

Penn Institute for Economic Research Department of Economics University of Pennsylvania 3718 Locust Walk Philadelphia, PA 19104-6297 <u>pier@econ.upenn.edu</u> http://economics.sas.upenn.edu/pier

PIER Working Paper 13-016

"Improving GDP Measurement: A Measurement-Error Perspective"

by

Boragan Aruoba, Francis X. Diebold, Jeremy Nalewaik, Frank Schorfheide, and Dongho Song

http://ssrn.com/abstract=2244242

Improving GDP Measurement: A Measurement-Error Perspective

Borağan Aruoba University of Maryland Francis X. Diebold University of Pennsylvania

Jeremy Nalewaik Federal Reserve Board

Frank Schorfheide University of Pennsylvania

Dongho Song University of Pennsylvania

First Draft, January 2013 This Draft, April 3, 2013

Abstract: We provide a new and superior measure of U.S. GDP, obtained by applying optimal signal-extraction techniques to the (noisy) expenditure-side and income-side estimates. Its properties – particularly as regards serial correlation – differ markedly from those of the standard expenditure-side measure and lead to substantially-revised views regarding the properties of GDP.

Key words: Income, Output, expenditure, business cycle, expansion, contraction, recession, turning point, state-space model, dynamic factor model, forecast combination

JEL codes: E01, E32

Acknowledgments: For helpful comments we thank Bob Chirinko, Don Harding, Greg Mankiw, Adrian Pagan, John Roberts, Matt Shapiro, Chris Sims, Mark Watson, Justin Wolfers and Simon van Norden. For research support we thank the National Science Foundation and the Real-Time Data Research Center at the Federal Reserve Bank of Philadelphia.

Contact Author: B. Aruoba, aruoba@econ.umd.edu

1 Introduction

Aggregate real output is surely the most fundamental and important concept in macroeconomic theory. Surprisingly, however, significant uncertainty still surrounds its measurement. In the U.S., in particular, two often-divergent GDP estimates exist, a widely-used expenditure-side version, GDP_E , and a much less widely-used income-side version, GDP_I .¹ Nalewaik (2010) and Fixler and Nalewaik (2009) make clear that, at the very least, GDP_I deserves serious attention and may even have properties in certain respects superior to those of GDP_E . That is, if forced to choose between GDP_E and GDP_I , a surprisingly strong case exists for GDP_I . But of course one is *not* forced to choose between GDP_E and GDP_I , and a GDP estimate based on *both* GDP_E and GDP_I may be superior to either one alone. In this paper we propose and implement a framework for obtaining such a blended estimate.

Our work is related to, and complements, Aruoba et al. (2012). There we took a forecasterror perspective, whereas here we take a measurement-error perspective.² In particular, we work with a dynamic factor model in the tradition of Geweke (1977) and Sargent and Sims (1977), as used and extended by Watson and Engle (1983), Edwards and Howrey (1991), Harding and Scutella (1996), Jacobs and van Norden (2011), Kishor and Koenig (2011), and Fleischman and Roberts (2011), among others.³ That is, we view "true *GDP*" as a latent variable on which we have several indicators, the two most obvious being *GDP_E* and *GDP_I*, and we then extract true *GDP* using optimal filtering techniques.

The measurement-error approach is time honored, intrinsically compelling, and very different from the forecast-combination perspective of Aruoba et al. (2012), for several reasons.⁴ First, it enables extraction of latent true GDP using a model with parameters *estimated* with exact likelihood or Bayesian methods, whereas the forecast-combination approach forces one to use calibrated parameters. Second, it delivers not only point extractions of latent true GDP but also interval extractions, enabling us to assess the associated uncertainty. Third, the state-space framework in which the measurement-error models are is embedded facilitates exploration of the relationship between GDP measurement errors and the economic environment, such as stage of the business cycle, which is of special interest. Fourth, the

¹Indeed we will focus on the U.S. because it is a key egregious example of unreconciled GDP_E and GDP_I estimates.

²Hence the pair of papers roughly parallels the well-known literature on "forecast error" and "measurement error" properties of of data revisions; see Mankiw et al. (1984), Mankiw and Shapiro (1986), Faust et al. (2005), and Aruoba (2008).

³See also Smith et al. (1998), who take a different but related approach.

⁴On the time-honored aspect, see, for example, Gartaganis and Goldberger (1955).

state-space framework facilitates real-time analysis and forecasting, despite the fact that preliminary GDP_I data are not available as quickly as those for GDP_E .

We proceed as follows. In section 2 we consider several measurement-error models and assess their identification status, which turns out to be challenging and interesting in the most realistic and hence compelling case. In section 3 we discuss the data, estimation framework and estimation results. In section 4 we explore the properties of our new GDP series. We conclude in section 5.

2 Five Measurement-Error Models of *GDP*

We use dynamic-factor measurement-error models, which embed the idea that both GDP_E and GDP_I are noisy measures of latent true GDP. We work throughout with growth rates of GDP_E , GDP_I and GDP (hence, for example, GDP_E denotes a growth rate).⁵ We assume throughout that true GDP growth evolves with simple AR(1) dynamics, and we entertain several measurement structures, to which we now turn.

2.1 (Identified) 2-Equation Model: Σ Diagonal

Here we assume that the measurement errors are orthogonal to each other and to transition shocks at all leads and lags. The model has a natural state-space structure, and we write

$$\begin{bmatrix} GDP_{Et} \\ GDP_{It} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} GDP_t + \begin{bmatrix} \epsilon_{Et} \\ \epsilon_{It} \end{bmatrix}$$
(1)

 $GDP_t = \mu(1-\rho) + \rho GDP_{t-1} + \epsilon_{Gt},$

where GDP_{Et} and GDP_{It} are expenditure- and income-side estimates, respectively, GDP_t is latent true GDP, and all shocks are Gaussian and uncorrelated at all leads and lags. That is, $(\epsilon_{Gt}, \epsilon_{Et}, \epsilon_{It})' \sim iid N(\underline{0}, \Sigma)$, where

$$\Sigma = \begin{bmatrix} \sigma_{GG}^2 & 0 & 0 \\ 0 & \sigma_{EE}^2 & 0 \\ 0 & 0 & \sigma_{II}^2 \end{bmatrix}.$$
 (2)

 $^{{}^{5}}$ We will elaborate on the reasons for this choice later in section 3.

This model has been used countless times. As is well known, the Kalman filter delivers optimal extractions of GDP_t conditional upon observed expenditure- and income-side measurements. Moreover, the model can be easily extended, and some of its restrictive assumptions relaxed, with no fundamental change. We now proceed to do so.

2.2 (Identified) 2-Equation Model: Σ Block-Diagonal

The first extension is to allow for correlated measurement errors. This is surely important, as there is roughly a 25 percent overlap in the counts embedded in GDP_E and GDP_I , and moreover, the same deflator is used for conversion from nominal to real magnitudes.⁶ We write

$$\begin{bmatrix} GDP_{Et} \\ GDP_{It} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} GDP_t + \begin{bmatrix} \epsilon_{Et} \\ \epsilon_{It} \end{bmatrix}$$
(3)

$$GDP_t = \mu(1-\rho) + \rho GDP_{t-1} + \epsilon_{Gt},$$

where now ϵ_{Et} and ϵ_{It} may be correlated contemporaneously but are uncorrelated at all other leads and lags, and all other definitions and assumptions are as before; in particular, ϵ_{Gt} and $(\epsilon_{Et}, \epsilon_{It})'$ are uncorrelated at all leads and lags. That is, $(\epsilon_{Gt}, \epsilon_{Et}, \epsilon_{It})' \sim iid N(\underline{0}, \Sigma)$, where

$$\Sigma = \begin{bmatrix} \sigma_{GG}^2 & 0 & 0\\ 0 & \sigma_{EE}^2 & \sigma_{EI}^2\\ 0 & \sigma_{IE}^2 & \sigma_{II}^2 \end{bmatrix}.$$
 (4)

Nothing is changed, and the Kalman filter retains its optimality properties.

2.3 (Unidentified) 2-Equation Model, Σ Unrestricted

The second key extension is motivated by Fixler and Nalewaik (2009) and Nalewaik (2010), who document cyclicality in the statistical discrepancy $(GDP_E - GDP_I)$, which implies failure of the assumption that $(\epsilon_{Et}, \epsilon_{It})'$ and ϵ_{Gt} are uncorrelated at all leads and lags. Of particular concern is contemporaneous correlation between ϵ_{Gt} and $(\epsilon_{Et}, \epsilon_{It})'$. Hence we allow the measurement errors $(\epsilon_{Et}, \epsilon_{It})'$ to be correlated with GDP_t , or more precisely, correlated

 $^{^{6}}$ See Aruoba et al. (2012) for more. Many of the areas of overlap are particularly poorly measured, such as imputed financial services, housing services, and government output.

with GDP_t innovations, ϵ_{Gt} . We write

$$\begin{bmatrix} GDP_{Et} \\ GDP_{It} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} GDP_t + \begin{bmatrix} \epsilon_{Et} \\ \epsilon_{It} \end{bmatrix}$$

$$GDP_t = \mu(1-\rho) + \rho GDP_{t-1} + \epsilon_{Gt},$$
(5)

where $(\epsilon_{Gt}, \epsilon_{Et}, \epsilon_{It})' \sim iid N(\underline{0}, \Sigma)$, with

$$\Sigma = \begin{bmatrix} \sigma_{GG}^2 & \sigma_{GE}^2 & \sigma_{GI}^2 \\ \sigma_{EG}^2 & \sigma_{EE}^2 & \sigma_{EI}^2 \\ \sigma_{IG}^2 & \sigma_{IE}^2 & \sigma_{II}^2 \end{bmatrix}.$$
(6)

In this environment the standard Kalman filter is rendered sub-optimal for extracting GDP, due to correlation between ϵ_{Gt} and $(\epsilon_{Et}, \epsilon_{It})$, but appropriately-modified optimal filters are available.

Of course in what follows we will be concerned with *estimating* our measurement-equation models, so we will be concerned with identification. The diagonal- Σ model (1)-(2) and the block-diagonal- Σ model (3)-(4) are identified. Identification of less-restricted dynamic factor models, however, is a very delicate matter. In particular, it is not obvious that the unrestricted- Σ model (5)-(6) is identified. Indeed it is not, as we prove in Appendix A. Hence we now proceed to determine minimal restrictions that achieve identification.

2.4 (Identified) 2-Equation Model: Σ Restricted

The identification problem with the general model (5)-(6) stems from the fact that we can make true GDP more volatile (increase σ_{GG}^2) and make the measurement errors more volatile (increase σ_{EE}^2 and σ_{II}^2), but reduce the covariance between the fundamental shocks and the measurement errors (reduce σ_{EG}^2 and σ_{IG}^2), without changing the distribution of observables.

2.4.1 Restricting the Original Parameterization

But we can achieve identification by slightly restricting parameterization (5)-(6). In particular, as we show in Appendix A, the unrestricted system (5)-(6) is unidentified because the Σ matrix has six free parameters with only five moment conditions to determine them. Hence we can achieve identification by restricting any single element of Σ . Imposing any such restriction would seem challenging, however, as we have no strong prior views directly on any single element of Σ . Fortunately, the problem is made tractable by a simple reparameterization.

2.4.2 A Useful Re-Parameterization

Define

$$\zeta = \frac{\frac{1}{1-\rho^2}\sigma_{GG}^2}{\frac{1}{1-\rho^2}\sigma_{GG}^2 + 2\sigma_{GE}^2 + \sigma_{EE}^2}.$$
(7)

Then, rather than fixing an element of Σ to achieve identification, we can fix ζ , about which we have a more natural prior view. In particular, at first pass we might take $\sigma_{GE}^2 \approx 0$, in which case $0 < \zeta < 1$. Or, put differently, $\zeta > 1$ would require a *very* negative σ_{GE}^2 , which seems unlikely. All told, we view a ζ value less than, but close to, 1.0 as most natural. We take $\zeta = 0.80$ as our benchmark in the empirical work that follows, although we explore a wide range of ζ values both below and above 1.0.

2.5 (Identified) 3-Equation Model: Σ Unrestricted

Thus far we showed how to achieve identification by fixing a parameter, ζ , and we noted that our prior is centered around $\zeta = 0.80$. It is of also of interest to know whether we can get some complementary data-based guidance on choice of ζ . The answer turns out to be yes, by adding a third measurement equation with a certain structure.

