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Abstract

Many violations of the Independence axiom of Expected Utility can be
traced to subjects’ attraction to risk-free prospects. Negative Certainty In-
dependence, the key axiom in this paper, formalizes this tendency. Our main
result is a utility representation of all preferences over monetary lotteries that
satisfy Negative Certainty Independence together with basic rationality postu-
lates. Such preferences can be represented as if the agent were unsure of how
risk averse to be when evaluating a lottery p; instead, she has in mind a set of
possible utility functions over outcomes and displays a cautious behavior: she
computes the certainty equivalent of p with respect to each possible function in
the set and picks the smallest one. The set of utilities is unique in a well-defined
sense. We show that our representation can also be derived from a ‘cautious’
completion of an incomplete preference relation.
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1 Introduction

Despite its ubiquitous presence in economic analysis, the paradigm of Expected Utility

is often violated in choices between risky prospects. While such violations have been

documented in many different experiments, one preference pattern emerges as one of

the most prominent: the tendency of people to favor certain (risk-free) options– the

so-called Certainty Effect. This is shown, for example, in the classic Common Ratio

Effect, one of the Allais paradoxes, in which subjects face the following two choice

problems:

1. A choice between A and B, where A is a degenerate lottery which yields $3000

for sure and B is a lottery that yields $4000 with probability 0.8 and $0 with

probability 0.2.

2. A choice between C and D, where C is a lottery that yields $3000 with prob-

ability 0.25 and $0 with probability 0.75, and D is a lottery that yields $4000

with probability 0.2 and $0 with probability 0.8.

The typical result is that the large majority of subjects tend to choose A in

problem 1 and D in problem 2,1 in violation of Expected Utility and in particular

of its key postulate, the Independence axiom. To see this, note that prospects C

and D are the 0.25:0.75 mixture of prospects A and B, respectively, with the lottery

that gives the prize $0 for sure. This means that the only pairs of choices consistent

with Expected Utility are (A,C) and (B,D). Additional evidence of the Certainty

Effect includes, among many others, Allais’ Common Consequence Effect, as well

as the experiments of Cohen and Jaffray (1988), Conlisk (1989), Dean and Ortoleva

(2012b), and Andreoni and Sprenger (2012).2

Following these observations, Dillenberger (2010) suggests a way to define the

Certainty Effect behaviorally, by introducing an axiom, called Negative Certainty

Independence (NCI), that is designed precisely to capture this tendency. To illustrate,

note that in the example above, prospect A is a risk-free option and it is chosen by

most subjects over the risky prospect B. However, once both options are mixed,

1This example is taken from Kahneman and Tversky (1979). Of 95 subjects, 80% choose A over
B, 65% choose D over C, and more than half choose the pair A and D. These findings have been
replicated many times (see footnote 2).

2A comprehensive reference to the evidence on the Certainty Effect can be found in Peter Wakker’s
annotated bibliography, posted at http://people.few.eur.nl/wakker/refs/webrfrncs.doc.
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leading to problem 2, the first option is no longer risk-free, and its mixture (C) is

now judged worse than the mixture of the other option (D). Intuitively, after the

mixture one of the options is no longer risk-free, which reduces its appeal. Following

this intuition, axiom NCI states that for any two lotteries p and q, any number λ in

[0, 1], and any lottery δx that yields the prize x for sure, if p is preferred to δx then

λp + (1− λ) q is preferred to λδx + (1− λ) q. That is, if the sure outcome x is not

enough to compensate the decision maker (henceforth DM) for the risky prospect

p, then mixing it with any other lottery, thus eliminating its certainty appeal, will

not result in the mixture of δx being more attractive than the corresponding mixture

of p. NCI is weaker than the Independence axiom, and in particular it permits

Independence to fail when the Certainty Effect is present – allowing the DM to favor

certainty, but ruling out the converse behavior. For example, in the context of the

Common Ratio questions above, NCI allows the typical choice (A,D), but is not

compatible with the opposite violation of Independence, (B,C). It is easy to see how

such property is also satisfied in most other experiments that document the Certainty

Effect.

The goal of this paper is to characterize the class of continuous, monotone, and

complete preference relations, defined on lotteries over some interval of monetary

prizes, that satisfy NCI. That is, we aim to characterize a new class of preferences

that are consistent with the Certainty Effect, together with very basic rationality

postulates. A characterization of all preferences that satisfy NCI could be useful

for a number of reasons. First, it provides a way of categorizing some of the existing

decision models that can accommodate the Certainty Effect (see Section 6 for details).

Second, a representation for a very general class of preferences that allow for the

Certainty Effect can help to delimit the potential consequences of such violations of

Expected Utility. For example, a statement that a certain type of strategic or market

outcomes is not possible for any preference relation satisfying NCI would be easier to

obtain given a representation theorem. Lastly, as shown in Dillenberger (2010) and

further discussed in Section 2.2, NCI is linked not only to the Certainty Effect, but also

to behavioral patterns in dynamic settings, such as preferences for one-shot resolution

of uncertainty. Hence, characterization of this class will have direct implications also

in different domains of choice.

Our main result is that any continuous, monotone, and complete preference re-

lation over monetary lotteries satisfies NCI if and only if it can be represented as
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follows: There exists a set W of strictly increasing (Bernoulli) utility functions over

outcomes, such that the value of any lottery p is given by

V (p) = inf
v∈W

v−1 (Ep (v)) ,

where v−1 (Ep (v)) is the certainty equivalent of lottery p calculated using the utility

function v.

We call this representation a Cautious Expected Utility representation and inter-

pret it as follows. While the DM takes probabilities at face value, she is unsure about

how risk averse to be: she does not have one, but a set of possible utility functions

over monetary outcomes, each of which entails a different risk attitude. She then re-

acts to this multiplicity using a form of caution: she evaluates each lottery according

to the lowest possible certainty equivalent corresponding to some function in the set.3

The use of certainty equivalents allows the DM to compare different evaluations of

the same lottery, each corresponding to a different utility function, by bringing them

to the same “scale” – dollar amounts. Note that, by definition, v−1 (Eδx (v)) = x

for all v ∈ W . Therefore, while the DM acts with caution when evaluating general

lotteries, such caution does not play a role when evaluating degenerate ones. This

leads to the Certainty Effect.

While the representation theorem discussed above characterizes a complete pref-

erence relation, the interpretation of Cautious Expected Utility is linked with the

notion of a completion of incomplete preference relations. Consider a DM who has

an incomplete preference relation over lotteries, which is well-behaved (that is, a re-

flexive, transitive, monotone, continuous binary relation that satisfies Independence).

Suppose that the DM is asked to choose between two options that the original pref-

erence relation is unable to compare; she then needs to choose a rule to complete her

ranking. While there are many ways to do so, the DM may like to follow what we

call a Cautious Completion: if the original incomplete preference relation is unable

to compare a lottery p with a degenerate lottery δx, then in the completion the DM

opts for the latter – “when in doubt, go with certainty.”4 The questions we ask are (i)

are Cautious Completions possible? and (ii) what properties do they have? Theorem

3As we discuss in more detail in Section 6, this interpretation of cautious behavior is also provided
in Cerreia-Vioglio (2009).

4We also require the completion of the original preference relation to be transitive, monotone,
and to admit certainty equivalents.
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6 shows that not only Cautious Completions are always possible, but that they are

unique, and that they admit a Cautious Expected Utility representation.5 That is,

we show that Cautious Completions must generate preferences that satisfy NCI –

leading to another way to interpret this property.

The remainder of the paper is organized as follows. Section 2 presents the ax-

iomatic structure, states the main representation theorem, and discusses the unique-

ness properties of the representation. Section 3 characterizes risk attitude and com-

parative risk aversion. Section 4 presents the result on the completion of incomplete

preference relations. Section 5 studies the class of preference relations that, in ad-

dition to our axioms, also satisfy the Betweenness axiom, for which we provide an

explicit characterization (as opposed to the implicit one suggested in the literature).

Section 6 discusses the related literature. All proofs appear in the Appendices.

2 The Model

2.1 Framework

Consider a compact interval [w, b] ⊂ R of monetary prizes. Let ∆ be the set of

lotteries (Borel probability measures) over [w, b], endowed with the topology of weak

convergence. We denote by x, y, z generic elements of [w, b] and by p, q, r generic

elements of ∆. We denote by δx ∈ ∆ the degenerate lottery (Dirac measure at x)

that gives the prize x ∈ [w, b] with certainty. The primitive of our analysis is a binary

relation < over ∆. The symmetric and asymmetric parts of < are denoted by ∼ and

�, respectively. The certainty equivalent of a lottery p ∈ ∆ is a prize xp ∈ [w, b] such

that δxp ∼ p.

We start by imposing the following basic axioms on <.

Axiom 1 (Weak Order). The relation < is complete and transitive.

Axiom 2 (Continuity). For each q ∈ ∆, the sets {p ∈ ∆ : p < q} and {p ∈ ∆ : q < p}
are closed.

Axiom 3 (Weak Monotonicity). For each x, y ∈ [w, b], x ≥ y if and only if δx < δy.

5In fact, we will show that they admit a Cautious Expected Utility representation with the same
set of utilities that can be used to represent the original incomplete preference relation (in the sense
of the Expected Multi-Utility representation of Dubra et al. (2004)).
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The three axioms above are standard postulates. Weak Order is a common as-

sumption of rationality. Continuity is a technical assumption, needed to represent

< through a utility function. Finally, under the interpretation of ∆ as monetary

lotteries, Weak Monotonicity simply implies that more money is better than less.

2.2 Negative Certainty Independence (NCI)

We now discuss the axiom which is the core assumption of our work. As we have previ-

ously mentioned, a bulk of evidence against Expected Utility arises from experiments

in which one of the lotteries is degenerate, that is, yields a certain prize for sure. For

example, recall Allais’ Common Ratio Effect, outlined in the introduction. Subjects

choose between A and B, where A = δ3000 and B = 0.8δ4000 +0.2δ0. They also choose

between C and D, where C = 0.25δ3000 +0.75δ0 and D = 0.2δ4000 +0.8δ0. The typical

finding is that the majority of subjects tend to systematically violate Expected Utility

by choosing the pair A and D. The next axiom, introduced in Dillenberger (2010),

relaxes the vNM-Independence axiom to accommodate such behavior.

Axiom 4 (Negative Certainty Independence). For each p, q ∈ ∆, x ∈ [w, b], and

λ ∈ [0, 1],

p < δx ⇒ λp+ (1− λ)q < λδx + (1− λ)q. (NCI)

Axiom NCI states that if the sure outcome x is not enough to compensate the

DM for the risky prospect p, then mixing it with any other lottery, thus eliminating

its certainty appeal, will not result in the mixture of x being more attractive than

the corresponding mixture of p. Put differently, if we let xp|λ,q be the solution to

λp + (1 − λ)q ∼ λδxp|λ,q + (1 − λ)q, then the axiom implies that xp|λ,q ≥ xp for all

p, q ∈ ∆ and λ ∈ (0, 1).6 That is, xp, the certainty equivalent of p, might not be

enough to compensate for p when part of a mixture. This is precisely the Certainty

Effect. When applied to the Common Ratio experiment, NCI only posits that if B is

chosen in the first problem, then D must be chosen in the second one. In particular, it

allows the DM to choose the pair A and D, in line with the typical pattern of choice.

