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Abstract:
Much of the repeated game literature is concerned with proving Folk

Theorems. The logic of the exercise is to specify a particular game, and to

explore for that game speci�cation whether any given feasible (and individ-

ually rational) value vector can be an equilibrium outcome for some strate-

gies when agents are su¢ ciently patient. A game speci�cation includes a

description of what agents observe at each stage. This is done by de�ning

a monitoring structure, that is, a collection of probability distributions over

the signals players receive (one distribution for each action pro�le players

may play). Although this is simply meant to capture the fact that players

don�t directly observe the actions chosen by others, constructed equilibria

often depend on players precisely knowing these distributions, somewhat un-

realistic in most problems of interest. We revisit the classic Folk Theorem

for games with imperfect public monitoring, asking that incentive condi-

tions hold not only for a precisely de�ned monitoring structure, but also for

a ball of monitoring structures containing it. We show that e¢ ciency and

incentives are no longer compatible.

1 Introduction

The repeated game literature studies long run/repeated interactions, aiming

to understand how repetition may foster cooperation. Conditioning behavior

on observations is an essential ingredient, and the literature has tried to

understand how the nature and quality of observations a¤ect cooperation

possibilities. Speci�cally, the analysis starts with a stage game characterized

by a payo¤ structure describing how action pro�les a¤ect gains for each

1We thank Drew Fudenberg, George Mailath, Steve Morris, Larry Samuelson and

Yuichi Yamamoto for helpful comments.
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player, and a monitoring structure, that is, a probability distribution over

signals for each action pro�le possibly played that captures the possibility

that the actions played are not perfectly observable. Taking payo¤ and

monitoring structures as given, one then attempts to characterize the set of

(sequential) equilibria of the repeated game, aiming for a Folk theorem.

Although an imperfect monitoring structure is just a modelling device

employed to capture an agent�s inability to observe perfectly what others

are doing, equilibrium constructions sometimes hinge on the precise spec-

i�cation of that monitoring structure, with strategies �nely tuned to that

particular speci�cation, as though agents could easily determine the precise

(stochastic) relationship between the action pro�le played and the signals

observed, despite the fact that others�actions are not observable. This seems

unrealistic, more so when the environment that agents face varies over time.

Besides, one suspects that the plethora of equilibria one can construct might

be a consequence of this presumed unlimited ability of agents to tailor their

strategies to the underlying parameters of the game.

In a companion paper (Compte and Postlewaite (2013)), we have il-

lustrated the lack of robustness of some of these equilibrium constructions

(belief free equilibria), by considering an environment in which there are

exogenous and persistent shocks to the monitoring structure. In this paper,

we apply a similar methodology to repeated games in which the signals that

players receive are public, with a similar motivation: agents cannot plausibly

know with precision the underlying monitoring technology, and the range

of possible stochastic processes over monitoring technologies is so vast that

one cannot plausibly assume agents can learn precisely, nor track variations

in, the underlying monitoring technology.2

Speci�cally, we shall restrict attention to equilibria that are robust to

a rich set of monitoring technologies. By this we mean equilibria in which

players need not try to make inferences about the actual monitoring technol-

ogy within that set.3 We emphasize that we do not think of an arbitrarily
2 In this respect, we di¤er from the perspective adopted in Fudenberg and Yamamoto

(2010). Fudenberg and Yamamoto start with a concern similar to ours, yet they propose a

set up in which, over time, players manage to learn the underlying monitoring technology.
3Stronger restrictions would obtain if one considered variations over time in the moni-
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small set of monitoring technologies, because we have in mind that agents do

not have a precise (nor commonly shared) idea of the monitoring structure

they face.

Our main insight concerns the equilibrium constructions proposed by

Fudenberg, Levine and Maskin (1994) (FLM hereafter). In FLM, Folk the-

orems are obtained by constructing continuation payo¤ vectors lying on one

side of a hyperplane but arbitrarily close to the hyperplane. Even if one can

construct a strategy with appropriate continuation values for a given moni-

toring structure, there is no guarantee that continuation values will continue

lying on the appropriate side of (nor close to) the hyperplane when the mon-

itoring structure varies.