Suppose, in particular, that we have an additional observable variable U_t that loads on true GDP_t with measurement error orthogonal to those of GDP_I and GDP_E . In particular, consider the 3-equation model

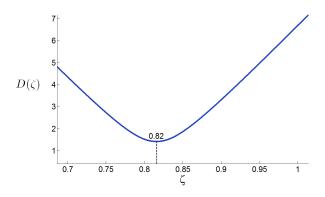
$$\begin{bmatrix} GDP_{Et} \\ GDP_{It} \\ U_t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \kappa \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \lambda \end{bmatrix} GDP_t + \begin{bmatrix} \epsilon_{Et} \\ \epsilon_{It} \\ \epsilon_{Ut} \end{bmatrix}$$
(8)
$$GDP_t = \mu(1-\rho) + \rho GDP_{t-1} + \epsilon_{Gt},$$

where $(\epsilon_{Gt}, \epsilon_{Et}, \epsilon_{It}, \epsilon_{Ut})' \sim iid N(\underline{0}, \Omega)$, with

$$\Omega = \begin{bmatrix} \sigma_{GG}^2 & \sigma_{GE}^2 & \sigma_{GI}^2 & \sigma_{GU}^2 \\ \sigma_{EG}^2 & \sigma_{EE}^2 & \sigma_{EI}^2 & 0 \\ \sigma_{IG}^2 & \sigma_{IE}^2 & \sigma_{II}^2 & 0 \\ \sigma_{UG}^2 & 0 & 0 & \sigma_{UU}^2 \end{bmatrix}.$$
(9)

Note that the upper-left 3x3 block of Ω is just Σ , which is now unrestricted. Nevertheless, as we prove in Appendix B, the 3-equation model (8)-(9) is identified. Of course some of the remaining elements of the overall 4x4 covariance matrix Ω are restricted, which is how we achieve identification in the 3-equation model, but the economically interesting sub-matrix, which the 3-equation model leaves completely unrestricted, is Σ .

Depending on the application, of course, it is not obvious that an identifying variable U_t with measurement errors orthogonal to those of GDP_E and GDP_I (i.e., with stochastic properties that satisfy (9)), is available. Hence it is not obvious that estimation of the 3-equation model (8)-(9) is feasible in practice, despite the model's appeal in principle. Indeed, much of the data collected from business surveys is used in the BEA's estimates, invalidating use of that data as U_t since any measurement error in that data appears directly in either GDP_E or GDP_I , producing correlation across the measurement errors. Moreover, variables drawn from business surveys similar to those used to produce GDP_E and GDP_I , even if they are not used directly in the estimation of GDP_E and GDP_I , might still be invalid identifying variables if the survey methodology itself produces similar measurement errors.⁷


Fortunately, however, some important macroeconomic data is collected not from surveys of businesses, but from samples of households. A sample of data drawn from a universe of households seems likely to have measurement errors that are different than those contaminating a data sample drawn from a universe of businesses, especially when the "universes" of businesses and households are not complete census counts, as is the case here. For example, the universe of business surveys is derived from tax records, so businesses not paying taxes will not appear on that list, but individuals working at that business may appear in the universe of households.

Importantly, very little data collected from household surveys are used to construct GDP_E and GDP_I , so a U_t variable computed from a household survey seems most likely to meet our identification conditions. The change in the unemployment rate is a natural choice (hence our notational choice U_t). U_t arguably loads on true GDP with a measurement error orthogonal to those of GDP_E and GDP_I , because the U_t data is being produced independently (by the BLS rather than BEA) from different types of surveys. In addition, virtually all of the GDP_E and GDP_I data are estimated in nominal dollars and then converted to real dollars using a price deflator, whereas U_t is estimated directly with no deflation.

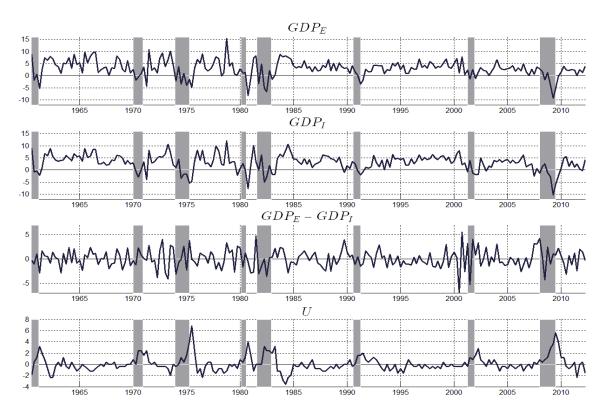
All told, we view "3-equation identification" as a useful complement to the " ζ -identification"

⁷ For example, if the business surveys used to produce GDP_E and GDP_I tend to oversample large firms, variables drawn from a business survey that also oversamples large firms may have measurement errors that are correlated with those in GDP_E and GDP_I , absent appropriate corrections.

Figure 1: Divergence Between $\hat{\Sigma}_{\zeta}$ and $\hat{\Sigma}_{3}$

Notes: We show the Frobenius-norm divergence $D(\zeta)$ between $\widehat{\Sigma}_{\zeta}$ and $\widehat{\Sigma}_{3}$ as a function of ζ . The optimum is $\zeta = 0.82$. See text for details.

discussed earlier in section 2.4. All identifications involve assumptions. ζ -identification involves introspection about likely values of ζ , given its structure and components, and that introspection is of course subject to error. 3-equation identification involves introspection about various measurement-error correlations involving the newly-introduced third variable, which is of course also subject to error. Indeed the two approaches to identification are usefully used in tandem, and compared.


One can even view the 3-equation approach as a device for implicitly selecting ζ . In particular, we can find the ζ implied by the 3-equation model estimate, that is, find the ζ that minimizes the divergence between $\hat{\Sigma}_{\zeta}$ and $\hat{\Sigma}_{3}$, in an obvious notation.⁸ For example, using the Frobenius matrix-norm to measure divergence, we obtain an optimum of $\zeta^* = 0.82$. We show the full surface in Figure 1, and the minimum is sharp and unique. The implied ζ^* of 0.82 is of course quite close to the directly-assessed value of 0.80 at which we arrived earlier, which lends additional credibility to the earlier assessment.

3 Data and Estimation

We intentionally work with a stationary system in growth rates, because we believe that measurement errors are best modeled as *iid* in growth rates rather than in levels, due to BEA's devoting maximal attention to estimating the "best change."⁹ In its above-cited

⁸We will discuss subsequently the estimation procedure used to obtain $\hat{\Sigma}_{\zeta}$ and $\hat{\Sigma}_{3}$.

⁹For example, see "Concepts and Methods in the U.S. National Income and Product Accounts," available at http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf.

Figure 2: *GDP* and Unemployment Data

Notes: GDP_E and GDP_I are in growth rates and U_t is in changes. All are measured in annualized percent.

"Concepts and Methods ..." document, for example, the BEA emphasizes that:

Best change provides the most accurate measure of the period-to-period movement in an economic statistic using the best available source data. In an annual revision of the NIPAs, data from the annual surveys of manufacturing and trade are generally incorporated into the estimates on a best-change basis. In the current quarterly estimates, most of the components are estimated on a best-change basis from the annual levels established at the most recent annual revision.

The monthly source data used to estimate GDP_E (such as retail sales) and GDP_I (such as nonfarm payroll employment) are generally produced on a best-change basis as well, using a so-called "link-relative estimator." This estimator computes growth rates using firms in the sample in both the current and previous months, in contrast to a best-level estimator, which would generally use all the firms in the sample in the current month regardless of whether or not they were in the sample in the previous month. For example, for retail sales the BEA notes that:¹⁰

Advance sales estimates for the most detailed industries are computed using a type of ratio estimator known as the link-relative estimator. For each detailed industry, we compute a ratio of current-to-previous month weighted sales using data from units for which we have obtained usable responses for both the current and previous month.

Indeed the BEA produces estimates on a best-level basis only at 5-year benchmarks. These best-level benchmark revisions should drive only the very-low frequency variation in GDP_E , and thus probably matter very little for the quarterly growth rates estimated on a best-change basis.

3.1 Descriptive Statistics

We show time-series plots of the "raw" GDP_E and GDP_I data in Figure 2, and we show summary statistics in the top panel of Table 1. Not captured in the table but also true is that the raw data are highly correlated; the simple correlations are $corr(GDP_E, GDP_I) = 0.85$, $corr(GDP_E, U) = -0.67$, and $corr(GDP_I, U) = -0.73$. Median GDP_I growth is a bit higher than that of GDP_E , and GDP_I growth is noticeably more persistent than that of GDP_E . Related, GDP_I also has smaller AR(1) innovation variance and greater predictability as measured by the predictive R^2 .¹¹

3.2 Bayesian Analysis of Measurement-Error Models

Here we describe Bayesian analysis of our three-equation model, which of course also includes our various two-equation models as special cases. Bayesian estimation involves parameter estimation and latent state smoothing. First, we generate draws from the posterior distribution of the model parameters using a Random-Walk Metropolis-Hastings algorithm. Next, we apply a simulation smoother as described in Durbin and Koopman (2001) to obtain draws of the latent states conditional on the parameters.

3.2.1 State-Space Representation

We proceed by introducing a state-space representation of (8) for estimation. Let $y_t = [GDP_{Et}, GDP_{It}, U_t]', C = [0, 0, \kappa]', s_t = [GDP_t, \epsilon_{Et}, \epsilon_{It}, \epsilon_{Ut}]', D = [\mu(1-\rho), 0, 0, 0]', \epsilon_t = [GDP_t, \epsilon_{Et}, \epsilon_{It}, \epsilon_{Ut}]'$

¹⁰See http://www.census.gov/retail/marts/how_surveys_are_collected.html.

¹¹On this and related predictability measures, see Diebold and Kilian (2001).

	\bar{x}	50%	$\hat{\sigma}$	Sk	$\hat{ ho}_1$	$\hat{ ho}_2$	$\hat{ ho}_3$	$\hat{ ho}_4$	Q_{12}	$\hat{\sigma}_e$	R^2	\hat{V}_e
GDP_E	3.03	3.04	3.49	-0.31	.33	.27	.08	.09	47.07	3.28	.06	12.12
GDP_I	3.02	3.39	3.40	-0.55	.47	.27	.22	.08	81.60	2.99	.12	11.43
GDP_M 2-eqn, Σ diag	3.02	3.22	3.00	-0.56	.56	.34	.21	.09	108.25	2.48	.18	8.92
GDP_M 2-eqn, Σ block	3.02	3.35	2.64	-0.64	.70	.45	.28	.13	170.08	1.89	.29	6.90
GDP_M 2-eqn, $\zeta = 0.65$	3.02	3.32	2.61	-0.64	.67	.43	.27	.12	157.56	1.92	.26	6.73
GDP_M 2-eqn, $\zeta = 0.75$	3.02	3.30	2.77	-0.63	.65	.41	.26	.11	148.23	2.08	.25	7.60
GDP_M 2-eqn, $\zeta = 0.80$	3.02	3.29	2.87	-0.62	.64	.39	.25	.11	141.14	2.19	.24	8.16
GDP_M 2-eqn, $\zeta = 0.85$	3.02	3.31	2.89	-0.64	.66	.41	.28	.12	153.27	2.15	.25	8.29
GDP_M 2-eqn, $\zeta = 0.95$	3.02	3.26	3.02	-0.64	.66	.40	.28	.12	149.61	2.27	.25	9.07
GDP_M 2-eqn, $\zeta = 1.05$	3.01	3.22	3.12	-0.65	.67	.40	.28	.12	155.60	2.30	.26	9.69
GDP_M 2-eqn, $\zeta = 1.15$	3.04	3.34	3.07	-0.67	.76	.47	.31	.15	201.15	1.99	.35	9.46
GDP_M 3-eqn	3.02	3.37	3.02	-1.14	.63	.37	.21	.03	141.79	2.33	.23	9.03
GDP_F	3.02	3.29	3.30	-0.51	.46	.29	.19	.07	78.28	2.92	.12	10.80

Table 1: Descriptive Statistics for Various GDP Series

Notes: The sample period is 1960Q1-2011Q4. In the top panel we show statistics for the raw data. In the middle panel we show statistics for various posterior-median measurement-error-based ("M") estimates of true GDP, where all estimates are smoothed extractions. In the bottom panel we show statistics for the forecast-error-based ("F") estimate of true GDP produced by Aruoba et al. (2012). \bar{x} , 50%, $\hat{\sigma}$ and Sk are sample mean, median, standard deviation and skewness, respectively, and $\hat{\rho}_{\tau}$ is a sample autocorrelation at a displacement of τ quarters. Q_{12} is the Ljung-Box serial correlation test statistic calculated using $\hat{\rho}_1, ..., \hat{\rho}_{12}$. $R^2 = 1 - \frac{\hat{\sigma}_e^2}{\hat{\sigma}^2}$, where $\hat{\sigma}_e$ denotes the estimated disturbance standard deviation from a fitted AR(1) model, is a predictive R^2 . \hat{V}_e is the unconditional variance implied by a fitted AR_1 model, $\hat{V}_e = \frac{\hat{\sigma}_e^2}{1-\hat{\rho}^2}$.

 $[\epsilon_{Gt}, \epsilon_{Et}, \epsilon_{It}, \epsilon_{Ut}]'$ and

Our state-space model is

$$y_t = C + Zs_t$$

$$s_t = D + \Phi s_{t-1} + \epsilon_t, \quad \epsilon_t \sim N(0, \Omega).$$
(10)

We collect the parameters in (10) in $\Theta = (\mu, \rho, \sigma_{GG}^2, \sigma_{GE}^2, \sigma_{GI}^2, \sigma_{EI}^2, \sigma_{II}^2, \sigma_{GU}^2, \sigma_{UU}^2, \kappa, \lambda).$

3.2.2 Metropolis-Hastings MCMC Algorithm

Now let us proceed to our implementation of the Metropolis-Hastings MCMC Algorithm. Denote the number of MCMC draws by N. We first maximize the posterior density

$$p(\Theta|Y_{1:T}) \propto p(Y_{1:T}|\Theta)p(\Theta) \tag{11}$$

to obtain the mode Θ^0 and construct a covariance matrix for the proposal density, Σ_{Θ} , from the inverse Hessian of the log posterior density evaluated at Θ^0 . We also use Θ^0 to initialize the algorithm. At each iteration j we draw a proposed parameter vector $\Theta^* \sim N(\Theta^{j-1}, c\Sigma_{\Theta})$, where c is a scalar tuning parameter that we calibrate to achieve an acceptance rate of 25-30%. We accept the proposed parameter vector, that is, we set $\Theta^j = \Theta^*$, with probability min $\{1, \frac{p(Y_{1:T}|\Theta^*)p(\Theta^*)}{p(Y_{1:T}|\Theta^{j-1})p(\Theta^{j-1})}\}$, and set $\Theta^j = \Theta^{j-1}$ otherwise. We adopt the convention that $p(\Theta^*) = 0$ if the covariance matrix Ω implied by Θ^* is not positive definite. The results reported subsequently are are based on N = 50,000 iterations of the algorithm. We discard the first 25,000 draws and use the remaining draws to compute summary statistics for the posterior distribution.

