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Abstract

We study students’ dropout behavior and its consequences in a dynamic signaling model.

Workers pay an education cost per unit of time and cannot commit to a fixed education

length. Workers face an exogenous dropout risk before graduation. Since low-productivity

students’ cost is high, pooling with early dropouts helps them to avoid a high education

cost. In equilibrium, low-productivity students choose to endogenously drop out over time,

so the productivity of students in college increases along the education process. We find

that the maximum education length is decreasing in the prior about a student being highly

productive. We characterize the joint dynamics of returns to education and the dropout rate

and provide an explanation of the declining dropout rate over the time students spend in

school. We also extend the baseline model by allowing human capital accumulation and show

that the dynamics of the dropout rate are helpful in decomposing the returns to education

into the signaling effect and the human capital accumulation effect.
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1 Introduction

The dropout rate observed in tertiary education in the US is high. In a recent survey paper,

Bound and Turner (2011) report that only about half of those who begin first-level degree programs

actually obtain their degrees. Also, the probability that a student will dropout is decreasing over

the number of years they spend in college.1 While some students drop out for exogenous reasons,

such as financial constraints; others voluntarily choose to drop-out.2

To understand the presence and dynamics of students’ dropout behavior, it is necessary to

take a closer look at their incentives to drop out. In the labor market, employers may perceive

early dropping out as a signal indicating low productivity, caused by (unobserved) bad habits,

poor health, etc. So, students should take this signaling effect into account when making the

decision to drop out. Our paper studies the interaction between students’ dropout behavior and

the signaling effect, and how the incentive to drop out varies over the number of years they spend

in college.

To capture the dynamics of dropping out, we investigate a dynamic signaling model. The

main innovation of this paper is that by introducing a simple and yet realistic modeling device

(exogenous dropout risk), we provide a tractable framework to study the joint dynamics of returns

to education and the dropout rate in the presence of signaling concerns. In particular, we consider

a dynamic model where (1) a worker (student) privately knows his productivity, and (2) faces an

exogenous dropout risk in each period. Once the shock arrives, the worker has to go on the job

market. We interpret this exogenous dropout process as random shocks faced by workers, driven by

exogenous problems such as financial constraints, family reasons and the arrival of utility shocks.

Since whether and when the worker will be forced to drop out is not known with certainty by the

worker at the beginning of his education, one can expect, under these features, that workers who

drop out do not have any offers when they leave college.

Since a high-productivity worker leaves school with a positive probability, a low-productivity

worker may have incentives to mimic him by voluntarily quitting school in order to save future

education costs. Nevertheless, if in some period a low-productivity worker dropped out with

probability one, while the high-productivity worker stayed with a positive probability, the next

period’s beliefs about the worker being a high-productivity worker would jump to one. If the

corresponding jump in wages was large enough, the low-productivity worker would have incentives

not to drop out in the current period, leading to a contradiction. On the other hand, if low-

1See Hendricks and Leukhina (2013) as an example.
2A study from the Bill & Melinda Gates Foundation (2009) shows that students drop out of college for many

reasons. For example, 52% of dropouts mentioned that “I just couldn’t afford the tuition and fees,”71% mentioned

that “I needed to go to work and make money,” and so on.
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productivity workers did not endogenously drop out at some period, then learning would be slow,

which makes education less attractive for them, incentivizing dropout in the current period. We

show that, in order to balance these two forces, low-productivity workers randomize between

dropping out and staying in school in almost all periods.

This paper has three main results. First, we characterize the joint dynamics of wages and

dropout rates. By doing so, we show that a worker’s drop out behavior varies over the number of

years he has spent in school, and we provide a natural explanation of the dropout rate-grade profile

based on information asymmetry. In equilibrium, to ensure the low-type worker’s randomization,

the wage increment in each period must equal the marginal cost of education for the low-type

worker, which endogenously pins down the belief-updating process and the low-type worker’s

dropout behavior. Unfortunately, even though we can derive the equilibrium relation between

workers’ dropout rate and their years of education in the discrete time model, its dynamics are

hard to analytically characterize. Hence, we examine the continuous time limit of our discrete

time model. At the continuous time limit, we explicitly show that the dropout rate of a worker is

decreasing in his year in school.

In addition, the model proposed generates an implication of the relation between maximum

equilibrium education duration and the prior about a worker being highly productive. The max-

imum equilibrium education duration is decreasing in the prior. In particular, when the prior

about the worker being highly productive approaches one, no wasteful education appears in any

perfect Bayesian equilibrium. The reason is as follows. Because workers face an exogenous dropout

risk in each period, when the prior is high enough, firms believe a dropout is a high-type worker

who suffered from an exogenous shock with very high probability. Hence, firms are willing to pay

him a high wage. Since education is costly, both the high type and the low type worker prefer

dropping out to staying in school. Consequently, the equilibrium of the asymmetric information

game converges to that of the symmetric information game, in which the worker is a high type

with probability one, as the information asymmetry vanishes.

Last but not least, we extend the pure signaling model by allowing human capital accumulation.

In this extension, we consider a model in which education not only separates high-type workers

from low-types but also enhances all workers’ productivity. As a result, both the signaling effect

and the human capital accumulation effect contribute to the returns to education. We characterize

the equilibrium passing D1 criteria, and we illustrate that one can quantitatively decompose the

signaling effect and the human capital accumulation effect by using data on wages and the dropout

rate.

Even though we present our model in an education signaling environment, our insights are also

useful for understanding some other environments in which sending signals is not only costly but
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also time-consuming. For example, consider a firm owner who is trying to sell his firm. In order to

signal the type of the firm, the owner may wait for some time. The opportunity cost of waiting is

likely to be low if the quality of the firm is good. The risk of dropping out may be reinterpreted as

liquidity shocks or hedging considerations that force the owner to sell the firm early. The observed

dropout rate can be interpreted as transaction volume. Another example is given by central banks

defending themselves from currency attacks. In this case, the cost of defending may depend on

the fundamentals of the economy, known only by the central bank. As time passes, the posterior

belief about the economy being healthy increases, so the size of the attacks decreases and the

attacks eventually vanish. The exogenous shocks may result from random events in international

markets, such as a devaluation of the foreign currency used to defend against attacks.

Related Literature

This paper is related to a growing literature studying dynamic signaling games with preemptive

offers. To best of our knowledge, the literature springs from Weiss (1983) and Admati and Perry

(1987). They argue that the static signaling model (Cho and Kreps, 1987) overlooks the dropout

behavior of workers. Think of a two-type signaling model. If a separating equilibrium is supposed

to be played as predicted by Cho and Kreps (1987), once a worker arrives on the first day of school,

the separation has already happened, and firms believe that the worker has high productivity.

Hence, the worker should drop out immediately. Cho and Kreps (1987) avoid this challenge by

directly assuming that a worker can commit to his decision about the duration of his education.

In practice, it is hard to see where the commitment power comes from.

Nöldeke and van Damme (1990) formulate an explicitly dynamic game-theoretic version of the

signaling model. In their model, long-lived firms simultaneously make public preemptive offers to

the worker in each period, and the worker decides to accept an offer or to continue his education.

They focus on equilibria that satisfy the never a weak best response (NWBR) requirement provided

by Kohlberg and Mertens (1986), and they find that equilibria outcome converges to the Riley

outcome when the time interval between two education decision points goes to zero. Nonetheless,

Swinkels (1999) argues that Nöldeke and Van Damme’s result crucially depends on the fact that

job offers are publicly made. Hence, he considers a model where two short-lived firms enter and

simultaneously make private preemptive offers to the worker in each period before the worker

decides on whether to continue his education. Swinkels finds that, when the interval between

consecutive offers goes to zero, the unique sequential equilibrium in this game is a pooling one at

no education. Our model is different from Nöldeke and van Damme (1990) and Swinkels (1999)

in two respects. First, neither Nöldeke and van Damme (1990) nor Swinkels (1999) studies the

interaction between dropout rate dynamics and the signaling effect. In the former, some workers
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do not go to school at all and the rest stay in school until the “graduation day.” No worker drops

out in between. In the latter, no one goes to school in the first place. Instead, in our model, the

joint dynamics of the return to education and the dropout rate are one of the main implications.

Second, instead of allowing firms to make preemptive offers, we assume that the informed party,

the worker, moves first (going to the job market or not) and, consequently, conditional on being

in the job market, the uninformed agents, firms, make him offers. Since dropouts cannot return

to school, there is no need to distinguish between private offers and public offers in our model.

The closest paper to our research is Kremer and Skrzypacz (2007). They consider a finite

horizontal model in which an informative (type-dependent) signal about the type of the worker

is publicly announced.3 In their model, the joint dynamics of the dropout rate and wages (trade

probability and price in their language) are also characterized. Their characterizations depend

on the presence of an extra signal at the deadline. We provide a different framework to analyze

the dynamics of the return to education and the dropout rate in the absence of such a type-

dependent extra signal by introducing type-independent dropout risk. In addition, we study the

role of the observed dropout rate in a model with productive education: dropout data are helpful

in distinguishing the human capital accumulation effect and the signaling effect on the return to

education.

Our model is also related to the dynamic adverse selection literature. Janssen and Roy (2002)

study a dynamic lemons market problem and show that each equilibrium involves a sequence of

increasing prices and qualities traded over time. Trade is delayed and therefore inefficient, but all

goods are sold out in finitely many periods. In their model, the time-on-the-market of a good is

used to signal the quality of the good. Hörner and Vieille (2009) study a dynamic bargaining game

in which a single seller faces a sequence of buyers and show that the observability of previously

rejected prices can cause a bargaining impasse. Kim (2011) examines the roles of different pieces of

information about sellers’ past behavior in a dynamic decentralized lemons market. He suggests

that market efficiency is not monotone in the amount of information available to buyers but

depends crucially on what information is available under what market conditions. Camargo and

Lester (2011) investigate a dynamic decentralized lemons market with one-time entry. They

demonstrate how prices and the composition of assets evolve over time given an initial fraction

of lemons. They find that the patterns of trade depend systematically on the initial fraction of

lemons, which is similar to the structure of our result. However, they focus on the dynamics of

trade and price.

The rest of this paper is organized as follows. In the next section we present the model with

3One example of such signals is students’ GPA. See also Daley and Green (2012) and Dilme (2012) for infinite

horizon models
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Exog. D.O. Endo. D.O. Educ. cθ
1 − λ

λ

1 − αθ
t

αθ
t

pt pt+1

sθ
t , p̂t Job Mkt

1 Introduction

We introduce switching costs as a new mechanism used to establish reputation when quality is
imperfectly observable. In our model, at every period of time, firms can choose the quality of
the product they produce. The quality is unobservable by customers, but they see a signal about
the quality in pervious periods. When, at a given period, the quality chosen differs from last
periodńs quality, the firm incurs a switching cost. This, in equilibrium, makes the quality choice
endogenously sticky even though it is not perfectly observed by customers. Therefore, ....

