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Abstract
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1 Introduction

1.1 Reputations

The word “reputation” appears throughout discussions of everyday interac-
tions. Firms are said to have reputations for providing good service, pro-
fessionals for working hard, people for being honest, newspapers for being
unbiased, governments for being free from corruption, and so on. Rep-
utations establish links between past behavior and expectations of future
behavior—one expects good service because good service has been provided
in the past, or expects fair treatment because one has been treated fairly in
the past. These reputation affects are so familiar as to be taken for granted.
One is instinctively skeptical of a watch offered for sale by a stranger on a
subway platform, but more confident of a special deal on a watch from an
established jeweler. Firms proudly advertise that they are fixtures in their
communities, while few customers would be attracted by a slogan of “here
today, gone tomorrow.”

Repeated games allow for a clean description of both the myopic incen-
tives that agents have to behave opportunistically and, via appropriate speci-
fications of future behavior (and so rewards and punishments), the incentives
that deter opportunistic behavior. As a consequence, strategic interactions
within long-run relationships have often been studied using repeated games.
For the same reason, the study of reputations has been particularly fruit-
ful in the context of repeated games, the topic of this chapter. We do not
provide a comprehensive guide to the literature, since a complete list of the
relevant repeated-games papers, at the hurried rate of one paragraph per
paper, would leave us no room to discuss the substantive issues. Instead,
we identify the key points of entry into the literature, confident that those
who are interested will easily find their way past these.1

1.2 The Interpretive Approach to Reputations

There are two approaches to reputations in the repeated-games literature. In
the first, an equilibrium of the repeated game is selected whose actions along
the equilibrium path are not Nash equilibria of the stage game. Incentives
to choose these actions are created by attaching less favorable continuation
paths to deviations. For perhaps the most familiar example, there is an
equilibrium of the repeated prisoners’ dilemma (if the players are sufficiently

1It should come as no surprise that we recommend Mailath and Samuelson (2006) for
further reading on most topics in this chapter.
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patient) in which the players cooperate in every period, with any deviation
from such behavior prompting relentless mutual defection.

The players who choose the equilibrium actions in such a case are often
interpreted as maintaining a reputation for doing so, with a punishment-
triggering deviation interpreted as the loss of one’s reputation. For example,
players in the repeated prisoners’ dilemma are interpreted as maintaining
a reputation for being cooperative, while the first instance of defection de-
stroys that reputation.

In this approach, the link between past behavior and expectations of fu-
ture behavior is an equilibrium phenomenon, holding in some equilibria but
not in others. The notion of reputation is used to interpret an equilibrium
strategy profile, but otherwise involves no modification of the basic repeated
game and adds nothing to the formal analysis.

1.3 The Adverse Selection Approach to Reputations

The adverse selection approach to reputations considers games of incom-
plete information. The motivation typically stems from a game of complete
information in which the players are “normal,” and the game of incomplete
information is viewed as a perturbation of the complete information game.
In keeping with this motivation, attention is typically focused on games
of “nearly” complete information, in the sense that a player whose type is
unknown is very likely (but not quite certain) to be a normal type. For
example, a player in a repeated game might be almost certain to have stage-
game payoffs given by the prisoners’ dilemma, but may with some small
possibility have no other option than to play tit-for-tat.2 Again, consistent
with the perturbation motivation, it is desirable that the set of alternative
types be not unduly constrained.

The idea that a player has an incentive to build, maintain, or milk his
reputation is captured by the incentive that player has to manipulate the
beliefs of other players about his type. The updating of these beliefs es-
tablishes links between past behavior and expectations of future behavior.
We say “reputations effects” arise if these links give rise to restrictions on
equilibrium payoffs or behavior that do not arise in the underlying game of
complete information.

We concentrate throughout on the adverse selection approach to repu-
tations. The basic results identify circumstances in which reputation effects

2This was the case in one of the seminal reputation papers, Kreps, Milgrom, Roberts,
and Wilson (1982).
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necessarily arise, imposing bounds on equilibrium payoffs that are in many
cases quite striking.

2 Reputations with Short-Lived Players

2.1 An Example

We begin with the example of the “product-choice” game shown in Figure
1. Think of the long-lived player 1 (“he”) as a firm choosing to provide
either high (H) or low (L) effort. Player 2 (“she”) represents a succession
of customers, with a new customer in each period, choosing between a cus-
tomized (c) or standardized (s) product. The payoffs reveal that high effort
is costly for player 1, since L is a strictly dominant strategy in the stage
game. Player 1 would like player 2 to choose the customized product c, but
2 is willing to do so only if she is sufficiently confident that 1 will choose H.

The stage game has a unique Nash equilibrium in which the firm provides
low effort and the customer buys the standardized product. In the discrete-
time infinite horizon game, the firm maximizes the average discounted sum
of his payoffs. In the infinite horizon game of complete information, every
payoff in the interval [1, 2] is a subgame perfect equilibrium payoff if the firm
is sufficiently patient.

Equilibria in which the firm’s payoff is close to 2 have an intuitive feel
to them. In these equilibria, the firm frequently exerts high effort H, so
that the customer will play her best response of purchasing the customized
product c. Indeed, the firm should be able to develop a “reputation” for
playing H by persistently doing so. This may be initially costly for the firm,
because customers may not be immediately convinced that the firm will play
H and hence customers may play s for some time, but the subsequent payoff
could make this investment worthwhile for a sufficiently patient firm.

Nothing in the structure of the repeated game captures this intuition.
Repeated games have a recursive structure: the continuation game following
any history is identical to the original game. No matter how many times

c s

H 2, 3 0, 2

L 3, 0 1, 1

Figure 1: The product-choice game.
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the firm has previously played H, the standard theory provides no reason
for customers to believe that the firm is more likely to play H now than at
the beginning of the game.

Now suppose that in addition to the normal type of firm, i.e., the type
whose payoffs are given by Figure 1, there is a commitment, or behavioral,
type ξ(H). This type invariably and necessarily plays H (and hence the
description “commitment” or “behavioral” type). We also refer to this type
as the Stackelberg type, since H is the action the firm would take in the
unique subgame perfect equilibrium of a sequential-move game of perfect
information in which the firm chooses publicly before the customer. Even if
the prior probability of this behavioral type is very small, it has a dramatic
effect on the set of equilibrium payoffs when the firm is sufficiently patient.
It is an implication of Proposition 1 that there is then no Nash equilibrium
of the incomplete information game with a payoff to the normal firm near
1.

The flavor of the analysis is conveyed by asking what must be true in
an equilibrium in which the normal type of player 1 receives a payoff close
to 1, when he has discount factor close to 1. For this to occur, there must
be many periods in which the customer chooses the standardized product,
which in turn requires that in those periods the customer expects L with
high probability. But if player 1 plays H in every period, then the customer
is repeatedly surprised. And, since the H-commitment type has positive
prior probability, this is impossible: each time the customer is surprised the
posterior probability on the H-commitment type jumps a discrete amount
(leading eventually to a posterior above the level at which customers choose
the customized product).

Reputation effects do much more than eliminate unintuitive outcomes;
they also rescue intuitive outcomes as equilibrium outcomes. For example,
the finitely repeated complete information product-choice game has a unique
subgame perfect equilibrium, and in this equilibrium, the static Nash profile
Ls is played in every period. Nonetheless, our intuition again suggests that
if the game has a sufficiently long horizon, the firm should here as well
be able to develop a “reputation” for playing H by persistently doing so.
It is an immediate implication of the logic underlying Proposition 1 that
the firm can indeed develop such a reputation in the game with incomplete
information.3

3Kreps, Milgrom, Roberts, and Wilson (1982) first made this point in the context of
the finitely repeated prisoners’ dilemma with the commitment type playing tit-for-tat.
Kreps and Wilson (1982) and Milgrom and Roberts (1982) further explore this insight in
the finite horizon chain store game.
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Similarly, if customers can only imperfectly monitor the firm’s effort
choice, the upper bound on the firm’s complete information equilibrium
payoff will be less than 2. Moreover, for some monitoring distributions, the
complete information game has, for all discount factors, a unique sequential
equilibrium, and in this equilibrium, the static Nash profile Ls is played in
every period.4 Proposition 1 nonetheless implies that the firm can develop
a reputation for playing H in the game with incomplete information.

2.2 The Benchmark Complete Information Game

Player i has a finite action space Ai. Player 1’s actions are monitored via
a public signal: the signal y, drawn from a finite set Y , is realized with
probability ρ(y|a1) when the action a1 ∈ A1 is chosen. We make the analysis
more convenient here by assuming that the public signal depends only on
player 1’s action, returning to this assumption in Section 2.5. Since player
2 is short-lived, we further simplify notation by assuming that the period t
player 2’s action choice is not observed by subsequent player 2’s (though it
is observed by player 1). The arguments are identical (with more notation)
if player 2’s actions are public.

Player i’s ex post stage game payoff is a function u∗i : A1 ×A2 × Y → R
and i’s ex ante payoff is ui : A1 ×A2 → R is given by

ui(a) :=
∑

y
u∗i (a1, a2, y)ρ(y|a1).

We typically begin the analysis with the ex ante payoffs, as in the product-
choice game of Figure 1, and the monitoring structure ρ, leaving the ex post
payoff functions u∗i to be defined implicitly.

Player 2 observes the public signals, but does not observe player 1’s
actions. Player 2 might draw inferences about player 1’s actions from her
payoffs, but since player 2 is short-lived, these inferences are irrelevant (as
long as the period t player 2 does not communicate any such inference to
subsequent short-lived players). Following the literature on public moni-
toring repeated games, such inferences can also be precluded by assuming
player 2’s ex post payoff does not depend on a1, depending only on (a2, y).

The benchmark game includes perfect monitoring games as a special
case. In the perfect monitoring product-choice game for example, A1 =
{H,L}, A2 = {c, s}, Y = A1, and ρ(y | a1) = 1 if y = a1 and 0 otherwise. An
imperfect public monitoring version of the product-choice game is analyzed
in Section 2.4.3 (Example 2).

4We return to this in Example 2.
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Player 1 is long lived (and discounts flow payoffs by a discount factor
δ), while player 2 is short lived (living for one period). The set of private
histories for player 1 is H1 := ∪∞t=0(A1 ×A2 × Y )t, and a behavior strategy
for player 1 is a function σ1 : H1 → ∆(A1). The set of histories for the short-
lived players is H2 := ∪∞t=0Y

t, and a behavior strategy for the short-lived
players is a function σ2 : H2 → ∆(A2). Note that the period t short-lived
player does not know the action choices of past short-lived players.5

2.3 The Incomplete Information Game and Commitment Types

The type of player 1 is unknown to player 2. A possible type of player 1 is
denoted by ξ ∈ Ξ, where Ξ is a finite or countable set of types. Player 2’s
prior belief about 1’s type is given by the distribution µ, with support Ξ.

The set of types is partitioned into payoff types, Ξ1, and commitment
types, Ξ2 := Ξ\Ξ1. Payoff types maximize the average discounted value of
payoffs, which depend on their type. We accordingly expand the definition of
the ex post payoff function u∗1 to incorporate types, u∗1 : A1×A2×Y ×Ξ1 →
R. The ex ante payoff function u1 : A1 ×A2 × Ξ1 → R is now given by

u1(a1, a2, ξ) :=
∑
y

u∗1(a1, a2, y, ξ)ρ(y|a1).

It is common to identify one payoff type as the normal type, denoted here
by ξ0. When doing so, it is also common to drop the type argument from
the payoff function. It is also common to think of the prior probability of
the normal type µ(ξ0) as being relatively large, so the games of incomplete
information are a seemingly small departure from the underlying game of
complete information, though there is no requirement that this be the case.

Commitment types do not have payoffs, and simply play a specified
repeated game strategy. While a commitment type of player 1 can be com-
mitted to any strategy in the repeated game, much of the literature focuses
on simple commitment or action types: such types play the same (pure
or mixed) stage-game action in every period, regardless of history.6 For
example, one simple commitment type in the product-choice game always

5Under our assumption that the public signal’s distribution is a function of only the
long-lived players’s action, the analysis to be presented proceeds unchanged if the period t
short-lived player knows the actions choices of past short-lived players (i.e., the short-lived
player actions are public). In more general settings (where the signal distribution depends
on the complete action profile), the analysis must be adjusted in obvious ways (as we
describe below).

6This focus is due to the observation that with short-lived uninformed players, more
complicated commitment types do not lead to higher reputation bounds.
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exerts high effort, while another always plays high effort with probability
2
3 . We denote by ξ(α1) the (simple commitment) type that plays the action
α1 ∈ ∆(A1) in every period.

Remark 1 (Payoff or commitment types) The distinction between pay-
off and commitment types is not clear cut. For example, pure simple com-
mitment types are easily modeled as payoff types. We need only represent
the type ξ(a1) as receiving the stage-game payoff 1 if he plays action a1

(regardless of what signal appears or what player 2 chooses) and zero oth-
erwise. Note that this makes the consistent play of a1 a strictly dominant
strategy in the repeated game, and that it is not enough to simply have the
action be dominant in the stage game.

�

A behavior strategy for player 1 in the incomplete information game is
given by

σ1 : H1 × Ξ→ ∆(A1),

such that, for all simple commitment types ξ(α1) ∈ Ξ2,7

σ1(ht1, ξ(α1)) = α1, ∀ht1 ∈ H1.

A behavior strategy for player 2 is (as in the complete information game) a
map σ2 : H2 → ∆(A2).

The space of outcomes is given by Ω := Ξ × (A1 ×A2 × Y )∞, with
an outcome ω = (ξ, a0

1a
0
2y

0, a1
1a

1
2y

1, a2
1a

2
2y

2, . . .) ∈ Ω, specifying the type of
player 1, the actions chosen and the realized signal in each period.

A profile of strategies (σ1, σ2), along with the prior probability over types
µ (with support Ξ), induces a probability measure on the set of outcomes
Ω, denoted by P ∈ ∆(Ω). For a fixed commitment type ξ̂ = ξ(α̂1), the
probability measure on the set of outcomes Ω conditioning on ξ̂ (and so
induced by (σ̂1, σ2), where σ̂1 is the simple strategy specifying α̂1 in every
period irrespective of history), is denoted P̂ ∈ ∆(Ω). Denoting by P̃ the
measure induced by (σ1, σ2) and conditioning on ξ 6= ξ̂, we have

P = µ(ξ̂)P̂ + (1− µ(ξ̂))P̃. (1)

Given a strategy profile σ, U1(σ, ξ) denotes the type-ξ long-lived player’s
payoff in the repeated game,

U1(σ, ξ) := EP

[
(1− δ)

∞∑
t=0

δtu1(at, yt, ξ)

∣∣∣∣∣ ξ
]
.

7For convenience, we have omitted the analogous requirement that σ1 is similarly re-
stricted for non-simple commitment types.
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Denote by Γ(µ, δ) the game of incomplete information.
As usual, a Nash equilibrium is a collection of mutual best responses:

Definition 1 A strategy profile (σ′1, σ
′
2) is a Nash equilibrium of the game

Γ(µ, δ) if, for all ξ ∈ Ξ1, σ′1 maximizes U1(σ1, σ
′
2, ξ) over player 1’s repeated

game strategies, and if for all t and all ht2 ∈ H2 that have positive probability
under (σ′1, σ

′
2) and µ (i.e., P(ht2) > 0),

EP

[
u2(σ′1(ht1, ξ), σ

′
2(ht2)) | ht2

]
= max

a2∈A2

EP

[
u2(σ′1(ht1, ξ), a2) | ht2

]
.

2.4 Reputation Bounds

The link from simple commitment types to reputation effects arises from a
basic property of updating: Suppose an action α′1 is statistically identified
(i.e., there is no α′′1 giving rise to the same distribution of signals) under the
signal distribution ρ, and suppose player 2 assigns positive probability to
the simple type ξ(α′1). Then, if the normal player 1 persistently plays α′1,
player 2 must eventually place high probability on that action being played
(and so will best respond to that action). Intuitively, since α′1 is statistically
identified, in any period in which player 2 places low probability on α′1 (and
so on ξ(α′1)), the signals will typically lead player 2 to increase the posterior
probability on ξ(α′1), and so eventually on α′1. Consequently, there cannot
be too many periods in which player 2 places low probability on α′1.

When the action chosen is perfectly monitored by player 2 (which re-
quires the benchmark game have perfect monitoring and α′1 be a pure ac-
tion), this intuition has a direct formalization (the route followed in the
original argument of Fudenberg and Levine, 1989). However, when the ac-
tion is not perfectly monitored, the path from the intuition to the proof
is less clear. The original argument for this case (Fudenberg and Levine,
1992) uses sophisticated martingale techniques, subsequently simplified by
Sorin (1999) (an exposition can be found in Mailath and Samuelson, 2006,
§15.4.2). Here we present a recent simple unified argument, due to Gossner
(2011b), based on relative entropy (see Cover and Thomas, 2006, for an
introduction).
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2.4.1 Relative Entropy

Let X be a finite set of outcomes. The relative entropy or Kullback-Leibler
distance between probability distributions p and q over X is

d(p‖q) :=
∑
x∈X

p(x) log
p(x)
q(x)

.

By convention, 0 log 0
q = 0 for all q ∈ [0, 1] and p log p

0 = ∞ for all p ∈
(0, 1].8 In our applications of relative entropy, the support of q will always
contain the support of p. Since relative entropy is not symmetric, we often
distinguish the roles of p and q by saying that d(p‖q) is the relative entropy
of q with respect to p. Relative entropy is always nonnegative and only
equals 0 when p = q (Cover and Thomas, 2006, Theorem 2.6.3).9

The relative entropy of q with respect to p measures an observer’s ex-
pected error in predicting x ∈ X using the distribution q when the true
distribution is p. The probability of a sample of n draws from X identically
and independently distributed according to p is

∏
x p(x)nx , where nx is the

number of realizations of x ∈ X in the sample. An observer who believes
the data is distributed according to q assigns to the same sample probability∏
x q(x)nx . The log likelihood ratio of the sample is

L(x1, . . . , xn) =
∑

x
nx log

p(x)
q(x)

.

As the sample size n grows large, the average log likelihood L(x1, . . . , xn)/n
converges almost surely to d(p‖q) (and so the log likelihood becomes arbi-
trarily large for any q 6= p, since d(p‖q) > 0 for any such q).

While not a metric (since it is asymmetric and does not satisfy the tri-
angle inequality), relative entropy is usefully viewed as a notion of distance.
For example, Pinsker’s inequality10 bounds the relative entropy of q with
respect to p from below by a function of their L1 distance:

‖p− q‖ ≤
√

2d(p‖q), (2)
8These equalities, for p, q > 0, are justified by continuity arguments. The remaining

case, 0 log 0
0

= 0, is made to simplify statements and eliminate nuisance cases.
The logs may have any base. Both base 2 and base e are used in information theory.

We use base e.
9Apply Jensen’s inequality to −d(p‖q) =

∑
x∈supp p p(x) log[q(x)/p(x)].

10See Cesa-Bianchi and Lugosi (2006, page 371) or Cover and Thomas (2006, Lemma
11.6.1); note that Cover and Thomas (2006) define relative entropy using log base 2.
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where

‖p− q‖ :=
∑

x
|p(x)− q(x)| = 2

∑
{x:p(x)≥q(x)}

|p(x)− q(x)| .

Thus, ‖pn − q‖ → 0 if d(pn‖q)→ 0 as n→∞. While the reverse implication
does not hold in general,11 it does for full support q.

The usefulness of relative entropy arises from a chain rule. Let P and
Q be two distributions over a finite product set X × Y , with marginals PX
and QX on X, and conditional probabilities PY (·|x) and QY (·|x) on Y given
x ∈ X. The chain rule for relative entropy is

d(P‖Q) = d(PX‖QX) +
∑

x
PX(x)d (PY (·|x)‖QY (·|x))

= d(PX‖QX) + EPXd (PY (·|x)‖QY (·|x)) . (3)

The chain rule is a straightforward calculation (Cover and Thomas, 2006,
Theorem 2.5.3). The error in predicting the pair xy can be decomposed into
the error predicting x, and conditional on x, the error in predicting y.

The key to the reputation bound is bounding the error in the one-step
ahead predictions of the uninformed players when the long-lived player plays
identically to a commitment type. The presence of the commitment type
ensures that there is a “grain of truth” in player 2’s beliefs which, together
with the chain rule, yields a useful bound on relative entropy. The basic
technical tool is the following lemma.

Lemma 1 Let X be a finite set of outcomes. Suppose q = εp+ (1− ε)p′ for
some ε > 0 and p, p′ ∈ ∆(X). Then,

d(p‖q) ≤ − log ε.

Proof. Since q(x)/p(x) ≥ ε, we have

−d(p‖q) =
∑

x
p(x) log

q(x)
p(x)

≥
∑

x
p(x) log ε = log ε.

11Suppose X = {0, 1}, pn(1) = 1 − 1
n

, and q(1) = 1. Then, ‖pn − q‖ → 0, while
d(pn‖q) =∞ for all n.
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2.4.2 Bounding the One-Step Ahead Prediction Errors

Fix a (possibly mixed) action α̂1 ∈ ∆(A1) and suppose the commitment
type ξ̂ = ξ(α̂1) has positive prior probability.

