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Abstract

Standard Bayesian models assume agents know and fully exploit
prior distributions over types. We are interested in modeling agents
who lack detailed knowledge of prior distributions.

In auctions, that agents know priors has two consequences: (i)
signals about own valuation come with precise inference about signals
received by others; (ii) noisier estimates translate into more weight put
on priors.

We revisit classic questions in auction theory, exploring environ-
ments in which no such complex inferences are precluded. This is done
in a parsimonious model of auctions in which agents are restricted to
using simple strategies.

*Compte: Paris School of Economics, 48 Bd Jourdan, 75014 Paris (e-mail:
compte@enpc.fr); Postlewaite: Department of Economics, 3718 Locust Walk, University of
Pennsylvania, Philadelphia, PA 19104-6207 (e-mail: apostlew@econ.upenn.edu). A large
part of this work was done while Postlewaite visited the Paris School of Economics; their
hospitality is gratefully acknowledged. We thank Paul Klemperer and Steve Matthews for
helpful discussions. The authors thank the Gould Foundation for financial support, and
Postlewaite thanks the National Science Foundation for financial support.



Penn

I ﬂ’s - ¥-£i~\%+}'u,h_ {'-I,-+ P y=A
= TIoGB] [1-0xpIL =
c=x(l,w,u) y r=r+0

U (0=E [B(1+rit+1)) U (¢)

b ff‘:l?d Vi B }av_:A(
L =IT[o(xB] [1-¢xB]L =
‘'c .-;l;.,;__ P & B! 7 r,+B

U (0)=E [B1+r(t+1)) U (v

Penn Institute for Economic Research
Department of Economics
University of Pennsylvania

3718 Locust Walk
Philadelphia, PA 19104-6297
pier@econ.upenn.edu
http://economics.sas.upenn.edu/pier

PIER Working Paper 13-017

“Auctions, Second Version”

Oliver Compte and Andrew Postlewaite

http://ssrn.com/abstract=2246922


http://ssrn.com/abstract_id=
mailto:pier@econ.upenn.edu
http://economics.sas.upenn.edu/pier

1 Introduction

I might go to an auction at Sotheby’s, see a painting and decide that my value
for a painting is $1100, but have little idea of where my valuation stands
in relation to the valuations of other bidders. That is, I might think it is
equally likely that my valuation is the highest, second highest, or lowest; in
other words, my valuation gives me little guidance in predicting my rank in
the valuations. Had my value of the painting been $1200 rather than $1100
I might not think it any more likely that my valuation was the highest:
whatever made my value higher might well have made other bidders’ values
higher as well, and I might find it impossible to sort out whether the basis
of my higher value was common to all bidders or was idiosyncratic to me.

We are interested in considering auction models that reflect the above
difficulty — that of using personal valuation as an instrument in predicting
rank.!

We propose a model in which a bidder is limited in his ability to exploit
the signals that he gets: his behavior is driven by own welfare consider-
ations, but only to a limited extent. That is, we depart from a standard
auction model in that we put restrictions on the set of rules that the agent
considers. Without restriction, optimal bidding would result in behavior
that is finely tuned to the particular joint distribution over valuations that
the analyst assumes, and personal valuation would become a precise instru-
ment to estimate how one’s valuation compares to others.

The particular restriction that we analyze is that bidders apply constant
shading to their value estimates: shading reflects a degree of caution, and
caution is not adjusted to each particular value realization, but only on av-
erage across value estimate realizations. Caution is by assumption the same
across all realizations, reflecting the idea that the agent cannot determine
whether his value estimate realization is high or not, or that there is no
natural reference point to which it can be compared.?

LOf course, some signals might be good instruments: If I see another participant at
the painting auction arriving with a $4000 suit, that may be a strong indication that my
rank is low. Our view however is that personal valuation is often not a useful instrument
to estimate rank, and the model we propose will reflect that.

2Qur approach is similar to that explored in Compte and Postlewaite (2012). In that
paper, the agent gets an estimate of some underlying state s, say * = s 4+ . Ideally, the
agent would like to know his estimation error e, but we should not expect him to be able



This paper is part of a broader project that attempts to model agents
who lack detailed knowledge of prior distributions. Following Wilson (1987)’s
critique, a number of authors have questioned the standard perspective that
agents would have precise knowledge of prior distributions. Attempts to
weaken that perspective generally follow the traditional Bayesian route that
takes anything that is not known as a random variable, assuming a known
prior over priors and enriching the type spaces with additional private sig-
nals.> Strategy restrictions constitute another route in that they have the
effect of limiting agents’ ability to finely adjust their behavior to details of
the environment that they cannot plausibly know.

An alternative interpretation of the model is that agents are boundedly
rational. Compared to many traditional bounded rationality models that
often assume that agents make evaluation errors in comparing alternatives,

we assume that agents do not make errors in comparing bid functions.*

Rather, they are simply assumed to not compare all bid functions.’?

The model proposed yields a parsimonious model of auctions because an
agent’s behavior is characterized by a single parameter rather than a func-
tion. Standard issues (existence, revenue comparisons, comparative statics)
can be addressed within the model. It thus provides insights on these issues
that complement standard intuitions.

The model also permits disentangling valuation related information from
rank related information, since in equilibrium, valuation is not used by

to make precise inferences about the size or sign of € based on the estimate x he forms.

3This is the route taken by the robustness in mechanism design literature (Bergemann
Morris, 2005), as well as the global game literature (See Morris and Shin, 2006 for a
survey). The underlying motivation is to avoid predictions that would be overly sensitive
to common knowledge assumptions (as in Rubinstein 1989’s email game). The technique
consists of "relaxing" common knowledge by adding further private signals. (In the context
of auctions, see Fang and Morris, 2006, where the additional signals permit breaking the
one-to one relationship between value and beliefs).

These papers, however, assume common knowledge of the distribution over this enriched
type space, making the agent’s optimization ever more sophisticated.

*The usual bounded rationality route consists of assuming one particular choice rule - in
general subjective expected utility maximization, based on possibly mistaken evaluations.
The source of the errors may be left exogenous (Block and Marchak, 1960), procedural
(Osborne and Rubinstein, 1998), or stem from the way beliefs are formed (Geanakoplos,
1989, Gilboa and Schmeidler, 1995, Jehiel, 2005).

In that sense, the route we take is closest to the one that consists of restricting the
strategy space to finite automata in repeated games (Aumann, 1981).



agents to make rank related inferences.

More generally, that agents know priors in standard auction models has
two consequences: (i) signals received come with a precise inference about
signals received by others, implying that optimal shading behavior depends
finely on one’s inference about others’ types; (ii) noisier estimates translate
into more weight put on priors: some "regression to the mean" has to take
place. A contribution of this paper is to explore environments in which such
complex inferences are assumed not made.

Why is this interesting? Apart from providing insights for auctions
played by only mildly sophisticated bidders, it permits one to examine the
extent to which standard insights are driven by the modelling strategy that
assumes known priors.

To illustrate, the second type of inference (ii) implies that in a standard
Bayesian model, a more "poorly informed" bidder (i.e., with noisy value
estimates) has more concentrated posterior beliefs, hence, from the perspec-
tive of other players, a more predictable behavior (unless he uses a mixed
strategy). The consequences are numerous: rents are easier to extract from
poorly informed agents; ignorance promotes competition (between few sym-
metric agents) (Ganuza, 2004); in competing with a more informed agent,
the less informed agent gets no rents (Milgrom, 1981). It also implies that
for an uninformed agent, one benefit of (publicly) getting more precise in-
formation is to make behavior less predictable. For sellers, incentives to
provide information thus have to balance efficiency gains with the additional
rents that less predictable behavior generates (Bergemann and Pesendorfer,
2007).9

In many problems however, there may be no obvious reference point that
would justify that a more poorly informed agent behaves more predictably.
In the absence of such a reference point, or if agents lack detailed knowledge
of the joint distribution over value and value estimates, it is likely that the
opposite will be true, that is, that from the perspective of other players,
behavior of more poorly informed agents is less predictable.