We illustrate the di¢ culty in two ways: by proving an impossibility re-

sult (Section 2) and by constructing a numerical example in which we vary

the monitoring technology (Section 3), showing that while some equilibrium

constructions have good e¢ ciency properties for a given monitoring technol-

ogy, they lose much of their appeal when the monitoring structure varies.

2 The model

Consider a repeated game between n players, each player i simultaneously

choosing ai 2 Ai in each stage game. We denote by ga the expected gains
associated with action pro�le a = (ai)i. We assume there is a unique action

pro�le a� maximizing the sum of players�payo¤s. That is, there existsD > 0

such that, for any other action pro�le a, we have:

g� �
X
i

ga
�
i �

X
i

gai +D:

We also assume that a� is not a Nash equilibrium of the stage game. Con-

sequently, some player i has a pro�table deviation bai that yields a strictly
toring technology, and if one insisted on robustness with respect to the stochastic process

that determines the monitoring technology. But negative results already obtain under

the weaker requirement above that implicitly restrict attention to stochastic processes in

which the monitoring structure does not change over time.
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positive gain, which we denote di:

di � max
ai
g
ai;a

�
�i

i � ga�i :

After choices have been made, players receive a public signal y drawn

from a �nite set Y .4 An imperfect public monitoring structure q speci�es for

each a a distribution over public signals: q = (qa)a2A with each qa 2 �(Y ).
We consider a rich set of monitoring structures, denoted Q, each q 2 Q

having full support. By full support we mean that there exists M such that:

max
a;y;y0

qa(y)

qa(y0)
�M:

By rich, we mean that Q contains a ball B � [�(Y )]A, centered on some

q0. Speci�cally, for any m > 0, we de�ne

Bm = fq 2 [�(Y )]A; for all a; y, qa(y)
q0a(y)

2 [1�m; 1 +m]g

and assume that Q � Bm for some m > 0. We shall refer to m as the size

of the ball Bm.

It is convenient to refer to � 2 � as the "current" state of the moni-

toring structure, as in principle there could be variations over time in the

monitoring technology. For the purpose of this paper however, it will not

be necessary to allow for such variations over time: we will thus identify �
with Q, and refer to either � or q� as the underlying monitoring technology.

The game is repeated, and players evaluate payo¤s using the same dis-

count factor � < 1. We consider pure public strategies.5 We denote by v�i (�)
the value that player i obtains under monitoring structure � when players

follow the strategy pro�le �, and we de�ne E�;� as the set of perfect pure
public equilibria when the monitoring structure is q�. For reasons explained

in the introduction, we are interested in the set of ��robust equilibria, i.e.
4The assumption that Y is �nite is not essential however.
5That is, strategies in which play is only conditioned on the history of past public

signals, and in which play is in pure strategies. The proof actually only requires that play

be in pure strategies a fraction of the time bounded away from 0. See footnote 13.
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E�= \�2� E�;�:6

Before continuing, note that we keep the payo¤ structure unchanged

across all monitoring structures q 2 Q. This assumption is, for example,
consistent with players getting private signals about own payo¤s, and with

the public signal being a noisy or crude aggregate of the private signal pro-

�le received by players.7 This assumption however is not essential to our

argument.8

Having �xed the parametersm;M; di and D, our main proposition states

that ine¢ ciencies must arise:

Proposition 1: There exists �0 > 0 such that for any � and

any � 2 E�;
P
i v
�
i (�) <

P
i g
a�
i � �0 for at least one �.

In the Appendix, we prove a stronger result, showing that the statement

above holds for a set of monitoring structures of positive measure. One can

also show that for a ball of small size m, the ine¢ ciency bound �0 may be

chosen linear in m.

Before presenting the argument, we introduce some notation. For any

given i and �i 2 �(Ai), we de�ne the function �i;�i that maps any moni-
toring structure q to q0 so that:

q0a = qa for a 6= a� and
q0a� = q�i;a��i :

6Thus, the path proposed is in the spirit of the ex post notion of equilibrium that

Fudenberg and Yamamoto (2010) consider. This path di¤ers from standard approaches to

robustness (such as those pursued in Chassang and Takahashi (2011), following Kajii and

Morris (1997)), in two ways. (i) We do not have in mind arbitrarily small perturbations in

the monitoring technology. (ii) We are not asking whether nearby strategy pro�les support

the same value vector when the monitoring technology varies. We analyze the consequence

of varying the monitoring technology, for a given strategy pro�le.
7Formally, assume each player i receives a private signal zi about his payo¤, according

to some joint distribution ha(z) over signal pro�les z = (zi)i, and that in addition, players

receive a public signal that consists of a coarse/noisy aggregate of the private signal pro�le

z = (zi)i, drawn from the distributions k�z(y) for each z. This generates a payo¤ structure

gai = Ehari(ai; zi), and a public monitoring structure q
�
a �

P
z k

�
z(y)ha(z).