At the history ht2, player 2 chooses an action σ2(ht2) that is a best re-
sponse to α1(ht2) := EP[σ1(ht1, ξ) | ht2], that is, a2 has positive probability
under σ2(ht2) only if it maximizes12∑

a1

∑
y u
∗
2(a1, a2, y)ρ(y|a1)α1(a1|ht2).

At the history ht2, player 2’s predicted distribution of the period t signals
is p(ht2) := ρ(·|α1(ht2)) =

∑
a1
ρ(·|a1)α1(a1|ht2), while the true distribution

when player 1 plays α̂1 is p̂ := ρ(·|α̂1) =
∑

a1
ρ(·|a1)α̂1(a1). Hence, if player

1 is playing α̂1, then in general player 2 is not best responding to the true
distribution of signals, and his one-step ahead prediction error is d

(
p̂‖p(ht2)

)
.

However, player 2 is best responding to an action profile α1(ht2) that is
d
(
p̂‖p(ht2)

)
-close to α̂1 (as measured by the relative entropy of the induced

signals). To bound player 1’s payoff, it suffices to bound the number of
periods in which d

(
p̂‖p(ht2)

)
is large.

Since player 2’s beliefs assign positive probability to the event that player
1 is always playing α̂1, then when player 1 does so, player 2’s one-step
prediction error must disappear asymptotically. A bound on player 1’s payoff
then arises from noting that if player 1 relentlessly plays α̂1, then player 2
must eventually just as persistently play a best response to α̂1. “Eventually”
may be a long time, but this delay is inconsequential to a sufficiently patient
player 1.

For any period t, denote the marginal of the unconditional distribution
P on Ht

2, the space of t period histories of public signals, by Pt
2. Similarly,

the marginal on Ht
2 of P̂ (the distribution conditional on ξ̂) is denoted P̂t

2.
Recalling (1) and applying Lemma 1 to these marginal distributions (which
have finite supports) yields

d(P̂t
2‖Pt

2) ≤ − logµ(ξ̂). (4)

It is worth emphasizing that this inequality holds for all t, and across all
equilibria. But notice also that the bounding term is unbounded as µ(ξ̂)→ 0
and our interest is in the case where µ(ξ̂) is small.

Suppose µ(ξ̂) is indeed small. Then, in those periods when player 2’s
prediction under P, p(ht2), has a large relative entropy with respect to p̂, she

12The probability assigned to a1 ∈ A1 by the distribution α1(ht2) is denoted by
α1(a1|ht2).
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will (with high probability) be surprised,13 and so will significantly increase
her posterior probability that player 1 is ξ̂. This effectively increases the
size of the grain of truth from the perspective of period t+ 1, reducing the
maximum relative entropy p(ht+1

2 ) can have with respect to p̂. Intuitively,
for fixed µ(ξ̂), there cannot be too many periods in which player 2 can be
surprised with high probability.

To make this intuition precise, we consider the one-step ahead prediction
errors, d(p̂‖p(hτ2)). The chain rule implies

d(P̂t
2‖Pt

2) =
t−1∑
τ=0

E
P̂
d(p̂‖p(hτ2)),

that is, the prediction error over t periods is the total of the t expected
one-step ahead prediction errors. Since (4) holds for all t,

∞∑
τ=0

E
P̂
d (p̂‖p(hτ2)) ≤ − logµ(ξ̂). (5)

That is, all but a finite number of expected one-step ahead prediction errors
must be small.

2.4.3 From Prediction Bounds to Payoffs

It remains to connect the bound on prediction errors (5) with a bound on
player 1’s payoffs.

Definition 2 An action α2 ∈ ∆(A2) is an ε-entropy confirming best re-
sponse to α1 ∈ ∆(A1) if there exists α′1 ∈ ∆(A1) such that

1. α2 is a best response to α′1; and

2. d(ρ(·|α1)‖ρ(·|α′1)) ≤ ε.

The set of ε-entropy confirming best responses to α1 is denoted Bd
ε (α1).

Recall that in a Nash equilibrium, at any on-the-equilibrium-path history
ht2, player 2’s action is a d(p̂‖p(ht2))-entropy confirming best response to α̂1.
Suppose player 1 always plays α̂1. We have just seen that the expected
number of periods in which d(p̂‖p(ht2)) is large is bounded, independently
of δ. Then for δ close to 1, player 1’s equilibrium payoffs will be effectively
determined by player 2’s ε-entropy confirming best responses for ε small.

13Or, more precisely, the period (t+ 1) version of player 2 will be surprised.
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Define, for all payoff types ξ ∈ Ξ1,

vξα1
(ε) := min

α2∈Bdε (α1)
u1(α1, α2, ξ),

and denote by wξα1 the largest convex function below vξα1 . The function wξα1

is nonincreasing in ε because vξα1 is. The function wξα1 allows us to translate
a bound on the total discounted expected one-step ahead prediction errors
into a bound on the total discounted expected payoffs of player 1.

Proposition 1 Suppose the action type ξ̂ = ξ(α̂1) has positive prior proba-
bility, µ(ξ̂) > 0, for some potentially mixed action α̂1 ∈ ∆(A1). Then, player
1 type ξ’s payoff in any Nash equilibrium of the game Γ(µ, δ) is greater than
or equal to wξα̂1

(ε̂), where ε̂ := −(1− δ) logµ(ξ̂).

It is worth emphasizing that the only aspect of the set of types and the
prior that plays a role in the proposition is the probability assigned to ξ̂.
The set of types may be very large, and other quite crazy types may receive
significant probability under the prior µ.

Proof. Since in any Nash equilibrium (σ′1, σ
′
2), each payoff type ξ has

the option of playing α̂1 in every period, we have

U1(σ′, ξ) = (1− δ)
∑∞

t=0
δtEP[u1(σ′1(ht1), σ′2(ht2), ξ) | ξ]

≥ (1− δ)
∑∞

t=0
δtE

P̂
u1(α̂1, σ

′
2(ht2), ξ)

≥ (1− δ)
∑∞

t=0
δtE

P̂
vξα̂1

(d(p̂‖p(ht2)))

≥ (1− δ)
∑∞

t=0
δtE

P̂
wξα̂1

(d(p̂‖p(ht2)))

(and so, by an application of Jensen’s inequality)

≥ wξα̂1

(
(1− δ)

∑∞

t=0
δtE

P̂
d(p̂‖p(ht2))

)
(and so, by an application of (5))

≥ wξα̂1

(
−(1− δ) logµ(ξ̂)

)
.

13



Corollary 1 Suppose the action type ξ̂ = ξ(α̂1) has positive prior probabil-
ity, µ(ξ̂) > 0, for some potentially mixed action α̂1 ∈ ∆(A1). Then, for all
ξ ∈ Ξ1 and η > 0, there exists a δ̄ < 1 such that, for all δ ∈ (δ̄, 1), player 1
type ξ’s payoff in any Nash equilibrium of the game Γ(µ, δ) is greater than
or equal to

vξα̂1
(0)− η.

Proof. Since the distribution of signals is independent of player 2’s
actions, if a mixture is an ε-entropy confirming best response to α̂1, then so
is every action in its support.14 This implies that Bd

0(α̂1) = Bd
ε (α̂1) for ε

sufficiently small, and so vξα̂1
(0) = vξα̂1

(ε) for ε sufficiently small. Hence,

vξα̂1
(0) = wξα̂1

(0) = lim
ε↘0

wξα̂1
(ε).

The Corollary is now immediate from Proposition 1.

Example 1 To illustrate Proposition 1 and its corollary, consider first the
perfect monitoring product-choice game of Figure 1. Let ξ denote the payoff
type with the player 1 payoffs specified. Recall that in the perfect monitoring
game, the set of signals coincides with the set of firm actions. The action c is
the unique best response of a customer to any action α1 satisfying α1(H) >
1
2 , while s is also a best response when α1(H) = 1

2 . Thus, Bd
ε (H) = {c} for

all ε < log 2 (since d(H‖α1) = − logα1(H)), while Bd
ε (H) = {c, s} for all

ε ≥ log 2 ≈ 0.69. That is, c is the unique ε-entropy confirming best response
to H, for ε smaller than the relative entropy of the equal randomization on
H and L with respect to the pure action H. This implies

vξH(ε) =

{
2, if ε < log 2,
0, if ε ≥ log 2.

The functions vξH and wξH are graphed in Figure 2.
Consider now the mixed action α̂1 which plays the action H with prob-

ability 2
3 (and the action L with probability 1

3). The relative entropy of the
equal randomization on H and L with respect to the mixed action α̂1 is
5
3 log 2 − log 3 =: ε̄ ≈ 0.06, and so any action with smaller relative entropy
with respect to α̂1 has c as the unique best response. This implies

vξα̂1
(ε) =

{
21

3 , if ε < ε̄,
1
3 , if ε ≥ ε̄.

14This is not true in general, see Mailath and Samuelson (2006, fn. 10, p. 480).
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Figure 2: The functions vξH , wξH , vξα̂1
, and wξα̂1

for the perfect monitoring
version of the product-choice game in Figure 1 (the payoff type ξ has the
specified player 1 payoffs). The relative entropy of 1

2 ◦ H + 1
2 ◦ L with

respect to H is log 2 ≈ 0.69. For higher relative entropies, s is an ε-entropy
confirming best response to H. The relative entropy of 1

2 ◦H + 1
2 ◦ L with

respect to α̂1 is ε̄ ≈ 0.06. For higher relative entropies, s is an ε-entropy
confirming best response to α̂1.
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Suppose the customer puts positive probability on firm type ξH := ξ(H).
If µ(ξH) is large, then its log is close to zero, and we have a trivial and
unsurprising reputation bound (since the customer will best respond to H
from the beginning). Suppose, though, that the probability is close to zero.
Then it may take many periods of imitating the action type ξH before the
customer predicts H in every period (reflected in a large magnitude log).
But since the number of periods is independent of the discount factor, for
δ sufficiently close to 1, the lower bound is still close to 2: the term (1 −
δ) logµ(ξ) is close to zero.

This bound is independent of customer beliefs about the possible pres-
ence of the type ξ̂ := ξ(α̂1). A possibility of the type ξ̂ can improve the
lower bound on payoffs. However, since this type’s behavior (signal distri-
bution) is closer to the critical distribution 1

2 ◦H + 1
2 ◦ L, the critical value

of the relative entropy is significantly lower (ε̄ << log 2; see Figure 2), and
hence more periods must pass before the type ξ firm can be assured that the
customer will play a best response. If the prior assigned equal probability
to both ξ̂ and ξH , then the bound on δ required to bound the type ξ firm’s
payoff by vξα̂1

(0)− η is significantly tighter than that required to bound the
type ξ firm’s payoff by vξH(0)− η.

F

Example 2 One would expect reputation-based payoff bounds to be weaker
in the presence of imperfect monitoring. While there is a sense in which this
is true, there is another sense in which this is false.

To illustrate, we consider an imperfect monitoring version of the product-
choice game. The actions of the firm are private, and the public signal is
drawn from Y := {y, y} according to the distribution ρ(y | a1) = p if a1 = H
and q < p if a1 = L. The ex ante payoffs for the type ξ firm and customer
are again given by Figure 1.

While the best responses of the customer are unchanged from Example
1 , the ε-entropy confirming best responses are changed: The relative entropy
of the mixture α1 with respect to H is now

d(H‖α1) = p log
p

α1(H)p+ α1(L)q
+(1−p) log

1− p
α1(H)(1− p) + α1(L)(1− q)

.

For the parameterization p = 1− q = 2
3 , d(H‖1

2 ◦H + 1
2 ◦L) = ε̄ ≈ 0.06, the

critical value for α̂1 from Example 1, and so vξH(ε) = 2 for ε < ε̄, and 0 for
ε ≥ ε̄. Moreover, wξH(0) = 2.
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Finally, the relative entropy of the critical mixture 1
2 ◦ H + 1

2 ◦ L with
respect to the mixture α̂1 from Example 1 is approximately 0.006. Since
the firm’s actions are statistically identified by the signals, we also have
vξα̂1

(0) = wξα̂1
(0) = 21

3 .
Recall that in the perfect monitoring product-choice game, the bound

on the relative entropy to get a strictly positive lower bound on payoffs
from wξH(ε) is log 2 ≈ 0.69 rather than ε̄ ≈ 0.06. This implies that the
required lower bound on the discount factor to get the same lower bound on
payoffs is larger for the imperfect monitoring game, or equivalently, for the
same discount factor, the reputation lower bound is lower under imperfect
monitoring.

It is worth recalling at this point our earlier observation from Section
2.1 that reputation effects can rescue intuitive outcomes as equilibrium out-
comes. Assume the actions of the customers are public; as we noted earlier,
this does not affect the arguments or the reputation bounds calculated (be-
yond complicating notation). For the parameterization p = 1 − q = 2

3 , the
complete information repeated game has a unique sequential equilibrium
outcome, in which L is played in every period (Mailath and Samuelson,
2006, Section 7.6.2 and Proposition 10.1.1). The firm’s equilibrium payoff
in the complete information game is 1. In particular, while the reputation
payoff bound is weaker in an absolute sense in the presence of imperfect
monitoring, the relative bound (bound less the maximal payoff in any equi-
librium of the complete information game) is stronger.

F

2.4.4 The Stackelberg Bound

The reputation literature has tended to focus on Stackelberg bounds. Player
1’s pure-action Stackelberg payoff (for type ξ) is defined as

v̄ξ1 := sup
a1∈A1

min
α2∈B(a1)

u1 (a1, α2, ξ) ,

where B(a1) is the set of player 2 myopic best replies to a1. Since A1 is
finite, the supremum is attained by some action a∗1 and any such action is
an associated Stackelberg action,

aξ1 ∈ arg max
a1∈A1

min
α2∈B(a1)

u1 (a1, α2, ξ) .

This is a pure action to which the type ξ player 1 would commit, if player 1
had the chance to do so (and hence the name “Stackelberg action”), given
that such a commitment induces a best response from player 2.
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The mixed-action Stackelberg payoff is defined as

¯̄vξ1 := sup
α1∈∆(A1)

min
α2∈B(α1)

u1(α1, α2, ξ).

Typically, the supremum is not achieved by any mixed action, and so there is
no mixed-action Stackelberg type. There are, of course, mixed commitment
types that, if player 2 is convinced she is facing such a type, will yield payoffs
arbitrarily close to the mixed-action Stackelberg payoff.

If the signals are informative about the actions of player 1, then the set
of zero-entropy confirming best replies coincides with the set of best replies
and so we have the following corollary:

Corollary 2 Suppose the actions of player 1 are statistically identified, i.e.,
ρ(·|a1) 6= ρ(·|a′1) for all a1 6= a′1 ∈ A1. Suppose the action type ξ(aξ1) has
positive prior probability for some Stackelberg action aξ1 for the payoff type
ξ. Then, for all η > 0, there exists δ̄ ∈ (0, 1) such that for all δ ∈ (δ̄, 1),
the set of player 1 type ξ’s Nash equilibrium payoffs of the game Γ(µ, δ) is
bounded below by v̄ξ1 − η.

Suppose the mixed actions of player 1 are statistically identified, i.e.,
ρ(·|α1) 6= ρ(·|α′1) for all α1 6= α′1 ∈ ∆(A1). Suppose the support of µ includes
a set of action types {ξ(α1) : α1 ∈ ∆∗}, where ∆∗ is a countable dense
subset of ∆(A1). Then, for all η > 0, there exists δ̄ ∈ (0, 1) such that for all
δ ∈ (δ̄, 1), the set of player 1 type ξ’s Nash equilibrium payoffs of the game
Γ(µ, δ) is bounded below by ¯̄vξ1 − η.

2.5 More General Monitoring Structures

While the analysis in Section 2.4 is presented for the case in which the distri-
bution of signals is a function of the actions of player 1 only, the arguments
apply more generally. It is worth first noting that nothing in the argument
depended on the signals being public, and so the argument applies imme-
diately to the case of private monitoring, with signals that depend only on
player 1’s actions.

Suppose now that the distribution over signals depends on the actions
of both players. The definition of ε-confirming best responses in Definition
2 is still valid, once condition 2 is adjusted to reflect the dependence of ρ on
both players’ actions:

d(ρ(·|(α1, α2))‖ρ(·|(α′1, α2))) < ε.
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Figure 3: The extensive and normal forms of the purchase game.

Proposition 1 and Corollary 1 are true in this more general setting as
written. While the proof of Proposition 1 is unchanged (as a few moments
of reflection will reveal), the proof of the Corollary is not. In particular,
while Bd

ε (α1) is still upper hemicontinuous in ε, it is not locally constant at
0 (see Gossner (2011b) for details).

The obtained reputation bounds, however, may be significantly weak-
ened. One obvious way for signals to depend on the actions of both players
is that the stage game has a nontrivial extensive form, with the public signal
in each period consisting of the terminal node reached in that period. In this
case, the Stackelberg action of player 1 may not be statistically identified,
limiting the effects of reputations. Consider the purchase game illustrated
in Figure 3. The short-lived customer first decides between “buy” (b) and
“don’t buy” (d), and then after b, the long-lived firm decides on the level
of effort, high (H) or low (L). The extensive and normal forms are given
in Figure 3. The game has three public signals, corresponding to the three
terminal nodes. The distribution over the public signal is affected by the
behavior of both players, and as a consequence the zero-entropy confirming
best replies to H (the Stackelberg action) consist of b (the best response) and
d (which is not a best response to H). There is no useful reputation bound
in this case: Even if the short-lived customers assign positive probability to
the possibility that the firm is the Stackelberg type, there is a sequential
equilibrium in which the firm’s payoff is 0 (Fudenberg and Levine, 1989,
Example 4).
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2.6 Temporary Reputations Under Imperfect Monitoring

As the analysis of Section 2.4 reveals, the lack of perfect monitoring of ac-
tions does not pose a difficulty for the formation of reputations. It does how-
ever pose a difficulty for its maintenance. Cripps, Mailath, and Samuelson
(2004, 2007) show that under imperfect monitoring, reputations in repeated
games are temporary. We present a new simpler entropy-based proof due to
Gossner (2011a).

Earlier indications that reputations are temporary can be found in Ben-
abou and Laroque (1992), Kalai and Lehrer (1995), and Mailath and Samuel-
son (2001). Benabou and Laroque (1992) show that the long-lived player
eventually reveals her type in any Markov perfect equilibrium of a particu-
lar repeated game of strategic information transmission. Kalai and Lehrer
(1995) use merging arguments to show that, under weaker conditions than
we impose here, play in repeated games of incomplete information must
converge to a subjective correlated equilibrium of the complete information
continuation game.15 We describe Mailath and Samuelson (2001) in Section
4.3.3.

For simplicity, we restrict attention to the case in which there are only
two types of player 1, the normal type ξ0 and the action type ξ̂ = ξ(α̂1).16

We assume the public signals have full support (Assumption 1) under α̂1.17

Reputations are temporary under private monitoring as well, with an iden-
tical proof (though the notation becomes a little messier). We also assume
that with sufficiently many observations, either player can correctly iden-
tify, from the frequencies of the signals, any fixed stage-game action of their
opponent (Assumptions 2 and 3). We now allow the signal distribution to
depend upon both players’ actions (since doing so does not result in any
complications to the arguments, while clarifying their nature).

Assumption 1 (Full Support) ρ(y|α̂1, a2) > 0 for all a2 ∈ A2 and y ∈
Y .

Assumption 2 (Identification of 1) For all α2 ∈ ∆(A2), the |A1|
columns in the matrix [ρ(y|a1α2)]y∈Y,a1∈A1 are linearly independent.

15This result is immediate in our context, since we examine a Nash equilibrium of the
incomplete information game.

16The case of countably many simple action types is also covered, using the modifications
described in Cripps, Mailath, and Samuelson (2004, Section 6.1).

17This is stronger than necessary. For example, we can easily accommodate public
player 2 actions by setting Y = Y1 ×A2, and assuming the signal in Y1 has full support.
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Assumption 3 (Identification of 2) For all a1 ∈ A1, the |A2| columns
in the matrix [ρ(y|a1a2)]y∈Y,a2∈A2 are linearly independent.

We assume the actions of the short-lived player are not observed by
player 1 (but see footnote 17), and so player 1’s period t private history
consists of the public signals and his own past actions, denoted by ht1 ∈
Ht

1 := (A1 × Y )t. We continue to assume that the short-lived players do not
observe past short-lived player actions, and so the private history for player
2 is denoted ht2 ∈ Ht

2 := Y t.18

Given a strategy profile (σ1, σ2) of the incomplete information game, the
short-lived player’s belief in period t that player 1 is type ξ̂ is

µt(ht2) := P(ξ̂|ht2),

and so µ0 is the period 0, or prior, probability assigned to ξ̂.

Proposition 2 Suppose Assumptions 1–3 are satisfied. Suppose player 2
has a unique best response â2 to α̂1 and that (α̂1, â2) is not a Nash equilib-
rium of the stage game. If (σ1, σ2) is a Nash equilibrium of the game Γ(µ, δ),
then

µt → 0, P̃-a.s.