Besides capturing the Certainty Effect, NCI has static implications that put ad-

ditional structure on the shape of preferences over ∆. For example, NCI (in addition

to the other basic axioms) implies Convexity: for each p, q ∈ ∆, if p ∼ q then

6We show in Appendix A (Proposition 6) that our axioms imply that < preserves First Order
Stochastic Dominance and thus for each lottery p ∈ ∆ there exists a unique certainty equivalent xp.
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λp + (1− λ) q < q for all λ ∈ [0, 1]. To see this, assume p ∼ q and apply NCI twice

to obtain that

λp+ (1− λ) q < λδxp + (1− λ) q < λδxp + (1− λ) δxq = δxq ∼ q.

NCI thus suggests weak preference for randomization between indifferent lotteries.

Furthermore, note that by again applying NCI twice we obtain that p ∼ δx implies

λp+ (1− λ) δx ∼ p for all λ ∈ [0, 1], which means neutrality towards mixing a lottery

with its certainty equivalent.7

NCI also has relevant implications in non-static settings. Dillenberger (2010)

demonstrates that in the context of recursive and time neutral, non-Expected Util-

ity preferences over compound lotteries, NCI is equivalent to an intrinsic aversion to

receiving partial information – a property which he termed preferences for one-shot

resolution of uncertainty. This property is consistent with the experimental evidence

that suggests that individuals are more risk averse when they perceive risk that is

gradually resolved over time. In the context of preferences over information struc-

tures, Dillenberger (2010) also shows that NCI characterizes all non-Expected Utility

preferences for which, when applied recursively, perfect information is always the most

valuable information system. Despite these various potential applications, however,

the characterization of preferences that satisfy NCI remained an open question.

2.3 Representation Theorem

Before stating our representation theorem, we introduce some notation. We say that

a function V : ∆ → R represents < when p < q if and only if V (p) ≥ V (q).

Denote by U the set of continuous and strictly increasing functions v from [w, b] to

R. We endow U with the topology induced by the supnorm. For each lottery p

and function v ∈ U , we denote by Ep (v) the expected utility of p with respect to v.

The certainty equivalent of lottery p calculated using the utility function v is thus

v−1 (Ep (v)) ∈ [w, b].

Definition 1. Let < be a binary relation on ∆ and W a subset of U . The set W is a

Cautious Expected Utility representation of < if and only if the function V : ∆→ R,

7We refer the reader to Section 4 in Dillenberger (2010) for further static implications of NCI.
Further discussion on Convexity is provided in Section 6.
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defined by

V (p) = inf
v∈W

v−1 (Ep (v)) ∀p ∈ ∆,

represents <. We say that W is a Continuous Cautious Expected Utility representa-

tion if and only if V is also continuous.

We now present our main representation theorem.

Theorem 1. Let < be a binary relation on ∆. The following statements are equiva-

lent:

(i) The relation < satisfies Weak Order, Continuity, Weak Monotonicity, and Neg-

ative Certainty Independence;

(ii) There exists a Continuous Cautious Expected Utility representation of <.

According to a Cautious Expected Utility representation, the DM has a set W of

possible utility functions over monetary outcomes. Each of these functions is strictly

increasing, i.e., agrees that “more money is better”. These utility functions, however,

may have different curvatures: it is as if the DM is unsure of how risk averse, or

loving, to be when evaluating a lottery. The DM then reacts to this multiplicity

with caution: she evaluates each lottery p by using the utility function that returns

the lowest certainty equivalent. That is, being unsure about her risk attitude, the

DM acts conservatively and uses the most cautious criterion at hand. Note that ifW
contains only one element then the model reduces to standard Expected Utility. Note

also that, since each u ∈ W is strictly increasing, the model preserves First Order

Stochastic Dominance.

An important feature of the representation above is that the DM uses the utility

function that minimizes the certainty equivalent of a lottery, instead of just minimiz-

ing its expected utility.8 The reason is that comparing certainty equivalents means

bringing each evaluation with each utility function to a unified measure, amounts

of money, where a meaningful comparison is possible. To illustrate, suppose that

[w, b] = [0, 1] and, without loss of generality, assume that each v ∈ W is such that

v (w) = 0 and v (b) = 1. Further suppose that the DM needs to evaluate the binary

8This alternative model is discussed in Maccheroni (2002). Indeed, this model, despite some
similarity, is not designed to capture the Certainty Effect. We discuss the comparison with our
model in detail in Section 6.
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lottery p, which pays either zero or one, both equally likely. Since all functions in W
are normalized, we must have Ep (v) = 0.5 for all v ∈ W , and hence risk attitudes

cannot be reflected in the evaluation of p according to the minimal expected utility

rule. Using the minimal certainty equivalent criterion, on the other hand, provides a

meaningful way to select the most cautious view (given W) of p.

It is then easy to see how the representation in Theorem 1 leads to the Certainty

Effect: while the DM acts with caution when evaluating general lotteries, caution does

not play a role when evaluating degenerate ones – no matter which utility function

is used, the certainty equivalent of a degenerate lottery that yields the prize x for

sure is simply x. This latter point demonstrates once again why the use of certainty

equivalents to make comparisons is an essential component of the representation.

Example 1. Let [w, b] ⊆ [0,∞) and W = {u, v} where

u (x) = − exp (−βx) , β > 0; and v (x) = xα, α ∈ (0, 1) .

That is, u (resp., v) displays constant absolute (resp., relative) risk aversion. Fur-

thermore, if the interval [w, b] is large enough (b > 1−α
β

), then u and v are not ranked

in terms of risk aversion, that is, there exist p and q such that the smallest certainty

equivalent for p (resp., q) corresponds to u (resp., v). This functional form can easily

address the Common Ratio Effect.9

The interpretation of the Cautious Expected Utility representation is different

from some of the most prominent existing models of non-Expected Utility under risk.

For example, the common interpretation of the Rank Dependent Utility model of

Quiggin (1982) is that the DM knows her utility function but she distorts probabilities.

By contrast, in a Cautious Expected Utility representation the DM takes probabilities

at face value – she uses them as Expected Utility would prescribe – but she is unsure

of how risk averse she should be, and applies caution by using the most conservative

utility function in the set. In Section 6, we point out that not only the two models

9For example, let α = 0.8 and β = 0.0002. Let p = 0.8δ4000 + 0.2δ0, q = 0.2δ4000 + 0.8δ0 and
r = 0.25δ3000 + 0.75δ0. Direct calculations show that

V (p) = u−1 (Ep (u)) ' 2904 < 3000 = V (δ3000) ,

but
V (q) = v−1 (Eq (v)) ' 535 > 530 ' v−1 (Er (v)) = V (r) .

We have δ3000 � p but q � r.
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have a different interpretation but they entail stark differences in behavior: the only

preference relation that is compatible with both the Rank Dependent Utility and the

Cautious Expected Utility models is Expected Utility.

Lastly, we note that the use of the most conservative utility in a set is reminiscent

of the Maxmin Expected Utility (MEU) model of Gilboa and Schmeidler (1989) under

ambiguity, in which the DM has not one, but a set of probabilities, and evaluates

acts using the worst probability in the set. Our model can be seen as one possible

corresponding model under risk.10 This analogy with MEU will then be strengthened

by our analysis in Section 4, in which we show that both models can be derived from

extending incomplete preferences using a cautious rule.

In the next subsection we will outline the main steps in the proof of Theorem 1.

There is one notion that is worth discussing independently, since it plays a major role

in the analysis of all subsequent sections. We introduce a derived preference relation,

denoted <′, which is the largest subrelation of the original preference < that satisfies

the Independence axiom. Formally, define <′ on ∆ by

p <′ q ⇐⇒ λp+ (1− λ) r < λq + (1− λ) r ∀λ ∈ (0, 1] ,∀r ∈ ∆. (1)

In the context of choice under risk, this derived relation was proposed and charac-

terized by Cerreia-Vioglio (2009). It parallels a notion introduced in the context of

choice under ambiguity by Ghirardato et al. (2004) (see also Cerreia-Vioglio et al.

(2011a)). This binary relation, which contains the comparisons over which the DM

abides by the precepts of Expected Utility, is often interpreted as including the com-

parisons that the DM is confident in making. We refer to <′ as the Linear Core of

<. Note that, by definition, if the original preference relation < satisfies NCI, then

p 6<′ δx implies δx � p. That is, whenever the DM is not confident to declare p better

than the certain outcome x, the original relation will rank δx strictly above p. This

intuition will be our starting point in Section 4, where we discuss the idea of Cautious

Completions. Lastly, as we will see in Section 2.5, <′ will allow us to identify the

10This is not the only way in which the intuition of MEU could be applied to risk. On the one
hand, the model in Maccheroni (2002) takes a similar approach to ours, but uses the minimum of
expected utilities (instead of the minimum of certainty equivalents). Alternatively, one can map
the intuition of MEU to risk with a model in which the agent has one utility function and multiple
probability distortions, the most pessimistic one of which is used by the agent. Dean and Ortoleva
(2012a) axiomatize this model, showing that it can be derived by a postulate of preference for
hedging similar to the one in Schmeidler (1989).
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uniqueness properties of the set W in a Cautious Expected Utility representation.

2.4 Proof Sketch of Theorem 1

In what follows we discuss the main intuition of the proof of Theorem 1; a complete

proof, which includes the many omitted details, appears in Appendix B. We focus

here only on the sufficiency of the axioms for the representation.

Step 1. Define the Linear Core of < . As we have discussed above, we introduce the

binary relation <′ on ∆ defined in (1).

Step 2. Find the set W ⊆ U that represents <′. By Cerreia-Vioglio (2009), <′

is reflexive and transitive (but possibly incomplete), continuous, and satisfies Inde-

pendence. In particular, there exists a set W of continuous functions on [w, b] that

constitutes an Expected Multi-Utility representation of <′, that is, p <′ q if and only

if Ep(v) ≥ Eq(v) for all v ∈ W (see also Dubra et al. (2004)). Since < satisfies Weak

Monotonicity and NCI, <′ also satisfies Weak Monotonicity. For this reason, the set

W can be chosen to be composed only of strictly increasing functions.

Step 3. Representation of <. We show that < admits a certainty equivalent repre-

sentation, i.e., there exists V : ∆ → R such that V represents < and V (δx) = x for

all x ∈ [w, b].

Step 4. Relation between < and <′. We note that (i) < is a completion of <′, i.e.,

p <′ q implies p < q; and (ii) for each p ∈ ∆ and for each x ∈ [w, b], p 6<′ δx implies

δx � p.

Step 5. Final step. We conclude the proof by showing that we must have V (p) =

infv∈W v−1(Ep(v)) for all p ∈ ∆. For each p, find x ∈ [w, b] such that p ∼ δx,

which means V (p) = V (δx) = x. First note that we must have V (p) = x ≤
infv∈W v−1(Ep(v)). If this was not the case, then we would have that x > v−1(Ep(v))

for some v ∈ W , which means p 6<′ δx. But by Step 2 and Step 4 (ii), we would obtain

δx � p, contradicting δx ∼ p. Second, we must have V (p) = x ≥ infv∈W v−1(Ep(v)):

if this was not the case, then we would have x < infv∈W v−1(Ep(v)). We could then

find y such that x < y < infv∈W v−1(Ep(v)), which in turn would yield p <′ δy. By

Step 4 (i), we could conclude that p < δy � δx, contradicting p ∼ δx.

