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Abstract

This paper develops methods to study the evolution of agents’expectations and uncertainty in
general equilibrium models. A central insight consists of recognizing that the evolution of agents’
beliefs can be captured by defining a set of regimes that are characterized by the degree of agents’
pessimism, optimism, and uncertainty about future equilibrium outcomes. Once this kind of structure
is imposed, it is possible to create a mapping between the evolution of agents’beliefs and observable
outcomes. Agents in the model are fully rational, conduct Bayesian learning, and they know that they
do not know. Therefore, agents form expectations taking into account that their beliefs will evolve
according to what they observe in the future. The new modeling framework accommodates both
gradual and abrupt changes in agents’beliefs and allows an analytical characterization of uncertainty.
Shocks to beliefs are shown to have both first-order and second-order effects. To illustrate how to
apply the methods, we use a prototypical Real Business Cycle model in which households form beliefs
about the likely duration of high-growth and low-growth regimes.
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1 Introduction

A centerpiece of the rational expectations revolution is that macroeconomic outcomes critically

depend on how agents’expectations about future events evolve over time. Therefore, correctly

modeling the dynamics of the private sector’s beliefs is essential to accurately predict economic

outcomes. Most general equilibrium models are solved assuming that agents know the exact

structure of the whole economy and are certain about the rules governing the future behavior

of other players. This is certainly a strong restriction imposed upon the dynamics of beliefs.

For instance, the private sector is likely to have limited information about the future path of

policy-makers’decisions, dividend payments, economic growth, etc.

In this paper we develop methods to solve models in which forward-looking and fully rational

agents are subject to waves of pessimism, optimism, and uncertainty that turn out to critically

affect macroeconomic outcomes. Such outbursts of pessimism, optimism, and uncertainty may

happen abruptly or may gradually unfold over a long period of time in response to the behavior

of other agents or to the realizations of economic outcomes. All results are derived within a

modeling framework suitable for structural estimation that will allow researchers to bring the

models to the data.

The evolution of agents’beliefs is modelled assuming the existence of different states of the

world that differ according to the statistical properties of the exogenous shocks or based on the

behavior of some of the agents in the model. Such regimes follow a Markov-switching process,

which may be correlated with other aspects of the model. For example, the government could

be more likely to inflate debt away when the level of spending is high. Agents are assumed to

observe economic outcomes, but not the regimes themselves. Agents will then adopt Bayesian

learning to infer which regime is in place. This will determine the evolution of agents’beliefs

about future economic outcomes.

Our modeling framework goes beyond the assumption of anticipated utility that is often

used in models characterized by a learning process. Such an assumption implies that agents

forecast future events assuming that their beliefs will never change in the future. Instead, agents

in our models know that they do not know. Therefore, when forming expectations, they take

into account that their beliefs will evolve according to what they observe in the future. In our

context, it is possible to go beyond the anticipated utility assumption because there are only

a finite number of relevant beliefs and they are strictly linked to observable outcomes through

the learning mechanism in a way that we can keep track of their evolution.

The proposed model framework is flexible enough to encompass both abrupt and gradual

changes in beliefs. For example, augmenting the modeling framework with signals about the

regime in place allows one to capture the effect of news on the evolution of the economy or

to study the macroeconomic implications of changes in animal spirits about future events. At
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the same time, through the learning process, we can model situations in which agents’beliefs

gradually change in response to the behavior of other agents or the realizations of stochastic

events. This sluggish adjustment of public expectations is hard to reproduce through rational

expectations models in which the functioning of the whole economy is common knowledge

among agents.

We show how to apply these methods using a prototypical Real Business Cycle (RBC)

model. In the model, total factor productivity (TFP) growth can assume two values: high or

low. For each value of TFP growth, we allow for a long-lasting and a short-lasting regime.

Therefore, while agents can observe the current TFP growth rate, they are uncertain about

its future values, because they do not know if the current value is likely to last for a short

time or for a long time. We consider a wide range of specifications, allowing for smooth

transitions or abrupt changes in agents’optimism about future realizations of TFP growth.

Each of these different specifications can be easily captured with the appropriate transition

matrix governing the evolution of TFP growth. This has the important implication that the

dynamics of pessimism, optimism, and uncertainty are consistent in equilibrium. Whenever a

short-lasting regime is in fact realized, with the benefit of hindsight, agents’beliefs turn out to

over-react to the regime change because agents always take into account the possibility that the

economy entered a long-lasting regime. On the other hand, if, in fact, the regime is long-lasting,

it takes time for agents’beliefs to line up with the actual realization. This implies that although

agents are fully rational, their beliefs are generally misaligned with respect to the actual state of

the economy. Such a misalignment is found to substantially influence consumption and capital

allocation in the RBC model.

The methods introduced in this paper can be combined with the techniques developed

by Bianchi (2012) to obtain an analytical characterization of the evolution of uncertainty in

response to changes in agents’beliefs. We expand our analysis of the RBC model to study

the case in which agents receive signals about the likely duration of the current regime. In

this environment, signals work as shocks to agents’beliefs that have first-order and second-

order effects. Uncertainty about macroeconomic events evolves over time as agents’ beliefs

drift, creating interesting comovements between volatility and real activity. This might shed

further light on the link between uncertainty and macroeconomic outcomes with respect to the

fascinating study of Bloom (2009).

The methods developed in this paper are based on the idea of expanding the number of

regimes to take into account the learning mechanism. The central insight consists of recognizing

that the evolution of agents’beliefs can be captured by defining an expanded set of regimes

indexed with respect to agents’ beliefs themselves. Once this structure has been imposed,

the model can be recast as a Markov-switching dynamic stochastic general equilibrium (MS-

DSGE) model with perfect information. If regime changes enter additively the model can be
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solved with standard solution methods such as gensys (Sims, 2002) and Blanchard and Kahn

(1980), following the approach described in Schorfheide (2005) and Liu, Waggoner, and Zha

(2011). If instead regime changes enter multiplicatively the model can be solved with any of the

methods developed for solving MS-DSGE models, such as Davig and Leeper (2007), Farmer,

Waggoner, and Zha (2009), Cho (2012), and Foerster, Rubio-Ramirez, Waggoner, and Zha

(2011).

In both cases, the resulting solution is suitable for likelihood-based estimation. This is

because even if the final number of regimes is very large, there is a tight link between observable

outcomes and the evolution of agents’beliefs. In other words, the transition matrix governing

the joint dynamics of the economy and agents’beliefs is highly restricted. For example, Bianchi

and Melosi (2012a) apply these methods and Bayesian techniques to estimate a model in which

agents are uncertain about the future stance of monetary policy. This paper is therefore related

to a growing literature that models parameter instability to capture changes in the evolution of

the macroeconomy. This consists of two branches: Schorfheide (2005), Justiniano and Primiceri

(2008), Bianchi (forthcoming), Davig and Doh (2008), and Fernandez-Villaverde and Rubio-

Ramirez (2008) introduce parameter instability in DSGE models, while Sims and Zha (2006),

Primiceri (2005), and Cogley and Sargent (2005) work with structural VARs. Finally, to the

extent that we can model situations in which agents’beliefs evolve in response to policy-makers’

behavior, our work is also linked to papers that study how inflation expectations respond to

policy decisions, such as Mankiw, Reis, and Wolfers (2004), Nimark (2008), Del Negro and

Eusepi (2010), and Melosi (2012a,b).

The remainder of the paper is organized as follows. Section 2 introduces the class of models

and derives the main results. Section 3 applies the methods to a prototypical RBC model in

which agents try to infer the likely value of future TFP growth. Section 4 extends the analysis

to allow for signals. Section 5 provides an overview of alternative applications. Section 6

concludes.

2 The Model Framework

In this section, we introduce the modeling environment to which our methods are applicable.

This framework turns out to be suitable for studying the effects of waves of pessimism, optimism,

and uncertainty on macroeconomic dynamics. Various sources of uncertainty can be considered,

such as dividends, relative volatility of shocks, or the type of the central bank. For instance, one

can use this framework to study how animal spirits about the incoming phase of the business

cycle evolve over time and, in turn, affect the business cycle itself. Alternatively, one can

use this framework to study how long it takes agents to learn about structural changes in the

dynamics of fundamentals or in the behavior of policy-makers.
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The class of models we focus on has three salient features:

1. A system of equations for the variables of the model:

Γ0 (ξt)St = Γc (ξt) + Γ1 (ξt)St−1 + Ψ (ξt) εt + Πηt (1)

where St is a vector containing all variables of the model known at time t (including

conditional expectations formed at time t), ηt is a vector containing the endogenous ex-

pectation errors, and the random vector εt contains the familiar Gaussian shocks. The

hidden variable ξt controls the parameter values in place at time, θ (ξt) , assumes dis-

crete values ξt ∈ {1, . . . , n}, and evolves according to a Markov-switching process with
transition matrix P.

2. Agents have to forecast the dynamics of the endogenous variables St+1 on the basis of

Model (1) and their information set at time t, It. This includes the history of model
variables and shocks, but not the history of regimes, ξt: It ≡ {St, εt} .

3. Some regimes are assumed to bring about the same model parameters, θ (ξt). Let us

group the regimes into m blocks bj = {ξt ∈ {1, . . . , n} : θ (ξt) = θbi}, for j ∈ {1, ...,m}.

Given that agents know the structure of the model (sub 1 ) and can observe the endogenous

variables and the shocks (sub 2 ), they can also determine which set of parameters is in place

at each point in time. However, while this is enough to establish the history of blocks, agents

cannot exactly infer the realized regime ξt, because the regimes within each block share the

same parameter values (sub 3 ). It is very important to emphasize that regimes that belong to

the same block are not identical in all respects, as they can differ in their stochastic properties

such as average persistence and the probability of switching to other regimes. These properties

are known to agents that will use them to learn about the regime in place today and to form

expectations about the future. Therefore, points 1-3 describe a model in which agents learn

about the latent variable ξt. As will be shown below, such a learning process affects the

equilibrium law of motion of the economy. However, agents cannot extract any additional

information about the underlying regime from observing the resulting law of motion because

this reflects their own beliefs.

Henceforth, we will consider a benchmark case in which there are two blocks (m = 2) and

two regimes within each block. This choice is made in order to keep notation simple. The

extension to the case in which m > 2 is straightforward. The probabilities of moving across
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regimes are summarized by the transition matrix:

P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 (2)

in which the probability of switching to regime j given that we are in regime i is denoted by

pij. Without loss of generality, we assume that regimes ξt = 1 and ξt = 2 belong to Block 1,

while regimes ξt = 3 and ξt = 4 belong to Block 2. We consider only non-trivial blocks that

satisfy p11 + p12 + p21 + p22 6= 0 and p33 + p34 + p43 + p44 6= 0. The excluded cases are trivial

as both blocks last only one period. Furthermore, we require that the two regimes that belong

to the same block differ either in their persistence or in the probability of moving from one

another; that is, we require that either p11 6= p22 or p12 6= p21 and either p33 6= p44 or p34 6= p43.

This condition makes the within-block Bayesian learning non-trivial. Finally, we will impose

that p11 + p22 > 0 and p33 + p44 > 0. This last assumption guarantees that within a block at

least one of the two regimes can last more than one period. Summarizing, for each block, we

will maintain the following benchmark assumptions throughout the paper:

A1 Non-triviality assumption: p11 + p12 + p21 + p22 6= 0 and p33 + p34 + p43 + p44 6= 0

A2 Non-trivial-learning assumption: Either p11 6= p22 or p12 6= p21 and either p33 6= p44 or

p34 6= p43

A3 Non-jumping assumption: p11 + p22 > 0 and p33 + p44 > 0

We will now proceed in two steps. First, in Subsection 2.1 we will characterize the evolu-

tion of agents’beliefs within a block for arbitrary prior beliefs. Second, in Subsection 2.2 we

will combine these results with different assumptions regarding agents’prior beliefs following a

switch across blocks. For each of these cases, we will describe how to recast the model with in-

formation frictions as a perfect information rational expectations model obtained by expanding

the number of regimes to keep track of agents’beliefs.

2.1 Evolution of Beliefs Within a Block

In what follows, we will derive the law of motion of agents’beliefs conditional on being in a

specific block. The formulas derived below will provide a recursive law of motion for agents’

beliefs based on Bayes’ theorem. Such recursion applies for any starting values for agents’

beliefs. These will be determined by agents’beliefs at the moment the system enters the new

block. We will characterize these initial beliefs in the next subsection.
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As we have noticed in the previous section, agents can infer the history of the blocks.

Therefore, at each point in time, agents know the number of consecutive periods spent in the

current block since the last switch. Let us denote the number of consecutive realizations of

Block i at time t as τ it, i ∈ {1, 2}. To fix ideas, suppose that the system is in Block 1 at time

t, implying that τ 1t > 0 and τ 2t = 0. Then, there are only two possible outcomes for the next

period. The economy can spend an additional period in Block 1, implying that τ 1t+1 = τ 1t + 1

and τ 2t+1 = 0, or it can move to Block 2, implying τ 1t+1 = 0 and τ 2t+1 = 1. In this subsection,

we restrict our attention to the first case.

Using Bayes’theorem and the fact that prob
(
ξt−1 = 2|τ 1t−1

)
= 1− prob

(
ξt−1 = 1|τ 1t−1

)
, the

probability of being in Regime 1 given that we have observed τ 1t consecutive realizations of

Block 1, prob (ξt = 1|τ 1t ) , is given by:1

prob
(
ξt = 1|τ 1t

)
=

prob
(
ξt−1 = 1|τ 1t−1

)
(p11 − p21) + p21

prob
(
ξt−1 = 1|τ 1t−1

)
(p11 + p12 − p21 − p22) + p21 + p22

(3)

where τ 1t = τ 1t−1 + 1 and for τ 1t > 1. Notice that for τ 1t = 1, prob (ξt = 1|τ 1t ) denotes the initial
beliefs that will be discussed in Subsection 2.2. Equation (3) is a rational first-order difference

equation that allows us to recursively characterize the evolution of agents’beliefs about being

in Regime 1 while the system is in Block 1. The probability of being in Regime 3 given that

we have observed τ 2t consecutive realizations of Block 2, prob (ξt = 3|τ 2t ) , can be analogously
derived:

prob
(
ξt = 3|τ 2t

)
=

prob
(
ξt−1 = 3|τ 2t−1

)
(p33 − p43) + p43

prob
(
ξt−1 = 3|τ 2t−1

)
(p33 + p34 − p43 − p44) + p43 + p44

. (4)

where τ 2t = τ 2t−1 + 1 and for τ 2t > 1.