3.2.3 Filtering and Smoothing

The evaluation of the likelihood function $p(Y_{1:T}|\Theta)$ requires the use of the Kalman filter. The Kalman filter recursions take the following form. Suppose that

$$s_{t-1}|(Y_{1:t-1},\Theta) \sim N(s_{t-1|t-1},P_{t-1|t-1}),$$
(12)

where $s_{t-1|t-1}$ and $P_{t-1|t-1}$ are the mean and variance of the latent state at t-1. Then the means and variances of the predictive densities $p(s_t|Y_{1:t-1}, \Theta)$ and $p(y_t|Y_{1:t-1}, \Theta)$ are

$$s_{t|t-1} = D + \Phi s_{t-1|t-1}, \quad P_{t|t-1} = \Phi P_{t-1|t-1} \Phi' + \Omega$$

$$y_{t|t-1} = C + Z s_{t|t-1}, \quad F_{t|t-1} = Z P_{t|t-1} Z',$$

respectively. The contribution of observation y_t to the likelihood function $p(Y_{1:T}|\Theta)$ is given by $p(y_t|Y_{1:t-1},\Theta)$. Finally, the updating equations are

$$s_{t|t} = s_{t|t-1} + (ZP_{t|t-1})'F_{t|t-1}^{-1} (y_t - \hat{y}_{t|t-1})$$

$$P_{t|t} = P_{t|t-1} - (ZP_{t|t-1})'(ZP_{t|t-1}Z')^{-1}(ZP_{t|t-1}),$$

leading to

$$s_t|(Y_{1:t},\Theta) \sim N(s_{t|t}, P_{t|t}).$$
 (13)

We initialize the Kalman filter by drawing $s_{0|0}$ from a mean-zero Gaussian stationary distribution whose covariance matrix, $P_{0|0}$, is the solution of the underlying Ricatti equation.

Because we are interested in inference for the latent GDP, we use the backward-smoothing algorithm of Carter and Kohn (1994) to generate draws recursively from $s_t|(S_{t+1:T}, Y_{1:T}, \Theta),$ t = T - 1, T - 2, ..., 1, where the last iteration of the Kalman filter recursion provides the initialization for the backward simulation smoother,

$$s_{t|t+1} = s_{t|t} + P_{t|t} \Phi' P_{t+1|t}^{-1} \left(s_{t+1} - D - \Phi s_{t|t} \right)$$

$$P_{t|t+1} = P_{t|t} - P_{t|t} \Phi' P_{t+1|t}^{-1} \Phi P_{t|t}$$

$$draw \ s_t | (S_{t+1:T}, Y_{1:T}, \Theta) \sim N(s_{t|t+1}, P_{t|t+1}),$$
(14)

 $t = T - 1, T - 2, \dots, 1.$

3.3 Parameter Estimation Results

Here we present and discuss estimation results for our various models. In Table 2 we show details of parameter prior and posterior distributions, as well as statistics describing the overall posterior and likelihood, for various 2-equation models, and in Table 3 we provide the same information for the 3-equation model.

The complete estimation information in the tables can be difficult to absorb fully, however, so here we briefly present aspects of the results in a more revealing way. For the 2-equation models, the parameters to be estimated are those in the transition equation and those in the covariance matrix Σ , which includes variances and covariances of both transition and measurement shocks. Hence we simply display the estimated transition equation and the estimated Σ matrices. For the 3-equation model, we also need to estimate a factor loading in the measurement equation, so we display the estimated measurement equation as well. Below each posterior median parameter estimate, we show a the posterior interquartile range in brackets.

For the 2-equation model with Σ diagonal, we have

$$GDP_t = \frac{3.07}{[2.81, 3.33]} (1 - 0.53) + \frac{0.53}{[0.48, 0.57]} GDP_{t-1} + \epsilon_{Gt},$$
(15)

