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Abstract

This paper empirically evaluates the effects of college admissions policies on high school
student performance. To this end, I build a model where high school students decide their
level of effort and whether to take the college admissions test, taking into consideration how
those decisions may affect their future university admission chances. Using Chilean data for
the 2009 college admissions process, I structurally estimate the parameters of the model in
order to study the implications of two types of counterfactual experiments: (a) a SES-Quota
system, which imposes the population’s SES distribution for each university; (b) increasing
the high school GPA weight. The results from these exercises support the claim that
increasing the level of equal college opportunities may boost the amount of effort exerted
by high school students. Specifically, I find that: (1) average effort significantly increases as
opportunities are equalized across different socioeconomic groups. (2) There is a moderate
improvement in high school student performance, which is relatively important for certain
groups. (3) The highest reactions in terms of exerted effort come from those students who
also change their decision about taking the college admissions test. (4) Neither of these
policies increases the percentage of students taking the national test for college admission,
which is consistent with the fact that in this policy implementation there are winners and
losers. However, there are relevant variations in who is taking such a test; in particular, this
percentage increases for low-income students and those who have higher level of learning
skills. (5) Because the SES-Quota system uses the existing information more efficiently, it
implies a more efficient student allocation to equalize opportunities.
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1 Introduction

There is a continuing debate about how to reduce socio-economic and racial segregation in
universities. To this end, many countries have affirmative action programs, intended to increase
the probability of college admissions for targeted populations (e.g. of a particular race or family
income). In general, existing evaluations of these programs focus on the application rates of
students benefiting from affirmative action, and the academic performance of those who are
admitted.1 Since the existing evaluations generally assume high school student behavior to
be exogenous, a missing part of this discussion is how high school students may consider
the impact of their effort levels on their university admission chances and react to different
admissions policies accordingly.2

To fill this gap, this paper addresses empirically the effect of college admissions on high school
student effort and performance in response to policy changes. In particular, I estimate the
structural relationship between college admissions policies, which determine the probabilities
of being admitted by different universities, and the student effort decision in high school.3 I
address this question using Chilean data for the 2009 college admissions process, whose features
and richness particularly suit the question raised in this research. In the absence of changes in
college admissions policies, I use the estimated model to perform some ex-ante policy evaluation
experiments.

I model the college admissions process and high school behavior in a static fashion, where
students make two decisions: whether or not to take the national test which is necessary for
college admission, and their academic effort during high school. The exerted effort positively
impacts the expected performance in high school and on the national test for college admission.
For those students who decide to take the college admissions test, admissions policies are based
on a linear combination of high school grades and the test scores, such that higher values lead
to admission at better universities. Hence, the admissions process works as a tournament in

1For instance, in a interesting paper, Arcidiacono (2005) structurally estimates the effects of removing admis-
sion preferences and financial aid race-based advantages on African American earnings and educational choices.
A similar approach where factors such as applications costs, geography, and supply-side competition play a role
-relative to the costs of high-school academic achievement- is Epple, Romano, and Sieg (2006). Other related re-
search includes Bowen and Bok (1998), Card and Krueger (2005) and Long (2004). A summary of the literature
before 2000 can be found in Holzer and Neumark (2000).

2Theoretically and motivated by U.S. legal changes, a series of papers, e.g., Chan and Eyster (2003); Fryer,
Loury, and Yuret (2008); and Hickman (2011) have focused on how the prohibition of explicit consideration
of race in the admissions process may be quite inefficient if the colleges still have some preferences toward
minorities. Below, I discuss the literature that empirically addresses the impact of affirmative action on student
behavior.

3It is an empirical question whether student effort impacts student performance. In this paper, the parameters
which drive the relationship between these two things in the model are estimated. Schuman, Walsh, Olson, and
Etheridge (1985) report four different major investigations and several minor ones over a decade, none of which
were very successful in yielding the hypothesized substantial association between the amount of study and
GPA. Such an unexpected result is, from different angles, contradicted by Eckstein and Wolpin (1999), Eren
and Henderson (2008), Rau and Durand (2000), Stinebrickner and Stinebrickner (2004), and Stinebrickner and
Stinebrickner (2008). Related to this literature is the difficulty of having a proper model for cognitive production
function. In this regard, Todd and Wolpin (2007) find the most support for the value-added models, particularly
if those models include some lagged input variables (see also Todd and Wolpin (2003)).
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which students decide their effort and whether or not to take the college admissions test, taking
into account the effort cost, the national test’s fixed cost, how much they value future pay-offs,
and their chances of being admitted to a better university.4 Because this is a tournament (i.e.,
the amount of university seats are fixed), any admissions policy implies winners and losers.5

Yet it is relevant to study who are the winners (or losers) and to find out if there are any
policies that raise the total average high school performance.

The database, which has 146, 319 observations, is built using five sources of information: (1)
PSU, the national test for college admission; (2) RECH, the Ministry of Education’s data,
which includes GPA and attendance information for all high school students; (3) SIMCE 2004
and 2006, a nation-wide test taken by all 14- and 16-year old students. This source provides
information about student performance, measures of effort and learning skills, and character-
istics of their families and of primary and secondary schools. (4) Futuro laboral, Ministry of
Education’s data from tax declarations which links individual wages to majors and universities.
Finally, (5) admissions requirements, data from each university that includes the test’s weights
for the final score definition and the final cutoff scores (the minimum score for admittance) for
each major. While the first three sources are linked through an individual ID, the last two can
be merged to link final-score cutoff with future payoffs.

The model estimation is carried out in two stages. In the first stage, I estimate all the param-
eters of the test production function by two-stage least squares, since I have more than one
measure for the endogenous variable (i.e., high school student effort). In the second stage, using
some parameters estimated in the first stage, I estimate the utility parameters, the distribu-
tion of the unobserved learning skills, and the parameters of the measurement equations by a
maximum likelihood procedure. I follow this approach mainly because most of the parameters
are estimated in the first stage, leaving just a few parameters to be estimated in the second
stage, which is more time consuming.

The simulation of the estimated model fits most of the data features reasonably well. In
particular, it successfully fits the unconditional and conditional test distributions, and the
probability of taking the national test for college admission across different groups, where
both are endogenous variables in the model. Moreover, the simulated final-score cutoff (i.e.,
the minimum weighted average score for being admitted in each university) replicates data
patterns. In the case of exerted effort, both the correlation between the effort measures and
the simulated effort and the signs of the factor loadings of the effort measurement equations go
in the right direction; both are positive. However, the share of total variance due to estimated
effort is quite small for the effort measurement equations. I discuss to what extent this is a
drawback and present some evidence that this issue is mainly due to the quality of the measures

4There is vast literature, with mixed evidence, to study the impact of college and its quality on future earnings,
e.g., Brewer, Eide, and Ehrenberg (1999); Dale and Krueger (2002); Dale and Krueger (2002); James, Alsalam,
Conaty, and To (1989); and (with Chilean data) Reyes, Rodŕıguez, and Urzúa (2013). It is worth noting that
while the literature has focused its attention on how to control for the student and college selection, this is not
necessarily relevant in my approach because the important feature in my model is not how much students are
actually going to earn, rather what they believe is the impact of attending different universities on their future
earnings.

5To read more about the theoretical implications of rank order tournament, refer to Lazear and Rosen (1981).
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of the effort as opposed to shortcomings of the model.

Two policies (counterfactual exercises) are simulated in this paper, intended to equalize op-
portunities. The first one is a SES-Quota system, implying that for each university the SES
distribution is the same as the one in the population. In the second policy experiment, I
simulate what happens if the GPA weight is increased, which in practice implies that the prob-
ability of attending better universities for those students who attend low income high schools
is increased. This is due to the fact that while the high school GPA of each student is to some
extent relative to her classmates, the national test scores are relative to the student’s national
cohort and therefore capture the difference in high school quality, which is highly correlated
with income.

There are several lessons from these counterfactuals. (1) Average effort significantly increases as
opportunities are equalized across different socioeconomic groups. (2) This leads to a moderate
improvement in high school students’ performances, which is relatively important for some
groups. (3) Although the effects on performance are moderate, the evidence supports the idea
that modeling effort and the decision to take the PSU are important in order to anticipate
what would happen with the main features of the college admissions system (e.g., student
allocation).(4) The highest change in exerted effort comes from those students who also change
their decision about taking the college admissions test. (5) Neither of these policies increases
the percentage of students taking the national test for college admission, which is consistent
with the fact that in this policy implementation there are winners and losers. However, there
are relevant variations in who is taking such a test; in particular, this percentage increases for
low-income students and those who have higher level of learning skills. (6) Because the SES-
Quota system uses the existing information more efficiently, it implies a more efficient student
allocation to equalize opportunities.6

There are few papers that take students’ behavior in high school as endogenous, as I do in
this work. Here I summarize three of them.7 The first two, Domina (2007) and Ferman and
Assunçâo (2011) present some reduced form estimations that address how changes in affirmative
action policies change students’ behavior in high school. In the third paper, which is the closest
to my research, Hickman (2010) models the behavior of U.S. high school students as a function
of their future chances of being admitted to different universities.

In particular, Domina (2007), using panel data for Texas high schools between 1993 and 2002,
shows evidence that Texas’ post-Hopwood higher education policies boosts high school stu-
dents’ academic engagement at public schools.8 Opposing this is Ferman and Assunçâo (2011),
who used difference-in-difference techniques and quasi-experimental data from Brazilian sec-
ondary education, where political forces abruptly imposed an admissions quota for two of Rio
De Janeiro’s top public universities. They estimate that the quota altered incentives, thus pro-

6Here, efficiency means to allocate students with respect to their expected GPA and PSU test.
7To the best of my knowledge, there are not any others. In a related paper, Hastings, Neilson, and Zimmerman

(2012) show how motivation can change the exerted effort of the students, in particular that the opportunity to
attend a better high school has positive and significant effects on both student attendance and test scores.

8Among other things, Texas’ post-Hopwood higher education policies include a guarantee that all students
who finished in the top 10% of their high school class will be admitted to their chosen public university.
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ducing a 5.5% decrease in standardized test scores among the favored group, a 25% widening
of the achievement gap.

There are two considerations worth pointing out. These studies tell us something about how
different ways of increasing the admissions probabilities of the most segregated groups may
have different impacts on high school student behavior. However, a structural approach is
required in order to have some idea about which admissions policies accomplish an efficient
combination of diversity and correct incentives.

To address this issue, Hickman (2010) uses U.S. data to structurally estimate a model of college
admission, where the admissions test is an endogenous variable, using empirical tools borrowed
from auctions literature.9 One of his main findings is that current affirmative action policies
narrow the achievement gap and the enrollment gap, but a color blind system results in higher
academic achievement in the overall student population. His other finding is that the quota
system prohibited by U.S. law is superior to both of the other policies in three dimensions: it
produces the highest academic performance; it substantially narrows the achievement gap; and,
by design, it closes the enrollment gap completely. Importantly, he does not, nor do I, have
data from before and after some policy change, and thus he uses the structure of the model to
perform ex ante policy evaluation. Yet, his and my paper are complementary and are the first
attempts to structurally estimate the relationship between college admissions system and high
school student behavior.

Beyond technicalities, the main differences between my paper and Hickman (2010) are: (1)
My theoretical approach does not impose a distinct univeristy type for each admitted student.
(2) Given that I have data for the student regardless if she did or did not take the college
admissions test, I can see how different admissions rules change the number of people who
apply to college, whereas his approach is conditional on admission. Furthermore, it turns out
that in my estimation and, hence, in my simulations this decision plays a central role. (3)
Finally, given that I observe measures of effort and a set of variables which determine the
student performance in my data, the impact of the effort decision is established in a more
transparent way, and it is possible to compare the magnitude of the effort’s effect with that of
the other determinants. Yet, the differences in our approaches are mainly motivated by different
access to data and the particular traits in the institutional design of the two educational systems
(American and Chilean).

My paper has three main contributions. First, it empirically shows how high school student
effort would react to different college admissions policies, establishing that increasing the level
of equal opportunities leads to a boost in the average effort. Second, it estimates a rank-
tournament with heterogeneous ability contestants.10 Third, the paper exploits the interaction
between economic theory and factor analysis models in the identification and estimation of the
model, and in the analysis of the results.

9The model is described in detail in Hickman (2011).
10Vukina and Zheng (2007) present the first attempt to estimate a structural model of an empirically observed

rank-order tournament as a strategic game with private information. As the authors posit, the structural estima-
tion of rank-order tournament games with heterogeneous ability contestants is cumbersome as this assumption
results in equilibrium strategies that are nonsymmetric.
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The paper proceeds as follows. Section 2 details the features of the model. Section 3 describes
the Chilean college admissions process, explaining the main features of the data. Section
4 discusses the empirical implementation of the model and proves the identification of the
model’s parameters. Section 5 presents the estimation procedure. In Section 6, the model
fit is discussed along with other aspects of the estimation results. Section 7 describes the
counterfactual experiments results. Finally, Section 8 concludes and discusses future research.

2 The Model

The aim of this model is to capture how college admissions policies may affect the effort exerted
by high school students. Students have two decisions to make: whether or not to take the college
admissions test, a necessary input for university admittance; and they must decide how much
effort to make during high school. The exerted effort positively impacts expected high school
and college admissions test performance. For those students who decide to take the college
admissions test, admissions policies consider both high school grades and the test score, such
that higher measures lead to admittance by better universities.

The college admissions test scores and GPA production technologies are functions of high school
and student characteristics. To have a tractable problem, it is assumed that there is a finite
space of individual and school characteristics. Thus, let i ∈ {1, 2, ...,M} denote the student-
school type; the vectors of observed and unobserved individuals characteristics of student type
i are given by {xi, λi}, whereas the mass of those students is denoted by mi.