The recursive equations (3) and (4) characterize the dynamics of agents’beliefs in both

blocks for a given set of prior beliefs. In what follows, we will show under which conditions

these beliefs converge. This result will be key to being able to apply the following proposition

and recast Model (1)-(2) in terms of a finite dimensional set of regimes indexed with respect to

agents’beliefs.

Proposition 1 For any ε > 0 there exists a τ ∗1 ∈ N and τ ∗2 ∈ N such that:

prob (ξt = 1|τ ∗1)− prob (ξt = 1|τ ∗1 + 1) < ε

prob (ξt = 2|τ ∗2)− prob (ξt = 2|τ ∗2 + 1) < ε

Proof. Easy to see once it has been proved that under the required conditions the rational
1A detailed derivation of equation (3) is provided in Appendix A.
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difference equations (3) and (4) converge. The propositions below prove this point in steps.

We will characterize the convergence of prob (ξt = 1|τ 1t ) as the number of consecutive periods
spent in Block 1 τ 1t grows large. We will denote lim

τ1t→∞
prob (ξt = 1|τ 1t ) = x using prob (ξt = 1|τ 1t ) −→

x and the characteristic roots of equation (3) with :

λ̃1 ≡
p11 − p22 − 2p21 −

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
(5)

λ̃2 ≡
p11 − p22 − 2p21 +

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
(6)

The following propositions provide the conditions under which the difference equation (3)

converges to the stable root λ̃2. An analogous pair of roots, λ̃3 and λ̃4, with λ̃4 being the stable

root, can be derived for Block 2. Similarly, all results that follow will also apply to Block 2.

Proposition 2 If (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 6= p21p12, (iii) p11 6= p22 or both

p12 6= 0 and p21 6= 0, and the initial probability is such that prob (ξt = 1|τ 1t = 1) 6= λ̃1, then

prob (ξt = 1|τ 1t ) −→ λ̃2 ∈ [0, 1]. If conditions (i), (ii), and (iii) hold and the initial probability

is such that prob (ξt = 1|τ 1t = 1) = λ̃1, then prob (ξt = 1|τ 1t ) = λ̃1 for any τ 1t .

Proof. See Appendix B.
The next proposition relaxes condition (iii) of the above proposition.

Proposition 3 If (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 6= p21p12, (iii) p11 = p22 and either

p12 = 0 or p21 = 0, then prob (ξt = 1|τ 1t ) → λ̃1 = λ̃2 and the roots are either equal to zero (if

p21 = 0) or one (if p12 = 0).

Proof. See Appendix C.
If the two regimes have the same persistence (p11 = p22) and the system has remained in

Block 1 for suffi ciently long, then agents will eventually believe they are in the regime that is an

absorbing state (conditional on staying in the block). The next proposition relaxes condition

(ii) of the previous propositions.

Proposition 4 If (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 = p21p12, then prob (ξt = 1|τ 1t ) =
p11−p21

p11+p12−p21−p22 .

Proof. See Appendix D.
Note that if conditions (i) and (ii) are satisfied, prob (ξt = 1|τ 1t ) suddenly converges by

jumping to (p11 − p21) / (p11 + p12 − p21 − p22) as the system enters Block 1. The recursion

(3) can be shown to become a linear difference equation. The solution of this equation is

characterized in the following two propositions.
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Proposition 5 If (i) p11 + p12 − p21 − p22 = 0 and (ii) p11 6= p21, then prob (ξt = 1|τ 1t ) →
p21

p22−p11+2p21 , with
p21

p22−p11+2p21 ∈ [0, 1] .

Proof. See Appendix E.

Proposition 6 If (i) p11 + p12 − p21 − p22 = 0, (ii) p11 = p21, then prob (ξt = 1|τ 1t ) = p21
p22+p21

.

Proof. See Appendix F.
When p11 = p21, beliefs prob (ξt = 1|τ 1t ) suddenly jump to p21

p22+p21
for any τ 1t ≥ 1 (as the

system enters Block 1).

To sum up, given the benchmark assumptions A1-A3, we have shown that equation (3)

always converges. Note that Proposition 2 implies that beliefs do not converge to λ̃2, if the

starting beliefs prob (ξt = 1|τ 1t = 1) = λ̃1. It can be proved that λ̃1 ≤ 0 or λ̃1 ≥ 1, implying

that the only admissible values for probabilities are either zero or one.2 Therefore, there are

only a few limiting cases in which equation (3) does not converge to λ̃2. As will become clear

later on, it is suffi cient to set the probability ratios 0 < pi3/ (pi3 + pi4) < 1 for any i ∈ {1, 2} to
rule out these cases that are not very relevant in practice.

2.2 Evolution of Beliefs Across Blocks

In the previous subsection, we characterized the evolution of agents’ beliefs conditional on

being in a specific block. The formulas derived above apply to any set of initial beliefs. In this

subsection, we will pin down agents’beliefs at the moment the economy moves across blocks.

These beliefs will serve as starting points for the recursions (3) and (4) governing the evolution

of beliefs within a block.

Suppose for a moment that before switching to the new block, agents could observe the

regime that was in place in the old block. Notice that in this case the transition matrix conveys

all the information necessary to pin down agents’prior beliefs about the regime in place within

the new block. Specifically, we have that if the economy moves from Block 2 to Block 1, the

probability of being in Regime 1 is given by

prob
(
ξt = 1|ξt−1 = 3, τ 1t = 1

)
=

p31
p31 + p32

,

if the economy was under Regime 3 in the previous period, or by

prob
(
ξt = 1|ξt−1 = 4, τ 1t = 1

)
=

p41
p41 + p42

2A proof is provided in Appendix G.
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if the economy was under Regime 4 in the previous period. Symmetrically, the probability of

being in Regime 3 given that the economy just moved to Block 2 is given by

prob
(
ξt = 3|ξt−1 = 1, τ 2t = 1

)
=

p13
p13 + p14

,

if the economy was under Regime 1 in the previous period, or by

prob
(
ξt = 3|ξt−1 = 2, τ 2t = 1

)
=

p23
p23 + p24

if the economy was previously under Regime 2.

However, in the model, agents never observe the regime that is in place. Therefore, their

beliefs at the moment the economy moves from one block to the other will be a weighted average

of the probabilities outlined above. The weights, in turn, will depend on agents’beliefs at the

moment of the switch. In what follows we will focus on three cases:

1. Static prior beliefs. In this case, the transition matrix P is such that every time the

economy enters a new block, agents’beliefs about which regime has been realized do not

depend on their beliefs right before the switch. Thus, what has been observed in the past

block does not help agents to form expectations in the new block. This restriction has

the virtue of delivering a nice closed-form analytical characterization for the dynamics of

beliefs.

2. Dynamic prior beliefs. In this case, the transition matrix P is such that beliefs about
which regime is prevailing within a block affect prior beliefs the moment the economy

moves to the new block.

3. Signals. Exogenous signals $t about the current regime are also observed by agents.

Signals are assumed to be distributed according to p ($t|ξt).

It is worth clarifying that nothing prevents the researcher from combining the three cases

described above. For example, static prior beliefs could characterize one block but not another

or agents could receive a signal every time the economy enters a new block.

2.2.1 The Case of Static Prior Beliefs

In the case of static prior beliefs, every time the system enters a new block, agents’beliefs are

the same regardless of the history of past beliefs. It is immediate to show that necessary and
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suffi cient conditions for this to happen are:

prob
(
ξt = 1|τ 1t = 1

)
=

p31
p31 + p32

=
p41

p41 + p42
= prob

(
ξt = 1|τ 1t = 1

)
(7)

prob
(
ξt = 3|τ 2t = 1

)
=

p13
p13 + p14

=
p23

p23 + p24
= prob

(
ξt = 3|τ 2t = 1

)
(8)

In other words, when the economy leaves a block, the relative probability of the two regimes in

the new block is not affected by the regime that was in place before. Agents are fully rational

and know the transition matrix governing the evolution of regimes. Therefore, their beliefs are

uniquely pinned down by (7) and (8).

The recursive equations (3) and (4) combined with the initial conditions (7) and (8) uniquely

characterize the dynamics of agents’beliefs in each block. To see this, notice that for each block,

there is a unique path for the evolution of agents’beliefs, given that (7) and (8) make agents’

beliefs before entering the block irrelevant. Furthermore, Proposition 1 guarantees that there

exists a τ ∗1 ∈ N and τ ∗2 ∈ N such that agents’beliefs converge for an arbitrary level of accuracy.
Therefore, in the case of static priors the number of consecutive periods spent in a block (τ it)

is a suffi cient statistic to pin down the dynamics of beliefs in both blocks. Equipped with this

important result, we can re-cast Model (1)-(2) in terms of a new set of regimes indexed with

respect to the number of consecutive periods spent in a block τ it, i ∈ {1, 2}:

Γ0 (τ t)St = Γc (τ t) + Γ1 (τ t)St−1 + Ψ (τ t) εt + Πηt (9)

where εt ∼ N (0,Σε) is a vector of exogenous Gaussian shocks, ηt is a vector of endogenous

expectation errors, and the τ ∗1 + τ ∗2 regimes τ t ≡ (τ 1t , τ
2
t ) evolve according to the transition

matrix

P̃ =

[
P̃11 P̃12
P̃21 P̃22

]
,

where the matrices P̃11 and P̃12 are given by

P̃11 ≡



0 prob
{
τ 1t+1 = 2|τ 1t = 1

}
. . . 0 0

0 0 . . . 0 0
...

...
. . . 0 0

0 0 . . . 0 prob {τ 1t = τ ∗|τ 1t = τ ∗ − 1}
0 0 . . . 0 prob

{
τ 1t+1 > τ ∗|τ 1t = τ ∗

}



P̃12 ≡


1− prob

{
τ 1t+1 = 2|τ 1t = 1

}
01×(τ∗−1)

...
...

1− prob
{
τ 1t+1 > τ ∗|τ 1t = τ ∗

}
01×(τ∗−1)
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with the elements of the matrices given by

prob
{
τ it+1 = τ it + 1|τ it

}
= prob

(
ξt = 1|τ 1t

)
(p11 + p12) +

(
1− prob

(
ξt = 1|τ 1t

))
(p21 + p22) (10)

where prob (ξt = 1|τ 1t ) can be obtained from the recursive equation (3) and equation (7). The

matrices P̃21 and P̃22 can be analogously derived.
Notice that the newly defined set of regimes keeps track of both the parameters in place

at each point in time and the evolution of agents’ beliefs. Since Model (9) is a Markov-

switching DSGEmodel with perfect information, it can be solved using the techniques developed

by Schorfheide (2005), Liu, Waggoner, and Zha (2011), Davig and Leeper (2007), Farmer,

Waggoner, and Zha (2009), Cho (2012), and Foerster, Rubio-Ramirez, Waggoner, and Zha

(2011). The result is an MS-VAR in the DSGE state vector St:

St = c
(
τ t, P̃

)
+ T

(
τ t, P̃

)
St−1 +R

(
τ t, P̃

)
εt (11)

where the law of motion of the economy depends on agents’beliefs as captured by τ t. With

the results of Proposition 1 at hand, the solution of Model (9) with a truncated number of

regimes τ t approximates the solution of the original model with learning (1). Notice that

the accuracy of this approximation can be made arbitrarily precise simply by increasing the

number of regimes τ ∗. Furthermore, it is worth pointing out that in the case of static priors

the approximation error stems only from truncating agents’learning process. For all regimes

such that τ it < τ ∗i agents’beliefs exactly coincide with the analytical values derived using (3)

and (4) and conditions (7) and (8).

2.2.2 The Case of Dynamic Prior Beliefs

When conditions (7) and (8) do not hold, past beliefs always influence current beliefs. In this

case, the number of consecutive periods τ t spent in a block is no longer a suffi cient statistic for

agents’beliefs. However, as pointed out before, the recursive equations (3) and (4) hold for any

prior beliefs. Therefore, these equations still capture the dynamics of beliefs while the system

stays in a block. Furthermore, it follows that the suffi cient conditions for convergence derived

in Subsection 2.1 still apply. Nevertheless, the initial conditions are now different from (7) and

(8) as they will depend on beliefs in the past block. Specifically, agents’starting beliefs upon

the shift from Block 2 to Block 1 are given by

prob {ξt = 1|It} =
prob

{
ξt−1 = 3|It−1

}
p31 +

(
1− prob

{
ξt−1 = 3|It−1

})
p41

prob
{
ξt−1 = 3|It−1

}
(p31 + p32) +

(
1− prob

{
ξt−1 = 3|It−1

})
(p41 + p42)

(12)

11



while if the system just entered Block 2, starting beliefs read

prob {ξt = 3|It} =
prob

{
ξt−1 = 1|It−1

}
p13 +

(
1− prob

{
ξt−1 = 1|It−1

})
p23

prob
{
ξt−1 = 1|It−1

}
(p13 + p14) +

(
1− prob

{
ξt−1 = 1|It−1

})
(p23 + p24)

(13)

Notice that, using their information set It, agents can keep track of both the number of
consecutive deviations and their starting beliefs. Therefore, in the case of dynamic prior beliefs

two variables pin down the dynamics of beliefs over time: how many consecutive periods the

system has spent in the current block and the initial beliefs agents had when the system

entered the current block. We then tackle the problem of solving Model (1) when prior beliefs

are dynamic by making a grid for agents’beliefs. Denote the grid for beliefs prob {ξt = 1|It} as
Gb1= {G1, ...,Gg1} and for beliefs prob {ξt = 3|It} as Gb2= {Gg1+1, ...,Gg1+g2} where 0 ≤ Gi ≤ 1,

all 1 ≤ i ≤ g = g1+g2. Furthermore, we denote the whole grid as G = Gb1∪Gb2. Endowed with
such a grid, we can recast the original model in terms of a new set of regimes ζt ∈ {1, ..., g1+g2},
any t. The new regime ζt captures the knot of the grid G that best approximates agents’beliefs;
that is, in our notation prob {ξt = 1|It} when the system is in Block 1 and prob {ξt = 3|It} when
the system is in Block 2. The transition probability matrix for these new regimes can be pinned

down using the recursions (3) and (4) and the initial conditions (12) and (13). The algorithm

below illustrates how exactly to perform this task.