11



2.5 Uniqueness and Properties of the Set of Utilities

We now discuss the uniqueness properties of a set of utilities W in a Cautious Ex-

pected Utility representation of <. To do so, we define the set of normalized utility

functions Unor = {v ∈ U : v(w) = 0, v(b) = 1}, and confine our attention to normal-

ized Cautious Expected Utility representation, that is, we further require W ⊆ Unor.
This is without loss of generality since, given a Cautious Expected Utility represen-

tation of <, it is immediate to see that we can find another representation which is a

subset of Unor by applying standard normalizations. Even with this normalization, we

are bound to find uniqueness properties only ‘up to’ the closed convex hull: if two sets

share the same closed convex hull, then they must generate the same representation,

as proved in the following proposition.11 Denote by co (W) the closed convex hull of

a set W ⊆ Unor.

Proposition 1. If W ,W ′ ⊆ Unor are such that co (W) = co (W ′) then

inf
v∈W

v−1 (Ep (v)) = inf
v∈W ′

v−1 (Ep (v)) ∀p ∈ ∆.

Moreover, it is easy to see how W will in general not be unique, even up to the

closed convex hull, as we can always add redundant utility functions that will never

achieve the infimum. In particular, consider any setW in a Cautious Expected Utility

representation and add to it a function v̄ which is a continuous, strictly increasing,

and strictly convex transformation of some other function u ∈ W . The set W ∪ {v̄}
will give a Cautious Expected Utility representation of the same preference relation,

as the function v̄ will never be used in the representation.12

Once we remove these redundant utilities, we can identify a unique (up to the

closed convex hull) set of utilities. In particular, for each preference relation that

admits a Continuous Cautious Expected Utility representation, there exists a set Ŵ
such that any other Cautious Expected Utility representation W of these preferences

is such that co(Ŵ) ⊆ co(W). In this sense Ŵ is a ‘minimal’ set of utilities. Moreover,

the set Ŵ will have a natural interpretation in our setup: it constitutes a unique

11This suggest that we could have alternatively assumed, without loss of generality, that the set
W in Theorem 1 is convex. However, since in applications it is usually easier to work with a finite
(and hence not convex) set of utilities, we did not require this property.

12Since u ∈ W and u−1 (Ep (u)) ≤ v̄−1 (Ep (v̄)) for all p ∈ ∆, there will not be a lottery p such
that inf

v∈W∪{v̄}
v−1 (Ep (v)) = v̄−1 (Ep (v̄)) < inf

v∈W
v−1 (Ep (v)).
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(up to the closed convex hull) Expected Multi-Utility representation of the Linear

Core <′, the derived preference relation defined in (1). In terms of uniqueness, if

two sets constitute a Continuous Cautious Expected Utility representation of < and

an Expected Multi-Utility representation of <′, then their closed convex hull must

coincide. This is formalized in the following result.

Theorem 2. Let < be a binary relation on ∆ that satisfies Weak Order, Continuity,

Weak Monotonicity, and Negative Certainty Independence. Then there exists Ŵ ⊆
Unor such that

(i) The set Ŵ is a Continuous Cautious Expected Utility representation of <;

(ii) If W ⊆ Unor is a Cautious Expected Utility representation of <, then co(Ŵ) ⊆
co(W);

(iii) The set Ŵ is an Expected Multi-Utility representation of <′, that is,

p <′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ Ŵ .

Moreover, Ŵ is unique up to the closed convex hull.

2.6 Parametric Sets of Utilities

In applied work, it is common to specify a parametric class of utility functions and

estimate the relevant parameters. The purpose of this subsection is to suggest some

parametric classes that are compatible with Cautious Expected Utility representa-

tion. Example 1 in Section 2.3 shows that we could address experimental evidence

related to the Certainty Effect using a set W which includes two utility functions,

one with constant relative risk aversion (CRRA) and the other with constant abso-

lute risk aversion (CARA). This, however, cannot be achieved by focusing only on

utilities within each of these classes – i.e., only CRRA, or only CARA, with different

parameters – as in those cases our model coincides with Expected Utility. To see

why, recall from the discussion in Section 2.5 that if v̄ is a continuous, increasing, and

strictly convex transformation of some u ∈ W , then W and W∪{v̄} represent the

same preferences. But this means that if W is a finite set of CRRA utility functions

(that is, vi ∈ W only if vi (x) = xαi for some αi ∈ (0, 1)), then only the most risk

13



averse one matters, and preferences are simply Expected Utility with a coefficient of

relative risk aversion equal to 1−minj αj. (A similar argument holds for CARA.)

The discussion above suggests that if preferences are not Expected Utility andW
contains only functions from the same parametric class, then the level of risk aversion

within this class must depend on more than a single parameter. We now suggest

two examples of parsimonious families of utility functions for which risk attitude is

characterized by the values of only two parameters; this property could be useful in

empirical estimation.

The first example is the increasingly popular family of Expo-Power utility func-

tions (Saha (1993)), which generalizes both CARA and CRRA, given by

u (x) = 1− exp
(
−λxθ

)
, with λ 6= 0, θ 6= 0, and λθ > 0.

This functional form has been applied in a variety of fields, such as finance, intertem-

poral choices, and agriculture economics. Holt and Laury (2002) show that this

functional form fits well experimental data that involve both low and high stakes.

The second example is the set of Pareto utility functions, given by

u (x) = 1−
(

1 +
x

γ

)−κ
, with γ > 0 and κ > 0.

Ikefuji et al. (2012) show that a Pareto utility function has some desirable properties.

If u is Pareto, then the coefficient of absolute risk aversion is −u′′(x)
u′(x)

= κ+1
x+γ

, which is

increasing in κ and decreasing in γ. Therefore, for a large enough interval [w, b], if

κu > κv and γu > γv then u and v are not ranked in terms of risk aversion.

3 Cautious Expected Utility and Risk Attitudes

In this section we explore the connection between Theorem 1 and standard definitions

of risk attitude, and characterize the comparative notion of “more risk averse than”.

In Section 3.3, we show how imposing risk aversion allows us to derive additional

properties for the set W . Throughout this section, we mainly focus on a ‘minimal’

representation Ŵ as in Theorem 2.

Remark. If W is a Continuous Cautious Expected Utility representation of a prefer-

ence relation <, we denote by Ŵ a set of utilities as identified in Theorem 2 (which is

14



unique up to the closed convex hull). More formally, we can define a correspondence

T that maps each setW that is a Continuous Cautious Expected Utility representation

of some < to a class of subsets of Unor, T (W), each element of which satisfies the

properties of points (i)-(iii) of Theorem 2 and is denoted by Ŵ.

3.1 Characterization of Risk Attitudes

We adopt the following standard definition of risk aversion/risk seeking.

Definition 2. We say that < is risk averse if p < q whenever q is a mean preserving

spread of p. Similarly, < is risk seeking if q < p whenever q is a mean preserving

spread of p.

Theorem 3. Let < be a binary relation that satisfies Weak Order, Continuity, Weak

Monotonicity, and Negative Certainty Independence. The following statements are

true:

(i) The relation < is risk averse if and only if each v ∈ Ŵ is concave.

(ii) The relation < is risk seeking if and only if each v ∈ Ŵ is convex.

Theorem 3 shows that the relation found under Expected Utility between the

concavity/convexity of the utility function and the risk attitude of the DM holds also

for the more general Continuous Cautious Expected Utility model – although it now

involves all utilities in the set Ŵ .13 In turn, this shows that NCI is compatible with

many types of risk attitudes. For example, despite the presence of the Certainty

Effect, when all utilities are convex the DM would be risk seeking.

3.2 Comparative Risk Aversion

We now proceed to compare the risk attitudes of two individuals.

13The key passage is the “only if” direction in item (i), which shows that to guarantee that < is

risk averse, it is not enough to require members of Ŵ to have concave parts in relevant segments;
instead, they should all be globally concave. Intuitively, this is the case because if q is a mean
preserving spread of p, then we must have p <′ q, which means that Ep (v) ≥ Eq (v) for all v ∈ Ŵ.

Since any function v ∈ Ŵ is strictly increasing, respecting aversion to mean preserving spread implies
that any such v is concave.

15



Definition 3. Let <1 and <2 be two binary relations on ∆. We say that <1 is more

risk averse than <2 if and only if for each p ∈ ∆ and for each x ∈ [w, b] ,

p <1 δx =⇒ p <2 δx.

Theorem 4. Let <1 and <2 be two binary relations with Continuous Cautious Ex-

pected Utility representations, W1 and W2, respectively. The following statements are

equivalent:

(i) <1 is more risk averse than <2;

(ii) BothW1∪W2 andW1 are Continuous Cautious Expected Utility representations

of <1;

(iii) co
(
Ŵ1 ∪W2

)
= co(Ŵ1).

Theorem 4 states that DM1 is more risk averse than DM2 if and only if all the

utilities in W2 are redundant when added to W1.
14 This result compounds two con-

ceptually different channels that in a Cautious Expected Utility representation lead

one decision maker to be more risk averse than another. The first channel is related

to the curvatures of the functions in each set of utilities. For example, if each v ∈ W2

is a strictly increasing and strictly convex transformation of some v̂ ∈ W1, then DM2

assigns a strictly higher certainty equivalent than DM1 to any nondegenerate lottery

p ∈ ∆ (while the certain outcomes are, by construction, treated similarly in both).

In particular, as we discussed in Section 2.5, no member of W2 will be used in the

representation corresponding to the union of the two sets. The second channel cor-

responds to comparing the size of the two sets of utilities. Indeed, if W2 ⊆ W1 then

for each p ∈ ∆ the certainty equivalent under W2 is weakly greater than that under

W1, implying that <1 is more risk averse than <2.

We can distinguish between these two different channels, and characterize the

behavioral underpinning of the second one. To do so, we focus on the notion of

Linear Core and its representation as in Theorem 2.

Definition 4. Let <1 and <2 be two binary relations on ∆ with corresponding Linear

Cores <′1 and <′2. We say that <1 is more indecisive than <2 if and only if for each

14We thank Todd Sarver for suggesting point (iii) in Theorem 4.
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p, q ∈ ∆

p <′1 q =⇒ p <′2 q.

Since we interpret the derived binary relation <′ as capturing the comparisons

that the DM is confident in making, Definition 4 implies that DM1 is more indecisive

than DM2 if whenever DM1 can confidently declare p weakly better than q, so does

DM2. The following result characterizes this comparative relation and links it to the

comparative notion of risk aversion.

Proposition 2. Let <1 and <2 be two binary relations that satisfy Weak Order,

Continuity, Weak Monotonicity, and Negative Certainty Independence. The following

statements are true:

(i) <1 is more indecisive than <2 if and only if co(Ŵ2) ⊆ co(Ŵ1);

(ii) If <1 is more indecisive than <2, then <1 is more risk averse than <2 .

3.3 Risk Aversion and Compactness of the Set of Utilities

We now show that if we assume that < satisfies Risk Aversion, that is, it is risk

averse as in Definition 2, and strengthen our Weak Monotonicity axiom, then we can

guarantee that the set of utilities W in Theorem 1 is compact. Thus, the infimum in

the representation is always achieved and the representation is always continuous.

Axiom 5 (Monotonicity). For each x, y ∈ [w, b] and λ ∈ (0, 1]

x > y ⇒ λδx + (1− λ) δw � λδy + (1− λ) δw.

By taking λ = 1, it is easy to see that Monotonicity implies Weak Monotonicity.