Hence, conditional on player 1 being the normal type, player 2’s posterior
belief that 1 is normal almost-surely converges to one.

By Assumption 1, Bayes’ rule determines µt after all histories. At any
Nash equilibrium of this game, the belief µt is a bounded martingale and so
converges P-almost surely (and hence P̃- and P̂-almost surely) to a random
variable µ∞. The idea of the proof is:

1. En route to a contradiction, assume that there is a positive P̃-probability
event on which µ∞ is strictly positive.

2. On this event, player 2 believes that both types of player 1 are eventu-
ally choosing the same distribution over actions α̂1 (because otherwise
player 2 could distinguish them).

3. Consequently, on a positive P̃-probability set of histories, eventually,
player 2 will always play a best response to α̂1.

18As for the earlier analysis on reputation bounds, the disappearing reputation results
also hold when short-lived players observe past short-lived player actions (a natural as-
sumption under private monitoring).

21



4. Assumption 3 then implies that there is a positive P̃-probability set
of histories on which player 1 infers that player 2 is for many periods
best responding to α̂1, irrespective of the observed signals.

5. This yields the contradiction, since player 1 has a strict incentive to
play differently than α̂1.

Since α̂1 is not a best reply to â2, there is a γ > 0, an action â1 ∈ A1

receiving positive probability under α̂1, and an ε2 > 0 such that

γ < min
α2(â2)≥1−ε2

(
max
a1

u1(a1, α2)− u1(â1, α2)
)
. (6)

Define p̂(ht2) := ρ(·|(α̂1, σ2(ht2)) and redefine p(ht2) := ρ(·|α1(ht2), σ2(ht2)).
Recall that ‖·‖ denotes L1 distance. With this notation, Assumption 2
implies that there exists ε3 > 0 such that, if

∥∥p(ht2)− p̂(ht2)
∥∥ < ε3 (so that

player 2 assigns sufficiently high probability to α̂1), then player 2’s unique
best response is â2. Assumptions 1 and 2 imply that there exists ε1 > 0,
with

ε1 < min
{
ε3, min

(α1,α2):α1(â1)=0
‖ρ(·|(α1, α2))− ρ(·|(α̂1, α2))‖

}
,

such that

ρ := min
α1,a2

{ρ(y|α1, a2) : ‖ρ(·|α1, a2)− ρ(·|α̂1, a2)‖ ≤ ε1} > 0. (7)

On the event
Xt :=

{∥∥p(ht2)− p̂(ht2)
∥∥ < ε1

}
,

player 2’s beliefs lead to her best responding to α̂1, i.e., σ2(ht2) = â2. The
first lemma bounds the extent of player 2’s P̃-expected surprises (i.e., periods
in which player 2 both assigns a nontrivial probability to player 1 being ξ̂
and believes p(ht2) is far from p̂(ht2)):

Lemma 2 (Player 2 either learns the type is normal or doesn’t
believe it matters)

∞∑
t=0

E
P̃

[
(µt)2(1− 1Xt)

]
≤ −2 log(1− µ0)

ε2
1

where 1Xt is the indicator function for the event Xt.
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Proof. Since (where p̃(ht2) is the predicted signal distribution conditional
on ξ0)

p(ht2) = µtp̂(ht2) + (1− µt)p̃(ht2),

we have
µt(p(ht2)− p̂(ht2)) = (1− µt)(p̃(ht2)− p(ht2)),

and so
µt
∥∥p(ht2)− p̂(ht2)

∥∥ ≤ ∥∥p(ht2)− p̃(ht2)
∥∥ .

Then,

ε2
1

2

∞∑
t=0

E
P̃

[
(µt)2(1− 1Xt)

]
≤ 1

2

∞∑
t=0

E
P̃

[
(µt)2

∥∥p(ht2)− p̂(ht2)
∥∥2
]

≤ 1
2

∞∑
t=0

E
P̃

[∥∥p(ht2)− p̃(ht2)
∥∥2
]

≤
∞∑
t=0

E
P̃

[
d(p̃(ht2)‖p(ht2))

]
≤ − log(1− µ0),

where the penultimate inequality is Pinsker’s inequality (2) and the final
inequality is (5) (with the normal type in the role of ξ̂).

2.6.1 The Implications of Reputations Not Disappearing

Since posterior beliefs are a bounded martingale under P, they converge P
(and so P̃) almost surely, with limit µ∞. If reputations do not disappear
almost surely under P̃, then

P̃(µ∞ = 0) < 1,

and so there exists a λ > 0 and T0 such that

P̃(µt ≥ λ,∀t ≥ T0) > 0.

Define
F := {µt ≥ λ,∀t ≥ T0}.

We first show that if reputations do not disappear almost surely under
P̃, then eventually, with P̃-positive probability, player 2 must believe ξ0

almost plays α̂1 in every future period.
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Lemma 3 (On F , eventually player 2 believes ξ0 plays α̂1) Suppose
µt 6→ 0 P̃-a.s. There exists T1 such that for

B :=
⋂

t≥T1

Xt,

we have
P̃(B) ≥ P̃(F ∩B) > 0.

Proof. We begin with the following calculation:
∞∑
t=0

E
P̃

[
(µt)2(1− 1Xt)

]
≥ P̃(F )

∞∑
t=0

E
P̃

[
(µt)2(1− 1Xt) | F

]
(8)

≥ P̃(F )λ2
∞∑
t=T0

E
P̃

[1− 1Xt | F ] .

Lemma 2 implies the left side of (8) is finite, and so there exists T1 ≥ T0

such that ∑
t≥T1

E
P̃

[1− 1Xt | F ] < 1.

Then,

P̃ (F ∩B) = P̃(F )− P̃ (F \B)

= P̃(F )− P̃ (F ∩ (Ω \B))

= P̃(F )
(

1− P̃ (Ω \B|F )
)

≥ P̃(F )
(

1−
∑

t≥T1

P̃(Ω \Xt
∣∣F )

)
> 0.

The next lemma effectively asserts that when player 2 is eventually (un-
der P̃) always playing â2, the best response to α̂1, then the normal player 1
sees histories that lead him to be confident that for many periods, player 2
is indeed playing â2. Note that on the set B, player 2 is playing â2 in every
period after T1. Denote the filtration describing player i’s information by
(Hti)t.

Lemma 4 (On B,eventually player 1 figures out that player 2 is
best responding to α̂1) Suppose µt 6→ 0 P̃-a.s. For the event B from
Lemma 3, for all τ , there is a subsequence (tn) such that as n→∞,

τ∑
k=1

{
1− E

P̃

[
σ2(htn+k

2 )(â2)
∣∣∣Htn1 ]}1B → 0 P̃-a.s. (9)
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The convergence in (9) holds also when P̃ is replaced by P.

Proof. We prove (9); obvious modifications to the argument proves it
for P. Recall that ht+1

1 = (ht1, a
t
1y
t), and, for k ≥ 1, denote player 1’s k-step

ahead prediction of his action and signal by βkt (ht1) ∈ ∆(A1 × Y ), so that
βkt (ht1)(at+k−1

1 yt+k−1) = P̃(at+k−1
1 yt+k−1 | ht1). Similarly, denote player 1’s

k-step prediction conditional on B by βkt,B(ht1). The chain rule implies that,
for all t and k,

d(βkt,B(ht1)‖βkt (ht1))

≤ d
(

P̃(at1y
t, . . . , at+k−1

1 yt+k−1 | ht1, B)
∥∥∥ P̃(at1y

t, . . . , at+k−1
1 yt+k−1 | ht1)

)
= E

P̃(·|ht1,B)

k∑
k′=1

d
(

P̃(at+k
′−1

1 yt+k
′−1 | ht+k′−1

1 , B)
∥∥∥ P̃(at+k

′−1
1 yt+k

′−1 | ht+k′−1
1 )

)
= E

P̃(·|ht1,B)

k∑
k′=1

d
(
β1
t+k′−1,B(ht+k

′−1
1 )‖β1

t+k′−1(ht+k
′−1

1 )
)
.

Consequently, for all hT1
1 satisfying P̃(hT1

1 , B) > 0, and for all k,∑
t≥T1

E
P̃

[
d(βkt,B(ht1)‖βkt (ht1))

∣∣∣hT1
1 , B

]

≤
∑
t≥T1

E
P̃

[
k∑

k′=1

d
(
β1
t+k′−1,B(ht+k

′−1
1 )‖β1

t+k′−1(ht+k
′−1

1 )
)∣∣∣∣∣hT1

1 , B

]
≤ k

∑
t≥T1

E
P̃

[
d
(
β1
t,B(ht1)‖β1

t (ht1)
)∣∣hT1

1 , B
]

≤ −k log P̃(B | hT1
1 ).

The last inequality follows from Lemma 1 applied to the equality

P̃
(
yT1 , . . . , yT1+`−1

∣∣∣hT1
1

)
= P̃(B | hT1

1 )P̃
(
yT1 , . . . , yT1+`−1

∣∣∣hT1
1 , B

)
+ (1− P̃(B | hT1

1 ))P̃
(
yT1 , . . . , yT1+`−1

∣∣∣hT1
1 ,Ω \B

)
and the chain rule (via an argument similar to that leading to (5)).

Thus, for all k,

E
P̃

[
d(βkt,B(ht1)‖βkt (ht1))

∣∣∣hT1
1 , B

]
→ 0 as t→∞,
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and so (applying Pinsker’s inequality)

E
P̃

[
‖βkt,B(ht1)− βkt (ht1))‖

∣∣∣hT1
1 , B

]
→ 0 as t→∞,

yielding, for all τ ,
τ∑
k=1

E
P̃

[
‖βkt,B(ht1)− βkt (ht1))‖

∣∣∣hT1
1 , B

]
→ 0 as t→∞. (10)

Since

‖βkt,B(ht1)− βkt (ht1))‖ ≥ κ
(

1− E
P̃

[σ2(ht+k2 )(â2)|ht1]
)
,

where
κ := min

a1∈A1,
α2∈∆(A2),α2(â2)=0

‖ρ(·|a1, â2)− ρ(·|a1, α2)‖

is strictly positive by Assumption 3, (10) implies

τ∑
k=1

E
P̃

[
1− E

P̃
[σ2(ht+k2 )(â2)|ht1]

∣∣∣hT1
1 , B

]
→ 0 as t→∞.

This implies (9), since convergence in probability implies subsequence a.e.
convergence (Chung, 1974, Theorem 4.2.3).

Using Lemma 4, we next argue that on B ∩ F , player 1 believes that
player 2 is eventually ignoring her history while best responding to α̂1. In
the following lemma, ε2 is from (6). The set At(τ) is the set of player 2
t-period histories such that player 2 ignores the next τ signals (the positive
probability condition only eliminates 2’s actions inconsistent with σ2, since
under Assumption 1, every signal realization has positive probability under
α̂1 and so under P).

Lemma 5 (Eventually player 1 figures out that player 2 is best
responding to α̂1, independently of signals) Suppose µt 6→ 0 P̃-a.s.
For all τ , there is a subsequence (tm) such that as m→∞,

P̃(Atm(τ)|Htm1 )1B∩F → 1B∩F P̃-a.s.,

where

At(τ) := {ht2 : σ2(ht+k2 )(â2) > 1− ε2/2, ∀ht+k2 s.t. P(ht+k2 |ht2) > 0,
∀k = 1, . . . , τ, }.
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Proof. Define

Aτt := {ht+τ2 : σ2(ht+k2 )(â2) > 1− ε2/2, k = 1, . . . , τ}.

The set Aτt is the set of (t + τ)-period histories for player 2 at which she
essentially best responds to α̂1 for the last τ periods. Note that, viewed as
subsets of Ω, At(τ) ⊂ Aτt .19

We then have

τ∑
k=1

E
P̃

{
1− E

P̃

[
σ2(ht+k2 )(â2)

∣∣∣ht1]∣∣∣B ∩ F}
= E

P̃

{
E

P̃

[∑τ

k=1

(
1− σ2(ht+k2 )(â2)

)∣∣∣ht1]∣∣∣B ∩ F}
= E

P̃

{
E

P̃

[∑τ

k=1

(
1− σ2(ht+k2 )(â2)

)∣∣∣ht1, Aτt ] P̃(Aτt |ht1)
∣∣∣B ∩ F}

+E
P̃

{
E

P̃

[∑τ

k=1

(
1− σ2(ht+k2 )(â2)

)∣∣∣ht1,Ω \Aτt ] (1− P̃(Aτt |ht1))
∣∣∣B ∩ F} .

Dropping the first term and using the implied lower bound from Ω \ Aτt on∑τ
k=1(1− σ2(ht+k2 )(â2)) yields

τ∑
k=1

E
P̃

{
1− E

P̃

[
σ2(ht+k2 )(â2)

∣∣∣ht1]∣∣∣B ∩ F}
≥ ε2

2

(
1− E

P̃

{
P̃(Aτt |ht1)

∣∣∣B ∩ F}) .
Lemma 4 then implies

lim
n→∞

E
P̃

{
P̃(Aτtn |H

tn
1 )
∣∣∣B ∩ F} = 1.

As before, this then implies that on a subsequence (t`) of (tn), we have, as
`→∞,

P̃(Aτt` |H
t`
1 )1B∩F → 1B∩F P̃-a.s. (11)

Thus, the normal player 1 eventually (on B∩F ) assigns probability 1 to (t`+
τ)-period histories for player 2 at which player 2 essentially best responds
to α̂1 for the last τ periods. It remains to argue that this convergence holds
when At`(τ) replaces Aτt` .

19More precisely, if ht2(ω) is the t-period player 2 history under ω ∈ Ω, then

{ω : ht2(ω) ∈ At(τ)} ⊂ {ω : ht+τ2 (ω) ∈ Aτt }.
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A similar argument to that proving (11) shows that as m→∞,

P(Aτtm |H
tm
1 )1B∩F → 1B∩F P-a.s.

(where the subsequence (tm) can be chosen so that (11) still holds).20

Since B ∩ F ∈ H∞2 and Ht2 ⊂ Ht1, this implies

P(Aτtm |H
tm
2 )1B∩F → 1B∩F P-a.s.

We claim that for all ω ∈ B ∩ F , for sufficiently large m if htm+τ
2 (ω) ∈

Aτtm , then htm2 (ω) ∈ At(τ). This then implies the desired result.
For suppose not. Then, for infinitely many tm,

htm2 (ω) 6∈ Atm(τ) and htm+τ
2 (ω) ∈ Aτtm .

At any such tm, since there is at least one τ period continuation of the
history htm2 (ω) that is not in Aτtm , we have (from Assumption 1) P̂(Aτtm |
Htm2 )(ω) ≤ 1 − ρτ , where ρ > 0 is defined in (7). Moreover, on F , µtm ≥ λ
for tm ≥ T0. But this yields a contradiction, since these two imply that
P(Aτtm | H

tm
2 )(ω) is bounded away from 1 infinitely often:

P(Aτtm | H
tm
2 )(ω) ≤ (1− µtm) + µtmP̂(Aτtm | H

tm
2 )(ω)

≤ 1− µtm + µtm(1− ρτ ) = 1− λρτ .

Indeed, player 2 “knows” that player 1 believes that player 2 is eventually
ignoring her history:

Lemma 6 (Eventually player 2 figures out that player 1 figures
out...) Suppose µt 6→ 0 P̃-a.s. For all τ , there is a subsequence (tm) such
that as m→∞,

E
P̃

[
P̃(Atm(τ)|Htm1 )

∣∣∣Htm2 ]1B∩F → 1B∩F , P̃-a.s.

Proof. Let (tm) be the subsequence identified in Lemma 5. Conditioning
on Htm2 , Lemma 5 implies

E
P̃

[
P̃(Atm(τ)|Htm1 )1B∩F

∣∣∣Htm2 ]− EP̃

[
1B∩F |Htm2

]
→ 0, P̃-a.s.

20Assumption 1 is weaker than full support imperfect monitoring, requiring only that
all signals have positive probability under P̂. Under full support imperfect monitoring
(ρ(y|a) > 0 for all a), the following argument is valid with P̃ replacing P, without the
need to introduce a new subsequence.
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The observation that E
P̃

[1B∩F | Htm2 ] converges P̃-almost surely to 1B∩F
(since B ∩ F is in H∞2 ) yields

E
P̃

[
P̃(Atm(τ)|Htm1 )1B∩F

∣∣∣Htm2 ]→ 1B∩F , P̃-a.s.,

implying the lemma.21

2.6.2 The Contradiction and Conclusion of the Proof

For fixed δ, there is a τ such that

(1− δ)γ > 2δτ max
a
|u1(a)|,

that is, the loss of γ (defined in (6)) in one period exceeds any possible
potential gain deferred τ periods.

For this value of τ , for P̃(Atm(τ)|htm1 ) close enough to 1, optimal play
by player 1 requires σ1(htm1 )(â1) = 0. Lemma 6 then implies that, on B∩F ,
eventually player 2 predicts σ1(htm1 )(â1) = 0, which implies

lim
m→∞

P̃(Xtm |B ∩ F ) = 0,

which is a contradiction, since P̃(Xt|B) = 1 for all t ≥ T1.

2.7 Interpretation

There is a tension between Propositions 1 and 2. By Proposition 1 and
its Corollaries 1 and 2, the normal player 1’s ability to masquerade as a
commitment type places a lower bound on his payoff. And yet, according
to Proposition 2, when the player 1’s actions are imperfectly monitored, if
player 1 is indeed normal, then player 2 must learn that this is the case.

21Define gt := EP̃

[
1B∩F |Ht2

]
. Then, since gt is Ht2-measurable,

EP̃

[
P̃(At(τ)|Ht1)1B∩F

∣∣∣Ht2
]
− EP̃

[
P̃(At(τ)|Ht1)

∣∣∣Ht2
]
1B∩F

= EP̃

[
P̃(At(τ)|Ht1)(1B∩F − gt)

∣∣∣Ht2
]

+ EP̃

[
P̃(At(τ)|Ht1)

∣∣∣Ht2
]

(gt − 1B∩F ),

which converges to 0 P̃-almost surely, since gt → 1B∩F P̃-almost surely.
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Indeed, more can be said if there is a little more structure on the game.22

If in addition to public imperfect monitoring of player 1’s actions, the ac-
tions of player 2 are public, then not only does player 2 learn the type of
player 1, but the continuation play of any Nash equilibrium converges to a
Nash equilibrium of the complete information game (Cripps, Mailath, and
Samuelson, 2004, Theorem 2).

The tension is only apparent, however, since the reputation bounds are
only effective for high discount factors and only concern ex ante payoffs.
In contrast, the disappearing reputation results fix the discount factor, and
consider the asymptotic evolution of beliefs (and behavior).

Suppose player 2’s actions are public and player 1 is either normal or
the Stackelberg type. Fix η > 0 and a discount factor δ′, and suppose
player 1 is the normal type with probability 1 − µ0. Suppose moreover, δ′

is strictly larger than the bound δ̄ from Corollary 2, so that the normal
player 1’s expected payoff in any Nash equilibrium is at least v∗1 − η, where
v∗1 is 1’s Stackelberg payoff. By Proposition 2, over time the posterior will
tend to fall. As illustrated in Figure 4, since the discount factor is fixed at
δ′, the posterior will eventually fall below µ′, and so Corollary 2 no longer
applies. However, since all signals have positive probability, there is positive
probability that even after the belief has fallen below µ′, some history of
signals will again push the posterior above µ′. Since continuation play forms
a Nash equilibrium of the incomplete information game, Corollary 2 again
applies. The probability of such histories becomes vanishingly small as the
histories become long.

As an example, recall the imperfect monitoring product-choice game
(with public player 2 actions) with the pure Stackelberg type ξ̂ = ξ(H)
considered in Example 2. For the parameterization in that example, the
complete information repeated game has a unique sequential equilibrium
outcome, in which L is played in every period. Nonetheless, by Corollary 2,
given any prior probability µ0 on ξ(H), for sufficiently high δ, player 1’s ex
ante equilibrium payoff is at least 13

4 , higher than the complete information
equilibrium payoff of 1. Fix such a δ. We then know that in any equilibrium,

22One might seek refuge in the observation that one can readily find equilibria in perfect
monitoring games in which reputation effects persist indefinitely. The initial finite horizon
reputation models of Kreps and Wilson (1982) and Milgrom and Roberts (1982) exhibited
equilibria in which player 1 chooses the Stackelberg action in all but a relatively small
number of terminal periods (see also Conlon, 2003). The analogous equilibria in infinitely
repeated games feature the Stackelberg action in every period, enforced by the realization
that any misstep reveals player 1 to be normal. However, it is somewhat discomforting to
rely on properties of equilibria in perfect monitoring games that have no counterparts in
games of imperfect monitoring.
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δ

1

δ′

µµ′ µ00

δ̄
Corollary 2 bound applies

Figure 4: Illustration of reputation effects under imperfect monitoring. Sup-
pose ξ̂ is a Stackelberg type. For fixed η > 0, δ̄ is the lower bound from
Corollary 2 for prior probability µ(ξ̂) = µ0. For players 1’s discount factor
δ′ > δ̄, Corollary 2 applies in period 0. The arrows indicate possible belief
updates of player 2 about the likelihood of player 1 being the Stackelberg
type ξ̂. When player 1 is normal, almost surely the vertical axis is reached.

for many periods, the short-lived player must be playing c (which requires
that the short-lived player in those periods assign sufficient probability to
H). However, the equilibrium incentive player 1 has to cheat in each period
(if only with low probability), arising from the imperfection in the moni-
toring, implies that (with high probability) the posterior will eventually fall
sufficiently that the lack of complete information intertemporal incentives
forces player 1 to play L (and player 2 to respond with s). Indeed, from
Cripps, Mailath, and Samuelson (2004, Theorem 3), for high δ and for any
ε > 0 there is an equilibrium of the incomplete information game that has
ex ante player 1 payoffs over 13

4 , and yet the P̃ probability of the event that
eventually Ls is played in every period is at least 1− ε.