	D :	Diagonal					Block Diagonal			
	Prior	0507	Posterior		0507	Posterior				
	(Mean, Std. Dev)	25%	50%	75%	25%	50%	75%			
μ	N(3,10)	2.81	3.07	3.33	2.77	3.06	3.34			
ρ	N(0.3,1)	0.48	0.53	0.57	0.57	0.62	0.68			
$egin{array}{c} ho \ \sigma^2_{GG} \ \sigma^2_{GE} \ \sigma^2_{GE} \ \sigma^2_{EI} \ \sigma^2_{EI} \ \sigma^2_{EI} \ \sigma^2_{II} \end{array}$	IG(10,15)	6.39	6.90	7.44	4.39	5.17	5.95			
σ_{GE}^2	N(0,10)	-	-	-	-	-	-			
σ_{GI}^2	N(0, 10)	-	-	-	-	-	-			
σ_{EE}^2	IG(10, 15)	2.12	2.32	2.55	3.34	3.86	4.48			
σ_{EI}^2	N(0,10)	-	-	-	0.96	1.43	1.95			
σ_{II}^2	IG(10,15)	1.52	1.68	1.85	2.25	2.70	3.22			
posterior	-	-984.57	-983.46	-982.60	-986.23	-985.00	-984.01			
ikelihood	-	-951.68	-950.41	-949.43	-950.70	-949.49	-948.60			
			$\zeta = 0.75$			$\zeta = 0.80$				
	Prior					-				
		0F07	Posterior	7507	0r07	Posterior	7507			
	(Mean,Std.Dev)	25%	50%	75%	25%	50%	75%			
μ	N(3,10)	2.75	3.03	3.31	2.79	3.08	3.35			
ρ	N(0.3,1)	0.53	0.59	0.64	0.51	0.57	0.62			
$egin{array}{c} ho \ \sigma^2_{GG} \ \sigma^2_{GE} \ \sigma^2_{GE} \ \sigma^2_{EI} \ \sigma^2_{EE} \ \sigma^2_{EI} \ \sigma^2_{EI} \ \sigma^2_{II} \end{array}$	IG(10,15)	5.78	6.31	6.92	6.54	7.09	7.70			
σ_{GE}^2	N(0,10)	-0.76	-0.29	0.15	-1.15	-0.69	-0.29			
σ_{GI}^2	N(0,10)	-0.34	0.01	0.34	-0.74	-0.38	-0.04			
σ_{EE}^2	IG(10,15)	3.08	3.88	4.75	3.14	3.90	4.77			
σ_{FI}^2	N(0,10)	0.73	1.23	1.78	0.80	1.29	1.85			
σ_{II}^{2}	IG(10, 15)	1.94	2.30	2.76	1.98	2.36	2.82			
posterior	-	-982.50	-980.99	-979.87	-982.48	-981.05	-979.91			
ikelihood	-	-950.93	-949.55	-948.40	-950.85	-949.44	-948.41			
			$\zeta = 0.85$			$\zeta = 0.95$				
	Prior		$\zeta = 0.85$ Posterior			$\zeta = 0.95$ Posterior				
	(Mean,Std.Dev)	25%	50%	75%	25.07	50%	7507			
	,				25%		75%			
μ	N(3,10)	2.72	2.96	3.14	2.84	3.03	3.25			
		0 51	0 50	0.00						
ho	N(0.3,1)	0.51	0.56	0.60	0.49	0.54	0.60			
$\sigma^{ ho}_{GG}$	${ m N}(0.3,1) \ { m IG}(10,15)$	$\begin{array}{c} 0.51 \\ 6.67 \end{array}$	$0.56 \\ 7.19$	$\begin{array}{c} 0.60\\ 7.76\end{array}$	$0.49 \\ 7.69$	$\begin{array}{c} 0.54 \\ 8.43 \end{array}$	$0.60 \\ 9.28$			
$ ho \ \sigma^2_{GG} \ \sigma^2_{GE}$	· · ·									
$egin{array}{c} ho \ \sigma^2_{GG} \ \sigma^2_{GE} \ \sigma^2_{GI} \end{array}$	IG(10,15)	6.67	7.19	7.76	7.69	8.43	9.28			
$egin{array}{c} ho \ \sigma^2_{GG} \ \sigma^2_{GE} \ \sigma^2_{GI} \ \sigma^2_{GI} \ \sigma^2_{EE} \end{array}$	$IG(10,15) \\ N(0,10)$	$6.67 \\ -2.17$	7.19 -1.98	7.76 -1.77	7.69 -2.88	8.43 -2.73	9.28 -2.50			
$egin{array}{c} ho \ \sigma^2_{GG} \ \sigma^2_{GE} \ \sigma^2_{GI} \ \sigma^2_{EE} \ \sigma^2_{EI} \end{array}$	$\begin{array}{c} {\rm IG}(10,15) \\ {\rm N}(0,10) \\ {\rm N}(0,10) \end{array}$	6.67 -2.17 -0.97	7.19 -1.98 -0.80	7.76 -1.77 -0.53	7.69 -2.88 -1.99	8.43 -2.73 -1.58	9.28 -2.50 -1.22			
σ_{EI}^2	$\begin{array}{c} {\rm IG}(10,15) \\ {\rm N}(0,10) \\ {\rm N}(0,10) \\ {\rm IG}(10,15) \end{array}$	6.67 -2.17 -0.97 5.36	7.19 -1.98 -0.80 5.79	7.76 -1.77 -0.53 6.28	7.69 -2.88 -1.99 5.64	8.43 -2.73 -1.58 6.10	9.28 -2.50 -1.22 6.39			
$\sigma^2_{EI} \ \sigma^2_{II}$	$\begin{array}{c} {\rm IG}(10,15) \\ {\rm N}(0,10) \\ {\rm N}(0,10) \\ {\rm IG}(10,15) \\ {\rm N}(0,10) \end{array}$	$\begin{array}{c} 6.67 \\ -2.17 \\ -0.97 \\ 5.36 \\ 2.04 \end{array}$	7.19 -1.98 -0.80 5.79 2.33	$7.76 \\ -1.77 \\ -0.53 \\ 6.28 \\ 2.63$	7.69 -2.88 -1.99 5.64 2.43	8.43 -2.73 -1.58 6.10 2.64	9.28 -2.50 -1.22 6.39 2.93			
$\sigma_{EI}^2 \\ \sigma_{II}^2$ posterior	$\begin{array}{c} {\rm IG}(10,15) \\ {\rm N}(0,10) \\ {\rm N}(0,10) \\ {\rm IG}(10,15) \\ {\rm N}(0,10) \end{array}$	$\begin{array}{c} 6.67 \\ -2.17 \\ -0.97 \\ 5.36 \\ 2.04 \\ 2.36 \end{array}$	$7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65$	$7.76 \\ -1.77 \\ -0.53 \\ 6.28 \\ 2.63 \\ 3.04$	$7.69 \\ -2.88 \\ -1.99 \\ 5.64 \\ 2.43 \\ 2.45$	$8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22$	9.28 -2.50 -1.22 6.39 2.93 3.81			
$\sigma_{EI}^2 \ \sigma_{II}^2$ posterior	$\begin{array}{c} {\rm IG}(10,15) \\ {\rm N}(0,10) \\ {\rm N}(0,10) \\ {\rm IG}(10,15) \\ {\rm N}(0,10) \end{array}$	$\begin{array}{r} 6.67 \\ -2.17 \\ -0.97 \\ 5.36 \\ 2.04 \\ 2.36 \\ -982.62 \end{array}$	$\begin{array}{c} 7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \end{array}$	7.76 -1.77 -0.53 6.28 2.63 3.04 -980.48	$7.69 \\ -2.88 \\ -1.99 \\ 5.64 \\ 2.43 \\ 2.45 \\ -984.09$	8.43 -2.73 -1.58 6.10 2.64 3.22 -982.80 -948.84	9.28 -2.50 -1.22 6.39 2.93 3.81 -981.57			
$\begin{array}{c} \sigma_{EI}^2 \\ \sigma_{II}^2 \\ \text{posterior} \end{array}$	IG(10,15) N(0,10) N(0,10) IG(10,15) N(0,10) IG(10,15)	$\begin{array}{r} 6.67 \\ -2.17 \\ -0.97 \\ 5.36 \\ 2.04 \\ 2.36 \\ -982.62 \end{array}$	$\begin{array}{c} 7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \end{array}$	7.76 -1.77 -0.53 6.28 2.63 3.04 -980.48	$7.69 \\ -2.88 \\ -1.99 \\ 5.64 \\ 2.43 \\ 2.45 \\ -984.09$	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \end{array}$	9.28 -2.50 -1.22 6.39 2.93 3.81 -981.57			
$\sigma_{EI}^2 \ \sigma_{II}^2$ posterior	IG(10,15) N(0,10) N(0,10) IG(10,15) N(0,10) IG(10,15) - - Prior	$\begin{array}{c} 6.67 \\ -2.17 \\ -0.97 \\ 5.36 \\ 2.04 \\ 2.36 \\ -982.62 \\ -949.42 \end{array}$	$\begin{array}{c} 7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \end{array}$	$\begin{array}{c} 7.76 \\ -1.77 \\ -0.53 \\ 6.28 \\ 2.63 \\ 3.04 \\ -980.48 \\ -947.49 \end{array}$	7.69 -2.88 -1.99 5.64 2.43 2.45 -984.09 -950.19	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \end{array}$ $\zeta = 1.15 \\ \text{Posterior} \end{array}$	9.28 -2.50 -1.22 6.39 2.93 3.81 -981.57 -947.81			
$\sigma_{EI}^2 \ \sigma_{II}^2$ posterior	IG(10,15) N(0,10) N(0,10) IG(10,15) N(0,10) IG(10,15) - - Prior (Mean,Std.Dev)	6.67 -2.17 -0.97 5.36 2.04 2.36 -982.62 -949.42 25%	$7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \\ \zeta = 1.05 \\ \text{Posterior} \\ 50\%$	7.76 -1.77 -0.53 6.28 2.63 3.04 -980.48 -947.49 75%	7.69 -2.88 -1.99 5.64 2.43 2.45 -984.09 -950.19 25%	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \\ \hline \zeta = 1.15 \\ \text{Posterior} \\ 50\% \end{array}$	9.28 -2.50 -1.22 6.39 2.93 3.81 -981.57 -947.81 75%			
$\sigma_{EI}^2 \ \sigma_{II}^2$ posterior	IG(10,15) N(0,10) N(0,10) IG(10,15) N(0,10) IG(10,15) - - - Prior (Mean,Std.Dev) N(3,10)	6.67 -2.17 -0.97 5.36 2.04 2.36 -982.62 -949.42 25% 2.85	$\begin{array}{c} 7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \\ \hline \zeta = 1.05 \\ \text{Posterior} \\ 50\% \\ \hline 3.07 \end{array}$	7.76 -1.77 -0.53 6.28 2.63 3.04 -980.48 -947.49 75% 3.33	7.69 -2.88 -1.99 5.64 2.43 2.45 -984.09 -950.19 25% 2.55	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \\ \hline \zeta = 1.15 \\ \text{Posterior} \\ 50\% \\ \hline 2.89 \end{array}$	9.28 -2.50 -1.22 6.39 2.93 3.81 -981.57 -947.81 75% 3.21			
$\frac{\sigma_{EI}^2}{\sigma_{II}^2}$ posterior ikelihood	IG(10,15) N(0,10) N(0,10) IG(10,15) N(0,10) IG(10,15) - - - Prior (Mean,Std.Dev) N(3,10) N(0,3,1)	6.67 -2.17 -0.97 5.36 2.04 2.36 -982.62 -949.42 25% 2.85 0.48	$7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \\ \zeta = 1.05 \\ Posterior \\ 50\% \\ 3.07 \\ 0.53 \\ $	7.76 -1.77 -0.53 6.28 2.63 3.04 -980.48 -947.49 75% 3.33 0.58	$7.69 \\ -2.88 \\ -1.99 \\ 5.64 \\ 2.43 \\ 2.45 \\ -984.09 \\ -950.19 \\ 25\% \\ 2.55 \\ 0.52 \\ 0.52 \\ $	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \\ \hline \zeta = 1.15 \\ \text{Posterior} \\ 50\% \\ \hline 2.89 \\ 0.56 \end{array}$	9.28 -2.50 -1.22 6.39 2.93 3.81 -981.57 -947.81 75% 3.21 0.61			
$\frac{\sigma_{EI}^2}{\sigma_{II}^2}$ posterior ikelihood	IG(10,15) N(0,10) N(0,10) IG(10,15) N(0,10) IG(10,15) - - - Prior (Mean,Std.Dev) N(3,10) N(0.3,1) IG(10,15)	$\begin{array}{c} 6.67\\ -2.17\\ -0.97\\ 5.36\\ 2.04\\ 2.36\\ -982.62\\ -949.42\\ \end{array}$	$7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \\ \zeta = 1.05 \\ Posterior \\ 50\% \\ 3.07 \\ 0.53 \\ 9.57 \\ $	$7.76 \\ -1.77 \\ -0.53 \\ 6.28 \\ 2.63 \\ 3.04 \\ -980.48 \\ -947.49 \\ \hline 75\% \\ 3.33 \\ 0.58 \\ 10.25 \\ \hline$	7.69 -2.88 -1.99 5.64 2.43 2.45 -984.09 -950.19 25% 2.55 0.52 9.07	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \\ \hline \zeta = 1.15 \\ \text{Posterior} \\ 50\% \\ \hline 2.89 \\ 0.56 \\ 9.88 \\ \end{array}$	$\begin{array}{c} 9.28\\ -2.50\\ -1.22\\ 6.39\\ 2.93\\ 3.81\\ -981.57\\ -947.81\\ \end{array}$ $\begin{array}{c} 75\%\\ 3.21\\ 0.61\\ 10.73\\ \end{array}$			
$\frac{\sigma_{EI}^2}{\sigma_{II}^2}$ posterior ikelihood	$\begin{array}{c} \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \mathrm{N(0,10)} \\ \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \mathrm{IG(10,15)} \\ \hline \\ - \\ \hline \\ - \\ \hline \\ \end{array}$ $\begin{array}{c} - \\ \\ \mathrm{Prior} \\ (\mathrm{Mean,Std.Dev}) \\ \\ \mathrm{N(3,10)} \\ \mathrm{N(0,3,1)} \\ \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \end{array}$	$\begin{array}{c} 6.67\\ -2.17\\ -0.97\\ 5.36\\ 2.04\\ 2.36\\ -982.62\\ -949.42\\ \hline \\ 25\%\\ 2.85\\ 0.48\\ 8.92\\ -4.04\\ \end{array}$	$7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \\ \hline \zeta = 1.05 \\ Posterior \\ 50\% \\ \hline 3.07 \\ 0.53 \\ 9.57 \\ -3.88 \\ \hline$	$7.76 \\ -1.77 \\ -0.53 \\ 6.28 \\ 2.63 \\ 3.04 \\ -980.48 \\ -947.49 \\ \hline 75\% \\ \hline 3.33 \\ 0.58 \\ 10.25 \\ -3.70 \\ \hline $	$7.69 \\ -2.88 \\ -1.99 \\ 5.64 \\ 2.43 \\ 2.45 \\ -984.09 \\ -950.19 \\ 25\% \\ 2.55 \\ 0.52 \\ 9.07 \\ -5.61 \\ \end{cases}$	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \\ \hline \zeta = 1.15 \\ \text{Posterior} \\ 50\% \\ \hline 2.89 \\ 0.56 \\ 9.88 \\ -5.50 \\ \end{array}$	$\begin{array}{c} 9.28\\ -2.50\\ -1.22\\ 6.39\\ 2.93\\ 3.81\\ -981.57\\ -947.81\\ \hline \\ 75\%\\ \hline \\ 3.21\\ 0.61\\ 10.73\\ -5.22\\ \end{array}$			
$\frac{\sigma_{EI}^2}{\sigma_{II}^2}$ posterior likelihood	$\begin{array}{c} \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \mathrm{N(0,10)} \\ \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \mathrm{IG(10,15)} \\ \hline \\ \hline \\ \\ \hline \\ \\ \end{array}$ $\begin{array}{c} - \\ \\ \end{array}$ $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 6.67\\ -2.17\\ -0.97\\ 5.36\\ 2.04\\ 2.36\\ -982.62\\ -949.42\\ \end{array}$ $\begin{array}{c} 25\%\\ 2.85\\ 0.48\\ 8.92\\ -4.04\\ -3.09\\ \end{array}$	$\begin{array}{c} 7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \\ \end{array}$ $\begin{array}{c} \zeta = 1.05 \\ \text{Posterior} \\ 50\% \\ \hline 3.07 \\ 0.53 \\ 9.57 \\ -3.88 \\ -2.65 \\ \end{array}$	$7.76 \\ -1.77 \\ -0.53 \\ 6.28 \\ 2.63 \\ 3.04 \\ -980.48 \\ -947.49 \\ \hline 75\% \\ 3.33 \\ 0.58 \\ 10.25 \\ \hline$	$\begin{array}{c} 7.69 \\ -2.88 \\ -1.99 \\ 5.64 \\ 2.43 \\ 2.45 \\ -984.09 \\ -950.19 \\ \hline \\ 25\% \\ \hline \\ 2.55 \\ 0.52 \\ 9.07 \\ -5.61 \\ -4.38 \end{array}$	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \\ \hline \zeta = 1.15 \\ \text{Posterior} \\ 50\% \\ \hline 2.89 \\ 0.56 \\ 9.88 \\ -5.50 \\ -4.21 \\ \end{array}$	$\begin{array}{c} 9.28\\ -2.50\\ -1.22\\ 6.39\\ 2.93\\ 3.81\\ -981.57\\ -947.81\\ \hline \\ 75\%\\ \hline \\ 3.21\\ 0.61\\ 10.73\\ -5.22\\ -4.01\\ \end{array}$			
$\frac{\sigma_{EI}^2}{\sigma_{II}^2}$ posterior likelihood	$\begin{array}{c} \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \mathrm{N(0,10)} \\ \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \mathrm{IG(10,15)} \\ \hline \\ - \\ \hline \\ - \\ \hline \\ \end{array}$ $\begin{array}{c} - \\ \\ \mathrm{Prior} \\ (\mathrm{Mean,Std.Dev}) \\ \\ \mathrm{N(3,10)} \\ \mathrm{N(0,3,1)} \\ \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \end{array}$	$\begin{array}{c} 6.67\\ -2.17\\ -0.97\\ 5.36\\ 2.04\\ 2.36\\ -982.62\\ -949.42\\ \hline \\ 25\%\\ 2.85\\ 0.48\\ 8.92\\ -4.04\\ \end{array}$	$7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \\ \hline \zeta = 1.05 \\ Posterior \\ 50\% \\ \hline 3.07 \\ 0.53 \\ 9.57 \\ -3.88 \\ \hline$	$7.76 \\ -1.77 \\ -0.53 \\ 6.28 \\ 2.63 \\ 3.04 \\ -980.48 \\ -947.49 \\ \hline 75\% \\ \hline 3.33 \\ 0.58 \\ 10.25 \\ -3.70 \\ \hline $	$7.69 \\ -2.88 \\ -1.99 \\ 5.64 \\ 2.43 \\ 2.45 \\ -984.09 \\ -950.19 \\ 25\% \\ 2.55 \\ 0.52 \\ 9.07 \\ -5.61 \\ \end{cases}$	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \\ \hline \zeta = 1.15 \\ \text{Posterior} \\ 50\% \\ \hline 2.89 \\ 0.56 \\ 9.88 \\ -5.50 \\ \end{array}$	$\begin{array}{c} 9.28\\ -2.50\\ -1.22\\ 6.39\\ 2.93\\ 3.81\\ -981.57\\ -947.81\\ \hline \\ 75\%\\ \hline \\ 3.21\\ 0.61\\ 10.73\\ -5.22\\ \end{array}$			
$\sigma_{EI}^{2} \\ \sigma_{II}^{2} \\ \text{posterior} \\ \text{likelihood} \\ \hline \\ \mu \\ \rho \\ \sigma_{GG}^{2} \\ \sigma_{GE}^{2} \\ \sigma_{GI}^{2} \\ \sigma_{CI}^{2} \\ \sigma_{EE}^{2} \\ \sigma_{EI}^{2} \\$	$\begin{array}{c} \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \mathrm{N(0,10)} \\ \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \mathrm{IG(10,15)} \\ \hline \\ \hline \\ \\ \hline \\ \\ \end{array}$ $\begin{array}{c} - \\ \\ \end{array}$ $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 6.67\\ -2.17\\ -0.97\\ 5.36\\ 2.04\\ 2.36\\ -982.62\\ -949.42\\ \end{array}$ $\begin{array}{c} 25\%\\ 2.85\\ 0.48\\ 8.92\\ -4.04\\ -3.09\\ \end{array}$	$7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \\ \hline \zeta = 1.05 \\ Posterior \\ 50\% \\ \hline 3.07 \\ 0.53 \\ 9.57 \\ -3.88 \\ -2.65 \\ 7.13 \\ 3.46 \\ \hline$	$7.76 \\ -1.77 \\ -0.53 \\ 6.28 \\ 2.63 \\ 3.04 \\ -980.48 \\ -947.49 \\ \hline 75\% \\ \hline 3.33 \\ 0.58 \\ 10.25 \\ -3.70 \\ -2.29 \\ \hline $	$\begin{array}{c} 7.69 \\ -2.88 \\ -1.99 \\ 5.64 \\ 2.43 \\ 2.45 \\ -984.09 \\ -950.19 \\ \hline \\ 25\% \\ \hline \\ 2.55 \\ 0.52 \\ 9.07 \\ -5.61 \\ -4.38 \\ \end{array}$	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \\ \hline \zeta = 1.15 \\ \text{Posterior} \\ 50\% \\ \hline 2.89 \\ 0.56 \\ 9.88 \\ -5.50 \\ -4.21 \\ \end{array}$	$\begin{array}{c} 9.28\\ -2.50\\ -1.22\\ 6.39\\ 2.93\\ 3.81\\ -981.57\\ -947.81\\ \hline \\ 75\%\\ \hline \\ 3.21\\ 0.61\\ 10.73\\ -5.22\\ -4.01\\ \end{array}$			
$\frac{\sigma_{EI}^2}{\sigma_{II}^2}$ posterior likelihood	$\begin{array}{c} \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \mathrm{N(0,10)} \\ \mathrm{IG(10,15)} \\ \mathrm{N(0,10)} \\ \mathrm{IG(10,15)} \\ \hline \\ \hline \\ \hline \\ \\ \end{array}$ $\begin{array}{c} - \\ \hline \\ \\ \end{array}$ $\begin{array}{c} - \end{array}$ $\begin{array}{c} - \end{array}$ $\begin{array}{c} - \end{array}$ \end{array} $\begin{array}{c} - \end{array}$ $\begin{array}{c} - \end{array}$ \end{array} \end{array} $\begin{array}{c} - \end{array}$ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}	$\begin{array}{c} 6.67\\ -2.17\\ -0.97\\ 5.36\\ 2.04\\ 2.36\\ -982.62\\ -949.42\\ \end{array}$	$7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \\ \zeta = 1.05 \\ Posterior \\ 50\% \\ 3.07 \\ 0.53 \\ 9.57 \\ -3.88 \\ -2.65 \\ 7.13 \\ $	$7.76 \\ -1.77 \\ -0.53 \\ 6.28 \\ 2.63 \\ 3.04 \\ -980.48 \\ -947.49 \\ \hline 75\% \\ \hline 3.33 \\ 0.58 \\ 10.25 \\ -3.70 \\ -2.29 \\ 7.41 \\ \hline $	$7.69 \\ -2.88 \\ -1.99 \\ 5.64 \\ 2.43 \\ 2.45 \\ -984.09 \\ -950.19 \\ 25\% \\ 2.55 \\ 0.52 \\ 9.07 \\ -5.61 \\ -4.38 \\ 8.51 \\ $	$\begin{array}{c} 8.43 \\ -2.73 \\ -1.58 \\ 6.10 \\ 2.64 \\ 3.22 \\ -982.80 \\ -948.84 \\ \hline \zeta = 1.15 \\ \text{Posterior} \\ 50\% \\ \hline 2.89 \\ 0.56 \\ 9.88 \\ -5.50 \\ -4.21 \\ 9.07 \\ \end{array}$	$\begin{array}{c} 9.28\\ -2.50\\ -1.22\\ 6.39\\ 2.93\\ 3.81\\ -981.57\\ -947.81\\ \hline \\ 75\%\\ \hline \\ 3.21\\ 0.61\\ 10.73\\ -5.22\\ -4.01\\ 9.30\\ \end{array}$			
$\sigma_{EI}^{2} \\ \sigma_{II}^{2} \\ \text{posterior} \\ \text{likelihood} \\ \hline \\ \mu \\ \rho \\ \sigma_{GG}^{2} \\ \sigma_{GE}^{2} \\ \sigma_{GI}^{2} \\ \sigma_{CI}^{2} \\ \sigma_{EE}^{2} \\ \sigma_{EI}^{2} \\$	$\begin{array}{c} \mathrm{IG(10,15)}\\ \mathrm{N(0,10)}\\ \mathrm{N(0,10)}\\ \mathrm{IG(10,15)}\\ \mathrm{N(0,10)}\\ \mathrm{IG(10,15)}\\ \hline\\ -\\ \hline\\ -\\ \hline\\ \end{array}$ $\begin{array}{c} -\\ \\ -\\ \\ \end{array}$ $\begin{array}{c} \\ \mathrm{Prior}\\ (\mathrm{Mean,Std.Dev)}\\ \end{array}$ $\begin{array}{c} \mathrm{N(3,10)}\\ \mathrm{N(0,3,1)}\\ \mathrm{IG(10,15)}\\ \mathrm{N(0,10)}\\ \mathrm{N(0,10)}\\ \mathrm{IG(10,15)}\\ \mathrm{N(0,10)}\\ \mathrm{IG(10,15)}\\ \mathrm{N(0,10)}\\ \end{array}$	$\begin{array}{c} 6.67\\ -2.17\\ -0.97\\ 5.36\\ 2.04\\ 2.36\\ -982.62\\ -949.42\\ \end{array}$	$7.19 \\ -1.98 \\ -0.80 \\ 5.79 \\ 2.33 \\ 2.65 \\ -981.40 \\ -948.25 \\ \hline \zeta = 1.05 \\ Posterior \\ 50\% \\ \hline 3.07 \\ 0.53 \\ 9.57 \\ -3.88 \\ -2.65 \\ 7.13 \\ 3.46 \\ \hline$	$7.76 \\ -1.77 \\ -0.53 \\ 6.28 \\ 2.63 \\ 3.04 \\ -980.48 \\ -947.49 \\ \hline 75\% \\ \hline 3.33 \\ 0.58 \\ 10.25 \\ -3.70 \\ -2.29 \\ 7.41 \\ 4.13 \\ \hline $	$\begin{array}{c} 7.69 \\ -2.88 \\ -1.99 \\ 5.64 \\ 2.43 \\ 2.45 \\ -984.09 \\ -950.19 \\ \end{array}$ $\begin{array}{c} 25\% \\ 2.55 \\ 0.52 \\ 9.07 \\ -5.61 \\ -4.38 \\ 8.51 \\ 5.29 \end{array}$	$\begin{array}{c} 8.43\\ -2.73\\ -1.58\\ 6.10\\ 2.64\\ 3.22\\ -982.80\\ -948.84\\ \hline \zeta = 1.15\\ \text{Posterior}\\ 50\%\\ \hline 2.89\\ 0.56\\ 9.88\\ -5.50\\ -4.21\\ 9.07\\ 5.52\\ \end{array}$	$\begin{array}{c} 9.28\\ -2.50\\ -1.22\\ 6.39\\ 2.93\\ 3.81\\ -981.57\\ -947.81\\ \hline \\ 75\%\\ \hline \\ 3.21\\ 0.61\\ 10.73\\ -5.22\\ -4.01\\ 9.30\\ 5.89\\ \end{array}$			

