would choose di = 1 if and only if ∑kwi,k[αiδH,k +

(1 − αi)δG,k] ≤ 0 for all σ−i. ◻

Proof of Lemma 2. Fix the triple {s, ỹ,G(s)}. For a pair (ha, hb) satisfying part (b) of

Assumption 2, define the index for the infimum and supremum of the set of evidence that

has non-degenerate CCPs:

λ1 ≡ sup{λ ∶ Pr{Di = 1 ∣ h = (1 − λ)ha + λhb} = 0}; and

λ4 ≡ inf{λ ∶ Pr{Di = 1 ∣ h = (1 − λ)ha + λhb} = 1}. (A.2)

For example, in panel (i) of Figure 1, λ1 = λ2 and λ4 = λ1; on the other hand, in panel (ii) of

Figure 2, λ1 = λ2 and λ4 = λ1.
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First off, discussions in the second and the third paragraphs in Section 2.3.2 suggest

immediately that cases (i), (iv) can be distinguished from the cases (ii), (iii), (v) and (vi).

To see why, note in (i) and (iv), the CCPs must be strictly increasing in h over the set of

convex combinations indexed between [λ1, λ4] under Assumption 1. In contrast, in each of

(ii), (iii), (v) and (vi), the CCPs must be invariant over a certain range of evidence over

H(ha, hb).

For all six cases (i)-(vi), let λ1, λ4 be defined as in (A.2); for cases (ii), (iii), (v), (vi),

let λ2, λ3 be the infimum and the supremum of a strict sub-interval in [λ1, λ4] over which

the CCP conditional on the convex combination of extreme evidence is constant. While

λ1, λ2, λ3, λ4 are all directly identified from the CCPs in (ii), (iii), (v) and (vi), the matching

between them and the four indifference thresholds {λj, λj}j=1,2 vary across these cases. For

instance, in panel (ii), λ2 = λ2 and λ3 = λ1; in panel (iii), λ2 = λ2 and λ3 = λ1.

The unmatched thresholds as {λj(ha, hb) ∶ 1 ≤ j ≤ 4} are functions of extreme evi-

dence (ha, hb) conditioned on. Let δj,j′(ha, hb) denote the distance between λj(ha, hb) and

λj′(ha, hb), which by construction is differentiable at (ha, hb) in both arguments due to

Assumption 2. Let δ′j,j′ denote the partial derivative of δ′j,j′ with respect to the second co-

ordinate of ha for l ∈ {a, b}. Recall that in panels (i), (iv), only λ1, λ4 are identified while

in the other four panels all four indifference thresholds are identified. In what follows, we

suppress dependence of δj,j′ and δ′j,j′ on (ha, hb) for simplification. It can be shown from

Figure 1 that: in case (i), δ′1,4 > 0; in case (ii), δ′2,3 = 0 while δ′1,2 < 0; in case (iii), δ′2,3 < 0; in

case (iv), δ′1,4 < 0; in case (v), δ′2,3 = 0 while δ′1,2 > 0; in case (vi), δ′2,3 > 0. Hence all six cases

can be distinguished from each other using these identifiable partial derivatives. ◻

Proof of Proposition 1. Fix the triple {s, ỹ,G(s)} and the pair of evidence (ha, hb). Consider

the case (ii). In this case, λ2 is identified as λ1 ≡ inf{λ ∶ Pr{Di = 1 ∣ h(λ)} > 0. By

construction, c(w;h(λ2)) = r
2. With w and (ha, hb) known and λ2 identified, the equation

allows us to solve for δG,1 + wδG,2, where δG,k is defined in (3). In addition, λ2 is identified

as λ2, or the infimum of the strict sub-interval of [λ1, λ4] over which CCPs remain constant.

Likewise, this allows us to solve for δG,1 +wδG,2.

First, identify the probability mass function for αi. By construction, Pr{Di = 1∣h} =

∑j=1,2 Pr{c(W,h) ≤ rj}Pr{Ri = rj} for all h. In case (ii), Pr{c(W ;h(λ2)) ≤ r1} = 0 and

Pr{c(W ;h(λ2)) ≤ r2} = 1. Hence Pr{αi = α2}, or equivalently Pr{Ri = r2}, is identified as

Pr{Di = 1∣ h(λ2)}.