Finally, a contribution of the paper is to propose a theory that starts

%These remarks apply more generally, to other strategic situations. In Kamenica and
Gentzkow (2011) for example, information transmission generates dispersion in the re-
ceiver’s posteriors, explaining why the sender does not benefit from persuasion when his
value function (expressed as a function of the receiver’s beliefs) is concave.



from cognitively less demanding models, and subsequently investigating the
consequences of increased sophistication, adding coarse rank related infor-
mation to the model for example. We see two benefits: comparative statics
with respect to sophistication, and a careful consideration of the cognitive
demands that are implicit in standard models. For example, to the analyst,
the independent private value model seems relatively simple. Cognitively
however, the model is quite demanding: it requires the agent to combine in
subtle ways information about rank and dispersion based on each possible
value realization he may have.

Section 2 starts by describing the bidder’s decision problem, and in-
troduces our main modelling assumption (strategy restrictions). Section 3
moves to the analysis of a simple first price auction with perfect value esti-
mates. Existence, revenue comparisons, and comparative statics results are
obtained. Section 4 incorporates additional private signals into agents’ bid-
ding decisions, showing that providing rank information has an ambiguous
effect on sellers’ revenue. Section 5 introduces noisy estimates. Section 6
provides a discussion and relates results to the literature. Section 7 con-
cludes. Appendices A and B extend the analysis to several additional stan-
dard questions: buyer-seller relationships and comparison of discriminatory
and uniform auctions (with unitary demands).”

2 The bidder’s decision problem

We consider first price auctions and start by describing the decision problem
that a given agent faces. In any first price auction, the agent chooses a bid,
denoted b. That agent wins if and only if b exceeds some price p. Letting v
denote his valuation for the object being sold, he obtains v — p if he wins,
and 0 otherwise. The agent may be unsure about his valuation v and the
threshold price p that will win the object. We can think of the pair (v, p) as
a state, and the agent’s preferences over his possible alternatives (the bids
b) depend on this state; they are characterized by:

u(b,v,p) = v—>bifb>p

= 0 otherwise.

"The working paper (Compte and Postlewaite, 2010) includes extensions to asymmetric
auctions, auctions for bundles and sequential auctions.



While the agent faces uncertainty in that he does not know the state (v, p),
he has some imperfect knowledge of it. This is modelled by assuming that he
gets data, z € Z correlated with the true state (v,p). The joint distribution
over state and data is denoted w.®

The "data" z may take various forms: we define it to be a signal (or
set of signals) that the agent may condition his behavior on. In our basic
auction model we assume perfect estimates, that is, z = v. More generally
the data z may consist of a noisy estimate of v. Formally, we define

z2=v+¢

where ¢ is a noise term independent of v.”

Plausible bidding rules. We define a family of bidding rules that depend
on z, parameterized by a scalar yv. When z is a noisy estimate of v, we define
rule . as:

ry(2) =2z — 7.

The parameter -y characterizes how conservative the agent is (with higher
- connoting more conservative). It may also be interpreted as a level of cau-
tiousness (if the agent fears that z > v). Obviously, one could imagine other
ways to parameterize conservativeness or cautiousness, and we certainly do
not wish to argue in favor of a specific shape. Our main motivation lies not
in the shape of the rules considered, but in the assumption that the agent is
unable to adjust v to each particular realization of z, reflecting the idea that
z is not (or cannot be) used as an instrument to adjust how conservative or
cautious one ought to be.

Each rule 7 induces an expected utility (or performance)

vu(r) = Eyu(r(z), s).

Throughout most of the paper, we shall assume that the agent finds the
optimal rule within the set:

R= {Tw}veR-

8 When analyzing an auction with several strategic bidders, the distribution w is en-

dogenous. For now however, we shall keep it exogenous.
9Tn Section 4, we shall consider the case where bidders also receive a signal correlated
with rank (e.g.,. the $4000 suit — see footnote 1), that is

z = (v, k)
where k € {H, L} is a signal (High or Low) correlated with p.



Optimal bidding rules.
The optimal bidding rule is characterized by a single parameter v* that
measures the optimal extent of shading. We illustrate with two cases.

(i) Perfect estimates (z = v).
Define ¢(y) as the probability of winning when the agent uses 7:

¢(7) = Pro(v—p > 7).

The expected payoff that the agent gets when using rule 7 is:

v(ry) = 70(7)-

The derivation of the optimal bidding rule is thus analogous to a standard
monopoly pricing model in which ¢() is interpreted as a demand function.
Optimal shading +* is characterized by the following first order condition:'’

o= 200
—¢'(v*)’
Shading is thus larger when the agent has higher chances of winning (that
is, if ¢(7y) shifts up), or when the distribution over v — p is more dispersed
(that is when | ¢’ | shifts down). The latter effect can be interpreted as a
Bertrand competition effect: it is stronger when small changes in shading
induce large changes in the probability of winning.
(ii) Noisy estimates (z = v + ¢).
Now define

¢.(v)=Pr(v+e—p>v)and Y. (y) = Ele |v—p+e=1]

¢.(7y) is the probability of winning when the agent uses r., while ¢_(v) is
the expectation of the estimation error conditional on using r, and winning
by a 0-margin. The optimal bidding rule is characterized by a shading level
~* that solves:!!

* (bz-:(’y*) *
Ly +9:(7%)

is increasing, the first order condition uniquely defines v*.

o(v)
()
Pe(v)
oL ()

10 Assuming that v +

' Assuming that v+ 1. (y) is increasing, this first order condition again uniquely

defines v*.



In words, optimal shading is now derived from two considerations. First, as
in the perfect estimate case, it depends on demand elasticity. In addition,
when estimates are noisy, a bidder runs the risk of getting the object only
because the error term ¢ was positive (and high). In other words, noisy
estimates make a bidder subject to a winner’s curse, or selection bias, and
an optimal reaction to that possibility is cautiousness — or shading more.!?

Due to noisier estimates, optimal shading may thus increase for two
different reasons: more dispersion in estimates (thus weakening the Bertrand

competition effect) and a stronger winner’s curse effect.

3 A basic auction model.

We now apply our approach to strategic interactions between n bidders. We
assume that bidder i’s value for an object is of the form

/U’i:a+0’ia

where «a represents a common component of all bidders’ values and 6; an
idiosyncratic component of #’s value. This model captures the logic of the
painting example: ¢ may know his value v; but does not know how much of
his value is idiosyncratic, that is, he does not observe either a or 6;. We
assume that the vector of idiosyncratic terms is drawn independently of a.

Each bidder faces a decision problem similar to that described in Section
2. For each bidder ¢, we consider a set of bidding rules R;, where each rule
r; € R; maps the data z; that the bidder receives into a bid b;. Throughout
the paper, we shall mostly focus on the case where z; is a possibly noisy
estimate of v;, that is,

Zi = Vi + &,

where error terms g; are drawn independently of v;. In Section 4, we shall
also consider the case where z; includes information about rank. For now,

we assume as before that

ry(2i) = z; — v and R; = {ry}yer

12Note that the sign of the term 1.(y) depends on the distribution over v — p. With
fierce enough competition, prices tends to be high and v_(7) positive.



For any vector v = (71, ...,7,), each rule profile 7y, = (r,,, ..., ) induces
an expected payoff which we denote by v;(7y1, ..., 7,,). An equilibrium is then
defined in the usual way.

Definition: A shading vector v* = (77, ...,7}) s an equilibrium
iff vi(v") Z vilvi,v5) V-

Compared to standard auction models, behavior is characterized by a
one-dimensional parameter, and equilibrium behavior is relatively simple to
derive. It has the same complexity as a problem of price competition with
differentiated products, where ~; is the price set by player i and v;(~;,v_;)
is the profit that results from the price vector (v;,v_;).

Note that our formulation restricts attention to pure strategy equilibria,
and existence is not guaranteed. We shall derive sufficient conditions for ex-
istence in Section 3.2., and unless otherwise mentioned, assume throughout
that existence holds.

We illustrate the approach with the perfect estimate case.

3.1 Perfect estimates

We assume that each bidder observes his valuation without noise, and that
the vector of idiosyncratic terms is drawn from a symmetric distribution.
We look for a symmetric equilibrium in which all bidders pick the same rule
Topr.
Define ¢(y) as the probability that bidder i’s valuation exceeds all others
by at least y:

¢(y) = Pr(f; — max6; > y).
JFi
We have
vi(73,7") = %id(vi = ")
The first order condition for a symmetric equilibrium can thus be written
asl3

7¢'(0) + ¢(0) = 0.
By symmetry, ¢(0) = %, thus implying the following Proposition:

#(y)

13This first order condition is sufficient when y — y + 7(y)

is increasing in y. We shall
come back to existence issues in the next Section.