Theorem 5. Let < be a binary relation on ∆. The following statements are equiva-

lent:

(i) The relation < satisfies Weak Order, Continuity, Monotonicity, Negative Cer-

tainty Independence, and Risk Aversion;

(ii) There exists a compact set W ⊆ U of concave functions such that

p < q ⇐⇒ min
v∈W

v−1 (Ep (v)) ≥ min
v∈W

v−1 (Eq (v)) .
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Theorem 5 shows that by imposing Risk Aversion, and strengthening our mono-

tonicity assumption, we can guarantee compactness of the set of utilities in our repre-

sentation. The following is an intuition of the steps we follow to prove it (restricted to

the sufficiency of the axioms). First, we find a suitable representationW in Unor ⊆ U .

We show thatW is relatively compact with respect to the topology of sequential point-

wise convergence restricted to Unor; that is, any sequence in W admits a subsequence

which pointwise converges to an element v in Unor. (See Theorem 7 in the appendix

for details.) The existence of a convergent subsequence with limit v is granted by

the concavity and uniform boundedness of each element of W (where concavity, by

Theorem 3, is implied by Risk Aversion). It easily follows that v is concave and,

by construction, normalized. We then use the concavity of each element of W and

Monotonicity to establish that v is continuous and strictly increasing. We conclude

the proof by establishing that the notion of compactness above coincides with that

of norm compactness (this is proved in Lemma 2 in the appendix).

4 Caution and Completion of Incomplete Prefer-

ences

While our analysis thus far has focused on the characterization of a complete pref-

erence relation that satisfies NCI (in addition to the other basic axioms), we will

now show that this analysis is deeply related to that of a ‘cautious’ completion of an

incomplete preference relation over lotteries.

We analyze the following problem. Consider a DM who has an incomplete pref-

erence relation over the set of lotteries. We can see this relation as representing the

comparisons that the DM feels comfortable making. There might be occasions, how-

ever, in which the DM is asked to choose among lotteries she cannot compare, and

to do this she has to complete her preferences. Suppose that the DM wants to do so

applying caution, i.e., when in doubt between a sure outcome and a lottery, she opts

for the sure outcome. Two questions are then natural: (i) which preferences will she

obtain after the completion? and (ii) which properties will they have?

This analysis parallels the one of Gilboa et al. (2010), who consider an environment

with ambiguity instead of risk, although with one minor formal difference: while in

Gilboa et al. (2010) both the incomplete relation and its completion are a primitive

18



of the analysis, in our case the primitive is simply the incomplete preference relation

over lotteries, and we study the properties of all possible completions of this kind.15

Since we analyze an incomplete preference relation, the analysis in this section

requires a slightly stronger notion of continuity, called Sequential Continuity.16

Axiom 6 (Sequential Continuity). Let {pn}n∈N and {qn}n∈N be two sequences in ∆.

If pn → p, qn → q, and pn < qn for all n ∈ N then p < q.

In the rest of the section, we assume that <′ is a reflexive and transitive (though

potentially incomplete) binary relation over ∆, which satisfies Sequential Continuity,

Weak Monotonicity, and Independence. We look for completions of <′ which exhibit

a degree of caution as formalized in the following definition.

Definition 5. Let <′ be a binary relation on ∆. We say that the relation <̂ is a

Cautious Completion of <′ if and only if the following hold:

1. The relation <̂ satisfies Weak Order, Weak Monotonicity, and for each p ∈ ∆

there exists x ∈ [w, b] such that p ∼̂ δx;

2. For each p, q ∈ ∆, if p <′ q then p <̂ q;

3. For each p ∈ ∆ and x ∈ [w, b], if p 6<′ δx then δx �̂ p.

Point 1 imposes few minimal requirements of rationality on <̂, most notably, the

existence of a certainty equivalent for each lottery p. Weak Monotonicity will imply

that this certainty equivalent is unique. In point 2, we assume that the relation

<̂ extends <′. Finally, point 3 requires that such a completion of <′ is done with

caution.17

15A natural next step is to develop a more general treatment that encompasses both the result
in this section and the one in Gilboa et al. (2010), where we start from a preference over acts that
admits a Multi-Prior Expected Multi-Utility representation, as in Ok et al. (2012) and Galaabaatar
and Karni (2013), and look for Cautious Completions. Riella (2013) shows that this is indeed
possible, and proves the corresponding result.

16This notion coincides with our previous Continuity axiom if the binary relation is complete
and transitive. (This means that we could have equivalently replaced Continuity with Sequential
Continuity in our previous analysis.) However, this is no longer true when the binary relation is
incomplete, as it is the case in this section.

17It can be shown that our results would go through even if in point 3 of Definition 5 we only
required that if p 6<′ δx then δx<̂ p. We adopted the current formulation since, as we shall see,
it will emphasize the connection with our analysis in the previous sections of the paper, and, in
particular, with NCI. The current condition is the translation to the context of choice under risk of
the assumption of Default to Certainty of Gilboa et al. (2010).
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Theorem 6. If <′ is a reflexive and transitive binary relation on ∆ that satisfies Se-

quential Continuity, Weak Monotonicity, and Independence, then <′ admits a unique

Cautious Completion <̂ and there exists a set W ⊆ U such that for all p, q ∈ ∆

p <′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ W

and

p <̂ q ⇐⇒ inf
v∈W

v−1 (Ep (v)) ≥ inf
v∈W

v−1 (Eq (v)) .

Moreover, W is unique up to the closed convex hull.

Theorem 6 shows that, given a binary relation <′ which satisfies all the tenets

of Expected Utility except completeness, not only a Cautious Completion <̂ is al-

ways possible, but it is also unique. Most importantly, such completion <̂ admits a

Cautious Expected Utility representation, using the same set of utilities as in the Ex-

pected Multi-Utility Representation of the original preference <′. This suggests one

possible origin of violations of Expected Utility, as reflected in Allais-type behavior:

subjects might be unable to compare some of the available options and, when asked to

extend their ranking, they do so by being cautious – generating the Certainty Effect,

and a Cautious Expected Utility representation.

Finally, Theorem 6 strengthens the link between the Cautious Expected Utility

model and the Maxmin Expected Utility model of Gilboa and Schmeidler (1989):

Gilboa et al. (2010) show that the latter could be derived as a completion of an

incomplete preference over Anscombe-Aumann acts by applying a form of caution

according to which, when in doubt, the DM chooses a constant act; similarly, here we

derive the Cautious Expected Utility model by extending an incomplete preference

over lotteries using a form of caution according to which, when in doubt, the DM

chooses a risk-free lottery.

5 NCI and Betweenness Preferences: an Explicit

Representation

In this section we discuss an important special case of the preference relations studied

in Theorem 1: preference relations that satisfy both NCI and Betweenness, a broad

class that includes Expected Utility as well as Gul (1991)’s model of Disappointment
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Aversion. We show that for preferences in this class, we can provide an explicit

characterization that links the Cautious Expected Utility model with the implicit

characterizations derived in Dekel (1986), Chew (1989), and Gul (1991).

Suppose that in addition to our four axioms, Weak Order, Continuity, Weak

Monotonicity, and NCI, the binary relation < also satisfies the following axiom.

Axiom 7 (Betweenness). For each p, q ∈ ∆ and λ ∈ (0, 1), p � q (resp., p ∼ q)

implies p � λp+ (1− λ) q � q (resp., p ∼ λp+ (1− λ) q ∼ q).

Betweenness implies neutrality toward randomization among equally-good lot-

teries. Dekel (1986) and Chew (1989) establish that a continuous, monotone, and

complete preference relation that satisfies Betweenness admits the following rep-

resentation: there exists a local-utility function u : [w, b] × [0, 1] → [0, 1], con-

tinuous in both arguments, strictly increasing in the first argument, that satisfies

u (w, v) = 0 = 1 − u (b, v) for all v ∈ [0, 1] and such that p < q if and only if

V (p) ≥ V (q), where V (p) is defined implicitly as the unique v ∈ [0, 1] that solves:∫
[w,b]

u (x, v) dp (x) = v.

This is referred to as an implicit representation.18 We will now show that if the

preference relation also satisfies NCI, then an explicit characterization is possible, in

the form of a Cautious Expected Utility representation that involves precisely the set

of utilities identified in the implicit representation.

To see this, suppose < admits the implicit representation above. For each v ∈
[0, 1], let uv (x) := u (x, v). Proposition 4 in Dillenberger (2010) establishes that

< also satisfies NCI if and only if for each p ∈ ∆ and v ∈ [0, 1], we have that

Ep (uv) > uv (xp), or

u−1v (Ep (uv)) > xp.

Since, by the implicit representation, we also have that V (p) = Ep
(
uV (p)

)
= uV (p) (xp),

we can conclude that

inf
v∈[0,1]

u−1v (Ep (uv)) = xp,

18It should be noted that Dekel’s setting encompasses ours. Thus, his assumption of monotonicity
is different and should be added, and he shows that u (·, v) is increasing for all v ∈ [0, 1] rather than
strictly increasing. We refer the interested reader to Dekel (1986).
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leading to an explicit utility representation in the form of a Cautious Expected Utility

representation with W = {uv (·)}v∈[0,1]. Furthermore, it can be shown that this set

W is one of the sets identified by Theorem 2, which means that it also constitutes an

Expected Multi-Utility representation of <′.

One of the most prominent examples of preference relations that satisfy Be-

tweenness is Gul (1991)’s model of Disappointment Aversion. For some parameter

β ∈ (−1,∞) and a strictly increasing function φ : [w, b] → R, the (non-normalized)

local utility function is given by

uv,β (x) =

{
φ(x)+βv

1+β
φ (x) > v

φ (x) φ (x) 6 v

(see Gul (1991)). In most applications, attention is confined to the case where β > 0,

which corresponds to “Disappointment Aversion” (the case of β ∈ (−1, 0) is re-

ferred to “Elation Seeking”, and the model reduces to Expected Utility when β = 0).

Artstein-Avidan and Dillenberger (2011) show that Gul’s preferences satisfy NCI if

and only if β ≥ 0. Combining this result with the observation above about the gen-

eral Betweenness class immediately yields the following explicit characterization for

Disappointment Averse preference relations (the proof is omitted).

Proposition 3. If < is a Disappointment Averse preference relation with β ≥ 0 then

for each p ∈ ∆

xp = inf
v∈[φ(w),φ(b)]

u−1v,β (Ep (uv,β)) .

Finally, it is easy to see that in the case of β ∈ (−1, 0), which violates NCI, a

certainty-equivalent representation can be achieved by replacing the inf with the sup.

6 Related Literature

Dillenberger (2010) introduces NCI and discusses its implication in dynamic settings,

but does not provide a utility representation. Dillenberger and Erol (2013) provide

an example of a continuous, monotone, and complete preference relation over simple

lotteries that satisfies NCI but not Betweenness (see Section 5). Our paper generalizes

this example and, more importantly, provides a complete characterization of all binary

relations that satisfy NCI (in addition to the other three basic postulates).
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Cerreia-Vioglio (2009) characterizes the class of continuous and complete prefer-

ence relations that satisfy Convexity, that is, p ∼ q implies λp + (1− λ) q < q for

all λ ∈ (0, 1). Loosely speaking, Cerreia-Vioglio shows that there exists a set V of

normalized Bernoulli utility functions, and a real function U on R × V , such that

preferences are represented by

V (p) = inf
v∈V

U (Ep (v) , v) .