Table 2: Priors and Posteriors, 2-Equation Models, 1960Q1-2011Q4

Parameter	Prior		Posterior				
	(Mean, Std)	25%	50%	75%			
μ	N(3,10)	2.60	2.78	2.95			
ho	N(0.3,1)	0.54	0.58	0.63			
σ_{GG}^2	IG(10,15)	6.73	6.96	7.35			
σ_{GE}^{2}	N(0,10)	-1.27	-1.10	-0.84			
σ_{GI}^{2}	N(0,10)	-1.03	-0.82	-0.59			
σ_{EE}^{2}	IG(10,15)	4.17	4.57	4.79			
σ_{EI}^2	N(0,10)	1.70	1.95	2.12			
$\sigma^2_{GG} \ \sigma^2_{GE} \ \sigma^2_{GI} \ \sigma^2_{EE} \ \sigma^2_{EI} \ \sigma^2_{EI} \ \sigma^2_{II}$	IG(10,15)	2.54	3.07	3.27			
	N(0,10)	1.27	1.46	1.66			
$\sigma^2_{GU} \ \sigma^2_{UU}$	IG(0.3,10)	0.50	0.59	0.71			
κ	N(0,10)	1.53	1.62	1.71			
λ	N(-0.5,10)	-0.55	-0.52	-0.50			
posterior	-	-1251.1	-1249.6	-1248.3			
likelihood	-	-1199.0	-1197.5	-1196.2			

Table 3: Priors and Posteriors, 3-Equation Model, 1960Q1-2011Q4

$$\Sigma = \begin{bmatrix} 6.90 & 0 & 0\\ {}_{[6.39,7.44]} & & \\ 0 & 2.32 & 0\\ {}_{[2.12,2.55]} & & \\ 0 & 0 & 1.68\\ {}_{[1.52,1.85]} \end{bmatrix}.$$
 (16)

For the 2-equation model with Σ block-diagonal, we have

$$GDP_t = \frac{3.06}{[2.77, 3.34]} (1 - 0.62) + \frac{0.62}{[0.57, 0.68]} GDP_{t-1} + \epsilon_{Gt}, \tag{17}$$

$$\Sigma = \begin{bmatrix} 5.17 & 0 & 0\\ {}^{[4.39,5.95]} & & \\ 0 & 3.86 & 1.43\\ {}^{[3.34,4.48]} & {}^{[0.96,1.95]} \\ 0 & 1.43 & 2.70\\ {}^{[0.96,1.95]} & {}^{[2.25,3.22]} \end{bmatrix}.$$
(18)

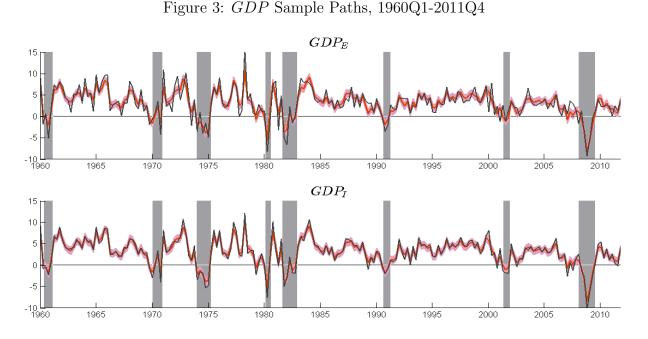
For the 2-equation model with benchmark $\zeta = 0.80$, we have

$$GDP_t = \frac{3.08}{[2.79,3.35]} (1 - 0.57) + \frac{0.57}{[0.51,0.62]} GDP_{t-1} + \epsilon_{Gt},$$
(19)

$$\Sigma = \begin{bmatrix} 7.09 & -0.69 & -0.38\\ {}_{[6.54,7.70]} & [-1.15, -0.29] & [-0.74, -0.04]\\ -0.69 & 3.90 & 1.29\\ {}_{[-1.15, -0.29]} & [3.14, 4.77] & [0.80, 1.85]\\ -0.38 & 1.29 & 2.36\\ {}_{[-0.74, -0.04]} & [0.80, 1.85] & [1.98, 2.82] \end{bmatrix}.$$
(20)

Finally, for the 3-equation model, we have

$$\begin{bmatrix} GDP_{Et} \\ GDP_{It} \\ U_t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1.62 \\ {}_{[1.53,1.71]} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ -0.52 \\ {}_{[-0.55,-0.50]} \end{bmatrix} GDP_t + \begin{bmatrix} \epsilon_{Et} \\ \epsilon_{It} \\ \epsilon_{Ut} \end{bmatrix}$$
(21)


$$GDP_t = \frac{2.78}{[2.60, 2.95]} (1 - 0.58) + \frac{0.58}{[0.54, 0.63]} GDP_{t-1} + \epsilon_{Gt},$$
(22)

$$\begin{bmatrix} \epsilon_{Gt} \\ \epsilon_{Et} \\ \epsilon_{It} \\ \epsilon_{Ut} \end{bmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 6.96 & -1.10 & -0.82 & 1.46 \\ [6.73,7.35] & [-1.27,-0.84] & [-1.03,-0.59] & [1.27,1.66] \\ -1.10 & 4.57 & 1.95 & 0 \\ [-1.27,-0.84] & [4.17,4.79] & [1.70,2.12] & \\ -0.82 & 1.95 & 3.07 & 0 \\ [-1.03,-0.59] & [1.70,2.12] & [2.54,3.27] & \\ 1.46 & 0 & 0 & 0.59 \\ [1.27,1.66] & & [0.50,0.71] \end{bmatrix} \right)$$
(23)

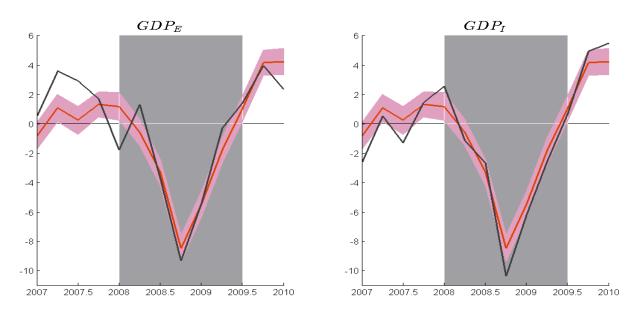
Many aspects of the results are noteworthy; here we simply mention a few. First, every posterior interval in every model reported above excludes zero. Hence the diagonal and block diagonal models do not appear satisfactory.

Second, the Σ estimates are qualitatively similar across specifications. Covariances are always negative, as per our conjecture based on the counter-cyclicality in the statistical discrepancy $(GDP_E - GDP_I)$ documented by Fixler and Nalewaik (2009) and Nalewaik (2010). Shock variances always satisfy $\hat{\sigma}_{GG}^2 > \hat{\sigma}_{EE}^2 > \hat{\sigma}_{II}^2$.