To identify the distribution FWi
in case (ii), we need to first recover the initial perception

gq for q = 1,2 at the conditioned state s. The full-rank condition in Assumption 3 implies
a1,1
a2,1

/=
a1,2
a2,2

with both sides nonzero, which in turn implies
a1,1+wa1,2
a2,1+wa2,2 /=

a1,1+wa1,2
a2,1+wa2,2 and both sides

are nonzero. With δG,1 +wδG,2 identified for w = w,w using arguments above, this inequality
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implies g1 and g2 are identified (at the state s conditioned on) as the unique solution to:

⎛

⎝

a1,1 +wa1,2 a2,1 +wa2,2

a1,1 +wa1,2 a2,1 +wa2,2

⎞

⎠

⎛

⎝

g1

g2

⎞

⎠
=
⎛

⎝

δG,1 +wδG,2

δG,1 +wδG,2

⎞

⎠
.

As a result, the function c(w;h) is identified for any given w,h.

Next, note for all λ ∈ (λ1, λ2), we have:

Pr{c(W,h(λ)) ≤ r2} = Pr{Di=1∣h(λ)}
Pr{αi=α2} . (A.3)

Under Assumption 3, it can be shown that the sign of the derivative of c with respect to

w at any h(λ) with λ ∈ [λ1, λ2] must equal the sign of

a1,1h1(λ)+a2,1h2(λ)
a1,1g1+a2,1g2 −

a1,2h1(λ)+a2,2h2(λ)
a1,2g1+a2,2g2 (A.4)

which does not depend on w. Note for any {s, ỹ,G(s)} and (ha, hb) conditioned on, this sign

is non-zero for almost all λ over [λ1, λ2].

Let c−1(r, h) denote the inverse of c at r given h. Then the left-hand side of (A.3) is either

Pr{Wi ≤ c−1(r2, h(λ))} or Pr{W ≥ c−1(r2, h(λ))}, depending on the sign of the difference in

(A.4), which is known given {s, ỹ, g(s)} and (ha, hb). Also c−1(r2, h(λ)) is continuous in λ

with c−1(r2, h(λ1)) = w and c−1(r2, h(λ2)) = w by construction. Therefore, FWi
is identified

almost everywhere over its support W.

Identification of Fαi
and FWi

under the other three cases (iii), (v) and (vi) follows from

symmetric arguments. ◻

Proof of Proposition 2. Suppose members’ decisions can be rationalized as following domi-

nant strategies under two sets of model primitives: (Fα, FW ) /= (F̃α, F̃W ). That is, (Fα, FW )

are true parameters in the data-generating process and (F̃α, F̃W ) are alternative parame-

ters that are observationally equivalent to (Fα, FW ). To simplify notations, we use q and p

to denote the probability that αi = α2 according to Fα and F̃α respectively, and drop the

subscripts W in the two c.d.f.s FW and F̃W .

For the two sets of primitives to be observationally equivalent, it must be the case that:

qF (w) = pF̃ (w) ∀w ∈ [w1,w]; and

q + (1 − q)F (w) = p + (1 − p)F̃ (w), ∀w ∈ [w,w1].

According to these restrictions, a necessary condition for (q,F ) /= (p, F̃ ) is p /= q. Then

the observational equivalence of (q,F ) and (p, F̃ ) requires

F̃ (w) =
q
pF (w), ∀w ∈ [w1,w]; and

1 − F̃ (w) =
1−q
1−p[1 − F (w)], ∀w ∈ [w,w1]. (A.5)
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With w1 < w1, the open interval (w1,w1) is non-empty and non-degenerate. It then follows

from the two conditions in (A.5) that

q
pF (w) +

1−q
1−p[1 − F (w)] = 1 ∀w ∈ (w1,w1),

or equivalently

p2 − [q + F (w)]p + qF (w) = 0 ∀w ∈ (w1,w1),

The solutions require either p = q or p = F (w) for all w in (w1,w1). If p = q, then the

restrictions in (A.5) implies F = F̃ over W. Suppose p /= q, then p = F (w). This contradicts

the assumption that FW is strictly monotonic onW . Hence there exists no (p, F̃ ) that differs

from (q,F ) but is observationally equivalent to (q,F ) at the same time. ◻

Proof of Lemma 5. For any given x, a member i chooses 1 if and only if ∑kwi,kCk(x;αi) ≤

t(x), where Ck is defined as in the text. Figure 2 visualizes this event on the (Wi,1,Wi,2)-plane

and the five panels are all the cases allowed by the non-degeneracy condition Assumption