We understand reputation as belief that customers have about the quality of the good before
they consume it. Hence, the crucial dimension in our model is the time dimension, since both firms
and customers payoffs will primarily depend on the times when the quality switches take place. In
the past literature on endogenously switching types (see a review below) the times at which firms
(may) switch the quality are exogenously (randomly) given, independently of the firm’s willingness
to switch. In our model we fully endogenize the timing of the quality switches, allowing the firm
to make the switching decision in every period. We believe that this is a step forward towards
understanding reputations, .... .

There are many decisions that firms take involve sunk costs. Technology adoption implies
deinstallation of old machinery and installation of the new one. Changing the skills of the workers
imply firing costs, posting vacancies,... Changing the ownership of the firm involves bargaining
costs, transaction costs (taxes) and costs related with the acquisition of information by the buyer.
All these decisions may be imperfectly observable by the customers .....

The incentive to choose low quality is higher when learning about the quality is slow. Indeed,
switching to low quality saves flow costs, and slow learning makes the prices less sensitive of the
quality. So, in particular, since when beliefs about current quality being high are close to one
learning is slow, firms have incentives to “eat” their reputation by lowering the quality of their
goods. When, instead, learning is fast, firms have incentives to choose high quality in order to
increase the future price. Therefore, when beliefs about the quality are moderately low, firms have
incentives to “build” reputation by producing high quality goods. As we will see, depending on
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Figure 1: Schematic representation of the timing of the model (D.O. denotes dropout).

a type-independent dropout rate and characterize the set of equilibria. We consider a model

with human capital accumulation in Section 3. In Section 4, we conclude. All omitted proofs

are in Appendix A. In Appendix B, we study an extension in which workers’ dropout risk is

type-dependent. In Appendix C, we consider a multiple-type extension of the baseline model.

2 Model

Time is discrete, t = 0, 1, 2, .... There is one worker who has a type θ ∈ {H,L}, which is his

private information with a common prior p0 = Pr(θ = H) ∈ (0, 1). The productivity of a type θ

worker (henceforth, the θ-worker) is Yθ. We normalize YH = 1 and YL = 0. In period 0 the worker

decides whether to go to school or not. In the rest of the periods, if the worker continues going

to school, he pays a type-contingent cost per unit of time, cθ, where 0 < cH < cL and cH < 1.

The worker, regardless of his type, in each period is subject to an exogenous shock that results in

the worker being forced to drop out of school with probability λ ∈ (0, 1), regardless of his type.

The exogenous dropout is interpreted as financial or utility shocks. In addition to this exogenous

dropout, the worker may decide to endogenously drop out and go on the job market voluntarily.

The timing is summarized as follows. First, nature determines the type of the worker, choosing

H with probability p0. If the worker is still in school, in period t: (1) the worker exogenously drops

out with probability λ and, if he does not exogenously drop out, decides whether to endogenously

drop out. (2) If the worker decides not to drop out, he pays the education cost and goes to the

next period. If the worker drops out, he goes on the job market. (3) Two firms enter the job

market and simultaneously make job offers to the worker who has dropped out. (4) The worker

can choose to take either offer or a zero-value outside option. Figure 1 schematically represents

the timing of the model.

The utility of the θ-worker who has t periods of education and accepts a wage of w is U(w, t) =

w − cθt. The profit of a firm that employs a θ-worker at a wage w is given by Yθ − w. When a

firm hires no worker, its profit is zero.

A dropout (behavior) strategy for the θ-worker is αθ : {0, 1, ...} → [0, 1], the probability that
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the type θ worker chooses to drop out at t conditional on reaching its decision point. We use

sθt ≡ λ+ (1− λ)αθt to denote the total probability of the type θ ∈ {L,H} dropping out in period

t. Finally, for each strategy profile, let T θ ≡ min{t|sθt = 1} ∈ {0}∪N∪∞, which is the maximum

number of education periods the type θ worker may receive under the given strategy profile.

Define pt to be the posterior about a worker who reached period t being an H-worker, and

let p̂t be the same posterior about a worker who dropped out at t. When a worker goes on the

job market in period t, two firms Bertrand-compete given their updated belief p̂t. We denote the

sequence of wage offers by w. So, they both will offer wt = p̂t. On the path of play, firms have

correct beliefs about the dropout’s type, p̂t; thus, they obtain zero expected profit. The worker

will take the offer with the higher wage if it is positive. The solution concept we employ is a

perfect Bayesian equilibrium:

Definition 1. A perfect Bayesian equilibrium (PBE) is a strategy profile {(αθ)θ=L,H , w}
and a belief sequence p such that:

1. the θ-worker chooses αθ to maximize his expected payoff given w,

2. if a worker drops out with education t, firms offer wt = p̂t, where

p̂t =
pts

H
t

ptsHt + (1− pt)sLt
, (1)

when it is well defined, and

3. when it is well defined, pt is updated following Bayes’ rule

pt+1 =
pt(1− sHt )

pt(1− sHt ) + (1− pt)(1− sLt )
. (2)

The value function of the θ-worker in period t is

V θ
t = λp̂t + (1− λ)W θ

t ,

where p̂t is his payoff when he exogenously drops out, and W θ
t ≡ max{p̂t, V θ

t+1 − cθ} is his contin-

uation value in the complementary event. The worker will decide to endogenously drop out when

p̂t > V θ
t+1− cθ, stay in school when p̂t < V θ

t+1− cθ, and potentially randomize when p̂t = V θ
t+1− cθ.

2.1 Preliminary Analysis

In our model, pooling at no education is always an equilibrium. The reason is, as usual, that

off the path of play firms may consider that the type of a deviator is L, so no type has incentives
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to receive education. However, since our goal is to study the dynamics of workers’ dropout

behavior, we mainly focus on equilibria in which wasteful signaling is present. To construct such

equilibria, we start with providing some necessary conditions for such equilibria to exist. Lemma

1 characterizes the behavior of the worker before the L-worker drops out for sure (graduation).

Lemma 1. In any equilibrium where TL > 0, in all periods t < TL,

1. there is positive voluntary dropout by the L-worker, that is, αLt > 0, and

2. there is no voluntary dropout by the H-worker, that is, αHt = 0.

Proof. The proof is in the appendix on page 21.

Since, by Lemma 1, when TL > 0, L-workers randomize in any PBE in every period before

TL, for all periods t < TL,

p̂t+1 − p̂t = cL, (3)

so the low-type worker is always indifferent between dropping out and staying in school except

(possibly) in his last possible period TL. This fact implies that the wage must increase linearly

before TL. Notice that the constant returns to education are driven by the following assumptions

in our model: First, workers do not discount the future. Second, the marginal cost of education

is time-invarying, and last, there are two types of workers.4 Without any of these assumptions,

the returns to education will be time-varying. However, in each case, the (discounted) returns to

education are still equal to the marginal education cost of the worker who (1) is still in school

with positive probability, and (2) has the lowest productivity among workers in school.

Lemma 2. In any equilibrium, TH ∈ {TL, TL + 1}.

Proof. The proof is in the appendix on page 21.

Lemma 2 shows how (exogenous) dropout disciplines the beliefs of the firms about early

dropouts. If, for example, at some period all L-workers have already dropped out but not all

H-workers, all (exogenous and endogenous) dropouts are H-workers. Therefore, there is no rea-

son for them to wait, because staying in school longer is costly and does not provide any wage

increment.

Remark 1. The result is implied by the presence of a dropout risk so that dropping out in each

period before TH is on the path of play. When λ = 0, we are back to Cho and Kreps (1987)

in which Lemma 2 does not necessarily hold. The reason is that, off the path of play, firms can

impose a belief threat to force H-workers to stay in school after TL + 1. Also, this result depends

on the fact that signaling is unproductive. In Section 3, we study a productive signaling model in

which Lemma 2 is not true any more.

4As we will show in Appendix C, when there are more than two types, the returns to education are concave.
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2.2 Equilibrium Analysis

The equilibrium prediction of the game varies regarding the prior p0, so we first focus on the

game in which the worker has high productivity with a probability which is almost one, and then

consider the case where p0 is small. Lemma 3 describes the equilibrium set when the prior p0 is

close to 1.

Lemma 3. Set

p1
0 ≡

1− cH
1− (1− λ)cH

. (4)

Then, if p0 > p1
0, the only equilibrium outcome is pooling at no education.

Proof. The proof is in the appendix on page 22.

The intuition behind Lemma 3 is as follows. Because of the presence of the dropout risk,

workers may drop out in the first period on the path of play. Firms’ beliefs on the dropout being

the high type are pinned down by equation (1). When the prior p0 is high, firms’ posterior is high

as well, and therefore, they offer the dropout a high wage. Hence, when the prior is close to 1, the

H-worker would voluntarily drop out to take the high wage offer instead of staying in school.

Remark 2. The result in Lemma 3 and the economic intuition above relies on the presence of the

dropout risk. In a model where λ = 0, wasteful signaling can be supported even when the prior

about the type being high (p0) is very close to 1. The reason is that there are equilibria in which

there is no dropping out in the first period on the path of play. Since, off the path of play, a belief

threat can be imposed, early dropouts are punished with low wages so no worker has the incentive

to drop out. In our model, since the dropout risk is λ > 0, on the path of play, workers may drop

out in any period before TH . Hence, the belief about the dropout being the high type is pinned

down by the equilibrium requirement, λp0
λp0+1−p0 , which is arbitrary close to one when p0 is large

enough.

Remark 3. Lemma 3 implies that there is no signaling waste when p0 → 1 in any equilibrium.

Consequently, the equilibrium education length converges to that in the symmetric information

model as p0 goes to 1. The continuity result also depends on the positive dropout risk. When

the dropout risk is zero, we are back to Cho and Kreps (1987), a Riley-outcome-like equilibrium

always exists for any p0 < 1. In other environments, one can avoid this discontinuity result

by (1) imposing a belief-based refinement (see Mailath, Okuno-Fujiwara and Postlewaite, 1993),

(2) assuming education is productive (Swinkels, 1999), and (3) introducing extra type-dependent

signals (Daley and Green, 2011, 2013).
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Now we consider the model when p0 is smaller than p1
0. First, suppose p0 is slightly smaller

than p1
0. In such a model, the no education pooling equilibrium trivially exists. However, there is

another (semi-separating) equilibrium in which

1. one-period education is supported on the path of play, and

2. the L-worker randomizes between no education and one-period education.

The intuition is as follows. If the L-worker endogenously drops out in period 0 with some positive

probability but the H-worker does not, the market belief about the worker who did not drop out

in period 0 is strictly greater than p0, and therefore the wage in period 1 is higher than that in

period 0. To ensure that the L-worker is indifferent between dropping out in period 0 and period

1, the wage difference between the two periods must be exactly equal to the L-worker’s marginal

cost of education, which will pin down the equilibrium belief updating and the L-worker’s strategy.