11

There are N − 1 university types, each one offering the same major.12 But, because they have
different quality levels, each university implies some specific future pay-off {R1, R2, ..., RN},
such that Rn+1 > Rn ∀ n and R1 is the pay-off for those who were not admitted to college
(because they did not try or their final score was too low).13

Each university n has a fixed and exogenous amount of seats Sn (S1 > 0 is the residual: the
mass of students who are not admitted to any college, i.e.,

∑
imi =

∑N
δ=1 Sδ). Hence, the

admissions process works as a tournament in which students decide their effort ei and whether
or not to take the college admissions test TCATi, taking into account the effort cost, the test’s
fixed cost (FCi ∼ N(F̄C, σ2

fc)), how much they value future pay-offs, and their chances of
being admitted by each university.

Let FSi be the type i college admissions final score, such that:

11Although from the model’s perspective it does not make any difference what is and is not observed by the
econometrician, I introduce this notation in the model description to keep the same notation throughout the
paper.

12This is something that is possible to relax given my data (although it is challenging in terms of the model).
In fact, I can have people with different interests and universities teaching different majors, which will create
different markets. However, in this model and in my current empirical specification I do not assume such
heterogeneity.

13To keep a tractable specification, in this model I am not considering individual heterogeneity in future
pay-off and in credit constraints. Using Chilean data, Urzua and Rau (2012) show evidence of the impact of
short-term credit constraint on dropouts.
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FSi = Ppm ∗ PMi + Ppv ∗ PVi + Pg ∗GPAi, (1)

where PMi, PVi and GPAi are the math test, the verbal test, and the high school GPA,
respectively; whereas Ppm, Ppv and Pg are the associated weights. The production function of
these tests are:

PMi = β
pm
0 + xiβ

pm
1 + eiβ

pm
2 + λiβ

pm
3 + ε

pm
i , (2)

PVi = β
pv
0 + xiβ

pv
1 + eiβ

pv
2 + λiβ

pv
3 + ε

pv
i , (3)

GPAi = β
g
0 + xiβ

g
1 + eiβ

g
2 + λiβ

g
3 + ε

g
i . (4)

εki ∼ N(0, σ2
k), ε

k
i ⊥⊥ εk

′

i ∀ k 6= k′ and E[εki |xi, λi] = 0, ∀ k ∈ {pm, pv, g}.

Given the number of people who actually take the college admissions test, the seats offered by
each university, and the final score distribution of those students, the vector r ({r1, r2, ..., rN−1})
represents the final minimum score needed to be admitted by each university type. Throughout
the paper, I denote this vector as the final-score cutoff. Hence, the students who are going to
be part of the university n are those who have a final score greater than or equal to rn−1 and
smaller than rn. The former inequality is given by the admissions rule, whereas the latter is
due to utility maximization.

The utility function, for those who choose to not take the college admissions test, is given by:

U0(e) = θ1R1 + θ2GPA(e) −
e2

2
, (5)

For those who decide to take the college admissions test, the utility is:14

U1(e) = θ1

N∑

n=1

Rn1(rn−1 ≤ FS(e) < rn) + θ2GPA(e) − FC −
e2

2
, (6)

where 1(A) is an indicator function which takes the value of 1 when A is true and 0 other-
wise, and θ1 and θ2 represent the importance of future pay-offs and the importance of high
school student performance, respectively. The cost of effort is quadratic and its parameter is
normalized to one.15

There are two considerations to be made about students’ utility function. On one hand, stu-
dents make their effort decision before the realization of the shocks (the distributions are
common knowledge). For that reason, they maximize expected utility. The only private infor-
mation used in the student decisions is the value of FC, though the distribution is common

14r0 = −∞.
15In the empirical implementation of the model, I allow for some heterogeneity, which does not qualitatively

change any outcomes of the model.
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knowledge. On the other hand, all information about the other students that each one needs
in order to make her effort decision are the values of r. Moreover, due to the facts that each
student anticipates the behavior of other students and that there is a continuum of individuals
of each type, the value of the vector r is predicted without uncertainty, even though the final
score is a random variable.

2.1 Partial Equilibrium

Given a vector r, exogenous in a partial equilibrium context, the optimization problem for
those who do and do not take the national college admissions test can be written as:16

max
e≥0

U0
i (e) = max

e≥0

{
θ1R1 + θ2(b0i + b1ie)−

e2

2

}
,

max
e≥0

U1
i (e) = max

e≥0

{
θ1

N−1∑

n=1

(Rn −Rn+1) Φ

(
rn − a1ie− a0i

ση

)
+ θ1RN + θ2(b0i + b1ie)− FC −

e2

2

}
.

(7)

Where:

a0i = Ppm ∗ (βpm
0 + xiβ

pm
1 + λ

pm
i β

pm
3 ) + Ppv ∗ (β

pv
0 + xiβ

pv
1 + λ

pv
i β

pv
3 ) + Pg ∗ (β

g
0 + xiβ

g
1 + λ

g
i β

g
3 ),

a1i = Ppm ∗ βpm
2 + Ppv ∗ β

pv
2 + Pg ∗ β

g
2 ,

b0i = β
g
0 + xiβ

g
1 + λ

g
i β

g
3 ,

b1i = β
g
2 ,

ηi = Ppm ∗ εpmi + Ppv ∗ ε
pv
i + Pg ∗ ε

g
i .

Therefore, the decision about taking the test is given by:

TCATi =

{
1 if maxe≥0 U

1
i (e) ≥ maxe≥0 U

0
i (e)

0 if maxe≥0 U
1
i (e) < maxe≥0 U

0
i (e)

(8)

Lemma 1: Given a vector r, the student’s problem (7) has at least one solution.

Proof: When the student does not take the college admissions test (TCAT = 0), it is clear
that there exists a unique optimal solution, equal to θ2b1i. On the other hand, when the student
does take the college admissions test (TCAT = 1), for any vector r and regardless the level of
effort, the marginal revenue of effort is upper bounded by ēi = θ1(RN −R1) + θ2b1i and lower
bounded by ei = θ2b1i. Thus, because the effort’s marginal cost is e, it should be the case

16Φ denotes the standard normal distribution function.
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that the optimal effort decision for student i belongs to the interval [ei, ēi].
17 Given that the

objective function is continuous in e and the relevant set is compact, for all i, there is also an
optimal solution when TCAT = 1. �

Therefore the partial equilibrium is characterized by the following first order conditions:

For those who do not take the college admissions test:

ê0i = θ2b1i. (9)

For those who take the college admissions test:18

ê1i = θ1

N−1∑

n=1

(Rn+1 −Rn)φ

(
rn − a1iê

1
i − a0i

ση

)
a1i

ση
+ θ2b1i, (10)

⇒

TCATi =

{
1 if Di ≥ FCi

0 if Di < FCi
(11)

Di = θ1

(
N−1∑

n=1

(Rn −Rn+1) Φ

(
rn − a1iê

1
i − a0i

ση

))
+ θ1(RN −R1)

+ θ2b1i(ê
1
i − ê0i )−

(ê1i )
2 − (ê0i )

2

2
.

As pointed out, since U0
i is strictly concave, the first order condition is sufficient and the

solution in that case is given by θ2b1i. A sufficient condition for strict concavity of U1
i is given

by ∀ i : θ1(RN −R1)a
2
1iφ(1) < σ2

η , ∀i.
19 When this condition is fulfilled, the solution to (10) is

unique and e1i is continuous in r, which is always the case for e0i . This continuity is important
for the general equilibrium analysis.

It should be noted that the vector {ê0i , ê
1
i } does not vary across students of the same type.

However, the final effort decision (êi = (1−TCATi) ∗ ê
0
i +TCATi ∗ ê

1
i ) varies within each type,

due to the fact that TCATi depends on the fixed cost realization, which is specific to each
student.20

17In fact, any positive effort implies a non-negative probability of attending to any university, thus the optimal
effort can not be equal to e. This means that, for all students, their optimal effort when TCAT = 1 is larger
than the optimal effort when TCAT = 0, i.e., the solution is interior.

18φ denotes the standard normal density.
19This is shown in Appendix A.1.
20Therefore, êi could be confusing due to effort heterogeneity within group i, since for some of the students

who are type i, this is equal to ê0i and for the others it is equal to ê1i . The same holds for TCATi.
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2.2 General Equilibrium

Let m̃i be the mass of students of type i who take the college admissions test, then:21

m̃i = miΦ

(
Di − F̄C

σfc

)

A general equilibrium in this setting is given by a set of vectors ê0, ê1 and r̂, such that:

• Given r̂, ∀ i:

– ê0i = θ2b1i,

– ê1i = θ1
∑N−1

n=1 (Rn+1 −Rn)φ
(
r̂n−a1iê

1
i−a0i

ση

)
a1i
ση

+ θ2b1i,

– D̂i = (U1
i (ê

1
i , r̂) + FCi)− U0

i (ê
0
i ).

• ∀ n = 1, ..., N − 1 :

N∑

δ=n+1

Sδ =
∑

i

m̃i

[
1− Φ

(
r̂n − ê1i a1i − a0i

ση

)]
=
∑

i

miΦ

(
D̂i − F̄C

σfc

)[
1− Φ

(
r̂n − ê1i a1i − a0i

ση

)]
.

Thus, in this setup the vector r has a similar role as prices in a Walrasian equilibrium, in the
sense that its value is set such that the number of students admitted in each university is equal
to its number of seats.

Lemma 2: If ∀ i : θ1(RN −R1)a
2
1iφ(1) < σ2

η and
∑

imiΦ
(
θ1(RN−R1)−F̄C

σfc

)
>
∑N

δ=2 Sδ, there

exists at least one equilibrium.

Proved in Appendix A.1.

The sufficient conditions for existence have clear interpretations. On one hand, the first condi-
tion implies that the effort decision can not be overly important for the final score determination
(given by the ratio a1i

ση
) and that the differences in the future pay-offs can not be overly relevant

(given by θ1(RN − R1)). Hence, to be sure about the equilibrium existence requires that the
impact of the effort on the utility is moderate. On the other hand, the second condition is more
innocuous and establishes that the national test’s fixed cost cannot be too big in comparison
with future pay-offs. Otherwise, even when all the elements of r are close to −∞, there are not
enough students taking the national test to fill all of the seats offered by each university.

Lemma 3: In the case where N = 2, the equilibrium is unique when it exists.

Proved in Appendix A.2.

21Again, even though students just observe their own fixed cost realization; this mass can be predicted without
uncertainty by the students due to the continuum of individuals of each type.
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Although there is not a proof for N > 2, in Appendix A.2 I present a result which limits the
potential extent of multiple equilibria. In particular, it narrows the possibility of having high

and low effort equilibria.

It is worth mentioning that the potential lack of uniqueness is not an issue in the estimation
of the model. In fact, to calculate the likelihood function it is only necessary to solve the
partial equilibrium as opposed to the general equilibrium. The latter is not calculated in the
estimation given that I observe the final-score cutoff (r) in the data. Thus, in the case of
having more than one equilibrium, the estimation procedure selects the one that the students
actually played. The usefulness of narrowing the potential extent of multiple equilibria is for
counterfactual experiments.

3 The Chilean System for College Admission and Data De-

scription

In the Chilean educational system, students can continue their studies after high school at
types of tertiary institutions: the selective (the best and most prestigious universities) and the
non-selective (some universities and technical institutions). In 2009, 29% of 18 to 25 year-olds
were attending some type of tertiary institution.22

The Chilean university system is highly structured: after knowing their final admissions score
(a linear combination of high school GPA and test scores), students apply for a particular
college major at a particular university. They can apply for more than one major at any given
school. The vast majority of the college courses correspond to the core of the specific major. In
other words, other than her college major choice, the student has little agency in choosing the
components of her academic training. In this system, each university has an admission quota
for each major.

As considered in the model, to be admitted into the selective universities, the student must take
a national college admissions test (PSU); math and verbal are mandatory while certain majors
require additional tests. Most of the selective universities have an explicit formula to calculate
the final score (different weights for the PSUs and GPA are considered). Thus selection is
simply based on the final score ranking. A few selective universities have a less transparent
admissions process, but from the data it is possible to see their implicit final score cut-off.

For the 2009 admissions process, among the 212, 656 students who finished high school, 56, 437
(27%) did not take the college admissions test and 156, 219 (73%) took it.23 Because the
national test can be taken once per year and because those who change majors must retest,
a percentage of those taking the college admissions test finished their secondary studies more
than one year before. In this paper, I only use data for those students who finished high school
in 2008 (and who didn’t repeat any grades between 2004 and 2008). For the cohort, those

22CASEN 2009 (Chilean survey for socioeconomic characterization).
23Those are the students who took the college admissions test in December 2008. The academic year is from

March to December.

11



students represent 84.5% (179, 725 of 212, 656) of the total.24

There are five sources of information in this paper; the first three are linked through an indi-
vidual ID.25

• PSU: the national test for college admission. These are census data provided by the
DEMRE (Department of Educational Evaluation, Measurement and Recording).

• RECH: Ministry of Education’s data. It includes information for all high school students.
It provides the annual average attendance for each high school student, their GPA, and
all high schools in which each student was enrolled. There is an identification number
for each high school that can be used to link this RECH data with many other sources
of high school information (including SIMCE’s information).

• SIMCE 2004 and 2006: Nation-wide tests taken by students in the eighth grade of
primary school (14 years old) and the second grade of secondary (16 years old). These
tests are designed to measure the quality of the system, are public information, and
do not have any direct consequences for the tested students. During the week of the
test, parents are surveyed to characterize students’ families. From that survey, I have
information on the students performance, some proxy measures of effort and learning
skills, and characteristics of their families, primary, and secondary schools.

• Futuro Laboral: Ministry of Education’s data from tax declarations which link indi-
vidual wages to major and attended university. This public access database contains
some statistics about the distribution of wages for each area of study.26 In particular, it
includes the 10th, 25th, 50th, 75th and 90th percentiles along with wage means, one and
five years after leaving college for each area of study.27 From this I can infer the average
pay-off associated with each university and college major.

• Admissions requirements: Data from each university that includes the tests’ weights
for the final score definition and the final-score cutoffs for each major. It is possible to
link this information with the previous wage information.