8 (b) (we suppress the subscripts l for episodes in the proof and let Wi,k denote the k-th

coordinate in Wi.) Let B ≡ (0,∞) × (0,∞). Then

Pr(Di = di∣I = x;αi) =∬
B
I(uC1(X;αi) + vC2(X;αi) ≤ t(X))fWi,1,Wi,2

(u, v)dudv.

Since Wi is independent from X, the ordering of the type-specific CCPs w.r.t. αi is de-

termined by the relative positions of lines ∑kwi,kCk(x;αi) = t(x) on the (Wi,1,Wi,2)-plane.

Without loss of generality, let the supremum and the infimum of the support of αi be 1 and

0 respectively.

The three lines in Figure 2 denote ∑kwi,kCk(x; 1) = t(x) (line A) and ∑kwi,kCk(x; 0) =

t(x) (line B) and a generic ∑kwi,kCk(x;αi) = t(x) (line C) respectively. The event “Di = 1

given αi and Il” is shown in the figure as a half-space defined by the line ∑kwi,kCk(x;αi) =

t(x).

The slope of the line associated with a generic αi, i.e. −C1(x;αi)/C2(x;αi), is either

monotonic or invariant in αi ∈ (0,1). To see this, write Ck(x;αi) as:

Ck(x;αi) = αiCk(x; 1) + (1 − αi)Ck(x; 0) for k = 1,2,

where Ck(x; 1) ≡ AH1,k − A
H
0,k and Ck(x; 0) ≡ AG1,k − A

G
0,k (with AHdi,k,A

G
di,k

defined as in the

text). Taking derivative of −C1(x;αi)/C2(x;αi) w.r.t. αi, we get

−
d

dαi
(
C1(x;αi)

C2(x;αi)
) =

C1(x; 1)C2(x; 0) −C2(x; 1)C1(x; 0)

[αiC2(x; 1) + (1 − αi)C2(x; 0)]2
,

where the numerator does not depend on αi and is known, and the denominator is positive by

construction. Hence a line associate with a generic αi necessarily lies between the lines A and

B and their slopes are either monotonic or invariant in αi. Also note that by construction,
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if lines A and B intersect at (w∗
i,1,w

∗
i,2), then line C must also intersect with them at the

same point. In the following, we prove the lemma under two scenarios above, depending on

whether the lines A and B intersect or not.

Case 1. C1(x; 1)C2(x; 0) = C2(x; 1)C1(x; 0). Thus the lines A,B, and C are parallel.

Then the position of ∑kwi,kCk(x;αi) = t(x) can be attained by the intercepts on Wi,1-axis

or Wi,2-axis, being t(x)/C1(x;αi) and t(x)/C2(x;αi), respectively, which are both mono-

tonic in αi. For instance, suppose Ck(x;αi) > 0 for k = 1,2, the intercept on Wi,2-axis is

t(x)/[αiC1(x; 1) + (1 − αi)C1(x; 0)], which is monotonic in αi.17 Such a proof is generic no

matter whether the slope of the parallel lines is positive (panel (i)) or negative (panel (ii)).

In the former case with positive slopes, the proof is straightforward since the parallel lines

always intersect with the first quadrant and the intercept on Wi,1-axis or Wi,2-axis must be

positive, which can be used to rank the lines.

In the latter case of negative slopes, Assumption 8 (b) guarantees that there is at most

one realization of αi ∈ [0,1] such that the corresponding line has no intersection with the

first quadrant since such a line corresponds to the fact that this type of decision makers

choose alternative d = 1 with probability zero. According to the monotonicity of the slope

in αi, this type of decision makers must have αi = 0 or αi = 1. All the other lines can be

ordered by the intercepts again.

Case 2. C1(x; 1)C2(x; 0) /= C2(x; 1)C1(x; 0). Thus lines A and B intersect at (w∗
i,1,w

∗
i,2),

and so does line C. Assumption 9 (b) restricts the intersection point (w∗
i,1,w

∗
i,1) ∉ (0,∞) ×

(0,∞). Otherwise there will be some members with tastes (w∗
i,1,w

∗
i,2) who are always indif-

ferent between the two alternatives regardless of their ideological bias αi for the given Il.