In fact, there is another cutoff p2
0 < p1

0 such that, for any p0 ∈ (p2
0, p

1
0], there is an equilibrium

where the L-worker randomizes between receiving no education and one-period education. Since

p0 is still large, after one-period belief updating, p1 becomes greater than p1
0, so in the continuation

game, the only equilibrium is that all workers drop out immediately. As a result, the maximum

equilibrium education is one period.

When p0 is slightly smaller than p2
0, repeating a similar argument, we can construct equilibria

with (1) pooling at no education, (2) one-period education, and (3) two-period education. By

using an induction argument, we can construct a sequence of cutoff values pk0 where k = 1, 2, 3, ...

and pk0 > pk+1
0 such that when p0 ∈ (pk+1

0 , pk0], there exist equilibria with T periods education

where T ≤ k. The following theorem formalizes the intuition above and characterizes possible

education lengths in the set of all equilibria:

Theorem 1. Let T ∗ ≡ d1−cH
cL
e.5 There exists a unique strictly decreasing sequence {pk0}T

∗

k=1 ∈ (0, 1)

such that for any p0 ∈ (pk+1
0 , pk0]

1. there is a pooling equilibrium at no education;

2. for any 0 < T ≤ k, there is a semi-separating equilibrium lasting T periods, and

3. for any T > k, there is no equilibrium lasting T periods.

Proof. The proof is in the appendix on page 22.

5dxe = min{n ∈ Z|n ≥ x} denotes the smallest integer no lower than x.
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Figure 2: (a) pt for different equilibria. (b) sLt /s
H
t for different equilibria. The dots with the

same shape correspond to the same equilibrium, and they are linked with a straight line for visual

clarity. The parameter values are cH = 0.032, cL = 0.097, λ = 0.1 and p0 = 0.1.

Theorem 1 is one of the main results of this paper. It implies that the maximum duration of

equilibrium education is non-increasing in the prior about the worker being high productivity. As

the prior goes to zero, maximum education duration goes to its finite upper bound T ∗.

In Lemma 3 we already discussed the case where p0 is close to 1. Now, consider the case in

which p0 is not close to 1. As we have shown in Lemma 1, the low type endogenously drops out

with positive probability and the high type does not voluntarily drop out; thus, sLt > sHt , which

means that pt is pushed up over time. The low-type indifference condition (3) implies that p̂t

is linear before TL. These two observations imply that pt and p̂t will be high enough (close to

1) after finitely many periods. The smaller the prior p0, the more periods of education can be

supported in an equilibrium. This suggests that the maximum education duration supported by

an equilibrium is non-increasing in p0. In Figure 2, we plot some equilibrium belief sequences pt

and dropout rate ratio sequences sLt /s
H
t .6 In each equilibrium, TL = TH = T is the “graduation

period.” The high-type worker’s dropout rate is sHt = λ for all t < T and sHt = 1 at t = T . The

low-type worker’s dropout rate satisfies sLt ∈ (λ, 1) for t < T , and at t = T , sLt = 1. Note that it

may not be monotone.

6We plot sLt /s
H
t in order to have a nice-looking graph. Indeed, for example, in all plotted equilibria sHt = λ = 0.1

for t < TH and sHTH = 1, so sHt makes a big jump up at the end. Intuitively, sθt for t < TH looks like a “flow

probability” while sθTH looks like a “lump-sum probability” (See section 2.4 for the continuous time limit). Note

also that, given pt, only the ratio sLt /s
H
t determines p̂t.
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Empirical Implications. Our model has two important empirical implications. First, fixing

an equilibrium, we can calculate the education return sequence: wt+1 − wt = cL. It is equal to

the L-worker’s marginal cost of education. Second, the model can predict workers’ equilibrium

dropout behavior. Since workers’ types are their private information, researchers can only observe

the unconditional (or observed) dropout probablity, defined as follows

mt ≡ pts
H
t + (1− pt)sLt .

In equilibrium, sHt = λ for t < TL, so mt ≡ ptλ + (1− pt)sLt . The dynamics of mt are driven by

two forces. First, the belief increases over time, which pushes the observed dropout rate down.

Second, L-workers’ drop out strategy varies over time. As we show in figure 2(b), sLt may not be

monotone over time. When sLt increases, it pushes mt up. Hence, the observed dropout rate may

go up and down over time, which depends on the interaction between two forces. Unfortunately,

in a discrete time model, we cannot analytically characterize the dynamics of workers’ dropout

rate. In Section 2.4, we analytically characterize the observed dropout dynamics at the continuous

time limit of the original model.

2.3 Refinement

Without imposing any refinement, multiple equilibria exist for most p0. The main reason we

do not have equilibrium uniqueness is the arbitrariness of belief after TH off the path of play,

similar to that in Cho and Kreps (1987). Hence, we still have belief threats that push duration

down.

By imposing an appropriate criterion on beliefs off the path of play, for example, D1 as defined

by Banks and Sobel (1987), one can shrink the equilibrium set.7 The spirit of these refinements

is that, off the path of play, firms put a positive probability only on the type that is most likely

to deviate. In our model, since the marginal cost of education of the high-type worker is strictly

smaller than that of the low-type worker, any sequence of wages off the path of play (after TH)

that induces the low-type worker to deviate must also induce the high-type worker to deviate.

As a result, off the path of play, firms put a positive belief only on the high-type worker, i.e.,

pt = p̂t = 1 for any t > TH . Given this belief sequence off the path of play, we will say a PBE

is eliminated by D1 if p̂T < 1 − cH , since otherwise the high-type worker would have incentives

to stay in school for one more period. If an equilibrium is not eliminated by D1, we say that it

7Belief monotonicity is another refinement concept commonly used in the dynamic signaling literature (see

Swinkels, 1999 or Daley and Green, 2012). However, it does not help here. The reason is that, given that λ is the

same for all players, the increase in beliefs after a deviation can be arbitrarily slow, which prevents the H-worker

from deviating.
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passes D1. These concepts are not enough to select a unique equilibrium, similar to Nöldeke and

van Damme (1990). The key reason for the multiplicity is that, in our model, the education choice

is an integer instead of a real number. Consider the following case as an example.

Example 1. Suppose p0 ∈ (1−cH , p0
1). It is easy to show that there is a PBE in which sH0 = λ and

sL0 = 1. Since, in this equilibrium, p1 = p̂1 = 1 is on the path of play, it passes D1. However, there

is another PBE consisting of pooling at no education, that is, sH0 = sL0 = 1, so p0 = p̂0 > 1− cH .

Hence, pooling at no education also passes D1.

Nevertheless, as shown below, when the length of the interval is small, the D1 criterion is

essentially unique, in the sense that the outcomes of all equilibria passing D1 become arbitrarily

close to each other.

2.4 Frequent Dropout Decision

In this section we consider the limit where the length of the interval is arbitrarily small. This

is in general interpreted as leaving the worker with no commitment power, since the worker has to

get an education through making sequential, arbitrarily small investments. This limit allows us to

establish the unique equilibrium passing D1 and have a cleaner equilibrium characterization. In

particular, it allows us to easily characterize the relationship between the observed dropout rate

and years of education, which is an important empirical implication of our model.

In the base model discussed in the previous section, we assume that the time length between

two consecutive periods is 1. We now parameterize the length of the period as ∆ > 0. Since we

will consider a family of models parameterized by ∆, we fix c̃L, c̃H , λ̃ ∈ R++ in all this section and,

for each ∆, cθ(∆) ≡ c̃θ∆ and λ(∆) ≡ λ̃∆, for θ ∈ {L,H}.8 The following lemma establishes that

the maximum length of an equilibrium is a non-trivial function of p0 when ∆ gets small:

Lemma 4. Consider any strictly decreasing sequence ∆n → 0. Fix a p0 ∈ (0, 1), and let κn(p0) ≡
∆nT

∗
n (T ∗ defined in Theorem 1) be the maximum real-time length of an equilibrium when the

length of the period is ∆n. Then, κ(p0) ≡ limn→∞ κn(p0) exists, belongs to (0, 1
c̃L

) and is strictly

decreasing in p0.

Proof. The proof is in the appendix on page 27.

Lemma 4 stands in sharp contrast to Swinkels (1999), in which the only equilibrium is pooling

at no education when ∆ is small enough. The contrast between this result and Swinkels’ illustrates

8This limit corresponds to interpreting c̃θ to be the flow cost for each θ ∈ {L,H}, and interpreting λ̃ as the rate

at which workers are exogenously forced to drop out.
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the critical role of timing in the two models. In Swinkels(1999), firms can make preemptive offers

to attract all the workers in school and end the game immediately, so that no wasteful education

is present in equlibrium. In our model, firms cannot directly disturb the worker’s signaling process

by making an in-school offer, and therefore, semi-separating equilibria can survive.

As noted before, D1 selects PBE where pT ∈ [1−∆c̃H , 1]. As ∆ goes to zero, the last period

equilibrium belief converges to 1. The following lemma establishes that, when ∆ is small, only

in equilibria with a real education length close to κ(p0) (the maximum length at p0) is the last

period equilibrium belief close to 1.

Lemma 5. Consider a strictly decreasing sequence ∆n → 0. Let e(∆n) be an equilibrium of the

model with the length of the period ∆n. Fix p0 ∈ (0, 1) and any τ ∈ (0, κ(p0)). Let pTn(∆n)

be the maximum last period beliefs of an equilibrium with Tn ≡ dτ/∆ne periods of education for

∆n. Then, limn→∞ pTn(∆n) exists and is strictly lower than 1. If, instead, τ = κ(p0), then

limn→∞ pTn(∆n) = 1.

Proof. The proof is in the appendix on page 28.

Lemma 5 implies that equilibria passing D1 have a real duration of κ(p0) + O(∆n). Indeed,

otherwise the last period’s beliefs are bounded away from 1 and hence are lower than 1−∆c̃H . In

the proof of Theorem 1 (see Lemma 11) we explicitly construct for each p0 equilibria in which the

last period’s beliefs belong to [1 −∆c̃H , 1]. So, for each p0 and small ∆ > 0, there are equilibria

passing D1, and their duration is close to κ(p0).

As we will show in Theorem 2, taking the continuous time limit of the original model allows

us not only to characterize the equilibrium in a cleaner way but also to derive the relationship

between the observed dropout rate and the number of years students spend in school. Since, when

∆n is small, both sHt and sLt are O(∆n) (in all periods except maybe the last two), mt is also

O(∆n) (in all periods except maybe the last two). To study the dynamics of workers’ dropout

behavior at the continuous time limit, we define the observed dropout rate as follows. Given a

sequence ∆n and m(t), define the associated observed dropout rate as m̃n
t ≡ mt

∆n
, and s̃L,nt ≡ sLt

∆n
.

In the following theorem, we characterize the continuous time limit of equilibrium belief and the

observed dropout rate.