Using this representation, Cerreia-Vioglio interprets Convexity as a behavioral prop-

erty that captures a preference for hedging; such preferences may arise in the face

of uncertainty about the value of outcomes, future tastes, and/or the degree of risk

aversion. He also suggests the choice of the minimal certainty equivalent as a cri-

terion to resolve uncertainty about risk attitudes and as a completion procedure.

(See also Cerreia-Vioglio et al. (2011b) for a risk measurement perspective.) In Sec-

tion 2 we showed that NCI implies Convexity, which means that the preferences we

study in this paper are a subset of those studied by Cerreia-Vioglio. Indeed, this

is apparent also from Theorem 1: our preferences correspond to the special case in

which U (Ep (v) , v) = v−1(Ep (v)). Furthermore, our representation theorem estab-

lishes that NCI is the exact strengthening of convexity needed to characterize the

minimum certainty equivalent criterion.

A popular generalization of Expected Utility, designed to explain the behavior

observed in the Allais paradoxes, is the Rank Dependent Utility (RDU) model of

Quiggin (1982). According to this model, individuals weight probability in a nonlinear

way. Specifically, if we order the prizes in the support of the lottery p, with x1 <

x2 < ... < xn, then the functional form for RDU is:

V (p) = u(xn)f(p (xn) ) +
n−1∑
i=1

u(xi)[f(
n∑
j=i

p (xj))− f(
n∑

j=i+1

p (xj))]

where f : [0, 1]→ [0, 1] is strictly increasing and onto, and u : [w, b]→ R is increasing.

If f (p) = p then RDU reduces to Expected Utility. If f is convex, then larger weight

is given to inferior outcomes; this corresponds to a pessimistic probability distor-

tion suitable to explain the Allais paradoxes. Apart from the different interpretation

of RDU compared to our Cautious Expected Utility representation, as discussed in

Section 2.3, the two models have completely different behavioral implications: Dillen-
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berger (2010) demonstrates that the only RDU preference relations that satisfy NCI

are Expected Utility. That is, RDU is generically incompatible with NCI.19

We have already discussed how Gul (1991)’s model of Disappointment Aversion

(denoted DA in Figure (1)) belongs to our class if and only if β ≥ 0, and how the

preferences in our class neither nest, nor are nested in, those that satisfy Betweenness

(see Section 5).

Figure (1) summarizes our discussion thus far about the relationship between the

various models.20

Maccheroni (2002) (see also Chatterjee and Krishna (2011)) derives a utility func-

tion over lotteries of the following form: there exists a set of utilities over outcomes

T , such that the value of every lottery p is the lowest Expected Utility, calculated

with respect to members of T , that is,

V (p) = min
v∈T

Ep (v) .

Maccheroni’s interpretation of this functional form, according to which “the most

pessimist of her selves gets the upper hand over the others” is closely related to our

idea that “the DM acts conservatively and uses the most cautious criterion at hand.”

In addition, both models satisfy Convexity. Despite these similarities, the two mod-

els are very different. First, Maccheroni’s model cannot (and it was not meant to)

address the Certainty Effect. Second, one of Maccheroni (2002)’s key axioms is Best

Outcome Independence, which states that for each p, q ∈ ∆ and each λ ∈ (0, 1),

19The observation that NCI does not imply probabilistic distortion becomes relevant in experi-
ments similar to the one reported in Conlisk (1989). Conlisk studies the robustness of Allais-type
behavior to boundary effects. He considers a slight perturbation of prospects similar to A,B,C
and D (as in Section 1), so that (i) each of the new prospects, A′, B′, C ′ and D′, yields all three
prizes with strictly positive probability, and (ii) in the resulting “displaced Allais question” (namely
choosing between A′ and B′ and then choosing between C ′ and D′), the only pattern of choice that
is consistent with expected utility is either the pair A′ and C ′ or the pair B′ and D′. Although
violations of Expected Utility become significantly less frequent and are no longer systematic (a
result that supports the claim that violations can be explained by the Certainty Effect), a nonlinear
probability function predicts that this increase in consistency would be the result of fewer subjects
choosing A′ over B′, and not because more subjects choose C ′ over D′. In fact, the latter occurred,
which is consistent with NCI.

20Chew and Epstein (1989) show that there is no intersection between RDU and Betweenness
other than Expected Utility. Whether or not RDU satisfies Convexity depends on the curvature of
the distortion function f ; in particular, concave f implies Convexity. In addition to Disappointment
Aversion with negative β, an example of preferences that satisfy Betweenness but do not satisfy NCI
is Chew (1983)’s model of Weighted Utility.
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Figure 1: Cautious Expected Utility and other models

p < q if and only if λp+ (1− λ) δb < λq + (1− λ) δb. This axiom is conceptually and

behaviorally distinct from NCI. Lastly, the example we discuss in Section 2.3 illus-

trates how comparing the expected utilities calculated using different utility functions

– instead of their certainty equivalents – does not fully capture cautious risk attitude

when evaluating lotteries.

Schmidt (1998) develops a static model of Expected Utility with certainty pref-

erences, modeled in a way that is very close to NCI. In his model, the value of any

nondegenerate lottery p is Ep (u), whereas the value of the degenerate lottery δx is

v(x). The Certainty Effect is captured by requiring v(x) > u(x) for all x. Schmidt’s

model violates both Continuity and Monotonicity, while in this paper we confine our

attention to preferences that satisfy both properties.

Dean and Ortoleva (2012a) present a model which, when restricted to preferences

over lotteries, generalizes pessimistic Rank Dependent Utility.21 In their model, the

21The general model is defined over Anscombe-Aumann acts, and is designed to capture both the
Allais and the Ellsberg paradoxes. When there there is only one state of the world, however, the
model reduces to one of preferences over lotteries.
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DM has a single utility function and a set of pessimistic probability distortions; she

then evaluates each lottery using the most pessimistic of these distortions. This

property is derived by an axiom, Hedging, that captures the intuition of preference

for hedging of Schmeidler (1989), but applies it to preferences over lotteries. Dean and

Ortoleva (2012a) show how this axiom captures the behavior in the Allais paradoxes.

The exact relation between NCI and Hedging remains an open question.

Finally, we have already discussed how our Theorem 6 is related to the result in

Gilboa et al. (2010) (see Section 4).

Appendix A: Preliminary Results

We begin by proving some preliminary results that will be useful for the proofs of

the main results in the text. In the sequel, we denote by C ([w, b]) the set of all real

valued continuous functions on [w, b]. Unless otherwise specified, we endow C ([w, b])

with the topology induced by the supnorm. We denote by ∆ = ∆ ([w, b]) the set of

all Borel probability measures endowed with the topology of weak convergence. We

denote by ∆0 the subset of ∆ which contains only the elements with finite support.

Since [w, b] is closed and bounded, ∆ is compact with respect to this topology and ∆0

is dense in ∆. Given a binary relation < on ∆, we define an auxiliary binary relation

<′ on ∆ by

p <′ q ⇐⇒ λp+ (1− λ) r < λq + (1− λ) r ∀λ ∈ (0, 1] ,∀r ∈ ∆.

Lemma 1. Let < be a binary relation on ∆ that satisfies Weak Order. The following

statements are true:

1. The relation < satisfies Negative Certainty Independence if and only if for each

p ∈ ∆ and for each x ∈ [w, b]

p < δx =⇒ p <′ δx. (Equivalently p 6<′ δx =⇒ δx � p.)

2. If < also satisfies Negative Certainty Independence then < satisfies Weak Mono-

tonicity if and only if for each x, y ∈ [w, b]

x ≥ y ⇐⇒ δx <
′ δy,
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that is, <′ satisfies Weak Monotonicity.

Proof. It follows from the definition of <′.

We define

Vin = {v ∈ C ([w, b]) : v is increasing} ,

Vinco = {v ∈ C ([w, b]) : v is increasing and concave} ,

U = Vs−in = {v ∈ C ([w, b]) : v is strictly increasing} ,

Unor = {v ∈ C ([w, b]) : v (b)− 1 = 0 = v (w)} ∩ Vs−in.

Consider a binary relation <∗ on ∆ such that

p <∗ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ W (2)

whereW is a subset of C ([w, b]). DefineWmax as the set of all functions v ∈ C ([w, b])

such that p <∗ q implies Ep (v) ≥ Eq (v). Define also Wmax− nor as the set of all

functions v ∈ Unor such that p <∗ q implies Ep (v) ≥ Eq (v). Clearly, we have that

Wmax− nor =Wmax ∩ Unor and Wmax− nor,W ⊆Wmax.

Proposition 4. Let <∗ be a binary relation represented as in (2) and such that x ≥ y

if and only if δx <∗ δy. The following statements are true:

1. Wmax and Wmax− nor are convex and Wmax is closed;

2. ∅ 6=Wmax− nor;

3. Wmax ⊆ Vin, ∅ 6=Wmax ∩ Vs−in, and cl (Wmax ∩ Vs−in) =Wmax;

4. p <∗ q if and only if Ep (v) ≥ Eq (v) for each v ∈ Wmax− nor;

5. If W is a convex subset of Unor that satisfies (2) then cl (W) = cl (Wmax− nor).

Proof. 1. Consider v1, v2 ∈ Wmax− nor (resp., v1, v2 ∈ Wmax) and λ ∈ (0, 1). Since

both functions are continuous, strictly increasing, and normalized (resp., continuous),

it follows that λv1+(1− λ) v2 is continuous, strictly increasing, and normalized (resp.,
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continuous). Since v1, v2 ∈ Wmax− nor (resp., v1, v2 ∈ Wmax), if p <∗ q then Ep (v1) ≥
Eq (v1) and Ep (v2) ≥ Eq (v2). This implies that

Ep (λv1 + (1− λ) v2) = λEp (v1) + (1− λ)Ep (v2)

≥ λEq (v1) + (1− λ)Eq (v2) = Eq (λv1 + (1− λ) v2) ,

proving thatWmax− nor (resp.,Wmax) is convex. Next, consider {vn}n∈N ⊆ Wmax such

that vn → v. It is immediate to see that v is continuous. Moreover, if p <∗ q then

Ep (vn) ≥ Eq (vn) for all n ∈ N. By passing to the limit, we obtain that Ep (v) ≥ Eq (v),

that is, that v ∈ Wmax, hence Wmax is closed.

2. By Dubra et al. (2004, Proposition 3), it follows that there exists v̂ ∈ C ([w, b])

such that

p ∼∗ q =⇒ Ep (v̂) = Eq (v̂)

and

p �∗ q =⇒ Ep (v̂) > Eq (v̂) .

By assumption, we have that x ≥ y if and only if δx <∗ δy. This implies that x ≥ y

if and only if v̂ (x) ≥ v̂ (y), proving that v̂ is strictly increasing. Since v̂ is strictly

increasing, by taking a positive and affine transformation, v̂ can be chosen to be such

that v̂ (w) = 0 = 1− v̂ (b). It is immediate to see that v̂ ∈ Wmax− nor.