This case can be further divided into three subcases as illustrated by panel (iii), (iv), and (v)

in Figure 2. In panel (iii), all the lines have positive slopes and they interact with the first

quadrant for sure and this permits us to employ the intercept arguments as in Case 1 again

to order the lines. As for panel (iv), Assumption 8(b) implies that the intersection point can

only be in the second or the fourth quadrant. Otherwise if it is in the third quadrant, there

will be more than two types of members whose choice is always d = 0 as we argued in Case

1, i.e., more than two lines with negative slope and do not pass the first quadrant. A similar

proof can be applied to the subcase depicted in panel (v) where the intersection point can

only be in the second quadrant due to Assumptions 8(b) and 9(b). In all three cases, the

argument of intercepts which depend on Ck(x;h), k = 1,2, h = 0,1 still holds and this provides

an ordering of all the lines. Consequently the choice probabilities Pr(Di = di∣I = x;αi) are

completely ordered according to αi. ◻

17The monotonicity violates when C1(X; 1) = C1(X; 0), however in this case we will have C2(X; 1) =

C2(X; 0), too. Consequently, all the members behave exactly the same regardless of their ideological bias.

This would be ruled out by Assumption 9(b) already.
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Proof of Equation (13). Under Assumption 10, identification of the joint distribution

FW1,W2(⋅) is equivalent to that of the distribution FW0(⋅). Recall that the expression of

choice probability of alternative Di = 1 in (12) is

Pr(Di = 1∣I = x;αi) = Pr{∑k
Wi,kCk(x;αi) ≤ t(x)} .

By the law of total probability and our specification of Wi,k,

Pr(Di = 1∣I = x;αi) = Pr{∑k
(Wi,0 + ηi,k)Ck(x;αi) ≤ t(x)}

= ∫

η2

η
2

[∫

η1

η
1

FW0 (
t(x)−C1(x;αi)u−C2(x;αi)v

C1(x;αi)+C2(x;αi) ) fη1(u)du] fη2(v)dv

Denote the choice probability Pr(Di = 1∣I = x;αi) by Φ(x;αi). The variation of x provides

a linear integral equation of our identification objective FW0(⋅). With the support of αi

assumed known, the functions Ck(x;αi) are also known. W.L.O.G., we only consider the

case where C1(x;αi)+C2(x;αi) > 0 and C1(x;αi) > 0 (as the other cases can be analyzed by

symmetric argument). In this case,

Φ(x;αi)

= ∫

η2

η
2

[∫

η1

η
1

FW0 (
t(x)−C1(x;αi)u−C2(x;αi)v

C1(x;αi)+C2(x;αi) ) fη1(u)du] fη2(v)dv

= ∫

η2

η
2

[∫

∞

−∞
I(γ, v)FW0 (γ) fη1 (Λ(x, v, γ;αi)) (−

C1(x;αi)+C2(x;αi)
C1(x;αi) )dγ] fη2(v)dv

= − (
C1(x;αi)+C2(x;αi)

C1(x;αi) )∫

η2

η
2

[∫

∞

−∞
FW0 (γ) I(γ, v)fη1 (Λ(x, v, γ;αi))dγ] fη2(v)dv,

where the second equality is due to change of variables, and the indicator function I(⋅, ⋅) and

Λ(x, v, γ;αi) are defined as

I(γ, v) ≡ I{ t(x)−C2(x;αi)v−c1η1
C1(x;αi)+C2(x;αi) ≤ γ ≤

t(x)−C2(x;αi)v−c1η1
C1(x;αi)+C2(x;αi) } ,

Λ(x, v, γ;αi) ≡
t(x) −C2(x;αi)v −C1(x;αi)γ −C2(x;αi)γ

C1(x;αi)
.

Applying Fubini’s theorem to the R.H.S. of the equation above,

Φ(x;αi) = − (
C1(x;αi)+C2(x;αi)

C1(x;αi) )∫

∞

−∞
FW0 (γ) [∫

η2

η
2

I(γ, v)fη1 (Λ(x, v, γ;αi)) fη2(v)dv]dγ.