Finally, GDP_M is highly serially correlated across all specifications ($\rho \approx .6$), much more so than the current "consensus" based on GDP_E ($\rho \approx .3$). We shall have much more to say about these and other results in the next section.

Notes: In each panel we show the sample path of GDP_M in red together with a light-red posterior interquartile range, and we show one of the competitor series in black. For GDP_M we use our benchmark estimate from the 2-equation model with $\zeta = 0.80$.

4 New Perspectives on the Properties of *GDP*


Our various extracted GDP_M series differ in fundamental ways from other measures, such as GDP_E and GDP_I . Here we discuss some of the most important differences.

4.1 GDP Sample Paths

Let us begin by highlighting the sample-path differences between our GDP_M and the obvious competitors GDP_E and GDP_I . We make those comparisons in Figure 3. In each panel we show the sample path of GDP_M in red together with a light-red posterior interquartile range, and we show one of the competitor series in black.¹² In the top panel we show GDP_M vs. GDP_E . There are often wide divergences, with GDP_E well outside the posterior interquartile range of GDP_M . Indeed GDP_E is substantially more volatile than GDP_M . In the bottom panel of Figure 3 we show GDP_M vs. GDP_I . Noticeable divergences again appear often, with GDP_I also outside the posterior interquartile range of GDP_M . The divergences are not as pronounced, however, and the "excess volatility" apparent in GDP_E is less apparent

¹²For GDP_M we use our benchmark estimate from the 2-equation model with $\zeta = 0.80$.

Figure 4: GDP Sample Paths, 2007Q1-2009Q4

Notes: In each panel we show the sample path of GDP_M in red together with a light-red posterior interquartile range, and we show one of the competitor series in black. For GDP_M we use our benchmark estimate from the 2-equation model with $\zeta = 0.80$.

in GDP_I . That is because, as we will show later, GDP_M loads relatively more heavily on GDP_I .

To emphasize the economic importance of the differences in competing real activity assessments, in Figure 4 we focus on the tumultuous period 2007Q1-2009Q4. The figure makes clear not only that *both* GDP_E and GDP_I can diverge substantially from GDP, but also that the timing and nature of their divergences can be very different. In 2007Q3, for example, GDP_E growth was strongly positive and GDP_I growth was negative.

4.2 Linear GDP Dynamics

In our framework, population true GDP_t is simply a pair (σ_{GG}^2, ρ) . In Figure 5 we show those pairs across MCMC draws for all of our measurement-error models, and for comparison we show (σ^2, ρ) values corresponding to AR(1) models fit to GDP_E alone and GDP_I alone. In addition, in Table 1 we show a variety of statistics quantifying the properties of our various GDP_M measures vs. those of GDP_E , GDP_I and GDP_F .

First consider Figure 5. Across measurement-error models M, GDP_M is robustly more

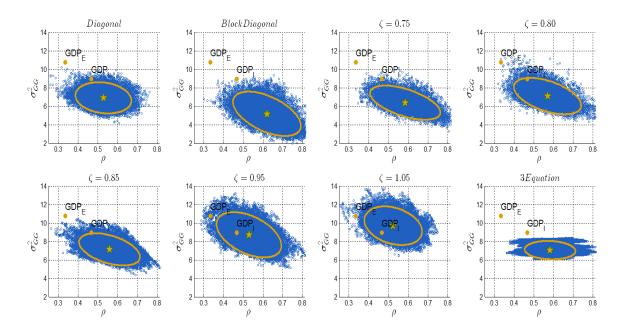


Figure 5: $(\hat{\rho}, \hat{\sigma}_{GG}^2)$ Pairs Across MCMC Draws

Notes: Solid lines indicate 90% (σ_{GG}^2, ρ) posterior coverage ellipsoids for the various models. Stars indicate posterior median values. The sample period is 1960Q1-2011.Q4. For comparison we show (σ^2, ρ) values corresponding to AR(1) models fit to GDP_E alone and GDP_E alone.

serially correlated than both GDP_E and GDP_I , and it also has a smaller innovation variance. Hence most of our models achieve closely-matching unconditional variances, but they are composed of very different underlying (σ^2, ρ) values from those corresponding to GDP_E . GDP_M has smaller shock volatility, but much more shock persistence – roughly double that of GDP_E (ρ of roughly 0.60 for GDP_M vs. 0.30 for GDP_E).

Now consider Table 1. The various GDP_M series are all less volatile than each of GDP_E , GDP_I and GDP_F , and a bit more skewed left. Most noticeably, the GDP_M series are much more strongly serially correlated than the GDP_E , GDP_I and GDP_F series, and with smaller innovation variances. This translates into much higher predictive R^2 's for GDP_M . Indeed GDP_M is twice as predictable as GDP_I or GDP_F , which in turn are twice as predictable as GDP_E .

4.3 Non-Linear GDP Dynamics

In Table 4 we show Markov-switching AR(1) model results for a variety of GDP series. The model allows for simultaneous switching in both mean and serial-correlation parameters. The model switches between high- and low-growth states, with low-growth states generally including recessions as defined by the National Bureau of Economic Research's Business Cycle Dating Committee (see also Nalewaik (2012)). The most interesting aspect of the results concerns the estimated low- and high-state serial-correlation parameters ($\hat{\rho}_0$ and $\hat{\rho}_1$, respectively).

First, always and everywhere, $\hat{\rho}_0 > \hat{\rho}_1$; that is, a disproportionate share of overall serial correlation comes from low-growth states. This interesting result parallels recent work indicating that a disproportionate share of stock market return predictability comes from recessions (Rapach et al. (2010)), as well as work showing that shocks to business orders for capital goods are more persistent in downturns (Nalewaik and Pinto (2012)).

Second, comparison of GDP_I to GDP_E reveals that they have *identical* $\hat{\rho}_0$ values (0.55), but that $\hat{\rho}_1$ is much bigger for GDP_I than for GDP_E (0.31 vs. 0.14). Hence the stronger overall serial correlation of GDP_I comes entirely from its stronger serial correlation during expansions.

Finally, comparison of GDP_M to GDP_E reveals much bigger $\hat{\rho}_0$ and $\hat{\rho}_1$ values for GDP_M than for GDP_E , regardless of the particular measurement-error model M examined. The general finding of $\hat{\rho}_0 > \hat{\rho}_1$ is preserved, but both $\hat{\rho}_0$ and $\hat{\rho}_1$ are much larger for GDP_M than for GDP_E . In our benchmark 2-equation model with $\zeta = 0.80$, for example, we have $\hat{\rho}_0 = 0.78$ and $\hat{\rho}_1 = 0.55$.

4.4 On the Relative Contributions of GDP_E and GDP_I to GDP_M

It is of interest to know how the observed indicators GDP_E and GDP_I contribute to our extracted true GDP. We do this in two ways; in section 4.4.1 we examine Kalman gains, and in section 4.4.2 we find the convex combination of GDP_E and GDP_I closest to our extracted GDP.

4.4.1 Kalman Gains

The Kalman gains associated with GDP_E and GDP_I govern the amount by which news about GDP_E and GDP_I , respectively, causes the optimal extraction of GDP_t (conditional on time-t information) to differ from the earlier optimal prediction of GDP_t (conditional

	$\hat{\mu}_0$	$\hat{\mu}_1$	$\hat{ ho}_0$	$\hat{ ho}_1$	$\hat{\sigma}_{H}^{2}$	$\hat{\sigma}_L^2$	\hat{p}_{00}	\hat{p}_{11}
GDP_E	1.31	4.71	0.55	0.14	16.55	4.81	0.81	0.88
GDP_I	1.28	4.87	0.55	0.31	12.07	5.51	0.82	0.87
GDP_M 2-eqn, Σ diag	1.76	5.12	0.73	0.41	9.81	3.37	0.83	0.85
GDP_M 2-eqn, Σ block	1.75	4.72	0.83	0.63	6.22	2.41	0.81	0.86
GDP_M 2-eqn, $\zeta = 0.80$	1.79	4.95	0.78	0.55	7.96	3.04	0.82	0.85
GDP_M 3-eqn	1.88	5.32	0.88	0.39	7.85	2.95	0.80	0.85
GDP_F	1.51	4.93	0.64	0.30	13.20	4.17	0.82	0.87

Table 4: Regime-Switching Model Estimates, 1960Q1-2011Q4

Notes: In the top panel we show posterior median estimates for two-state regime-switching AR(1) models fit to raw data. In the middle panel we show posterior median estimates for Regime-switching models fit to GDP_M , and in the bottom panel we show posterior median estimates for regime-switching models fit to GDP_F . We allow for a one-time structural break in volatility in 1984 (the "Great Moderation").

on time-(t-1) information). Put more simply, the Kalman gain of GDP_E (resp. GDP_I) measures its importance in influencing GDP_M , and hence in informing our views about latent true GDP.

We summarize the posterior distributions of Kalman gains in Figure 6. Posterior median GDP_I Kalman gains are large in absolute terms, and most notably, very large relative to those for GDP_E . Indeed posterior median GDP_E Kalman gains are zero in several specifications. In any event, it is clear that GDP_I plays a larger role in informing us about GDP than does GDP_E . For our benchmark ζ -model with $\zeta = 0.80$, the posterior median GDP_I and GDP_E Kalman gains are 0.59 and 0.23, respectively.

4.4.2 Closest Convex Combination

The Kalman filter extractions average not only over space, but also over time. Nevertheless, we can ask what contemporaneous convex combination of GDP_E and GDP_I , $\lambda GDP_E + (1 - \lambda)GDP_I$, is closest to the extracted GDP_M . That is, we can find $\lambda^* = argmin_{\lambda} L(\lambda)$, where $L(\lambda)$ is a loss function. Under quadratic loss we have

$$\lambda^* = \operatorname{argmin}_{\lambda} \sum_{t=1}^{T} \left[(\lambda GDP_{Et} + (1-\lambda)GDP_{It}) - GDP_{Mt} \right]^2,$$

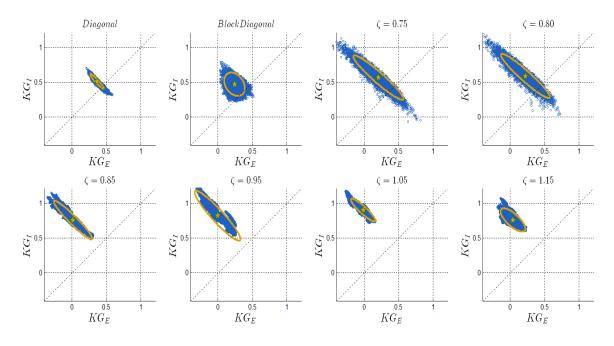
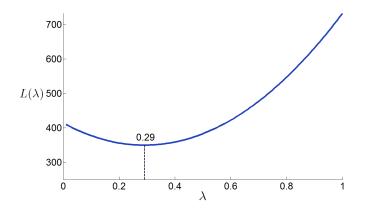


Figure 6: (KG_E, KG_I) Pairs Across MCMC Draws


Notes: Solid lines indicate 90% posterior coverage ellipsoids. Stars indicate posterior median values.

where GDP_{Mt} is our smoothed extraction of true GDP_t . Over our sample of 1960Q1-2011Q4, the optimum under quadratic loss is $\lambda^* = 0.29$. The minimum is quite sharp, as we show in Figure 7, and it puts more than twice as much weight on GDP_I than on GDP_E . That weighting accords closely with both the Kalman gain results discussed above and the forecast-combination calibration results in Aruoba et al. (2012). It does not, of course, mean that time series of GDP_M will "match" time series of GDP_F , because the Kalman filter does much more than simple contemporaneous averaging of GDP_E and GDP_I in its extraction of latent true GDP.

4.5 A Final Remark on the Serial Correlation in GDP_M

Obviously a key result of our analysis is the strong serial correlation (persistence, forecastability, smoothness, ...) of our extracted GDP_M , regardless of the particular specification. One might perhaps wonder whether this is a spurious artifact of our extraction method, which effectively amounts to a Kalman "smoother." We hasten to add that the answer is no. Indeed optimal extractions of covariance stationary series (in our, case latent true GDP growth) must be less variable than the series being extracted, because the optimal extraction

Figure 7: Closest Convex Combination

Notes: We show quadratic loss, $L(\lambda) = \sum_{t=1960Q1}^{2011Q4} \left[(\lambda GDP_{Et} + (1-\lambda)GDP_{It}) - GDP_{Mt} \right]^2$, as a function of λ . We obtain GDP_{Mt} from the 3-equation model.

is a conditional expectation.¹³ Given our models, with Gaussian errors and under quadratic loss, any other GDP extractions are sub-optimal and hence inferior.

5 Concluding Remarks and Directions for Future Research

We produce several estimates of GDP that blend both GDP_E and GDP_I . All estimates feature GDP_I prominently, and our blended GDP estimate has properties quite different from those of the "traditional" GDP_E (as well as GDP_I). In a sense we build on the literature on "balancing" the national income accounts, which extends back almost as far as national income accounting itself, as for example in Stone et al. (1942). We do not, however, advocate that the U.S. publish only GDP_M , as there may at times be value in being able to see the income and expenditure sides separately. But we would advocate the additional calculation of GDP_M and using it as the benchmark GDP estimate.