Proposition 1: In a symmetric equilibrium, we must have:
*

= o

In other words, equilibrium shading is driven by the expected chance
of winning (1/n) and the dispersion of the idiosyncratic terms. Indeed, to
interpret —¢'(0), consider the case where the idiosyncratic elements 6; are
i.i.d., each drawn from a distribution with density f. Let 02 = max;; 0.
It is easy to check that

—¢'(0) = Ef(6*).
The coefficient —1/¢/(0) thus measures the dispersion of second highest

valuations. In the special case where the distribution is uniform on the
interval [0, 0], we have: —¢'(0) = f(0) = 1/(0 — ), hence

7= :
n

Comments:

1. We assume that bidders look for the optimal bidding rule among a
limited set of bidding rules of the form v; — . That bidders use rules of the
form v; — v could be motivated even without restrictions, by assuming that
the common component « is drawn from a diffuse prior.'*'> Our perspective
however is not to argue in favor of a specific shape, on the ground that it
is optimal or approximately optimal for some distributions. The forces that
shape bid functions are likely to be driven by considerations that lie outside
a specific auction model. Rather than endogenizing all aspects of behavior,
we take as given a shape (additive shading) and endogenize just one aspect
of behavior (the extent of shading).

14 Alternatively, if the distribution over « is flat on a large interval, then, even if bidders
look for the optimal strategy among all possible bid functions, then, except near the
boundary of the distribution over v;, learning v; is not informative about 6. Formally, let
g be the density function of a, assumed to be flat over [a, @]; then for any v; € [a+T, @ —z]

f(0)g(vi — 6:)

fOla+bi=v)= I, Fwi)g(vi — 0:)do: — 1©).

we have:

Y5 This diffuse prior model, along with idiosyncratic terms drawn from independant and
uniform distributions, has also been proposed as a tractable affiliated value model in
Klemperer (1999, Appendix D)

10



2. The number of bidders participating in the auction affects bidding in
two ways: through the chance of winning (1/n), and through the dispersion
term (—1/¢'(0)). To evaluate the effect of the number of bidders on shading,
write ¢,(y) to indicate the probability that 6; exceeds max;.; 6; by more
than y when there are n bidders. Assuming existence (see next Subsection),
we denote by v}, the level of equilibrium shading when there are n bidders
present. We have the following proposition:

Proposition 2. Assume 6; are i.i.d., drawn from f, with f
centered, symmetric around 0, and single peaked. Define 3, =
—¢,,(0). Then ~} = ﬁn and f3,, is a decreasing sequence. How-
ever, as n increases, nf3,, increases without bound.

Intuitively, when the number of bidders increases, the second highest re-
alization tends to be higher. Since f is single-peaked, the distribution of
second highest valuations tends to be more dispersed, and f3,, decreases.

3.2 Existence

In standard auctions, existence of an equilibrium with monotone strategies
is a difficult issue in general, and providing economic insights as to when ex-
istence fails may be difficult. Our approach deals with shading levels rather
than shading functions, and interpretation is easier. As with a standard
problem of price competition with differentiated products, existence depends
on the shape of the "demand" function ¢.

"Local" deviations are taken care of by first order conditions, and there
are two types of "large" deviations that may create difficulties: either shad-
ing by a much larger amount, with the hope that the chance to win does not
vanish; Or shading by a much smaller amount with hope that the chance of
winning will be much greater.

A classic condition that guarantees existence is that ¢ is log-concave.'¢
Another condition, weaker but still sufficient, is that y + % is nondecreas-
ing.17

A2 : ¢ is log-concave.

A2y + % is increasing.

Y This means that Log¢ is concave.

17 Another yet weaker condition is that y + ‘7),((1;)) — 20

> #7(0) Crosses 0 only once.

11



Proposition 3: Under either A2 or A2', existence of a pure
strategy equilibrium is guaranteed.

Proof: A2 implies A2’. A2’ implies that the best response is uniquely
defined, hence the shading level v* derived from first order conditions is an
equilibrium. QED

Intuitively, one expects ¢ to be S-shaped, so convex on some range.
Convexities are potentially problematic because they may induce incentives
for large deviations, either upward or downward. A2 and A2’ are conditions
that limit the extent to which ¢ is convex, making it sufficient to check for
first-order conditions.

A typical case where these conditions (and existence) fail is when the
density function f simultaneously exhibits some concentration and fat tails.
Concentration implies a strong Bertrand competition effect, hence little
shading (and little profit) in any tentative equilibrium, while fat tails imply
that the chances to win remain nonnegligible even when shading substan-
tially. Thus there exists a force toward large shading: you can take a chance
on a large benefit, even if it is at the risk of having little chance of winning.

Similarly, these conditions will fail when there is significant uncertainty

about the dispersion of idiosyncratic terms, as we now illustrate.

Example 1. Consider an auction with two bidders where idiosyncratic
terms are either drawn from a distribution with density g1 (say, this is state
k = 1) or g2 (under state k = 2), and assume that state k& = 1 has probability
q. Define

or(y) = Prp{0; — 0; > y}
We have:

Proposition 4: If ¢}(0)max, yp,(y) > then exis-

tence of pure strateqy equilibria fails.

1
4q(1—q)

In words, existence fails for example when the function ¢ = E¢, simul-
taneously exhibits concentration (due to high ¢}(0)) and large dispersion
(high max, y¢(y)).

Proof: Assume existence holds. The first order condition implies an

equilibrium shading level v* that satisfies:

. Eo(0) _ q91(0) + (1 —q)92(0) < 1
E¢(0)  q¢h(0) + (1 —q)¢2(0) — —2q¢(0)’

12



hence a profit at most equal to m. By picking a large shading level ~
1
that maximizes yd,(y), a player can secure at least (1 — ¢) maxyp,(y). So

existence fails when the condition of the Proposition holds. QED

Note that although pure strategy equilibria may fail to exist, relatively
simple equilibria in mixed strategies can be constructed. Our working pa-
per (Compte and Postlewaite, 2010) provides an illustration, with bidders
randomizing between only two levels of shading.

3.3 Revenue Rankings

We compare below two auction formats: first price and second price auc-
tions. The usual insight concerning private value auctions is that if valua-
tions are affiliated, then a second price auction generates more revenue than
a first price auction. As for existence our approach simplifies the analysis,
and it proposes an alternative interpretation for the comparison.

In a second price auction, the winner, say player i, gets y = 0; —max;; 0;
in events where y is non negative. Since y is distributed according to the
density —¢’(y) (by definition of ¢), a bidder’s expected gain, which we denote
G, is therefore:

GH = —yd (y)dy = dy.
/yzo v (y)dy /yzoqb(y)y

In a first price auction, a bidder’s expected gain, which we denote G, is
equal to

I ey B0))

Since the allocation does not change across formats, the seller’s revenue is

highest when the bidder’s expected gain is smallest. So we conclude:

Proposition 5: The first price auction generates more rev-
enue than the second price if and only if

1601 [ oy > O (P)
y=>0
The first price is thus preferable when the "demand" function combines
high concentration (i.e., high | ¢’(0) |, implying strong Bertrand competi-
tion effect, hence low gains in the first price auction) and substantial dis-
persion (implying high rents in the second price auction). Intuitively, in

13



the first price auction, bidders who happen to get high realizations do not
know /realize it, so they cannot tailor shading to that event and figure that
increased shading would be profitable: this is a source of increased revenues
for the seller.

The following figure illustrates graphically the gains G' and G'/.

7

Comment 1. The conditions (i.e., shapes of ¢) that make first price
generate more revenue are also conditions under which existence may become
problematic. In particular, if one imposes stronger than necessary conditions
to guarantee existence (say, A2), then condition (P) of Proposition 5 cannot
hold and the second price generates more revenue.'® However, existence and
condition (P) are compatible, essentially because fyzo é(y) > maxy yo(y).

Comment 2. As in example 1, uncertainty about the dispersion of
0;’s may create the appropriate combination (strong competition and yet
substantial dispersion) making first price preferable. In particular, one can
check that in example 1, if ¢/ (0) is large enough, there is a range of values
for ¢ such that existence and condition (P) both hold.

To illustrate further the effect of uncertainty about dispersion, we con-
sider example 2 below.