Theorem 2. 1. Consider a strictly decreasing sequence ∆n → 0. For each ∆n, let pnt , p̂nt
and mn

t be the beliefs, wage and total dropout sequences of an equilibrium passing D1 in

the model with the length of the period ∆n. Then, there exist functions p, p̂, m̃ : (0, κ(p0))

such that limn→∞ p
n
dτ/∆ne = p(τ), limn→∞ p̂

n
dτ/∆ne = p̂(τ) and limn→∞ m̃

n
dτ/∆ne = m̃(τ) for all

τ ∈ (0, κ(p0)).
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2. p̂(τ) = 1− (κ(p0)− τ)c̃L, m̃(τ) = p(τ)
p̂(τ)

λ̃ and p solves the following equation, with p(0) = p0:

ṗ(τ) =
λ̃p(τ)(p(τ)− p̂(τ))

p̂(τ)
. (5)

Proof. The proof is in the appendix on page 29.

At the continuous time limit, we can easily characterize the dynamics of the observed dropout

rate. Interestingly, even though the dropout rate of the L-workers need not be monotone (recall,

for example, Figure 2), the observed dropout rate is decreasing, which is consistent with much of

the empirical evidence, for example, Hendricks and Leukhina (2013).

Theorem 3. At the continuous time limit of all equilibria, the observed dropout rate is decreasing

over time.

Proof. The proof is in the appendix on page 29.

Since ˙̃m(t) = −ṗ(t)(s̃L(t) − λ̃) + (1 − p(t)) ˙̃sL(t), as time goes on, there are two effects on the

observed dropout rate. First, there is a skimming effect: the proportion of L-workers becomes

smaller over time, since the L-workers’ dropout rate is higher than λ̃, the dropout rate of the

H-worker’s. Hence, this skimming effect, measured by −ṗ(t)(s̃L(t)− λ̃) < 0, pushes the observed

dropout rate down. Second, there is another effect: for L-workers still in school, their dropout rate

sLt may go either up or down, which is measured by (1 − p(t)) ˙̃sL(t). When it goes up, it pushes

the observed dropout rate up as well. However, we can show that the second effect is always

dominated by the first one, and thus the observed dropout rate is always declining over time.

2.5 Discussions

2.5.1 The Role of Dropout Risk

The equilibrium characterization crucially depends on the presence of dropout risk. What

happens if the dropout risk is arbitrarily small? What if workers’ dropout risk is type-dependent?

We address these issues here.

First, we consider the limit case where λ goes to zero in the discrete time model. Figure 3 (a)

plots {pk0}T
∗

k=1 for different values of λ. As we see, when λ → 0, pk0 for all k collapses to 1. This

implies that, when λ is low, for almost all priors (1) H-workers’ dropout risk is very small, so most

of them graduate, (2) most of L-workers do not go to school, so p1 is close to 1, but p̂1 remains

low due to the low λ, and (3) the maximum length of an equilibrium is T ∗. This is consistent with

the canonical signaling model, where λ = 0. In the other limit, when λ→ 1, pk0− pk+1
0 = cL for all
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Figure 3: (a) The role of λ in the discrete time model: {pk0} as a function of λ. (b) The role of λ

in the continuous time limit: κ(p0) as a function of p0, for different values of λ̃.

k > 1. This is a consequence of the fact that when λ is close to 1, so are sL and sH . Therefore, as

we see in (1), p̂t is close to pt for all t. Since p̂t increases linearly in any equilibrium, this imposes

a nearly linear evolution on pt and therefore also on pk0 .

Second, we consider the continuous time limit when the dropout rate is small, that is, when λ̃

is small. From the equation that κ(p0) satisfies (equation (9) in the proof of Lemma 4), it is easy

to see that limλ̃→0 κ(p0) = 1
c̃L

for all p0 ∈ (0, 1). Indeed, as we see in Figure 3 (b), as λ̃ gets small,

τ(p0) converges to 1
c̃L

for all p0 ∈ (0, 1). Hence, the length of an equilibrium passing D1 gets close

to 1
c̃L

when the interval gets short and λ̃ gets small. This is consistent with the finding of Cho and

Kreps (1987) that the only equilibrium that passes D1 is the least costly separating equilibrium,

found by Riley (1979), that requires an education length equal to 1
c̃L

.

Finally, one may wonder whether it is restrictive to assume that H-workers and L-workers

face the same exogenous dropout risk. Without a second thought, it seems that low-productivity

workers should have a higher probability of dropping out than high-productivity workers, which

seems to conflict with our assumption. However, this naive intuition is based on the total dropping-

out behavior, sLt , which is driven both by workers’ choices (that are related to their productivity)

and by exogenous shocks (that may not be related to their productivity). As we have shown, on

the equilibrium path, sLt ≥ sHt in each period. Yet, it is still useful to know whether our equilibrium

characterization is robust by relaxing this homogeneous dropout risk assumption. In Appendix B,

we consider perturbations of the baseline model by considering heterogeneous dropout risk. The

equilibrium characterization is robust to such perturbation.
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2.5.2 Preemptive Offers

In our model, we assume that firms cannot make preemptive offers. In a dynamic signaling

model in which firms make preemptive offers and students face no exogenous dropout risk, Swinkels

(1999) shows that the only equilibrium is pooling at no education when the time interval of a period

is small enough. A natural question is what happens if firms can make preemptive offers in the

presence of exogenous dropout. In our model, if preemptive offers are allowed, all non-pooling

equilibria are destroyed as in Swinkels (1999). The idea is that, from the penultimate period to

the last period, belief updating is slow. So firms can post an offer to attract both H-workers and

L-workers and obtain non-negative profit. In the following, we show that, when firms can privately

and frequently make preemptive offers, all of the semi-separating equilibria we constructed do not

exist.

We illustrate the idea at the continuous time limit. Suppose there is a semi-separating equi-

librium. In equilibrium, we have pT = p̂T where T is the graduation time. When ∆ is small, the

H-worker’s value V H(pT−∆) can be approximated by

−c̃H∆ + λ∆p̂T−∆ + (1− λ∆)V H(pT ) .

Since p̂T−∆ = pT − c̃L∆ and V H(pT ) = pT , we have

V̇ H(pT ) = lim
∆→0

V H(pT )− V H(pT −∆)

∆
= c̃H .

By Theorem 2, ṗ(t)→ 0 as t→ T . Hence, there exists an ε > 0 such that, for t ∈ (T − ε, T ),

V H(pt) < p(t).

Notice that, in such a time instant, a firm can deviate by making an offer wt ∈ (V H(pt), p(t)) such

that

1. the offer will be accepted by both H-workers and L-workers, and

2. making such an offer is profitable.

Consequently, when firms can privately make preemptive offers, no semi-separating equilibrium

exists.

3 Productive Education

In the baseline model, we assume that education serves as a pure information extraction mech-

anism and does not affect the worker’s productivity. This is clearly a theoretical simplification. In
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reality, going to school is not only useful as a signaling device (where workers signal some innate

abilities, for example) but also it enhances workers’ productivity (human capital accumulation).

Hence, the observed positive education-wage profile comes from both human capital accumulation

and the signaling motive of dropping out.

In such a situation, the returns to education incorporate both the signaling effect and the

human capital accumulation effect. In this section, we extend the baseline model by assuming

that getting an education can enhance the worker’s productivity. In our model, by using the

data on wages and the dropout rate, one can decompose the returns to education into the human

capital accumulation effect and the signaling effect.9

We assume that a θ-worker with t periods of education has productivity equaling Yθ = aθ +

h (t), where θ = {H,L}, aθ captures the intrinsic productivity, and h(t) captures productivity

accumulated through education. Again, we assume that a worker’s intrinsic productivity is aH

with probability p0 and aLwith probability 1 − p0, and we normalize aL = 0 and aH = 1. To

illustrate the main idea, we focus on the simplest specification of the human capital accumulation

function. We assume that there is some finite number T̂ ∈ N such that

h (t) =

{
ht

hT̂

if t < T̂ ,

otherwise,

where h ∈ (cH , cL) is the marginal human capital accumulation coefficient until T̂ .10 Notice

that production for human capital is concave. Also, the socially efficient outcome is that the

L-worker gets no education and the H-worker gets T̂ periods of education. When T̂ = 0, getting

an education does not enhance any worker’s productivity at all, which is the case in our baseline

model. In this section, we focus on the case where T̂ > 0. We show that the equilibria is similar

to those in the benchmark model.

Given an equilibrium, in any period t < T̂ , the wage for dropouts is given by their expected

productivity, that is

wt = p̂t (1 + ht) + (1− p̂t)ht = p̂t + ht,

so the return to education is given by

wt+1 − wt = p̂t+1 − p̂t︸ ︷︷ ︸
(signaling)

+ h︸︷︷︸
(human capital)

9There is a large literature empirically studying how to distinguish human capital accumulation theory and

signaling theory, for example, Tyler, Murnane, and Willett (2000), Bedard (2001), Frazis (2002), etc. Fang (2006)

estimates a static education choice model with both human capital accumulation and a signaling mechanism and

claims that the signaling effect is at most about one-third of the actual college wage premium.
10More generally, most of our results would also apply if the return was time-varying with ht ∈ (cH , cL) for t < T̂

and ht < cH for t ≥ T̂ . The equilibrium analysis is similar.
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where p̂t+1 − p̂t is the contribution of the signaling effect and h is the contribution of the human

capital accumulation effect.

Here Lemma 1 still holds; that is, in any equilibrium the L-worker randomizes between dropping

out and continuing in school in the first several periods. Hence, we must have wt+1 − wt = cL,

which implies that

p̂t+1 − p̂t = cL − h > 0.

We now focus on equilibria passing D1. First, we consider the case where T̂ is large.

Theorem 4. Fix a p0, there is a TL(p0) ∈ N such that, when T̂ > TL(p0), there is a unique

equilibrium passing D1. In the equilibrium,

1. L-workers drop out in each period with probability sLt where sLt ∈ (λ, 1) for t < TL(p0) and

sLTL(p0) = 1, and

2. H-workers do not voluntarily drop out before T̂ and dropout for sure in period T̂ .

Proof. The proof is in the appendix on page 30.

In contrast to the baseline model, when T̂ is large enough, there is a unique equilibrium passing

D1. The intuition for this result is as follows. Since education until T̂ is efficient for H-workers,

they prefer to stay in school until T̂ . L-workers, instead, keep dropping out until some TL. The

dropout rate needs to be high enough to imply increases in p̂t equal to cL−h. Therefore, TH > TL.

This uniquely pins down the dropout rate of the L-workers, so a unique equilibrium exists. In our

baseline model, instead, we have different possible behaviors in the last two periods, so in general

equilibria passing D1 with TL = TH or TL = TH − 1 may exist.11

Theorem 4 implies that when T̂ is large enough, in the unique equilibrium passing D1, there

are two phases. In the first phase, the return to education is cL, and both the signaling effect and

the human capital accumulation effect contribute to it. The observed dropout rate m(t) varies

over time. In the second phase, the return to education is h, which purely comes from the human

capital accumulation effect. The observed dropout rate is constant.