Algorithm Initialize the transition matrix P̂ for the new regimes ζt, setting P̂ = 0g×g.

Step 1 For each of the two blocks, do the following steps (without loss of generality we describe
the steps for Block 1):

Step 1.1 For any grid point Gi ∈ Gb1 , 1 ≤ i ≤ g1, compute

P̂ (i, j) = prob
{
ξt−1 = 1|It−1

}
(p11 + p12) +

(
1− prob

{
ξt−1 = 1|It−1

})
(p21 + p22)

where prob
{
ξt−1 = 1|It−1

}
= Gi and j ≤ g1 is set so as tomin |prob {ξt = 1|It} − Gj|,

where prob {ξt = 1|It} is computed using the recursive equation (3) along with the
approximation prob

{
ξt−1 = 1|It−1

}
= Gi. To ensure the convergence of beliefs, we

correct j as follows: if j = i and Gi 6= λ̃2, then set j = min (j + 1, g1) if Gi < λ̃2 or

j = max (1, j − 1) if Gi > λ̃2.

Step 1.2 For any grid point Gi ∈ Gb1 , 1 ≤ i ≤ g1, compute P̂ (i, l) = 1 − P̂ (i, j) with

l > g1 satisfying

min

∣∣∣∣∣ prob
{
ξt−1 = 1|It−1

}
p13 +

(
1− prob

{
ξt−1 = 1|It−1

})
p23

prob
{
ξt−1 = 1|It−1

}
(p13 + p14) +

(
1− prob

{
ξt−1 = 1|It−1

})
(p23 + p24)

− Gl

∣∣∣∣∣
12



where prob
{
ξt−1 = 1|It−1

}
= Gi.

Step 2 If no column of P̂ has all zero elements, stop. Otherwise, go to Step 3.

Step 3 Construct the matrix T as follows. Set j = 1 and l = 1. While j ≤ g, if
∑g

i=1 P̂ (i, j) 6=
0 then do three things: (1) set T (j, l) = 1, (2) set T (j, v) = 0 for any 1 ≤ v ≤ g and

v 6= l, (3) set l = l + 1 and (4) set j = j + 1; otherwise (i.e., if
∑g

i=1 P̂ (i, j) = 0), set

j = j + 1.

Step 4 Write the transition equation as P̂R = T · P̂ · T ′. If no column of P̂R has all zero
elements, set P̂ = P̂R and stop. Otherwise, go to step 3.

Step 1.1 determines the regime j the system will go to if it stays in Block 1 next period and

fills up the appropriate element (i, j) of the transition matrix P̂ with the probability of moving
to Regime j. If j = i and the corresponding diagonal element is not the knot that beliefs

converge to, the step makes a correction to prevent this from happening. Otherwise, beliefs

could get stuck at a grid point that is not the convergence point, inaccurately representing the

dynamic of beliefs.3 Step 1.2 computes the regime l the system will go to if it leaves Block 1

and fills up the appropriate element (i, l) of matrix P̂. Steps 2-4 are not necessary but help
to keep the dimension of the grid small, getting rid of regimes that will never be reached. For

computational convenience, we always add the convergence points for the two blocks (i.e., λ̃2
in the case of Block 1) to the grid G. On many occasions, it is a good idea to make the grid
near the convergence knot very fine to improve the precision of the approximation.

Once the transition matrix P̂ for the new set of regimes is characterized, the original Model
(1) can be recast in terms of the new set of regimes ζt:

Γ0 (ζt)St = Γc (ζt) + Γ1 (ζt)St−1 + Ψ (ζt) εt + Πηt (14)

where ζt ∈ {1, ..., g1+g2}. Therefore, up to an approximation error that can be made arbitrarily
small, the task of solving the model with learning in (1) boils down to solving the perfect-

information model (14) using solution algorithms for MS-DSGE models. The resulting law of

motion is once again an MS-VAR:

St = c
(
ζt, P̃

)
+ T

(
ζt, P̃

)
St−1 +R

(
ζt, P̃

)
εt (15)

3Similarly, in the case of oscillatory convergence, one has to prevent the algorithm from getting stuck on
some grid point that does not represent the convergence point. To avoid complicating the discussion of the
paper with too many technical details, we omit this correction.
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2.2.3 Signals

Let us assume that agents observe signals about the realized regime. To fix notation, denote

the signal as $t and, for simplicity, assume that it can have only two values, 1 or 2. We denote

the probability that the signal is equal to q ∈ {1, 2}, conditional on the regime being equal to
h ∈ {1, 2, 3, 4} as prob {$t = q|ξt = h}. The model with signals can be solved by introducing
a new system of regimes ζt, which indexes the grid points corresponding to the probabilities

prob {ξt = 1|It, $t} and prob {ξt = 3|It, $t}, and following the same logic used in the previous
subsection.

To fill up the transition matrix P̂ for the new set of regimes, one can implement the al-
gorithm detailed in Subsection 2.2.2 with only the little tweak of updating beliefs using the

information contained in the observed signal. For instance, we compute the ex-post-probability

prob (ξt = 1|It, $t)

prob
(
ξt = 1|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 1) prob (ξt = 1|It, $t−1)∑2
i=1 prob ($t = q|ξt = i) prob (ξt = i|It, $t−1)

, q ∈ {1, 2}

(16)

where prob (ξt = 1|It, $t−1) is computed using the recursive equation (3) for a given initial point

in the grid G that approximates prob
(
ξt−1 = 1|It−1, $t−1). We use the probability computed

in equation (16) to determine the appropriate points of the grid G, which we denote as jq,
q ∈ {1, 2}. Note that for any given initial belief prob

(
ξt−1 = 1|It−1, $t−1) ∈ G, the (ex-post)

belief prob (ξt = 1|It, $t−1, $t = q) now pins down the grid points, depending on the realization

of the signal $t. Once these two points in the grid are determined, we can fill up the transition

probability as follows:

P̂ (i, jq) =
∑2

v=1 prob
{
ξt = v|It−1, $t−1} prob {$t = q|ξt = v} , q ∈ {1, 2} (17)

where

prob
{
ξt = v|It−1, $t−1} =

∑2
u=1 prob

{
ξt−1 = u|It−1, $t−1} puv (18)

and we approximate prob
{
ξt−1 = 1|It−1, $t−1} ∈ G. Note that in the case of signals, each row

of the transition matrix P̂ has up to four non-zero elements. This completes the derivation of
the submatrix P̂11, which governs the evolution of beliefs within Block 1. How to obtain the
other submatrices P̂12, P̂21, and P̂22 is detailed in Appendix H.

2.3 Agents Know That They Do Not Know

Summarizing, the methods outlined above show that one can recast the Markov-switching

DSGE model with learning as a Markov-switching rational expectations system, in which the
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regimes are indexed with respect to agents’beliefs. In the case of static priors, the number of

consecutive realizations of a block represents a suffi cient statistic to index agents’beliefs. In the

case of dynamic priors, agents’beliefs are mapped into a grid. In both cases, a new transition

matrix that characterizes the joint evolution of agents’beliefs and model parameters is derived.

It is worth emphasizing that this way of recasting the learning process allows us to easily

model economies in which agents know that they do not know. In other words, agents form

expectations taking into account that their beliefs will change in the future according to what

they will observe in the economy. This is why the laws of motion (11) and (15) characterizing the

behavior of the model depend on the current beliefs and the expanded transition matrix defining

the joint evolution of agents’ beliefs and model parameters. This represents a substantial

difference with the anticipated utility approach in which agents form expectations without

taking into account that their beliefs about the economy will change over time (e.g., Evans

and Honkapohja, 2001; Cogley, Matthes, and Sbordone, 2011). Furthermore, the approach

described above differs from the one traditionally used in the learning literature in which agents

form expectations according to a reduced-form law of motion that is updated recursively using

the discounted least-squares estimator (Eusepi and Preston, 2011). The advantage of adaptive

learning is the extreme flexibility given that, at least in principle, no restrictions need to be

imposed on the type of parameter instability characterizing the model. However, such flexibility

does not come without a cost, given that agents are not really aware of the model they live

in, but only of the implied law of motion. Instead, in this paper agents fully understand the

model, they are uncertain about the future, and they are aware of the fact that their beliefs

will evolve over time.

It is also important to emphasize the extreme tractability of the approach taken in this paper.

The solutions (11) and (15) can be easily combined with an observation equation and used in an

estimation algorithm. For example, Bianchi and Melosi (2012a) estimates a prototypical New-

Keynesian DSGE model, in which agents form beliefs about the likely duration of deviations

from active inflation stabilization policies. The estimation of this new class of models is possible

for three main reasons. First, even if the final number of regimes can be extremely high, the

model imposes very specific restrictions on the allowed regime paths and on the link between

observable outcomes and agents’beliefs. This implies that when evaluating the likelihood, a

relatively small number of regime paths has to be taken into account. Second, the statistical

properties of the different regimes can vary substantially and depend on the probability of

moving across regimes. Therefore, identification of the transition matrix is not only given by the

frequency with which the different regimes occur, but also by the laws of motion characterizing

the different regimes. Finally, the number of extra parameters with respect to a model with

perfect information is very low, if not zero, while the resulting dynamics can be substantially

enriched. For example, Bianchi and Melosi (forthcoming) show that a period of fiscal distress
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can lead to a run-up in inflation that lasts for decades.

From a computational point of view, there might be a concern about the time required to

solve the model when the final number of regimes becomes very large. This turns out not to be

a problem. If regime changes enter in an additive way, affecting only the matrix Γc, the model

can be solved with standard solution algorithms such as gensys (Sims, 2002) and Blanchard and

Kahn (1980) and the high dimensionality of the transition matrix is not a problem. However,

in many situations we might want to model regime changes that enter in a multiplicative way.

For example, we might want to allow for changes in the Taylor rule parameters. In this case,

the matrices Γ0 and Γ1 are also affected and we need to rely on solution methods developed

to solve MS-DSGE models. However, according to our experience based on the use of the

approach proposed by Farmer, Waggoner, and Zha (2009), even in this case a solution can be

obtained in a matter of seconds because the transition matrix governing the evolution of the

regimes is very sparse. Therefore, the methods described in this paper provide a promising tools

for modeling information frictions, animal spirits, and agents’beliefs in a general equilibrium

framework suitable for structural estimation.

3 Applications

In this section, we introduce a prototypical RBC model to illustrate the properties of the

methods detailed above. Central to our discussion will be the evolution of optimism and pes-

simism and the implications thereof for consumption and saving decisions. The representative

household maximizes the sequence of consumption ct and capital kt:

max
ct,kt

Ẽ0
∑∞

t=0 β
t ln ct

subject to the resource constraint ct + kt = ztk
α
t−1 + (1− δ) kt−1 with α < 1 and 0 < δ < 1.

Let Ẽt (·) denote the expectation operator conditional on households’information set at time
t. We assume that total factor productivity (TFP) zt follows an exogenous process, such that

ln zt = µ (ξt) + ln zt−1 + σzεt (19)

where εt
iidv N (0, 1) and ξt denotes a discrete Markov process affecting the drift of TFP. This

process evolves according to the transition probability matrix P. We assume that ξt can take
four values; that is, ξt ∈ {1, 2, 3, 4}. These values map into values for the TFP drift µ (ξt) as

follows ξt ∈ {1, 2} =⇒ µt (ξt) = µH and ξt ∈ {3, 4} =⇒ µt (ξt) = µL, where µL < µH . In Block

1, Regimes 1 and 2 differ in their likely persistence: p11 < p22. The same applies to Regimes 3

and 4 in Block 2: p33 < p44. We call Regimes 1 and 2 high-growth regimes and Regimes 3 and
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4 low-growth regimes. Households are assumed to observe the history of the model variables

(i.e., kt, ct, and zt) and that of the TFP shocks (i.e., εt). Therefore, households can establish

whether the economy is in the high-growth block or in the low-growth block.