This discussion raises an important question: Why do we care about
beliefs after histories that occur so far into the future as to be effectively
discounted into irrelevance when calculating ex ante payoffs?

While the short run properties of equilibria are interesting, we believe
that the long run equilibrium properties are relevant in many situations. For
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example, an analyst may not know the age of the relationship to which the
model is to be applied. We do sometimes observe strategic interactions from
a well-defined beginning, but we also often encounter on-going interactions
whose beginnings are difficult to identify. Long run equilibrium properties
may be an important guide to behavior in the latter cases. Alternatively,
one might take the view of a social planner who is concerned with the con-
tinuation payoffs of the long-lived player and with the fate of all short-lived
players, even those in the distant future. Finally, interest may center on
the steady states of models with incomplete information, again directing
attention to long run properties.

2.8 Exogenously Informative Signals

Section 2.6 established conditions under which reputations eventually dis-
appear. Section 2.7 explained why this result must be interpreted carefully,
with an emphasis on keeping track of which limits are taken in which or-
der. This section, considering the impact of exogenously informative signals,
provides a further illustration of the subtleties that can arise in taking lim-
its. This section is based on Hu (2013), which provides a general analysis;
Wiseman’s (2009) original analysis considered the chain store example.

We consider the product-choice game of Figure 1 with the set of types
Ξ = {ξ0, ξ̂}, where ξ0 is the normal type and ξ̂ = ξ(H) is the Stackelberg
type. The stage game is a game of perfect monitoring. Imperfect monitoring
played an important role in the disappearing-reputation result of Section 2.6.
In contrast, there is no difficulty in constructing equilibria of the perfect
monitoring product-choice game in which both the normal and Stackelberg
types play H in every period, with customers never learning the type of
player 1. It thus seems as if a game of perfect monitoring is not particularly
fertile ground for studying temporary reputations.

However, suppose that at the end of every period, the players observe a
public signal independent of the players’ actions. In each period t, the signal
zt is an identically and independently distributed draw from {z0, ẑ}. The
signal is informative about player 1’s type: 0 < π(ẑ | ξ0) := Pr(ẑ | ξ0) <
Pr(ẑ | ξ̂) =: π(ẑ | ξ̂) < 1. A sufficiently long sequence of such signals suffices
for player 2 to almost surely learn player 1’s type.

It now appears as if reputation arguments must lose their force. Because
the public signals are unrelated to the players’ actions, there is a lower
bound on the rate at which player 2 learns about player 1. If player 1
is very patient, the vast bulk of his discounted expected payoff will come
from periods in which player 2 is virtually certain that 1 is the normal type
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(assuming 1 is indeed normal). It then seems as if there is no chance to
establish a reputation-based lower bound on 1’s payoff. Nonetheless, for all
ε > 0, there exists δ̄ < 1 such that if δ ∈ (δ̄, 1), then player 1’s equilibrium
payoff is at least

wH(`)− ε, (12)

where wH is the function illustrated in Figure 2, and ` := d(π(· | ξ0)‖π(· | ξ̂))
is the relative entropy of π(· | ξ̂) with respect to π(· | ξ0).

Suppose π(ẑ | ξ0) = 1 − π(ẑ | ξ̂) = α < 1
2 . Then, ` = (1 − 2α) log[(1 −

α)/α]. For α near zero, individual signals are very informative, and we might
expect that the reputation arguments would be ineffective. This is what we
find: for α < 0.22, we have ` > log 2, and so only the conclusion that
player 1’s equilibrium payoff is bounded above 0, which is less than player
1’s minmax payoff in the stage game. Hence, sufficiently precise signals
can indeed preclude the construction of a reputation bound on payoffs. On
the other hand, as α approaches 1/2, so that signals become arbitrarily
uninformative, ` approaches 0 and so the bound approaches 2, the reputation
bound in the game without exogenous signals. For intermediate values of α
that are not too large, reputations have some force, though not as much as
if the public signals were completely uninformative.

Reputations still have force with exogenous signals because the signals
have full support. Suppose customers have seen a long history of exogenous
signals suggesting that the firm is normal (which is likely when the firm is
indeed normal). If they do not expect the normal type to exert high effort
after some such history, high effort in that period results in a dramatic
increase in the posterior that the firm is the Stackelberg type and hence
will exert high effort in the future. While this can happen infinitely often,
it can’t happen too frequently (because otherwise the resulting increases in
posterior overwhelm the exogenous signals, leading to a similar contradiction
as for the canonical reputations argument), resulting in (12).23

We conclude this subsection with the proof that (12) is a lower bound
on equilibrium payoffs for player 1. The space of uncertainty is now Ω :=
{ξ0, ξ̂} × (A1 × A2 × Z)∞. The set of endogenous signals is A1, while the

23In the model with perfect monitoring with no exogenous signals, customers can only
be surprised a finite number of times under the considered deviation (if not, the increases
in the posterior after each surprise eventually result in a posterior precluding further
surprises, since posteriors never decrease). In contrast, with exogenous signals, there is the
possibility of an infinite number of surprises, since the expected posterior decreases when
there are no surprises. Nonetheless, if this happens too frequently, the increasing updates
from the surprises dominate the decreasing updates from the exogenous signals and again
the increases in the posterior after surprises eventually preclude further surprises.
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the set of exogenous signals is given by Z. Fix an equilibrium σ = (σ1, σ2)
of the incomplete information game. As before, σ induces the unconditional
probability measure P on Ω, while ξ̂ (with σ2) induces the measure P̂.

While it is no longer the case that there is a uniform bound on the
number of large expected one-step ahead prediction errors of the form (5),
there is a useful nonuniform bound.

Let Q̂ be the measure induced on Ω by the normal type ξ0 playing H in
every period. Then, for any history ht ∈ (A1×A2×Z)t, since the exogenous
signals are independent of actions,

Q̂t(ht) = P̂t(ht)
t−1∏
τ=0

π(zτ (ht) | ξ0)

π(zτ (ht) | ξ̂)
,

where, as usual, we denote the marginals on t-period histories by a super-
script t. Then, since P̂t(ht)/Pt(ht) ≤ 1/µ(ξ̂),

d
(

Q̂t
∥∥∥Pt

)
=
∑
ht

Q̂t(ht) log
P̂t(ht)
Pt(ht)

+
∑
ht

Q̂t(ht)
t−1∑
τ=0

log
π(zτ (ht) | ξ0)

π(zτ (ht) | ξ̂)

=
∑
ht

Q̂t(ht) log
P̂t(ht)
Pt(ht)

+
t−1∑
τ=0

∑
zτ∈Z

π(zτ | ξ0) log
π(zτ | ξ0)

π(zτ | ξ̂)

≤ − logµ(ξ̂) + t`. (13)

It remains to bound the total discounted number of one-step ahead pre-
diction errors. In the notation of Section 2.4.2, p̂ is the degenerate distri-
bution assigning probability 1 to H, while p(ht) is the probability that 2
assigns to player 1 choosing H in period t, given the history ht.

Then, from the chain rule (3), where the last term is the expected relative
entropy of the period t z-signal predictions, we have

d
(

Q̂t+1
∥∥∥Pt+1

)
= d

(
Q̂t
∥∥∥Pt

)
+ E

Q̂td(p̂‖p(ht)) + E
Q̂t,p̂

d(Q̂t+1
Z ‖P

t+1
Z )

≥ d
(

Q̂t
∥∥∥Pt

)
+ E

Q̂td(p̂‖p(ht)).

Thus, where we normalize d(Q̂0‖P0) = 0,

(1− δ)
∞∑
t=0

δtE
Q̂td(p̂‖p(ht)) ≤ (1− δ)

∞∑
t=0

δt
[
d
(

Q̂t+1
∥∥∥Pt+1

)
− d

(
Q̂t
∥∥∥Pt

)]
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= (1− δ)2
∞∑
t=1

δt−1d
(

Q̂t
∥∥∥Pt

)
≤ −(1− δ) logµ(ξ̂) + `,

where the second inequality follows from (13) and some algebraic manipu-
lation. The bound now follows from an argument similar to the proof of
Proposition 1.

3 Reputations with Two Long-Lived Players

Section 2 studied reputations in the most common context, that of a long-
lived player facing a succession of short-lived players. This section examines
the case in which player 2 is also a long-lived player.

Reputation results for the case of two long-lived players are not as strong
as those for the long-lived/short-lived case, and a basic theme of the work
presented in this section is the trade-off between the specificity of the model
and the strength of the results. To get strong results, one must either restrict
attention to seemingly quite special games, or must rely on seemingly quite
special commitment types.

The standard models with two long-lived players fix a discount factor for
player 2 and then examine the limit as player 1’s discount factor approaches
one, making player 1 arbitrarily relatively patient. There is a smaller litera-
ture that examines reputations in the case of two equally patient long-lived
players, with even weaker results. As we make the players progressively more
symmetric by moving from the case of a short-lived player 2, to the case of a
long-lived player 2 but arbitrarily more patient player 1, to the case of two
equally patient long-lived players, the results become successively weaker.
This is unsurprising. Reputation results require some asymmetry. A reputa-
tion result imposes a lower bound on equilibrium payoffs, and it is typically
impossible to guarantee such a payoff to both players, For example, it is typ-
ically impossible for both players to receive their Stackelberg payoffs. Some
asymmetry must then lie behind a result that guarantees such a payoff to
one player, and the weaker this asymmetry, the weaker the reputation result.

3.1 Types vs. Actions

Suppose we simply apply the logic of Section 2, hoping to obtain a Stack-
elberg reputation bound when both players are long-lived and player 1’s
characteristics are unknown. To keep things simple, suppose there is per-
fect monitoring. If the normal player 1 persistently plays the Stackelberg
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action and player 2 assigns positive prior probability to a type committed
to that action, then player 2 must eventually attach high probability to the
event that the Stackelberg action is played in the future. This argument
depends only upon the properties of Bayesian belief revision, independently
of whether the person holding the beliefs is long lived or short lived.

If this belief suffices for player 2 to play a best response to the Stackelberg
action, as is the case when player 2 is short lived, then the remainder of the
argument is straightforward. The normal player 1 must eventually receive
very nearly the Stackelberg payoff in each period of the repeated game. By
making player 1 sufficiently patient, we can ensure that this consideration
dominates player 1’s payoffs, putting a lower bound on the latter.

The key step when working with two long-lived players is thus to estab-
lish conditions under which, as player 2 becomes increasingly convinced that
the Stackelberg action will appear, she must eventually play a best response
to that action. This initially seems obvious. If player 2 is “very” convinced
that the Stackelberg action will be played not only now but for sufficiently
many periods to come, there appears to be nothing better she can do than
play a stage-game best response.

This intuition misses the following possibility. Player 2 may be choosing
something other than a best response to the Stackelberg action out of fear
that a current best response may trigger a disastrous future punishment.
This punishment would not appear if player 2 faced the Stackelberg type,
but player 2 can be made confident only that she faces the Stackelberg
action, not the Stackelberg type. The fact that the punishment lies off
the equilibrium path makes it difficult to assuage player 2’s fear of such
punishments.

The short-lived players of Section 2 find themselves in the same situation:
convinced that their long-lived opponent will play the Stackelberg action,
but uncertain as to what affect their own best response to this Stackelberg
action will have on future behavior. However, because they are short-lived,
this uncertainty does not affect their behavior. The difference between ex-
pecting the Stackelberg action and expecting the Stackelberg type (or more
generally between expecting any action and expecting the corresponding
type committed to that action) is irrelevant in the case of short-lived oppo-
nents, but crucial when facing long-lived opponents.

3.2 An Example: The Failure of Reputation Effects

This section presents a simple example, adapted from Schmidt (1993), il-
lustrating the new issues that can arise when building a reputation against
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L C R

T 10, 10 0, 0 −z, 9

B 0, 0 1, 1 1, 0

Figure 5: A modified coordination game, z ∈ [0, 8).

long-lived opponents. Consider the game in Figure 5. Not only is the profile
TL a Nash equilibrium of the stage game in Figure 5, it gives the player 1
his largest feasible payoff. At the same time, LC is another Nash equilib-
rium of the stage game, so the complete information repeated game with
perfect monitoring has the infinite repetition of LC as another equilibrium
outcome. It is immediate that if player 2 only assigns positive probability
to the normal type (the payoff type of player 1 with payoffs shown in Figure
5) and the simple Stackelberg-action type (which always plays T ), then this
particular form of incomplete information again generates reputation effects.

In the example, we add another commitment type, an enforcement type,
whose behavior depends on history (so this type is not simple). The idea
is to use this type to induce player 2 to not always statically best respond
to T . Instead, on the candidate equilibrium path, player 2 will play L in
even periods, and and R in odd periods. The enforcement commitment type
plays T initially, and continues with T unless player 2 stops playing L in
even periods and R in odd periods, at which point the enforcement type
plays B thereafter.

It is player 2’s fear of triggering the out-of-equilibrium behavior of the
enforcement type that will prevent player 1 from building an effective repu-
tation. The prior distribution puts probability 0.8 on the normal type and
probability 0.1 on each of the other types. At the cost of a somewhat more
complicated exposition, we could replace each of these commitment types
with a payoff type (as in Schmidt (1993)), and derive the corresponding
behavior as part of the equilibrium.

We describe a strategy profile with an outcome path that alternates
between TL and TR, beginning with TL, and then verify it is an equilibrium
for patient players. An automaton representation of the profile is given in
Figure 6).

Normal type of player 1: Play T after any history except one in which
player 1 has at least once played B, in which case play B.
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wTTT,Lw0

wBTT,C

wTTT,R

wTTB,L ŵTTB,LwBTB,C

TL

TR

B B

TC, TR TL, TC

TB

Figure 6: An automaton representation of the strategy profile illustrating
the failure of reputation effects in Section 3.2. In state wan1 as1ae1,a2 the normal
type plays an1 , the Stackelberg type plays as1 (which is always equal to T ),
the enforcement type plays ae1, and player 2 plays a2. Play begins in state
w0 = wTTT,L. Transitions are determined by the observed actions a1a2, and
states wBTB,C , wBTT,C , and ŵTTB,L are absorbing.

Player 2:

– After any history ht featuring the play of TL in even periods and
TR in odd periods, play L if t is even and R if t is odd. After any
history ht featuring the play of TL in even periods preceding t−1
and TR in odd periods preceding t−1, but in which player 1 plays
B in period t − 1, play C in period t and for every continuation
history (since player 1 has revealed himself to be normal).

– After any history ht in which ht−1 features the play of TL in even
periods and TR in odd periods, and player 2 does not play L if
t−1 is even or R if t−1 is odd, play L in period t. If 1 plays T in
period t, play L in period t+1 and for every continuation history
(interpreted as the result of attaching probability zero to the en-
forcement type and making no further belief revisions). If 1 plays
B in period t, play C in period t + 1 and for every continuation
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history (interpreted as the result of attaching probability one to
the enforcement type and making no further belief revisions).

The normal player 1’s behavior depends only on his previous actions,
featuring the constant play of T in equilibrium and with any switch to B
triggering the subsequent constant play of B. The first item in the descrip-
tion of player 2’s behavior describes her actions after histories in which 2
has made no deviations from equilibrium play, and the last item describes
how player 2 behaves after she has deviated from equilibrium play.

We now argue that these strategies constitute an equilibrium for z < 8
and sufficiently large δ. First consider player 1. Along the equilibrium path,
the normal type of player 1 earns a payoff that, for large δ is very close
to (10 − z)/2 respectively. A deviation leads to a continuation payoff of 1.
Hence, for any z < 8, there is a sufficiently large δ < 1 such that for δ ≥ δ, it
is optimal for the normal player 1 to play T after every equilibrium history.

Should play ever leave the equilibrium path as a result of player 1’s
having chosen B, subsequent play after any continuation history constitutes
a stage-game Nash equilibrium (BC) for player 2 and the normal type of
player 1, and hence is optimal for player 1. Should play leave the equilibrium
path because player 2 has deviated, then following the equilibrium strategies
earns the player 1 a payoff of 10 in every subsequent period, and player 1 is
thus playing optimally.

Now consider player 2. Along the equilibrium path, player 2 learns
nothing about player 1. If player 2 deviates from the equilibrium, she has
a chance to screen the types of player 1, earning a continuation payoff of
10 against the normal or Stackelberg type and a continuation payoff of at
most 1 against the enforcement type. The resulting expected payoff is at
most 9.1, falling short of the equilibrium payoff of almost 9.5 (for a patient
player 2). This completes the argument that these strategies are an equilib-
rium under the conditions on discount factors that appear in the reputation
result, namely that we fix δ2 (allowed to be sufficiently large) and then let
δ1 approach 1.

By increasing the absolute value of z in Figure 5, while perhaps requiring
more patience for player 1, we obtain an equilibrium in which the normal
player 1’s payoff is arbitrarily close to his pure minmax payoff of 1. It is
thus apparent that reputation considerations can be quite ineffective.

In equilibrium, player 2 is convinced that she will face the Stackelberg
action in every period. However, she dares not play a best response out of
fear that doing so has adverse future consequences, a fear made real by the
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possibility of the enforcement type.24

Reputation arguments with two long-lived players thus cannot be simple
extensions of long-lived/short-lived player results. Player 1 has the option
of leading a long-lived player 2 to expect commitment behavior on the path
of play, but this no longer suffices to ensure a best response from player 2,
no matter how firm the belief. Despite a flurry of activity in the literature,
the results are necessarily weaker and more specialized. In particular, the
results for two long-lived players exploit some structure of the game or the
setting to argue that player 2 will play a best response to a particular action,
once convinced that player 1 is likely to play that action.

The remainder of this section illustrates the arguments and results that
have appeared for the case of two long-lived players. As has the literature,
we concentrate on the case in which there is uncertainty only about player
1’s type, and in which player 2’s discount factor is fixed while player 1’s
discount factor is allowed to become arbitrarily large. Hence, while we
are making the players more symmetric in the sense of making both long-
lived, we are still exploiting asymmetries between the players. There has
been some work, such as Cripps, Dekel, and Pesendorfer (2005) and Atakan
and Ekmekci (2012, 2013), which we will not discuss here, on games with
two long-lived players who are equally patient, leaving only the one-sided
incomplete information as the source of asymmetry.

As in the case of short-lived player 2’s, Cripps, Mailath, and Samuelson
(2004, 2007) establish conditions under which a long-lived player 1 facing a
long-lived opponent in a game of imperfect monitoring can only maintain a
temporary reputation. If player 1 is indeed normal, then with probability
1 player 2 must eventually attach arbitrarily high probability to 1’s being
normal. Once again, we are reminded that the ex ante payoff calculations
that dominate the reputations literature may not be useful in characterizing
long run behavior.

3.3 Minmax-Action Reputations

This section presents a slight extension of Schmidt (1993), illustrating a
reputation effect in games with two long-lived players.

We consider a perfect monitoring repeated game with two long-lived
players, 1 and 2, with finite action sets. Player 1’s type is determined by a

24Celentani, Fudenberg, Levine, and Pesendorfer (1996, Section 5) describe an example
with similar features, but involving only a normal and Stackelberg type of player 1, using
the future play of the normal player 1 to punish player 2 for choosing a best response to
the Stackelberg action.
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probability distribution µ with a finite or countable support. The support of
µ contains the normal type of player 1, ξ0, and a collection of commitment
types.

3.3.1 Minmax-Action Types

Let
¯
v1(ξ0, δ1, δ2) be the infimum, over the set of Nash equilibria of the re-

peated game, of the normal player 1’s payoffs. For the action α1 ∈ ∆(A1),
let

v∗1(α1) := min
a2∈B(α1)

u1(α1, a2),

where B(α1) is the set of player 2 stage-game best responses to α1.
The basic result is that if there exists a simple commitment type com-

mitted to an action α̂1 minmaxing player 2, then the normal player 1, if
sufficiently patient, is assured an equilibrium payoff close to v∗1(α̂1):25

Proposition 3 Suppose µ(ξ(α̂1)) > 0 for some action α̂1 that minmaxes
player 2. For any η > 0 and δ2 < 1, there exists a

¯
δ1 ∈ (0, 1) such that for

all δ1 ∈ (
¯
δ1, 1),

¯
v1(ξ0, δ1, δ2) > v∗1(α̂1)− η.