Remark 4. The specification allows us to distinguish the effect of human capital accumulation

and dynamic signaling on return to education. First, from period TL to T̂ , only the H-worker

is in school, so the return to education is h and the observed dropout rate is λ. From period

0 to TL, the return to education is cL, which is different from h. As a result, one can directly

estimate T̂ , h, cL and λ from the data on wages and the dropout rate. Second, after recovering the

11Here, a weaker refinement, belief monotonicity can select the unique equilibrium in our productive-signaling

model as well.
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parameters cL and h one can also calculate the contribution of the signaling effect on the return

to education, which is (cL − h) /cL for t < TL and zero for t ≥ TL.12

Similar to the baseline model, we can examine the continuous time limit of the model and obtain

a clean characterization of the equilibrium education returns and the dropout rate dynamics. For

the limit, we use h(∆n) ≡ ∆nh̃ and T̂ = τ̂ /∆n, with a constant h̃ and τ̂ .

Corollary 1. Consider a strictly decreasing sequence ∆n → 0. For each ∆n, let pnt , wnt and mn
t be

the beliefs, wage and total dropout sequences of equilibria passing D1 in the model with the length

of the period ∆n. Then, there exist some τL(p0) > τ and functions p(τ), p̂(τ), m̃(τ) such that

limn→∞ p
n
dτ/∆ne = p(τ), limn→∞ p̂

n
dτ/∆ne = p̂(τ), limn→∞ m̃

n
dτ/∆ne = m̃(τ) for all τ ∈ (0, τ̂) and

1. when t < τL(p0), ẇ(t) = c̃L and ˙̃m(t) < 0, and

2. when t ∈ (τL(p0), τ̂), ẇ(t) = h̃ and m(t) = λ̃.

The proof is similar to that of the baseline model, so it is omitted here. Notice that the return

to education is c̃L before τ̂ and becomes h̃ after τ̂ , and the observed dropout rate is initially

declining over time and then becomes constant after τ̂ .

When T̂ is small, there exists equilibria in which the game ends later then T̂ . In such equilibria,

staying in school more than T̂ period is socially inefficient and workers do so purely for signaling

reasons, so only the signaling effect contributes to the return to education. In this case, similar

to the baseline model, there are multiple equilibria passing D1. However, the return to education

is cL for every period, which is observably different from the case in which T̂ is large. Since the

equilibrium construction and characterization are similar, we only provide the characterization at

the continuous time limit.

Corollary 2. Consider a strictly decreasing sequence ∆n → 0. For each ∆n, let pnt , wnt and

mn
t be the beliefs, wage and total dropout sequences of equilibria passing D1 in the model with

the length of the period ∆n. Then if τ̂ < τL(p0) (defined in Corollary 1) there exist functions

p(τ), p̂(τ), m̃(τ) such that limn→∞ p
n
dτ/∆ne = p(τ), limn→∞ p̂

n
dτ/∆ne = p̂(τ), limn→∞ m̃

n
dτ/∆ne = m̃(τ)

for all τ ∈ (0, τL(p0)) and

1. for all t < τL(p0), ẇ(t) = c̃L and ˙̃m(t) < 0, and

12The simple identification strategy works because of the special specification of the human capital accumulation

technology: (1) there are two parameters in the h(t) functions, and (2) human capital accumulation does not

depend on the worker’s demographic characteristics. In general, one can allow more complicated technology by

considering the general function forms of h(t) and other realistic factors, for example, workers’ races, IQ test scores,

etc. However, fully exploring this issue and structurally estimating the model are beyond the scope of this paper.
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2. at t = τ̂ , all p, p̂, and m̃ are continuous but non-differentiable.

The results in this section highlight the role of the observed dropout rate when estimating the

social returns to education. Only when no type is willing to voluntarily drop out (so dropping out

has no signaling value) will wages be determined by the increase in productivity due to education.

In this case, the observed drop out rate does not vary over time, and the individual return to

education is equal to the social return to education. If, instead, (some) workers voluntarily drop

out, wages are determined by the education costs of this type. In this case, the observed dropout

rate varies over time, and the individual return to education is greater than the social return to

education.

4 Concluding Remarks

This paper presents a tractable dynamic-signaling model in which wasteful education takes

place over several periods of time. Workers face an exogenous dropout risk and pay an education

cost per unit of time. We make three contributions to the literature. We find that exogenous

dropout induces endogenous dropout in most of the education periods. This disciplines the mar-

ket’s beliefs about dropouts and rationalizes the large observed dropout rates. In particular, we

find that the maximum length of education is decreasing in the prior about the worker being

productive. Second, we provide neat empirical implications for the return to education and the

dropout rate. The equilibrium education return is equal to the low-type worker’s marginal cost

of education. At the continuous time limit of the original discrete time model, we derive the

relationship between the observed dropout rate and the workers’ grade. Third, we also extend the

baseline model by allowing productive education. By doing so, we highlight the role of the data

on the dropout rate in decomposing the individual return to education into the signaling effect

and the human capital accumulation effect (the social return to education).
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A Appendix: Omitted Proofs

A.1 The Proof of Lemma 1

Let’s first prove a preliminary result:

Lemma 6. (The L-worker does not beat the market) For all PBE and t, V L
t ≤ pt.

Proof of Lemma 6. Fix a PBE. Let τ be the time at which the game ends. Then,

ptV
H
t + (1− pt)V L

t ≤ Et[wτ |τ ≥ t].

Note that, due to the education costs (i.e. signaling waste), there is a (weak) inequality, and it is

strict if t < TL. Also,

Et[wτ |τ ≥ t] =
∞∑
τ=t

Pr(τ, t)p̂τ =
∞∑
τ=t

Pr(τ, t)pt
PrH(τ, t)

Pr(τ, t)
= pt

∞∑
τ=t

PrH(τ, t) = pt .

where Pr(τ, t) denotes the conditional probability in period t that the game ends in period τ , and

PrH(τ, t) = sHτ
τ−1∏
t′=t

(1− sHt′ ) is further conditioning on the dropout being type H. The last equality

holds because the high type has strictly positive dropout rate and therefore he drops out in finite

time with probability one. Since V H
t ≥ V L

t (the H-worker can mimic the L-worker at a cheaper

price) the result holds.

Suppose there is no endogenous dropout by the L-worker in period t, then pt+1 ≤ pt ≤ p̂t.

But, p̂t ≤ WL
t = V L

t+1 − cL due to the fact that the L-worker does not voluntarily drop out. By

Lemma 6, V L
t+1 ≤ pt+1 ≤ p̂t; thus p̂t ≤ p̂t − cL, which is a clear contradiction. So (1) is true.

Therefore (2) is also true, since WH
t ≥ V H

t+1 − cH ≥ p̂t+1 − cH by definition of WH
t and V H

t , and

p̂t+1 − cH = p̂t + cL − cH > p̂t by the indifference condition of the L-worker. Q.E.D.

A.2 The Proof of Lemma 2

Assume first TH > TL + 1. In this case, pTL+1 = 1. Using equation (1) we know p̂TL+1 = 1.

Since the payoff of the worker is bounded by 1, and waiting until next period is costly, the worker

is better off dropping out at TL + 1. This is a contradiction.

Lemma 1 implies that SHTL > 0, and therefore TH ≥ TL. Q.E.D.

21



A.3 The Proof of Lemma 3

The wage in period t = 1 is bounded above by 1. This implies that for the H-worker to be

(weakly) willing to get one period of education, it must be the case that w0 ≤ 1−cH . This implies

that

1− cH ≥ p̂0 =
p0s

H
0

p0sH0 + (1− p0)sL0
≥ p0λ

p0λ+ 1− p0

.

Solving for p0 under the equality, we get that the threshold for the existence of an equilibrium

with non zero education satisfies equation (4). Q.E.D.

A.4 The Proof of Theorem 1

The proof of Theorem 1 is divided into several steps. To make the proof clear to the reader,

we note that we will be following this road map:

1. We begin defining and proving some properties of the “pull-back functions,” which will be

used to construct equilibria in the rest of the proof (lemmas 7 and 8).

2. In subsection A.4.1 we define some putative values for pk0, denoted p̃k0, and we prove by

induction that, if p0 ∈ (p̃k+1
0 , p̃k0], then there is no equilibrium with more than k periods of

education.

3. Then, in subsection A.4.2 we show that, if p0 ∈ (p̃k+1
0 , p̃k0], there exists an equilibrium where

the L-worker is indifferent on dropping out or not for all periods except (maybe) the last for

all T ∈ {0, ..., k − 1}.
4. Finally, in subsection A.4.3 we show that, if p0 ∈ (p̃k+1

0 , p̃k0], there exists an equilibrium with

length k. Therefore, pk0 = p̃k0.

We begin this proof by stating and proving two results that will simplify the rest of the proof

and the proofs of other results in our paper. The first one states two properties of the “pull-back

functions” Sτ (·, ·) and Mτ (·):

Lemma 7. For any τ ∈ N, let Sτ : [0, 1]2 → [0, 1] and Mτ : [0, 1]→ R be the functions defined by

Sτ (p, p̂) ≡
Sτ−1(p, p̂)Mτ (p̂)

Mτ (p̂)(1− λ) + Sτ−1(p, p̂)λ
, (6)

Mτ (p̂) ≡ p̂− τcL , (7)

with S0(p, p̂) ≡ p and M0(p̂) = p̂. Then, if p̂ > τcL, Sτ (p, p̂) is continuous and strictly increasing

in both arguments.
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Proof of Lemma 7. It is obvious when τ = 1, and it holds when τ > 1 by induction argument.

The meaning of the pull-back functions is the following. Fix an equilibrium and some t > 0

where the L-worker is still present. Then, using equation (1), (2) and the indifference condition

p̂t = p̂t−1 + cL, we can obtain pt−1 and p̂t−1 from pt and pt−1. These take the form, respectively, of

Sτ (pt, p̂t) andMτ (p̂t). If we apply this iteratively, we can find pt−τ = Sτ (pt, p̂t) and p̂t−τ =Mτ (p̂t)

for any τ ∈ {1, ..., t}. So, since by Lemma 1 the L-worker is indifferent between dropping out or

not in all periods except the last period, the pull-back functions give us the values of the belief

sequences p and p̂ for all periods prior to a given period. The following lemma formalizes this

intuition:

Lemma 8. For any equilibrium with T > 1 periods of education and any T > τ ≥ τ ′ ≥ 0 we have

pτ ′ = Sτ−τ ′(pτ , p̂τ ) and p̂τ ′ =Mτ−τ ′(p̂τ ) .

Proof of Lemma 8. Note that, by Lemma 1, in all periods t < T − 1, the L-worker is indifferent

between dropping out or not and sHt = λ. This implies that if t < T − 1, p̂t−1 = p̂t − cL. We can

use equations (1) and (2), with sHt = λ, to express the posterior at time t in terms of the posterior

of workers in education and in the market at time t+ 1:

pt =
pt+1p̂t

p̂t(1− λ) + pt+1λ
=

pt+1(p̂t+1 − cL)

(p̂t+1 − cL)(1− λ) + pt+1λ
= S1(pt+1, p̂t+1) .