8See the Appendix where we allow the payo¤ structure to depend on the monitoring

structure.
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Next we de�ne the set:

�i = f�i 2 �(Ai) j �i;�i(q
0) 2 Qg:

The set �i characterizes the degree to which player i�s deviations from a� can

go unnoticed, in the sense that they would generate the same distribution

over outcomes under q0 as a� would under some other monitoring structure

q in Q. �i is not empty because it contains a�i ,
9 and since Q contains Bm,

�i contains all mixtures (su¢ ciently) near a�i .
10

Finally, we let:

�i = max
�i2�i

gi(�i; a
�
�i)� gi(a�):

Since �i contains all mixtures near a�i , and since a
� is not a Nash equi-

librium, �i is strictly positive for some player i.11

The argument for Proposition 1 builds on �i being positive. Intuitively,

it runs as follows. If an equilibrium pro�le � calls for e¢ cient behavior a�

most of the time under both q0 and q1 = �i;�i(q
0), then it means that under

q0, it asks for a� most of the time, whether player i plays a�i or �i when

the prescribed play is a�. Since �i > 0, playing �i rather than a�i is strictly

preferred by player i.

Proof of Proposition 1: For any �, � and � 2 E�, de�ne Q�;�;� as the
set of monitoring structures � for which

P
i v
�
i (�) >

P
i g
a�
i � �. We �rst

observe that for any � 2 Q�;�;�, the path induced by � must call for playing
a� most of the time, that is except for a fraction of the time equal to �=D.12

9Note that for �i = a�i , �i;�i is the identity function.
10 It is su¢ cient that some weight 1��i with �i � m

M�1 be put on a
�
i . Indeed, q

0
�i;a

�
�i
�

�iq
0bai;a��i + (1 � �i)q0a� , so qa�

q0
a�
=

q0
�i;a

�
�i

q0
a�

= 1 � �i + �i
q0bai;a��i
q0
a�

2 [1 � �i(1 � 1=M); 1 +
�i(M � 1)]; hence qa�

q0
a�
2 [1�m; 1 +m] when �i � m

M�1 .
11From footnote 10, one actually derives �i � dim=(M � 1).
12This is because v�(�) can be written as a weighted average of the action pro�les played

in equilibrium: v�(�) =
P
���;ag

a, with ���;a appropriately taking into account the date

at which a is played and the discount factor. We have
P
v�i (�) �

P
i g

a�
i � (1� ���;a�)D,

implying that ���;a� � 1� �=D.
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Let g and g denote upper and lower bounds on players�payo¤s. In what

follows, we set

�0 = �i
D

4(g � g)

and we assume by contradiction that Q � Q�0;�;�.
Consider the strategy ��ii for player i that plays �i whenever players are

supposed to choose a�. Consider the mixture �i 2 �i that achieves the gain
�i, and the monitoring structure � = �i;�i(q

0). By de�nition of �i, � 2 Q
and the distribution over signals induced by (�i; a��i) under q

0 coincides with

that induced by (a�i ; a
�
�i) under �. So the two paths induced by (�

�i
i ; ��i)

under q0 and � under � coincide except that whenever a� is played under �,

(�i; a
�
�i) is played under q

0. Since � 2 Q � Q�0;�;�, the path induced by �
under � (hence both paths) must prescribe that players choose a� a fraction

1� �0=D of the time. We thus have:13

vq
0

i (�
�i
i ; ��i) � (g

a�
i +�i)(1��0=D)+�0g=D � ga�i +�i��0(g�g)=D � ga�i +3�i=4:

Since � 2 E�;q0 , we have:

vq
0

i (�
�i
i ; ��i) � v

q0

i (�)

thus implying:

vq
0

i (�) � g
a�
i + 3�i=4:

To conclude, observe that since q0 2 Q � Q�0;�;�, the path induced by �

under q0 prescribes that players choose a� a fraction 1� �0=D of the time,

hence:

vq
0

i (�) � g
a�
i (1� �0=D) + g�0=D � ga�i +�i=4

contradicting the previous inequality. QED

13 If in equilibrium, the action pro�le a� were played in a pure strategy only a fraction

of the time �, we would consider the deviation ��ii that plays �i only in these periods,

hence we would then replace �i with ��i, and the argument we propose would still be

valid.
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3 An illustration

We next present an example that provides intuition as to why the typical

FLM construction fails to be robust in our sense. In FLM, the equilibrium

strategies that achieve an outcome close to some e¢ cient outcome must be

constructed so that continuation values follow a random walk (with no drift)

on the frontier of some smooth self generating set14 lying close to the point on

the e¢ cient frontier one wants to sustain. When one modi�es the monitoring

structure, that same strategy pro�le may be robust in the sense that it still

de�nes an equilibrium. However, the strategy pro�le now generates a process

over continuation values that drifts, so that even if incentives are preserved,

the location of the self generating set no longer lies close to the original one.

We illustrate this phenomenon with a simple two player example. We

consider a stage game with a symmetric payo¤ structure, an action pro�le

a� yielding the maximum feasible joint payo¤ (g; g), and two distinct Nash

pro�les b1 and b2 yielding payo¤s (0; g + ) and (g + ; 0) respectively.15

We wish to support equilibrium payo¤s close to (g; g). There are two

signals available y1 and y2. We let

p = Prfy2 j a�g

and we assume that any deviation from a� by player 1 increases the likelihood

of y1, while any deviation from a� by player 2 increases the likelihood of y2.

Formally, we assume that:

Prfyi j ai; a��ig > q > max(p; 1� p):

In other words, the signals permit one to distinguish statistically between

player 1 and 2�s deviations. Our objective is to design equilibria that permit

14Self generating sets have been introduced by Abreu, Pearce and Stachetti (1986,1990).

A set W is self-generating if all values in W can be sustained and enforced with continu-

ation values also lying in W .
15The assumption that there are two asymmetric Nash equilibria is for convenience,

so that we need not worry about supporting these asymmetric continuation values. In

general, such asymmetric points have to be supported, and the di¢ culties we report for

sustaining values close to (g; g) would also arise for these asymmetric points.
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one to approach (g; g) when p = 1=2, and then to examine the e¤ect of

variations in the monitoring technology.

We shall construct equilibria in which only a�, b1 and b2 are played, and

in which occasionally either b1 or b2 is triggered for a while, based on the

balance between the number of occurrences of y1 and y2.

Speci�cally, we describe the strategies we consider as follows. Each player

starts with K credits. Each signal yi generates a transfer of one credit from

player i to player j. When a player, say player i, has no more credits, then

bi is played. At the end of that period, player i gets a transfer from player

j of one unit of credit with probability �.16

The strategy considered is thus characterized by the pair (K;�), with K

a¤ecting the length of the cooperative phase, and � a¤ecting the length of

the punishment phase.

Continuation values depend only on the balance of credits. Letting ki
denote the number of credits for player i, we de�ne n = (k1 � k2)=2 2
f�K; ::; 0; :::Kg and denote by vn the corresponding continuation value. For
all n 6= K;�K we have:

vn1 = (1� �)g + �(pvn�11 + (1� p)vn+11 )

and

v�K1 = �(�v�K+11 +(1��)v�K1 ) and vK1 = (1� �)+ �(�vK�11 +(1��)vK1 ):

We turn to speci�c numerical values to illustrate our point. We �x

� = 0:99, g = 3 and  = 0:5, and consider the strategy de�ned by K = 10

and � = 0:95. The following graph depicts continuation values for various

speci�cation of the monitoring technology: p = 1=2; 0:45; 0:4.17

16This assumes a public randomization device. One could easily dispense of that as-

sumption however, for example assuming that player i gets a unit of credit after bi has

been played for � periods.
17Each black (respectively red and blue) dot corresponds to the locus of a particular

continuation value vector vn = (vn1 ; v
n
2 ) when p = 1=2 (respectively 0:45 and 0:4). The

size of the dot is proportional to the long run probability n.
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When p = 1=2, punishment phases are triggered on somewhat rare

occasions (because K is relatively large), and a payo¤ close to the e¢ -

cient outcome ga
�
= (3; 3) can be sustained. The set of value vectors

W = fv�K ; ::; v0; vKg is a self generating set,18 and over time, continua-
tion values follow a random walk on this set.19