8For the same reason, imposing affiliation in standard auctions (a stronger than
needed condition for existence) makes the second price preferable. To see why A2 and
condition (P) are not compatible, observe that A2 implies ¢'(y) < (j)(y)¢ )

( < OB hence

14



Example 2: Assume 6; = dn; where the n; are i.i.d., and where d € [d, d]
is a positive dispersion parameter, drawn independently from the 7,’s. Let
¢o(y) = Pr(n; — max;x;n; > y). Condition (P) becomes:

<1 66(0) | [ dofu)dy > 6000 with s = B(1/a)d
y>

Uncertainty about the dispersion parameter d ensures that x > 1, and there-
fore makes it easier to meet condition (P). Intuitively, when dispersion is
likely to be small, there is strong Bertrand competition effect, and in events
where dispersion happens to be high, bidders cannot tailor shading to that
event: shading remains small whether dispersion is small or large, and this

is a source of increased revenues for the seller.

3.4 Releasing information about dispersion

To conclude this Section, we compare the case where bidders have access to
information about the dispersion of valuations, to the case where they don’t.
We model this information as a signal k£ € K that may be released (or not)
to bidders, signal £ having probability q;. We assume that this information
preserves symmetry and define:
Ox(y) = Pr(0i — max 0;>y|[ k).

Let v* denote the equilibrium shading level when participants do not know
k, and ~;, the equilibrium shading when they know k. We have:

Proposition 6: v* < Ev;.

That is, bidders bid more aggressively on average when they do not
know k. Hence for the seller, the policy of not releasing information about
k generates more revenue.

Proof: From Proposition 1, we have:

¢1(0) >k %P (0)
—4(0) — 2k e (0)
Let p(k | i) denote the probability that the state is k given that ¢ wins:
p(k [ 1) = qxpi(0)/ 225, akdy,(0). We have:

and v* = (1)

r

1

1 L1
P e ar @
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where the inequality follows from y — 1/y being a convex function. Given
the symmetry assumption, ¢, (0) = 1/n for all k so p(k | i) = qx. QED

This Proposition immediately extends to the case where the number of
participants is stochastic and where k provides the number or the identity of
the participants, to the extent that symmetry is preserved (all players have
an equal chance of being a participant).

Proposition 7: Assume that the set of participants I is
stochastic and that k reveals the number of participants| I |.
If Pr{i € I |k} is independent of i (hence equal to %), then
Proposition 6 holds.

Proposition 7 thus confirms the results of Matthews (1987) and McAfee
and McMillan (1987), and points out that releasing information about the
number of participants is analogous to releasing information about disper-
sion.!?

Proof: Redefine ¢,(y) as the ex ante probability of being a participant
and winning when the state is k and while shading more than all other
participants by exactly y:

¢x(y) = Pr{i € I [ k} Pr(6; — max 0; >y | k).
J#JEL
Equations and inequality (1) and (2) hold unchanged, as does the equality
p(k | i) = g since ¢,,(0) = %‘ﬁ =1/n. QED

4 Incorporating information about rank

We motivated our model by arguing that in many contexts, a bidder’s own
valuation is a poor tool for estimating how his value compares to others’

9Note that the statement assumes that existence of a pure strategy equilibrium obtains
whether k is observed or not. With a stochastic number of bidders, existence of a pure
strategy equilibrium for each realization of n with n known to bidders does not guarantee
existence of a pure strategy equilibrium in the uncertain case. The reason is identical to
that provided in Proposition 4.

This comment that existence may fail with a stochastic number of bidders actually
applies to the standard approach as well, and to our knowledge, it has not been noted.
We make this precise in the working paper version.
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valuations. We do not suggest, however, that bidders would never get and/or
exploit relevant rank related information.

We illustrate below how rank related information can be incorporated in
our basic model: we assume that bidders receive signals correlated with rank,
and then examine two different signal structures in which bidders receive one
of two possible signals, indicating "high rank" or not. We restrict attention
to the case of two bidders and show that information about rank can either
be pro-competitive (Proposition 8) or anti-competitive (Proposition 9).20 A
pro-competitive effect obtains when the "high rank" signal is more likely
whenever own rank is higher (i.e. v; > v;), while an anti-competitive effect
obtains when the "high rank" signal is delivered if and only if own value is
substantially higher (i.e. v; > v; + A).

We next discuss the relationship with standard auction models.

4.1 Extension.
Formally, bidder 7’s data is now defined as:
zi = (vi, ki),

where k; € K; and K is a finite set. A plausible rule for bidder ¢, denoted
7, Will now consist of a vector of shading levels, one for each possible private
signal k;. For any v = (7*)rek,, we define

TV(Uv k) =v—= 7k7

and assume that the set of rules R; consists of all such rules. Equilibrium
definition is unchanged.?!

20The insight that additional signals may be anti-competitive (and decrease revenues)
has been documented by Fang and Morris (2006), in an independent private value auction
where valuation may take two values. The insight that additional signals may be pro-
competive (and increase revenues) has been documented by Lansberger et al. (2001) and
Fang and Morris (2006), in a standard independent private value model with a continuum
of valuations, and two signals correlated with rank.

Propositions 8 and 9 thus confirm these insights, in a setting where bidders do not
use valuation realizations to make inferences about rank. The propositions also provide
some insight about how the nature of the signal structure translates into more or less
competition.

21Such signals could also be introduced in the standard model. The technical difficulty
is that when signals are not perfectly correlated, bidders then have a two dimensional
type, and equilibria are then difficult to characterize.
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4.2 A pro-competitive effect.

Consider the case of two bidders who receive private (and possibly noisy)
information about their rank.?? Specifically, assume two possible signals, i.e.
K; = {0,1}, and the following technology, whereby for any given valuation
vector v = (v;);, the signals k; are drawn independently, according to:

Pr{ki=1|vi>vj} =pand Pr{ki=1]|v; <v;} =1—-p.

So when p = 1/2, the signal is uninformative, while for p = 1, it is perfectly
informative of whether ¢ has the higher valuation.

Define (v§,~v7) as the equilibrium shading levels for each k; = 0,1. We
refer to v* as the equilibrium shading level when no signal about rank is
available. We have

Proposition 8: Under A2, for any p > 1/2, we have 7§ <
1<

The proof is in the Appendix. The intuition is as follows. The private
signal creates an asymmetry, with the bidder receiving bad news willing to
be more aggressive than the one receiving good news (i.e., v§ < v7). A
bidder who receives k; = 1 might be willing to exploit that signal to bid less
aggressively than if no information was available (i.e., v > 7*). Given the
particular signal structure assumed however, it turns out that this is not the
case. If p = 1 for example, the good news k; = 1 just moves the winning
probability from ¢(y) to 2¢(y), thus not altering marginal incentives to
shade hence best responses. Under A2, best responses are monotonic, that
is, more aggressive behavior from one’s opponent triggers a more aggressive
response, implying that 7 < ~*.

4.3 An anti-competitive effect.

Proposition 8 highlights that information about rank may be pro-competitive.
The signal structure assumed is important however. If a bidder gets good
news only when he is far ahead of the other, then in these events, he will be

22The case in which bidders receive public and perfect information about rank has been
studied by Landsberger et al. (2001). We extend their insights to the case of imperfect
private information about rank, but our main motivation here is to illustrate the simplicity
of the approach.
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less aggressive, and over all, such signal structure may decrease competition.
The next Proposition confirms that intuition.

Formally, fix A > 0 and consider the following technology, whereby
for any valuation vector v = (v;);, bidder i observes k; = 1 if and only if
v; > v; + A, and k; = 0 otherwise. We consider the non-degenerate case
where ¢(A) > 0.2 We have:

Proposition 9: Under A2, if v* < A, then 7] = 7§+ A
and v = v*(1 — 2¢(A)). The bidder getting k; = 1 wins with
probability one, and bidders expected gains are higher than when
they do not receive signals.

In words, the bidder who gets good news can afford to bid vj + A and
get the object with probability one. When v* < A, he does not want to take
the risk of losing the object, so he bids v+ A. The bidder who receives bad
news is more aggressive (7§ < v*). Overall however, the latter effect has
less impact on expected gains, and on average, being able to observe these
signals generates more expected gains for bidders.

4.4 Discussion

A standard division in studying auctions is whether values are independent
or correlated. We argue below that from the perspective of a mildly so-
phisticated agent, a useful dividing line may be whether or not he gets and
exploits rank related signals.