Using this formula recursively and the fact that Sτ (p, p̂) = Sτ−1(S1(p, p̂),M1(p̂)) we obtain the

desired result.

A.4.1 Constructing the Upper Bound on the Length

Define the sequence p̃k0 ≡ Sk−1(p1
0, 1− cH), where p1

0 is defined in (4). Our goal is to show that

p̃k0 has the same properties that pk0 (stated in the statement of the theorem), so pk0 = p̃k0. We are

going to prove first, by induction, that if p0 ∈ (p̃k+1
0 , p̃k0], then there is no equilibrium with more

than k periods of education:

Step 1 (induction hypothesis): If p0 ∈ (p̃k+1
0 , p̃k0], there is no equilibrium with more than k

periods of education. If an equilibrium has k periods of education, then p̂0 ≤ p̂k0 ≡Mk−1(1−cH).13

13The second induction hypothesis is included in order to make the argument simple in the induction argument

(step 4).
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Step 2 (proof for k = 0 periods of education): By Lemma 3 there is no equilibrium with

education for p0 > p1
0. Also, in the same proof, it is shown that for all equilibria in this region,

p̂0 = p0 ≥ p1
0 > 1− cH =M0(1− cH).

Step 3 (proof for k = 1 period of education): Assume that p0 is such that there is an

equilibrium with 1 period of education. Then, p̂0 ≤ p̂1
0 = 1− cH (at least the H-worker has to be

willing to wait). Using Bayes’ update (equations (1) and (2)) we can express p̂0 ≡ p̂0(p0, s
L
0 , s

H
0 )

and p1 = p1(p0, s
L
0 , s

H
0 ). Therefore, using these equations, we can write p0 in terms of p̂0, p1 and

sH0 in the following way:

p0 = p−1(p1, p̂0, s
H
0 ) ≡ p1p̂0

p̂0(1− sH0 ) + p1sH0
.

The RHS of the previous expression is maximized when sH0 = λ. Therefore, if an equilibrium ends

with a length of two periods, the initial prior is at most p1
0 ≡ 1−cH

1−cH(1−λ)
.

Step 4 (induction argument for k > 1): Assume that the induction hypothesis is true for

k − 1 where k > 1. We need to verify whether it is true for k.

Assume that p0 is such that there exists some equilibrium with k periods of education. Denote

the beliefs sequences for this equilibrium p and p̂. Note that, by the induction hypothesis, p1 ≤ pk−1
0

and p̂1 ≤ p̂k−1
0 , since the continuation play after 1 is itself an equilibrium with initial prior p1.

Since k > 2, by Lemma 1, the H-worker is strictly willing to wait in period 0, so sH0 = λ, and the

L-worker randomizes in period 0. Then, p̂0 = p̂1 − cL ≤ p̂k−1
0 − cL = p̂k0. Therefore, by Lemma 8,

p0 = S1(p1, p̂1), and that this is increasing in both arguments. So, the maximum value it can take

is p̃k0 ≡ S1(p̃k−1
0 , p̂k−1

0 ).

Step 5 (T ∗ is the limit): Note that T ∗ is such that

p̂T
∗+1

0 ≤ 0 < p̂T
∗

0 .

Then, since p̂T
∗+1

0 ≤ 0, there is no equilibrium longer than T ∗ periods of education.

A graphical intuition of the proof can be found in Figure 4. It graphically represents both p̃T0
and p̂T0 used in the proof.

A.4.2 Constructing L-equilibria

Now, we prove a result related to the set of equilibria where the L-worker is indifferent in all

periods, which is similar to Theorem 1. For each p0 ∈ (0, 1), we use T̃L(p0) to denote the maximum

number of education periods of an equilibrium where the L-worker is indifferent to dropping out in
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Francesc Dilme (University of Pennsylvania) Indifference in Reputations August 20, 2013 2 / 2Figure 4: Maximum length of equilibria as a function of the prior p0. As we see, this function is

left continuous and decreasing.

all periods except (maybe) the last. We name these equilibria L-equilibria. The following lemma

shows that, for any p0 ∈ (0, 1), there is a finite integer k such that, for each T = 0, 1, ..., k there is

an L-equilibrium that lasts for T periods of education, and no L-equilibrium with a length more

than k.

Lemma 9. Let’s define T ∗∗ ≡ d1−cL
cL
e, pL,k0 ≡ Sk(1, 1) for k = 0, ..., T ∗∗ and pL,T

∗∗+1
0 ≡ 0. Then, if

p0 ∈ (pL,k+1
0 , pL,k0 ] for some k = 0, ..., T ∗∗, we have T̃L(p0) = k. Furthermore, for each T ≤ T̃L(p0),

there is a unique L-equilibrium with T periods of education.

Proof of Lemma 9. Fix some p0 ∈ (0, 1). If p0 > Sk(1, 1) for some k ≤ T ∗∗ there is no L-

equilibrium with k periods of education. Indeed, if there was one (ending at pk = p̂k), then

p0 = Sk(pk, pk). But since Sk(pk, pk) is strictly increasing in pk and p0 > ST (1, 1), then p0 > Sk(p, p)
for all p ∈ [0, 1]. This is clearly a contradiciton. Note also that, in an L-equilibrium with T periods

of education, p̂T − p̂0 = TcL ≤ 1. Since (T ∗∗ + 1)cL > 1, we have T̃ (p0) < T ∗∗ + 1,.

Fix k < T ∗∗, p0 ∈ (pL,k+1
0 , pL,k0 ] and T ≤ k. Note that ST (p, p) is continuous and strictly

increasing when p > TcL for any T ≤ T ∗∗ and limp↘TcL ST (p, p) = 0.14 So, since p0 ≤ Sk(1, 1) ≤
ST (1, 1), there exists a unique pT ∈ (TcL, 1) such that p0 = ST (pT , pT ). Furthermore, there is an

equilibrium with length T with pt = ST−t(pT , pT ) and p̂t =MT−t(pT ). The argument for k = T ∗∗

is analogous.

14Note that, if T ≤ T ∗∗ then TcL < 1, and, by definition,MT (TcL) = 0. Using the definition of Sτ (·, ·), we have

that ST (cLT, cLT ) = 0.
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Lemma 10. For any k ≤ T ∗∗, we have pL,k0 ∈ (p̃k+1
0 , p̃k0).

Proof of Lemma 10. Note first that

p10︷ ︸︸ ︷
1− cH

1− (1− λ)cH
>

p1,L0︷ ︸︸ ︷
1− cL

1− (1− λ)cL
= S1(1, 1) > S1(p1

0, 1− cH)

By definition, for k > 1, pk0 = Sk−1(p1
0, 1− cH) = S1(pk−1

0 ,Mk−2(1− cH)) and pk,L0 = Sk−1(p1,L
0 , 1−

cL) = S1(pk−1
0 ,Mk−2(1 − cL)). Also, note that Mk(1 − cH) > Mk(1 − cL) > Mk+1(1 − cH).

Therefore, since S1(·, ·) is strictly increasing in both arguments, we have pL,k0 ∈ (p̃k+1
0 , p̃k0).

A.4.3 Constructing H-equilibria

Lemma 9 implies that for any p0 ∈ (0, 1), an L-equilibrium lasting for at most k periods can be

constructed, where k satisfies that p0 ∈ (pL,k+1
0 , pL,k0 ]. However, Lemma 10 shows that pL,k0 < p̃k0.

For p0 ∈ (pL,k0 , p̃k0], there is no L-equilibrium lasting for k periods. The question now is whether

there is any other equilibrium that lasts for k periods in this last region. Lemma 11 shows that

the answer to this question is yes.

An equilibrium that lasts for T > 0 periods of education is an H-equilibrium if and only if,

in equilibrium, the L-worker strictly prefers dropping out in period T − 1. In other words, in an

H-equilibrium pT = 1. Note that each equilibrium is either an L-equilibrium or an H-equilibrium,

and never both.

Lemma 11. If p0 ∈ (pL,k0 , p̃k0], there exists an H-equilibrium of length k, for k ∈ {1, ..., T ∗∗}. If

p0 ∈ (p̃k+1
0 , pL,k0 ], there exists an L-equilibrium of length k, for k ∈ {1, ..., T ∗ − 1}.

Proof of Lemma 11. For p0 ∈ (p̃k+1
0 , pL,k0 ] the proof of the previous lemma tells us that there

exists an L-equilibrium of length k. To prove the case p0 ∈ (pL,k0 , p̃k0], we define the function

g : (p1,L
0 , p1

0]→ (1− cL, 1− cH ], denoting p̂T ∗ if pT ∗ ∈ (1− cL, 1− cH ]. It is given by

g(p) ≡ λp

λp+ 1− p .

Then for all p0 ∈ (pL,k0 , pk0] there exists a unique f(p0) ∈ (p1,L
0 , p1

0] such that p0 ≡ Sk−1(f(p0), g(f(p0))).

Indeed, we have that limp↘p1,L0
g(p) = 1− cL and g(p1

0) = 1− cH . So, we have

lim
p↘pL,10

Sk−1(p, g(p)) = pL,k1 and Sk−1(p1
0, g(p1

0)) = p̃k0 .

Since p̂(·) is continuous and strictly increasing, Sk−1(·, ·) is continuous in both arguments and

strictly increasing, then there exists such f(p0), and is unique.
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Figure 5: Partition construction

Let’s construct one equilibrium with k education periods when p0 ∈ (pL,k0 , p̃k0], for k ≤ T ∗ − 1.

Our claim is that it can be defined by pk = p̂k = 1, pt = St−1(f(p0), g(f(p0))) and p̂t = g(f(p0))−
cL(k − t− 1), for t ∈ {0, ..., k − 1}. To prove that, we show that the corresponding strategies are

well defined. Note that, if the L-worker is indifferent in period 0, we have

sLt =
1

1 + (1−λ)(1−pt)p̂t
λpt(1−p̂t)

=
λ

1− (1−λ)(pt−p̂t)
pt(1−p̂t)

.

The first equality shows that sLt < 1. The second equality shows that, if p1
t > p̂t, then sLt > λ,

which is equivalent to p2
0 < p1

0, which is true as long as p̂t > 0. Since, when k < T ∗, p̂0 =

g(f(p0))− cL(k − 1) > 0, the result holds in this case.

Finally, there are two possible cases. If T ∗∗ = T ∗, we know from the previous lemma that

there exists an L-equilibrium with length T ∗∗ in (0, pL,T
∗

0 ). If T ∗∗ = T ∗ − 1 then there exists

some p ∈ (p1,L
0 , p1

0] such that g(p) = T ∗∗cL. Indeed, in this case 1 ≤ T ∗cL < 1 − cH + cL, so

T ∗∗cL ∈ (1 − cH , 1 − cL]. Therefore, we can use the same argument as for p0 ∈ (pL,k0 , p̃k0], for

k ≤ T ∗ − 1. The idea of the partition construction can be summarized in Figure 5.