Fix an action α̂1 satisfying the criteria of the proposition. The key
to establishing Proposition 3 is to characterize the behavior of player 2, on
histories likely to arise when player 1 repeatedly plays α̂1. Let Ω̂ be the event
that player 1 always plays α̂1. For any history ht that arises with positive
probability given Ω̂ (i.e., P{ω ∈ Ω̂ : ht(ω) = ht} > 0), let EP[U2(σ|ht) | Ω̂]
be 2’s expected continuation payoff, conditional on the history ht and Ω̂.
Let v2 be player 2’s minmax payoff.

Lemma 7 Fix δ2 ∈ (0, 1) and ε > 0. There exists L ∈ N and κ > 0
such that, for all Nash equilibria σ, pure strategies σ̃2 satisfying σ̃2(h̄t

′
) ∈

suppσ2(h̄t
′
) for all h̄t

′ ∈ Ht′, and histories ht ∈ Ht with positive probability
under Ω̂, if

EP[U2((σ1, σ̃2)|ht) | Ω̂] ≤
¯
v2 − ε, (14)

25An action α̂1 minmaxes player 2 if

α̂1 ∈ arg min
α1∈∆A1

max
a2∈A2

u2(α1, a2).

Schmidt (1993) considered the case in which the action α̂1 is a pure action, i.e., that there
is a pure action that mixed-action minmaxes player 2.
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then there is a period t+ τ , 0 ≤ τ ≤ L, and a continuation history ht+τ that
has positive probability when α̂1 is played in periods t, t + 1, . . . , t + τ − 1,
and 2 plays σ̃2, such that at ht+τ , player 2’s predicted distribution of player
1’s action α1 in period t+ τ satisfies d(α̂1‖α1) > κ.

Intuitively, condition (14) indicates that player 2’s equilibrium strategy gives
player 2 a payoff below her minmax payoff, conditional on α̂1 always being
played. But no equilibrium strategy can ever give player 2 an expected
payoff lower than her minmax payoff, and hence it must be that player 2
does not expect α̂1 to always be played.

Proof. Suppose, to the contrary, that for the sequence (Ln, κn)n, where
Ln = n and κn = n−1, there is a sequence of equilibria σn violating the
result. Fix n, and let ht be a history that occurs with positive probability
under Ω̂ for which (14) holds, and such that in each of the next Ln + 1
periods, if player 1 has always played α̂1 and player 2 follows σ̃2, then player
2’s predicted distribution of player 1’s action α1 satisfies d(α̂1‖α1) ≤ κn
after every positive probability history. We will derive a contradiction for
sufficiently large n.

Given such posterior beliefs for player 2, an upper bound on player 2’s
period t expected continuation payoff is given by (where ut+τ2 (κn) is player
2’s expected payoff under the strategy profile σ̃n ≡ (σn1 , σ̃

n
2 ) in period t+ τ

when player 1 plays an action α1 with d(α̂1‖α1) ≤ κ in period t+ τ , and M
is an upper bound on the magnitude of player 2’s stage-game payoff),26

EP[U2( σ̃n|ht) | h
t] ≤ (1− δ2)ut2(κn) + (1− δ2)δ2u

t+1
2 (κn) + (1− δ2)δ2

2u
t+2
2 (κn)

+ · · ·+ (1− δ2)δLn2 ut+Ln2 (κn) + δLn+1
2 M

= (1− δ2)
Ln∑
τ=0

δτ2u
t+τ
2 (κn) + δLn+1

2 M.

For Ln sufficiently large and κn sufficiently small (i.e., n sufficiently large),
the upper bound is within ε/2 of EP[U2( σ̃n|ht) | Ω̂], i.e., it is close to player
2’s expected continuation payoff conditioning on the event Ω̂. Hence, using
(14), for large n

EP[U2( σ̃n|ht) | h
t] ≤ EP[U2( σ̃n|ht) | Ω̂] +

ε

2
<

¯
v2.

26The history ht appears twice in the notation EP[U2( σ̃|ht) | ht] for 2’s expected con-
tinuation value given ht. The subscript ht reflects the role of ht in determining player 2’s
continuation strategy. The second ht reflects the role of the history ht in determining the
beliefs involved in calculating the expected payoff given that history.

42



But then player 2’s continuation value at history ht, EP[U2( σ̃n|ht) | ht], is
strictly less than her minmax payoff, a contradiction.

Proof of Proposition 3. Fix a Nash equilibrium with player 1 payoff
v1. Fix δ2 and η, and denote by Bε′(α̂1) the ε′-neighborhood of B(α̂1).
There exists ε′ > 0 such that if σ2(ht) ∈ Bε′(α̂1), then

u1(α̂1, σ2(ht)) > v∗1(α̂1)− η

2
.

Let ε :=
¯
v2 − maxα2 6∈Bε′ (α̂1) u2(α̂1, α2) > 0, and let L and κ be the corre-

sponding values from Lemma 7. Lemma 7 implies that if the outcome of the
game is contained in Ω̂, and player 2 fails to play ε′-close to a best response
to α̂1 in some period t, then there must be a period t + τ , with 0 ≤ τ ≤ L
and a continuation history ht+τ that has positive probability when α̂1 is
played in periods t, t + 1, . . . , t + τ − 1, and 2 plays σ̃2, such that at ht+τ ,
player 2’s one-step ahead prediction error when 1 plays α̂1 is at least κ, i.e.,

d(p̂‖pt+τ (ht+τ )) ≥ κ.

Define α̂1 := min{α̂1(a1) : α̂1(a1) > 0} and let 2M be the difference
between the largest and smallest stage-game payoffs for player 1. We can
bound the amount by which player 1’s equilibrium payoff v1 falls short of
v∗1(α̂1) as follows:

v∗1(α̂1)− v1 ≤ 2M(1− δ1)
∞∑
t=0

δt1EP̂
[1{σ̃2(ht)6∈Bε′ (α̂1)}] +

η

2

≤ 2M(1− δ1)
L+ 1
α̂L+1

1 δL1

∞∑
t=0

δt1EP̂
[1{d(p̂‖pt(ht))>κ}] +

η

2

≤ 2M(1− δ1)
L+ 1
α̂L+1

1 δL1

∞∑
t=0

δt1
1
κ
E

P̂
[d(p̂‖p(ht))] +

η

2

≤ 2M(1− δ1)
L+ 1
α̂L+1

1 δL1

1
κ

(− logµ(ξ(α̂1))) +
η

2
,

where

1. σ̃2 in the first line is some pure strategy for 2 in the support of 2’s
equilibrium strategy,

2. the second inequality comes from the observation that player 2’s failure
to best respond to α̂1 in different periods may be due to a belief that

43



1 will not play α̂1 in the same future period after the same positive
probability history (there can be at most L+ 1 such periods for each
belief, and the probability of such a history is at least α̂L+1

1 ), and

3. the last inequality follows from (5).

Since the last term in the chain of inequalities can be made less than η for
δ1 sufficiently close to 1, the proposition is proved.

If there are multiple actions that minmax player 2, the relevant payoff
bound corresponds to the maximum value of v∗1(α̂1) over the set of such
actions whose corresponding simple commitment types are assigned positive
probability by player 2’s prior.

3.3.2 Conflicting Interests

The strength of the bound on player 1’s equilibrium payoffs depends on the
nature of player 1’s actions that minmax player 2. The highest reputation
bound is obtained when there exists an action α∗1 that mixed action min-
maxes player 2 and is also close to player 1’s Stackelberg action, since the
reputation bound can then be arbitrarily close to player 1’s Stackelberg pay-
off. Restricting attention to pure Stackelberg actions and payoffs, Schmidt
(1993) refers to such games as games of conflicting interests:

Definition 3 The stage game has conflicting interests if a pure Stackelberg
action a∗1 mixed-action minmaxes player 2.

The payoff bound derived in Proposition 3 is not helpful in the product-
choice game (Figure 1). The pure Stackelberg action H prompts a best
response of c that earns player 2 a payoff of 3, above her minmax payoff of 1.
The mixtures that allow player 1 to approach his mixed Stackelberg payoff of
5/2, involving a probability ofH exceeding but close to 1/2, similarly prompt
player 2 to choose c and earn a payoff larger than 1. The normal player 1 and
player 2 thus both fare better when 1 chooses either the pure Stackelberg
action or an analogous mixed action (and 2 best responds) than in the
stage-game Nash equilibrium (which minmaxes player 2). This coincidence
of interests precludes using the reasoning behind Proposition 3.

The prisoners’ dilemma (Figure 7) is a game of conflicting interests.
Player 1’s pure Stackelberg action is D. Player 2’s unique best response of
D yields a payoff of (0, 0), giving player 2 her minmax level. Proposition 3
then establishes conditions, including the presence of a player 1 type com-
mitted to D and sufficient patience on the part of player 1, under which the
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C D

C 2, 2 −1, 3

D 3,−1 0, 0

Figure 7: Prisoners’ dilemma.

In Out

A 2, 2 5, 0

F −1,−1 5, 0

Figure 8: A simultaneous-move version of the chain-store game.

normal player 1 must earn nearly his Stackelberg payoff. In the prisoners’
dilemma, however, this bound is not significant, being no improvement on
the observation that player 1’s payoff must be weakly individually rational.

In the normal form version of the chain store game (Figure 8), player 1
achieves his mixed Stackelberg payoff of 5 by playing the (pure) action F ,
prompting player 2 to choose Out and hence to receive her mixed minmax
payoff of 0. We thus have a game of conflicting interests, in which (unlike
the prisoners’ dilemma) the reputation result has some impact. The lower
bound on the normal player 1’s payoff is then close to his Stackelberg payoff
of 5, the highest player 1 payoff in the game.

Consider the game shown in Figure 9. The Nash equilibria of the stage
game are TL, BC, and a mixed equilibrium

(
1
2 ◦ T + 1

2 ◦B,
2
5 ◦ L+ 3

5 ◦ C
)
.

Player 1 minmaxes player 2 by playing B, for a minmax value for player 2
of 0. The pure and mixed Stackelberg action for player 1 is T , against which
player 2’s best response is L, for payoffs of (3, 2). Proposition 3 accordingly

L C R

T 3, 2 0, 1 0, 1

B 0,−1 2, 0 0,−1

Figure 9: A game without conflicting interests.
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provides no reason to think it would be helpful for player 1 to commit to T .
However, if the set of possible player 1 types includes a type committed to
B (perhaps as well as a type committed to T ), then Proposition 3 implies
that (up to some η > 0) the normal player 1 must earn a payoff no less than
2. The presence of a type committed to B thus gives rise to a nontrivial
reputation bound on player 1’s payoff, though this bound falls short of his
Stackelberg payoff.

3.4 Discussion

Our point of departure for studying reputations with two long-lived players
was the observation that a long-lived player 2 might not play a best response
to the Stackelberg action, even when convinced she will face the latter, for
fear of triggering a punishment. If we are to achieve a reputation result for
player 1, then there must be something in the particular application that
assuages player 2’s fear of punishment. Proposition 3 considers cases in
which player 2 can do no better when facing the Stackelberg action than
achieve her minmax payoff. No punishment can be worse for player 2 than
being minmaxed, and hence no punishment type can coerce player 2 into
choosing something other than a best response.

What if a commitment type does not minmax player 2? The following
subsections sketch some of the alternative approaches to reputations with
two long-lived players.

3.4.1 Weaker Payoff Bounds for More General Actions

For any action a′1, if player 2 puts positive prior probability on the com-
mitment type ξ(a′1), then when facing a steady stream of a′1, player 2 must
eventually come to expect a′1. If the action a′1 does not minmax player 2,
we can no longer bound the number of periods in which player 2 is not best
responding. We can, however, bound the number of times player 2 chooses
an action that gives her a payoff less than her minmax value. This allows us
to construct an argument analogous to that of Section 3.3, concluding that
a lower bound on player 1’s payoff is given by

v†1(a′1) ≡ min
α2∈D(a′1)

u1(a′1, α2),

where
D(a′1) = {α2 ∈ ∆(A2) | u2(a′1, α2) ≥

¯
v2}

is the set of player 2 actions that, in response to a′1, ensure that 2 receives
at least her mixed minmax utility

¯
v2. In particular, Cripps, Schmidt, and
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L R

T 0, 0 3, 1

B 1, 3 0, 0

Figure 10: Battle of the sexes game.

Thomas (1996) show that if there exists a′1 ∈ A1 with µ(ξ(a′1)) > 0, then
for any fixed δ2 < 1 and η > 0, then there exists a

¯
δ1 < 1 such that for

all δ1 ∈ (
¯
δ1, 1),

¯
v1(ξ0, δ1, δ2) ≥ v†1(a1) − η. This gives us a payoff bound

that is applicable to any pure action for which there is a corresponding
simple commitment type, though this bound will typically be lower than
the Stackelberg payoff.

To illustrate this result, consider the battle of the sexes game in Figure
10. The minmax utility for player 2 is 3/4. Player 1’s Stackelberg action
is T , which does not minmax player 2, and hence this is not a game of
conflicting interests.

The set of responses to B in which player 2 receives at least her minmax
payoff is the set of actions that place at least probability 1/4 on L. Hence, if
2 assigns positive probability to a simple player 1 type committed to B, then
we have a lower bound on 1’s payoff of 1/4. This bound falls short of player
1’s minmax payoff, and hence is not very informative. The set of responses
to T in which player 2 receives at least her minmax payoff is the set of
actions that place at least probability 3/4 on R. Hence, if 2 assigns positive
probability to a simple player 1 type committed to T , then we have a lower
bound on 1’s payoff of 9/4. This bound falls short of player 1’s Stackelberg
payoff, but nonetheless gives us a higher bound that would appear in the
corresponding game of complete information.

3.4.2 Imperfect Monitoring

The difficulty in Section 3.2 is that player 2 frequently plays an action that
is not her best response to 1’s Stackelberg action, in fear that playing the
best response will push the game off the equilibrium path into a continuation
phase where she is punished. The normal and Stackelberg types of player
1 would not impose such a punishment, but there is another punishment
type who would. Along the equilibrium path player 2 has no opportunity
to discern whether she is facing the normal type or the punishment type.

47



Celentani, Fudenberg, Levine, and Pesendorfer (1996) observe that in
games of imperfect public monitoring, the sharp distinction between being
on and off the equilibrium path disappears. Player 2 may then have ample
opportunity to become well acquainted with player 1’s behavior, including
any punishment possibilities.

Consider a game with two long-lived players and finite action sets A1

and A2. Suppose the public monitoring distribution ρ has full support,
i.e., there is a set of public signals Y with the property that for all y ∈ Y
and a ∈ A1 × A2, there is positive probability ρ(y | a) > 0 of observing
signal y when action profile a is played. Suppose also that Assumption 2 of
Section 2.6 holds. Recall that this is an identification condition. Conditional
on player 2’s mixed action, different mixed actions on the part of player 1
generate different signal distributions. Given arbitrarily large amounts of
data, player 2 could then distinguish player 1’s actions.

It is important that player 2’s actions be imperfectly monitored by player
1, so that a sufficiently wide range of player 1 behavior occurs in equilibrium.
It is also important that player 2 be able to update her beliefs about the type
of player 1, in response to the behavior she observes. Full-support public
monitoring delivers the first condition, while the identification condition
(Assumption 2) ensures the second.

We now allow player 1 to be committed to a strategy that is not sim-
ple. In the prisoners’ dilemma, for example, player 1 may be committed to
playing tit-for-tat rather than either always cooperating or always defecting.
When player 2 is short-lived, the reputation bound on player 1’s payoff can-
not be improved by appealing to commitment types that are not simple. A
short-lived player 2 cares only about the action she faces in the period she is
active, whether this comes from a simple or more complicated commitment
type. Any behavior one could hope to elicit from a short-lived player 2 can
then be elicited by having her attach sufficient probability to the appropri-
ate simple commitment type. The result described here is the first of two
illustrations of how, when player 2 is long-lived, non-simple commitment
types can increase the reputation bound on player 1’s payoffs.

The presence of more complicated commitment types allows a stronger
reputation result, but also complicates the argument. In particular, we
can no longer define a lower bound on player 1’s payoff simply in terms
of the stage game. Instead, we first consider a finitely repeated game, of
length N , in which player 1 does not discount. It will be apparent from the
construction that this lack of player 1 discounting simplifies the calculations,
but otherwise does not play a role. We fix a pure commitment type σN1 for
player 1 in this finitely repeated game, and then calculate player 1’s average
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payoff, assuming that player 1 plays the commitment strategy and player
2 plays a best response to this commitment type. Denote this payoff by
v∗1(σN1 ).

Now consider the infinitely repeated game, and suppose that the set of
commitment types includes a type who plays σN1 in the first N periods,
then acts as if the game has started anew and again plays σN1 in the next
N periods, and then acts as if the game has started anew, and so on. Ce-
lentani, Fudenberg, Levine, and Pesendorfer (1996) establish a lower bound
on player 1’s payoff in the infinitely repeated game that approaches v∗1(σN1 )
as player 1 becomes arbitrarily patient. Of course, one can take N to be
as large as one would like, and can take the corresponding strategy σN1 to
be any strategy in the N -length game, as long as one is willing to assume
that the corresponding commitment type receives positive probability in the
infinitely repeated game. By choosing this commitment type appropriately,
one can create a lower bound on player 1’s payoff that may well exceed the
Stackelberg payoff of the stage game. In this sense, and in contrast to the
perfect monitoring results of Sections 3.3–3.4.1, facing a long-lived opponent
can strengthen reputation results.27

This argument embodies two innovations. The first is the use of imper-
fect monitoring to ensure that player 2 is not terrorized by “hidden pun-
ishments.” The second is the admission of more complicated commitment
types, with associated improved bounds on player 1’s payoff. It thus becomes
all the more imperative to consider the interpretation of the commitment
types that appear in the model.

There are two common views of commitment types. One is to work
with commitment types that are especially natural in the setting in ques-
tion. The initial appeal to commitment types, by Kreps and Wilson (1982)
and Milgrom and Roberts (1982), in the context of the chain store paradox,
was motivated by the presumption that entrants might be especially con-
cerned with the possibility that the incumbent is pathologically committed
to fighting. Alternatively, player 2 may have no particular idea as to what
commitment types are likely, but may attach positive probability to a wide
range of types, sufficiently rich that some are quite close to the Stackelberg
type. Both motivations may be less obvious once one moves beyond simple
commitment types. It may be more difficult to think of quite complicated
commitment types as natural, and the set of such types is sufficiently large

27Aoyagi (1996) presents a similar analysis, with trembles instead of imperfect monitor-
ing blurring the distinction between play on and off the equilibrium path, and with player
1 infinitely patient while player 2 discounts.
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that it may be less obvious to assume that player 2’s prior distribution over
this set is sufficiently dispersed as to include types arbitrarily close to any
particular commitment type. If so, the results built on the presence of more
complicated commitment types must be interpreted with care.

3.4.3 Punishing Commitment Types

This section illustrates more starkly the effects of appropriately-chosen com-
mitment types. Fix an action a′1 ∈ A1, and suppose that player 2’s stage-
game best response a′2 satisfies u2(a′1, a

′
2) >

¯
vp2 := mina1 maxa2 u2(a1, a2), so

that 2’s best response to a′1 gives her more than her pure action minmax
payoff. Let â2

1 be the action for player 1 that (pure-action) minmaxes player
2.

Consider a commitment type for player 1 who plays as follows. Play
begins in phase 0. In general, phase k consists of k periods of â2

1, followed
by the play of a′1. The initial k periods of â2

1 are played regardless of any
actions that player 2 takes during these periods. The length of time that
phase k plays a′1, and hence the length of phase k itself, depends on player
2’s actions, and this phase may never end. The rule for terminating a phase
is that if player 2 plays anything other than a′2 in periods k+ 1, . . . of phase
k, then the strategy switches to phase k + 1.

We can interpret phase k of player 1’s strategy as beginning with a
punishment, in the form of k periods of minmaxing player 2, after which
play switches to (a′1, a

′
2). The beginning of a new phase, and hence of a new

punishment, is prompted by player 2’s not playing a′2 when called upon to do
so. The commitment type thus punishes player 2, in strings of ever-longer
punishments, for not playing a′2.

Let σ̂1(a′1) denote this strategy, with the a′1 identifying the action played
by the commitment type when not punishing player 2. Evans and Thomas
(1997) show that for any η > 0, if player 2 attaches positive probability to
the commitment type σ̂1(a′1), for some action profile a′ with u2(a′) >

¯
vp2 ,

then there exists a
¯
δ2 ≤ 1 such that for all δ2 ∈ (

¯
δ2, 1), there in turn

exists a
¯
δ1 such that for all δ1 ∈ (

¯
δ1, 1), player 1’s equilibrium payoff is

at least u1(a′) − η. If there exists such a commitment type for player 1’s
Stackelberg action, then this result gives us player 1’s Stackelberg payoff
as an approximate lower bound on his equilibrium payoff in the game of
incomplete information, as long as this Stackelberg payoff is consistent with
player 2 earning more than her pure-strategy minmax.