Many interesting extensions are possible, including (1) Allowing for richer GDP dynamics. We might want to add GDP_{t-1} to the unemployment equation in addition to GDP_t , because unemployment tends to lag GDP; (2) Allowing for serially correlated unemployment

¹³The forecast-error approach of Aruoba et al. (2012) also has optimality properties, but of a different sort, and there is no reason why in the forecast-error framework the optimal combination should be smoother than latent true GDP growth. Instead it could go either way, depending on the correlation of the forecast errors in GDP_E and GDP_I .

measurement errors. We might want to allow the unemployment measurement errors to be serially correlated, because they are really more than just measurement errors, in contrast to the GDP_E and GDP_I measurement errors; (3) Including additional identifying variables, which could be used alternatively or in addition to unemployment. The Michigan consumer confidence index, for example, is released before GDP_E and GDP_I , which are not based on it in any way. Another possibility is non-U.S. GDP.

Perhaps the two most interesting directions for future work, however, concern forecasting and real-time analysis. First consider forecasting. When forecasting a "traditional" GDPseries such as GDP_E , we must take it as given (i.e., we must ignore measurement error). The analogous procedure in our framework would take GDP_M as given, modeling and forecasting it directly, ignoring the fact that it is based on a first-stage extraction subject to error. Fortunately, however, in our framework we need not do that. Instead we can estimate and forecast directly from the dynamic factor model, accounting for all sources of uncertainty, which should translate into superior interval and density forecasts. Related, it would be interesting to calculate directly the point, interval and density forecast functions corresponding to the measurement-error model.

Second, consider real-time analysis. Although GDP_I data are not as timely as GDP_E data, our filtering framework still uses all available data efficiently, appropriately handling any missing data. A key insight is that when using simple convex combinations as in the forecast-error approach of Aruoba et al. (2012), missing GDP_I data for the most-recent quarter(s) forces all weight to be put on GDP_E . Our measurement-error framework is very different, however, because the Kalman filter averages not just over space, but also over time, and earlier quarters for which we do have GDP_I data are informative for the most-recent quarters with "missing" GDP_I data.

Appendices

Here we report various details of theory, establishing identification results for the two- and three-variable models in appendices A and B, respectively. The identification analysis is based on Komunjer and Ng (2011).

A Identification in the Two-Variable Model

The constants in the state-space model can be identified from the means of GDP_{Et} and GDP_{It} . To simplify the subsequent exposition we now set the constant terms to zero:

$$GDP_t = \rho GDP_{t-1} + \epsilon_{Gt} \tag{A.1}$$

$$\begin{bmatrix} GDP_{Et} \\ GDP_{It} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} GDP_t + \begin{bmatrix} \epsilon_{Et} \\ \epsilon_{It} \end{bmatrix}$$
(A.2)

and the joint distribution of the errors is

$$\epsilon_t = \begin{bmatrix} \epsilon_{Gt} \\ \epsilon_{Et} \\ \epsilon_{It} \end{bmatrix} \sim iidN(0, \Sigma), \quad \text{where} \quad \Sigma = \begin{bmatrix} \Sigma_{GG} & \cdot & \cdot \\ \Sigma_{EG} & \Sigma_{EE} & \cdot \\ \Sigma_{IG} & \Sigma_{IE} & \Sigma_{II} \end{bmatrix}.$$

Using the notation in Komunjer and Ng (2011), we write the system as

$$s_{t+1} = A(\theta)s_t + B(\theta)\epsilon_{t+1} \tag{A.3}$$

$$y_{t+1} = C(\theta)s_t + D(\theta)\epsilon_{t+1}, \qquad (A.4)$$

where

$$s_{t} = GDP_{t}, \quad y_{t} = \begin{bmatrix} GDP_{Et} \\ GDP_{It} \end{bmatrix}$$

$$A(\theta) = \rho, \quad B(\theta) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$C(\theta) = \begin{bmatrix} \rho \\ \rho \end{bmatrix}, \quad D(\theta) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
(A.5)

and $\theta = [\rho, vech(\Sigma)']'$. Note that only $A(\theta)$ and $C(\theta)$ are non-trivial functions of θ .

Assumption 1 The parameter vector θ satisfies the following conditions: (i) Σ is positive definite; (ii) $0 \le \rho < 1$.

Because the rows of D are linearly independent, Assumption 1(i) implies that $D\Sigma D'$ is non-singular. In turn, we deduce that Assumptions 1, 2, and 4-NS of Komunjer and Ng (2011) are satisfied.

We now express the state-space system in terms of its innovation representation

$$s_{t+1|t+1} = A(\theta)s_{t|t} + K(\theta)a_{t+1}$$

$$y_{t+1} = C(\theta)\hat{s}_{t|t} + a_{t+1},$$
(A.6)

where a_{t+1} is the one-step-ahead forecast error of the system whose variance we denote by $\Sigma_a(\theta)$. The innovation representation is obtained from the Kalman filter as follows. Suppose that conditional on time t information $Y_{1:t}$ the distribution of $s_t|Y_{1:t} \sim N(s_{t|t}, P_{t|t})$. Then the joint distribution of $[s_{t+1}, y'_{t+1}]'$ is

$$\begin{bmatrix} s_{t+1} \\ y_{t+1} \end{bmatrix} | Y_{1:T} \sim \left(\begin{bmatrix} As_{t|t} \\ Cs_{t|t} \end{bmatrix}, \begin{bmatrix} AP_{t|t}A' + B\Sigma B' & AP_{t|t}C' + B\Sigma D' \\ CP_{t|t}A' + D\Sigma B' & CP_{t|t}C' + D\Sigma D' \end{bmatrix} \right).$$

In turn, the conditional distribution of $s_{t+1}|Y_{1:t+1}$ is

$$s_{t+1}|Y_{1:t+1} \sim N(s_{t+1|t+1}, P_{t+1|t+1}),$$

where

$$s_{t+1|t+1} = As_{t|t} + (AP_{t|t}C + B\Sigma D')(CP_{t|t}C' + D\Sigma D')^{-1}(y_t - Cs_{t|t})$$

$$P_{t+1|t+1} = AP_{t|t}A' + B\Sigma B' - (AP_{t|t}C' + B\Sigma D')(CP_{t|t}C' + D\Sigma D')^{-1}(CP_{t|t}A' + D\Sigma B').$$

Now let P be the matrix that solves the Riccati equation,

$$P = APA' + B\Sigma B' - (APC' + B\Sigma D')(CPC' + D\Sigma D')^{-1}(CPA' + D\Sigma B'), \qquad (A.7)$$

and let K be the Kalman gain matrix

$$K = (APC' + B\Sigma D')(CPC' + D\Sigma D')^{-1}.$$
(A.8)

Then the one-step-ahead forecast error matrix is given by

$$\Sigma_a = CPC' + D\Sigma D'. \tag{A.9}$$

Equations (A.7) to (A.9) determine the matrices that appear in the innovation-representation of the state-space system (A.6).

In order to be able to apply Proposition 1-NS of Komunjer and Ng (2011) we need to express P, K, and Σ_a in terms of θ . While solving Riccati equations analytically is in general not feasible, our system is scalar, which simplifies the calculation considerably. Replacing Aby ρ and P by p such that scalars appear in lower case, and defining

$$\Sigma_{BB} = B\Sigma B', \quad \Sigma_{BD} = B\Sigma D', \text{ and } \Sigma_{DD} = D\Sigma D',$$

we can write (A.7) as

$$p = p\rho^{2} + \Sigma_{BB} - (p\rho C' + \Sigma_{BD})(pCC' + \Sigma_{DD})^{-1}(p\rho C + \Sigma_{DB}).$$
(A.10)

Likewise,

$$K = (p\rho C' + \Sigma_{BD})(pCC' + \Sigma_{DD})^{-1} \quad \text{and} \quad \Sigma_a = pCC' + \Sigma_{DD}.$$
(A.11)

Because $\Sigma_{BB} - \Sigma_{BD} \Sigma'_{DD} \Sigma_{DB} > 0$ we can deduce that p > 0. Moreover, because $A = \rho \ge 0$ and $C \ge 0$, we deduce that $K \ne 0$ and therefore Assumption 5-NS of Komunjer and Ng (2011) is satisfied. According to Proposition 1-NS in Komunjer and Ng (2011), two vectors θ and θ_1 are observationally equivalent if and only if there exists a scalar $\gamma \ne 0$ such that

$$A(\theta_1) = \gamma A(\theta) \gamma^{-1} \tag{A.12}$$

$$K(\theta_1) = \gamma K(\theta) \tag{A.13}$$

$$C(\theta_1) = C(\theta)\gamma^{-1} \tag{A.14}$$

$$\Sigma_a(\theta_1) = \Sigma_a(\theta). \tag{A.15}$$

Define $\theta = [\rho, vech(\Sigma)']'$ and $\theta_1 = [\rho_1, vech(\Sigma_1)']'$. Using the definition of the scalar $A(\theta)$ in (A.5) we deduce from (A.12) that $\rho_1 = \rho$. Since $C(\theta)$ depends on θ only through ρ we can deduce from (A.14) that $\gamma = 1$. Thus, given θ and ρ , the elements of the vector $vech(\Sigma_1)$ have to satisfy conditions (A.13) and (A.15), which, using (A.11), can be rewritten as

$$\Sigma_a = \Sigma_{a1} = p_1 C C' + \Sigma_{DD1} \tag{A.16}$$

$$K = K_1 = (p_1 \rho C' + \Sigma_{BD1}) \Sigma_a^{-1}.$$
 (A.17)

Moreover, p_1 has to solve the Riccati equation (A.10):

$$p_1 = p_1 \rho^2 + \Sigma_{BB1} - K_0 (p_1 \rho C + \Sigma_{BD}).$$
 (A.18)

Equations (A.16) to (A.18) are satisfied if and only if

$$pCC' + \Sigma_{DD} = p_1CC' + \Sigma_{DD1} \tag{A.19}$$

$$p\rho C' + \Sigma_{BD} = p_1 \rho C' + \Sigma_{BD1} \tag{A.20}$$

$$p(1-\rho^2) - \Sigma_{BB} = p_1(1-\rho^2) - \Sigma_{BB1}.$$
 (A.21)

We proceed by deriving expressions for the Σ_{xx} matrices that appear in (A.19) to (A.21):

$$\begin{split} \Sigma_{BB} &= \Sigma_{GG} \\ \Sigma_{BD} &= \left[\Sigma_{GG} + \Sigma_{GE} \quad \Sigma_{GG} + \Sigma_{GI} \right] \\ \Sigma_{DD} &= \left[\begin{array}{cc} \Sigma_{GG} + \Sigma_{EE} + 2\Sigma_{EG} & \cdot \\ \Sigma_{GG} + \Sigma_{GE} + \Sigma_{GI} + \Sigma_{EI} \quad \Sigma_{GG} + \Sigma_{II} + 2\Sigma_{GI} \end{array} \right] \end{split}$$

Without loss of generality let

$$\Sigma_{GG1} = \Sigma_{GG} + (1 - \rho^2)\delta, \tag{A.22}$$

which implies that

$$\Sigma_{BB1} = \Sigma_{BB} + (1 - \rho^2)\delta.$$

We now distinguish the cases $\delta = 0$ and $\delta \neq 0$.

Case 1: $\delta = 0$. (A.21) implies $p_1 = p$. It follows from (A.20) that $\Sigma_{BD1} = \Sigma_{BD}$. In turn, $\Sigma_{GE1} = \Sigma_{GE}$ and $\Sigma_{GI1} = \Sigma_{GI}$. Finally, to satisfy (A.19) it has to be the case that $\Sigma_{DD1} = \Sigma_{DD}$, which implies that the remaining elements of Σ and Σ_1 are identical. We conclude that $\theta_1 = \theta$.

Case 2: $\delta \neq 0$. (A.21) implies $p_1 = p + \delta$. Now consider (A.20):

$$p\rho C' + \Sigma_{BD} = p\rho^{2} \begin{bmatrix} 1 & 1 \end{bmatrix} + \begin{bmatrix} \Sigma_{GG} + \Sigma_{GE} & \Sigma_{GG} + \Sigma_{GI} \end{bmatrix}$$
$$\stackrel{!}{=} p\rho^{2} \begin{bmatrix} 1 & 1 \end{bmatrix} + \delta\rho^{2} \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$+ \begin{bmatrix} \Sigma_{GG} + \Sigma_{GE1} & \Sigma_{GG} + \Sigma_{GI1} \end{bmatrix}$$
$$+\delta(1-\rho^{2}) \begin{bmatrix} 1 & 1 \end{bmatrix}$$

We deduce that

$$\Sigma_{GE1} = \Sigma_{GE} - \delta, \quad \Sigma_{GI1} = \Sigma_{GI} - \delta. \tag{A.23}$$

Finally, consider (A.19), which can be rewritten as

$$0 = \Sigma_{DD1} - \Sigma_{DD} + \delta CC'.$$

Using the previously derived expressions for Σ_{DD} and Σ_{DD1} we obtain the following three conditions

$$0 = (1 - \rho^{2})\delta + (\Sigma_{EE1} - \Sigma_{EE}) - 2\delta + \rho^{2}\delta = \Sigma_{EE1} - \Sigma_{EE} - \delta$$

$$0 = (1 - \rho^{2})\delta - 2\delta + (\Sigma_{EI1} - \Sigma_{EI}) + \rho^{2}\delta = \Sigma_{EI1} - \Sigma_{EI} - \delta$$

$$0 = (1 - \rho^{2})\delta + (\Sigma_{II1} - \Sigma_{II}) - 2\delta + \rho^{2}\delta = \Sigma_{II1} - \Sigma_{II} - \delta.$$

Thus, we deduce that

$$\Sigma_{EE1} = \Sigma_{EE} + \delta, \quad \Sigma_{EI1} = \Sigma_{EI} + \delta, \quad \text{and} \quad \Sigma_{II1} = \Sigma_{II} + \delta.$$
 (A.24)

Combining (A.22), (A.23), and (A.24) we find that

$$\Sigma_{1} = \begin{bmatrix} \Sigma_{GG} + \delta(1 - \rho^{2}) & \Sigma_{GE} - \delta & \Sigma_{GI} - \delta \\ \Sigma_{GE} - \delta & \Sigma_{EE} + \delta & \Sigma_{EI} + \delta \\ \Sigma_{GI} - \delta & \Sigma_{EI} + \delta & \Sigma_{II} + \delta \end{bmatrix}.$$
 (A.25)

Thus, we have proved the following theorem:

Theorem A.1 Suppose Assumption 1 is satisfied. Then the two-variable model is

- (i) identified if Σ is diagonal as in section 2.1;
- (ii) identified if Σ is block-diagonal as in section 2.2;

- (iii) not identified if Σ is unrestricted as in section 2.3;
- (iv) identified if Σ is restricted as in section 2.4.