Finally, note that the set {p̃k0}T
∗+1

k=0 is such that p̃k0 > p̃k+1
0 for all k. Furthermore, for all

0 ≤ k ≤ T ∗ and 0 ≤ T ≤ k, if p0 ∈ (p̃k+1
0 , p̃k0], there exists an equilibrium with T periods of

education and no equilibrium with a length larger than k. So, pk0 ≡ p̃k0, for k = 0, ..., T ∗ + 1,

satisfies the statement of Theorem 1, and therefore its proof is complete. Q.E.D.

A.5 The Proof of Lemma 4

We will do the proof first fixing the maximum real time and solving for the corresponding

p0, and then showing that for all p0 there exists a unique limit for the maximum real time. Fix

κ̄ ∈ (0, 1
c̃L

). In order to save notation, consider a strictly decreasing sequence ∆n such that κ̄
∆n
∈ N

for all n ∈ N. Using the Bayes’ rule, we have the following equation relating p
κ̄/∆n,L
0 and p

κ̄/∆n−1,L
0
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(defined in Lemma 9):15

1

p
κ̄/∆n,L
0

=
λ̃∆n

1− c̃Lκ̄
+

1− λ̃∆n

p
κ̄/∆n−1,L
0

=

κ̄/∆n∑
m=0

λ̃∆n(1− λ̃∆n)m

1− c̃L(κ̄−m∆n)
+ (1− λ̃∆n)κ̄/∆n . (8)

When ∆n is small, each term of the sum can be approximated as follows

λ̃∆n(1− λ̃∆n)m

1− c̃L(κ̄−m∆n)
=

λ̃e−λ̃s

1− c̃L(κ̄− s)∆n +O(∆2
n)

where s ≡ m∆n. The last term of the RHS of equation (8) satisfies limn→∞(1− λ̃∆n)κ̄/∆n = e−λ̃κ̄.

Since each term in the sum is a bounded function (note that s ranges from 0 to κ̄) multiplied by

∆n, at the limit ∆n ↘ 0 the sum converges to the integral, so we have

1

p̃0(κ̄)
≡ lim

n→∞

1

p
κ̄/∆n,L
0

= e−λ̃κ̄ +

∫ κ̄

0

e−λ̃sλ̃

1− c̃Ls
ds .

Note that the RHS of the previous expression is equal to 1 when κ̄ = 0. Differentiating it with

respect to κ̄ we find

d

dκ̄

1

p̃0(κ̄)
= −λ̃e−λ̃κ̄ +

e−λ̃κ̄λ̃

1− c̃Lκ̄
=
e−λ̃κ̄λ̃c̃Lκ̄

1− c̃Lκ̄
≥ 0 .

Therefore, pκ̄0 ∈ (0, 1) when κ̄ ∈ (0, 1
c̃L

).

Note that, for each p0 ∈ (0, 1), there exists a unique κ̄ such that p̃0(κ̄) = p0. Indeed,

limκ̄→0 p̃0(κ̄) = 1, limκ̄→1/c̃L p̃0(κ̄) = 0 and p̃0(·) is strictly increasing in (0, 1
c̃L

). Therefore, for

each p0 there exists a unique κ(p0) ≡ p̃−1
0 (p0) that satisfies the conditions of the lemma. It is given

by the solution of

1

p0

= e−λ̃κ(p0) +

∫ κ(p0)

0

e−λ̃sλ̃

1− c̃Ls
ds . (9)

Q.E.D.

A.6 The Proof of Lemma 5

Proceeding similarly as in the proof of Lemma 4, we have that

1

p0

=
e−λ̃τ

pTn(∆n)
+

∫ τ

0

e−λ̃sλ̃

pTn(∆n)− c̃Ls
ds+O(∆n) .

15We use pκ̄,L0 defined in Lemma 9 instead of pκ̄0 for simplicity. Lemma 10 and the fact that p
κ̄/∆n

0 − pt/∆n−1
0 =

O(∆n) guarantee that p
κ̄/∆n,L
0 and p

κ̄/∆n

0 will be asymptotically equal.
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Note that the RHS of the previous equation is decreasing in pTn(∆n). Furthermore, the RHS

is lower than 1
p0

when pTn(∆n) = 1, since it would be equal if τ = κ(p0), but, by assumption,

τ < κ(p0). Also, when pTn(∆n) = p0, the RHS is larger than p0. Indeed, it would be equal to p0 if

τ = 0, but τ > 0 and, as is shown in the proof of Lemma 4, the RHS is increasing in τ . Therefore,

there exists a unique limit of pTn(∆n), and is strictly lower than 1. Q.E.D.

A.7 The Proof of Theorem 2

Note that the convergence of p̂ is an immediate consequence of Lemma 5. Indeed, we have

that limn→∞ p̂Tn = limn→∞ pTn = 1. Furthermore, since the H-worker has to be (weakly) willing

to remain in education at Tn − 1, we have that p̂Tn−1 = p̂Tn + O(∆n). So, by Lemma 1, we have

p̂t = 1− (Tn − t)c̄L∆ +O(∆) or, in real time, pτ = 1− (κ(p0)− τ)c̄L +O(∆).

To prove the convergence of p, we proceed similarly to Lemma 4. Using Bayes’ rule, it is easy

to prove that, for t < Tn − 1, we have

1

pt
=

1− λ̃∆n

pt+1

+
λ̃∆n

p̂t
= e−λ̃∆nt +

∫ t∆n

0

e−λ̃sλ̃

1− (κ(p0)− s)c̃L
ds+O(∆n) .

If we differentiate each side of the equation with respect to τ ≡ ∆t (or, alternatively, compute
pt+1−pt

∆n
), we find the stated differential equation.

Finally, using Bayes’ rule, it is easy to verify that mt = ptλ
p̂t

when t < Tn. Therefore, trivially,

m̃(τ) = p(τ)λ̃
p̂(τ)

for all τ ∈ (0, κ(p0)). Q.E.D.

A.8 The Proof of Theorem 3

From Theorem 2 we can differentiate m̃(τ) and we get

m̃′(τ) = λ̃
p′(τ)p̂(τ)− p(τ)p̂′(τ)

p̂(τ)2
= −λ̃p(τ)

(
c̃L − (p(τ)− p̂(τ))λ̃

)
p̂(τ)2

.

Note that the last expression is negative only if (p(τ) − p̂(τ)) ≤ c̃L
λ̃

. If we differentiate this

expression we have

d

dτ

(
p(τ)− p̂(τ)

)
= λ̃

p(τ)(p(τ)− p̂(τ))λ̃

p̂(τ)
− c̃L .

First, assume that there is some τ ∗ such that p′(τ ∗) − p̂′(τ ∗) = 0. In this case, the previous

expression is negative, so this is a maximum, since p′(κ(p0)) = 0 < c̃L = p̂′(κ(p0)). It is easy to

show that, m̃′(τ ∗) < 0, so m(τ) for all τ ∈ (0, κ(p0)). Otherwise, p(τ) − p̂(τ) is maximum when

τ = 0, and p′(0)− p̂′(0) ≤ 0, what implies that m̃′(τ) < 0 for all τ ∈ (0, κ(p0)). Q.E.D.

29



A.9 The Proof of Theorem 4

First note that, in any equilibrium passing D1, the length of education (i.e. max{TL, TH})
must be no lower than T̂ . Otherwise, if a worker deviates and drops out at max{TL, TH}+ ε, for

some ε > 0 small, he should be considered an H-worker, and so should receive a wage offer of 1 +

(max{TL, TH}+ε)h. Nevertheless, the wage at max{TL, TH} is no larger than 1+max{TL, TH}h,

so the deviation is profitable for the H-worker.

Let’s assume TL < T̂ .16 In any equilibrium passing D1, H-workers do not voluntarily drop out

in period t where TL ≤ t < T̂ . The reason is that when t > TL, pt = 1, so for H-workers, the

marginal return to education is h which is greater than the marginal cost cH . In the period TL,

we have that sLTL = 1, which implies

p̂TL =
pTLλ

pTLλ+ 1− pTL
⇒ pTL =

p̂TL

p̂TL(1− λ) + λ
≡ f(p̂TL) .

Note that limp̂
TL
→1 f(p̂TL) = 1. Furthermore, note that p̂TL needs to be such that the L-worker

wants to drop out, so

p̂TL + hTL ≥ 1 + h(TL + 1)− cL ⇒ p̂TL ≥ 1 + h− cL .

So, using a technique similar to the one used in Theorem 1, for each p̂ ∈ [1 + h − cL, 1) we

can construct a sequence of p and p̂ using the pull-back functions defined in Lemma 7, now with

cL−h instead of cL in equation (7). Indeed, proceeding similarly, it is easy to show that for every

p̂ ∈ [1 + h − cL, 1) the sequence (pp̂τ ≡ Sτ (f(p̂), p̂ − cL + h))τ is such that for any pp̂τ 6= pp̂
′

τ ′ for

all p̂ 6= p̂′ ∈ [1 + h − cL, 1) and τ, τ ′ ∈ N. Also, given that S1(1, 1 − cL + h) = f(1 − cL + h), it

is easy to show (proceeding similarly to Lemma 11) that for all p0 ∈ (0, 1) there exists a unique

p̂ ∈ [1 + h− cL, 1) and τ ≥ 0 such that p0 = Sτ (f(p̂), p̂− cL + h). Q.E.D.

B Appendix: Type-Dependent Dropout Risk (Not For

Publication)

Here we consider a model in which a worker’s dropout rate is correlated with his productivity.

It turns out that our predictions in Section 2 are robust. There are three relevant cases: (1)

λH > λL ≥ 0, (2) λL > λH > 0, and (3) λL ≥ λH = 0.

16This is true, for example, if 1 + T̂ h < T̂ cL, that is, if L-workers prefer to drop out at 0 than wait until T̂ .
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B.1 λH > λL ≥ 0 Case

The first case we consider is λH > λL ≥ 0; that is, the high-type worker exogenously drops out

at a higher rate than the low-type worker. The following lemma implies that the equilibrium set

in this case coincides with the base model when λ = λH :

Lemma 12. Assume that λH > λL ≥ 0. Then, (αL, αH , w, p, p̂) is a PBE if and only if it is also

a PBE in the benchmark model with λ = λH .

Proof. We first prove that Lemma 1 (which holds when λH = λL) is still valid when λH ≥ λL.

Consider T as the maximum periods lower than TL where sLt ≤ sHt . In this case

pT+1 ≤ pT ≤ p̂T .

Furthermore, since the L-worker is voluntarily dropping out at time T + 1, this implies p̂T ≤
p̂T+1 − cL. Nevertheless, since sLT+1 ≥ sHT+1, we have p̂T+1 ≥ pT+1, which is a contradiction, since

p̂T+1 ≤ pT+1 ≤ pT ≤ p̂T ≤ p̂T+1 − cL .