We introduce the stationary variables µt ≡ ln (zt/zt−1), c̃t ≡ ct/z
1/(1−α)
t , k̃t ≡ kt/z

1/(1−α)
t

and, following Schorfheide (2005) and Liu, Waggoner, and Zha (2011), we define the steady

state as the stationary equilibrium in which all shocks are shut down, including the regime

shocks to the growth rate of TFP. We then derive a log-linear approximation to the equilibrium

equations around the steady-state equilibrium for these stationary variables. The log-linearized

Euler equation reads:4

ĉt = Ẽtĉt+1 − (α− 1)
(

1 + (δ − 1) βM
1

α−1
)
k̂t −

(
1

α− 1
+ βM

1
α−1 (δ − 1) + 1

)
Ẽtµ̂t+1 (20)

where M ≡ exp (µ), µ ≡ (p1 + p2)µH + (p3 + p4)µL being the ergodic mean of the log growth

rate of the economy, and pi stands for the ergodic probability of being in regime i, µ̂t, ĉt and

k̂t denote log-deviations of the stationary TFP growth, consumption, and capital, respectively,

from their steady-state value, and µ̂ (ξt) ≡ µt (ξt)− µ is the log-deviation of TFP drift from its
ergodic mean µ. The resource constraint is

cssĉt + kssk̂t =

(
M

α
α−1kαss

α

α− 1
+

1− δ
α− 1

M
1

α−1kss

)
µ̂t +

(
M

α
α−1kαssα + (1− δ)µ

1
α−1kss

)
k̂t−1

(21)

Finally, the log-deviation of the growth rate of TFP from its ergodic level follows

µ̂t = µ̂ (ξt) + σzεt (22)

As is standard for any RBC model, households adjust capital so as to smooth consumption

intertemporally. The occurrence of TFP shocks and the succession of low-growth and high-

growth regimes challenge households’ ability to smooth consumption over time. When the

economy is in the high-growth regime, households expect that, with some probability, the

economy will enter into the low-growth regime in the future, making it harder to raise future

consumption. Therefore, ceteris paribus agents raise capital today so as to raise future expected

consumption Ẽtĉt+1 vis-a-vis current consumption ĉt. When the economy is in the low-growth

regime, agents expect that, with some probability, the economy will enter into the high-growth

regime in the future, making it easier to raise future consumption. Therefore, ceteris paribus

agents reduce capital today so as to raise current consumption ĉt vis-a-vis expected future

consumption Ẽtĉt+1.

4A detailed derivation of the steady-state equilibrium for the stationary variables and the log-linearized
equations is provided in Appendix I.
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Clearly, the persistence of the regime in place critically affects consumption and capital

decisions. When the current regime is short lasting, households generally adjust capital more

aggressively than when it is long lasting, because they deem that a switch in the next period

is more likely. In contrast, households do not adjust capital so aggressively if they expect

the regime to be very long lasting. When households expect that low growth or high growth

has become a structural characteristic of the environment, they understand that consumption

cannot be smoothed out over time by simply adjusting capital. Thus, very persistent regimes

are mostly characterized by structural changes in the level of consumption.

Given that households have limited information, the log-linearized Model (20)-(22) cannot

be solved using the existing techniques that are used to solve Markov-switching models with

perfect information. However, we proceed as described in the previous sections, by introducing

a new set of regimes that capture the evolution of the representative household’s beliefs over

time. It is important to notice that in the RBC model described above, regime changes enter

additively. In other words, they only affect the vector of constants Γc (·) in the canonical forms
(9) or (14). In this case, the state space can be augmented with a series of dummy variables as in

Schorfheide (2005), Liu, Waggoner, and Zha (2011), and Bianchi, Ilut, and Schneider (2012) and

the models under imperfect information can be easily solved using standard solution methods

for DSGE model such as gensys (Sims, 2002) and Blanchard and Kahn (1980). When regime

changes enter multiplicatively, the matrices Γ0 and Γ1 are also affected. In this case, the model

can be solved with any of the solution methods that have been developed for MS-DSGE models.

Bianchi and Melosi (2012a, 2012b, Forthcoming) consider these cases and solve the model using

the algorithm developed by Farmer, Waggoner, and Zha (2009).

In what follows, we adopt a standard calibration of the RBC model. We set capital’s share

parameter α to equal 0.33. The discount factorβ is equal to 0.9976 and the parameter for

the physical depreciation of capital is set to equal 0.0250. The standard deviation of the TFP

shock σ is set to 0.007. We set the growth rate of TFP in the high-growth state to equal the

annualized rate of 4%: µH = .01. We assume that under low-growth, the growth rate of TFP

is simply zero: µL = 0. The values for the transition matrix P will vary across simulations and
will be described case by case.

3.1 Static Prior with Symmetric Speed of Learning

Let us assume that te persistence of the short-lasting regimes is the same in the two blocks:

p11 = p33 = 0.5. Analogously, we set the probabilities of staying in the long-lasting regimes

so that p22 = p44 = 0.95. For simplicity we assume that regimes belonging to the same block

do not communicate with each other; that is, p12 = p21 = p34 = p43 = 0. Furthermore, the

transition matrix implies that once a switch to a new block occurs, agents always attach a 95%
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Figure 1: Static Prior Beliefs; Expected Growth Rate of Technology as a Function of Beliefs. The scale of the
expected growth rates ranges from -1.6 to 1.6. Lighter blue areas capture expected rates that are lower than

the ergodic rate. Darker red areas capture expected rates that are higher than the ergodic rate. Gray areas

denote expected rates that are similar to the ergodic rate. Left graph: Annualized percentage deviations of the

growth rate of technology from its ergodic value at different horizons as a function of the probability that the

observed high-growth regime is long lasting (Beliefs LL-HG). Right graph: Annualized percentage deviations of

the growth rate of technology from its ergodic value at diffferent horizons as a function of the probability that

the observed low-growth regime is long lasting (Beliefs LL-LG).

probability to being in the short-lasting regime:

p31
p31 + p32

=
p41

p41 + p42
= 0.95 (23)

p13
p13 + p14

=
p23

p23 + p24
= 0.95 (24)

Notice that conditions (23)-(24) imply static prior beliefs: agents always enter the high-growth

(low-growth) block with the same level of optimism (pessimism). To sum up, we work with the

following transition matrix:

P =


0.50 0 0.475 0.025

0 0.95 0.0475 0.0025

0.475 0.025 0.50 0

0.0475 0.0025 0 0.95


Figure 1 shows agents’expectations about the growth rate of TFP µt in deviations from

its ergodic level µ at different horizon as agents’beliefs about being in the high-growth long-
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lasting regime (left plot) or in the long-lasting low-growth regime (right plot) vary from 0 to 1.

These expectations take into account regime uncertainty and can be quickly computed using

the methods described in Bianchi (2012). When the economy is in the high-growth block and

agents are extremely optimistic about being in the long-lasting regime, they expect a growth

rate of TFP that exceeds the ergodic rate by 1.6% for the next few quarters. left graph. See the

dark red area in left graph. However, at very long horizons, agents simply expect the growth

rate of TFP to return to the annualized ergodic mean of 2%, regardless of how confident they

are to be in the long-lasting high-growth regime. When agents mostly expect to be in a short-

lasting regime, the expected growth rate of TFP is fairly similar to the ergodic rate at every

horizon. Similarly, when the economy is on a low-growth path, the more pessimistic about the

duration of this phase agents are, the longer the horizon at which the expected growth rate of

TFP stays below the ergodic rate. See the light blue area in the right graph.

To illustrate the consequences of fluctuations in agents’beliefs, we simulate the economy

assuming a typical path for the regimes and setting all Gaussian shocks εt to zero. We assume

that capital is initialized at its steady-state value. The results are reported in Figure 2. In

each panel, the gray areas denote the periods of low growth. Short-lasting regimes last for

their typical duration of 2 quarters. Long-lasting regimes last for their typical duration of 20

quarters. The two right graphs report the evolution of consumption and capital in the model

with learning compared to the model with perfect information in which agents can observe

the current regime. The panel in the upper-left corner shows the evolution of agents’beliefs

about being in the long-lasting high-growth regime and in the long-lasting low-growth regime.

The panel in the lower-left corner reports the evolution of expected average TFP growth at

4-, 8-, 20-, and 40- quarter horizons. Notice that this is a convenient measure of agents’

optimism/pessimism that takes into account uncertainty about the regime in place today and

the possibility of regime changes.

Three features of Figure 2 deserve to be emphasized. First, right after a switch to a new

block, agents believe that this switch is most likely to be short lasting. This can be seen in the

top left graph when switches to new blocks occur. The reason is that agents are rational and

hence are aware that regardless of whether the past regime was short lasting or long lasting, the

probability of switching to the short-lasting regime in the new block is always as high as 95%.

This stems from the restrictions in (23)-(24), which imply static prior beliefs. Second, whenever

a short-lasting regime is in fact realized, with the benefit of hindsight, agents’beliefs turn out

to over-react to the regime change because agents rationally attach a non-zero probability to

being in the long-lasting regime. Third, the probability of being in the long-lasting regime

smoothly increases as more realizations of the same block are observed. The top left graph

shows that the probability of being in the long-lasting regime rises monotonically with the

number of consecutive realizations of a particular growth rate. For instance, from t = 117 to
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Figure 2: Static Prior Beliefs and Symmetric Speed of Learning. Top left graph: Evolution of beliefs of being in
the long-lasting high-growth regime (red solid line) and in the long-lasting low-growth regime (blue dashed line).

Top right graph: Annualized percentage deviations of consumption from the perfect-information benchmark.

Bottom left graph: Expected average growth rate of technology (annualized percentage) at various horizons.

Bottom right graph: Annualized percentage deviations of capital from the perfect-information benchmark. In

all graphs, gray areas denote periods of low growth.

t = 136, the economy is in a long-lasting low-growth regime. While agents initially attach

a small probability to being in the long-lasting regime, they become fully convinced after 12

consecutive periods of low TFP growth.

Furthermore, Figure 2 shows the evolution of optimism and pessimism and the associated

dynamics of the consumption gap and the capital gap, which are defined as the optimal level of

consumption and capital in deviations from their corresponding levels under perfect information.

When the economy enters the long-lasting low-growth period, imperfectly informed agents are

not very pessimistic about the duration of the low-growth regime. This is reflected in their

expectations about the average growth rate of TFP that barely moves in the bottom left graph.

Given that they expect that the low-growth period will be short lasting, they decide to slow

down capital accumulation so as to smooth consumption. In contrast, if agents knew the actual

realization of the low-growth regime, they would adjust their stock of capital less aggressively

and let consumption fall more. This is why in Figure 2 we observe a positive consumption gap

and a negative capital gap when the economy enters a period of long-lasting low growth.

As the period of low-growth consolidates, imperfectly informed agents update their beliefs

until they eventually become convinced that they are in the long-lasting regime. This happens

in roughly 12 quarters after the switch. As illustrated in the bottom left graph, such slow-
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moving beliefs cause the expected average growth rate of TFP over the next few years to also

adjust sluggishly. This eventually determines an adjustment in the path for consumption and

the consumption gap slowly fades away. Interestingly, at the end of the long-lasting low-growth

period, the consumption gap becomes negative. The reason is that the sluggish evolution of

pessimism prompted households to decumulate capital rapidly at the beginning of the period of

low growth. The small capital stock depresses consumption as households become pessimistic,

leading to a negative consumption gap. A specular pattern characterizes the economy the

moment it enters a long-lasting high-growth period at the beginning of the simulation.

As pointed out before, even when the economy repeatedly alternates between short-lasting

periods, agents’beliefs are misaligned with the truth. Let us focus on the first 16 quarters during

which a sequence of short-lasting regimes are realized. While the economy is in the short-lasting

high-growth regime, imperfectly informed households consume more and accumulate less capital

than in the case of perfect information. The reason is that imperfectly informed agents attach

some non-negligible - albeit small - probability to being in the long-lasting regime. By the same

token, when the economy is going through a short-lasting period of low growth, imperfectly

informed households consume less and accumulate more capital than under perfect information.

3.2 Static Prior with Differential Speed of Learning

Now we study a situation in which optimism and pessimism evolve at differential speed. The

speed of learning within a block is affected by the relative persistence of the corresponding two

regimes. Generally speaking, if the persistences of the two regimes become more similar, it

takes longer for rational agents to figure out which regime is in place. To see this point, let us

calibrate the model as in the previous section, using the restrictions in (23)-(24), but now we set

the probability of staying in the short-lasting high-growth regime to be p11 = 0.75 > 0.5. The

probability of staying in the long-lasting high-growth regime is unchanged (p22 = 0.95). Figure

3 shows the dynamic of beliefs, the expected average growth rate of TFP at various horizons

(4, 8, 20, and 40 quarters), the consumption gap, and the capital gap when the economy goes

through the same sequence of regimes as that in Figure 2, with the only difference that now the

typical duration of the short-lasting high-growth regime is longer: 4 quarters instead of 2. The

typical duration of all other regimes is the same. The crucial point to notice is that in Figure

3 the typical realization of 20 quarters of high growth is not enough to induce households fully

make up their mind that the realized regime is of the long-lasting type. Agents attach only an

80% probability of being in the long-lasting regime after having observed 20 consecutive periods

of high growth. In contrast, when the economy is going through a period of long-lasting low

growth, it takes roughly 12 quarters for households to be fully convinced that they are in the

long-lasting regime, exactly as in Figure 2.
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Figure 3: Static Prior Beliefs and Differential Speed of Learning. Top left graph: Evolution of beliefs of being in
the long-lasting high-growth regime (red solid line) and in the long-lasting low-growth regime (blue dashed line).

Top right graph: Annualized percentage deviations of consumption from the perfect-information benchmark.

Bottom left graph: Expected average growth rate of technology (annualized percentage) at various horizons.

Bottom right graph: Annualized percentage deviations of capital from the perfect-information benchmark. In

all graphs, gray areas denote periods of low growth.

Differential speeds of learning have an impact on the dynamics of consumption and cap-

ital. During the long-lasting high-growth regime, the misalignment of agents’beliefs is more

persistent than in the case of the low-growth regime. This implies a more persistent negative

consumption gap because households raise capital to smooth consumption in the future. On

the other hand, the consumption gap is less pronounced than that under a symmetric speed of

learning. The reason is that the expected duration of the short-lasting high-growth regime is

now longer than that in the previous subsection. This is captured by the graph in the lower

left corner that shows a larger jump in the expected average growth rate as the economy enters

the high-growth block when compared to its counterpart in 2.