The integral equation above can be succinctly summarized as:

ϕ(x;αi) = ∫
∞

−∞
FW0 (γ)K(γ, x;αi)dγ (A.6)

where

ϕ(x;αi) ≡ −
Φ(x;αi)C1(x;αi)

C1(x;αi) +C2(x;αi)
,

K(γ, x;αi) ≡ ∫

η2

η
2

I(γ, v)fη1 (Λ(x, v, γ;αi)) fη2(v)dv.
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The completeness of K(γ, x;αi) guarantees that FW0(⋅) is the unique solution to the the

integral equation (13), i.e., FW0(⋅) is nonparametrically identified. ◻

B Generalization of Proposition 2

We extend the proof of Proposition 2 by relaxing Assumption 4. To do this, we first

define

wt ≡ φ
−1
1 (φ2(wt−1)) and wt ≡ φ

−1
2 (φ1(wt−1)).

We assume alternatively,

Assumption B.1. For {s , ỹ , g(s)} conditioned on and (ha, hb) considered, w1 < w1 < w2.

It is sufficient to prove the identification results for the two cases (i) and (iv) in Figure

1 since the proof for the four cases (ii), (iii), (v) and (vi) is unchanged. Here we follow the

similar procedure to seek contradictions as in the proof of Proposition 2. The equivalence of

the two sets of primitives (q,F ) and (p, F̃ ) implies the following relationship:

qF (w1) = pF̃ (w1),w1 ∈ [w1,w1],

qF (w2) + (1 − q)F (w1) = pF̃ (w2) + (1 − p)F̃ (w1),w2 ∈ [w1,w2],w1 ∈ [w1,w1],

q + (1 − q)F (w2) = p + (1 − p)F̃ (w2),w2 ∈ [w1,w2],

where the second equality holds due to Assumption B.1 which guarantees the existence of a

non-degenerate and non-empty open interval (w1,w2). The above observational equivalence

can be further simplified as,

F̃ (w1) =
q

p
F (w1),w1 ∈ [w1,w1],

F̃ (w2) =
q

p
F (w2) +

F (w1) − F̃ (w1)

p
,w2 ∈ [w1,w2],

F̃ (w2) =
1 − q

1 − p
F (w2),w2 ∈ [w1,w2],

where the second equality is derived using the relationship qF (w1) − pF̃ (w1) = 0 for all

w1 ∈ [w1,w1]. Notice that w1 changes monotonically as we move w2, therefore we denote w1

by w1(w2). Both F̃ (w2) + F̃ (w2) = 1 and F (w2) + F (w2) = 1 need to hold on the interval

(w1,w2) in order for F̃ and F to be well-defined C.D.Fs.

We express explicitly the restriction imposed by F̃ (w2) + F̃ (w2) = 1:

1 = F̃ (w2) + F̃ (w2)

=
q

p
F (w2) +

F (w1(w2)) − F̃ (w1(w2))

p
+

1 − q

1 − p
F (w2)

=
q

p
F (w2) +

p − q

p2
F (w1(w2)) +

1 − q

1 − p
[1 − F (w2)].
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Suppressing the argument in F (⋅) and denote F (w1(w2)) and F (w2) by F1 and F2, respec-

tively. Then the relationship above provides a quadratic equation of p,

(p − q) [p2 − (F1 + F2)p + F1] = 0.

The solution p = q restricts F = F̃ for all w ∈ W. Therefore we focus on the quadratic

equation of p,

p2 − (F1 + F2)p + F1 = 0.

It is sufficient to consider the possibilities of two real roots on (0,1).

(a) There are two equal real roots, p1 = p2 = p∗. Straightforwardly, we obtain in this case

p∗ = F1+F2

2 . If we let w2 increase continuously on the interval (w1,w2), both F1 ≡ F (w1(w2))

and F2 ≡ F (w2) increase continuously and this contradicts our assumption that p is a constant

in (0,1).

(b) There are two distinct real roots, p1 ≠ p2,0 < pj < 1, j = 1,2. Vieta’s theorem implies

that p1 + p2 = F1 + F2 and p1p2 = F1, or equivalently,

p1
1 + p1/p2

=
F1

F1 + F2

.