3. By definition of Wmax, we have that if p <∗ q then Ep (v) ≥ Eq (v) for all

v ∈ Wmax. On the other hand, by assumption and since W ⊆ Wmax, we have that if

Ep (v) ≥ Eq (v) for all v ∈ Wmax then Ep (v) ≥ Eq (v) for all v ∈ W which, in turn,

implies that p <∗ q. In other words, Wmax satisfies (2) for <∗. By assumption, we

can thus conclude that

x ≥ y =⇒ δx <
∗ δy =⇒ Eδx (v) ≥ Eδy (v) ∀v ∈ Wmax =⇒ v (x) ≥ v (y) ∀v ∈ Wmax,

proving that Wmax ⊆ Vin. By point 2 and since Wmax− nor ⊆ Wmax, we have that

∅ 6= Wmax ∩ Vs−in. Since Wmax ∩ Vs−in ⊆ Wmax and the latter is closed, we have

that cl (Wmax ∩ Vs−in) ⊆ Wmax. On the other hand, consider v̇ ∈ Wmax ∩ Vs−in and

v ∈ Wmax. Define {vn}n∈N by vn = 1
n
v̇ +

(
1− 1

n

)
v for all n ∈ N. Since v, v̇ ∈ Wmax

and the latter set is convex, we have that {vn}n∈N ⊆ Wmax. Since v̇ is strictly

28



increasing and v is increasing, vn is strictly increasing for all n ∈ N, proving that

{vn}n∈N ⊆ Wmax ∩Vs−in. Since vn → v, it follows that v ∈ cl (Wmax ∩ Vs−in), proving

that Wmax ⊆ cl (Wmax ∩ Vs−in) and thus the opposite inclusion.

4. By assumption, we have that there exists a subset W of C ([w, b]) such that

p <∗ q if and only if Ep (v) ≥ Eq (v) for all v ∈ W . By point 3 and its proof, we can

replace first W with Wmax and then with Wmax ∩ Vs−in. Consider v ∈ Wmax ∩ Vs−in.

Since v is strictly increasing, there exist (unique) γ1 > 0 and γ2 ∈ R such that

v̄ = γ1v + γ2 is continuous, strictly increasing, and satisfies v̄ (w) = 0 = 1 − v̄ (b).

For each v ∈ Wmax ∩ Vs−in, it is immediate to see that Ep (v) ≥ Eq (v) if and only if

Ep (v̄) ≥ Eq (v̄). Define W̄ = {v̄ : v ∈ Wmax ∩ Vs−in}. Notice that W̄ ⊆ Unor. From

the previous part, we can conclude that p <∗ q if and only if Ep (v̄) ≥ Eq (v̄) for

all v̄ ∈ W̄ . It is also immediate to see that W̄ ⊆ Wmax− nor. By construction of

Wmax− nor, notice that

p <∗ q =⇒ Ep (v) ≥ Eq (v) ∀v ∈ Wmax− nor.

On the other hand, since W̄ ⊆ Wmax−nor, we have that

Ep (v) ≥ Eq (v) ∀v ∈ Wmax− nor =⇒ Ep (v̄) ≥ Eq (v̄) ∀v̄ ∈ W̄ =⇒ p <∗ q.

We can conclude that Wmax− nor represents <∗.

5. Consider v ∈ W . By assumption, v is a strictly increasing and continuous

function on [w, b] such that v (w) = 0 = 1 − v (b). Moreover, since W satisfies (2),

it follows that p <∗ q implies that Ep (v) ≥ Eq (v). This implies that v ∈ Wmax−nor.

We can conclude that W ⊆ Wmax− nor, hence, cl (W) ⊆ cl (Wmax− nor). In order to

prove the opposite inclusion, we argue by contradiction. Assume that there exists v ∈
cl (Wmax− nor) \cl (W). Since v ∈ cl (Wmax− nor), we have that v (w) = 0 = 1 − v (b).

By Dubra et al. (2004, p. 123–124) and since both W and Wmax− nor satisfy (2), we

also have that

cl
(
cone (W) +

{
θ1[w,b]

}
θ∈R

)
= cl

(
cone (Wmax− nor) +

{
θ1[w,b]

}
θ∈R

)
.

We can conclude that v ∈ cl
(
cone (W) +

{
θ1[w,b]

}
θ∈R

)
. Observe that there exists

{v̂n}n∈N ⊆ cone (W) +
{
θ1[w,b]

}
θ∈R such that v̂n → v. By construction and since W

29



is convex, there exist {λn}n∈N ⊆ [0,∞), {vn}n∈N ⊆ W , and {θn}n∈N ⊆ R such that

v̂n = λnvn + θn1[w,b] for all n ∈ N. It follows that

0 = v (w) = lim
n
v̂n (w) = lim

n

{
λnvn (w) + θn1[w,b] (w)

}
= lim

n
θn

and

1 = v (b) = lim
n
v̂n (b) = lim

n

{
λnvn (b) + θn1[w,b] (b)

}
= lim

n
{λn + θn} .

This implies that limn θn = 0 = 1− limn λn. Without loss of generality, we can thus

assume that {λn}n∈N is bounded away from zero, that is, that there exists ε > 0 such

that λn ≥ ε > 0 for all n ∈ N. Since {θn}n∈N and {v̂n}n∈N are both convergent, both

sequences are bounded, that is, there exists k > 0 such that

‖v̂n‖ ≤ k and |θn| ≤ k ∀n ∈ N.

It follows that

ε ‖vn‖ ≤ λn ‖vn‖ = ‖λnvn‖ =
∥∥λnvn + θn1[w,b] − θn1[w,b]

∥∥
≤
∥∥λnvn + θn1[w,b]

∥∥+
∥∥−θn1[w,b]

∥∥
≤
∥∥λnvn + θn1[w,b]

∥∥+ |θn|

≤ ‖v̂n‖+ |θn| ≤ 2k ∀n ∈ N,

that is, ‖vn‖ ≤ 2k
ε

for all n ∈ N. We can conclude that

‖v − vn‖ = ‖v − v̂n + v̂n − vn‖ ≤ ‖v − v̂n‖+ ‖v̂n − vn‖

= ‖v − v̂n‖+
∥∥λnvn + θn1[w,b] − vn

∥∥
≤ ‖v − v̂n‖+ |λn − 1| ‖vn‖+ |θn|

≤ ‖v − v̂n‖+ |λn − 1| 2k
ε

+ |θn| ∀n ∈ N.

Passing to the limit, it follows that vn → v, that is, v ∈ cl (W), a contradiction. �

We next provide a characterization of <′ which is due to Cerreia-Vioglio (2009).

Here, it is further specialized to the particular case where < satisfies Weak Mono-

tonicity and NCI in addition to Weak Order and Continuity. Before proving the

statement, we need to introduce a piece of terminology. We will say that <′′ is an
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integral stochastic order if and only if there exists a set W ′′ ⊆ C ([w, b]) such that

p <′′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ W ′′.

Proposition 5. Let < be a binary relation on ∆ that satisfies Weak Order, Con-

tinuity, Weak Monotonicity, and Negative Certainty Independence. The following

statements are true:

(a) There exists a set W ⊆ Unor such that p <′ q if and only if Ep (v) ≥ Eq (v) for

all v ∈ W.

(b) For each p, q ∈ ∆ if p <′ q then p < q.

(c) If <′′ is an integral stochastic order that satisfies (b) then p <′′ q implies p <′ q.

(d) If <′′ is an integral stochastic order that satisfies (b) and such that W ′′ can be

chosen to be a subset of Unor then co (W) ⊆ co (W ′′).

Proof. (a). By Cerreia-Vioglio (2009, Proposition 22), there exists a set W ⊆
C ([w, b]) such that p <′ q if and only if Ep (v) ≥ Eq (v) for all v ∈ W . By Lemma 1,

we also have that x ≥ y if and only if δx <′ δy. By point 4 of Proposition 4, if <∗=<′

then W can be chosen to be Wmax− nor.

(b), (c), and (d). The statements follow from Cerreia-Vioglio (2009, Proposition

22 and Lemma 35). �

The next proposition clarifies what is the relation between our assumption of Weak

Monotonicity and First Order Stochastic Dominance. Given two binary relations, p

and q, we write p <FSD q if and only if p dominates q with respect to First Order

Stochastic Dominance.

Proposition 6. If < is a binary relation on ∆ that satisfies Weak Order, Continuity,

Weak Monotonicity, and Negative Certainty Independence then

p <FSD q =⇒ p < q.

Proof. By Proposition 5, there exists W ⊆ Unor such that

p <′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ W .
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By Proposition 5 and since W ⊆ Unor ⊆ Vin, it follows that

p <FSD q =⇒ Ep (v) ≥ Eq (v) ∀v ∈ Vin
=⇒ Ep (v) ≥ Eq (v) ∀v ∈ W

=⇒ p <′ q =⇒ p < q,

proving the statement. �

We conclude this appendix with two results that explore the topological properties

of a subset W in Unor.

Lemma 2. Let W be a subset of Unor. The following statements are equivalent:

(i) W is compact with respect to the topology of sequential pointwise convergence;

(ii) W is norm compact.

Proof. (i) implies (ii). Consider {vn}n∈N ⊆ W . By assumption, there exists

{vnk}k∈N ⊆ {vn}n∈N and v ∈ W such that vnk (x) → v (x) for all x ∈ [w, b]. By

Aliprantis and Burkinshaw (1998, pag. 79) and since v is a continuous function

and each vnk is increasing, it follows that this convergence is uniform, proving the

statement.

(ii) implies (i). It is trivial. �

Theorem 7. Let V : ∆→ R and W ⊆ Unor be such that

V (p) = inf
v∈W

v−1 (Ep (v)) ∀p ∈ ∆.

If each element of W is concave, V is continuous and such that for each x, y ∈ [w, b]

and for each λ ∈ (0, 1]

x > y =⇒ V (λδx + (1− λ) δw) > V (λδy + (1− λ) δw) (3)

then W is relatively compact with respect to the topology of sequential pointwise con-

vergence restricted to Unor.

Proof. We start by proving an ancillary claim.

32



Claim: For each ε > 0 there exists δ ∈ (0, b− w) such that for each v ∈ W

v (w + δ) < ε.

Proof of the Claim.

By contradiction, assume that there exists ε̄ > 0 such that for each δ ∈ (0, b− w)

there exists vδ ∈ W such that vδ (w + δ) ≥ ε̄. In particular, for each k ∈ N such that
1
k
< b − w there exists vk ∈ W such that vk

(
w + 1

k

)
≥ ε̄. Define λk ∈ [0, 1] for each

k > 1
b−w to be such that

λkvk (b) + (1− λk) vk (w) = λk = vk

(
w +

1

k

)
≥ ε̄ > 0. (4)

Define pk = λkδb + (1− λk) δw for all k > 1
b−w . Without loss of generality, we can

assume that λk → λ. Notice that λ ≥ ε̄ > 0. Define p = λδb + (1− λ) δw. It is

immediate to see that pk → p. By (4) and by definition of V , it follows that

w ≤ V (pk) ≤ v−1k (Epk (vk)) = w +
1

k
∀k > 1

b− w
.

Since V is continuous and by passing to the limit, we have that

V (λδb + (1− λ) δw) = V (p) = w = V (λδw + (1− λ) δw) ,

a contradiction with V satisfying (3). �

Consider {vn}n∈N ⊆ W . Observe that, by construction, {vn}n∈N is uniformly

bounded. By Rockafellar (1970, Theorem 10.9), there exists {vnk}k∈N ⊆ {vn}n∈N and

v ∈ R(w,b) such that vnk (x)→ v (x) for all x ∈ (w, b). Since vnk ([w, b]) = [0, 1] for all

k ∈ N, v takes values in [0, 1]. Define v̄ : [w, b]→ [0, 1] by

v̄ (w) = 0, v̄ (b) = 1, and v̄ (x) = v (x) ∀x ∈ (w, b) .