This technique leads to reputation bounds that can be considerably
higher than player 1’s Stackelberg payoff. Somewhat more complicated com-
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mitment types can be constructed in which the commitment type σ̂1 plays
a sequence of actions during its nonpunishment periods, rather than simply
playing a fixed action a1, and punishes player 2 for not playing an appro-
priate sequence in response. Using such constructions, Evans and Thomas
(1997, Theorem 1) establish that the limiting lower bound on player 1’s
payoff, in the limit as the players become arbitrarily patient, with player
1 arbitrarily patient relative to player 2, is given by max{v1 : v ∈ F†p}
(where F†p is that portion of the convex hull of the pure stage-game payoff
profiles in which player 2 receives at least her pure minmax payoff). Hence,
player 1 can be assured of the largest feasible payoff consistent with player
2’s individual rationality.28

Like the other reputation results we have presented, this requires the
uncertainty about player 1 contain appropriate commitment types. As in
section 3.4.2, however, the types in this case are more complicated than
the commitment types that appear in many reputation models, particularly
the simple types that suffice with short-lived player 2s.29 In this case, the
commitment type not only repeatedly plays the action that brings player 1
the desired payoff, but also consistently punishes player 2 for not fulfilling
her role in producing that payoff. The commitment involves behavior both
on the path of a proposed outcome and on paths following deviations. Once
again, work on reputations would be well served by a better-developed model
of which commitment types are likely.

4 Persistent Reputations

In this section, we consider recent work that modifies the basic reputation
model to obtain convenient characterizations of nontrivial long run behav-

28 The idea behind the argument is to construct a commitment type consisting of a phase
in which payoffs at least (max{v1 : v ∈ F†p} − ε, v̄p2 + ε) are received, as long as player
2 behaves appropriately, with inappropriate behavior triggering ever-longer punishment
phases. Conditional on seeing behavior consistent with the commitment type, a sufficiently
patient player 2 must then eventually find it optimal to play the appropriate response to
the commitment type. For fixed, sufficiently patient player 2, making player 1 arbitrarily
patient then gives the result.

29As Evans and Thomas (1997) note, a commitment type with punishments of arbitrary
length cannot be implemented by a finite automaton. Hence, one cannot ensure that such
commitment types appear in the support of player 2’s prior distribution simply by assum-
ing that this support includes the set of all strategies implementable by finite automata.
Evans and Thomas (2001), working with two infinitely patient long-lived players, argue
that commitment strategies capable of imposing arbitrarily severe punishments are neces-
sary if reputation arguments are to be effective in restricting attention to efficient payoff
profiles.
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ior (including cycles of reputation building and destruction) and persistent
reputations. We consider three classes of models. To organize our ideas,
note that the fundamental force behind the disappearing reputations result
of Section 2.6 is that a Bayesian with access to an unlimited number of
informative signals will eventually learn a fixed parameter. The work exam-
ined in this section relaxes each element in this statement (though not all
of this work was motivated by the disappearing reputations result). Section
4.1 examines models in which the short-lived players have access to only a
limited amount of data. Section 4.2 considers the case in which the short-
lived players are not perfect Bayesians, working instead with a misspecified
model of the long-lived player’s behavior. Section 4.3 considers models in
which the short-lived players must learn a moving target.

In each case, reputation considerations persist indefinitely. Notice, how-
ever, that the focus in this literature, especially the work discussed in Section
Section 4.3, shifts from identifying bounds on the payoffs of all equilibria to
characterizing particular (persistent reputation) equilibria.

4.1 Limited Observability

We begin with a model in which player 2 cannot observe the entire history
of play. Our presentation is based on a particularly simple special case of a
model due to Liu (2011). Our point of departure is the product-choice game
of Figure 1. Player 1 is either a normal type, whose payoffs are those of
the product-choice game, or is a commitment type referred to as the “good”
type, who invariably plays H. The innovation is that when constructing
the associated repeated game, we assume that each successive player 2 can
observe only the action taken by player 1 in the previous period. The ob-
servation of the previous-period action is perfect.

For δ > 1
2 , we construct an equilibrium characterized by two states, ωL

and ωH , determined by the action played by player 1 in the previous period.
The play of the normal player 1 and player 2 is described by the automaton
in Figure 11. Intuitively, we think of player 2 as being exploited in state ωH ,
while player 1 builds the reputation that allows such exploitation in state
ωL.

It remains to confirm that these strategies constitute an equilibrium. A
player 2 who observes L in the preceding period knows that she faces the
normal player 1, who will mix equally between H and L in the next period.
Player 2 is then indifferent between c and s, and hence 2’s specified mixture
is optimal. A player 2 who observes either nothing (in the case of period 0)
or H in the previous period attaches a probability to player 1 being good
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Figure 11: The play of the normal player 1 and player 2. In state ωH ,
the normal player 1 plays L and player 2 plays c. In state ωL, players
randomize, with the normal player 1 playing 1

2 ◦ L + 1
2 ◦ H and player 2

playing p ◦ c+ (1− p) ◦ s, where p := (2δ− 1)/(2δ). The transitions between
states are determined by the action a1 of player 1 in the previous period,
with a1 leading to ωa1 . Play begins in ωH .

that is at least as high (but no higher in the case of period 0) as the prior
probability that player 1 is good. Player 2’s actions are thus optimal if and
only if the prior probability of a good type is at least 1/2. We will assume
this is the case, though note that this takes us away from the common
convention in reputation models that the probabilities of the commitment
types can be taken to be small. Liu’s (2011) more general analysis does not
require such a bound on the prior.

We now turn to the normal player 1’s incentives. Let V L(a1) be player 1’s
payoff when the current state is ωL and player 1 plays a1, with V H(a1) being
the analogous payoff at the current state ωH . Since player 1 is supposed to
mix between H and L at state ωL, he must be indifferent between the two
actions, and so we must have V L(H) = V L(L).

The values satisfy

V L(H) = (1− δ)2p+ δV H(L),

V L(L) = (1− δ)(2p+ 1) + δV L(L),

V H(L) = (1− δ)3 + δV L(L),

and V H(H) = (1− δ)2 + δV H(L).

Solving the second equation yields

V L(L) = 2p+ 1,

and so

V H(L) = (1− δ)3 + δ(2p+ 1)
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and V L(H) = (1− δ)2p+ δ[(1− δ)3 + δ(2p+ 1)].

We now choose p so that player 1 is indeed willing to mix at state ωL, i.e.,
so that V L(H) = V L(L). Solving for p gives

p :=
2δ − 1

2δ
.

Finally, it remains to verify that it is optimal for player 1 to play L at
state ωH . It is a straightforward calculation that the normal player 1 is
indifferent between L and H at ωH , confirming that the proposed strategies
are an equilibrium for δ ∈ (1

2 , 1).
In this equilibrium, player 1 continually builds a reputation, only to

spend this reputation once it appears. Player 2 understands that the normal
player 1 behaves in this way, with player 2 falling prey to the periodic
exploitation because the prior probability of the good type is sufficiently
high, and player 2 receives too little information to learn player 1’s actual
type.

Liu and Skrzypacz (2011) consider the following variation. Once again
a long-lived player faces a succession of short-lived players. Each player has
a continuum of actions, consisting of the unit interval, but the game gives
rise to incentives reminiscent of the product-choice game. In particular,
it is a dominant strategy in the stage game for player 1 to choose action
0. Player 2’s best response is increasing in player 1’s action. If player 2
plays a best response to player 1’s action, then 1’s payoff is increasing in
his action. To emphasize the similarities, we interpret player 1’s action as a
level of quality to produce, and player 2’s action as a level of customization
in the product she purchases. Player 1 may be rational, or may be a (single)
commitment type who always chooses some fixed quality q ∈ (0, 1]. The
short-lived players can observe only actions taken by the long-lived player,
and can only observe such actions in the last K periods, for some finite K.

Liu and Skrzypacz (2011) examine equilibria in which the normal long-
lived player invariably chooses either quality q (mimicking the commitment
type) or quality 0 (the “most opportunistic” quality level). After any history
in which the short lived-player has received K observations of q and no obser-
vations of 0 (or has only observed q, for the first K − 1 short-lived players),
the long-lived player chooses quality 0, effectively burning his reputation.
This pushes the players into a reputation-building stage, characterized by
the property that the short-lived players have observed at least one quality
level 0 in the last K periods. During this phase the long-lived player mixes
between 0 and q, until achieving a string of K straight q observations. His
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reputation has then been restored, only to be promptly burned. Liu and
Skrzypacz (2011) establish that as long as the record length K exceeds a
finite lower bound, then the limiting payoff as δ → 1 is given by the Stackel-
berg payoff. Moreover, they show that this bound holds after every history,
giving rise to reputations that fluctuate, but are long lasting.

Ekmekci (2011) establishes a different persistent reputation result in a
version of the repeated product-choice game. As usual, player 1 is a long-
lived player, facing a succession of short-lived player 2’s. The innovation in
the model is in the monitoring structure. Ekmekci (2011) begins with the
repeated product-choice game with imperfect public monitoring, and then
assumes that the public signals are observed only by a mediator, described as
a ratings agency. On the basis of these signals, the ratings agency announces
one of a finite number of ratings to the players. The short-lived players
see only the most recently announced rating, thus barring access to the
information they would need to identify the long-lived player’s type.

If the game is one of complete information, so that player 1 is known to
be normal, then player 1’s payoff with the ratings agency can be no higher
than the upper bound that applies to the ordinary repeated imperfect mon-
itoring game. However, if player 1 might also be a Stackelberg type, then
there is an equilibrium in which player 1’s payoff is close (arbitrarily close, for
a sufficiently patient player 1) to the Stackelberg payoff after every history.
The fact that this payoff bound holds after every history ensures that rep-
utation effects are permanent. If the appropriate (mixed) Stackelberg type
is present, then player 1’s payoff may exceed the upper bound applicable in
the game of complete information. Reputation effects can thus permanently
expand the upper bound on 1’s payoff.

In equilibrium, high ratings serve as a signal that short-lived players
should buy the custom product, low ratings as a signal that the long-lived
player is being punished and short-lived players should buy the standard
product. The prospect of punishment creates the incentives for the long-
lived player to exert high effort, and the long-lived player exerts high effort
in any non-punishment period. Punishments occur, but only rarely. Short-
lived players observing a rating consistent with purchasing the custom object
do not have enough information to determine whether they are facing the
Stackelberg type or a normal type who is currently not being punished.

4.2 Analogical Reasoning

This section considers a model, from Jehiel and Samuelson (2012), in which
the inferences drawn by the short-lived players are constrained not by a lack
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of information, but by the fact that they have a misspecified model of the
long-lived players’ behavior. As usual, we consider a long-lived player 1 who
faces a sequence of short-lived player 2’s. It is a standard result in repeated
games that the discount factor δ can be equivalently interpreted as reflecting
either patience or a continuation probability, but in this case we specifically
assume that conditional upon reaching period t, there is a probability 1− δ
that the game stops at t and probability δ that it continues.

At the beginning of the game, the long-lived player is chosen to either be
normal or to be one of K simple commitment types. Player 2 assumes the
normal player 1 chooses in each period according to a mixed action α0, and
that commitment type k ∈ {1, 2, . . . ,K} plays mixed action αk. Player 2 is
correct about the commitment types, but in general is not correct about the
normal type, and this is the sense in which player 2’s model is misspecified.
In each period t, player 2 observes the history of play ht (though it would
suffice for player 2 to observe only the frequencies with which player 1 has
played his past actions), and then updates her belief about the type of player
1 she is facing. Player 2 then chooses a best response to the expected mixed
action she faces, and so chooses a best response to

K∑
k=0

µk(ht)αk,

where µ0(ht) is the posterior probability of the normal type after history
ht and µk(ht) (for k ∈ {1, 2, . . . ,K}) is the posterior probability of the kth

commitment type.
The normal long-lived player 1 chooses a best response to player 2’s

strategy. The resulting strategy profile is an equilibrium if it satisfies a
consistency requirement. To formulate the latter, let σ1 and σ2 denote the
strategies of the normal player 1 and of the short-lived players 2. We denote
by Pσ(h) the resulting unconditional probability that history h is reached
under σ := (σ1, σ2) (taking into account the probability of breakdown after
each period). We then define

A0 :=
∑

h Pσ(h)σ1(h)∑
h Pσ(h)

.

We interpret A0 as the empirical frequency of player 1’s actions.30 The
30The assumption that δ reflects a termination risk plays a role in this interpretation.

The denominator does not equal 1 because Pσ(h) is the probability that h appears as
either a terminal history, or as the initial segment of a longer history.
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consistency requirement is then that

A0 = α0.

The resulting equilibrium notion is a sequential analogy-based expectations
equilibrium (Jehiel (2005) and Ettinger and Jehiel (2010)).

We interpret the consistency requirement on player 2’s beliefs as the
steady-state result of a learning process. We think of the repeated game
as itself played repeatedly, though by different players in each case. At the
end of each game, a record is made of the frequency with which player 1
(and perhaps player 2 as well, but this is unnecessary) has played his var-
ious actions. This in turn is incorporated into a running record listing the
frequencies of player 1’s actions. A short-lived player forms expectations
of equilibrium play by consulting this record. In general, each repetition
of the repeated game will leave its mark on the record, leading to some-
what different frequencies for the various player 1 actions in the record.
This in turn will induce different behavior in the next game. However, we
suppose that the record has converged, giving a steady state in which the
expected frequency of player 1 play in each subsequent game matches the
recorded frequency. Hence, empirical frequencies recorded in the record will
match α0, α1, . . . , αK , leading to the steady state captured by the sequential
analogy-based expectations equilibrium.

We illustrate this model in the context of the familiar product-choice
game of Figure 1. Let p∗ (= 1/2) be the probability of H that makes player
2 indifferent between c and s. We assume we have at least one type playing
H with probability greater than p∗ and one playing H with probability less
than p∗. The sequential analogy-based equilibria of the product-choice game
share a common structure, which we now describe.

We begin with a characterization of the short-lived players’ best re-
sponses. For history h, let nH(h) be the number of times action H has
been played and let nL(h) be the number of times action L has been played.
The short-lived player’s posterior beliefs after history h depend only on the
“state” (nL(h), nH(h)), and not on the order in which the various actions
have appeared.

Whenever player 2 observes H, her beliefs about player 1’s type shift (in
the sense of first-order stochastic dominance) toward types that are more
likely to play H, with the reverse holding for an observation of L. Hence, for
any given number nL of L actions, the probability attached by player 2 to
player 1 playing H is larger, the larger the number nH of H actions. Player
2 will then play c if and only if she has observed enough H actions. More
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precisely, there exists an increasing function NH : {0, 1, 2, . . .} → R, such
that for every history h, at the resulting state (nL, nH) = (nL(h), nH(h)),

• player 2 plays c if nH > NH(nL) and

• player 2 plays s if nH < NH(nL).

We now describe the equilibrium behavior of player 1, which also depends
only on the state (nL, nH). There exists a function NH(nL) ≤ NH(nL) such
that, for sufficiently large δ and for any history h, at the resulting state
(nL, nH) = (nL(h), nH(h)),

• player 1 plays L if nH > NH(nL + 1),

• player 1 plays H if NH(nL) < nH < NH(nL + 1),

• player 1 plays L if nH < NH(nL), and

• limδ→1NH(nL) < 0 for all nL.

Figure 12 illustrates these strategies. Note that whenever player 1 chooses
H, player 2 places higher posterior probability on types that play H. Do-
ing so will eventually induce player 2 to choose c. Player 1 is building his
reputation by playing H, and then enjoying the fruits of that reputation
when player 2 plays c. However, it is costly for player 1 to play H when
player 2 plays s. If the number of H plays required to build a reputation
is too large, player 1 may surrender all thoughts of a reputation and settle
for the continual play of Ls. The cost of building a reputation depends on
how patient is player 1, and a sufficiently patient player 1 inevitably builds a
reputation. This accounts for the last two items in the description of player
1’s best response.

If player 1 encounters a state above NH , whether at the beginning of the
game or after some nontrivial history, player 1 will choose H often enough to
push player 2’s beliefs to the point that c is a best response. Once player 1
has induced player 2 to choose c, 1 ensures that 2 thereafter always plays c.
The state never subsequently crosses the border NH(nL). Instead, whenever
the state comes to the brink of this border, 1 drives the state away with a
play of H before 2 has a chance to play s.

The functions illustrated in Figure 12 depend on the distribution of pos-
sible types for player 1 and on the payoffs of the game. Depending on the
shapes of these functions, the best responses we have just described combine
to create three possibilities for equilibrium behavior in the product-choice
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Figure 12: Behavior in the product-choice game. The state space (nL, nH) is
divided into four regions with the players behaving as indicated in each of the
four regions. The equilibrium path of play is illustrated by the succession of
dots, beginning at the origin and then climbing the vertical axis in response
to an initial string of H actions from player 1, with player 1 then choosing
H and L so as to induce player 2 to always choose c, but to always be just
at the edge of indifference between c and s.

game, that correspond to three possibilities for the intercepts of the func-
tions NH and NH in Figure 12. First, it may be that NH(0) > 0. In this
case, the equilibrium outcome is that the normal player 1 chooses L and
player 2 chooses s in every period. Player 1 thus abandons any hope of
building a reputation, settling instead for the perpetual play of the stage-
game Nash equilibrium Ls. This is potentially optimal because building a
reputation is costly. If player 1 is sufficiently impatient, this current cost
will outweigh any future benefits of reputation building, and player 1 will
indeed forego reputation building. By the same token, this will not be an
equilibrium if δ is sufficiently large (but still less then one).

Second, it may be that NH < 0 < NH , as in Figure 12. In this case,
play begins with a reputation-building stage, in which player 1 chooses H
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and the outcome is Hs. This continues until player 2 finds c a best response
(until the state has climbed above the function NH). Thereafter, we have a
reputation-manipulation stage in which player 1 sometimes chooses L and
sometimes H, selecting the latter just often enough to keep player 2 always
playing c.

Alternatively, if NH(0) < 0, then play begins with a reputation-spending
phase in which player 1 chooses L, with outcome Lc, in the process shifting
player 2’s beliefs towards types that play L. This continues until player 2 is
just on the verge of no longer finding c a best response (intuitively, until the
state just threatens to cross the function NH). Thereafter, we again have a
reputation-manipulation stage in which player 1 sometimes chooses L and
sometimes H, again selecting the latter just often enough to keep player 2
always playing c.

Which of these will be the case? For sufficiently patient players, whether
one starts with a reputation-building or reputation-spending phase depends
on the distribution of commitment types. If player 2’s best response condi-
tional on player 1 being a commitment type is s, then the rational player
1 must start with a reputation building phase, and we have the first of the
preceding possibilities. Alternatively, If player 2’s best response conditional
on player 1 being a commitment type is c, then the rational player 1 must
start with a reputation spending phase, and we have the second of the pre-
ceding possibilities.31 In either case, player 2 remains perpetually uncertain
as to which type of agent she faces, with her misspecified model of player
1 obviating the arguments of Cripps, Mailath, and Samuelson (2004, 2007).
Player 1’s equilibrium payoff approaches (as δ gets large) the mixed Stack-
elberg payoff, even though there may be no commitment type close to the
mixed Stackelberg type.

4.3 Changing Types

Perhaps the most obvious route to a model in which reputation considera-
tions persist is to assume that player 1’s type is not fixed once-and-for-all at
the beginning of the game, but is subject to persistent shocks. Intuitively,
one’s response upon having an uncharacteristically disappointing experience
at a restaurant may be not “my previous experiences must have been atypi-
cal, and hence I should revise my posterior,” but rather “perhaps something

31This characterization initially sounds obvious, but it is not immediate that (for exam-
ple) player 2 will open the game by playing s if her best response to the commitment types
is s, since 2’s initial best response is an equilibrium phenomenon that also depends on the
normal player 1’s play. Jehiel and Samuelson (2012) fill in the details of the argument.
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has changed.” In this case, opponents will never be completely certain of a
player’s type. At first glance, it would seem that this can only reinforce the
temporary-reputation arguments of Cripps, Mailath, and Samuelson (2004,
2007), making it more difficult to find persistent reputation effects. How-
ever, this very transience of reputations creates incentives to continually
invest in reputation building, in order to assure opponents that one’s type
has not changed, opening the door for persistent reputations.

This section sketches several recent papers built around the assumption
that types are uncertain but not permanently fixed. A critical assumption
in all the models described in this section is that the uninformed agents do
not observe whether the replacement event has occurred. These papers in
turn build on a number of predecessors, such as Holmström (1982), Cole,
Dow, and English (1995), and Mailath and Samuelson (2001), in which the
type of the long-lived player is governed by a stochastic process.

4.3.1 Cyclic Reputations

We first consider, as a special case adapted from Phelan (2006), the product-
choice game under perfect monitoring of actions, assuming that player 1 is
constantly vulnerable to having his type drawn anew. The probability of
such a replacement in each period is fixed, and we consider the limit in which
the discount factor approaches 1.

Player 1 is initially drawn to be either a normal type or the pure Stack-
elberg type, who always plays H. In each period, player 1 continues to the
next period with probability λ > 1/2, and is replaced by a new player 1
with probability 1 − λ. In the event player 1 is replaced, player 1 is drawn
to be the commitment type with probability µ̂, and with complementary
probability is the normal type. To simplify the presentation, we assume
that player 1 is initially drawn to be the commitment type with probability
(1− λ)µ̂ (see (17)).