Standard approaches.

We have represented values as the sum of two random components, a
common component « and an idiosyncratic component #;. Given this rep-
resentation, the classic independent private value environment corresponds
to the case where bidders observe both the value v; and the common com-
ponent «, that is,

zi = (vi, ).

From a purely technical perspective, the independent private value model
seems relatively simple: given the structure of the model, the difference v; —«

23 This ensures that the events k; = 1 arise with positive probability
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is a useful (and optimal) instrument, correlated with rank and dispersion,
and in equilibrium, optimal bidding is of the form r(v;, @) = b(v; — ).

The solution hinges on precise knowledge of the common component «,
and one may want to weaken this informational assumption. This could be
done by assuming that each bidder receives a noisy estimate of «, say

B; = a+§;.

A player’s data would then consist of a vector
2 = (Uia /32)

that combines information about personal value and about the support of
the distribution over valuations. The environment would then correspond
to a correlated private value environment with two-dimensional types.?*

FEither formulation is complex, as each vector realization z; comes with
implicit information about the vector z; received by others, and the analyst
must decide how one ought to exploit that information, using fine knowledge
of prior distributions.

In addition, from a bidder’s perspective, both cases seem cognitively de-
manding. First, even if interested in his rank, a bidder may find impossible
to come up with a relevant or reasonably accurate reference point () to
which his value v; could be compared. Second, even if he could form an
estimate (3;) of such a reference point, this estimate is likely to be noisy,
without the bidder being able to perceive how noisy 3, is. Then, how one
should combine the signals v; and 3; seems a formidable task.

Our perspective.

Our simple auction models are meant to reflect the cognitive difficul-
ties that agents face, starting from mildly sophisticated agents, and then
investigating what changes in behavior arise when bidders become more so-
phisticated. The simplest environment examined has been that in which
bidders do not attempt to use rank-related observations (Section 2 and 3).
Next we considered more sophisticated bidders, modelling them as receiving
and utilizing rank-related information in a crude way (only two signals -

24The independent private value case corresponds to the degenerate case with no noise.
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ki = 0,1),25 and this Section has illustrated different ways in which such in-
formation may alter the strategic interaction, either decreasing or increasing
competition.

Standard private value models, whether independent value or correlated
value, push sophistication even further, as agents ultimately use rank and
dispersion related signals, including valuations, in very sophisticated ways.
In contrast, the models proposed allow us to ignore the possibility that
v; itself could be an instrument in assessing rank and dispersion, thereby
allowing us to focus exclusively on the rank related information conveyed by
the crude signal k;.

5 Noisy Estimates

We return in this section to our basic model, assuming that z; is a noisy
estimate of v;. The noise terms ¢; are assumed centered and drawn from in-
dependent and identical distributions. We look for a symmetric equilibrium
of the first price auction. Denote by ¢.(y) the probability that z; exceeds
max,; z; by more than y, that is,

¢:(y) = Pr(zi — maxz; > y).
JFi
Denote by v;(7;,7) the expected payoff that bidder ¢ derives when he shades
by ~,; while others shade by ~. Bidder ¢ obtains a payoff equal to v; — (v; +
g; — ;) when he wins, so we have:
(v 7) = (i = Elei [ 2 - max 2 > 5 = 9))¢(7; = ).
Define
Ve(y) = Elei | z — maxz; = y].
JF#i
First order conditions immediately yield:

Proposition 10: In a symmetric equilibrium, bidders shade

their bid by
1

Ve = il (0) +9.(0).

25The model proposed in this section may be interpreted as one in which (vi, B;) would

be processed according to some mental processing rule, in which the agent thinks his rank
is high (k; = 1) or not so high (k; = 0) depending on whether v; — 3, is higher than some
threshold h, and consequently the agent has "data" z; = (v;, k).
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Shading thus has two components. The first term is analogous to that

derived in the private value case: (%) corresponds to the expected proba-

bility of winning, and % captures how bidders take advantage of the
dispersion in valuations. The second term .(0) stems from the fact that
more optimistic bidders tend to win the auction (i.e., the winner’s curse),
and rational bidders should correct for that: 1.(0) captures the expected
optimism of the marginal winner, i.e., the bidder that wins by a 0-margin.

Note that as before, existence of a pure strategy equilibrium is not guar-

anteed. As shown in the Appendix, a sufficient condition for existence is:

P=(y)
o (y)

y—¢(y) + increases in y.

5.1 Comparative statics.

We study below how noisy estimates affect equilibrium gains for sellers and
buyers. When estimates are noisier, the dispersion of estimates increases
and bidders may take advantage of that by shading their bids more (because
| #2(0) | increases with small noise). Increased shading however does not
necessarily translate into greater expected gains for bidders because a bidder
only gains v —¢; in the event he wins, and conditional on winning a bidder
tends to be optimistic (higher ¢;). The first effect (or dispersion effect) ben-
efits bidders because competition is less intense. The second effect (or win-
ner optimism) hurts bidders because the winner loses Ele; | z; > max;; z;]
while he corrected his bid by only Ele; | z; = max;x 25|, the expected
optimism of the marginal winner.

Proposition 11 shows that when the dispersion of idiosyncratic elements
is small, then the first effect dominates. Proposition 12 next provides con-
ditions under which the second effect dominates. Finally, we provide an
example that illustrates how additional noise can translate into competition
among fewer bidders, i.e. optimistic ones. To fix ideas, we denote by Z the
largest error term and by A the largest possible realization of 8; — 0.

First we show:

Proposition 11: If A is small enough, then bidders neces-
sarily benefit from estimates being noisy.

Intuitively, when A is small, bidders get almost no rent in equilibrium.
Noisy estimates ensure that in equilibrium bidders get a payoff bounded
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away from 0, independently of A. A corollary is that the seller is necessarily
hurt, because noise necessarily reduces efficiency.

Proof: Consider equilibrium shading }, which cannot be negative (oth-
erwise payoffs would be negative). A bidder may choose to bid v} + %E, in
which case he wins with probability ¢, (32) and gains at least $2—% (because
the error term is at most €), so in equilibrium, he may secure

3_
¢s(§5)§~
For all A < £, ¢.(38) > Pr(e; — max;z;e; > 72/8) > 0, implying a lower
bound on equilibrium payoffs (independent of A). QED

]

Next, we show that if the dispersion of idiosyncratic elements 6; is not
small, small noise may benefit the seller and hurt the bidders. We consider
the case of two bidders, and denote by h the density over the difference
0; — 0;. We have:

Proposition 12: Assume h is smooth, centered, and that
| B"(0) |< 2[R(0)]3. Then the addition of a small noise benefits
the seller and hurts the bidders.

Intuitively, when | A”(0) | is small, the dispersion effect is small and the
winner optimism effect prevails. The proof is in the Appendix.

Example: We consider a simple noise structure and illustrate how pres-
sure towards higher shading can arise. We assume ¢ can take two values,
g (with probability p) or g, so that bidders are either optimistic or pes-
simistic. We also assume that each 6; is drawn from a uniform distribution.
Let A, = € — € and assume that A. > A. In a symmetric equilibrium, bid-
der ¢ can only win when he is optimistic (¢; = &) or when all bidders are
pessimistic (e; = ¢ for all j). Define 7 as the random variable that gives the
number of bidders who have a chance to win for each realization (g;);, that
is:

n=#{i,e; = mjaxaj}.

We have:
Proposition 13: In a symmetric equilibrium, we have:
1
v > Ele | ;i = maxe;| + AE=. (3)
j n
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The first term corresponds to the expected “optimism” of the marginal
winner, and that term gets close to € when n increases. The second term
describes the dispersion effect. Compared to the case without noise where
they would shade by A/n, bidders shade more because they are facing less
intense competition: because only optimistic bidders may win (except in the
event all are pessimistic), a bidder is endogenously facing fewer competitors.

5.2 Comparison with second price

We now consider second price auctions and analyze how noisier estimates
affect rents. We find as before that when dispersion (A) is small enough,
noisier estimates benefit bidders. However Proposition 12 has no equivalent:
with two bidders (and centered distributions), noisy estimates always hurt
the seller. The reason is that the loser sets the price, and on average, with
noise, the loser is pessimistic.