Since {vnk}k∈N ⊆ W , we have that vnk (x) → v̄ (x) for all x ∈ [w, b]. It is immediate

to see that v̄ is increasing and concave. We are left to show that v̄ ∈ Unor, that is, v̄

is continuous and strictly increasing. By Rockafellar (1970, Theorem 10.1) and since

v̄ is finite and concave, we have that v̄ is continuous at each point of (w, b). We are

left to check continuity at the extrema. Since v̄ is increasing, concave, and such that
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v̄ (w) = 0 = v̄ (b) − 1, we have that v̄ (x) ≥ x−w
b−w for all x ∈ [w, b]. It follows that

1 ≥ lim supx→b− v̄ (x) ≥ lim infx→b− v̄ (x) ≥ limx→b−
x−w
b−w = 1, proving continuity at

b. We next show that v̄ is continuous at w. By the initial claim, for each ε > 0 we

have that there exists δ > 0 such vnk (w + δ) < ε
2

for all k ∈ N. Since v̄ (w) = 0, v̄ is

increasing, and the pointwise limit of {vnk}k∈N, we have that for each x ∈ [w,w + δ)

|v̄ (x)− v̄ (w)| = |v̄ (x)| = v̄ (x) ≤ v̄ (w + δ)

= lim
k
vnk (w + δ) ≤ ε

2
< ε,

proving continuity at w. We are left to show that v̄ is strictly increasing. We argue

by contradiction. Assume that v̄ is not strictly increasing. Since v̄ is increasing,

continuous, concave, and such that v̄ (w) = 0 = v̄ (b)− 1, there exists x ∈ (w, b) such

that v̄ (x) = 1. Define {λk}k∈N ⊆ [0, 1) such that λkvnk (b) + (1− λnk) vnk (w) = λk =

vnk (x). Since v̄ is the pointwise limit of {vnk}k∈N, it follows that λk → 1. Define

pk = λkδb + (1− λk) δw for all k ∈ N. It is immediate to see that pk → δb. Thus, we

also have that for each k ∈ N

V (pk) ≤ v−1nk (Epk (vnk)) ≤ x.

Since V is continuous and by passing to the limit, we have that x < b = V (δb) ≤ x,

a contradiction. �

Appendix B: Proof of the Results in the Text

Proof of Theorem 1. Before starting, we point out that in proving (i) implies (ii),

we will prove the existence of a Continuous Cautious Expected Utility representation

W which is convex and normalized, that is, a subset of Unor. This will turn out to be

useful in the proofs of other results in this section. The normalization of W will play

no role in proving (ii) implies (i).

(i) implies (ii). We proceed by steps.

Step 1 . There exists a continuous certainty equivalent utility function V : ∆→ R.

Proof of the Step.

Since < satisfies Weak Order and Continuity, there exists a continuous function

V̄ : ∆→ R such that V̄ (p) ≥ V̄ (q) if and only if p < q. By Weak Monotonicity, we
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have that

x ≥ y ⇐⇒ δx < δy ⇐⇒ V̄ (δx) ≥ V̄ (δy) . (5)

Next, observe that δb <FSD q <FSD δw for all q ∈ ∆. By Proposition 6 and since <

satisfies Weak Order, Continuity, Weak Monotonicity, and NCI, this implies that

δb < q < δw ∀q ∈ ∆. (6)

Consider a generic q ∈ ∆ and the sets

{δx : δx < q} = {p ∈ ∆ : p < q} ∩ {δx}x∈[w,b]

and

{δx : q < δx} = {p ∈ ∆ : q < p} ∩ {δx}x∈[w,b] .

By (6), Continuity, and Aliprantis and Border (2005, Theorem 15.8), both sets are

nonempty and closed. Since < satisfies Weak Order, it follows that the sets

{x ∈ [w, b] : δx < q} and {x ∈ [w, b] : q < δx}

are nonempty, closed, and their union coincides with [w, b]. Since [w, b] is connected,

there exists an element xq in their intersection. In other words, there exists xq ∈ [w, b]

such that δxq ∼ q. Since q was chosen to be generic and by (5) and (6), such element

is unique and we further have that

V̄ (δb) ≥ V̄ (q) = V̄
(
δxq
)

= V̄ (q) ≥ V̄ (δw) ∀q ∈ ∆. (7)

Next, define f : [w, b] → R by f (x) = V̄ (δx) for all x ∈ [w, b]. By (5), Aliprantis

and Border (2005, Theorem 15.8), and (7), f is strictly increasing, continuous, and

such that f ([w, b]) = V̄ (∆). It follows that V : ∆ → R defined by u = f−1 ◦ V̄ is

a well defined continuous function such that p < q if and only if V (p) ≥ V (q) and

V (δx) = x for all x ∈ [w, b], proving the statement. �

Step 2. <′ is represented by a set W ⊆ Unor, that is,

p <′ q ⇐⇒ v−1 (Ep (v)) ≥ v−1 (Eq (v)) ∀v ∈ W . (8)

Proof of the Step.
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It follows by point (a) of Proposition 5. Recall that W can be chosen to be

Wmax− nor for <′. �

Step 3. For each p ∈ ∆ we have that infv∈W v
−1 (Ep (v)) ∈ [w, b].

Proof of the Step.

Fix p ∈ ∆. By construction, we have that b ≥ v−1 (Ep (v)) ≥ w for all v ∈ W . It

follows that c = infv∈W v
−1 (Ep (v)) is a real number in [w, b].

Step 4. For each p ∈ ∆ we have that

V (p) ≤ inf
v∈W

v−1 (Ep (v)) .

Proof of the Step.

Fix p ∈ ∆. By Step 3, c = infv∈W v
−1 (Ep (v)) is a real number in [w, b]. Since

V (∆) = [w, b], if c = b then we have that V (p) ≤ b = c. Otherwise, pick d such that

b > d > c. Since d > c, we have that there exists ṽ ∈ W such that

ṽ−1 (Ep (ṽ)) < d = ṽ−1 (Eδd (ṽ)) .

By Step 2, it follows that p 6<′ δd. By Lemma 1, this implies that δd � p, that is,

V (p) < V (δd) = d. Since d was chosen to be generic and strictly greater than c, we

have that V (p) ≤ c, proving the statement. �

Step 5. For each p ∈ ∆ we have that

V (p) ≥ inf
v∈W

v−1 (Ep (v)) .

Proof of the Step.

Fix p ∈ ∆. By Step 3, c = infv∈W v
−1 (Ep (v)) is a real number in [w, b]. By

construction, we have that

v−1 (Ep (v)) ≥ c = v−1 (Eδc (v)) ∀v ∈ W .

By Step 2, it follows that p <′ δc. By Proposition 5 point (b), this implies that p < δc,

that is, V (p) ≥ V (δc) = c, proving the statement. �

The implication follows from Steps 1, 2, 4, and 5.
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(ii) implies (i). Assume there exists a set W ⊆ U such that V : ∆ → R, defined

by

V (p) = inf
v∈W

v−1 (Ep (v)) ∀p ∈ ∆,

is a continuous utility function for <. Since < is represented by a continuous utility

function, it follows that it satisfies Weak Order and Continuity. By construction, it

is also immediate to see that V (δx) = x for all x ∈ [w, b]. In light of this fact, Weak

Monotonicity follows immediately. Finally, consider p ∈ ∆ and x ∈ [w, b]. Assume

that p < δx. It follows that for each λ ∈ [0, 1] and for each q ∈ ∆

v−1 (Ep (v)) ≥ V (p) ≥ V (δx) = x = v−1 (Eδx (v)) ∀v ∈ W

=⇒ Ep (v) ≥ Eδx (v) ∀v ∈ W

=⇒ Eλp+(1−λ)q (v) ≥ Eλδx+(1−λ)q (v) ∀v ∈ W

=⇒ v−1
(
Eλp+(1−λ)q (v)

)
≥ v−1

(
Eλδx+(1−λ)q (v)

)
∀v ∈ W

=⇒ V (λp+ (1− λ) q) ≥ V (λδx + (1− λ) q)

=⇒ λp+ (1− λ) q < λδx + (1− λ) q,

proving that < satisfies NCI. �

Proof of Proposition 1. Consider W and W ′ in Unor such that co(W) = co(W ′).
Notice first that if both W and W ′ are convex, the proposition follows trivially. To

prove the proposition, it will therefore suffice to show that for eachW ⊆ Unor we have

that

inf
v∈W

v−1 (Ep (v)) = inf
v∈co(W)

v−1 (Ep (v)) ∀p ∈ ∆.

Consider p ∈ ∆. It is immediate to see that

inf
v∈W

v−1 (Ep (v)) ≥ inf
v∈co(W)

v−1 (Ep (v)) .

Conversely, consider v̄ ∈ co (W). It follows that there exist {vi}ni=1 ⊆ W and

{λi}ni=1 ⊆ [0, 1] such that
n∑
i=1

λi = 1 and
n∑
i=1

λivi = v̄. Define x ∈ [w, b] and

{xi}ni=1 ⊆ [w, b] by x = v̄−1 (Ep (v̄)) and xi = v−1i (Ep (vi)) for all i ∈ {1, ..., n}.
By contradiction, assume that x < mini∈{1,...,n} xi. Since {vi}ni=1 ⊆ W ⊆ Vs−in, we
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have that

Ep (v̄) = Ep

(
n∑
i=1

λivi

)
=

n∑
i=1

λiEp (vi) =
n∑
i=1

λivi (xi) >
n∑
i=1

λivi (x) = v̄ (x) ,

that is, x = v̄−1 (Ep (v̄)) > x, a contradiction. This implies that

v̄−1 (Ep (v̄)) = x ≥ min
i∈{1,...,n}

xi = min
i∈{1,...,n}

v−1i (Ep (vi)) ≥ inf
v∈W

v−1 (Ep (v)) .

Since v̄ was chosen to be generic in co (W), we can conclude that

v̄−1 (Ep (v̄)) ≥ inf
v∈W

v−1 (Ep (v)) ∀v̄ ∈ co (W) ,

proving that infv∈W v
−1 (Ep (v)) ≤ infv∈co(W) v

−1 (Ep (v)) and thus the statement. �

Proof of Theorem 2. By the proof of Theorem 1 (Steps 1, 2, 4, and 5), we have

that there exists a set Ŵ ⊆ Unor such that

p <′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ Ŵ (9)

and such that V : ∆→ R, defined by

V (p) = inf
v∈Ŵ

v−1 (Ep (v)) ∀p ∈ ∆, (10)

is a continuous utility function for <. This proves points (i) and (iii). Next con-

sider a subset W of Unor such that the function V : ∆ → R defined by V (p) =

infv∈W v
−1 (Ep (v)) for all p ∈ ∆ represents <. Define <′′ by

p <′′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ W .

It is immediate to see that if p <′′ q then p < q. By point (d) of Proposition 5, this

implies that co
(
Ŵ
)
⊆ co (W), proving point (ii).