So, when λH ≥ λL, it is still true that sLt > sHt in all periods of all equilibria before TL.

Therefore, relaxing of the constraint λL = λH = λ to λL ≤ λH = λ does not introduce new

equilibria. Trivially, it does not destroy any equilibria, since in the model λL = λH = λ, in all

equilibria, sLt > λ for all equilibria and period t ≤ TL.

The intuition behind this lemma is that, in our original model, by Lemma 1, the endogenous

dropout rate of the low-type worker is positive in all periods before (maybe) the last. So, the

constraint sLt ≥ λ was never binding in equilibrium. Therefore, all equilibria from the base model

for λ = λH are also equilibria for the case λH > λL ≥ 0. On the other hand, for any equilibrium in

the case where λH > λL, let α̃Lt denote the low type’s strategy. It must be true that α̃Lt ≥ λH−λL.

Define α̂Lt = α̃Lt − (λH − λL) ≥ 0. One can easily verify that α̂Lt can be supported in a PBE of the

game with a symmetric exogenous dropout rate, λ = λH .

B.2 λL > λH > 0 Case

As we can see in Figure 6, sL may be non-monotone. In particular, there are some equilibria

where it is initially decreasing and then increasing and finally it goes down again. Now, sL is

restricted to be no lower than λL > λH . We may guess that this constraint will be potentially

binding in two connected regions, one for large p̂ and the other for intermediate values. In any

equilibrium, when this constraint is binding, both types strictly prefer to wait. Different from
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Figure 6: Endogenous dropout rate of the low-type worker

the benchmark model, the equilibrium belief pt still goes up since λL > λH . After some periods,

the constraint may become not binding anymore, and the low-type worker starts to play a mixed

strategy again. However, the neat equilibrium characterization in the benchmark model can

not survive for some parameters. Fortunately, the following theorem shows that the equilibrium

characterization in the benchmark model still works when λL is not significantly larger than λH .

Theorem 5. For any given set of parameters (λ, cL, cH , p0) there exists ε > 0 such that if λH = λ

and λL = (λ, λ+ ε] then the set of PBE is the same.

Proof. Note that Lemma 6 still holds (the H-worker can imitate the strategy of the L-worker).

Now we try to prove a result analogous to Lemma 1. Assume that the L-worker is not voluntarily

dropping out in period t, so his dropout rate is λ + ε. First assume that the dropout rate of the

H-worker is larger than λ+ ε. In this case, we can apply the exact same argument as in the proof

of Lemma 1, so we obtain again a contradiction. Assume now that sH ∈ [λ, λ + ε). In this case

pt+1 = pt + O(ε) and p̂t = pt + O(ε), so p̂t − pt+1 = O(ε). Then, using the same logic as in the

proof of Lemma 1, we have

p̂t ≤ WL
t ≤ V L

t+1 − cL ≤ pt+1 − cL .

Therefore, p̂t − pt+1 ≤ −cL. But this is inconsistent with p̂t − pt+1 = O(ε). That proves that, if

ε > 0 is small enough, the model with λH = λ and λL = λ+ ε does not have more equilibria than

for the case ε = 0.
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Let’s prove the reverse. Assume that there exists a sequence {εn > 0}n∈N such that limn→∞ εn =

0 and, for each n, there exists an equilibrium in our original model and tn is reached with positive

probability on the path of play under this equilibrium such that sLtn ∈ [λ, λ + εn). This implies

ptn+1 = ptn +O(εn) and p̂tn = ptn +O(εn), so p̂tn − ptn+1 = O(εn).17 So,

p̂tn = WL
tn = V L

tn+1 − cL ≤ ptn+1 − cL .

This, again, is a contradiction.

B.3 λL ≥ λH = 0 Case

In this case, there is no exogenous drop-out by the H-worker. Consider first λL = 0. In this case

our model is equivalent to Cho and Kreps (1987), only corrected by the fact that the education

choice is restricted to be discrete. The reason is that the worker decides about his education

without interacting with the firms. Once the decision to drop out has been made, the worker

cannot change the market’s belief about his type. Furthermore, early dropping out may be off

the path of play, so beliefs can be arbitrarily assigned in those events. Therefore, the equilibrium

predictions of both models share the same characteristics.

Intuitively, when λL > 0, nothing essential changes. The reason is that the belief threats off the

path of play when λL = 0 are replaced by the potentially exogenous dropping out of the L-worker,

so now deviations from early dropout are still punished.

Note that our main mechanism in the benchmark model is not present here. Indeed, in our

benchmark model, as is proven in Lemma 1, the L-worker uses the fact that the H-worker exoge-

nously drops out to mimic him in order to save the high cost of education. Since the H-worker

exogenously drops out, early dropout cannot be punished too much, constraining the belief threats

by the firms. This is no longer true when λH = 0, so the set of equilibria is qualitatively different

from the λH > 0 case.

C Appendix: Multiple Types (Not For Publication)

Now we consider the N > 2 types case in which θ ∈ {1, 2, 3, ..., N} with a prior pθ0, where∑N
θ=1 p

θ
0 = 1. The type θ worker has a cost of waiting cθ, cθ > cθ+1. The productivity of θ is Y θ,

Y θ < Y θ+1. All types exogenously drop out with probability λ.

17Using some abuse of notation, ptn and p̂tn denote the corresponding posteriors in the n-th equilibrium of the

sequence.
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The equilibrium concept is the same as in Definition 1 but adapted to the fact that now we

have many types. Note that firms’ offers depend only on the expected productivity and not on

other moments of the productivity distribution. This fact helps us to keep our definition simple:

Definition 2. A perfect Bayesian equilibrium (PBE) is a strategy profile {(αθ)θ=1,...,N , w},
a belief sequences pθ for all θ ∈ {1, ..., N} such that:

1. the θ-worker chooses αθ to maximize her expected payoff given w,

2. if a worker drops out with education t, firms offer wt =
∑N

θ=1 p̂
θ
tY

θ, where p̂θt satisfies

p̂θt =
pθts

θ
t∑N

θ′=1 p
θ′
t s

θ′
t

, (10)

when it is well defined, and

3. when it is well defined, pθt is updated according to the Bayes’ rule

pθt+1 =
pθt (1− sθt )∑N

θ′=1 p
θ′
t (1− sθ′t )

. (11)

Let T θ be the last time the θ-worker is in school. The following theorem shows that our insight

into the binary-type model can be easily extended to a multiple-types model.

Theorem 6. Under the previous assumptions, in any equilibrium:

1. in each period t, there is at most one type, indifferent to dropping out,

2. more productive types stay longer in education, T θ ≤ T θ+1,

3. there is positive voluntary dropout in all periods, and

4. the expected productivity of dropouts, Ŷt ≡
∑N

θ=1 p̂
θ
tY

θ, is concave in t.

Proof. 1. Assume that, in period t, there are two types θ1, θ2 ∈ Θ, with cθ1 < cθ2 , and both

are indifferent between dropping out or not. Let τ1 and τ2 denote, respectively, the stopping

times of the continuation strategies that make players indifferent on dropping out or not.18

Then, we have

Ŷt = E[wτθ2 − c
θ2τθ2 ] ≥ E[wτθ1 − c

θ2τθ1 ] > E[wτθ1 − c
θ1τθ1 ] = Ŷt .

18For this proof, for a given strategy, it is convenient to use the random variable τ , which gives the duration of

the game.
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The first (weak) inequality is from the optimality of the θ2-worker. The strong inequality

is because E[τθ1 ] > 0 and cθ1 < cθ2 . The equalities come from the fact that i-workers with

i ∈ {1, 2} are indifferent between dropping out (and getting Ŷt) or staying and following τi.

Therefore, we have a contradiction.

2. Assume otherwise; that is there exists θ1, θ2 ∈ Θ such that θ1 < θ2 and T θ1 > T θ2 . Let τθ1 be

the stopping time of the continuation strategy after T θ2 , given by the strategy of θ1. Then,

note that

ŶT θ2 ≥ E[wτθ1 − c
θ2τθ1 ] > E[wτθ1 − c

θ1τθ1 ] ≥ ŶT θ2 .

This is clearly a contradiction. The first inequality comes from the optimality of the θ2-

worker choosing to drop out at T θ2 (since they could deviate to mimic the θ1-worker). The

second inequality is given by the fact that since θ1 < θ2, cθ2 < cθ1 and since T θ1 > T θ2 ,

E[τθ1 ] > 0. The last inequality comes from the optimality of the θ1-worker choosing to drop

out at T θ1 > T θ2 (since they could deviate to mimic the θ2-worker).

3. Define Θt = {θ|T θ ≥ t} and θt = min{Θt}. We proceed as in the proof of Lemma 6. Now

we have

Et[wτ |τ ≥ t] =
∞∑
τ=t

Pr(τ, t)Ŷτ =
∞∑
τ=t

Pr(τ, t)

∑
θ Y

θsθτp
θ
t Pr θ(τ, t)

Pr(τ, t)

=
∑
θ

pθtY
θ

∞∑
τ=t

sθτ Pr θ(τ, t) =
∑
θ

pθtY
θ = Yt ,

where Pr(τ, t) and Pr θ(τ, t) = sθτ
τ−1∏
t′=t

(1− sθt′) are defined as in the proof of Lemma 6.

Note that, by the previous result,

N∑
θ=θt

pθtV
θ
t = Et[wτ |τ ≥ t]−

N∑
θ=θt

pθt c
θτ θ(t) < Et[wτ |τ ≥ t] ,

where τ θ(t) is the stopping time for the θ-worker conditional on reaching t. Since V θ
t ≤ V θ+1

t

(since the (θ+ 1)-worker can mimic the θ-worker at a lower cost), and
∑N

θ=θt
pθt = 1 we have

that V θt
t < Yt.

Assume that in period t there is no voluntary dropout. In this case, Ŷt = Yt. Since we just

showed Vθt < Yt, the θt-worker is willing to drop out, which is a contradiction.

4. Note that, by part 3 of this theorem, we have that Ŷt+1−cθt ≤ Ŷt. Furthermore, Ŷt+1−cθt+1 ≥
Ŷt. This implies that Ŷt+1 − Ŷt+1 ∈ [cθt+1 , cθt ]. Since cθ is decreasing in θ and, by part 2 of

this theorem, the θt-worker is (weakly) increasing in t, Ŷt is concave in t.
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Most features of the two-type model are preserved. However, note that under many types we

have decreasing returns to education instead of linear ones, since lower types are skimmed out

before higher types in equilibria. This pattern of decreasing returns to education is consistent with

many empirical studies, for example, Frazis (2002), Habermalz (2003), Heckman et al. (2008) and

Manoli (2008). The equilibrium construction in multiple-type models is almost identical to that

in the two-type model and thus is omitted.
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