3.3 Evolution of Optimism and Pessimism

So far, we have assumed that prior beliefs are static. Static prior beliefs imply that previous

beliefs do not affect current beliefs once the observed TFP growth rate changes. Let’s consider

a transition matrix of the following type. We assume that the probability of staying in the

short-lasting regimes is p11 = p33 = 0.75. We set the probabilities of staying in the long-lasting

regimes so that p22 = p44 = 0.95. For simplicity we assume that the regimes belonging to the
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Figure 4: Dynamic Prior Beliefs; Expected Growth Rate of Technology as a Function of Beliefs. The scale of
the expected growth rates ranges from -1.6 to 1.6. Lighter blue areas capture expected rates that are lower than

the ergodic rate. Darker red areas capture expected rates that are higher than the ergodic rate. Gray areas

denote expected rates that are similar to the ergodic rate. Left graph: Annualized percentage deviations of the

growth rate of technology from its ergodic value at different horizons as a function of the probability that the

observed high-growth regime is long lasting (Beliefs LL-HG). Right graph: Annualized percentage deviations of

the growth rate of technology from its ergodic value at diffferent horizons as a function of the probability that

the observed low-growth regime is long lasting (Beliefs LL-LG).

same block do not communicate with each other: p12 = p21 = p34 = p43 = 0. We will relax this

restriction later on.

We want to model an economy that goes through two types of phases over time: a high-

growth phase that is mostly characterized by long-lasting high-growth periods with only very

short low-growth periods and a low-growth phase that is mostly characterized by persistent

periods of low-growth and high-growth periods of rather short duration. This can be done by

introducing the following restrictions on the parameters of the transition matrix P:

p31
p31 + p32

= 0.05 <
p41

p41 + p42
= 0.95 (25)

p13
p13 + p14

= 0.05 <
p23

p23 + p24
= 0.95 (26)
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To sum up, the transition matrix reads:

P =


0.75 0 0.0125 0.2375

0 0.95 0.0475 0.0025

0.0125 0.2375 0.75 0

0.0475 0.0025 0 0.95


It is important to emphasize that, in this model, the fact that the economy is currently

in the high-growth or low-growth regime plays a minor role in affecting the growth rate that

agents expect. Most of the action stems from whether agents believe that the economy has been

going through a high-growth phase or a low-growth phase. Figure 4 shows agents’expectations

about the growth rate of TFP µt in deviations from its ergodic level µ at different horizons

(from 1 to 80 quarters) and for various initial levels of probability of being in the long-lasting

high-growth regime (left plot) and low-growth regime (right plot). Notice that, unlike in the

case of static prior beliefs discussed in Figure 1, high-growth regimes may be associated with a

lower medium-horizon expected growth rate of TFP than low-growth regimes. This is because,

in this economy, agents know that short-lasting regimes are more likely to be followed by the

long-lasting regime of the opposing block. Importantly, the expected growth rate of technology

in the long-lasting high-growth (low-growth) regime differs from that in the short-lasting low-

growth (high-growth) regime only at a very short horizon.

The upper left graph of Figure 5 reports the evolution of agents’beliefs, consumption, and

capital for the case of dynamic prior beliefs. We assume a typical path for the regimes. We

initialize agents’ beliefs so that agents are confident of being in a high-growth phase.5 As

agents observe 4 quarters of high growth, followed by 20 quarters of low growth, agents start to

fear that the economy has switched to the low-growth phase. As a result, households are less

optimistic when the economy returns to the high-growth regime. When the second realization

of the long-lasting low-growth regime occurs, households become immediately convinced that

the long-lasting low-growth regime is in place. Symmetrically, when the economy returns to

high TFP growth for the second time, households believe that the high-growth regime will be

long-lasting with only a 6% probability. Afterwards, the economy enters the high-growth phase

by going through a short-lasting low-growth regime. Households are initially very pessimistic

about the persistence of this regime. It takes two realizations of the long-lasting high-growth

regimes to make them confident that the economy has shifted to the high-growth phase.

The lower left graph of Figure 5 provides further evidence that households slowly learn

about changes in the two paths. Observe that when the economy enters the first long-lasting

low-growth period, households mostly believe that they are still in the high-growth phase and

5This can easily happen if the economy just went through a high-growth phase.
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Figure 5: Dynamic Prior Beliefs; Expected Growt Rate of Technology as a Function of Beliefs. Left graph:
Annualized percentage deviations of the growth rate of technology from its ergodic value at different horizons as

a function of the probability that the observed high-growth regime is long lasting (Beliefs LL-HG). Right graph:

Annualized percentage deviations of the growth rate of technology from its ergodic value at diffferent horizons

as a function of the probability that the observed low-growth regime is long lasting (Beliefs LL-LG).

expect an average growth rate of TFP over the next 20 or 40 quarters that is above the ergodic

level. The same sluggishness in the expected average growth rate of TFP can be observed

as the economy enters the first long-lasting high-growth period. Furthermore, the sluggish

dynamics of optimism and pessimism are confirmed by a quick comparison of the expected

average growth rate of TFP across short-lasting periods. It is important to notice that the

earliest short-lasting high-growth (low-growth) regime is associated with rates that are largely

below (above) the ergodic rate at all horizons.

The behavior of consumption and capital during the low-growth and the high-growth phase

is analyzed in the rigthside graphs of Figure 5. We observe that at the beginning of the first

short-lasting high-growth regime, which is associated with high optimism, the consumption gap

is positive. The reason is that imperfectly informed households expect this regime to be much

longer lasting than what it actually turns out to be. This implies that imperfectly informed

households do not raise capital as they would if they knew that the high-growth regime is, in

fact, short lasting. This leads to a negative capital gap and a positive consumption gap. When

the economy enters the long-lasting low-growth regime for the first time, the consumption gap

remains positive as households are not very pessimistic about the persistence of this regime.

This happens because households decide to cut capital fairly aggressively in order to sustain

current consumption, since they mostly expect this low-growth regime to be short lasting.
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Figure 6: Accuracy. Top graph: True and estimated path of agents’ beliefs of being in the long-lasting

high-growth regime. Lines with squares: approximated beliefs. Lines with circles: true beliefs. Bottom graph:

True and estimated path of agents’beliefs of being in the long-lasting low-growth regime. Lines with squares:

approximated beliefs. Lines with circles: true beliefs.

Households would do otherwise, if they knew that the economy just entered the long-lasting

low-growth regime.

During the first long-lasting low-growth spell households update their beliefs until they

realize that this regime is most likely long lasting, signifying that the economy must have

switched to the low-growth phase. This change in agents’beliefs causes consumption and capital

(the latter with some sluggishness) to become similar to the perfect-information benchmark.

Interestingly, the consumption gap changes sign and becomes negative at the end of the long-

lasting low-growth spell. This is due to the fact that convergence of capital to its perfect-

information level is relatively more sluggish than that of consumption. When the second short-

lasting high-growth regime occurs, optimism is a bit smaller than in the previous high-growth

period, resulting in a more contained hike in the consumption gap. The dynamics of the

consumption gap and the capital gap are clearly reversed during the high-growth phase.

Let us focus on the accuracy of our method in tracking the dynamics of beliefs over time.

We initially set 400 equally spaced knots in our grid G. Furthermore, we add 100 knots to make
the grid finer for beliefs near the convergence points for prob {ξt = 1|τ 1t} and prob {ξt = 3|τ 1t},
which are zero in both cases. After the refinement of the grid of beliefs introduced in steps

10-11 of Section 2.2.2, we are left with 152 grid points per block. Even if the number of regimes

seems enormous, solving the model is fast. It takes 0.97 second to compute the matrix P̂ and
6.42 seconds to solve the model with gensys in Matlab on a 64-bit desktop endowed with an
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Intel core processor i7-2600 CPU at 3.40 GHz.6 Figure 6 shows that the grid of beliefs fits the

actual sequence of beliefs very accurately as squares and circles are almost perfectly concentric.

3.4 Sneaky Switches to Low-Growth Phase

So far we have studied cases in which transitions between high-growth and low-growth phases

are always marked by an observable switch in regimes. For instance, a switch to the low-

growth phase is characterized by an observable change of TFP growth from high to low. This is

because, so far, we have assumed that the probability of switching between regimes belonging

to the same block is zero. In this section we relax this assumption.

Let us use the baseline calibration and the same values for the transition matrix P as those
used in Subsection 3.3, with the only exception being that now the probability of switching

to the short-lasting high-growth regime conditional on being in the long-lasting high-growth

regime is p21 = 0.04. The probabilities p23 and p24 are re-scaled so that (26) is satisfied. In this

context, a switch from the high-growth phase to the low-growth phase may happen when the

economy is in the long-lasting high-growth regime. This means that the system could switch to

the low-growth phase while agents do not observe any switch from high growth to low growth.

Although the probability that such a sneaky switch would happen is quite small (p21 = 0.04),

such a possibility dramatically influences the dynamics of agents’beliefs and allocations.

Figure 7 shows the dynamics of consumption and capital in the case of learning and perfect

information using the same sequence of regimes as that analyzed in the previous example.7 Let

us focus on the second half of the periods when the economy enters the high-growth phase. The

top left graph of Figure 7 shows that agents’beliefs about being in the long-lasting high-growth

regime do not converge to unity even when a large number of high-growth periods occur. This

is different from what we observe in Figure 5. Thus, an important implication of introducing

sneaky switches to the low-growth phase is that agents will never be fully convinced that they

are in the high-growth phase. Furthermore, as short-lasting low-growth regimes occur, agents

are relatively more concerned about the possibility of having entered a long-lasting low-growth

period. The reason is that agents are aware that a sneaky switch may have occurred during

the last high-growth regime.

The rightside graphs of Figure 7 show the consumption and capital gaps with respect to

the perfect-information benchmark. As we allow for the possibility of sneaky switches, the

high-growth phase is characterized by recurrent negative consumption gaps as the economy is

going through short-lasting low-growth regimes. This is different from the case of no sneaky

6In the case with static prior beliefs, which was analyzed in Section 3.1, it takes 0.10 second to compute the
matrix P̂ and to solve the model with gensys.

7To ease the comparison with the previous case with no sneaky switches, the scale of the y-axes is the same
as that in Figure 5.
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Figure 7: Sneaky Switches. Top left graph: Evolution of beliefs of being in the long-lasting high-growth regime
(red solid line) and in the long-lasting low-growth regime (blue dashed line). Top right graph: Annualized

percentage deviations of consumption from the perfect-information benchmark. Bottom left graph: Expected

average growth rate of technology (annualized percentage) at various horizons. Bottom right graph: Annualized

percentage deviations of capital from the perfect-information benchmark. In all graphs, gray areas denote

periods of low growth.

switches in Figure 5 in which we observe only one large negative consumption gap that gradually

disappears as the economy remains in the high-growth phase. The reason is that the possibility

of sneaky switches to the low-growth phase prompts households to interpret short-lasting low-

growth regimes as long lasting. As a result, households adjust their consumption more than

their capital stock. When long-lasting high-growth periods occur, agents are initially not very

optimistic, expecting a quite short-lasting high-growth period. As a result, they speed up capital

accumulation to achieve consumption smoothing. Quite interestingly and unlike the example in

Figure 5, high pessimism during short-lasting low-growth periods causes the capital gap to not

exhibit mean reversion during a typical high-growth phase. Therefore, the possibility of sneaky

switches induces households to hoard capital during high-growth phases. Capital hoarding

during high-growth phases is due to households’inability to fully learn when the economy is in

the high-growth phase because of the possibility of sneaky switches to the low-growth phase.

Finally, in the low-growth phase, households learn faster that the economy is on a low-growth

path than in Figure 5. This translates into smaller departures of consumption and capital

allocations from the perfect-information benchmark.
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3.5 Over-pessimism

So far, we have studied economies in which agents’pessimism or optimism monotonically in-

creases as the system remains in the same block. In this section, we study the case in which

pessimism over-reacts as the system enters the low-growth block and gradually falls as the econ-

omy remains in the low-growth block. Let us consider the same parameterization as in Section

3.3. We make three departures from this case. First, the probability of switching from the long-

lasting low-growth regime to the short-lasting one is p43 = 0.15 > 0. Second, the probability of

staying in the long-lasting low-growth regime p44 is set to 0.80 < 0.95. Third, the probability

of switching from the long-lasting high-growth regime to the short-lasting low-growth regime

conditional on the system having switched to the low-growth block is

p23
p23 + p24

= 0.25 (27)

To sum up, the transition matrix reads:

P =


0.75 0 0.0125 0.2375

0 0.95 0.0125 0.0375

0.0125 0.2375 0.75 0

0.0475 0.0025 0.15 0.80


Consider the following simulation in which all regimes occur with their expected durations.

First, starting from the highest optimism, the long-lasting high-growth regime is realized for 20

quarters followed by 4 quarters of the short-lasting low-growth regime. After that, the economy

switches again to the long-lasting high-growth regime and finally to the long-lasting low-growth

regime for 5 quarters. Finally, the system switches to the short-lasting low-growth regime for

4 quarters.

The results are reported in Figure 8. During the first 20 quarters agents are correct in

believing that they are in the long-lasting high-growth regime. Therefore, consumption and

capital allocations are the same as those in the perfect-information benchmark. Upon the

switch to the short-lasting low-growth regime, we observe a hike in agents’pessimism captured

by a sharp increase in the probability attached to the long-lasting low-growth regime and a drop

in expected TFP growth at all horizons. The blue dashed line in the upper left graph shows

that the direction of learning goes from the long-lasting regime to the short-lasting regime, and

therefore, it is opposite to what is observed in all the previous examples. As the system stays

in the low-growth block, agents attach less probability to being in the long-lasting low-growth

regime. This is because from the long-lasting low-growth regime the economy can move to

the short-lasting low-growth regime. Agents are aware of this, and as time goes by, they take
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Figure 8: Over-Pessimism. Top left graph: Evolution of beliefs of being in the long-lasting high-growth regime
(red solid line) and in the long-lasting low-growth regime (blue dashed line). Top right graph: Annualized

percentage deviations of consumption from the perfect-information benchmark. Bottom left graph: Expected

average growth rate of technology (annualized percentage) at various horizons. Bottom right graph: Annualized

percentage deviations of capital from the perfect-information benchmark. In all graphs, gray areas denote

periods of low growth. The vertical dashed red lines in all graphs mark the time at which the economy switches

from the long-lasting low-growth regime to the short-lasting low-growth regime.

into account the possibility that this event might in fact have occurred. Therefore, pessimism

initially overshoots and then falls as agents observe more and more periods of low growth. Such

over-pessimism has profound implications for consumption and capital allocations. The upper

right graph shows that the first hike in pessimism causes consumption to fall dramatically with

respect to the case of perfect information. This is because of a misalignment of households’

expectations. As agents’pessimism goes down, the consumption gap shrinks and the capital

gap widens.