Finally, consider two sets Ŵ1 and Ŵ2 in Unor that satisfy (9) and (10). By point

5 of Proposition 4, it follows that co(Ŵ1) = co(Ŵ2). �

Proof of Theorem 3. We just prove point (i) since point (ii) follows by an analogous

argument. Given p ∈ ∆, we denote by e(p) its expected value. We say that p <MPS q
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if and only if q is a mean preserving spread of p.22 Recall that < is risk averse if and

only if p <MPS q implies p < q. Assume that < is risk averse. Let p, q ∈ ∆0.
23 Since

∆0 is dense in ∆ and < satisfies Weak Order and Continuity, we have that

p <MPS q =⇒ λp+ (1− λ) r <MPS λq + (1− λ) r ∀λ ∈ (0, 1] , ∀r ∈ ∆0

=⇒ λp+ (1− λ) r < λq + (1− λ) r ∀λ ∈ (0, 1] ,∀r ∈ ∆0

=⇒ λp+ (1− λ) r < λq + (1− λ) r ∀λ ∈ (0, 1] ,∀r ∈ ∆

=⇒ p <′ q.

This implies that

p <MPS q =⇒ p <′ q =⇒ Ep (v) ≥ Eq (v) ∀v ∈ Ŵ .

We can conclude that each v in Ŵ is concave. For the other direction, assume that

each v in Ŵ is concave. Since Ŵ ⊆ Vinco, we have that

p <MPS q =⇒ e (p) = e (q) and Ep (v) ≥ Eq (v) ∀v ∈ Vinco
=⇒ Ep (v) ≥ Eq (v) ∀v ∈ Ŵ =⇒ p <′ q =⇒ p < q,

proving that < is risk averse. �

Proof of Theorem 4. Before proceeding, we make a few remarks. Fix i ∈ {1, 2}.
By the proof of Theorem 1 and since <i satisfies Weak Order, Continuity, Weak

Monotonicity, and NCI, it follows that W i
max− nor for <′i constitutes a Continuous

Cautious Expected Utility representation of <i. Since W i
max− nor is convex, if Ŵi

is chosen as in Theorem 2 then we have that co(Ŵi) coincides with the closure of

W i
max− nor. Also recall that for each p ∈ ∆, we denote by xip the element in [w, b] such

22Recall that, by Rothschild and Stiglitz (1970), if p and q are elements of ∆0 and q is a mean
preserving spread of p, then p and q have the same mean and they give the same probability to
each point in their support with the exception of four ordered points x1 < x2 < x3 < x4. There the
following relations hold:

q (x1)− p (x1) = p (x2)− q (x2) ≥ 0

and

q (x4)− p (x4) = p (x3)− q (x3) ≥ 0.

23Recall that ∆0 is the subset of ∆ which contains just the elements with finite support.
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that p ∼i δxip . We also have that Vi : ∆→ R, defined by

Vi (p) = inf
v∈Wi

max− nor

v−1 (Ep (v)) = inf
v∈Ŵi

v−1 (Ep (v)) = inf
v∈Wi

v−1 (Ep (v)) ∀p ∈ ∆,

represents <i, yielding that xip = Vi (p).

(i) implies (ii) and (i) implies (iii). Since <1 is more risk averse than <2, we have

that p ∼1 δx1p implies p <2 δx1p . Since <2 satisfies Weak Order and Weak Monotonicity,

it follows that x2p ≥ x1p for all p ∈ ∆. This implies that

V1 (p) = min {V1 (p) , V2 (p)} = inf
v∈W1∪W2

v−1 (Ep (v)) ∀p ∈ ∆,

that is,W1∪W2 is a Continuous Cautious Expected Utility representation of <1. By

the remark in Section 3, it follows that Ŵ1 ∪W2 is also a Continuous Cautious Ex-

pected Utility representation of <1. By the initial part of the proof, we can conclude

that co(Ŵ1) = cl
(
W1

max− nor

)
= co(Ŵ1 ∪W2).

(iii) implies (i). Since co(Ŵ1) = cl
(
W1

max− nor

)
= co(Ŵ1 ∪W2), it follows that

V1 (p) = inf
v∈Ŵ1

v−1 (Ep (v)) = inf
v∈Ŵ1∪W2

v−1 (Ep (v))

= inf
v∈W1∪W2

v−1 (Ep (v)) = min {V1 (p) , V2 (p)} ≤ V2 (p) ∀p ∈ ∆,

proving that x2p ≥ x1p for all p ∈ ∆. It follows that <1 is more risk averse than <2.

(ii) implies (i). Since W1 ∪W2 is a Continuous Cautious Expected Utility repre-

sentation of <1, it follows that

V1 (p) = inf
v∈W1∪W2

v−1 (Ep (v)) ≤ inf
v∈W2

v−1 (Ep (v)) ≤ V2 (p) ∀p ∈ ∆,

proving that x2p ≥ x1p for all p ∈ ∆. It follows that <1 is more risk averse than <2.�

Proof of Proposition 2. (i) We first prove necessity. By Theorem 2 and since <1

and <2 satisfy Weak Order, Continuity, Weak Monotonicity, and NCI, we have that

p <′i q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ Ŵi ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ co(Ŵi). (11)
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By Proposition 5 point (b) and since <1 is more indecisive than <2, we have that

p <′1 q =⇒ p <′2 q =⇒ p <2 q.

By Proposition 5 point (d) and (11), we can conclude that co(Ŵ2) ⊆ co(Ŵ1). We

next prove sufficiency. By (11) and since co(Ŵ2) ⊆ co(Ŵ1), we have that

p <′1 q =⇒ Ep (v) ≥ Eq (v) ∀v ∈ co(Ŵ1) =⇒ Ep (v) ≥ Eq (v) ∀v ∈ co(Ŵ2) =⇒ p <′2 q,

proving point (i).

(ii) By (11) and Proposition 4, we have that co(Ŵi) = cl
(
W i

max− nor

)
for i ∈ {1, 2}.

Since <1 is more indecisive than <2, it follows that cl
(
W2

max− nor

)
⊆ cl

(
W1

max− nor

)
.

By definition of W1
max− nor and W2

max− nor, it follows that W2
max− nor ⊆ W1

max− nor. By

the proof of Theorem 1, this implies that

V1 (p) = inf
v∈W1

max− nor

v−1 (Ep (v)) ≤ inf
v∈W2

max− nor

v−1 (Ep (v)) = V2 (p) ∀p ∈ ∆.

Since each Vi is a continuous certainty equivalent utility function, it follows that <1

is more risk averse than <2. �

Proof of Theorem 5. (i) implies (ii). It is immediate to see that Monotonicity

implies Weak Monotonicity. By the proof of Theorem 1 and the definition of <′, we

have that the set Wmax− nor ⊆ Unor is such that the function V : ∆→ R, defined by

V (p) = inf
v∈Wmax− nor

v−1 (Ep (v)) ∀p ∈ ∆, (12)

is a continuous utility function for <. Since < satisfies Monotonicity, V is such that

for each x, y ∈ [w, b] and for each λ ∈ (0, 1]

x > y ⇒ V (λδx + (1− λ) δw) > V (λδy + (1− λ) δw) .

By definition ofWmax− nor, it is also immediate to check thatWmax− nor is closed under

the topology of sequential pointwise convergence restricted to Unor. By Theorem 7,

it follows that Wmax− nor is compact in the same topology. This yields compactness

in the topology of sequential pointwise convergence. By Lemma 2, this implies that

Wmax− nor is also compact with respect to the topology induced by the supnorm. We
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can conclude that the inf in (12) is attained and so the statement follows.

(ii) implies (i). Consider V : ∆→ R defined by

V (p) = min
v∈W

v−1 (Ep (v)) ∀p ∈ ∆.

By hypothesis, V is well defined and it represents <. Since W is compact, we have

that V is continuous. By Theorem 1, this implies that < satisfies Weak Order,

Continuity, Weak Monotonicity, and NCI. By the same arguments contained in the

proof of Theorem 3 and since each v ∈ W is concave, we have that < satisfies Risk

Aversion. Next, consider p, q ∈ ∆ such that p �FSD q. Consider also v ∈ W such that

V (p) = v−1 (Ep (v)). Since v is strictly increasing, we have that V (p) = v−1 (Ep (v)) >

v−1 (Eq (v)) ≥ V (q), proving that < satisfies Strict First Order Stochastic Dominance

and so, in particular, Monotonicity. �

Proof of Theorem 6. Let <′ be a reflexive and transitive binary relation on ∆ that

satisfies Sequential Continuity, Weak Monotonicity, and Independence. We first prove

the existence of a Cautious Completion. In doing this, we show that this completion

has a Cautious Expected Utility representation. By Dubra et al. (2004), there exists

a set W ⊆ C([w, b]) such that p <′ q if and only if Ep (v) ≥ Eq (v) for all v ∈ W . By

Proposition 4, without loss of generality, we can assume that W ⊆ Unor ⊆ U .

Next define the preference relation <̂ as

p <̂ q ⇐⇒ inf
v∈W

v−1 (Ep (v)) ≥ inf
v∈W

v−1 (Eq (v)) . (13)

Notice that <̂ is well defined and it satisfies Weak Order, Weak Monotonicity, and

clearly for each p ∈ ∆ there exists x ∈ [w, b] such that p ∼̂ δx. Next, we show <̂ is a

completion of <′. Since each v ∈ W is strictly increasing, we have that

p <′ q ⇐⇒ v−1 (Ep (v)) ≥ v−1 (Eq (v)) ∀v ∈ W . (14)

This implies that if p <′ q then infv∈W v
−1 (Ep (v)) ≥ infv∈W v

−1 (Eq (v)), that is, if

p <′ q then p<̂q. Finally, let x be an element of [w, b] and p ∈ ∆ such that p 6<′ δx. By

(14), it follows that there exists ṽ ∈ W such that ṽ−1 (Eδx (ṽ)) = x > ṽ−1 (Ep (ṽ)). By

(13), this implies that infv∈W v
−1 (Eδx (v)) = x > infv∈W v

−1 (Ep (v)), hence δx �̂ p.

This concludes the proof of the existence of a Cautious Completion.
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We are left with proving uniqueness. Let <◦ be a Cautious Completion of <′.
By point 1 of Definition 5, <◦ satisfies Weak Order, Weak Monotonicity, and for
each p ∈ ∆ there exists x ∈ [w, b] such that p ∼◦ δx. This implies that there exists
V : ∆ → R such that V represents <◦ and V (δx) = x for all x ∈ [w, b]. Moreover,
we have that V (∆) = [w, b]. Let p ∈ ∆. Define c = infv∈W v

−1 (Ep (v)) ∈ [w, b]. If
c = b then V (p) ≤ b = c = infv∈W v

−1 (Ep (v)). If c < b then for each d ∈ (c, b) there
exists ṽ ∈ W such that ṽ−1 (Eδd (ṽ)) = d > ṽ−1 (Ep (ṽ)), yielding that p 6<′ δd. By
point 3 of Definition 5, we can conclude that δd �◦ p, that is, d = V (δd) > V (p).
Since d was arbitrarily chosen in (c, b), it follows that V (p) ≤ c = infv∈W v

−1 (Ep (v)).
Finally, by definition of c and (14), we have that v−1 (Ep (v)) ≥ c = v−1 (Eδc (v)) for
all v ∈ W , that is, p <′ δc. By point 2 of Definition 5, it follows that p <◦ δc, that
is, V (p) ≥ V (δc) = c = infv∈W v

−1 (Ep (v)). In other words, we have shown that
V (p) = infv∈W v

−1 (Ep (v)) for all p ∈ ∆. By (13) and since V represents <◦, we can
conclude that <◦= <̂, proving the statement. �
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