The L.H.S. of the equation above is bounded for p1 and p2 are two constants on (0,1).

However, the R.H.S. changes with w2. The relationship w1 ≡ w1(w2) permits us to vary

w2 continuously such that w1(w2) → w. Meanwhile, w2 > w1 always holds and F2 > F (w1)

is bounded always from zero. As a consequence, the R.H.S. goes to zero as we move w2

continuously while the L.H.S. keeps a constant. This leads to a contradiction and completes

our proof. ◻

C Existence of PBNE in Section 3

This part of the appendix provides sufficient conditions for condition (b) in Lemma

3 when ∣C∣ = 3. In a symmetric PBNE, members follow the same pure strategy σ∗ which can

be characterized by a subset of the support of private types ω∗(σ∗) ≡ {(αi,wi) ∈ A ⊗ RK
+ ∶

σ∗(αi,wi) = 1}. Let p(ω∗) ≡ Pr{(αi,wi) ∈ ω∗). With ∣C∣ = 3,

p1,1 ≡ 1 − (1 − p(ω∗))2; p0,0 ≡ 1 − p(ω∗)2; p1,0 = p(ω
∗)2,

where pd,di are defined as in the text. Thus ϕ(p(ω∗)) ≡ −1+2p(ω∗)
2p(ω∗)(1−p(ω∗)) . Let φ be defined as in

the text.

TC(Tail Conditions). φ′(κ;Il)φ(κ;Il)−2 → +∞ as κ→ −∞ and φ′(κ;Il)[1−φ(κ;Il)]−2 → +∞

as κ→ +∞.
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TC is a tail restriction conditional on the information set Il, which we suppress in no-

tations for simplicity. TC requires the rate of increase of [φ(κ)]−1 as κ decreases (and the

rate of increase of [1 − φ(κ)]−1 as κ increases) is unbounded when κ gets sufficiently small

(and large respectively). This implies as κ → ±∞, the rate of changes in ϕ ○ φ(κ) (which is

a monotonic function in κ over (−∞,+∞)) eventually exceeds one. Hence ϕ ○ φ(κ) = 0 for

some κ ∈ (−∞,+∞).

To see why this implies equilibrium existence with unbounded W, note d(ϕ ○ φ(κ) −

κ)/dκ = ϕ′(φ(κ))φ′(κ) − 1 where ϕ′(φ(κ))φ′(κ) is positive for all κ ∈ R. This is because

ϕ′(φ) =
2φ2−2φ+1
2φ2(1−φ)2 > 0 with φ ∈ [0,1]. Besides, ϕ′(φ) ≡ d

dφϕ(φ) is O (φ−2) as φ → 0, and is

O ([1 − φ]
−2
) as φ → 1. As a result, ϕ′(φ(κ))φ′(κ) is O (φ′(κ)φ(κ)−2) as κ → −∞ and is

O (φ′(κ)[1 − φ(κ)]−2) as κ→ +∞. Assumption TC ensures the rate of increase or decrease in

ϕ′(φ(κ))φ′(κ) must eventually exceeds that in κ (which is constantly 1 or −1) as κ approaches

∞ or −∞. Thus it follows from continuity of ϕ and φ and the intermediate value theorem

that solutions to the fixed point equation ϕ ○ φ(κ∗) = κ∗ must exist.

D Sufficient Primitive Conditions for Monotonicity

We now analyze what primitive conditions on the quadruple (s, ỹ,H,G) that are sufficient

for Lemma 5. For this purpose, we relax Assumptions 8(b) and 9(b). To fix ideas, consider

the case with K = 2 and let the support of Wi,k be [0,+∞) for k = 1,2.18 We follow the

notations from the proof of Lemma 5 but make one more simplification by letting ∆ ≡

p1,1 − p0,0= t(x). Then the choice probability of the alternative Di = 1 is

Pr(Di = 1∣I = x;αi) = Pr (∑k
wi,kCk(x;αi) ≤ ∆) .

We now provide two sufficient conditions on model primitives for the CCP Pr(Di = 1∣I =

x;αi) to be strictly monotonic in αi. They are corresponding to the cases that∑kwi,kCk(x;αi) =

∆ are parallel and intersect, respectively. To make our problem nontrivial, we exclude the

case where Ck(x; 1) = Ck(x; 0), k = 1,2 since in such a scenario all the committee members

are homogenous in making decisions, thus the unobserved types play no role.