The final database contains 146, 319 observations, where the difference between this number
and 179, 725 (who did not repeat any grade between 2004 and 2008) is mainly for two reasons:
(1) lack of data for the 2004 SIMCE for some students, and/or (2) lack of socioeconomic
information for some students. In Appendix B there is a description of the variables considered
is this paper along with some statistics.

24In the analysis I need high school students’ data, which is not available for students who finished high school
before 2008.

25The Ministry of Education of Chile has all individual information with RUT (Chilean national ID), but for
confidentiality reasons this data is given to the researchers with a new ID, which is useful to link the different
data bases provided by the Ministry, but stops linking with other databases at an individual level.

26The definition of area of study is quite fine. In fact, there are 105 areas, which in many cases imply that an
area contains only one major.

27In www.mifuturo.cl�images�metodologias�nota metodologica buscador empleabilidad e ingresos.pdf
there is a detailed description of this data (the document is in Spanish).
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Something worth highlighting is the fact that all independent variables that determine the effort
decision are discrete.28 This feature of the data implies that I have student types, namely, groups
of students who share the same characteristics. The existence of types has two positive and
important consequences. First, it helps to speed up the estimation, since the effort decisions,
more precisely ê0i and ê1i , are the same for all students belonging to the same type. Second,
it better suits the theory, because the higher the cardinality of each student type (described
in Table 1), the assumption of a continuum of agents within each type is closer to the data
specification.

Table 1: Cardinality of the student types groups

Mean Std. Dev. Min Max N

Size of student types 56.36 135.40 1 1447 2596

To be able to estimate the model, a few decisions should be made to adjust the data to model
simplifications. First, in the model universities differ only in quality (i.e., there is only one
major), and each student has the same ranking for these universities. In this regard and in
the empirical implementation of the model, I consider twenty university types, where the first
one is the residual (for those who either do not take the college admissions test or have a final
score below r1).

Second, to define Rn and rn I proceed using the following steps:

• In the admissions process, I assume that all universities only consider GPA, math and
verbal PSU scores (i.e., they do not consider the other PSUs). Furthermore, I assume
that all universities use the same weights (0.3 for both PSUs and 0.4 for GPA).29 Thus,
I have one final-score cutoff for each student who took the college admissions test.

• I use the information of the fifth year’s wages for each area of study.30

• I classify each major of the admissions requirements database into one of the areas of
study of the Futuro laboral data base. By doing so, I have the final-score cutoff and
the future wages percentiles associated with a particular major (one distribution across
universities), for each major/university. Thereafter, I linearly extrapolate the wage per-
centile information that I have to obtain all deciles for each major.

• In order to have a database containing one final-score cutoff and one future wage for
each major/university, I assume a positive monotonic relationship between final-score
cutoffs and future payoffs. In particular, for each major/university, I first calculate the
decile of that university in the distribution of final-score cutoffs for that particular area of

28All of them are discrete by nature. But in order to have this feature in my data, I did not include a few
variables that were continuous, e.g., family income (which may have significant measurement error).

29They are close to the mode in my data base. They can not be exactly the mode in order to have weights
that add to one.

30The resulting final-score cutoffs are quite similar if I use first year’s wages.
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study, and then impute the wage for that decile (from the distribution of wages for that
particular area of study), such that the wage’s percentile x is merged with the final-score
cutoff’s percentile x. The outcome is a relationship between the final-score cutoffs and
future payoffs that is plotted in Figure 1.

• To group the university-degree points into twenty “university types,” I first non-parametrically
estimate the relationship between future payoffs and the final-score cutoffs, plotted in Fig-
ure 1. This creates a monotonic relationship between these two variables. I then define
the groups using cluster analysis, where the universities are grouped by similar future
wages.31

Finally, to define the number of seats for each university type Sn, I calculate how many students,
coming directly from high school, had final scores between rn−1 and rn. This means that all
my counterfactuals will assume that the share of students who come directly from high school
is invariant to policy experiments. In Table 2, the resulting final-score cutoff (r), payoffs (R),
and seats available (S) for each university are presented.

Table 2: Universities’ payoffs and cutoff
scores

University R r S

1 730407 0 Residual
2 813903 437 5114
3 823605 450 2160
4 858348 455 9231
5 887939 476 1869
6 889166 480 1904
7 911408 484 6498
8 954100 498 3738
9 988201 506 1913
10 1007949 510 1881
11 1054916 514 8783
12 1121856 533 6825
13 1175584 548 4107
14 1226456 558 4868
15 1315568 570 9462
16 1428676 596 5180
17 1541462 613 5727
18 1696450 635 6611
19 1966697 669 4356
20 2245443 704 3847

R is in Chilean Pesos. In 2009, one Dollar
was 559.67 Pesos.

Figure 1: Imputed fifth year wages and locally
weighted regression
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31I use k-means clustering algorithm.
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4 Empirical Specification and Identification

For the empirical implementation, besides the functions that determine the final score, I con-
sider several measures and tests, which are useful to identify the parameters of interest in the
context of latent variables. Following the factor model literature, I assume that there are three
unobserved variables for which I have measures (i.e., proxies): λi (learning skills), epi (student
effort at primary school), and ehi (student effort at secondary school). The last is modeled
in the paper, while the first two are treated as unobserved heterogeneity. Moreover, I take
advantage of the panel data in order to have learning skill measures before the effort decision
was made, which is the endogenous variable in my model. The learning skills are assumed to
be scalar and time invariant.32

I assume λ is independent of x. This assumption is not relevant for the identification argument
presented in this paper but it reduces the number of parameters to be estimated. Moreover,
as shown below, the results of the estimation seem to support this assumption.

The measures considered are: the final score determinants, i.e., 2009 PSUs (PM, the math
test; and PV the verbal test) and high school GPA; the SIMCEs (2004 and 2006); and some
direct measures of effort and unobserved learning skills. Hence, the empirical implementation
is characterized by the following equations.

Final Score Determinants:

PMi = β
pm
0 + xhi β

pm
1 + ehi β

pm
2 + λiβ

pm
3 + ε

pm
i , ∀i s.t. TCATi = 1, (12)

PVi = β
pv
0 + xhi β

pv
1 + ehi β

pv
2 + λiβ

pv
3 + ε

pv
i , ∀i s.t. TCATi = 1, (13)

GPAh
i = β

gh
0 + xhi β

gh
1 + ehi β

gh
2 + λiβ

gh
3 + ε

gh
i . (14)

High school performance and effort measurements:

SIMCEh
ji = β

sjh
0 + xhi β

sjh
1 + ehi β

sjh
2 + λiβ

sjh
3 + ε

sjh
i , j ∈ {verbal,math}, (15)

Mehji = x
ejh
i β

ejh
1 + ehi α

ejh + ε
ejh
i , j ∈ {1, ..., Jeh} Jeh ≥ 2. (16)

Primary school performance, learning skill and effort measurements:

SIMCE
p
ji = β

sjp
0 +x

p
iβ

sjp
1 +e

p
iβ

sjp
2 +λiβ

sjp
3 +ε

sjp
i , j ∈ {verbal,math, natural science, social science},

(17)

GPA
p
i = β

gp
0 + x

p
iβ

gp
1 + e

p
i β

gp
2 + λiβ

gp
3 + ε

gp
i , (18)

32In the context of the papers. Cunha, Heckman, and Schennach (2010) and Heckman, Stixrud, and Urzua
(2006), these learning skills variables would be closer to non-cognitive skills given the measures that I have.
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Me
p
ji = x

ejp
i β

ejp
1 + e

p
iα

ejp + ε
ejp
i , j ∈ {1, ..., Jep} Jep ≥ 2, (19)

Mλ
p
ji = x

λjp
i β

λjp
1 + λiα

λjp + ε
λjp
i , j ∈ {1, ..., Jλ} Jλ ≥ 2. (20)

In this setup, I assume that all the εis are normally and independently distributed.33 Namely,
conditional on observables, the correlation across equations is only given by the unobserved skill
heterogeneity. In Appendix B, there is a description of the different dependent and independent
variables used in the estimation. The following are relevant for the identification analysis:

• Mλ
p
1i, Me

p
1i and Meh1i are measures of learning skills, the exerted effort at primary school

and the exerted effort at secondary school, respectively. As usual in factor analysis, there
are the following normalizations: αe1h = αe1p = αλ1p = 1. As will be shown, to ensure
identification it is necessary to have at least one measurement being a linear function of
each unobservable and one more measurement which does not need to be a linear function
of the latent variable.34 The variables used are: 1) for learning skills, a binary variable
that takes the value of 1 if the student had repeated at least one year and 0 otherwise
(I use a linear probability model); 2) for the effort exerted at primary school, attendance
for the last year of primary school; 3) for the effort exerted at secondary school, the mean
of the student attendance over the four years of secondary school.35

• As Cunha and Heckman (2008) stress, because the tests only contain ordinal information,
it is more appropriate to anchor the scale of the latent factors using measures with an
interpretable metric, as the ones used in this paper.

• In order to gain flexibility, in the estimation, the model specification has an effort cost
that is individual specific. This allows different effort decisions among students who are
not taking the college admissions test, otherwise ê0i = θ2b

g
2. In this specification, instead

of e2

2 the cost of effort is exp(θ3i)
e2

2 , where:
36

θ3i = θ131(Like math = 2) + θ231(Like math = 3) + θ331(Like spanish = 2)

+ θ431(Like spanish = 3).

33There is one exception: ελ1pi is not normal because, as specified below, Mλ
p
1i is binary and a linear probability

model is assumed.
34I also assume that x

λjp
i , xejp

i and x
p
i do not have elements in common, and the same for x

ejh
i and xh

i ; this
just for simplicity.

35Using attendance as a measure of effort is a common practice; see for example Hastings, Neilson, and
Zimmerman (2012)

36In the SIMCE 2004, the students are asked about how much they like to study math and Spanish and the
possible answers are: strongly agree, agree, disagree, and strongly disagree. Given that few people choose the
last category, I take three values: 1 if the student strongly agrees, 2 if the student agrees, and 3 if the student
disagrees or strongly disagrees.
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Which implies that θ3i is normalized to zero, and the cost is equal to e2

2 , when the student
strongly agrees about the statement: I enjoy the study of math and Spanish.

In terms of the model characterization, the cost heterogeneity does not imply any rel-
evant changes. In fact, this new specification has the same structure as the previ-
ous one, but with new parameters θ̃1i = θ1 exp(−θ3i), θ̃2i = θ2 exp(−θ3i) and F̃Ci ∼
N(F̄C exp(−θ3i), σ

2
fc exp(−2θ3i)).

4.1 Identification

To the extent that the final goal of this paper is to perform counterfactuals related to the college
admissions process, the objects which must be identified for this analysis are {βpm, βpv, βgh},

{V ar(εpmi ), V ar(εpvi ), V ar(εghi )}, {θ, F̄C, σfc, ση} and the distribution of λ. The identification
strategy, developed in Appendix C, has three steps. First, I identify the final score’s expectation
and variance.37 Second, I non parametrically identify the distribution of learning skills. Third,
I identify the utility parameters from different moments of the measures of effort.

5 Estimation

The estimation is carried out in two stages. In the first stage, following the identification analy-
sis presented above and the standard approach to deal with measurement error in independent
variables (both effort and learning skills), I can consistently estimate all the parameters of the
test equations ((12), (13), (14), (15) and (17)) by a two-stage least square. In the second stage,
using relevant parameters from the first stage, I estimate the utility parameters, the distribu-
tion of the unobserved learning skills, and the parameters of the measurement equations by
maximum likelihood procedure. I follow this approach mainly because most of the parameters
are estimated in the first stage, which only takes a few seconds, leaving just a few parameters
to be estimated in the second stage.38 In terms of numbers, 161 parameters are estimated in
the first stage, whereas 84 are estimated in the second stage.

Let Ωs be the set of parameters estimated in the s stage (s ∈ {1, 2}, Ω = {Ω1,Ω2}). The
estimation procedure for the second stage has the following steps:

• Guess the initial values for all the parameters, Ω0
2 (this includes the parameters of the

learning skills distribution).

• Given Ω0
2, r, R, and X, find the effort decision for each student. There are two features

of this procedure that speed up this calculation. First, given that the final score cutoff
is observed, the general equilibrium is not required.39 Second, the first order conditions,
which lack a closed form solution, should only be solved for the 2, 596 student types.

37If V ar(εpmi ) , V ar(εpvi ) and V ar(εghi ) are identified, then ση is also identified.
38This is a big gain in time, given that in each iteration the model needs to be solved (which takes around 30

seconds for each set of parameters).
39Because I only need to calculate the partial equilibrium of my model, the estimation method used is maximum

likelihood as opposed to simulated maximum likelihood.
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• Calculate the likelihood function.

• Continue with a new guess until finding the Ω2 that maximizes the likelihood function.40

There are some features of this procedure that are worth highlighting. The distribution of un-
observed learning skills is approximated by a discrete distribution of four types. This approach
has two advantages: first, it is consistent with the model, in which there is a mass of students
for each type. Indeed, these discrete unobserved types allows for multiple students for each
type (which permits a better approximation to the theoretical equilibrium). Second, it speeds
up the estimation, because the student optimization has to be solved just once per student type
in each iteration. Meanwhile, some of the parameters that are estimated in the second stage
can also be estimated in the first stage (e.g., the factor loadings as shown in the identification
argument). I prefer estimating those parameters in the second stage to give to the model a
better chance of fitting the data (the model is solved just in the second stage). Additionally,
the distribution of the unobserved primary school effort is not estimated. Instead, I calculate
the projection of one of the continuous measures of that effort on its other measures and then
replace the primary school effort by that projection. Finally, when I have missing data in one
of the measures (high school effort or learning skills), I assume that it is random and don’t
consider the contribution to the likelihood of this measure for such a student; I don’t have to
drop the entire data point.

To have a clear picture of the likelihood function, in Appendix D, I describe the contributions
of different data to the likelihood.