When the economy switches to the long-lasting low-growth regime at t = 46, we observe

a second hike in pessimism. Yet, unlike in the previous low-growth period, households are

now correct in mostly expecting the current low-growth period to be long lasting. Thus, the

consumption and capital gaps do not exhibit any dramatic change upon the switch. In the sub-

sequent periods, households’pessimism gradually declines and only then do the consumption

and capital gaps widen. This happens because uninformed agents take into account the pos-

sibility that the economy experienced a sneaky switch to the short-lasting low-growth regime,

while perfectly informed agents can observe that the long-lasting low-growth regime is still in

place. In the last four periods of low growth, the sneaky switch actually happens and it is
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marked with a vertical red dashed line. Since this switch is hidden, it does not affect house-

holds’beliefs and allocations in our economy, while in the counterfactual perfect information

economy it determines a drastic change in consumption and capital allocations that manifests

itself with a quick reversal in the dynamics of the consumption and capital gaps.

Summarizing, during low-growth periods the direction of learning is reversed with respect to

what we have seen in all previous examples. The longer the low-growth span, the less pessimistic

about the future duration of the low-growth period agents become. When the true regime is

long lasting, such a pattern of beliefs causes households to slow down capital accumulation

more aggressively than under perfect information. On the contrary, when the true regime is

short lasting, agents are initially too pessimistic and accumulate an extra stock of capital with

respect to what they would do if they knew the stochastic duration of the regime.

3.6 Bipolar Beliefs

In this section we provide a limiting case in which agents’beliefs change dramatically in every

period. We make the following two key assumptions: (i) high-growth regimes are assumed

to communicate a lot (p12 = 0.95, p21 = 0.65) and (ii) the relative persistence of low-growth

regimes is markedly different (p33 = 0.25 and p44 = 0.99). Furthermore, the probability of

staying in the high-growth regimes is p11 = 0 and p22 = 0.3. Low-growth regimes do not

communicate (p34 = p43 = 0). We use (25) and (26) for the probabilities linking regimes across

blocks. Condition (26), which implies that the persistent high-growth regime is associated with

a much smaller probability of switching to the very persistent low-growth regime, and condition

(ii) together imply that whether forward-looking households believe that they are in the short-

lasting or in the long-lasting high-growth regime has large effects on consumption and capital

allocations.

Consider a sequence of high-growth regimes that alternates one period of Regime 1 and one

period of Regime 2 ten times. The top left graph of Figure 9 reports the dynamics of agents’

beliefs about being in the long-lasting high-growth regime and the true probabilities are shown

in blue squares. Consistent with assumptions (25) and (26), we initialize agents’ beliefs to

attach a probability of 0.95 that the economy is in the short-lasting Regime 1 at time 1. Lots of

communication between regimes belonging to the same block brings about bipolar dynamics of

beliefs during the early quarters spent in the high-growth block. Such a pattern is exacerbated

by the fact that Regime 1 has zero persistence. As the system remains in the high-growth block,

bipolarism fades away because agents are not receiving any additional information. Therefore,

the probability that the high-growth regime has been in place for an even number of consecutive

periods keeps growing, breaking the bipolar dynamics.

The rightside graphs highlight the difference between these allocations and the perfect-
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Figure 9: Bipolar Beliefs. Top left graph: Evolution of beliefs of being in the long-lasting high-growth regime
(red solid line) and the true probability (blue squares) of being in the long-lasting high-growth regime. Top right

graph: Annualized percentage deviations of consumption from the perfect-information benchmark. Bottom left

graph: Expected average growth rate of technology (annualized percentage) at various horizons. Bottom right

graph: Annualized percentage deviations of capital from the perfect-information benchmark.

information benchmark. When the short-lasting Regime 1 is in place, perfectly informed agents

know that there is a fairly large probability that the economy will move to the highly persistent

low-growth Regime 4 if the system switches blocks. As a result, perfectly informed households

slow down the growth rate of consumption and raise that of capital, expecting the worst for

the future. Imperfectly informed households follow the same policy but much less aggressively,

bringing about a positive consumption gap. When the long-lasting Regime 2 is in place, per-

fectly informed households know that the most likely low-growth regime to occur in the next

period is the short-lasting one. Therefore, perfectly informed households reduce investment and

raise the growth rate of consumption. Imperfectly informed households are uncertain about

whether the regime is short or long lasting. Thus, they adjust capital less aggressively. This

leads to a negative consumption gap. Note that the lower left graph shows that when the

system has been in the high-growth block suffi ciently long, the expected average growth rate

at every horizon does not change over time as beliefs start changing.
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4 Signals and Implications for Uncertainty

Consider the following transition matrix:

P =


0.85 0.1 0.025 0.025

0.05 0.9 0.05 0

0 0.99 0.01 0

0.1 0 0 0.99


While the high-growth regimes exhibit similar persistence, the low-growth regimes have markedly

different persistence. There is a very small probability that, once the system is in Regime 3,

it will stay in the low-growth block next period; most likely it will switch to the long-lasting

high-growth regime. Note that the probability of staying in the high-growth block is 0.95 for

both the short-lasting and long-lasting high-growth regimes. However, Regime 1 has a larger

downside risk with a bigger probability of moving to the long-lasting low-growth Regime 4.

When under the high-growth block, households receive a public signal $t about the regime

in place. The signal can take two values: 1 or 2. We assume that prob {$t = 1|ξt = 1} = 0.20

and prob {$t = 1|ξt = 2} = 0.80, implying that receiving a signal$t = 1 is more likely when the

economy is the short-lasting high-growth regime. Conversely, receiving a signal $t = 2 is more

likely when the economy is in the long-lasting high-growth regime. We study the evolution

of allocations and beliefs when Regime 2 is in place for its typical duration of 10 quarters.

Households always receive the same signal $t = 2 during the period except at time t = 3 and

t = 6, when they receive $t = 1. Figure 10 shows the dynamics of beliefs and allocations (black

dashed line) and compare them with those of an economy in which households always receive

$t = 2 at any time (solid blue line).

Receiving signals $3 = 1 and $6 = 1 influences agents’beliefs by reducing their optimism.

Note that nothing is really changed in the economy’s fundamentals as the economy remains in

Regime 2 at all times. Hence, signals play the role of shocks to beliefs with the effect of reducing

optimism. If households did not receive the signals $3 = 1 and $6 = 1, their beliefs would

have not changed (see the black dashed line). Such shocks to beliefs change consumption and

capital allocations. The first shock to beliefs reduces consumption by 0.85% and the second

one by 0.8% three periods later. Furthermore, Figure 10 shows that shocks to beliefs prompt

agents to accumulate more capital. The higher accumulated capital pushes consumption up at

the end of the simulated sample when the effects of signals on beliefs has faded away.

Importantly, signals give rise to shocks to beliefs that have second-order effects. In this

simulation, bad signals raise the expected probability of switching to the very persistent low-

growth Regime 4, determining an increase in the downside risk and uncertainty. The bottom

middle panel and the bottom right panel show that the increase in downside risk translates
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Figure 10: Belief Shocks. Top left graph: Evolution of beliefs of being in the long-lasting high-growth regime
in the case of shocks to beliefs at time t=3 and t=6 (black dashed line) and in the case of no shock to beliefs

(solid blue line). Top middle graph: Annualized percentage deviations of consumption from the case of no

shock to beliefs. Top right graph: Expected average growth rate of technology (annualized percentage points)

at various horizons (4 quarters, 8 quarters, 20 quarters, and 40 quarters) for the case of shocks to beliefs at t=3

and t=6. From top to bottom: the solid blue line denotes the horizon of 4 quarters, the solid black line denotes

the horizon 40 quarters. Bottom left graph: Annualized percentage deviations of capital from the case of no

shock to beliefs. Bottom middle graph: Uncertainty about future consumption at horizons from 4 quarters to

20 quarters. Lighter blue areas denote shorter horizons. Darker red areas denote longer horizons. Bottom right

graph: Uncertainty about future TFP growth at horizons from 4 quarters to 20 quarters.

into a spike in uncertainty about future consumption and future TFP growth. Note that such

changes in uncertainty are not supported by any changes in the economy’s fundamentals, but

rather are due to signals that change the perceived probability of switching to Regime 4.

While this is not the first paper to use signals as shocks to beliefs (e.g., Lorenzoni, 2009,

Angeletos and La’O, 2010 and Forthcoming) the approach proposed in this paper has the

important advantage of keeping the model very tractable. This feature makes our methods

suitable for studying shocks to beliefs in likelihood-based estimated large-scale DSGE models

(e.g., Christiano, Eichenbaum, and Evans, 2005 and Smets and Wouters, 2007).
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5 Modeling Beliefs about Policy Makers

This section provides a concise review of two alternative applications of the methods described

in this paper.

5.1 Modeling Communication and Constrained Discretion

Bianchi and Melosi (2012a) apply the methods introduced in this paper to quantitatively study

monetary policy and the role central banks’communication in a prototypical New-Keynesian

DSGE model. In the model, monetary policy alternates between periods of active inflation

stabilization, in an active regime, and periods during which the emphasis on inflation stabiliza-

tion is reduced, in a passive regime. Agents in the model are fully rational and able to infer if

monetary policy is active or not. However, when the passive regime prevails, they are uncertain

about the nature of the observed deviation. In other words, agents are not sure if the central

bank is engaging in a short-lasting or long-lasting deviation from active monetary policy.

Agents conduct Bayesian learning in order to infer the likely duration of the deviations from

active monetary policy. As agents observe more and more deviations, they become more and

more convinced that they are in the long-lasting passive regime and are increasingly pessimistic

about a quick return to the active regime. When the model is estimated to the U.S. economy,

we find that inflation expectations and agents’uncertainty sluggishly increase as the Federal

Reserve keeps deviating from active policy and they accelerate only after 20 quarters of devia-

tions. These features make the model well-suited to explaining the monetary policy framework

that has been adopted by the Federal Reserve, which Bernanke and Mishkin (1997) have termed

constrained discretion. Bernanke (2003) explains that under constrained discretion, the central

bank retains some flexibility in the conduct of monetary policy in order to accommodate short-

run disturbances. However, such flexibility is constrained to the extent that the central bank

should maintain strong credibility for keeping inflation and inflation expectations firmly under

control.

Furthermore, Bianchi and Melosi (2012a) build on the methods introduced in this paper to

provide a very general framework to model policy-makers’communication. We study the case

(transparency) in which the central bank systematically announces the number of consecutive

deviations from active monetary policy. Since the model is purely forward-looking, a suffi cient

statistic to solve the model with systematic announcements is the number of periods of an-

nounced passive policy that lie ahead before switching to the active policy. In other words,

the laws of motion associated with a situation in which the central bank announces five peri-

ods of consecutive deviations from the active regime are exactly the same as those associated

with a situation in which a central bank has carried out five consecutive deviations out of ten

announced deviations. Therefore, we can redefine the structure of regimes as follows: Regime
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1 is the active regime; Regime 2 is a regime in which only one period of announced passive

policy (i.e., the current one) is left before switching to the active regime; Regime 3 is a regime

in which two consecutive periods of passive policy will be conducted before switching to the

active policy; etc. To avoid the possibility that the dimensionality of the set of regimes blows

up to infinity, we truncate the duration of passive deviations to τ ∗a. For any ε > 0 we can find

a τ ∗a such that the probability of a deviation longer than τ
∗
a has a probability smaller than ε,

implying that the approximation can be made arbitrarily accurate.

Endowed with this result, we can study the impact of monetary policy communication on

welfare by redefining the structure of regimes in terms of the number of announced deviations

yet to be carried out τa as follows:

(
φπ (τat = i) , φy (τat = i)

)
=

[ (
φAπ , φ

A
y

)
, if i = 1(

φPπ , φ
P
y

)
, if 1 < i < τ ∗a

]

where φAπ and φ
A
y are the inflation and output gap coeffi cient in the monetary policy reaction

function when monetary policy is active and φPπ and φ
P
y when monetary policy is passive. The

re-defined set of regimes τat are governed by the (τ ∗a + 1)× (τ ∗a + 1) transition matrix P̃A, which
is defined as:

P̃A =

[
p11 p̃A

Iτ∗a 0τ∗a×1

]
where p11 is the probability of staying in the active regime, Iτ∗a is a τ

∗
a × τ ∗a identity matrix,

0τ∗a×1 is a (τ ∗a × 1) column vector of zeros. and p̃A is a 1 × τ ∗a row vector whose typical i-

th element is the probability of announcing i consecutive periods of passive monetary policy

followed by a switch to the active regime, conditional on being in the active regime. Formally,

p̃A (i) ≡ p12p
i
22p21 + p13p

i
33p31 for 1 ≤ i ≤ τ ∗a− 1 and p̃A (τ ∗a) = 1− p11−

∑τ∗a−1
i=1 p̃A (i). Note that

the matrix P̃A is a function of the probabilities of the transition matrix P for the primitive
regimes.