We start by deriving equilibrium shading. In a second price auction,
bidder ¢ now gains v; — (maxz; — ) = 2 — max z; + v — ¢; when he wins.
Letting h-(y) = —¢.(y), we have

v(7i,7) = / yhe(y)dy + (v — Elei | zi —maxzj > 5; = 7)) ¢e(v; = 7)-
Yy=vi— i
First order conditions now imply:

Proposition 14: In the second price auction, in a symmetric
equilibrium, bidders shade by

v =14.(0).

Bidders thus correct for the winner’s curse in the same way as before.
Going from second to first price auctions, the change in bidding thus only
stems from bidders taking advantage of the dispersion in estimates.

As with the first price auction, noisier estimates may help bidders. Con-
ditional on winning, a bidder obtains:

G = El9; — max z; | z; > max z;] + 57
With two bidders, .(0) = 0 by symmetry, so ¥ = 0, and we have:

GII = E[@Z —9j ‘ Zi > Zj] — E[Sj | Zi > Zj].
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The first term is the efficiency gain that the winner brings. The second term
is an additional rent that the winner obtains because the loser is pessimistic
on average. As noise increases, the first term decreases because the allocation
is less efficient. The second term however increases. When the idiosyncratic
components 6; become more concentrated, the second term prevails, and the
agents get rents that they would not get without noise.

The same is true with many bidders. As the idiosyncratic components
0; become more concentrated (vanishing A), the winner’s gain tends to

1T
Gy = F[maxe; | maxe; = gi] — E[maxe; | I?;ngj < &il,
which is strictly positive. So dispersion of estimates always increases rents
when idiosyncratic components are concentrated. These rents result from
the dispersion of estimates.

We conclude with the following proposition:

Proposition 15: Assume two bidders, with 0; and ¢; drawn
from centered distributions. Then noisy estimates never benefit
the seller.

Proof: With two bidders, each bidder bids his estimate z;, so the seller
obtains G = Fa+ E[z; | zj < z), so since 0; and ¢; are centered (around 0),
we have G = Ea — $E[z; — z; | 2; > z;]. We show below that noise inflates
H = Elz; — z; | z; > z;|, thereby concluding the proof. We have

2H = — /y>0 yoe(y)dy = b (y)dy = /y>0 /Efﬁ(y + €)h(e)dedy

y>0

where h denotes the density over € = ¢; —¢;. Define p(c) = fy>0 o(y+e)dy.

¢ is convex, implying that H = [ p(e)h(e)de > ¢(0) = [ o (y)dy, as
desired. QED

5.3 Discussion

Dispersion rents or Information rents?

We often refer to information rents to describe the gains that an "in-
formed" player gets. A more appropriate qualification might be "dispersion
rents”: bid dispersion generates rents, and private information in standard
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models generates rents in so far as it creates bid dispersion. Our model how-
ever illustrates that poor information (i.e. noisier estimates) may translate
into higher bid dispersion, and that improving an agent’s information (i.e.
less noisy estimates) may induce lesser bid dispersion, hence smaller rents.

This effect of noise on bid dispersion would not hold in a standard model;
the opposite would actually be true. Noisier estimates would translate into
less dispersed posteriors (by a regression to the mean effect), and there-
fore greater competition when symmetry is assumed. The latter conclusion,
however, is (in our view) an unfortunate artifact of the standard model, and
of the implicit assumption that agents know (or behave as if they knew) all
distributions: as noise increases, value estimates decrease in importance and
more weight is put on priors.

Common values, interdependence and estimation errors

In modelling auctions, the distinction between private and common val-
ues is often seen as a key dividing line. In common or interdependent value
auctions, the bids of others reveal information about one’s own valuation,
and a rational bidder ought to take into account those inferences. An omni-
scient bidder will indeed find this advice useful. To most bidders however,
the precise ways in which preferences are interdependent are likely obscure,
and the appropriate inference likely out of reach.

From a less sophisticated bidder’s perspective, a more useful dividing line
may be whether he is subject to estimation errors or not. If he is subject to
estimation errors, he should exert caution because he is subject to a selection
bias: he is more likely to win when the error is positive.?® This warning is
not specific to auctions. It arises for any decision problem in which an agent
compares an alternative that is easy to evaluate (not buying) to one that is
more difficult to evaluate (Compte and Postlewaite (2012)).

Now the level of caution depends on context, and indeed, the degree
of interdependence then matters. If idiosyncratic components are less dis-
persed (which can be interpreted as values being more interdependent), the

estimation errors carry more weight and caution should increase.?’

26The view that the winner’s curse results from a selection bias appears in Capen et al.
(1971). Compte (2001) examines the effect of increasing the number of bidders on this
selection bias, in the context of the second price auction.

7 Caution should also increase when the number of bidders increases (Compte 2001).
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6 Discussion and Related literature

6.1 Simple rules and strategy restrictions.

Our approach studies auctions where bidders only compare simple rules.
Following Rothkopf (1969), a number of authors have analyzed auctions
when bidders use multiplicative bidding strategies. More recently, Klem-
perer (1999), Compte (2001), Compte and Postlewaite (2010), Satterthwaite
et al. (2012) have considered the additive structure proposed here.
Auction models proposing simple bidding rules generally view them as
arising from standard equilibrium considerations. These models put a spe-
cial structure on the joint distributions over valuations ensuring that using
simple rules is optimal across all possible rules (given that others use sim-
ple rules as well). This special structure typically assumes that valuations
are functions of a common component drawn from a diffuse prior. We have
proposed a different perspective, based on direct restrictions on the strategy
space. While both perspectives capture the notion that bidders might have
difficulties extracting rank information from their valuations, we propose
the path that restricts the strategy space for various reasons:
(1) Our perspective is not to argue in favor of a specific shape, on the ground
that it is optimal or approximately optimal for some distributions. The
forces that shape bid functions are likely to be driven by considerations that
lie outside a specific auction model. Rather than endogenizing all aspects
of behavior, we take as given a shape (additive shading) and endogenize a
single aspect of behavior (the extent of shading), with the aim of uncovering
economic insights that can be captured in this way.
(ii) We believe that strategy restrictions are a useful tool not only in auc-
tions but also in other strategic environments — dynamic environments for
example — for which the diffuse prior assumption would have no equivalent;
(iii) From a positive perspective, we are implicitly attempting to deal with
agents having limited knowledge of the environment they are facing (say the
joint distribution over valuations). The standard way to deal with limited
knowledge would be to follow the traditional Bayesian route that takes any-
thing that is not known as a random variable, and then possibly assume that
agents receive signals correlated with the realized joint distribution. How-
ever, following Heiner (1983), one would expect limited knowledge to be
associated with [ess sophistication, not more. Restrictions on the strategy

27



space incorporate such a bound on sophistication that limited knowledge
would seem to call for.

6.2 Existence issues and revenue rankings

FEaxistence. In standard auction models, the concern has been to establish
existence of equilibria in monotonic strategies. The main difficulty is that
based on his signal/valuation, an omniscient bidder makes sophisticated
inferences about the distribution over other bidders’ valuations, and it is not
guaranteed that his best response will be monotonic in his signal. Affiliation
is a condition that ensures that best responses are indeed monotonic in one’s
signal (when other players use monotonic strategies).?®

Our analysis demonstrates that existence issues arise even when play-
ers are much less sophisticated (in particular, monotonicity of bid functions
is not an issue — monotonicity is assumed). The reasons are analogous to
those that lead to nonexistence of pure strategy equilibria in models of price
competition with differentiated products (Caplin and Nalebuff, 1986). The
basic problem is that a bidder may simultaneously have strong incentives to
be slightly more aggressive than others (buying a substantial chance of win-
ning at little cost), and strong incentives to take a chance and opt for large
shading, betting that the other players have a substantially lower valuation.
Whether both strategies turn out to be attractive depends on the shape of
the "demand function" ¢ that characterizes the dispersion of idiosyncratic

components.

Revenue rankings. Revenue equivalence between first and second price
auctions holds for independent private value auctions (Myerson, 1981). Sec-
ond price auctions generate more revenue when private valuations are affili-
ated (Milgrom and Weber, 1982). Economic intuition for these comparisons
is somewhat difficult to provide. Milgrom and Weber (1982) appeal to a
"linkage principle", which itself seems to apply as soon as valuations are
positively correlated. However affiliation is stronger than positive correla-
tion, and De Castro (2007) reports simulations where valuations are assumed
to be positively correlated and yet first price auctions generate greater rev-

enue.29

2See, for example, Athey (2001), Lizzeri and Persico (1995), and Reny and Zamir
(2004).
29 Fang and Morris (2006) also question the revenue rankings; by providing agents with
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Also, standard revenue comparisons are made assuming bidders can
finely extract rank and dispersion information from their valuations and ad-
just bidding accordingly. Our analysis attempts to understand what drives
revenue comparisons when agents are less sophisticated.