6 Results

The first stage estimation results are presented in Appendix E.1 (Tables 11, 12, and 13). Some
aspects of these estimations are worth mentioning. First, for the OLS regressions where the
dependent variable is either high school effort or learning skills and the rest of the measures
are independent variables, the magnitudes, signs, and statistical significances are generally all
fine. Although in some cases the r squared is fairly small, the instruments are not weak.41

Second, in the case of the OLS regressions where one of the secondary education performances
is the dependent variable (Table 15), which are the equations whose parameters determine the
effort decision, the estimated parameters are as expected in terms of statistical significances,
magnitudes, and signs. In particular, the magnitude of the parameters related to effort and
learning skills are quite relevant.

Finally, the second stage OLS for the primary education performance presents some problems
(Table 14). Indeed, the effect of effort (predicted with instruments) on SIMCEs is in the
wrong direction. Nevertheless the effect is in the expected direction for the GPA equation.42

40This is done using the derivative free solver, HOPSPACK.
41The F statistics are: 16.99 (Primary School Attending Regression), 103.19 (Secondary School Attending

Regression), and 58.09 (Repetitions Linear Probability Regression).
42In both cases, the effect is statistically significant.

18



Furthermore, the effect of the predicted learning skills is positive and highly relevant in all
equations.43

The parameters estimated in the second stage are shown in Appendix E.2 (Table 16).44 As in
the first stage, the vast majority of the estimated parameters have the expected sign. The only
exceptions are two of the effort cost’s parameters θ33 and θ43. Given the non-linear relationship
between the parameters and model’s outputs, the best way to assess the relevance of parameter
magnitudes is through model fit analysis and counterfactual experiments.

6.1 Model Fit

To study how well this model fits the data, I simulate it given the estimated parameters. Due
to the size of the database, I only draw one vector of shocks per student. Although in the
estimation procedure only the partial equilibrium is solved, because the final-score cutoff (r,
the general equilibrium object) comes from data, in the simulation I have to calculate the
general equilibrium. Thus, the first element to consider in model fit analysis is how close the
simulated rn are in respect to the ones that come from data.45 In this regard, Figure 2 shows
that the simulated vector r captures the trend and magnitudes of the data fairly well.

Though the model shows a good fit in all the aspect of the data, given that the goal of this
paper is to study how different college admissions policies may affect high school students’
behavior, I focus my attention on the model fit for those tests that are relevant in the admissions
process, along with the student test decision. Figure 3 shows that the model replicates the test
distribution observed in the data.46 Moreover, in Appendix E.3, Table 17 shows that the model
is able to replicate student performance across different groups relatively well, although it shows
some discrepancies in socioeconomic groups 3 and 4.47

Furthermore, the simulated model also fits the data patterns with regard to the fraction of stu-
dents taking the PSU across different groups, which is important since one of the two decisions
considered in my model is whether to take the national admissions tests. Indeed, Figure 9
(Appendix E.3) shows how the simulation of the model replicates this fraction, particularly the
patterns and, with some discrepancies, the magnitude, across gender and high school socioe-
conomic groups, maternal and paternal education, and high school categories (public, private
subsidized, and private non-subsidized).

43The parameters are negative because the variables are ordered from more to fewer skills.
44Some parameters are estimated in both stages. In that case, I keep for simulations the ones estimated in

the second stage.
45The computational algorithm to solve the general equilibrium of the model works as follows: (1) Draw the

individual cost of taking the PSU and the individual shocks for PSU tests and GPA. (2) Guess an initial value
for final-score cutoff r0. (3) Given r0 and the parameters of the model, calculate the optimal effort and optimal
decision about taking the PSU, for each student. (4) Given the shocks and effort decisions, calculate the new
final-score cutoff (r1), which solves the general equilibrium condition. (5) Stop if this new r1 is close enough to
r0 (maxn∈{1,...,N−1} |r

0
n − r11| < ǫ), otherwise restart from point (2) with r1 as the new guess.

46The discrepancies in the case of high school GPA are because the data is discrete and there are agglomerations
in some grades, something that can not be replicated by the model.

47Appendix E.3 contains Figures 7 and 8, which show the model fit of the densities for the remaining tests
(2004 and 2006), where all of them show good fit.
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Figure 2: Final-score cutoffs for 2009 university admissions process

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

Universities

sc
or

e 
cu

to
ff 

 

 

Data
Model

The second student decision modeled is how much effort to exert in high school. In the context
of this paper, with many measures of effort, it is not totally clear how to assess the model fit
in the effort dimension. However, following the factor models literature, I propose four ways
to evaluate such a fit, namely: (1) the correlation between the measures and effort (simulated
by the model); (2) the sign and statistical significance of the factor loadings, i.e., parameters
that multiply the latent effort decision in each measurement equation; (3) the share of total
variance due to estimated effort; and (4) the ratio between the share of total variance due
to estimated effort (when effort is modeled) and the ratio of share of total variance due to
estimated effort (when effort is not modeled and its distribution, conditional on X, is non-
parametrically estimated). Because the latter involves an estimation procedure that needs
explanation, I first focus on the former three criteria.

In this respect, Table 3 presents mixed evidence. On one hand, both the correlations and the
signs of the factor loadings are in the right direction, positive. On the other hand, in all of
the cases, the share of total variance due to estimated effort is quite small, where in the best
case it is just above 2%. As it is shown in the third column, the share of total variance due to
controls is also small for those measurement equations that include controls.

As discussed in a previous section, all the remaining measures of high school effort explain a
small fraction of the variance of high school attendance. Thus, part of the reason why the share
of total variance due to estimated effort is quite small could be the small correlation among
measures of effort. In other words, the problem could be that these measures only share a small
part of information (the latent factor). However, this issue can also be explained, since there
could be different reasons why students exert effort in high school, and my model captures
only one of them. To distinguish between these two possible explanations, measurement error
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Figure 3: Model fit in tests determining final score
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(b) PSU verbal
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(c) GPA at high school
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versus modeling drawbacks, I build criteria four (described below).

From the identification analysis, it is clear that it is possible, in the sense that all the parameters
are identified, to estimate the parameters of this set of equations (tests and measures) without
using the theory developed in this paper to calculate student effort (conditional on parameters).
In particular, as is usual in factor analysis (e.g., Heckman, Stixrud, and Urzua (2006)), I assume
that the student effort is drawn from a mix of three normals, which allows for enough flexibility
in estimating the density of the factor. Therefore, by doing this estimation I find the density of
effort which is consistent with all measures of effort and other tests, since the only thing that I
change in respect to the previous estimation is how to calculate high school effort. In this case,
simulated maximum likelihood is required.48 This nonparametric estimation should capture all
the information that is not observed and is consistent with the tests and measures of effort. In
this context, I conceptualize this information as the density of effort, where such a latent effort
decision is not necessary due to considerations of how effort is going to change future chances
of being accepted to a better university. In other words, this density establishes a benchmark
for my model. The variance that is not explained by this distribution is not captured by any

48I also use a reduced form approach for the equation that determines the test taking decision.
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Table 3: Correlations and Variance decomposition for effort measures

Corr(Measure,effort) Share of Total Share of Total Ratio of Share of Total Residual
(Factor Loading) Residual Variance due Residual Variance Variance due to estimated

to estimated effort (Theory) due to controls effort (Theory/non paramteric)

Attendance 0.136162 0.022099 0.11

Parents perception 0.075444 0.003973 0.12
about student effort (0.109920)

Reading school books 0.096300 0.000546 0.019111 0.11
at home (0.040786)

Using a proper space 0.122651 0.000717 0.017227 0.12
to study at home (0.046577)

Using calculator to 0.101369 0.000493 0.010817 0.11
study at home (0.038827)

theoretical model of effort, since it is due to pure measurement error.49

The last column of Table 3 shows that around 11-12% of the variance of the nonparametric
distribution of effort is captured by my model. Such a result implies that if the model is correct,
only 11-12% of the variance of effort could be explained by modeling how student behavior is
determined by future chances of being admitted to a better university. Moreover, this means
that, though building a model of effort requires strong assumptions and abstractions from
reality, the main problem is the noisiness of the measures of effort.

Is this a relevant issue? I do think that, in general, it could be an issue, but that is not the
case in this paper. Under the regular assumption that the errors are iid, having highly noisy
measures should affect the precision of the estimated parameters, in particular the standard
errors of the factor loadings. However, in this paper all the standard errors are small enough
to have statistical significance.50

6.2 Unobserved Types

As usual in structural estimations, discrete unobserved types improve the fit of the model.
Although in this paper I depart from this tradition by using measures for latent unobserved
learning skills, it is still the case that these types have a relevant role in fitting the data. In
fact, Table 4 shows that the impact of these types on tests are between 0.5 and 1.5 standard
deviations (medium low versus low), 1 and 2.5 standard deviations (medium high versus low)
and 2 and 4 standard deviations (high versus low).

In this approach, it is possible to check the validity of the assumption used in the estimation,
that types are independent of X. Indeed, given the estimated πt (i.e., the unconditional prob-
ability of being type t), the conditional probabilities can be recovered by the Bayes rule, such
that:51

49The details of this estimation and the resulting parameters are available upon request.
50The only exception is the fixed cost parameter.
51These conditional probabilities are used in all the simulations and counterfactual experiments performed in

this paper.
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Figure 4: The impact of types on tests
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.

Consequently it is possible to see how these probabilities vary across different groups. In
fact, Figure 10 (Appendix E.4) shows that the independence assumption does not seem that
restrictive: there are not any relevant differences in conditional probabilities across gender,
maternal education, paternal education, and high school categories. However, there are some
important differences across socioeconomic and urban/rural high school conditions.

7 Counterfactual Experiments

Two policies (counterfactual exercises) are performed in this paper, where both are intended to
equalize opportunities. In the first one, a SES-Quota system is established, which imposes that,
for each university type, the SES distribution is the same as the population. In other words,
if, in the whole system there are x% of students attending high schools of socioecomic group i,
then there should be x% of students belonging to each high school type in each university type.
In practice, the way to get this outcome is by having a tournament within each socioeconomic
group (keeping the weights constant for each PSU test and GPA), such that the seats available
for students attending high schools socioeconomic group g in university type n is equal to

Sn ∗
(

#students SES g
#students in the system

)
, in which case there are five vectors r (one for each socioeconomic

group).

In the second counterfactual experiment, I simulate what would happen if the GPA weight was
increased, which in practice implies that the probability of attending better universities for
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students from low income high schools is increased.52 This is because, while the high school
GPA of each student is, to some extent, relative to that of her classmates, the national test
scores are relative to the student’s national cohort. Therefore they capture the differences in
high school quality, which is highly correlated with income.

From these exercises, I study the impact on effort, tests, and probability of taking the college
admissions test. Moreover, I compare both systems in terms of efficiency. By having the
same socioeconomic composition by university, I study which system implies the most efficient
student allocation, where efficiency means allocating students with respect to their expected
GPA and PSU test.53

The first aspect to review from these experiments is how do they change the universities’
socioeconomic composition, which is presented in Figures 11, 12 and 13 (Appendix F). On
one hand, the first set of plots confirms the outcome of SES-Quota system, namely, that each
socioeconomic group is proportionally represented in each university. On the other hand,
increasing GPA weights implies more low-income students attending top universities. For
example, increasing the GPA weight from 0.4 (the baseline) to 0.5 leads to a moderate increase
in the fraction of students attending top universities who come from low and medium income
high schools (SES 1, 2, and 3). As expected, this change increases when the new GPA weight is
0.7, in which case the fraction of the students admitted to the top five universities who belong
to SES 1 is doubled, the fraction of the students admitted to the top three universities who
belong to SES 2 is also doubled, and the same is true for the top university for SES 3. All
these increments are at the expense of higher socioeconomic groups (SES 4 and 5).

From these results, there are two features worth highlighting, which are relevant to keep in mind
for the next paragraphs. First, because this is a tournament, where the seats and “prizes” are
fixed, there are winners and losers. Second, the effect of the SES-Quota system (the one
presented in this paper) is much more aggressive in how the college selection system distributes
opportunities than changing GPA weights.54

The main goal in this paper is to see how changes in students’ opportunities may affect their
behavior in high school. In this respect, Figure 14 shows that the SES-quota implementation
increases the average effort of high school students by 0.3 standard deviations. Similarly, Figure
15 shows that the changes in GPA weight imply increases in students’ average effort from 0.2
to 0.8 standard deviations, depending on the magnitude of the weight’s change.

Furthermore, these plots show the importance of the interaction between the two student
decisions (i.e., exerted effort and taking the PSU), in the sense that the highest reactions in
exerted effort come from those students who also change their decision on taking the college
admissions test. For instance, for those students who were not taking the national tests in
the baseline simulation, who become takers once the GPA weight is changed, the increase in
average exerted effort is from 0.5 to 0.9 standard deviations. The opposite occurs for those

52It is also checked for what happens when it is decreased.
53For all the simulations and counterfactual experiments, I use the same shocks for each student. In this way,

the changes in behavior are only due to changes in colleges admissions rules.
54I don’t include more plots with different weights but the reader can request the results for a broader set of

weights (0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9).
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who pass from taking to not taking the tests. However, even for those students who do take
the college admissions test in both scenarios, there is an important increment in average effort,
both in the SES-quota system and when the GPA weight is changed.55

Given the linear form of the tests’ production function, the effects of these changes in admissions
rules on tests is a linear function of the effect on effort. In particular, Figure 16 presents the
numbers for the SES-quota experiment. In this case, for those students who attend SES 1 or 2
high schools, the average PSU (math and verbal) increases by around 0.05 standard deviations
and by around 0.1 in high school GPA. The opposite occurs for socioeconomic groups 4 and 5.
In all cases, these moderate effects more than double for those who change their PSU decision.
Finally, even though the magnitudes of these changes are small, there is an important effect on
the average final score at each university, which brings attention to the relevance of the change
that this experiment produces in the admission system.

As pointed out above, admissions rules also affect the test-taking decision, which is natural
since in my model, due to test cost, students take the national test when they have fair chances
of being admitted to a good university. Indeed, Figure 17 shows that the implementation of
SES-Quota system increases (decreases) the PSU participation by about 5 − 20 percentage
points for socioeconomic groups 1 and 2 (3, 4, and 5). Interestingly, for the entire population
these effects cancel each other out, which is consistent with this being a tournament, where
the new admissions policy does not change the number of seats per university. In the case of
changing the GPA weight (Figure 18), the effect across socioeconomic groups is more moderate,
in the range of 1− 8 percentage points.