When p 6= 1=2, say p < 1=2; the proposed strategies may still re-

main in equilibrium, that is, the induced set of continuation values W p =

18The di¤erences vn+1i � vn�1i are at least equal to 0:02. So enforcement in ensured if

q is large enough and the gain from deviating from a� small enough.
19Note that in the long run, all n 6= K;�K are equally likely.

Also note that one may adjust the provision of incentives by varying �. A smaller �

means a smaller chance to move away from the punishment phase. It would imply that all

values shift downward, and it would also imply larger di¤erences vn� vn�1, thus stronger
incentives.
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fv�K ; ::; v0; vKg may still be a self generating set. However credit trans-
fers are no longer adapted to that monitoring technology. As a result, the

number of credits player 1 has drifts toward lower values (because lower p

means more frequent signals y1), the punishment phase (b1) is often trig-

gered, and the location of W p moves away from (g; g). When p = 0:45 or

p = 0:4, the punishment phase (b2) is almost never triggered, and equilib-

rium play essentially consists of a combination of b1 and a�. The insight of

Radner, Myerson and Maskin (1986) applies, with equilibrium values neces-

sarily bounded away from g(a�).

A similar analysis holds for p > 1=2, with continuation values drifting

towards the punishment (b2).

4 Conclusion

The usual methodology assumes a precise monitoring technology, and inves-

tigates how players can best take advantage of that monitoring technology,

�nding strategies that preserve incentives and yet seldom induce ine¢ cient

punishment phases. For example, the literature has been helpful in under-

standing how the ine¢ ciencies identi�ed by Radner, Myerson and Maskin

(1986) could be alleviated when players have access to a su¢ ciently rich

monitoring structure that permits statistically distinguishing between each

player�s deviations (Fudenberg, Levine and Maskin (1994), or when signals

are only revealed with delay (Abreu, Milgrom and Pearce (1991).

While these insights are important, the quest for Folk theorems some-

times pushes the analyst toward �ne tuning strategies precisely to the par-

ticular monitoring structure that agents face: the actions are not observable,

yet the strategies may be �ne tuned to the distributions that generate sig-

nals, as though these distributions were perfectly observed. When such �ne

tuning cannot be done, for example because the environment that players

face varies or because information about the monitoring technology and

about changes in the monitoring technology is limited, di¢ culties arise. In

a companion paper, we have shown that belief free constructions in the lit-

erature fail to be robust in our sense. In this paper, it is not the equilibrium

11



construction itself that fails to be robust. Rather, it is the ability to sustain

a given Pareto e¢ cient point that fails to be robust; because equilibrium

strategies cannot be tailored to each di¤erent realization of the underly-

ing state (i.e. the monitoring structure), the locus of each state contingent

equilibrium values drifts away from the point that one would have liked to

sustain.
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from a� can go unnoticed. We also present a proof in which the payo¤

structure is allowed to depend on the monitoring structure �.

Speci�cally, we de�ne g�i (a) to make explicit that payo¤s may depend

on the monitoring structure, and assume that for some player i and actionbai; g�i (bai; a��i) > g�i (a�) for all � 2 Q, that is, bai is a pro�table deviation for
all monitoring structures in Q.

Proposition 2: There exists d; �0 > 0 such that for any � and
any � 2 E�;

P
i v
�
i (�) <

P
i g
�
i (a

�) � �0 for a set of monitoring
structures of measure at least equal to d.

Proof: De�ne Bm to be the ball of monitoring structures around q0 of

size m:Without loss of generality, we consider the case where Q = B2m for

some m > 0. For simplicity, we shall also abuse notation and refer to generic

monitoring structures as either � or q.