Consider first the trigger profile: the normal player 1 always plays H
if H has always been observed, plays L if ever L had been played, and
player 2 plays c as long as H has been played, and plays s if ever L had
been played. This profile is not an equilibrium under replacement, since
after the punishment has been triggered by a play of L, the first play of
H leads player 2 to believe that the normal type has been replaced by the
commitment type and so 2’s best response in the next period is to play
c. But then the normal player 1 plays H immediately L, destroying the
optimality of the punishment phase.

We construct an equilibrium when 2δλ > 1. Let µt be the period t

61



posterior probability that player 2 attaches to the event that player 1 is the
commitment type. In each period t in which µt is less than or equal to 1

2 ,
the normal player 1 plays H with probability

α1(µt) :=
1− 2µt

2(1− µt)
.

This implies that, in such a period, player 2 faces the mixed action 1
2 ◦H +

1
2 ◦ L, since

µt + (1− µt) 1− 2µt

2(1− µt)
=

1
2
, (15)

and hence is indifferent between c and s. When µt ≤ 1
2 , player 2 mixes,

putting probability α2(µt) (to be calculated) on c, with player 2’s indifference
ensuring that this behavior is a best response. For values µt > 1

2 , player 2
plays c, again a best response, and the normal player 1 chooses L. Notice
that the actions of the customer and the normal player 1 depend only on
the posterior probability that player 1 is the Stackelberg type, giving us a
profile in Markov strategies.

It remains only to determine the mixtures chosen by player 2, which are
designed so that the normal player 1 is behaving optimally. Let ϕ(µ | H) be
the posterior probability attached to player 1 being the commitment type,
given a prior µ ≤ 1

2 and an observation of H. If the normal type chooses H
with probability α1(µ), we have

ϕ(µ | H) = λ
µ

µ+ (1− µ)α1(µ)
+ (1− λ)µ̂ = 2λµ+ (1− λ)µ̂, (16)

using (15) for the second equality, while the corresponding calculation for L
is

ϕ(µ | L) = (1− λ)µ̂. (17)

Let µ(0), µ(1), . . . , µ(N) be the sequence of posterior probabilities satis-
fying µ(0) = (1 − λ)µ̂ and µ(k) = ϕ(µ(k − 1) | H) for (k = 1, . . . , N), with
µ(N) being the first such probability to equal or exceed 1

2 .
We now attach a player 2 action to each posterior in the sequence (µ(k)).

Let V (k) be the value to the normal player 1 of continuation play, beginning
at posterior µ(k), and let V̂ be player 1’s payoff when µ = (1− λ)µ̂. Player
2 must randomize so that the normal type of player 1 is indifferent between
L and H, and hence, for k = 0, . . . , N − 1,

V (k) = (1− δλ)(2α2(µ(k)) + 1) + δλV̂ (18)
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= (1− δλ)2α2(µ(k)) + δλV (k + 1), (19)

where the right side of the top line is the value if L is played at posterior
µ(k) and the second line is the value if H is played, and where we normalize
by (1− δλ). Finally,

V (N) = (1− δλ)3 + δλV̂,

since the normal player 1 chooses L with certainty for µ > 1
2 .

Solving (18) for k = 0 gives

V̂ = 2α2(µ(0)) + 1.

We then solve the equality of the right side of (18) with (19) to obtain, for
k = 1, . . . , N ,

V (k) = V̂ +
1− δλ
δλ

.

These equations tell us a great deal about the equilibrium. The value V (0)
is lower than the remaining values, which are all equal to another, V (1) =
V (2) = . . . = V (N). This in turn implies (from (18)) that α2(µ(0)) is lower
than the remaining probabilities α2(µ(1)) = . . . = α2(µ(N − 1)) =: ᾱ2.
These properties reflect the special structure of the product-choice game,
most notably the fact that the stage-game payoff gain to player 1 from
playing L rather than H is independent of player 2’s action.

It is straightforward to calculate α2(µ(0)) = 1−(2δλ)−1 and ᾱ2 = 1, and
to confirm that a normal player 1 facing posterior µ(N) prefers to play L.
All other aspects of player 1’s strategy are optimal because he is indifferent
between H and L at every other posterior belief.

Phelan (2006) constructs a similar equilibrium in a game that does not
have the equal-gain property of the product-choice game, namely that player
1’s payoff increment from playing H is independent of player 2’s action. The
equilibrium then has a richer dynamic structure.

The breakdown of player 1’s reputation in this model is unpredictable, in
the sense that the probability of a reputation-ending exertion of low effort is
the same regardless of the current posterior that player 1 is good. A normal
player 1 who has labored long and hard to build his reputation is just as
likely to spend it as is one just starting. Once the reputation has been spent,
it can be rebuilt, but only gradually, as the posterior probability of a good
type gets pushed upward once more.
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4.3.2 Permanent Reputations

Ekmekci, Gossner, and Wilson (2012) study a model in which persistent
changes in the type of the long-lived player coexist with permanent repu-
tation effects. The model of the preceding section is a special case of that
considered here, in which the probability of a replacement is fixed. In this
section, we consider the limits as the probability of a replacement approaches
zero and the discount factor approaches one. As one might have expected,
the order in which these limits is taken is important.

Let us once again consider the product-choice game of Figure 1. Player
1 can be one of two possible types, a normal type or a simple commitment
type who invariably plays H. At the beginning of the game, player 1’s
type is drawn from a distribution that puts positive probability on each
type. We assume that monitoring is imperfect but public; Ekmekci, Gossner,
and Wilson (2012) allow private monitoring (including perfect and public
monitoring as special cases).

So far, this gives us a standard imperfect monitoring reputation game.
Now suppose that at the end of every period, with probability 1 − λ the
long-lived player is replaced, and with probability λ the long-lived player
continues until the next period. Replacement draws are independent across
periods, and the type of each entering player is an independent draw from
the prior distribution over types, regardless of the history that preceded that
replacement.

Using entropy arguments similar to those described in Sections 2.4, 2.6,
and 2.8, Ekmekci, Gossner, and Wilson (2012) show that the normal type’s
ex ante equilibrium payoffs in any equilibrium must be at least

wH (−(1− δ) logµ(H)− log λ) , (20)

and the normal type’s continuation equilibrium payoffs (after any history)
in any equilibrium must be at least

wH (−(1− δ) log(1− λ)µ(H)− log λ) . (21)

We consider first (20) and the limit as λ → 1 and δ → 1. Player 1 is
becoming more patient, and is also becoming increasingly likely to persist
from one period to the next. The lower bound on player 1’s equilibrium
payoff approaches wH(0), the pure Stackelberg payoff of 2.

This payoff bound is unsurprising. One would expect that if replace-
ments are rare, then they will have little effect on ex ante payoffs, and hence
that we can replicate the no-replacement Stackelberg payoff bound by mak-
ing replacements arbitrarily rare. However, we can go beyond this bound
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to talk about long-run beliefs and payoffs. Doing so requires us to consider
the lower bound in (21), which reveals the necessity of being more precise
about the relative rates at which the replacement probability goes to zero
and the discount factor gets large.

The bound (21) suggests that a particularly interesting limiting case
arises if (1 − δ) ln(1 − λ) → 0. For example, this is the case when λ =
1 − (1 − δ)β for some β > 0. Under these circumstances, the replacement
probability is not going to zero too fast, compared to the rate at which the
discount factor goes to one. The lower bound on player 1’s continuation
payoff, in any Nash equilibrium and after any history, then approaches (as λ
and δ get large) the pure Stackelberg payoff of 2. Notice that this reputation-
based lower bound on player 1’s payoff is effective after every history, giving
a long run reputation result. Unlike the case examined by Cripps, Mailath,
and Samuelson (2004, 2007), the probability that player 1 is the commitment
type can never become so small as to vitiate reputation effects.

Some care is required in establishing this result, but the intuition is
straightforward. The probability of a replacement imposes a lower bound
on the probability of a commitment type. This lower bound might be quite
small, but is large enough to ensure that reputation arguments never lose
their force, as long as player 1 is sufficiently patient. Recalling our discussion
from Section 2.7, the lower-bound arguments from Section 2.4 require that
limits be taken in the appropriate order. For any given probability of the
commitment type, there is a discount factor sufficiently large as to ensure
that player 1 can build a reputation and secure a relatively large payoff.
However, for a fixed discount factor, the probability of the commitment
type will eventually drop so low as to be essentially irrelevant in affecting
equilibrium payoffs. In light of this, consider how the limits interact in
Ekmekci, Gossner, and Wilson (2012). As λ goes to one, the lower bound
on the probability that player 1 is the commitment type gets very small. But
if in the process δ goes to one sufficiently rapidly, then for each value of λ,
and hence each (possibly tiny) probability that player 1 is the commitment
type, player 1 is nonetheless sufficiently patient that reputation effects can
operate. In addition, the constant (if rare) threat of replacement ensues
that the lower bound on the probability of a commitment type, and hence
the relevance of reputation building, applies to every history of play.

As usual, we have described the argument for the case in which there is a
single commitment type, fortuitously chosen to be the Stackelberg type. A
similar argument applies to the case in which there are many commitment
types. The lower bound on player 1’s payoff would then approach the payoff
player 1 would receive if 1 were known to be the most advantageous of the

65



possible commitment types.

4.3.3 Reputation as Separation

This section examines a stylized version of Mailath and Samuelson’s (2001)
model of “separating” reputations. The prospect of replacements again plays
a role. However, the reputation considerations now arise not out of the desire
to mimic a good commitment type, but to avoid a bad one.32

The underlying game is an imperfect monitoring variant of the product-
choice game. In each period, the long-lived player 1 chooses either high
effort (H) or low effort (L). Low effort is costless, while high effort entails a
cost of c. Player 2 receives either a good outcome ȳ or a bad outcome

¯
y. The

outcome received by player 2 is drawn from a distribution with probability
ρH on a good outcome (and probability 1−ρH on a bad outcome) when the
firm exerts high effort, and probability ρL < ρH on a good outcome (and
probability 1− ρL on a bad outcome) when the firm exerts low effort.

At the beginning of the game, player 1 is chosen to be either a normal
type or an “inept” type who invariably exerts low effort. The reputation-
based incentives for player 1 arise out of player 1’s desire to convince player
2 that he is not inept, rather than that he is a good type. We accordingly
refer to this as a model of “reputation as separation,” in contrast with the
more typical reputation-based incentive for a normal player 1 to pool with
a commitment type.

As usual, we think of player 1 as a firm and player 2 as a customer,
or perhaps as a population of customers. The customer receives utility 1
from outcome ȳ and utility 0 from outcome

¯
y. In each period, the customer

purchases the product at a price equal to the customer’s expected payoff: if
the firm is thought to be normal with probability µ̃, and if the normal firm
is thought to choose high effort with probability α, then the price will be

p(µ̃α) := µ̃αρH + (1− µ̃α)ρL.

It is straightforward to establish conditions under which there exist equi-
libria in which the normal firm frequently exerts high effort. Suppose the
normal firm initially exerts high effort, and continues to do so as long as
signal ȳ is realized, with the period t price given by p(µ̃h), where µ̃h is the
posterior probability of a normal firm after history h. Let signal

¯
y prompt

32Morris (2001) examines an alternative model of separating reputations, and the bad
reputation models discussed in Section 5.1 are similarly based on a desire to separate from
a bad type.
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some number K ≥ 1 periods of low effort and price ρL, after which play
resumes with the normal firm exerting high effort. We can choose a punish-
ment length K such that these strategies constitute an equilibrium, as long
as the cost c is sufficiently small.

Given this observation, our basic question of whether there exist high-
effort equilibria appears to have a straightforward, positive answer. More-
over, uncertainty about player 1’s type plays no essential role in this equilib-
rium. The posterior probability that player 1 is normal remains unchanged
in periods in which his equilibrium action is L, and tends to drift upward in
periods when the normal player 1 plays H. Player 2’s belief that player 1
is normal almost certainly converges to 1 (conditional on 1 being normal).
Nonetheless, the equilibrium behavior persists, with strings in which player
1 chooses H interspersed with periods of punishment. Indeed, the proposed
behavior remains an equilibrium even if player 1 is known to be normal from
the start. We have seemingly accomplished nothing more than showing that
equilibria can be constructed in repeated games in which players do not
simply repeat equilibrium play of the stage game.

However, we prefer to restrict attention to Markov strategies, with the
belief about player 1’s type as the state variable. This eliminates the equi-
librium we have just described, since under these strategies the customer’s
behavior depends upon the firm’s previous actions as well as the customer’s
beliefs.

Why restrict attention to Markov equilibria? The essence of repeated
games is that continuation play can be made to depend on current actions
in such a way as to create intertemporal incentives. Why curtail this abil-
ity by placing restrictions on the ability to condition actions on behavior?
How interesting would the repeated prisoners’ dilemma be if attention were
restricted to Markov equilibria?

While we describe player 2 as a customer, we have in mind cases in which
the player 2 side of the game corresponds to a large (continuum) population
of customers. It is most natural to think of these customers as receiving
idiosyncratic noisy signals of the effort choice of the firm; by idiosyncratic
we mean that the signals are independently drawn and privately observed.33

A customer who receives a bad outcome from a service provider cannot be
sure whether the firm has exerted low effort, or whether the customer has
simply been unlucky (and most of the other customers have received a good

33There are well-known technical complications that arise with a continuum of inde-
pendently distributed random variables (see, for example, Al-Najjar (1995)). Mailath and
Samuelson (2006, Remark 18.1.3) describes a construction that, in the current context,
avoids these difficulties.
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outcome).
The imperfection in the monitoring per se is not an obstacle to creating

intertemporal incentives. There is a folk theorem for games of imperfect pub-
lic monitoring, even when players only receive signals that do not perfectly
reveal actions (Fudenberg, Levine, and Maskin, 1994). If the idiosyncratic
signals in our model were public, we could construct equilibria with a popu-
lation of customers analogous to the equilibrium described above: customers
coordinate their actions in punishing low effort on the part of the firm. Such
coordination is possible if the customers observe each other’s idiosyncratic
signals (in which case the continuum of signals precisely identifies the firm’s
effort) or if the customers all receive the same signal (which would not iden-
tify the firm’s effort, but could still be used to engineer coordinated and
effective punishments).

However, we believe there are many cases in which such coordinated
behavior is not possible, and so think of the idiosyncratic signals as being
private, precluding such straightforward coordination. Nonetheless, there is
now a significant literature on repeated finite games with private monitoring
(beginning with Sekiguchi (1997), Piccione (2002), and Ely and Välimäki
(2002)) suggesting that private signals do not preclude the provision of in-
tertemporal incentives. While the behavioral implications of this literature
are still unclear, it is clear that private signals significantly complicate the
analysis. Mailath and Samuelson (2006, Section 18.1) studies the case of a
continuum of customers with idiosyncratic signals.

In order to focus on the forces we are interested in without being dis-
tracted by the technical complications that arise with private signals, we
work with a single customer (or, equivalently, a population of customers re-
ceiving the same signal) and rule out coordinated punishments by restricting
attention to Markov equilibria.

At the end of each period, the firm continues to the next period with
probability λ, but with probability 1 − λ, is replaced by a new firm. In
the event of a replacement, the replacement’s type is drawn from the prior
distribution, with probability µ̃0 of a normal replacement.

A Markov strategy for the normal firm can be written as a mapping
α : [0, 1] → [0, 1], where α(µ̃) is the probability of choosing action H when
the customer’s posterior probability of a normal firm is µ̃. The customers’
beliefs after receiving a good signal are updated according to

ϕ(µ̃ | ȳ) = λ
[ρHα(µ̃) + ρL(1− α(µ̃))] µ̃

[ρHα(µ̃) + ρL(1− α(µ̃))] µ̃+ ρL(1− µ̃)
+ (1− λ)µ̃0,

with a similar expression for the case of a bad signal. The strategy α is a
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Markov equilibrium if it is maximizing for the normal firm.

Proposition 4 Suppose λ ∈ (0, 1) and µ̃0 > 0. There exists c̄ > 0 such
that for all 0 ≤ c < c̄, there exists a Markov equilibrium in which the normal
firm always exerts high effort.

Proof. Suppose the normal firm always exerts high effort. Then given
a posterior probability µ̃ that the firm is normal, firm revenue is given by
p(µ̃) = µ̃ρH + (1 − µ̃)ρL. Let µ̃y := ϕ(µ̃ | y) and µ̃xy := ϕ(ϕ(µ̃ | x) | y) for
x, y ∈ {

¯
y, ȳ}. Then µ̃ȳȳ > µ̃ȳ > µ̃ > µ̃

¯
y > µ̃

¯
y
¯
y and µ̃ȳy > µ̃

¯
yy for y ∈ {

¯
y, ȳ}.

The value function of the normal firm is given by

V (µ̃) = (1− δλ)(p(µ̃)− c) + δλ
[
ρHV (µ̃ȳ) + (1− ρH)V (µ̃

¯
y)
]
.

The payoff from exerting low effort and thereafter adhering to the equi-
librium strategy is

V (µ̃;L) := (1− δλ)p(µ̃) + δλ
[
ρLV (µ̃ȳ) + (1− ρL)V (µ̃

¯
y)
]
.

Thus, V (µ̃)− V (µ̃;L) is given by

− c(1− δλ) + δλ(1− δλ)(ρH − ρL)(p(µ̃ȳ)− p(µ̃
¯
y))

+ δ2λ2(ρH − ρL){ρH [V (µ̃ȳȳ)− V (µ̃
¯
yȳ)] + (1− ρH)[V (µ̃ȳ

¯
y)− V (µ̃

¯
y
¯
y)]}

≥ (1− δλ){−c+ δλ(ρH − ρL)[p(µ̃ȳ)− p(µ̃
¯
y)]}, (22)

where the inequality is established via a straightforward argument showing
that V is increasing in µ.

From an application of the one shot deviation principle, it is an equi-
librium for the normal firm to always exert high effort, with the implied
customer beliefs, if and only if V (µ̃) − V (µ̃;L) ≥ 0 for all feasible µ̃. From
(22), a sufficient condition for this inequality is

p(µ̃ȳ)− p(µ̃
¯
y) ≥

c

δλ(ρH − ρL)
.

Because there are replacements, the left side of this inequality is bounded
away from zero. There thus exists a sufficiently small c such that the in-
equality holds.

In equilibrium, the difference between the continuation value of choosing
high effort and the continuation value of choosing low effort must exceed the
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cost of high effort. However, the value functions corresponding to high and
low effort approach each other as µ̃ → 1, because the values diverge only
through the effect of current outcomes on future posteriors, and current
outcomes have very little affect on future posteriors when customers are
currently quite sure of the firm’s type. The smaller the probability of an
inept replacement, the closer the posterior expectation of a normal firm can
approach unity. Replacements ensure that µ̃ can never reach unity, and
hence there is always a wedge between the high-effort and low-effort value
functions. As long as the cost of the former is sufficiently small, high effort
will be an equilibrium.

The possibility of replacements is important in this result. In the ab-
sence of replacements, customers eventually become so convinced the firm
is normal (i.e., the posterior µ̃ becomes so high), that subsequent evidence
can only shake this belief very slowly. Once this happens, the incentive to
choose high effort disappears (Mailath and Samuelson, 2001, Proposition
2). If replacements continually introduce the possibility that the firm has
become inept, then the firm cannot be “too successful” at convincing cus-
tomers it is normal, and so there is an equilibrium in which the normal firm
always exerts high effort.

To confirm the importance of replacements, suppose there are no re-
placements, and suppose further that ρH = 1 − ρL. In this case, there is
a unique Markov equilibrium in pure strategies, in which the normal firm
exerts low effort after every history:

Under this parameter configuration, an observation of ȳ followed by
¯
y

(or
¯
y followed by ȳ) leaves the posterior at precisely the level it had attained

before these observations. More generally, posterior probabilities depend
only on the number of ȳ and

¯
y observations in the history, and not on their

order. We can thus think of the set of possible posterior probabilities as
forming a ladder, with countably many rungs and extending infinitely in
each direction, with a good signal advancing the firm one rung up and a
bad signal pushing the firm down one rung. Now consider a pure Markov
equilibrium, which consists simply of a prescription for the firm to exert
either high effort or low effort at each possible posterior about the firm’s
type. If there exists a posterior at which the firm exerts low effort, then upon
being reached the posterior is never subsequently revised, since normal and
inept firms then behave identically, and the firm receives the lowest possible
continuation payoff. This in turn implies that if the equilibrium ever calls
for the firm to exert high effort, than it must also call for the firm to exert
high effort at the next higher posterior. Otherwise, the next higher posterior
yields the lowest possible continuation payoff, and the firm will not exert
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costly effort only to enhance the chances of receiving the lowest possible
payoff.

We can repeat this argument to conclude that if the firm ever exerts high
effort, it must do so for every higher posterior. But then for any number
of periods T and ε > 0, we can find a posterior (close to one) at which the
equilibrium calls for high effort, and with the property that no matter what
effort levels the firm exerts over the next T periods, the posterior that the
firm is normal will remain above 1− ε over those T periods. By making T
large enough that periods after T are insignificant in payoff calculations and
making ε small, we can ensure that the effect of effort on the firm’s revenue
are overwhelmed by the cost of that effort, ensuring that the firm will exert
low effort. This gives us a contradiction to the hypothesis that high effort
is ever exerted.