In terms of policy analysis, it is not only relevant how many students change their behavior,
but also who those students are. The empirical approach performed in this paper allows for
such an analysis. In particular, the second plot of Figure 17 shows that, when introducing the
SES-Quota system, the new PSU-takers are noticeably more skilled (i.e., higher learning skill
type) than those who decide to abandon the admissions process, i.e., not taking the PSU. In
the case of changing GPA weights, this result depends on the variation extent, namely, it is the
same as the SES-Quota system for new weights equal to 0.5 and 0.6 and goes in the opposite
direction for higher weights.

From the previous analysis, it is clear that effort is quite elastic to changes in college admissions
rules. However, given the estimated parameters of the tests’ production functions, these effort
reactions do not imply changes by the same magnitudes for student performance. In other
words, the estimated model requires large changes in college admissions rules in order to have
substantial variations in high school student performance. In this context it is pertinent to ask
how relevant this is to model effort.

In this regard, I compare how the final-score cutoff and the admission of each university would
change, given the described counterfactual experiments, in two scenarios: (1) with optimal
effort (i.e., simulating the model) and (2) with fixed effort (i.e., the effort exerted in the baseline
scenario). The results plotted in Figure 19 show that there is an important difference between

55There are no changes for those who do not take the college admissions test in both scenarios. This is by
construction, given that the same shocks are used in all the simulations and counterfactual experiments.
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the optimal effort’s final-score cutoffs and the fixed effort’s final-score cutoffs,56 given the
implementation of the SES-Quota system. For example, in the case of the final-score cutoffs
for SES 1 and 2, the difference between these two scenarios goes from 0.2 to more than 1.5
standard deviations. Moreover, only 55% of the students are admitted to the same university
in both scenarios.

Figure 20 shows that when these two scenarios are compared given a change in GPA weight
from 0.4 to 0.5 (from 0.4 to 0.7), the differences in final-score cutoffs change from 0.01 to
0.025 (from 0.01 to 0.025). However, even in the cases where the effects are moderate, only
70% (50%) of the students are admitted to the same university in both scenarios (Figure 21).
Thus, this evidence supports the idea that modeling efforts and the decision to take the PSU
is important in order to anticipate what would happen to the main outcomes of the college
admissions system.

Figure 5: Average effort: SES-Quota versus changing GPA’s weight
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Finally, I discuss which college admissions rule leads to the most efficient student allocation.
I first simulate the estimated model for different GPA weights and calculate the resulting
socioeconomic composition among universities from each of these exercises. Then, I impose
these quotas in the SES-quota system. As a result, I can compare outcomes of the two policy
experiments while having the same socioeconomic composition in both cases.

As Figure 5 shows, the first point is that changes in the GPA weight imply a higher increase
in average effort than for the SES-Quota system. This is mainly because the estimated effort
marginal productivity is much higher in the GPA production function than in the production
functions of the two PSU tests.

56It should be kept in mind that such a counterfactual experiment implies 5 final-score cutoffs per university.
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However, this does not mean that changing the GPA weight is the preferred system to achieve
equal opportunities. Instead, Figure 6 shows that the higher the GPA weight, the larger the
advantage of SES-Quota system, in terms of expected PSU test scores and GPA of the students
admitted at top universities. This result is because, as the GPA weight increases, the GPA
shock becomes more relevant in the admissions process, while in the SES-Quota system, the
same equal opportunity achievement is reached by keeping the weights of the PSU tests and
GPA constant. Therefore the latter keeps the weights of each shock constant, which attenuates
the risk of admitting a bad student due to one extremely positive shock (the three shocks
are independent). In sum, the SES-Quota system implies, in expectation, a better student
allocation, keeping the level of equal opportunities constant, because it is able to achieve this
goal using the existing information more efficiently.

Figure 6: Expected tests and GPA: SES-Quota versus changing GPA’s weight
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(b) GPA weight = 0.6
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(c) GPA weight = 0.7
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(d) GPA weight = 0.8
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8 Conclusion

To answer the question of this paper, it would be best to have data before and after some
admissions policy changes. This ideal data would make it easier to capture the effects of
admissions rules on high school student performance. In the absence of such data, structural
estimations allow for ex ante policy evaluation. Yet, even with such data, the structural
approach will be needed in order to study the effect of several policies, as in this paper. The
current paper is one of the first steps in studying the structural relationship between high
school student effort and their probabilities of being admitted to a good university.

Given the well known difficulty in measuring effort and the level of abstraction that the model
needs to be tractable, it is valid to question the reliability of the paper’s results. In my opinion,
even though the model makes relevant abstractions from reality in order to be tractable and
estimable, the current paper can be seen as a reasonable model of the college admissions system
of Chile, with reasonable parameters, estimated as rigorously as possible. Yet, this exercise is
only capable of giving a rough idea about what could happen if college admissions rules change.

In terms of results, the main lesson from this paper is that it is qualitatively and quantita-
tively important to consider how a college admissions system may impact high school student
behavior. In particular, there are good theoretical and empirical reasons why increasing the
level of equal opportunities in college access may boost the effort exerted by high school stu-
dents. The results of this paper support that claim. Moreover, this paper sheds some light on
which admissions system could be optimal in the sense of having an efficient student allocation
conditional on delivering the desired change in universities’ socioeconomic composition.

There are two interesting avenues for future work. In terms of the model, it would be an
interesting, but difficult, extension to consider more than one major per university. I can see in
the data where non-mandatory PSUs (e.g., history, biology) were taken by each student (if any).
Thus it would be possible to have a better idea of what type of major she was considering when
making the test decision. This new multi-major model will imply a specific tournament for
each of these majors (with specific vector of final-score cutoff). Given that the effort decision
is a non-linear function of the final-score cutoffs, having a better approximation to the real
vector of cutoffs may lead to a relevant improvement in the matching between the model and
the data.

In terms of method, the paper exploits the interaction between theoretical and factor analysis
models. It is left to future research to formalize this analysis with some tests to establish
whether the endogenous modeled variable (high school student effort in this case) effectively
represents the latent variable.
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A Existence and uniqueness

A.1 Existence

Lemma 2: If ∀ i : θ1(RN − R1)a
2
1iφ(1) < σ2

η and
∑

imiΦ
(
θ1(RN−R1)−F̄C

σfc

)
>
∑N

δ=2 Sδ there

exists at least one equilibrium.

Proof: To prove the lemma, I show that the conditions for the Brouwer fixed point theorem

are satisfied. Let Gn(r) = rn−

(∑N
δ=n+1 Sδ −

∑
i miΦ

(
Di(r)− ¯FC

σfc

) [
1− Φ
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rn−e1i (r)a1i−a0i

ση

)])
,

where r ∈ RN−1, then I define the vector-value function G(r) as:57
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Hence, proving existence for the general equilibrium is equivalent to showing the existence of
a fixed point for G(r). In order to fulfil the Brouwer fixed point theorem’s conditions, the
vector-valued function G : M → M should be continuous and M non-empty, compact and
convex subset of some Euclidean space RN−1.

Given that the effort decision of any student is bounded by [mini{ei},maxi{ēi}] it is clear
that:58

r → ∞ ⇒
∑

i

miΦ

(
Di(r)− F̄C

σfc

)[
1− Φ

(
rn − e1i (r)a1i − a0i

ση

)]
→ 0,

r → −∞ ⇒
∑

i

miΦ

(
Di(r)− F̄C

σfc

)[
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(
rn − e1i (r)a1i − a0i

ση

)]
→
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i

miΦ

(
θ1(RN −R1)− F̄C

σfc

)

>

N∑

δ=2

Sδ.

57e1i (r) stands for the optimal effort decision for those who decide to take the college admissions test given
the vector of cutoff scores r.

58As r → −∞

Di = θ1

(
N−1∑

n=1

(Rn −Rn+1)Φ

(
rn − a1iê

1
i − a0i

ση

))
+ θ1(RN −R1)

+ θ2b1i(ê
1
i − ê

0
i )−

(ê1i )
2 − (ê0i )

2

2
→ θ1(RN −R1),

because as r → −∞, |ê1i − ê0i | → 0, ∀i.
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Then, taking any small number ε > 0, it is true that:

∀ n : r → ∞ ⇒ Gn(r + ε ∗~1)−Gn(r) → ε > 0

∀ n : r → −∞ ⇒ Gn(r − ε ∗~1)−Gn(r) → −ε < 0

Therefore, there exist two vectors r and r̄ such that ∀ r < r̄ ⇒ G(r) < G(r̄) < r̄ and
∀ r > r ⇒ G(r) > G(r) > r.59 Hence, I can define the set M = {r ∈ RN−1, r ≤ r ≤ r̄}. This
set is not empty, compact and convex.60

To show that G(r) is continuous it is sufficient to prove that ∀i ei(r) is continuous.
61 Moreover,

applying the Berge’s maximum theorem and considering the fact that the effort decision of
any student is bounded by [mini{ei},maxi{ēi}] (compact set), a sufficient condition for the
continuity of e1i (r) is that the objective function for those students who decide to take the
college admissions test is strictly concave.

Taking the derivative to the first order condition (10), it follows that:

∂2U1
i (e)

∂e2
= θ1

N−1∑
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(Rn+1 −Rn)

(
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)
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(
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)(
a1i
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)2

− 1

But because the first term can not be bigger than θ1(RN −R1)
(
a1i
ση

)2
φ(1), then62

θ1(RN −R1)a
2
1iφ(1) < σ2

η ⇒
∂2U1

i (e)

∂e2
< 0

Moreover, G(r) is well defined for any r because, as it was shown above, for any r there exist
optimal efforts for those who take the college admissions test (e1i (r)) and for those who do not
take the test (e0i (r)). �

A.2 Uniqueness

Lemma 3: In the case where N = 2, the equilibrium is unique when it exists.

Proof: The lemma is proved by contradiction. In particular, assuming there are two equilibria
{r, e} and {r′, e′}, where without loss of generality r′ > r,63 from the general equilibrium
definition it is directly shown that:

59Because there exist r̄ such that ∀r > r̄:
∑

i miΦ
(

Di(r)−F̄C

σfc

)[
1− Φ

(
rn−e1i (r)a1i−a0i

ση

)]
<
∑N

δ=n+1 Sδ, and

r such that ∀r < r:
∑

i miΦ
(

Di(r)−F̄C

σfc

) [
1− Φ

(
rn−e1i (r)a1i−a0i

ση

)]
>
∑N

δ=n+1 Sδ.
60To be sure about non-emptiness, it is possible to pick r < 0 and r̄ > 0.
61If e1i (r) is continuous then Di(r) is also continuous.
62The function xφ(x) is maximized at x = 1.
63Notice because N = 2, r and r′ are scalars. S is the amount of seats offered by the only university.
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S =
∑

i

miΦ

(
Di − F̄C

σfc

)[
1− Φ

(
r − eia1i − a0i

ση

)]

S =
∑

i

miΦ

(
D

′

i − F̄C

σfc

)[
1− Φ

(
r′ − e

′

ia1i − a0i

ση

)]
(21)

To get the contradiction I proceed in two steps. First, I show that the statement: ∀r′ > r, i :

Φ
(
r′−e′ia1i−a0i

σε

)
−Φ

(
r−eia1i−a0i

σε

)
> 0, is a sufficient condition to get the desired contradiction.

Second, I show that this statement is true regardless of the continuity of effort in r.

Step 1:

In fact, let Π0 = maxe U
0
i (e) and Π1(r) = maxe U

1
i (e), then Di = Π1(r) + FCi −Π0.

64 Taking
the derivative to Di with respect to r,65

∂Di

∂r
=

∂Π1(r)

∂r
= (R1 −R2)

θ1

a1
φ

(
r − ea1 − a0

ση

)
< 0

⇒

(
Di − F̄C

σfc

)
>

(
D

′

i − F̄C

σfc

)

Therefore, from the later inequality and equations (21) it is directly shown that:

∑

i

mi

(
Φ

(
Di − F̄C

σfc

)[
1− Φ

(
r − eia1i − a0i

ση

)]
− Φ

(
D

′

i − F̄C

σfc

)[
1− Φ

(
r′ − e

′

ia1i − a0i

ση

)])
= 0

⇒
∑

i

mi

([
1− Φ

(
r − eia1i − a0i

ση

)]
−

[
1− Φ

(
r′ − e

′

ia1i − a0i

ση

)])
< 0

⇒
∑

i

mi

(
Φ

(
r′ − e

′

ia1i − a0i

ση

)
−Φ

(
r − eia1i − a0i

ση

))
< 0

where this last inequality contradicts that ∀r′ > r, i : Φ
(
r′−e′ia1i−a0i

σε

)
−Φ

(
r−eia1i−a0i

σε

)
> 0 �

Step 2:

I prove this inequality in two steps. First, I prove it for those r where the effort decision is
continuous. Then, I show the inequality when the effort decision is not continuous in r.