5.2 Dormant Fiscal Shocks

Bianchi and Melosi (forthcoming) develop a model in which the current behavior of the fiscal

and monetary authorities influences agents’beliefs about the way debt will be stabilized. The

standard policy mix consists of a virtuous fiscal authority that moves taxes in response to debt

and a central bank that has full control over inflation. When policy-makers deviate from this

virtuous policy mix, agents conduct Bayesian learning to infer the likely duration of the devia-

tion. As agents observe more and more deviations, they become increasingly pessimistic about

a prompt return to the virtuous regime and inflation starts moving to keep debt on a stable

path. Shocks that were dormant under the virtuous policy mix now start to manifest themselves
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and uncertainty about the macroeconomy starts increasing among agents. These changes are

initially imperceptible, but they unfold over decades and accelerate as agents become convinced

that the fiscal authority will not raise taxes. Dormant fiscal shocks can account for the run-up

of inflation in the ‘70s and the deflationary pressure of the early 2000s. The paper also shows

that the currently low long-term interest rates and inflation expectations might hide the true

risk of inflation faced by the US economy.

Bianchi and Melosi (2012b) construct an economy in which policy-makers’reputation for fis-

cal virtue smoothly fluctuates over time. The monetary and fiscal policy mix alternates between

periods of fiscal virtue and periods of fiscal irresponsibility. Under fiscal virtue, a virtuous rule

is in place most of the time: the central bank stabilizes inflation and the government strongly

adjusts taxes to stabilize public debt. Under fiscal irresponsibility, a fiscally irresponsible rule is

in place most of the time: the central bank de-emphasizes inflation stabilization and the fiscal

authority is not committed to keeping debt under control. A strong reputation for fiscal virtue

is generally desirable because it leads to a stable macroeconomic environment, but when the

economy enters the zero lower bound, policy-makers face a trade-off between preserving their

reputation and escaping a large recession. Given that policy-makers’behavior is constrained

at the zero lower bound, beliefs about the exit strategy are substantially more important than

policies implemented during the crisis. Announcing a period of austerity is detrimental in the

short run, but it preserves macroeconomic stability in the long run. A severe recession can

be avoided by abandoning fiscal virtue, but this results in a sharp increase in macroeconomic

instability. Contradictory announcements by the fiscal and monetary authorities can lead to

high inflation and large output losses. Finally, the paper shows that high uncertainty is an

inherent implication of entering the zero lower bound while deflation is not, because agents are

likely to be uncertain about the way policy-makers will deal with the large stock of debt arising

from a severe recession.

6 Concluding Remarks

This paper has developed methods to solve general equilibrium models in which agents are

subject to waves of optimism, pessimism, and uncertainty. Agents in the model are fully

rational, understand the structure of the economy, and know that they do not know. Therefore,

when forming expectations they take into account that their beliefs will evolve in response to

realized observable economic outcomes, the behavior of other agents in the model, or both.

The central insight consists of creating an expanded number of regimes indexed with respect to

agents’beliefs. The resulting law of motion reflects agents’uncertainty and can be expressed

in state space form. Therefore, the framework proposed in this paper is suitable for structural

estimation.
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Appendices

The appendices are organized as follows. Appendix A works out the recursions (3) and (4)

that pin down the dynamics of beliefs within blocks. Appendices B-F prove Propositions 2-

6. Appendix G shows that the unstable root λ̃1 is either smaller than or equal to zero or

higher than or equal to unity. Appendix H details the algorithm to construct the transition

matrix P̂ when agents receive signals. Appendix I characterizes the steady-state equilibrium for
stationary variables in the RBC model and obtains the log-linearized equations of this model.

Note that the convergence results, which are proven in Appendices B-G, could be derived by

working on the submatrices of each block. However, we have decided to work with the solution

of the difference equations (3) and (4) because this approach is familiar to a wider audience.

A Deriving the Law of Motion for Beliefs
In this appendix, we want to show two propositions.

Proposition 7 The rational difference equations (3) and (4) hold true

Proof. Recall that equation (3) describes the dynamics of beliefs within Block 1. Consequently, this
equation holds when τ1t > 1. The Bayes’theorem can be applied to characterize the probability of
being in Regime 1 given that the system is in Block 1 (τ1t > 1):

prob
(
ξt = 1|τ1t

)
=

p
(
τ1t = τ1t−1 + 1|ξt = 1

)
p
(
ξt = 1|τ1t−1

)∑4
i=1 p

(
τ1t = τ1t−1 + 1|ξt = i

)
p
(
ξt = i|τ1t−1

)
But if τ1t = τ1t−1 + 1, then the likelihood is such that

p
(
τ1t = τ1t−1 + 1|ξt = 1

)
= p

(
τ1t = τ1t−1 + 1|ξt = 2

)
> 0

and
p
(
τ1t = τ1t−1 + 1|ξt = 3

)
= p

(
τ1t = τ1t−1 + 1|ξt = 4

)
= 0

The equality in the first expression reflects the fact that agents cannot distinguish regimes belonging
to the same block. The inequality sign in the first expression and the equality sign in the second
expression are due to the fact that the system is in Block 1 at time t, ruling out the possibility that
either Regime 3 or Regime 4 is realized. These results allow us to write:

prob
(
ξt = 1|τ1t

)
=

p
(
ξt = 1|τ1t−1

)∑2
i=1 p

(
ξt = i|τ1t−1

)
Since p

(
ξt = i|τ1t−1

)
=
∑2

j=1 p
(
ξt−1 = j|τ1t−1

)
pji, then

prob
(
ξt = 1|τ1t

)
=

∑2
j=1 p

(
ξt−1 = j|τ1t−1

)
pj1∑2

i=1

∑2
j=1 p

(
ξt−1 = j|τ1t−1

)
pji

Furthermore, note that p
(
ξt−1 = 2|τ1t−1

)
= 1− p

(
ξt−1 = 1|τ1t−1

)
and after straightforward manipula-

tions leads to equation (3). Equation (4) can be proved analogously.
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B Proof of Proposition 2
If (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 6= p21p12, (iii) p11 6= p22 or both p12 6= 0 and p21 6= 0, and
the initial probability is such that prob

(
ξt = 1|τ1t = 1

)
6= λ̃1, then prob

(
ξt = 1|τ1t

)
−→ λ̃2 ∈ [0, 1]. If

conditions (i), (ii), and (iii) hold and the initial probability is such that prob
(
ξt = 1|τ1t = 1

)
= λ̃1,

then prob
(
ξt = 1|τ1t

)
= λ̃1 for any τ1t .

The difference equation (3) can be expressed as

prob
(
ξt = 1|τ1t

)
=
a · prob

(
ξt−1 = 1|τ1t−1

)
+ b

c · prob
(
ξt−1 = 1|τ1t−1

)
+ d

(28)

where

a ≡ p11 − p21, b ≡ p21
c ≡ p11 + p12 − p21 − p22, d ≡ p21 + p22

Condition (i) ensures that the difference equation of interest is rational because it implies c > 0.
In Appendices E and F, we will deal with the case of c = 0. We then proceed as follows. Denote
prob

(
ξt = 1|τ1t

)
+ d

c as xt and re-write the difference equation above as

xt = α− β

xt−1
(29)

where

α ≡ p11 + p22
p11 + p12 − p21 − p22

β ≡ p11p22 − p21p12
(p11 + p12 − p21 − p22)2

Condition (ii) ensures that β 6= 0. The case of β = 0 will be studied in Appendix D. The above
equation can be reduced to a homogeneous linear difference equation by defining xt = ϕt/ϕt−1 where:

ϕt − αϕt−1 + βϕt−2 = 0 (30)

If λ1 and λ2 are the solutions of the characteristic equation, namely 1
2α±

1
2

√
α2 − 4β, then the general

solution of (30) is

ϕt = C1λ
t
1 + C2λ

t
2, if λ1 6= λ2 (31)

ϕt = (C1 + C2t)λ
t
1, if λ1 = λ2 (32)

The general solution of (29) is then:

xt =
C1λ

t
1 + C2λ

t
2

C1λ
t−1
1 + C2λ

t−1
2

(33)

when C2 = 0, xt = λ1 for all t. When C1 = 0, xt = λ2 for all t. When neither C1 nor C2 is zero, then

xt = λ2

(
λ1
λ2

)t+1
+ C(

λ1
λ2

)t
+ C

, C 6= 0 (34)
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Note that α2 ≥ 4β is required for the characteristic roots λ1 and λ2 to be real. This condition is[
p11 + p22

p11 + p12 − p21 − p22

]2
≥ 4 p11p22 − p21p12

(p11 + p12 − p21 − p22)2

and after simplifying
p211 + p

2
22 + 2p11p22 ≥ 4p11p22 − 4p21p12

Some straightforward manipulation leads us to

(p11 − p22)2 ≥ −4p21p12 (35)

From condition (iii), the inequality above is strict and the characteristic roots are unequal. The
case in which the characteristic roots are identical is dealt with in Appendix C. Let |λ2| > |λ1|
then |λ1/λ2|t → 0 and (34) implies that xt → λ2 as long as x1 6= λ1. The root with highest absolute

value can be seen to be always p11+p22+
√
(p11−p22)2+4p21p12

2(p11+p12−p21−p22) . Recall that xt ≡ prob
(
ξt = 1|τ1t

)
+ d

c . After
some straightforward algebraic manipulations we obtain:

prob
(
ξt = 1|τ1t

)
→ λ̃2 =

p11 − p22 − 2p21 +
√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)

where λ̃2 is the stable root for the variable of interest prob
(
ξt = 1|τ1t

)
. The unstable root for

prob
(
ξt = 1|τ1t

)
can be easily seen to be:

λ̃1 =
p11 − p22 − 2p21 −

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)

We only need to show that λ̃2 ∈ [0, 1]. We want to show that

p11 − p22 − 2p21 +
√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≥ 0

If p11 + p12 − p21 − p22 > 0 and p11 − p22 − 2p21 ≥ 0, then the statement is clearly true. When
p11 + p12 − p21 − p22 > 0 and p11 − p22 − 2p21 < 0, then√

(p11 − p22)2 + 4p21p12 ≥ − (p11 − p22 − 2p21)

Since the right-hand side is positive we can square both sides of this equation:

(p11 − p22)2 + 4p21p12 ≥ (p11 − p22 − 2p21)2

4p21p12 ≥ 4p221 − 4 (p11 − p22) p21

If p21 = 0, the statement is true. If p21 > 0

p12 − p21 + (p11 − p22) ≥ 0

which is true.
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If p11 + p12 − p21 − p22 < 0, then p11 − p22 − 2p21 < 0. We need to show that

p11 − p22 − 2p21 ≤ −
√
(p11 − p22)2 + 4p21p12

Since both sides of the inequality are negative, then

(p11 − p22 − 2p21)2 ≥ (p11 − p22)2 + 4p21p12

and after manipulating:
−4 (p11 − p22) p21 + 4p221 ≥ 4p21p12

If p21 = 0, the inequality is obviously verified. If p21 > 0, then

0 ≥ (p11 − p22) + p12 − p21

which is true.
We want to show that

p11 − p22 − 2p21 +
√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≤ 1

If p11 + p12 − p21 − p22 > 0, then after some manipulations√
(p11 − p22)2 + 4p21p12 ≤ p11 + 2p12 − p22

Note that p11 + 2p12 − p22 > p11 + p12 − p21 − p22 > 0. Hence, taking the square on both sides of the
inequality yields:

(p11 − p22)2 + 4p21p12 ≤ (p11 + 2p12 − p22)2

and finally
4p21p12 ≤ 4p212 + 4 (p11 − p22) p12

If p12 = 0, this is true. If p12 > 0, then

p21 ≤ p12 + (p11 − p22)

which is true.
If p11 + p12 − p21 − p22 < 0, then after some manipulations√

(p11 − p22)2 + 4p21p12 ≥ p11 + 2p12 − p22

If p11 + 2p12 − p22 < 0, this inequality is obviously true. If p11 + 2p12 − p22 ≥ 0, then

(p11 − p22)2 + 4p21p12 ≥ (p11 + 2p12 − p22)2

and then
4p21p12 ≥ 4p212 + 4 (p11 − p22) p12

If p12 = 0, this is true. If p12 > 0, then

p21 ≥ p12 + p11 − p22

which is true.
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C Proof of Proposition 3
We want to show that if (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 6= p21p12, (iii) p11 = p22 and either
p12 = 0 or p21 = 0, then prob

(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 and the roots are either equal to zero (if p21 = 0)

or one (if p12 = 0). This result follows from observing that condition (iii) implies that condition (35)
delivers coincident characteristic roots λ̃1 and λ̃2; that is,

λ̃1 = λ̃2 =
p21

p21 − p12

If p12 = 0, then prob
(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 = 1. If p21 = 0, then prob

(
ξt = 1|τ1t

)
→ λ̃1 = λ̃2 = 0.

D Proof of Proposition 4
We want to show that if (i) p11 + p12 − p21 − p22 6= 0, (ii) p11p22 = p21p12, then prob

(
ξt = 1|τ1t

)
=

p11−p21
p11+p12−p21−p22 . Condition (ii) implies β = 0 in equation (29) and hence (using the notation introduced
in Appendix B)

xt = α ≡ p11 + p22
p11 + p12 − p21 − p22

From Appendix B, recall that xt = prob
{
ξt = 1|τ1t

}
+ d/c, then it follows that

prob
{
ξt = 1|τ1t

}
=

p11 − p21
p11 + p12 − p21 − p22

.

E Proof of Proposition 5
We want to show that if (i) p11 + p12 − p21 − p22 = 0 and (ii) p11 6= p21, then prob

(
ξt = 1|τ1t

)
→

p21
p22−p11+2p21 , with

p21
p22−p11+2p21 ∈ [0, 1] . If p11 + p12 − p21 − p22 = 0, then c = 0 in the difference

equation (28), which hence boils down to the first-order linear difference equation below:

prob
(
ξt = 1|τ1t

)
=
a

d
· prob

(
ξt−1 = 1|τ1t−1

)
+
b

d
(36)

where a = p11 − p21, b = p21, d = p21 + p22. Stability is ensured by
∣∣a
d

∣∣ = ∣∣∣p11−p21p21+p22

∣∣∣ < 1. First note

that the background assumption A1 combined with condition (i) implies that d 6= 0 and hence the
ratio

∣∣a
d

∣∣ is well-defined. Condition (ii) rules out the possibility that the ratio ∣∣ad ∣∣ is zero. We consider
this case in Appendix F.