In this vein, Proposition 5 provides a simple characterization based on
the shape of the demand function ¢, and it helps build intuition. In essence,
first price is better when idiosyncratic elements have a small chance (but
not too small) of being sufficiently dispersed. The seller benefits from this
situation because "high valuation" bidders cannot take advantage of that
dispersion: they cannot extract information about rank and dispersion from
their valuation, so effectively, they do not know that they are "high val-
uation" bidders (if they could they would shade more, thereby decreasing
sellers’ revenue).

Finally, Proposition 5 also sheds light on revenue ranking in standard
models: if the common component is drawn from a relatively flat distribution
with large support (or a diffuse prior), then even very sophisticated bidders
cannot extract information about rank, and the intuition above applies.

Comparative statics.

In standard models, the seller’s revenue depends on the fine inferences
about own valuation, rank and dispersion that agents make based on their
value estimate. Access to other signals or information beyond one’s value
estimate modifies these inferences, hence also the seller’s revenue. When
the additional information released is affiliated with the bidders’ signals,
the effect on revenue is nonnegative (Milgrom and Weber, 1982).

We explored three kinds of comparative statics that separate the effect
of further information on dispersion, on rank, and on own valuation. Propo-
sitions 6 and 7 show that the policy of disclosing information about the
dispersion of valuations (or the number of bidders) while keeping symmetry
has an anti-competitive effect, beneficial to bidders (hence detrimental to
seller’s revenue — since the allocation does not change).

Propositions 8 and 9 show that providing information about rank to
bidders may have an ambiguous effect on bidders’ gains and seller’s revenue.
In particular, revenue may decrease despite the fact that information about
rank is positively correlated with valuation (which thus provides another

an additional private signal correlated with the other player’s valuation, symmetry is
broken, inefficiencies naturally arise, but these may be conducive to higher revenues.
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illustration of the difference between affiliation and positive correlation).

Finally, we have examined the effects of the quality of estimates on bid-
ders’ gains and seller’s revenue. When estimates are noisy, shading in the
first price auction is driven two factors: the dispersion of estimates, and
the selection bias (i.e., the error conditional on winning by a zero mar-
gin). Proposition 10 illustrates the two channels by which noisier estimates
can increase shading: a weaker Bertrand competition effect (due to higher
dispersion of estimate), and a stronger selection bias. When idiosyncratic
elements are not too dispersed, noise benefits bidders and hurts the seller.
For a given dispersion of idiosyncratic elements however, and depending on
the shape of distributions, a small noise may benefit the seller. Neverthe-
less, and contrasting with Ganuza (2004) who shows that with two bidders
ignorance promotes competition, we find that with two bidders, noisier es-
timates always hurt the seller in the second price auction. The reason for
this difference has been explained earlier: standard models implicitly assume
that weaker information translates into more concentrated posteriors, hence
stronger competition.

7 Conclusion

We have proposed a model in which players only consider a limited set of
strategies. This limitation can be interpreted as a bound on rationality,
or a bound on the ability to determine what strategies are optimal when
the strategy set is large. It can also be viewed as an analyst’s device or
methodological tool to deal with agents’ lack of detailed knowledge over
prior distributions, or to deal with agents’ inability to use effectively this
prior information.

We see various benefits from the approach. Starting from the sophisti-
cated end of the spectrum, it offers a way to check the robustness of insights
derived from standard models. It may constitute a useful alternative to the
robustness literature, in particular when there are no easy or tractable ways
to enrich the types space. It may also shed a different light on known results.

Starting from the other end of the spectrum (in terms of sophistication),
it offers a more parsimonious theory of auctions, that can be amended by
increasing sophistication, up to a degree that the analyst considers plausible.

Finally, it questions what poor information means. We have taken the
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view that poorer information means larger discrepancy between value and
value estimate. Whether poorer information leads to more dispersed esti-
mates or opinions is probably a matter of context, or at least an empirical
question. The existence of a natural reference point to which one’s data
can be compared is probably a prerequisite to the conclusion that poor in-
formation leads to less dispersion. Given the well documented inability for
agents to correctly take into account priors in forming beliefs (Tversky and
Kahneman, 1974), the existence of such reference point may not be sufficient
though.
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Appendix.

A. Buyer/Seller

We consider a seller with a value v; for the object to be sold, and a buyer
with a value v9 for the object. As before, we assume that

’UZ‘:Oé-l-Hi.

We are interested in comparing three selling mechanisms: take-it-or-leave
it offer by the seller, take-it-or-leave it offer by the buyer and the split-
the-difference mechanism (Chatterjee and Samuelson (1983)),2Y under the
assumption that players are restricted to bidding rules of the form r(v) =
v+, again capturing the idea that players cannot disentangle common and
private components. The question asked is thus similar to that addressed
by Lindsey et al. (1996).
Define
¢(y) = Pr{b2 — 01 > y}

and let S(y) denote the expected surplus that results when transactions take
place if and only if #5 > 01 + y, that is

Sw= | -adw)d
x>y
We have:

Proposition 16: Let v* = argmaxyp(y). Whether the
seller or the buyer makes a take-it-or-leave-it offer, or if players
adopt the split-the-difference mechanism, the expected surplus is
identical and equal to S(~v*). The seller prefers to let the buyer
make the offer when

/ b()dy > 7 6(7).
y>y*

Otherwise he prefers to make the offer. Neither player finds the
split-the-difference mechanism most attractive.

30Under the split the difference mechanism (see Chatterjee and Samuelson (1983)), the
buyer and seller simultaneously offer respectively prices p1 and p2. In the event p2—p1 > 0,
the transaction takes place at price p = (p1 + p2)/2, otherwise it does not take place.
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As for the first and second price auction comparison, the critical issue
is the extent to which ¢ has a fat tail. If ¢ has a fat tail, it is preferable to
let the other player makes the offer: since "high valuation" buyers cannot
learn (by assumption) from their valuation that they have indeed a high
valuation, they tend to leave high rents to the seller.

B. Uniform and discriminatory auctions

We now consider k objects for sale with n potential buyers, all interested
in buying only one unit. As before we assume that v; = a + 6;, and we
are interested in comparing two selling mechanisms: The uniform auction
in which the seller price is set at the k + 1! bid, and the discriminatory
auction where bidders pay their bids.

Proposition 5, which ranks revenues from first and second price auctions,
easily extends. Denote by QEk)
bidders other than i, and define

the k" largest idiosyncratic term among

é(y) = Pr{6; — 0" > y}

Our analysis of the first price auction extends to the discriminatory auction
readily with this new definition for ¢, and we have:

Proposition 17: The discriminatory auction generates more
revenue than the uniform auction if and only if

16(0) | / o)y > (0]
y>

The proof is identical to that of Proposition 5, and the intuition is the
same. High dispersion (fat tail for ¢) does not generate high rents for bidders
in the discriminatory auction because bidders who happen to get a high
realization do not know/realize it, so they cannot tailor shading to that
event, realizing that increased shading would be profitable.

C. Proofs

Proof of Proposition 2: We already know that 8, = —¢'(0). By
definition, ¢(y) = Pr(0; — max;.0; > y) = [ f(z)(F(z —y))" dz, thus
implying:

—#(0) = / (n — 1)(f(2)2[F ()] 2. (1)
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Integrating by parts the right hand side of (4) and observing that f'(z) =
f'(—z) and F(—z) =1 — F(z), we obtain:

3 0
Bn = f(0) +/ fl@)(L = F)]"™" = [F(2)]" ) da.