64The value function for those who do not take the college admissions test does not depend on r.
65Here, I am assuming that effort is continuous in r (if that is the case, the value function is differentiable),

but in the step 2 I also show that Π1(r) > Π1(r
′) when effort is not continuous in r.
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Case 1: effort decision is continuous in r:

Taking a derivative of the first order condition (10), when N = 2 implies:66

θ1(R2 −R1)
∂φ(r)

∂r

[
1− ∂e

∂r
a1

ση

]
a1

ση
=

∂e

∂r
⇒

∂e

∂r
=

θ1(R2 −R1)
∂φ(r)
∂r

a1
σ2
η

1 + θ1(R2 −R1)
∂φ(r)
∂r

(
a1
ση

)2

⇒ 1−
∂e

∂r
a1 =

1

1 + θ1(R2 −R1)
∂φ(r)
∂r

(
a1
ση

)2 (22)

Therefore,

∂Φ
(
r−ea1−a0

ση

)

∂r
= φ

(
r − ea1 − a0

ση

)(
1−

∂e

∂r
a1

)
1

ση
=

φ
(
r−ea1−a0

ση

)
1
ση

1 + θ1(R2 −R1)
∂φ(r)
∂r

(
a1
ση

)2

So, to get the desired result, it is enough showing that 1+ θ1(R2−R1)
∂φ(r)
∂r

(
a1
ση

)2
> 0. In fact,

this inequality is ensured by the second order condition:67

−θ1(R2 −R1)
∂φ(r)

∂r

(
a1

ση

)2

− 1 < 0

Therefore, it follows that
∂Φ

(

r−ea1−a0
ση

)

∂r
> 0. �

Case 2: effort decision is discontinuous in r:68

Without loss of generality, assume there are two different effort decisions which are optimal at

r (eh > el). Defining Πx = θ1(R1−R2)Φ
(
r−exa1−a0

ση

)
+ θ1R2+ θ2(b0+ b1ex)−

e2x
2 , x = l, h (the

value function for each local equilibrium) and applying the envelope theorem imply:

∂Πl

∂r
−

∂Πh

∂r
=

θ1(R2 −R1)

ση

[
φ

(
r − ela1 − a0

ση

)
− φ

(
r − eha1 − a0

ση

)]
(23)

Moreover, from the first order conditions it is directly shown that:

66For simplicity, I suppress the individual sub-index and denote φ
(

r−ea1−a0

ση

)
as φ(r).

67I am assuming away −θ1(R2 −R1)
∂φ(r)
∂r

(
a1

ση

)2
− 1 = 0.

68Given that the discontinuity is possible only for those who take the college admissions test, for this proof I
assume away the possibility of not taking the college admissions test.
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eh − el =
a1θ1(R2 −R1)

ση

[
φ

(
r − ela1 − a0

ση

)
− φ

(
r − eha1 − a0

ση

)]

⇒
∂Πl

∂r
−

∂Πh

∂r
=

eh − el

ση
> 0 (24)

Therefore, by (24) I proved that increasing r leads to some jump in the global optimal effort
from high local optimal effort to low local optimal effort, which ensured that ∀r′ > r such

that the effort decision is not continuous at r for students type i, then Φ
(
r′−e′ia1i−a0i

ση

)
−

Φ
(
r−eia1i−a0i

ση

)
> 0. �

In the case where N > 2, as in this paper, it can be established that
∑N−1

n=1
∂Gm

∂rn
< 0 ∀m,

where Gm = Gm − rm. This result implies that if G(r) = 0 (i.e., r is an equilibrium), then
r′ = r(a+ 1) where a 6= 0, can not be an equilibrium.69 Loosely speaking, this means that if
there is an equilibrium denoted by r, the farther r′ departs from r the harder it is to have r′

as another equilibrium.

To prove the statement, I proceed in two steps.70 First, it is proved that
∑N−1

n=1
∂Gm

∂rn
<

−
∑

imiΦ
(
Di−FC

σfc

)
φi(rm)

ση

[
1− a1i

∑N−1
n=1

∂e1i
∂rn

]
.71 Second, I show that 1−a1i

∑N−1
n=1

∂e1i
∂rn

> 0 ∀i.

To get the first result, notice that:

∀n 6= m :
∂Gm

∂rn
=
∑

i

miΦ

(
Di − FC

σfc

)
[1− φi(rm)]

∂Di

∂rn

1

σfc
+
∑

i

miΦ

(
Di − FC

σfc

)
φi(rm)

∂e1i
∂rn

a1i

σfc

<
∑

i

miΦ

(
Di − FC

σfc

)
φi(rm)

∂e1i
∂rn

a1i

σfc

∂Gm

∂rm
=
∑

i

miΦ

(
Di − FC

σfc

)
[1− φi(rm)]

∂Di

∂rm

1

σfc
−
∑

i

miΦ

(
Di − FC

σfc

)
φi(rm)

σfc

[
1−

∂e1i
∂rm

a1i

]

< −
∑

i

miΦ

(
Di − FC

σfc

)
φi(rm)

σfc

[
1−

∂e1i
∂rm

a1i

]

where both inequalities are driven by the fact that ∂Di

∂rm
< 0. From these two inequalities it

follows the first result:

69It would be better to show that this is true even when the increase (or decrease) is not proportional across
score cutoffs. Such a result is not established in this paper. Moreover, I am not sure about the veracity of the
statement.

70For simplicity the result is shown for the case where G is continuous.
71φi(rm) = φ

(
rm−e1i a1i−a0i

ση

)
.
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N−1∑

n=1

∂Gm

∂rn
< −

∑

i

miΦ

(
Di − FC

σfc

)
φi(rm)

σfc
+

N−1∑

n=1

∑

i

miΦ

(
Di − FC

σfc

)
φi(rm)

∂e1i
∂rn

a1i

σfc

= −
∑

i

miΦ

(
Di − FC

σfc

)
φi(rm)

σfc

[
1− a1i

N−1∑

n=1

∂e1i
∂rn

]

To establish the second result, I begin taking the derivative to the first order condition for
those who decide taking the college admissions test. When that is done, I get:

∂e1i
∂rm

= θ1

N−1∑

n=1

(Rn+1 −Rn)

(
rn − e1i a1i − a0i

ση

)
φi(rn)

(
a1i

ση

)2
∂e1i
∂rm

−

θ1(Rm+1 −Rm)

(
rm − e1i a1i − a0i

ση

)
φi(rm)

a1i

σ2
η

=
−θ1(Rm+1 −Rm)

(
rm−e1i a1i−a0i

ση

)
φi(rm)a1i

σ2
η

1− θ1
∑N−1

n=1 (Rn+1 −Rn)
(
rn−e1i a1i−a0i

ση

)
φi(rn)

(
a1i
ση

)2

⇒ 1− a1i

N−1∑

n=1

∂e1i
∂rn

=
1

1− θ1
∑N−1

n=1 (Rn+1 −Rn)
(
rn−e1i a1i−a0i

ση

)
φi(rn)

(
a1i
ση

)2 > 0

where the inequality is because the denominator is positive, due to the second order condition
of student maximization. �
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B Variable Descriptions

Table 4: Variable Descriptions

Variable Description

Independent Variables

SEX Takes 1 if the students is male and 0 if is female.
EDU MO1 Takes 1 if there is no information about mother’s education (0 otherwise).
EDU MO2 Takes 1 if student’s mother has some courses at the primary education level or she does not have formal education (0 otherwise).
EDU MO3 Takes 1 if student’s mother finished primary education or she has some courses of secondary education (0 otherwise).
EDU MO4 Takes 1 if student’s mother finished secondary education (0 otherwise).
EDU MO5 Takes 1 if student’s mother had or finished technical post secondary education (0 otherwise).
EDU MO6 Takes 1 if student’s mother had some years or finished college education (0 otherwise).
EDU FAC Takes 1 if student’s father had some years or finished college education (0 otherwise).
DEP P1 Takes 1 if student’s primary school is public (0 otherwise).
DEP P2 Takes 1 if student’s primary school is private and subsidized by the government (0 otherwise).
DEP P3 Takes 1 if student’s primary school is private and not subsidized by the government (0 otherwise).
DEP S1 Takes 1 if student’s high school is public (0 otherwise).
DEP S2 Takes 1 if student’s high school is private and subsidized by the government (0 otherwise).
DEP S3 Takes 1 if student’s high school is private and not subsidized by the government (0 otherwise).
SES P1 Takes 1 if student’s primary school belongs to the first socio-economic group type (0 otherwise).
SES P2 Takes 1 if student’s primary school belongs to the second socio-economic group type (0 otherwise).
SES P3 Takes 1 if student’s primary school belongs to the third socio-economic group type (0 otherwise).
SES P4 Takes 1 if student’s primary school belongs to the forth socio-economic group type (0 otherwise).
SES P5 Takes 1 if student’s primary school belongs to the fifth socio-economic group type (0 otherwise).
SES P1 Takes 1 if student’s high school belongs to the first socio-economic group type (0 otherwise).
SES P2 Takes 1 if student’s high school belongs to the second socio-economic group type (0 otherwise).
SES P3 Takes 1 if student’s high school belongs to the third socio-economic group type (0 otherwise).
SES P4 Takes 1 if student’s high school belongs to the forth socio-economic group type (0 otherwise).
SES P5 Takes 1 if student’s high school belongs to the fifth socio-economic group type (0 otherwise).
RURAL P Takes 1 if student’s primary school is located in a rural area (0 otherwise).
RURAL S Takes 1 if student’s high school is located in a rural area (0 otherwise).
LENG CONT Is the proportion (reported by the students) of the 8th year verbal test’s contents that was covered in classes.
MATH CONT Is the proportion (reported by the students) of the 8th year math test’s contents that was covered in classes.
NAT CONT Is the proportion (reported by the students) of the 8th year natural science test’s contents that was covered in classes.
SOC CONT Is the proportion (reported by the students) of the 8th year social science test’s contents that was covered in classes.
Like math I like to study math: 1 (strongly agree), 2 (agree), 3 (disagree and strongly disagree).
Like spanish I like to study Spanish: 1 (strongly agree), 2 (agree), 3 (disagree and strongly disagree).

Primary Education Students’ Performance

SIMCE V P Verbal SIMCE at 8th primary grade.
SIMCE M P Math SIMCE at 8th primary grade.
SIMCE S P Social Science SIMCE at 8th primary grade.
SIMCE N P Natural Science SIMCE at 8th primary grade.
GPA P Grade point average at 8th primary grade.
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Variable Description

Secondary Education Students’ Performance

SIMCE V S Verbal SIMCE at 2nd secondary grade.
SIMCE M S Math SIMCE at 2nd secondary grade.
PSU M Math national test for college admission.
PSU V Verbal national test for college admission.
GPA S Grade point average at 2nd secondary grade.
TAKE PSU Takes 1 if the student takes the PSU test (0 otherwise).

Measures of Effort in Primary Education

ME1 When I study, I exert effort even if it is a difficult subject : 1 (always or almost always), 2 (often), 3 (occasionally)
and 4 (never or almost never).

ME2 When I study, I try hard to learn: 1 (always or almost always), 2 (often), 3 (occasionally) and 4 (never or almost never).
ME3 When I study and I am not getting something, I look for additional information: 1 (always or almost always), 2 (often), 3 (occasionally)

and 4 (never or almost never).
ATTEN P Percentage of attendance in 8th primary grade.
STUDY LENG How often the student studies Spanish: 1 (every or almost every day), 2 (some days a week), 3 (Just for exams),

and 4 (Never besides the study at class time).
STUDY MATH How often the student studies Math: 1 (every or almost every day), 2 (some days a week), 3 (Just for exams),

and 4 (Never besides the study at class time).
STUDY NAT How often the student studies Natural Science: 1 (every or almost every day), 2 (some days a week), 3 (Just for exams),

and 4 (Never besides the study at class time).
STUDY SOC How often the student studies Social Science: 1 (every or almost every day), 2 (some days a week), 3 (Just for exams),

and 4 (Never besides the study at class time).
Measures of Effort in Secondary Education

ATTEN S Percentage of attendance in 2nd secondary grade.
EFFORT P The student exerts effort and she (or he) is persistent.
use space How often does the student do homework in the space conditioned to study at home: 1 (never), 2 (rarely), 3 (frequently) and

4 (almost always).
use sb How often does the student read textbooks at home: 1 (never), 2 (rarely), 3 (frequently) and 4 (almost always).
use calc How often does the student use calculator to study at home: 1 (never), 2 (rarely), 3 (frequently) and 4 (almost always).

Measures of Learning Skills

MS1 I feel able to understand the harder subjects covered by the teachers: 1 (always or almost always), 2 (often), 3 (occasionally) and
4 (never or almost never).

MS2 I trust that I can do excellent homework and exams: 1 (always or almost always), 2 (often), 3 (occasionally) and 4 (never or almost
never).

MS2 If I set a goal about learning well something, I can do it : 1 (always or almost always), 2 (often), 3 (occasionally) and 4 (never
or almost never).

MS4 If I decide not to have poor marks, I really can avoid them: 1 (always or almost always), 2 (often), 3 (occasionally) and
4 (never or almost never).

MS5 When I study I lose the focus, because I am not good at studying : 1 (always or almost always), 2 (often), 3 (occasionally) and 4 (never
or almost never).