The condition p11+p12−p21−p22 = 0 allows us to re-write the stability condition
∣∣a
d

∣∣ = ∣∣∣p11−p21p21+p22

∣∣∣ as∣∣∣p11−p21p11+p12

∣∣∣. Hence, showing that p12 + p21 > 0 implies stability. Recall that the background assumption
A2 requires that either p11 6= p22 or p12 6= p21. If the latter condition is satisfied, then p12 + p21 > 0
trivially follows. If the latter condition is not satisfied, then it must be that p11 6= p22, which, combined
with condition (i), implies that p12 + p21 > 0.

It is easy to see that the difference equation (36) implies that prob
(
ξt = 1|τ1t

)
→ b

d

(
1− a

d

)−1, that
is,

prob
(
ξt = 1|τ1t

)
→ p21

p21 + p22

(
1− p11 − p21

p21 + p22

)−1
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After easy algebraic manipulations

prob
(
ξt = 1|τ1t

)
→ p21

p22 − p11 + 2p21
.

Note that
0 ≤ p21

p22 − p11 + 2p21
≤ 1

To see that, recall that in this case, p11 + p12 − p21 − p22 = 0, implying that p22 − p11 = p12 − p21.
Substituting this result into the inequalities above yields

0 ≤ p21
p12 + p21

≤ 1

which is clearly verified.

F Proof of Proposition 6
We want to show that if (i) p11 + p12 − p21 − p22 = 0, (ii) p11 = p21, then prob

(
ξt = 1|τ1t

)
= p21

p22+p21
.

Condition (i) implies that c = 0 in the difference equation (28), which hence boils down to the first-
order linear difference equation below:

prob
(
ξt = 1|τ1t

)
=
a

d
· prob

(
ξt−1 = 1|τ1t−1

)
+
b

d
(37)

where a = p11 − p21, b = p21, d = p21 + p22. Condition (ii) implies that a = 0 and hence
prob

(
ξt = 1|τ1t

)
= b/d = p21/ (p21 + p22).

G Admissible Region for the Unstable Root
Recall that

λ̃1 ≡
p11 − p22 − 2p21 −

√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)

We want to show that 0 ≤ λ̃1 ≤ 1. This claim is implied by the following two Lemmas.

Lemma 8 If p11 + p12 − p21 − p22 > 0, then λ̃1 ≤ 0.

Proof. We want to show that

p11 − p22 − 2p21 −
√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≤ 0

If p11 + p12 − p21 − p22 > 0, then the above implies

p11 − p22 − 2p21 ≤
√
(p11 − p22)2 + 4p21p12

Note that the background assumption A3 excludes that p11 − p22 − 2p21 = 0. Hence there are two
possible cases left: (a) if p11 − p22 − 2p21 < 0, then the above is true; (b) if p11 − p22 − 2p21 > 0, then
we can take the square on both sides of the above equation to get

(p11 − p22 − 2p21)2 ≤ (p11 − p22)2 + 4p21p12
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Straightforward manipulations lead to

p221 − p11p21 + p22p21 ≤ p21p12

If p21 = 0, then the above is true. Otherwise, we can divide both sides of the above inequality by p21
to get

p11 + p12 − p21 − p22 ≥ 0

that is obviously true because p11 + p12 − p21 − p22 > 0.

Lemma 9 If p11 + p12 − p21 − p22 < 0, then λ̃1 ≥ 1.

Proof. We want to show that

p11 − p22 − 2p21 −
√
(p11 − p22)2 + 4p21p12

2 (p11 + p12 − p21 − p22)
≥ 1

Since p11 + p12 − p21 − p22 < 0, the above implies

p11 − p22 − 2p21 −
√
(p11 − p22)2 + 4p21p12 ≤ 2 (p11 + p12 − p21 − p22)

and after simplifying

−
√
(p11 − p22)2 + 4p21p12 ≤ p11 − p22 + 2p12

Note that the background assumption A3 excludes that p11 − p22 + 2p21 = 0. If p11 − p22 + 2p12 > 0,
the above is obviously true. If p11 − p22 + 2p12 < 0, then taking the square on both sides

(p11 − p22)2 + 4p21p12 ≥ (p11 − p22 + 2p12)2

After some manipulations:
p12 + p11 − p12 − p22 ≤ 0

that is obviously true because p11 + p12 − p21 − p22 < 0.

H Algorithm for the Case with Signals
Algorithm Set i = 1 and initialize the matrix P̂ = 0g×g

Step 1 Find j1 ≤ g1 and j2 ≤ g1 so as to min
∣∣prob{ξt = 1|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2}
where

prob
(
ξt = 1|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 1) prob
(
ξt = 1|It, $t−1)∑2

j=1 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2}

(38)
and agents’beliefs about being in Regime 1 before observing the signal read:

prob
(
ξt = 1|It, $t−1) = prob

(
ξt−1 = 1|It−1, $t−1) (p11 − p21) + p21

prob
(
ξt−1 = 1|It−1, $t−1

)
(p11 + p12 − p21 − p22) + p21 + p22

(39)

using the approximation prob
{
ξt−1 = 1|It−1, $t−1} = Gi. To ensure convergence of beliefs, we

correct j1 and j2 as follows. If jq = i and Gi 6= λ̃2 (q ∈ {1, 2}), then set jq = jq + 1 if Gi < λ̃2
and jq = max (1, jq − 1) if Gi > λ̃2.
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Step 2 Setting prob
(
ξt−1 = 1|It−1, $t−1) = Gi, the (ex-ante) transition probability can be computed

as:
P̂ (i, jq) =

∑2
v=1 prob

{
ξt = v|It−1, $t−1} prob {$t = q|ξt = v} , q ∈ {1, 2} (40)

where
prob

{
ξt = v|It−1, $t−1} =∑2

u=1 prob
{
ξt−1 = u|It−1, $t−1} puv (41)

Step 3 Find j1 > g1 and j2 > g1 so as to min
∣∣prob{ξt = 3|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2},
where

prob
(
ξt = 3|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 3) prob
(
ξt = 3|It, $t−1)∑4

j=3 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2}

and the beliefs about being in Regime 3 upon the shift to Block 2 (before having observed the
signal $t) are given by:

prob
{
ξt = 3|It, $t−1} = ∑

j∈b1 prob
{
ξt−1 = j|It−1, $t−1} pj3∑

i∈b2
∑

j∈b1 prob
{
ξt−1 = j|It−1, $t−1

}
pji

=
prob

{
ξt−1 = 1|It−1, $t−1} p13 + (1− prob{ξt−1 = 1|It−1, $t−1}) p23

prob
{
ξt−1 = 1|It−1, $t−1

}
(p13 + p14) +

(
1− prob

{
ξt−1 = 1|It−1, $t−1

})
(p23 + p24)

using the approximation that prob
(
ξt−1 = 1|It−1, $t−1) = Gi. Setting prob (ξt−1 = 1|It−1, $t−1) =

Gi, the (ex-ante) transition probabilities as

P̂ (i, jq) = P̂ (i, jq)+
4∑
v=3

(
2∑

u=1

prob
{
ξt−1 = u|It−1, $t−1} puv) prob {$t = q|ξt = v} , q ∈ {1, 2}

(42)

Step 4 If i = g1 then set i = i+ 1 and go to step 6; otherwise, set i = i+ 1 and go to step 1.

Step 5 Find j1 > g1 and j2 > g1 so as to min
∣∣prob{ξt = 3|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2}
where

prob
(
ξt = 3|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 3) prob
(
ξt = 3|It, $t−1)∑4

j=3 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2}

and agents’beliefs about being in Regime 3 before observing the signal read:

prob
(
ξt = 3|It, $t−1) = prob

(
ξt−1 = 3|It−1, $t−1) (p33 − p43) + p43

prob
(
ξt−1 = 3|It−1, $t−1

)
(p33 + p34 − p43 − p44) + p43 + p44

(43)

using the approximation prob
{
ξt−1 = 3|It−1, $t−1} = Gi. To ensure convergence of beliefs, we

correct j1 and j2 as follows. If jq = i and Gi 6= λ̃4 (q ∈ {1, 2}), then set jq = min (jq + 1, g) if
Gi < λ̃4 and jq = jq − 1 if Gi > λ̃4.

Step 6 Setting prob
(
ξt−1 = 3|It−1, $t−1) = Gi, the (ex-ante) transition probability can be computed

as:

P̂ (i, jq) = P̂ (i, jq)+
4∑
v=3

(
4∑

u=3

prob
{
ξt−1 = u|It−1, $t−1} puv) prob {$t = q|ξt = v} , q ∈ {1, 2}

(44)
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Step 7 Find j1 ≤ g1 and j2 ≤ g1 so as to min
∣∣prob{ξt = 1|It, $t−1, $t = q

}
− Gjq

∣∣ with q ∈ {1, 2},
where

prob
(
ξt = 1|It, $t−1, $t = q

)
=

prob ($t = q|ξt = 1) prob
(
ξt = 1|It, $t−1)∑2

j=1 prob ($t = q|ξt = j) prob (ξt = j|It, $t−1)
, q ∈ {1, 2}

and the beliefs about being in Regime 1 upon the shift to Block 1 (before having observed the
signal $t) are given by:

prob
{
ξt = 1|It, $t−1} = ∑

j∈b2 prob
{
ξt−1 = j|It−1, $t−1} pj1∑

i∈b1
∑

j∈b2 prob
{
ξt−1 = j|It−1, $t−1

}
pji

=
prob

{
ξt−1 = 3|It−1, $t−1} p31 + (1− prob{ξt−1 = 3|It−1, $t−1}) p41

prob
{
ξt−1 = 3|It−1, $t−1

}
(p31 + p32) +

(
1− prob

{
ξt−1 = 3|It−1, $t−1

})
(p41 + p42)

using the approximation that prob
(
ξt−1 = 3|It−1, $t−1) = Gg1+i. Setting prob (ξt−1 = 3|It−1, $t−1) =

Gi, the (ex-ante) transition probability can be computed as:

P̂ (i, jq) = P̂ (i, jq)+
2∑
v=1

(
4∑

u=3

prob
{
ξt−1 = u|It−1, $t−1} puv) prob {$t = q|ξt = v} , q ∈ {1, 2}

(45)

Step 8 If i = g, then go to step 9; otherwise, set i = i+ 1 and go to step 5.

Step 9 If no column of P̂ has all zero elements, then stop. Otherwise, go to step 10.

Step 10 Construct the matrix T as follows. Set j = 1 and l = 1. While j ≤ g, if
∑g

i=1 P̂ (i, j) 6= 0
then do three things: (1) set T (j, l) = 1, (2) set T (j, v) = 0 for any 1 ≤ v ≤ g and v 6= l, (3)
set l = l + 1 and (4) set j = j + 1; otherwise (i.e., if

∑g
i=1 P̂ (i, j) = 0), set j = j + 1.

Step 11 Write the transition equation as P̂R = T · P̂ · T ′. If no column of P̂R has all zero elements,
set P̂ = P̂R and stop. Otherwise, go to step 10.

I Log-Linearization of the RBC Model
Solving the problem of the representative household in Section 3 leads to:

c−1t = βẼtc
−1
t+1

[
αzt+1k

α−1
t + 1− δ

]
(46)

ct + kt = ztk
α
t−1 + (1− δ) kt−1 (47)

The stochastic process of TFP (19) and equations (46)-(47) imply that consumption and capital are

non-stationary. Denote the stationary variables c̃t ≡ ct/z
(1−α)−1
t , k̃t ≡ kt/z

(1−α)−1
t , µt ≡ ln (zt/zt−1),

and Mt ≡ zt/zt−1 as the gross growth rate of TFP. The stationary version of the model reads:

c̃−1t = βẼtc̃
−1
t+1M

1
α−1
t+1

[
αMt+1k̃

α−1
t + 1− δ

]
(48)

c̃t + k̃t = Mk̃αt−1 + (1− δ)M
1

α−1
t k̃t−1 (49)

Following Schorfheide (2005) and Liu, Waggoner, and Zha (2011), we define a steady-state equi-
librium for the stationary consumption c̃t and capital k̃t when εt = 0 all t and the growth rate of TFP
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is at its ergodic value µ. The steady-state equilibrium level of consumption css and capital kss is:

kss =

 1

αM

M 1
1−α

β
− 1 + δ

 1
α−1

(50)

css = M
α
α−1kαss +

[
(1− δ)M

1
α−1 − 1

]
kss (51)

where M ≡ exp (µ), µ ≡ (p1 + p2)µH + (p3 + p4)µL is the ergodic mean of the log growth rate of the
economy, and pi stands for the ergodic probability of being in Regime i.

Taking the log-linear approximation of equations (48)-(49) around the steady-state equilibrium
(50)-(51) leads to

ĉt = Ẽtĉt+1 − (α− 1)
(
1 + (δ − 1)βM

1
α−1
)
k̂t −

(
1

α− 1 + βM
1

α−1 (δ − 1) + 1
)
Ẽtµ̂t+1

where we use the fact that βM
1

α−1
(
αMkα−1ss + 1− δ

)
= 1 from equation (50) and µ̂t ≡ µt − µ is the

log-deviation of the growth rate of TFP from its ergodic mean µ. ĉt and k̂t denote log-deviations of the
stationary consumption and capital, respectively, from their steady-state value, and µ̂ (ξt) ≡ µt (ξt)−µ
is the log-deviation of the TFP drift from its ergodic mean µ. The resource constraint is

cssĉt + kssk̂t =

(
M

α
α−1kαss

α

α− 1 +
1− δ
α− 1M

1
α−1kss

)
µ̂t +

(
M

α
α−1kαssα+ (1− δ)M

1
α−1kss

)
k̂t−1

and the log-deviations of the growth rate of TFP from its ergodic level follows

µ̂t = µ̂t (ξt) + σzεt. (52)
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