Mailath and Samuelson (2001) show that the inability to support high
effort without replacements extends beyond this simple case. These results
thus combine to provide the seemingly paradoxical result that it can be
good news for the firm to have customers constantly fearing that the firm
might “go bad.” The purpose of a reputation is to convince customers that
the firm is normal and will exert high effort. As we have just seen, the
problem with maintaining a reputation in the absence of replacements is
that the firm essentially succeeds in convincing customers it is normal. If
replacements continually introduce the possibility that the firm has turned
inept, then there is an upper bound, short of unity, on the posterior µ̃, and
so the difference in posteriors after different signals is bounded away from
zero. The incentive to exert high effort in order to convince customers that
the firm is still normal then always remains.

A similar role for replacements was described by Holmström (1982) in
the context of a signal-jamming model of managerial employment. The wage
of the manager in his model is higher if the market posterior over the man-
ager’s type is higher, even if the manager chooses no effort. In contrast, the
revenue of a firm in the current model is higher for higher posteriors only if
customers also believe that the normal firm is choosing high effort. Holm-
ström’s manager always has an incentive to increase effort, in an attempt
to enhance the market estimation of his talent. In contrast to the model
examined here, an equilibrium then exists (without replacements) in which
the manager chooses effort levels that are higher than the myopic optimum.
In agreement with spirit of our analysis, however, this overexertion disap-
pears over time, as the market’s posterior concerning the manager’s type
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approaches one.34

5 Discussion

Even within the context of repeated games, we have focused on a particular
model of reputations. This section briefly describes some alternatives.

5.1 Outside Options and Bad Reputations

We begin with an interaction that we will interpret as involving a sequence of
short-lived customers and a firm, but we allow customers an outside option
that induces sufficiently pessimistic customers to abandon the firm, and so
not observe any further signals.

The ability to sustain a reputation in this setting hinges crucially on
whether the behavior of a firm on the brink of losing its customers makes
the firm’s product more or less valuable to customers. If these actions make
the firm more valuable to customers, it is straightforward to identify condi-
tions under which the firm can maintain a reputation. This section, drawing
on Ely and Välimäki (2003), presents a model in which the firms’ efforts to
avoid a no-trade region destroy the incentives needed for a nontrivial equi-
librium. We concentrate on a special case of Ely and Välimäki (2003). Ely,
Fudenberg, and Levine (2008) provide a general analysis of bad reputations.

There are two players, referred to as the firm (player 1) and the customer
(player 2). We think of the customer as hiring the firm to perform a service,
with the appropriate nature of the service depending upon a diagnosis that
only the firm can perform. For example, the firm may be a doctor who
must determine whether the patient needs to take two aspirin daily or needs
a heart transplant.

The interaction is modeled as a repeated game with random states.
There are two states of the world, θH and θL. In the former, the cus-
tomer requires a high level of service, denoted by H, in the latter a low level
denoted by L.

The stage game is an extensive form game. The state is first drawn by
Nature and revealed to the firm but not the customer. The customer then

34 Neither the market nor the manager knows the talent of the manager in Holmström’s
(1982) model. The manager’s evaluation of the profitability of effort then reflects only
market beliefs. In contrast, our normal firms are more optimistic about the evolution
of posterior beliefs that are customers. However, the underlying mechanism generating
incentives is the same.
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Hire Not hire

H u, u 0, 0

L −w,−w 0, 0

State θH

Hire Not hire

H −w,−w 0, 0

L u, u 0, 0

State θL

Figure 13: Payoffs for the terminal nodes of the extensive form bad-
reputation stage game, as a function of the state (θH or θL), the customer’s
decision of whether to hire the firm, and (if hired) the firm’s choice of service.
We assume w > u > 0.

decides whether to hire the firm. If the firm is hired, he chooses the level of
service to provide.

The payoffs attached to each terminal node in the extensive form game
are given in Figure 13. The firm and the customer thus have identical
payoffs. Both prefer that high service be provided when necessary, and that
low service be provided when appropriate. If the firm is not hired, then both
players receive 0.

Given that interests are aligned, one would think there should be no
difficulty in the customer and the firm achieving the obviously efficient out-
come, in which the firm is always hired and the action is matched to the
state. It is indeed straightforward to verify that the stage game presents no
incentive problems. Working backwards from the observation that the only
sequentially rational action for the firm is to provide action H in state θH
and action L in state θL, we find a unique sequential equilibrium, supporting
the efficient outcome.

Suppose now that the (extensive form) stage game is repeated. The firm
is a long-lived player who discounts at rate δ. The customer is a short-lived
player. Each period features the arrival of a new customer. Nature then
draws the customer’s state and reveals its realization to the firm (only).
These draws are independent across periods, with the two states equally
likely in each case. The customer decides whether to hire the firm, and the
firm then chooses a level of service. At the end of the period, a public signal
from the set Y ≡ {∅, H, L} is observed, indicating either that the firm was
not hired (∅) or was hired and provided either high (H) or low (L) service.
Short-lived players thus learn nothing about the firm’s stage-game strategy
when the firm is not hired.

For large δ, the repeated game has multiple equilibria. In addition to the
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obvious one, in which the firm is always hired and always takes the action
that is appropriate for the state, there is an equilibrium in which the firm
is never hired.35 Can we restrict attention to a subset of such equilibria by
introducing incomplete information? The result of incomplete information
is indeed a bound on the firm’s payoff, but it is now an upper bound that
consigns the firm to a surprisingly low payoff.

With probability 1 − µ̂ > 0, the firm is normal. With complementary
probability µ̂ > 0, the firm is “bad” and follows a strategy of always choosing
H. A special case of Ely and Välimäki’s (2003) result is then:

Proposition 5 Assume that in any period in which the firm is believed to be
normal with probability 1, the firm is hired. Then if the firm is sufficiently
patient, there is a unique Nash equilibrium outcome in which the firm is
never hired.

Ely and Välimäki (2003) dispense with the assumption that the firm is
hired whenever thought to be normal with probability 1, but this assump-
tion is useful here in making the following intuition transparent. Fix an
equilibrium strategy profile and let µ̂† be the supremum of the set of poste-
rior probabilities of a bad firm for which the firm is (in equilibrium) hired
with positive probability. We note that µ̂† must be less than 1 and argue
that µ̂† > 0 is a contradiction. If the firm ever is to be hired, there must
be a significant chance that the normal firm chooses L (in state θL), since
otherwise his value to the customer is negative. Then for any posterior prob-
ability µ̂′ sufficiently close to µ̂† at which the firm is hired, an observation
of H must push the posterior of a bad firm above µ̂†, ensuring that the firm
is never again hired. But then no sufficiently patient normal firm, facing a
posterior probability µ̂′, would ever choose H in state θH . Doing so gives a
payoff of (1 − δ)u (a current payoff of u, followed by a posterior above µ̂†

and hence a continuation payoff of 0) while choosing L reveals the firm to be
normal and hence gives a higher (for large δ) payoff of −(1− δ)w+ δu. The
normal firm thus cannot be induced to choose H at posterior µ̂′. But this
now ensures that the firm will not be hired for any such posterior, giving us
a contradiction to the assumption that µ̂† is the supremum of the posterior
probabilities for which the firm is hired.

The difficulty facing the normal firm is that an unlucky sequence of θH
states may push the posterior probability that the firm is bad disastrously
high. At this point, the normal firm will choose L in both states in a des-

35The structure of this equilibrium is similar to the zero-firm-payoff equilibrium of the
purchase game (Section 2.5).
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perate attempt to stave off a career-ending bad reputation. Unfortunately,
customers will anticipate this and not hire the firm, ending his career even
earlier. The normal firm might attempt to forestall this premature end by
playing L (in state θH) somewhat earlier, but the same reasoning unravels
the firm’s incentives back to the initial appearance of state θH . We can thus
never construct incentives for the firm to choose H in state θH , and the firm
is never hired.

5.2 Investments in Reputations

It is common to speak of firms as investing in their reputations. This sec-
tion presents a discrete-time version of Board and Meyer-ter-Vehn’s (2012)
continuous-time model, which centers around the idea that investments are
needed to build reputations.

In each period, a product produced by a firm can be either high quality
or low quality. As in Section 4.3.3, the customers on the other side of the
market are not strategic, and simply pay a price for the good in each period
equal to the probability that it is high quality.

In each period, the firm chooses not the quality of the good, but an
amount η ∈ [0, 1] to invest in high quality. The quality of the firm’s product
is initially drawn to be either low or high. At the end of each period,
with probability λ, there is no change in the firm’s quality. However, with
probability 1 − λ, a new quality draw is taken before the next period. In
the event of a new quality draw at the end of period t, the probability of
emerging as a high-quality firm is given by ηt, the investment made by the
firm in period t.

An investment of level η costs the firm cη, with c > 0. The firm’s
payoff in each period is then the price paid by the customers in that period
minus the cost of his investment. The firm has an incentive to invest because
higher-quality goods receive higher prices, and a higher investment enhances
the probability of a high-quality draw the next time the firm’s quality level
is determined.

Customers do not directly observe the quality of the firm. Instead, the
customers observe either signal 0 or signal 1 in each period. If the firm
is high quality in period t, then with probability ρH the customer receives
signal 1. If the firm is low quality, then with probability ρL the customer
receives signal 1. If ρH > ρL, then the arrival of a 1 is good news and pushes
upward the posterior of high quality. If ρH < ρL, then the arrival of a 1 is
bad news, and pushes downward the posterior that the good is high quality.
We say that the signals give perfect good news if ρL = 0, and perfect bad
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news if ρH = 0.
For one extreme case, suppose ρL = 0, giving the case of perfect good

news. Here, the signal 1 indicates that the firm is certainly high quality (at
least until the next time its quality is redrawn). We might interpret this
as a case in which the product may occasionally allow a “breakthrough”
that conveys high utility, but can do so only if it is indeed high quality. For
example, the product may be a drug that is always ineffective if low quality
and may also often have no effect if it is high quality, but occasionally (when
high quality) has dramatic effects.

Conversely, it may be that ρH = 0, giving the case of perfect bad news.
Here, the product may ordinarily function normally, but if it is of low quality
it may occasionally break down. The signal 1 then offers assurances that
the product is low quality, at least until the next quality draw.

We focus on four types of behavior. In a full-work profile, the firm
always chooses η = 1, no matter the posterior about the product’s quality.
Analogously, the firm chooses η = 0 for every posterior in a full-shirk profile.
In a work-shirk profile, the firm sets η = 1 for all posteriors below some
cutoff, and chooses η = 0 for higher posteriors. The firm thus works to
increase the chance that its next draw is high quality when its posterior is
relatively low, and rides on its reputation when the latter is relatively high.
Turning this around, in a shirk-work profile the firm shirks for all posteriors
below a cutoff and works for all higher posteriors. Here, the firm strives to
maintain a high reputation but effectively surrenders to a low reputation.

In Board and Meyer-ter-Vehn’s (2012) continuous-time model, equilib-
ria for the cases of perfect good news and perfect bad news are completely
characterized in terms of these four behavioral profiles. The discrete-time
model is easy to describe but cumbersome to work with because it is noto-
riously difficult to show that the value functions are monotonic in beliefs.
For the continuous-time model, Board and Meyer-ter-Vehn (2012) show the
following (among other things):

• If signals are perfect good news, an equilibrium exists and this equi-
librium is unique if 1−λ ≥ ρH . Every equilibrium is either work-shirk
or full-shirk. The induced process governing the firm’s reputation is
ergodic.

• If signals are perfect bad news again equilibrium exists, but 1−λ ≥ ρL
does not suffice for uniqueness. Every equilibrium is either shirk-work,
full-shirk or full-work. In any nontrivial shirk-work equilibrium, the
reputation dynamics are not ergodic.
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What lies behind the difference between perfect good news and perfect
bad news? Under perfect good news, investment is rewarded by the en-
hanced probability of a reputation-boosting signal. This signal conveys the
best information possible, namely that the firm is certainly high quality, but
the benefits of this signal are temporary, as subsequent updating pushes the
firm’s reputation downward in recognition that its type may have changed.
The firm thus goes through cycles in which its reputation is pushed to the
top and the then deteriorates, until the next good signal renews the process.
The firm continually invests (at all posteriors, in a full-work equilibrium,
or at all sufficiently low posteriors, in a work-shirk equilibrium) in order to
push its reputation upward.

In the shirk-work equilibrium under perfect bad news, bad signals destroy
all hope of rebuilding a reputation, since the equilibrium hypothesis that the
firm then makes no investments precludes any upward movement in beliefs.
If the initial posterior as to the firm’s type exceeds the shirk-work cutoff, the
firm has an incentive to invest in order to ward off a devastating collapse in
beliefs, but abandons all hope of a reputation once such a collapse occurs.
The fact that it is optimal to not invest whenever customers expect no
investment gives rise to multiple equilibria.

Some ideas reminiscent of the bad reputation model of Section 5.1 reap-
pear here. In the case of a shirk-work equilibrium and perfect bad news,
the firm can get trapped in the region of low posteriors. The customers do
not literally abandon the firm, as they do in the bad-reputation model, but
the absence of belief revision ensures that there is no escape. In this case,
however, the firm’s desire to avoid this low-posterior trap induces the firm
to take high effort, which customers welcome. As a result, the unraveling of
the bad reputation model does not appear here.

5.3 Continuous Time

Most reputation analyses follow the standard practice in repeated games
of working with a discrete-time model, while examining the limit as the
discount factor approaches one. Since we can write the discount factor as

δ = e−r∆,

where r is the discount rate and ∆ the length of a period, there are two
interpretations of this limit. On the one hand, this may reflect a change
in preferences, with the timing of the game remaining unchanged and the
players becoming more patient (r → 0). One sees shadows of this interpre-
tation in the common statements that reputation results hold for “patient
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players.” However, the more common view is that the increasing discount
factor reflects a situation in which the players’ preferences are fixed, and the
game is played more frequently (∆→ 0).

If one is examining repeated games of perfect monitoring, these interpre-
tations are interchangeable. It is less obvious that they are interchangeable
under imperfect monitoring. If periods are shrinking and the game is being
played more frequently, one would expect the imperfect signals to become
increasingly noisy. A firm may be able to form a reasonably precise idea of
how much its rivals have sold if it has a year’s worth of data to examine,
but may be able to learn much less from a day’s worth of data. We should
then seek limiting reputations results for the case in which discount factors
become large and the monitoring structure is adjusted accordingly.

One convenient way to approach this problem is to work directly in
the continuous-time limit. This section describes some recent work on
continuous-time reputation games.

It is not obvious that continuous-time games provide a fertile ground
for studying reputations. Several examples have appeared in the literature
under which intertemporal incentives can lose their force as time periods
shrink in complete information games, as is the case in Abreu, Milgrom, and
Pearce (1991), Sannikov and Skrzypacz (2007), and Fudenberg and Levine
(2007). The difficulty is that as actions become frequent, the information
observed in each period provides increasingly noisy indications of actions,
causing the statistical tests for cheating to yield too many false positives
and trigger too many punishments, destroying the incentives.

The effectiveness of reputation considerations in continuous time hinges
on order-of-limits considerations. If we fix the period length and let the dis-
count factor approach one, then we have standard reputation results, with
the underlying reasoning reproducing standard reputation arguments. Al-
ternatively, if we fix the discount rate and let the period length go to zero,
these reputation effects disappear. Here, we encounter the same informa-
tional problems that lie behind the collapse of intertemporal incentives in
repeated games of complete information.

This gives us an indication of what happens in the two extreme limit or-
ders. What happens in intermediate cases? Faingold (2005) shows that if we
work with the limiting continuous-time game, then there exists a discount
factor such that reputation effects persist for all higher discount factors.
Hence, we can choose between discrete-time or continuous-time games to
study reputations, depending on which leads to the more convenient analy-
sis.

78



5.3.1 Characterizing Behavior

Reputation models have typically produced stronger characterizations of
equilibrium payoffs than of equilibrium behavior. However, Faingold and
Sannikov (2011) have recently exploited the convenience of continuous time
to produce a complete characterization of reputation-building behavior. We
confine our presentation to the description of an example, taken from their
paper.

We consider a variation of the product-choice game. A long-lived firm
faces a continuum of customers. At each time t, the firm chooses an effort
level at ∈ [0, 1], while each customer chooses a level of service bt ∈ [0, 3]. The
firm observes only the average service level Bt chosen by the continuum of
customers, while the customers observe only the current quality level of the
firm, Xt. The latter evolves according to a Brownian motion, given by
dXt = atdt+ dZt.

The firm maximizes the discounted profits∫ ∞
0

e−rt(Bt − at)dt,

so that the firm prefers the customers buy a higher level of service, but
finds effort costly. In each period each customer chooses her level of service
to maximize her instantaneous payoff, with the maximizing service level
increasing in the quality of the firm and decreasing in the average service
level chosen by customers. We might interpret the latter as reflecting a
setting in which there is congestion in the consumption of the service.

The unique equilibrium outcome in the stage game is that the firm
chooses zero effort. In the repeated game, the firm’s effort levels are statis-
tically identified—different levels of effort give rise to different processes for
the evolution of the firm’s quality. This opens the possibility that nontrivial
incentives might be constructed in the repeated game. However, the unique
equilibrium of the continuous-time repeated game features the relentless play
of this stage-game Nash equilibrium.

This result is initially counterintuitive, since it is a familiar result that
the long-lived player could be induced to take actions that are are not myopic
best responses in a discrete-time formulation of this game. One would need
only arrange the equilibrium so that “bad” signals about his actions trigger
punishments. However, as we have noted, the resulting incentives can lose
their force as time periods shrink, as is the case in Abreu, Milgrom, and
Pearce (1991), Sannikov and Skrzypacz (2007), and Fudenberg and Levine
(2007).
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Now suppose that with some probability, the firm is a commitment type
who always takes the maximal investment, a = 1. Faingold and Sannikov
(2011) show that there is a unique sequential equilibrium. As the long-lived
player becomes arbitrarily patient (r → 0), the long-lived player’s payoff
converges to the Stackelberg payoff of 2.

Behind these payoffs lie rich equilibrium dynamics. The unique sequen-
tial equilibrium is a Markov equilibrium, with the posterior probability µt

that the firm is a commitment type serving as the state variable. As µt

approaches unity, the aggregate service level demanded by the short-lived
players approaches the best response to the commitment type of 3. Smaller
average service levels are demanded for smaller posteriors, though in equi-
librium these levels approach 3 as the long-lived player gets more patient.
The long-lived player exerts her highest effort levels at intermediate poste-
riors, while taking lower effort at very low or very high posteriors, with the
function specifying the effort level as a function of the posterior converging
to unity as the long-lived player gets more patient.

We thus have a reputation version of “number two tries harder.” Firms
with very high reputations rest on their laurels, finding the cost of high effort
not worth the relatively small effect on customer beliefs. Firms with very
low reputations abandon all hope of building their reputation. Firms in the
middle labor mightily to enhance their reputations. The more patient the
firm, the higher the payoff to reputation building, and hence the higher the
effort profile as a function of the posterior.

5.3.2 Reputations Without Types

The standard model of reputations is centered around incomplete informa-
tion concerning the long-lived player’s type, with the long-lived player’s rep-
utation interpreted in terms of beliefs about his type. In contrast, Bohren
(2011) shows that interesting reputation dynamics can appear without any
uncertainty as to the type of the long-lived player.

Suppose that at each instant of time, a firm is characterized by a cur-
rent quality, and chooses an investment. The current quality is a stock
variable that is observed, while customers receive only a noisy signal of the
investment. There is a continuum of customers, whose individual actions
are unobservable. The model builds on Faingold and Sannikov (2011), but
without incomplete information and with quality playing the role of poste-
rior beliefs.

In each period, the current quality stock is observed, and then the firm
and the customers simultaneously choose an investment level and a quantity
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to purchase. Higher investment levels tend to give rise to higher signals.
The customer’s payoff is increasing in the quality stock and the signal, and
depends on the customer’s quantity. The higher is the stock and the signal,
the higher is the customer’s payoff maximizing quantity.

The firm’s payoff is increasing in the aggregate purchase decision, but is
decreasing in the level of investment, which is costly. In a static version of
this game, equilibrium would call for an investment level of zero from the
firm. The incentive for the firm to undertake investments in the current pe-
riod then arises out of the prospect of generating larger future quality stocks.
In particular, the stock increases in expectation when investment exceeds
the current quality level, and decreases in expectation when investment falls
short of this level.

Bohren (2011) shows that there is a unique public prefect equilibrium,
which is a Markov equilibrium. Once again, this equilibrium gives rise to
“number two tries harder” incentives. The firm’s investments are highest
for an intermediate range of quality stocks, at which the firm works hard
to boost its quality. The firm undertakes lower investments at lower quality
levels, discouraged by the cost of building its reputation and waiting for a
fortuitous quality shock to push it into more favorable territory. Similarly,
the invests less for high quality levels, content to coast on its reputation.
The result is a progression of product quality cycles.
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