B Identification in the Three-Variable Model

The identification analysis of the three-variable is similar to the analysis of the two-variable model in the previous section. The system is given by

$$GDP_t = \rho GDP_{t-1} + \epsilon_{Gt} \tag{A.26}$$

$$\begin{bmatrix} GDP_{Et} \\ GDP_{It} \\ U_t \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \lambda \end{bmatrix} GDP_t + \begin{bmatrix} \epsilon_{Et} \\ \epsilon_{It} \\ \epsilon_{Ut} \end{bmatrix},$$
 (A.27)

and the joint distribution of the errors is

$$\epsilon_{t} = \begin{bmatrix} \epsilon_{Gt} \\ \epsilon_{Et} \\ \epsilon_{It} \\ \epsilon_{Ut} \end{bmatrix} \sim iidN(0, \Sigma), \quad \text{where} \quad \Sigma = \begin{bmatrix} \Sigma_{GG} & \cdot & \cdot & \cdot \\ \Sigma_{EG} & \Sigma_{EE} & \cdot & \cdot \\ \Sigma_{IG} & \Sigma_{IE} & \Sigma_{II} & \cdot \\ \Sigma_{UG} & \Sigma_{UE} & \Sigma_{UI} & \Sigma_{UU} \end{bmatrix}.$$

The matrices $A(\theta)$, $B(\theta)$, $C(\theta)$, and $D(\theta)$ are now given by

$$A(\theta) = \rho, \quad B(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$
$$C(\theta) = \begin{bmatrix} \rho \\ \rho \\ \lambda \rho \end{bmatrix}, \quad D(\theta) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ \lambda & 0 & 0 & 1 \end{bmatrix}.$$

where $\theta = [\rho, \lambda, vech(\Sigma)']'$.

Assumption 2 The parameter vector θ satisfies the following conditions: (i) Σ is positive definite; (ii) $0 < \rho < 1$; (iii) $\lambda \neq 0$; (iv) $\Sigma_{UE} = \Sigma_{UI} = 0$.

Condition (A.12) implies that $\rho_1 = \rho$. Moreover, (A.14) implies that $\gamma = 1$ and that $\lambda_1 = \lambda$ provided that $\rho \neq 0$. As for the two-variable model, we have to verify that (A.19)

to (A.21) are satisfied. The matrices Σ_{xx} that appear in these equations are given by

$$\begin{split} \Sigma_{BB} &= \Sigma_{GG} \\ \Sigma_{BD} &= \begin{bmatrix} \Sigma_{GG} + \Sigma_{GE} & \Sigma_{GG} + \Sigma_{GI} & \lambda \Sigma_{GG} + \Sigma_{GU} \end{bmatrix} \\ \Sigma_{DD} &= \begin{bmatrix} \Sigma_{GG} + \Sigma_{EE} + 2\Sigma_{GE} & \cdot & \cdot \\ \Sigma_{GG} + \Sigma_{GE} + \Sigma_{GI} + \Sigma_{EI} & \Sigma_{GG} + \Sigma_{II} + 2\Sigma_{GI} & \cdot \\ \lambda \Sigma_{GG} + \lambda \Sigma_{GE} + \Sigma_{GU} & \lambda \Sigma_{GG} + \lambda \Sigma_{GI} + \Sigma_{GU} & \lambda^2 \Sigma_{GG} + 2\lambda \Sigma_{GU} + \Sigma_{UU} \end{bmatrix}. \end{split}$$

Without loss of generality, let

$$\Sigma_{GG,1} = \Sigma_{GG} + (1 - \rho^2)\delta,$$

which implies that

$$\Sigma_{BB,1} = \Sigma_{BB} + (1 - \rho^2)\delta.$$

Case 1: $\delta = 0$. (A.21) implies $p_1 = p$. It follows from (A.20) that $\Sigma_{BD,1} = \Sigma_{BD}$. In turn, $\Sigma_{GE,1} = \Sigma_{GE}, \Sigma_{GI,1} = \Sigma_{GI}$, and $\Sigma_{GU,1} = \Sigma_{GU}$. Finally, to satisfy (A.17) it has to be the case that $\Sigma_{DD,1} = \Sigma_{DD}$, which implies that the remaining elements of Σ and Σ_1 are identical for the two parameterizations. We conclude that it has to be the case that $\theta_1 = \theta$. **Case 2:** $\delta \neq 0$. (A.21) implies $p_1 = p + \delta$. Now consider (A.20):

$$p\rho C' + \Sigma_{BD} = p\rho^{2} \begin{bmatrix} 1 & 1 & \lambda \end{bmatrix} + \begin{bmatrix} \Sigma_{GG} + \Sigma_{GE} & \Sigma_{GG} + \Sigma_{GI} & \lambda \Sigma_{GG} + \Sigma_{GU} \end{bmatrix}$$

$$\stackrel{!}{=} p\rho^{2} \begin{bmatrix} 1 & 1 & \lambda \end{bmatrix} + \delta\rho^{2} \begin{bmatrix} 1 & 1 & \lambda \end{bmatrix}$$

$$+ \begin{bmatrix} \Sigma_{GG} + \Sigma_{GE,1} & \Sigma_{GG} + \Sigma_{GI,1} & \lambda \Sigma_{GG} + \Sigma_{GU,1} \end{bmatrix}$$

$$+ (1 - \rho^{2})\delta \begin{bmatrix} 1 & 1 & \lambda \end{bmatrix}.$$

We deduce that

$$\Sigma_{GE,1} = \Sigma_{GE} - \delta, \quad \Sigma_{GI,1} = \Sigma_{GI} - \delta, \quad \Sigma_{GU,1} = \Sigma_{GU} - \delta.$$

Finally, consider (A.19), which can be rewritten as

$$0 = \Sigma_{DD,1} - \Sigma_{DD} + \delta CC'.$$

Using the previously derived expressions for Σ_{DD} and Σ_{DD1} we obtain the following five conditions

$$0 = (1 - \rho^2)\delta + (\Sigma_{EE1} - \Sigma_{EE}) - 2\delta + \rho^2\delta = \Sigma_{EE1} - \Sigma_{EE} - \delta$$

$$0 = (1 - \rho^2)\delta - 2\delta + (\Sigma_{EI1} - \Sigma_{EI}) + \rho^2\delta = \Sigma_{EI1} - \Sigma_{EI} - \delta$$

$$0 = (1 - \rho^2)\delta + (\Sigma_{II1} - \Sigma_{II}) - 2\delta + \rho^2\delta = \Sigma_{II1} - \Sigma_{II} - \delta$$

$$0 = \lambda(1 - \rho^2)\delta - \lambda\delta - \delta + \lambda\rho^2\delta = \delta$$

$$0 = \lambda^2(1 - \rho^2)\delta - 2\lambda\delta + (\Sigma_{UU1} - \Sigma_{UU}) + \lambda^2\rho^2\delta = \Sigma_{UU1} - \Sigma_{UU} - \lambda(2 - \lambda)\delta.$$

Thus, we deduce that

$$\delta = 0, \quad , \Sigma_{EE1} = \Sigma_{EE}, \quad \Sigma_{EI1} = \Sigma_{EI}, \quad \Sigma_{II1} = \Sigma_{II}, \quad \text{and} \quad \Sigma_{UU1} = \Sigma_{UU1}$$

This proves the following theorem:

Theorem B.1 Suppose Assumption 2 is satisfied. Then the three-variable model is identified.

References

- Aruoba, B. (2008), "Data Revisions are not Well-Behaved," Journal of Money, Credit and Banking, 40, 319–340.
- Aruoba, S.B., F.X. Diebold, J. Nalewaik, F Schorfheide, and D. Song (2012), "Improving GDP Measurement: A Forecast Combination Perspective," In X. Chen and N. Swanson (eds.), Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis: Essays in Honour of Halbert L. White Jr., Springer, 1-26.
- Carter, C.K. and R. Kohn (1994), "On Gibbs Sampling for State Space Models," *Biometrika*, 81, 541–553.
- Diebold, F.X. and L. Kilian (2001), "Measuring Predictability: Theory and Macroeconomic Applications," *Journal of Applied Econometrics*, 16, 657–669.
- Durbin, J. and S.J. Koopman (2001), *Time Series Analysis by State Space Methods*, Oxford: Oxford University Press.
- Edwards, C.L. and E.P. Howrey (1991), "A 'True' Time Series and Its Indicators: An Alternative Approach," *Journal of the American Statistical Association*, 86, 878–882.
- Faust, J., J.H. Rogers, and J.H. Wright (2005), "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, 37, 403–417.
- Fixler, D.J. and J.J. Nalewaik (2009), "News, Noise, and Estimates of the "True" Unobserved State of the Economy," Manuscript, Bureau of Labor Statistics and Federal Reserve Board.
- Fleischman, C.A. and J.M. Roberts (2011), "A Multivariate Estimate of Trends and Cycles," Manuscript, Federal Reserve Board.
- Gartaganis, A.J. and A.S. Goldberger (1955), "A Note on the Statistical Discrepancy in the National Accounts," *Econometrica*, 23, 166–173.
- Geweke, J.F. (1977), "The Dynamic Factor Analysis of Economic Time Series Models," In D. Aigner and A. Goldberger (eds.), *Latent Variables in Socioeconomic Models*, North Holland, 365-383.
- Harding, D. and R. Scutella (1996), "Efficient Estimates of GDP," Unpublished Seminar Notes, La Trobe University, Australia.

- Jacobs, J.P.A.M. and S. van Norden (2011), "Modeling Data Revisions: Measurement Error and Dynamics of "True" Values," *Journal of Econometrics*, 161, 101–109.
- Kishor, N.K. and E.F. Koenig (2011), "VAR Estimation and Forecasting When Data Are Subject to Revision," *Journal of Business and Economic Statistics*, in press.
- Komunjer, I. and S. Ng (2011), "Dynamic Identification of Dynamic Stochastic General Equilibrium Models," *Econometrica*, 79, 1995–2032.
- Mankiw, N.G., D.E. Runkle, and M.D. Shapiro (1984), "Are Preliminary Announcements of the Money Stock Rational Forecasts?" *Journal of Monetary Economics*, 14, 15–27.
- Mankiw, N.G. and M.D. Shapiro (1986), "News or Noise: An Analysis of GNP Revisions," Survey of Current Business, May, 20–25.
- Nalewaik, J. (2012), "Estimating Probabilities of Recession in Real Time with GDP and GDI," *Journal of Money, Credit and Banking*, 44, 235–253.
- Nalewaik, J. and E. Pinto (2012), "The Response of Capital Goods Shipments to Demand over the Business Cycle," Manuscript, Federal Reserve Board.
- Nalewaik, J.J. (2010), "The Income- and Expenditure-Side Estimates of U.S. Output Growth," *Brookings Papers on Economic Activity*, 1, 71–127 (with discussion).
- Rapach, D.E., J.K. Strauss, and G. Zhou (2010), "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," *Review of Financial Studies*, 23, 821–862.
- Sargent, T.J. and C.A. Sims (1977), "Business Cycle Modeling Without Pretending to Have too Much a Priori Theory," In C.A. Sims (ed.), New Methods in Business Cycle Research: Proceedings from a Conference, Federal Reserve Bank of Minneapolis, 45-109.
- Smith, R.J., M.R. Weale, and S.E. Satchell (1998), "Measurement Error with Accounting Constraints: Point and Interval Estimation for Latent Data with an Application to U.K. Gross Domestic Product," *The Review of Economic Studies*, 65, 109–134.
- Stone, R., D.G. Champernowne, and J.E. Meade (1942), "The Precision of National Income Estimates," *Review of Economic Studies*, 9, 111–125.

Watson, M.W. and R.F. Engle (1983), "Alternative Algorithms for the Estimation of Dynamic Factor, MIMIC and Varying Coefficient Regression Models," *Journal of Econometrics*, 23, 385–400.