Now for any given p < 1/2, define A, = (1 — p)" — p", and k, =
A, /(1 —2p). We have k; = 1. Since

Ap1=(1=p)An+ (1 —2p)p" = (1= 2p)((1 — p)kn +pp" ")

This directly implies k, > p™~! for all n, which further implies that k1
is an average of k, and p"~!, hence k, is a strictly decreasing sequence.
Applying this observation to each p = F(z), we obtain that £, is also
a strictly decreasing sequence. To check the last assertion, assuming for
example that f/'(z) > 0, it is sufficient to take a Taylor expansion of F(z)
close to  and observe that [1 — F(x)]"~! remains bounded away from 0 on
an interval of size O(n~"1/2). QED

Proof of Proposition 8. In what follows, we look for an equilibrium
where both players follows (v;,7¢), and where z* = v; — 7, is strictly posi-
tive.3! Define

¢(y) = Pr{HZ- > 93‘ +vy ‘ 0; > 9]} and Q(y) = PI‘{QZ' > Hj +vy ’ 0; < 03}

We have ¢(y) = 2¢(y) for y > 0, ¢(y) = 1 for y < 0, and by symmetry
é(y) = 1 — ¢(—y). The event (ki,k2) = (1,1) has probability p(1 — p),
and conditional on this event, there is equal chance (1/2) that 6; > 62 or
01 < 02. The event (k1,ks) = (1,0) has probability (p? + (1 — p)?)/2, and
conditional on this event, §1 > 62 has probability p?/(p* + (1 — p)?). So for
bidder 1, given that player 2 follows (7;,7q), the value from shading by ~

in event k; = 1 is:
V() = 1p*6(v—")+p(1-p)o(v—")+p(1-p)d(y—7")+(1—p)*(v—7")].
Similarly, the value from bidding v in event k; = 0 is:

VO(y) = v’ ¢(v—")+p(1—p) s (v—")+(1=p)pd(v—")+(1—p)*(v—"))]-

31Tt can be checked that if z* < 0, then a player who received the weak signal k; = 0

has strict incentives to reduce shading.
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Assuming 7, > 7, first order conditions give:3?

1 P?*¢(2) + p(1 — p)$(0)

E = B e R )
o _ P(1—2¢(2)) +2(1 - p)¢(0)

- =220 (2) + 2(1 - p)pg' (0)]
The equilibrium difference z* = ! — 4° thus solves:

L W) - (P + (1-p)?)
- —[20%¢/ () +2(1 - p)pd (0)]

So indeed, for any p > 1/2, this equation is compatible with z* being strictly

¢(0) o(y)
¢'(0)’ —-¢'(y)

Y

is

Since

positive. Without information about rank, v* = —

decreasing under A2, we get v! < v*. QED

Proof of Proposition 9: Let ¢ = Pr{v; > v; + A} = ¢(A)(< 1/2).
We assume A > +* and look for an equilibrium where 75 < v*. There are
three possible events, k1 = 1, ks = 1 and k; = ke = 0, with respective
probabilities ¢,q and 1 — 2q. If 7 observes k; = 1, player j must have seen

kj = 0, so i solves max, (7§ + A, M), and under A2, he thus finds

1.3 If player 4

optimal to shade by 7§ + A and wins with probability

observes k; = 0, he wins only in events where k; = 0 (so v; — v; € [-A, A])
e(v=5)—9)

1—q :

= 7*(1 — 2q), hence the desired conclusion

and v; —v; > v — 7p, so his expected gain is First order

¢(0)—<(¢>()A)
_¢’ 0
that 75 < v*. The allocation is unchanged compared to the case where no

conditions yield ;5 =

rank information is available. The winner shades by 7§ + A under events
k1 =1 and k2 = 1, and by 7 under event k; = ko = 0. Expected gains are
thus equal to

o+ 2gA = (1 — 2¢9)7" + 2qA > ~*

Proof of Proposition 10: Define = z; —max;; z; and let h(e;, x) de-
note the joint distribution over ¢; and z, and let H(y) = fx>y gih(gi, x)de;dx.

Note that 9.(y) = :;I,El((zy/)) We have:

v(74,7) = /> (v; — €)hlei, v)dedr = v;0.(v; —v) — H(y; — 7).
T2V =

32Note that for either ¢ or ¢, right and left derivates do not coincide. However, for s
and VO, they do coincide.
#3This is because under A2, yé(y — v5) is maximized for some v < v* when v} < ~*.
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Letting « = 7, — v, the first order condition can be written as the equality:

e ()
—¢L(z)

holding for x = 0, thus yielding the desired conclusion. Existence is guar-

Y=z +

+1()

anteed when the right hand side is monotonic in . QED

Proof of Proposition 12: With two bidders, by symmetry, 1_.(0) = 0.
Denote by g the density over € = €; —¢;. The density over z; — z; is denoted
he. We have: he(y) = [_ h(y+¢)g(e)de. To evaluate how the seller’s revenue

is affected, we need to see how
1

Elzi | zi > 2] — i = />0 b (y)dy — 224.00)
Yy= €

changes with noise.?* The result obtains by taking Taylor expansions, omit-
ting terms of order larger than 2 in ¢:

/y o) oy = / . / 6y + ) — $(y)g(e)dedy

2 2
= [ oWy [ S =10) [ Foeres
while
2
~(01(0) = #(0)) = he(0) ~h(0) = [ (b(e) - h(O)ge)d= = 1"(0) [ S ae)as

Proof of Proposition 13: Let p = (1 — p)”/p and denote by A the
event {&; = max¢;}. This event arises either when €; = £ or when all bidders
are pessimistic so PrA =p+ (1 —p)(1 —p)" ! = p(1 + p). We have:

0i(viy) = () Pr(ft = no,&; = &), (v,—7) (7)) +Pr(A, &; =€), (v, —7) (v, —)-

no>1

With uniform distributions ¢/,(0) = —1/A for all n > 1. Since ¢}(0) = 0,
and since ¢, (0) = n%’ the first order condition implies:

%[(PrA,ei =&)(v;—&)+(1—p)"(v,—¢g)] > Z nlo Pr(A,n =ng,g; = E)—i—% Pr(A,e; =¢).

3 This is because by symmetry, we have, Elz; | zi > zj] = 2E[zi — 2z | 1 > 2] =

2
Jysoyhe@)dy = [, 6 (y)dy
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The left hand side coincides with PTAA [v; — Elei | A]]. The right hand
side corresponds to the expected probability of winning for bidder 4, so by

symmetry it must equal L. Since 2 = (Pr A)E[2], we obtain:

1
V%2 Elei | A+ AF[]

Proof of Proposition 14: Using H(y) as defined in Proposition 10,
and h(y) = —¢.(y), we have:

o(73,7) = /  vhede 0 )~ =)
Yy=v;—"7

First order conditions yield y¢.(0) = H'(0), hence the desired result. QED

Proof of proposition 16: When the seller makes an offer equal to
p = v1 + 71, the buyer accepts iff 2 — 61 > v;, hence the seller obtains an
expected payoff equal to

Gs =vi +710(71)-

When the buyer makes an offer p = vg — 5, the seller accepts if p > vq, that
is, if 63 — 9 > 61, hence the buyer obtains an expected payoff equal to

Gp = 726(72)-

The optimal values of v; and v, are thus the same, and we call this value
v* = argmaxy¢(7y), and denote by G¢ and G the corresponding gains for
the seller and the buyer. Note that the expected surplus to be shared is
the same whether the seller or the buyer makes the offer, and it is equal to
S(v*). Who makes the offer thus only affects how the expected surplus is
shared.

To see how the expected surplus S(v*) is shared, observe that when the
buyer makes the offer, the seller obtains

Rs = w1+ E[max(f2 — 01 —~*,0)]
= v +507) =770
So the seller prefers to make the offer when GG > Rg, that is, when

S(7") < 29%o(v").
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Since S(y) = fx>y —x¢/(x)dx = y¢(y)+fx>y ¢(z)dz, we conclude the proof.

Under the split the difference mechanism the seller chooses 7; and offers
a price p; = v1+7,, while the buyer chooses 75 and offers a price po = va—"5.
The transaction takes place in the event ps — p; > 0, that is, in the event

Tg — X1 > Y1 + 79, S0 the expected gain of the seller can be written as

Yy+71—7
[ e,
y=271+72
Similarly, the expected gain for the buyer can be written

y+vs—7
[ R,
y=71t+72

Let v* be as defined earlier. We verify that 77 = v5 = 7*/2 is an
equilibrium. Assume 1 chooses by = v*/2 + §. Then he obtains a payoff
H(0):

1

1@ =5 [ wroemay=5([ -+ 00 +).
y=>v* y2=7*

Each of the terms on the right hand side is maximum for 6 = 0. So v} =
75 =~*/2 is an equilibrium. QED
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