REP BI Takes 1 if the student has repeated at least one grade, 0 otherwise.
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Table 5: Independent Variables

Variable Mean Std. Dev. Min Max N
SEX 0.47 0.50 0 1 146319
EDU MO1 0.16 0.37 0 1 146319
EDU MO2 0.12 0.32 0 1 146319
EDU MO3 0.24 0.42 0 1 146319
EDU MO4 0.26 0.44 0 1 146319
EDU MO5 0.11 0.32 0 1 146319
EDU MO6 0.10 0.30 0 1 146319
EDU FAC 0.14 0.35 0 1 146319
DEP P1 0.49 0.50 0 1 146319
DEP P2 0.41 0.49 0 1 146319
DEP P3 0.10 0.29 0 1 146319
DEP S1 0.39 0.49 0 1 146319
DEP S2 0.52 0.50 0 1 146319
DEP S3 0.09 0.29 0 1 146319
SES P1 0.08 0.27 0 1 146319
SES P2 0.29 0.45 0 1 146319
SES P3 0.36 0.48 0 1 146319
SES P4 0.18 0.39 0 1 146319
SES P5 0.09 0.29 0 1 146319
SES S1 0.16 0.37 0 1 146319
SES S2 0.37 0.48 0 1 146319
SES S3 0.26 0.44 0 1 146319
SES S4 0.12 0.33 0 1 146319
SES S5 0.09 0.28 0 1 146319
RURAL P 0.11 0.31 0 1 146319
RURAL S 0.04 0.19 0 1 146319
LENG CONT 0.91 0.06 0.31 1 146304
MATH CONT 0.95 0.05 0.12 1 146318
NAT CONT 0.84 0.09 0.30 1 146318
SOC CONT 0.90 0.09 0.07 1 146318

Table 6: Primary Education Students’ Performance

Variable Mean Std. Dev. Min Max N
SIMCE M P 268.64 48.50 116 406 145236
SIMCE V P 267.56 48.34 96 392 145944
SIMCE N P 271.28 48.84 120 411 146177
SIMCE S P 265.98 47.60 113 387 145011
GPA P 5.87 0.52 4 7 146319
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Table 7: Secondary Education Students’ Performance

Variable Mean Std. Dev. Min Max N
SIMCE M S 268.59 62.68 93 427 146041
SIMCE V S 266.25 50.49 120 398 146083
PSU M 508.20 110.70 150 850 113946
PSU V 505.05 108.85 177 850 113946
TAKE PSU 0.78 0.42 0 1 113946
GPA S 537.39 100.93 208 826 146319

Table 8: Measures of Effort in Primary Education

Variable Mean Std. Dev. Min Max N
ME1 1.72 0.81 1 4 146319
ME2 2.08 1.00 1 4 146319
ME3 1.52 0.72 1 4 146319
ATTEN P 95.71 3.87 60 100 146319
STUDY LENG 2.60 0.72 1 4 146319
STUDY MATH 2.53 0.80 1 4 146319

Table 9: Measures of Effort in Secondary Education

Variable Mean Std. Dev. Min Max N
ATTEN S 93.78 3.86 71.5 100 146319
EFFORT P 0.27 0.44 0 1 137532
use calc 3.71 0.83 2 5 111366
use sb 4.02 0.79 2 5 114742
use space 4.18 0.82 2 5 92329

Table 10: Measures of Learning Skills

Variable Mean Std. Dev. Min Max N
MS1 1.89 0.81 1 4 145938
MS2 1.59 0.74 1 4 145768
MS3 1.33 0.59 1 4 145581
MS4 1.56 0.80 1 4 145261
REP 0.07 0.25 0 1 144128

The definition of SES (socio-economics groups) was made by the Ministry of Education using
cluster analysis and four variables: a) father’s years of education, b) mother’s years of education,
c) monthly family income (declared), and d) an index of vulnerability of the school.

To characterize student families I only use information of SIMCE 2006. This is because if I
had also used 2004 information I would have lost more data, since some parents do not answer
the questionnaire.
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C Identification

Step 1, final score’s expectation and variance:

Let Ti ∈ {PMi, PVi, GPAh
i }, it is direct that

Ti = βT
0 + xhi β

T
1 + βT

2 (Meh1i − xe1hi βe1h
1 ) + βT

3 (Mλ
p
1i − x

λ1p
i β

λ1p
1 )− (βT

2 ε
e1h
i + βT

3 ε
λ1p
i ) + εTi

Thus, defining δTi = εTi − (βT
2 ε

e1h
i + βT

3 ε
λ1p
i ), it is possible to construct the following moment

conditions:72 E[δTi |x
h
i ] = 0, E[δTi |x

e1h
i ] = 0, E[δTi |x

λ1p
i ] = 0, E[δTi |Meh2i] = 0 and E[δTi |Mλ

p
2i] =

0 from which βT , βe1h and βλ1p are identified.73 Therefore, {βpm, βpv, βgh} are identified.

Given that {βpm, βpv, βgh} are identified, it is trivial that {var(δpmi ), var(δpvi ), var(δghi )} are

also identified. Hence, to show the identification of {var(εpmi ), var(εpvi ), var(εghi )} notice that:

cov(Ti − βT
0 − xhi β

T
1 − βT

2 (Meh1i − xe1hi βe1h
1 )− βT

3 (Mλ
p
1i − x

λ1p
i β

λ1p
1 ),Meh1i − xe1hi βe1h

1 ) =

cov(εTi − (βT
2 ε

e1h
i + βT

3 ε
λ1p
i ), ehi + εe1hi ) = −βT

2 var(ε
e1h
i )

cov(Ti − βT
0 − xhi β

T
1 − βT

2 (Meh1i − xe1hi βe1h
1 )− βT

3 (Mλ
p
1i − x

λ1p
i β

λ1p
1 ),Mλ

p
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λ1p
i β

λ1p
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cov(εTi − (βT
2 ε

e1h
i + βT

3 ε
λ1p
i ), λp

i + ε
λ1p
i ) = −βT

3 var(ε
λ1p
i )

Which means that var(εe1hi ) and var(ελ1hi ) are identified, and consequently {var(εpmi ), var(εpvi ), var(εghi )}
are also identified.

Step 2, distribution of learning skills and high school student’s effort:

The nonparametric identification of f(λ) and f(eh|x) can be proved following an analysis similar
to Cunha and Heckman (2008). First, proceeding in a similar fashion as before, with two
measures for each latent variable, it is possible to identify {βsjp

0 , β
sjp
1 , β

sjp
2 , β

sjp
3 , β

e1p
1 } for any

j ∈ {verbal,math, natural science, social science}. Hence, defining ̂SIMCE
p

ji = (SIMCE
p
ji−

β
sjp
0 − x

p
i β

sjp
1 − β

sjp
2 (Me

p
1i − x

e1p
i β

e1p
1 )) 1

β
sjp
3

and ε̂
sjp
i = (εsjpi − β

sjp
2 ε

e1p
i ) 1

β
sjp
3

, it follows that:

̂SIMCE
p

ji = λi + ε̂
sjp
i

Mλ
p
ji − x

λ1p
i β

λ1p
1 = λi + ε

λ1p
i

72Because the effort decision is taken before the shocks’ realization, such a decision is independent
of the measurement errors, when Ti ∈ {PMi, PVi}: E[δTi |Meh2i,Mλ

p
2i, x

h
i , x

e1h
i , x

λ1p
i , TCATi = 1] =

E[δTi |Meh2i,Mλ
p
2i, x

h
i , x

e1h
i , x

λ1p
i ]. Thus the selection is not an issue for identification.

73This implies that all the parameters involved in a0i, a1i and b1i are identified.
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Therefore, because ε̂
sjp
i and ε

λ1p
i are independent of each other and with respect to λi, the

distribution of λ is identified (Cunha and Heckman (2008)).74

It is worth noting that, along the same lines, it is possible to prove the nonparametric identi-
fication of f(eh|x). This would allow another way to identify the utility parameters.

Step 3, parameters of the utility function:

Once the distribution of λ is identified, it is possible to identify the utility parameters.75 First,
notice that when TCATi = 0, then Meh1i − εe1hi = bi1θ2

⇒ E[Meh1i − εe1hi |TCATi = 0] = θ2E[b1i|TCATi = 0]

⇒ θ2 =
E[Meh1i|TCATi = 0]

E[b1i|TCATi = 0]

which ensures the identification of θ2.

Similarly, because TCATi = 1 implies that Meh1i = g(xi, a1i(λi), b1i, θ1, θ2, ση) + εe1hi , then76:

⇒ E[Meh1i|λi, xi, TCATi = 1] = E[g(xi, a1i(λi), b1i, θ1, θ2, ση)|λi, xi, TCATi = 1]

⇒

∫

λ

E[Meh1i|λ, xi, TCATi = 1]f(λ)dλ =

∫

λ

E[g(xi, a1i(λi), b1i, θ1, θ2, ση)|λ, xi, TCATi = 1]f(λ)dλ

which allows for the identification of θ1.

Finally, the identification of F̄C and σfc is trivial since

Pr(TCATi = 1|Di(λi, xi), F̄C, σfc) = Φ

(
Di(λi, xi)− F̄C

σfc

)

⇒

∫

λ

Pr(TCATi = 1|Di(λ, xi)F̄C, σfc)f(λ)dλ =

∫

λ

Φ

(
Di(λi, xi)− F̄C

σfc

)
f(λ)dλ.

74The identification can be achieved under much weaker conditions regarding measurement errors. Indeed,
independence is not necessary; see Cunha, Heckman, and Schennach (2010).

75Here I show the identification when the utility parameters are not individual specific, but the extension is
trivial.

76g(xi, a1i(λi), b1i, θ1, θ2, ση) is the implicit function associated with the first order condition (10).
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D Likelihood

Let Ti = βT
0 + xhi β

T
1 + ehi β

T
2 + λiβ

T
3 + εTi , such that

Ti ∈ {PSUMi, PSUVi, GPAh
i , SIMCEh

math,i, SIMCEh
verbal,i}.

Given that conditional on λi, x
h
i and ehi , the εi are independent across tests, the contribution

of the individual i’s test to the likelihood is given by:

If Ti ∈ {PSUMi, PSUVi}:

f(Ti|x
h
i , e

h
i , λt,Ω) =

[
φ

(
Ti − βT

0 − xhi β
T
1 − e1hi βT

2 − λtβ
T
3

σεT

)
1

σεT

]
if TCATi = 1

Pr(TCAT |xhi , e
h
i , λt,Ω) = Φ

(
Di − F̄C

σfc

)TCATi
(
1− Φ

(
Di − F̄C

σfc

))1−TCATi

(25)

If Ti ∈ {GPAh
i , SIMCEh

math,i, SIMCEh
verbal,i}:

f(Ti|x
h
i , TCATi, e

h
i , λt,Ω) =

[
φ

(
Ti − βT

0 − xhi β
T
1 − e1hi βT

2 − λtβ
T
3

σεT

)
1

σεT

]TCATi
[
φ

(
Ti − βT

0 − xhi β
T
1 − e0hi βT

2 − λtβ
T
3

σεT

)
1

σεT

]1−TCATi

Fi(high school tests | Typeλ = t) =
∏

Ti

f(Ti|x
h
i , e

h
i , λt,Ω) (26)

Similarly, the contributions to the likelihood of high school effort measures are described by:77

f(Mehji|x
ejh
i ,ehi , TCATi,Ω) =

[
φ

(
Mehji − x

ejh
i β

ejh
1 − e1hi αejh

σεejh

)
1

σεejh

]TCATi

[
φ

(
Mehji − x

ejh
i β

ejh
1 − e0hi αejp

σεejh

)
1

σεejh

]1−TCATi

, j ∈ {1, ..., Jeh}

77Here for simplicity the effort measurements are assumed to be continuous, but in the estimation I use ordered
probit specifications.
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Fi(high school effort measures) =
∏

j

f(Mehji|x
ejh
i , ehi , TCATi,Ω) (27)

Along the same lines, the contributions to the likelihood of the unobserved learning skill mea-
sures are described by:78

f(Mλ
p
ji|x

λjp
i , λt,Ω) = φ

(
Mλ

p
ji − x

λjp
i β

λjp
1 − λtα

λjp

εejh

)
1

σεejh
, j ∈ {1, ..., Jλ}

Fi(learning skill measures | Typeλ = t) =
∏

j

f(Mλ
p
ji|x

λjp
i , λt,Ω) (28)

Let Ti = βT
0 + xhi β

T
1 + e

p
i β

T
2 + λiβ

T
3 + εTi , such that

Ti ∈ {GPA
p
i , SIMCE

p
math,i, SIMCE

p
verbal,i, SIMCE

p
socialscience,i, SIMCE

p
naturalscience,i}.

Given that, conditional on λi, x
h
i and ehi , the εi are independent across tests, the contribution

to the likelihood is given by79:

f(Ti|x
p
i , e

p
i , λt,Ω) = φ

(
Ti − βT

0 − xhi β
T
1 − (M̂e

p

1i − x
e1p
i β

e1p
1 )βT

2 + λtβ
T
3

σεT

)
1

σωT

Fi(primary school tests | Typeλ = t) =
∏

Ti

f(Ti|x
p
i , e

p
i , λt,Ω) (29)

Therefore, the likelihood contribution for the ith individual is thus:

Li(Ω) = log

(∑

t

Fi(high school tests | Typeλ = t) Fi(high school effort measures | Typeλ = t)

Fi(learning skill measures | Typeλ = t) Fi(primary school tests | Typeλ = t) πt

)

(30)

78Again, these measures are assumed to be continuous, but in the estimation I use ordered probit specifications.
79M̂e

p

1i = δ̂1 +
∑Jep

m=2 Me
p
miδ̂m and ωT

i = εTi − ε
e1p
i βT

2 , where the δ̂s are the OLS coefficients.
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E Results

E.1 First satge parameters

Table 11: Primary School Attending Regression
(output: ATTEN P hat)

(1)
VARIABLES ATTEN P

ME1==2 -0.133***
(0.0256)

ME1==3 -0.214***
(0.0360)

ME1==4 -0.218***
(0.0787)

ME2==2 0.0586**
(0.0258)

ME2==3 0.115***
(0.0284)

ME2==4 0.124***
(0.0393)

ME3==2 -0.0500*
(0.0263)

ME3==3 -0.123***
(0.0422)

ME3==4 -0.280***
(0.107)

STUDY LENG==2 0.0140
(0.0473)

STUDY LENG==3 -0.0481
(0.0497)

STUDY LENG==4 -0.380***
(0.0672)

STUDY MATH==2 0.0277
(0.0405)

STUDY MATH==3 -0.0286
(0.0432)

STUDY MATH==4 -0.0208
(0.0573)

Constant 95.82***
(0.0435)

Observations 146,319
R-squared 0.002
F statistic 16.99

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Some variables are omited due to perfect multicolinearity.