Condition D.1. (i) C1(x; 1)/C2(x; 1) = C1(x; 0)/C2(x; 0). (ii) Either −∞ < C1(x;h)/C2(x;h) <

0 or sign[C1(x;h)] =sign[C2(x;h)]=sign(∆), h = 0,1.

Condition D.1(i) implies that the lines ∑kwi,kCk(x;αi) = ∆ are parallel for all αi ∈ [0,1].

There are two subcases which correspond to panel (i) and (ii) in Figure 2 we need to consider:

first, the lines have positive slope on (w1i,w2i)-plane (−∞ < C1(x;h)/C2(x;h) < 0), then they

18We can also accommodate the case with bounded support of Wi,k, which only involves more tedious

algebra but does not pose any additional conceptual challenge.
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are distinguishable without any additional condition as we argued in the proof of Lemma

5. Second, if the slope is negative, then sign[C1(x;h)] =sign[C2(x;h)]=sign(∆) ensures

that all the lines intersect with the positive w1i− and w2i− axis. Again, the argument of

intercepts in proof of Lemma 5 applies and the ordering of the lines is identified. Notice that

Ck(x;h), k = 1,2, h = 0,1 are observable, hence Condition D.1 is empirically testable. Hence

by imposing condition D.1, we relax the high-level assumption of non-degenerate choice

probabilities and substitute it by the assumption on primitives.

Before present condition D.2, we express explicitly the intersection point defined in the

proof of Lemma 5 using model primitives. Recall that (w∗
1i, w

∗
2i) satisfy

∑k
w∗
i,kCk(x; 0) = t(x),

∑k
w∗
i,kCk(x; 1) = t(x).

In matrix form,

⎛

⎝

C1(x; 0) C2(x; 0)

C1(x; 1) C2(x; 1)

⎞

⎠

⎛

⎝

w∗
1i

w∗
2i

⎞

⎠
=
⎛

⎝

t(x)

t(x)

⎞

⎠
,

with the solution

⎛

⎝

w∗
1i

w∗
2i

⎞

⎠
=
t(x)

∣C ∣

⎛

⎝

C2(x; 1) −C2(x; 0)

C1(x; 1) −C1(x; 0)

⎞

⎠
≡

∆

∣C ∣

⎛

⎝

∆C2

∆C1

⎞

⎠
,

where ∣C ∣ ≡ C1(x; 1)C2(x; 0) −C2(x; 1)C1(x; 0) and ∆Cj = Cj(x; 1) −Cj(x; 0), j = 1,2.

Condition D.2. (i) C1(x; 1)/C2(x; 1) ≠ C1(x; 0)/C2(x; 0). (ii) One of the following three

conditions holds, for h = 0,1 (a) −∞ < C1(x;h)/C2(x;h) < 0, and w∗
1i or w∗

2i is nega-

tive. (b) 0 < C1(x;h)/C2(x;h) < ∞, sign[C1(x;h)] =sign[C2(x;h)]=sign(∆), and w∗
1i ×w

∗
2i

< 0. (c) sign[C1(x; 1)/C2(x; 1)] ≠ sign[C1(x; 0)/C2(x; 0)], w∗
1i < 0 and w∗

2i> 0. Further-

more, conditions (ii)-(a) and (ii)-(b) can be combined as a more intuitive condition (d)

sign[C1(x; 1)/C2(x; 1)] = sign[C1(x; 0)/C2(x; 0)], decision of any member i with ideologi-

cal bias αi ∈ (0,1) based on prior belief differs from that on on empirical evidence, and

sign[C1(x;h)] =sign[C2(x;h)]=sign(∆) if 0 < C1(x;h)/C2(x;h) <∞.

Condition D.2 is specified for the case that all the lines corresponding to different αi intersect

at (w∗
1i, w

∗
2i). According to the slopes of the lines, all three possible scenarios are summa-

rized in panel (iii), (iv), and (v) of Figure 2. Panel (iii) illustrates the case that all the

intersected lines have positive slopes as specified in (ii)-(a), −∞ < C1(x;h)/C2(x;h) < 0.