We start with some new notation. For any �i 2 [0; 1], we de�ne (abusing
notation) �i as the mixed action for player i that puts weight �i on the

pro�table deviation bai and weight 1� �i on a�i .
Next, for any given i and �i, we de�ne the function �i;�i that maps any

monitoring structure q to q0 so that:

q0a = qa for a 6= a� and
q0a� = q�i;a��i � �iqbai;a��i + (1� �i)qa� :

Note that for �i = 0, �i;�i is the identity function, and that, since distri-

butions have positive support, the function �i;�i can be inverted if �i is

su¢ ciently small.20 In what follows, we �x �mi > 0 so that ��1i;�mi (B
m) �

B2m(= Q) and set �mi = min�2B2m g
�
i (�

m
i ; a

�
�i)� g�i (a�).

For any �, � and any � 2 E�, we now de�ne Q�;� as the (convex) set of
monitoring structures � 2 Bm for which

P
i v
�
i (�) >

P
i g
�
i (a

�) � �. Note
20This is because starting from q0 2 Bm, one may de�ne qa� = (q0a���iq0bai;a��i)=(1��i).

Since all q 2 Q have full support on Y , there exists  > 0 such that q0(y) �  for all

q0 2 Bm and y 2 Y . So for �i small enough ��1i;�i is well de�ned on B
m.
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that for any such �, � must call for playing a� most of the time (on the

equilibrium path), that is, except for a fraction of the time of order �.21

We now choose �0 small compared to �
m
i . Our aim is to show that

for any � and � 2 E�, the set bQ of monitoring structures � 2 Q for whichP
i v
�
i (�) �

P
i g
�;a�

i � �0 has measure bounded away from 0. Our main

observation is as in the proof of Proposition 1:

��1i;�mi
(Q�;�0) \Q�;�0 = ?: (1)

Once this is proved, the conclusion obtains, as we now show. First

observe that (1) implies that bQ contains ��1i;�mi (Q
�;�0) and the complement

of Q�;�0 in Bm, 22 that is:

bQ � ��1i;�mi (Q�;�0) [ (BmnQ�;�0):
Next we distinguish two cases. Either Q�;�0 has a small measure relative

to Bm (i.e. smaller than a fraction 1 � d with d small), and the desired
conclusion obtains: �( bQ) � d�(Bm); or Q�;�0 has a large measure relative
to Bm (larger than a fraction 1� d). For d small enough (compared to m),
any convex set having a measure larger 1 � d relative to Bm must contain

the smaller ball Bm=2. Since Q�;�0 is a convex set, we obtain ��1i;�mi (Q
�;�0) �

��1i;�mi
(Bm=2). So ��1i;�mi (Q

�;�0) has a measure bounded away from 0, and the

conclusion obtains in that case too.

The proof of (1) follows the steps of the proof of Proposition 1. As-

sume by contradiction that there exists � and �0 both in Q�;�0 such that

�0 = ��1i;�mi
(�). Then by construction, the distribution over signals induced

by (�i; a��i) under � coincides with that induced by (a
�
i ; a

�
�i) under �

0. Now

de�ne the strategy �mi for player i that plays �
m
i whenever players are sup-

posed to choose a�. The two paths induced respectively by (�mi ; ��i) under

21This is because v�(�) can be written as a weighted average of the action pro�les played

in equilibrium: v�(�) =
P
���;ag

a, with ���;a appropriately taking into account the date

at which a is played and the discount factor. The statement means that ���;a� must be

close to 1.
22 bQ contains ��1i;�mi (Q

�;") because by de�nition of Q�;"; Q�;" � Bm, and because �mi
has been chosen so that ��1i;�mi (B

m) � B2m � Q.bQ also contains BmnQ�;�0 by de�nition of Q�;�0 and bQ.
14



� and by � under �0 coincide except that whenever a� is played under �0,

(�mi ; a
�
�i) is played under �. Since �

0 2 Q�;�0 , that path must prescribe that
a� is played except for a fraction of the time of order �0. So by construction

we have:

v�i (�
m
i ; ��i) � g�i (a�) + �mi +O(�0):

Since � 2 E�;�, we have:

v�i (�
m
i ; ��i) � v�i (�)

thus implying:

v�i (�) � g�i (a�) + �mi +O(�0)

thus contradicting the premise that a� is played most of the time under �.

So ��1i;�mi (Q
�;�0) \Q�;�0 = ? as desired. Q.E.D.
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