Table 12: Repetitions Linear Probability Re-
gression (output: REP hat)

(1)
VARIABLES REP BI

MS1==2 0.00174
(0.00154)

MS1==3 0.0290***
(0.00224)

MS1==4 0.0307***
(0.00581)

MS2==2 0.00425**
(0.00166)

MS2==3 0.0212***
(0.00283)

MS2==4 0.0287***
(0.00947)

MS3==2 0.00502**
(0.00196)

MS3==3 0.0172***
(0.00404)

MS3==4 0.0183
(0.0132)

MS4==2 0.000835
(0.00166)

MS4==3 0.0142***
(0.00300)

MS4==4 0.00883**
(0.00416)

Constant 0.0532***
(0.00107)

Observations 141,916
R-squared 0.006
F statistic 58.09

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Some variables are omited due to perfect multicolinearity.
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Table 13: Secondary School Attending Regression (output: ATTEN S hat)

(1)
VARIABLES ATTEN S

EFFORT P 0.152***
(0.0278)

use space==3 0.111
(0.0819)

use space==4 0.371***
(0.0791)

use space==5 0.498***
(0.0798)

use sb==2 -0.635***
(0.102)

use sb==3 -0.353***
(0.0397)

use sb==4 -0.0721**
(0.0312)

use calc==3 0.376***
(0.0771)

use calc==4 0.837***
(0.0778)

use calc==5 0.873***
(0.0803)

Constant 93.14***
(0.105)

Observations 83,366
R-squared 0.013
F statistic 103.2

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Some variables are omited due to perfect multicolinearity.
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Table 14: Two Stage Least Square for Primary Education Students’ Performance

(1) (2) (3) (4) (5)
simcev simcem simcen simces gpap

VARIABLES SIMCE V P SIMCE M P SIMCE N P SIMCE S P GPA P

SEX -8.655*** 9.499*** 9.414*** 9.565*** -0.164***
(0.232) (0.222) (0.228) (0.230) (0.00258)

RURAL P 1.562*** 1.439*** 3.548*** 2.933*** 0.0627***
(0.463) (0.449) (0.434) (0.459) (0.00529)

SES P2 1.055** -0.880* 0.0666 0.626 -0.0681***
(0.529) (0.513) (0.488) (0.526) (0.00605)

SES P3 10.99*** 8.463*** 9.793*** 11.44*** -0.0697***
(0.581) (0.559) (0.536) (0.573) (0.00652)

SES P4 28.05*** 28.06*** 29.29*** 30.13*** -0.0390***
(0.653) (0.634) (0.615) (0.643) (0.00724)

SES P5 42.33*** 48.86*** 46.75*** 42.92*** 0.0632***
(1.040) (1.016) (1.044) (1.007) (0.0114)

EDU MO2 -6.537*** -5.747*** -6.131*** -5.259*** -0.0186***
(0.454) (0.430) (0.431) (0.447) (0.00512)

EDU MO3 -1.687*** -1.345*** -2.424*** -1.734*** 0.0456***
(0.380) (0.359) (0.367) (0.374) (0.00424)

EDU MO4 6.452*** 5.097*** 5.362*** 6.826*** 0.138***
(0.374) (0.355) (0.366) (0.368) (0.00414)

EDU MO5 9.035*** 7.438*** 8.870*** 10.36*** 0.146***
(0.467) (0.452) (0.469) (0.462) (0.00517)

EDU MO6 14.68*** 14.04*** 16.16*** 16.51*** 0.209***
(0.526) (0.508) (0.529) (0.519) (0.00585)

EDU FAC 6.646*** 7.574*** 8.040*** 6.743*** 0.0583***
(0.410) (0.401) (0.420) (0.407) (0.00455)

DEP P2 1.392*** 0.733*** 2.320*** 2.267*** -0.103***
(0.289) (0.276) (0.283) (0.287) (0.00318)

DEP P3 -0.515 -1.043 1.070 -2.413*** -0.136***
(0.851) (0.830) (0.882) (0.822) (0.00923)

ATTEN P hat -6.594*** -13.26*** -8.170*** -7.535*** 0.262***
(0.751) (0.711) (0.748) (0.732) (0.00813)

REP hat -347.8*** -430.5*** -360.9*** -379.0*** -6.906***
(5.985) (5.640) (5.874) (5.837) (0.0652)

LENG CONT 77.31***
(2.009)

MATH CONT 168.1***
(2.775)

NAT CONT 69.81***
(1.258)

SOC CONT 37.98***
(1.248)

Constant 838.8*** 1,387*** 997.0*** 955.6*** -18.65***
(71.99) (68.18) (71.72) (70.25) (0.780)

Observations 143,646 142,964 143,889 142,747 144,028
R-squared 0.202 0.278 0.247 0.201 0.143

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 15: Two Stage Least Square for Secondary Education Students’ Performance

(1) (2) (3) (4) (5)
simcev simcem psum psuv gpas

VARIABLES SIMCE V S SIMCE M S PSU M PSU V GPA S

SEX -7.136*** 11.66*** 23.28*** 3.641*** -28.31***
(0.271) (0.322) (0.579) (0.594) (0.572)

RURAL S -3.703*** -5.968*** -12.84*** -12.15*** -0.624
(0.763) (0.927) (1.768) (1.869) (1.650)

SES S2 10.02*** 13.94*** 22.80*** 24.38*** -4.249***
(0.443) (0.530) (1.058) (1.091) (0.935)

SES S3 29.05*** 39.20*** 82.08*** 77.91*** 11.86***
(0.506) (0.603) (1.142) (1.178) (1.078)

SES S4 44.82*** 65.23*** 134.3*** 122.1*** 30.27***
(0.635) (0.750) (1.357) (1.420) (1.339)

SES S5 53.15*** 79.01*** 166.9*** 151.2*** 57.56***
(1.289) (1.443) (2.538) (2.630) (2.818)

EDU MO2 -4.213*** 0.235 -1.655 -9.321*** 16.25***
(1.456) (1.737) (3.323) (3.430) (2.888)

EDU MO3 -0.757 4.018** 2.099 -4.819 14.84***
(1.430) (1.704) (3.238) (3.348) (2.830)

EDU MO4 6.147*** 11.08*** 15.17*** 10.40*** 24.08***
(1.427) (1.699) (3.221) (3.329) (2.824)

EDU MO5 9.046*** 13.78*** 20.05*** 18.37*** 26.28***
(1.459) (1.734) (3.271) (3.381) (2.899)

EDU MO6 16.54*** 21.63*** 37.82*** 37.63*** 43.86***
(1.482) (1.760) (3.310) (3.421) (2.959)

EDU FAC 6.973*** 9.051*** 20.59*** 20.08*** 16.39***
(0.451) (0.528) (0.880) (0.913) (0.975)

DEP S2 -2.134*** -2.407*** -14.71*** -11.13*** -13.03***
(0.315) (0.378) (0.693) (0.710) (0.657)

DEP S3 -1.673 -0.909 -1.440 -1.454 -9.691***
(1.167) (1.298) (2.256) (2.316) (2.555)

ATTEN S hat 3.817*** 4.724*** 11.52*** 10.54*** 26.94***
(0.296) (0.356) (0.641) (0.657) (0.614)

REP hat -316.3*** -462.2*** -736.7*** -675.2*** -971.5***
(6.754) (8.013) (14.32) (14.95) (13.58)

Constant -90.85*** -185.4*** -611.9*** -512.2*** -1,936***
(27.87) (33.50) (60.30) (61.84) (57.73)

Observations 107,632 107,613 86,817 86,817 107,766
R-squared 0.239 0.303 0.426 0.374 0.166

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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E.2 Second stage parameters

Table 16: Second Stage Parameters

Utility
θ1 0.0000139 (0.0000008) θ23 0.00306 ( 0.00018) F̄C 0.0000001 (0.0050620)
θ2 3.6468447 (0.1390378) θ33 -0.00075 ( 0.00011) σfc 4.1806149 (0.2548031)
θ13 0.0008679 (0.0001100) θ43 -0.00099 ( 0.00016)

Production function of tests

β
smp
λ

-474.1999 ( 6.0361) βsvh
e 3.9462 ( 0.6749) β

pv
const -475.8645 (123.3146)

β
svp
λ -423.4805 ( 5.9159) βsvh

λ -584.0101 ( 8.1491) β
gh
e 25.5289 ( 0.9754)

β
snp
λ -8.1700 ( 0.0000) βsvh

const -83.4840 ( 63.3909) β
gh
λ -1049.5653 ( 12.1455)

β
ssp
λ

-7.5346 ( 0.0000) β
pm
e 11.2758 ( 1.3678) β

gh
const -1792.2654 ( 91.5724)

β
gp
λ

-6.5496 ( 0.0767) β
pm
λ

-1183.4871 ( 14.9213) σpm 56.3147 ( 0.1301)
βsmh
e 4.8272 ( 0.8289) β

pm
const -563.7606 (128.6623) σpv 53.5401 ( 0.1403)

βsmh
λ -714.3026 ( 9.9824) β

pv
e 10.5432 ( 1.3109) σgh 70.5981 ( 0.1610)

βsmh
const -176.2544 ( 77.8534) β

pv
λ

-1293.8195 ( 15.5825)
Measures of student effort at high school

αe(effort p) 0.1099 ( 0.0076) Cut2sb 3.1656 ( 0.8147) Cut3sp 4.7551 ( 0.9201)

αconst(effort p) -10.9229 ( 0.7171) Cut3sb 4.3483 ( 0.8149) βeh
ca (effort) 0.0388 ( 0.0084)

σatten 3.8072 ( 0.0073) βeh
sp (effort) 0.0466 ( 0.0098) βeh

ca (ses s2) 0.0002 ( 0.0103)

βeh
sb (effort) 0.0408 ( 0.0087) βeh

sp (ses s2) 0.0520 ( 0.0128) βeh
ca (ses s3) 0.0602 ( 0.0117)

βeh
sb (ses s2) -0.0650 ( 0.0108) βeh

sp (ses s3) 0.1168 ( 0.0142) βeh
ca (ses s4) 0.2092 ( 0.0150)

βeh
sb (ses s3) -0.0994 ( 0.0123) βeh

sp (ses s4) 0.2183 ( 0.0173) βeh
ca (ses s5) 0.2941 ( 0.0185)

βeh
sb (ses s4) -0.0287 ( 0.0155) βeh

sp (ses s5) 0.3943 ( 0.0205) βeh
ca (edu fac) 0.0447 ( 0.0115)

βeh
sb (ses s5) 0.3718 ( 0.0190) βeh

sp (edu fac) 0.1128 ( 0.0123) Cut1ca 1.9459 ( 0.7840)

βeh
sb (edu fac) 0.0837 ( 0.0116) Cut1sp 2.6673 ( 0.9198) Cut2ca 3.5939 ( 0.7843)

Cut1sb 1.8099 ( 0.8143) Cut2sp 3.6418 ( 0.9199) Cut3ca 4.5660 ( 0.7843)

Measures and distribution of the learning skill

αλ
ms1 5.6102 ( 0.0883) αλ

ms3 4.4054 ( 0.0953) λ(Type1) 0.0001 (0.000017)
Cut1ms1 0.0402 ( 0.0063) Cut1ms3 0.9588 ( 0.0077) λ(Type2) 0.0561 ( 0.0006)
Cut2ms1 1.1359 ( 0.0070) Cut2ms3 1.9305 ( 0.0094) λ(Type3) 0.1078 ( 0.0011)
Cut3ms1 2.4898 ( 0.0098) Cut3ms3 0.9588 ( 0.0077) λ(Type4) 0.1620 ( 0.0016)
αλ
ms2 4.2743 ( 0.0888) αλ

ms4 3.8976 ( 0.0827) π1 0.2375 ( 0.0158)
Cut1ms2 0.4338 ( 0.0070) Cut1ms4 0.5333 ( 0.0066) π2 0.3364 ( 0.0160)
Cut2ms2 1.4490 ( 0.0081) Cut2ms4 1.4438 ( 0.0074) π3 0.3169 ( 0.0156)
Cut3ms2 2.6893 ( 0.0128) Cut3ms4 2.1435 ( 0.0084) π4 0.1092
The estimated parameters for the unobserved types probabilities are: p1, p2 and p3, where π1 = p1

p1+p2+p3+1
. The reported (SEi) refers to pi.
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E.3 Model fit

Table 17: Model fit by different groups

PSU math PSU verbal GPA
Model Data Model Data Model Data

All 508 508 505 505 537 538
Female 494 496 500 502 550 550
Male 525 522 511 509 523 523
SES 1 423 418 422 417 516 506
SES 2 452 453 453 454 517 511
SES 3 517 528 515 526 542 548
SES 4 581 590 573 581 570 582
SES 5 640 638 626 623 611 619
F wo college 490 490 488 488 529 528
F w college 597 602 589 592 591 599
Public 475 476 472 474 530 528
Private Sub 503 503 502 502 530 531
Private non Sub 637 635 622 621 607 616

Figure 7: Tests 2006
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Figure 8: Tests 2004

(a) Simce math 2004
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(b) Simce verbal 2004
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(c) Simce natural science 2004
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(d) Simce social science 2004
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(e) GPA 2004
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Figure 9: Fraction of the students taking the PSU by groups

(a) By gender
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(c) By mother’s education
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(d) By father’s education
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E.4 Unobserved types

Figure 10: Conditional probabilities of learning skill types by groups

(a) All and by gender
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F Counterfactual experiments

Figure 11: Impact of introducing quotas by SES on universities’ socioeconomic composition

(a) SES = 1
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Figure 12: Impact of changing GPA weight from 0.4 to 0.5 on universities’ socioeconomic
composition

(a) SES = 1
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Figure 13: Impact of changing GPA weight from 0.4 to 0.7 on universities’ socioeconomic
composition

(a) SES = 1
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(c) SES = 3
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Figure 14: The impact on effort of quota by SES

(a) Densities
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Note: ({Yes,No},{Yes,No}) stands for (Whether the students were taking the PSU in baseline scenario,Whether the students are taking the
PSU in counterfactual scenario).

Figure 15: The impact on effort of changing GPA weight
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Figure 16: Impact of Quota system on tests by SES and universities
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Note: ({Yes,No},{Yes,No}) stands for (Whether the students were taking the PSU in baseline scenario,Whether the students are taking the
PSU in counterfactual scenario).
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Figure 17: Impact of SES-Quota system on who is taking the PSU

(a) Change in the fraction of student taking the PSU by
SES
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Figure 18: Impact of changing GPA weight on who is taking the PSU
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Figure 19: The impact on final-score cutoff and college admission of introducing SES-Quota
system, with and without endogenous effort

(a) Final-score cutoff
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Figure 20: The impact on final-score cutoff of changing the GPA weight, with and without
endogenous effort
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Figure 21: The impact of changing the GPA weight on university admission, with and without
endogenous effort
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