The ordering of the lines in this case requires that (w∗
1i, w

∗
2i) is not in the first quad-

rant. Otherwise we may not order the lines according to the event ∑kwi,kCk(x;αi) = ∆.

If all the lines have negative slopes, i.e., 0 < C1(x;h)/C2(x;h) < ∞ as shown in panel

45



(iv), the assumption sign[C1(x;h)] =sign[C2(x;h)]=sign(∆) ensures that there are no de-

generating types such that they all choose Di = 1 with probability zero. Again, we need

to exclude the possibility that the intersection point is in the first quadrant as argued

above, this requirement is satisfied by imposing the restriction w∗
1i ×w

∗
2i < 0. This is be-

cause sign[C1(x;h)] =sign[C2(x;h)]=sign(∆) implies that the intersection point can only

be in the first, the second and the fourth quadrant while w∗
1i ×w

∗
2i < 0 restricts it to the

second and the fourth quadrant. To investigate the more intuitive condition (ii)-(d), which

is equivalent to (ii)-(a) plus (ii)-(b), we first notice that a committee member changes his

decision if he switches his information from prior belief to empirical evidence implies that

the intersection point cannot be in the first quadrant. The remaining analysis is similar

to previous one thus we omit it for brevity. Panel (v) depicts the last case: some of the

lines have positive slopes while others have negative slopes, i.e., sign[C1(x; 1)/C2(x; 1)] ≠

sign[C1(x; 0)/C2(x; 0)]. If the intersection point (w∗
1i, w

∗
2i) is in the second or the third

quadrant, it is easy to check that non-degenerate choice probabilities can not be guaranteed.

This is due to the fact that for all the αi such that the line ∑kwi,kCk(x;αi) = ∆ has a

negative slope, the choice probability Pr(Di = 1∣I = x;αi) = 0 since the line will not pass the

first quadrant. Employing the previous argument, we cannot allow the intersection point to

be in the first quadrant either. Therefore we impose the condition (ii)-(c) w∗
1i < 0 and w∗

2i> 0

to ensure the intersection point to be in the second quadrant.

Both Condition D.1 and Condition D.2 can be similarly imposed if W1i and W2i are

distributed on a bounded support in [0,∞) × [0,∞). The proof does not pose any con-

ceptual challenge but the algebra will be more tedious since we have to analyze the lines

∑kwi,kCk(x;αi) = ∆ in a bounded area. We thus omit the analysis in this paper. ◻
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Figure 1: Illustration of the model with expressive recommendations
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Table 1: Summary of votes

Voted for higher rate Voted for lower rate Total

All members (31) 500 1108 1608

Internal members (12) 312 587 899

External members (19) 188 521 709

Table 2: Estimates of individual choice probabilities

External members Internal members

parameters mean std. parameters mean std.

θ0 −0.899∗∗ 0.092 ϑ0 −0.525∗∗ 0.079

θ1 0.268∗ 0.106 ϑ1 0.446∗∗ 0.094

θ2 1.134∗∗ 0.364 ϑ2 1.233∗∗ 0.318

θ3 −0.424∗ 0.174 ϑ3 −0.384∗∗ 0.144

θ4 -0.250 0.781 ϑ4 0.536 0.671

* significant at 2.5 % level, ** significant at 1 % level.

47



Figure 2: Illustration of the model with strategic recommendations
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Figure 3: Estimated Distribution for the Tastes of External and Internal Members
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Table 3: Estimates for the Distribution of Ideological Biasa

External members Internal members

mean std. mean std.

Pr(α = 25%) 0.349 0.098 0.329 0.090

Pr(α = 50%) 0.100 0.089 0.058 0.106

Pr(α = 75%) 0.551 0.099 0.613 0.104

a This table summarizes the empirical distribution of our estimates for

the probability masses of αi, using B = 200 bootstrap samples.

Table 4: Estimates for the Distribution of Individual Tastesa

External members Internal members

mean Q1 median Q3 mean Q1 median Q3

a 14.961 3.077 13.848 21.331 11.834 1.713 12.248 13.563

b 0.958 0.976 1.004 7.448 1.064 0.995 1.011 10.351

a Q1: 1st quartile; Q3: 3rd quartile. This table summarizes the empirical distribution of

our estimates for (a, b) using B = 200 bootstrap samples.
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