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Abstract

This paper studies the reputation effect in which a long-lived player faces a

sequence of uninformed short-lived players and the uninformed players receive

informative but noisy exogenous signals about the type of the long-lived player.

We provide an explicit lower bound on all Nash equilibrium payoffs of the long-

lived player. The lower bound shows when the exogenous signals are sufficiently

noisy and the long-lived player is patient, he can be assured of a payoff strictly

higher than his minmax payoff.
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1 Introduction

This paper studies the reputation effect in the long-run interactions in which a long-

lived player faces a sequence of uninformed short-lived players and the uninformed

players receive informative but noisy exogenous signals about the type of the long-

lived player. In the canonical reputation models without exogenous learning (Fu-

denberg and Levine (1989), Fudenberg and Levine (1992)), the long-lived player can

effectively build a reputation by mimicking the behavior of a commitment type be-

cause the short-lived player will play a best response to the commitment action in

all but a finite number of periods after always seeing the commitment action. The

underlying reason is the fact that the short-lived player cannot be surprised too

many times: every time the short-lived player expects the commitment action with

small probability and yet this action is actually chosen, the posterior belief on this

commitment type jumps up, but at the same time the beliefs can not exceed unity.

However this “finite number of surprises” intuition does not carry over to the case

with exogenous learning. It is still true that each surprise leads to a discrete jump

of the posterior beliefs. But after a surprise during the periods of no surprises, the

exogenous learning can drive down the posterior beliefs. After a long history without

surprises, the posterior beliefs may return to the original level, resulting in another

surprise. Typically, this can happen infinitely many times. Hence in the presence of

exogenous learning, there is no guarantee that we have a finite number of surprises.

Wiseman (2009) first presented an infinitely repeated chain store game example

with perfect monitoring and exogenous signals taking two possible values. He shows

that when the long-lived player is sufficiently patient and there is sufficient noise in

the signals, the long-lived player can effectively build a reputation and assure himself

of a payoff strictly higher than his minmax payoff.

This paper extends Wiseman (2009) to more general reputation models with ex-

ogenous learning. We provide an explicit lower bound on all Nash equilibrium payoffs

to the long-lived player. The lower bound is characterized by the commitment action,

discount factor, prior belief and how noisy the learning process is. For fixed commit-

ment action and discount factor, the lower bound increases in both prior probability

and noise in the exogenous signals. This is intuitive as a higher prior probability

on the commitment type and a noisier and slower exogenous learning process both

correspond to easier reputation building. When the long-lived player become suffi-

ciently patient, the effect of the prior probability vanishes while that of the exogenous

learning remains. This is again intuitive because the prior probability represents the
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cost of reputation building in the initial periods. When the long-lived player places

arbitrarily high weight on future periods, the cost in the initial periods becomes neg-

ligible. In contrast, learning has a long run effect. The longer the history, the more

the uninformed player can learn about the type of his opponent. Hence the effect of

learning remains even if the long-lived player become sufficiently patient.

Not surprisingly, the lower bound we derive is generally lower than that if there is

no exogenous learning, reflecting the negative effect of learning on reputation building.

In the case that signals are completely uninformative, these two bounds coincide.

Nonetheless, when the signals are sufficiently noisy, the lower bound shows that in

any Nash equilibrium, the long-lived player is assured of a payoff strictly higher than

his minmax value.

To derive the lower bound, we apply the relative entropy approach first introduced

by Gossner (2011) to the study of reputations. Gossner (2011) uses this approach to

the standard reputation game in Fudenberg and Levine (1992) and obtains an explicit

lower bound on all equilibrium payoffs. He also shows when the commitment types

are sufficiently rich and the long-lived player is arbitrarily patient, the lower bound

is exactly the Stackelberg payoff which confirms the result in Fudenberg and Levine

(1992). Ekmekci, Gossner, and Wilson (2012) applied this method to the reputa-

tion game in which the type of the long-lived player is governed by an underlying

stochastic process. They calculate explicit lower bounds for all equilibrium payoffs

at the beginning of the game and all continuation payoffs. In these two papers, rel-

ative entropy only serves as a measure of prediction errors. However, in this paper,

in addition to a measure of prediction errors, the concept of relative entropy is also

naturally adapted to the learning situation as a measure of noise in the exogenous

signals. This again makes relative entropy as a more suitable tool.

The rest of the paper is organized as follows. In section 2, we describe the reputa-

tion model with exogenous learning and introduce relative entropy. Section 3 presents

and discusses the main result, which is proved in Section 4.

2 Model

2.1 Reputation game with exogenous learning

We consider the canonical reputation model (Mailath and Samuelson (2006), Chapter

15) in which a fixed stage game is infinitely repeated. The stage game is a two-player

simultaneous-move finite game of private monitoring. Denote by Ai the finite set of
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actions for player i in the stage game. Actions in the stage game are imperfectly

observed. At the end of each period, player i only observes a private signal zi drawn

from a finite set Zi. If an action profile a ∈ A1 ×A2 ≡ A is chosen, the signal vector

z ≡ (z1, z2) ∈ Z1 × Z2 ≡ Z is realized according to the distribution π( · |a) ∈ ∆(Z).1

The marginal distribution of player i’s private signals over Zi is denoted by πi( · |a).

Both π( · |a) and πi( · |a) have obvious extensions π( · |α) and πi( · |α) respectively

to mixed action profiles. Player i’s ex-post stage game payoff from his action ai and

private signal zi is given by u∗i (ai, zi). Player i’s ex ante stage game payoff from action

profile (ai, a−i) ∈ A is ui(ai, a−i) =
∑

zi
πi(zi|ai, a−i)u∗i (ai, zi). Notice this setting

includes as special cases the perfect monitoring environment (Fudenberg and Levine

(1989)) in which Z1 = Z2 = A and π(z1, z2|a) = 1 if and only if z1 = z2 = a, and the

public monitoring environment (Fudenberg and Levine (1992)) in which Z1 = Z2 and

π(z1, z2|a) > 0 implies z1 = z2. Player 1 is a long-lived player with discount factor

δ ∈ (0, 1) while player 2 is a sequence of short-lived players each of whom only lives

for one period. In any period t, the long-lived player 1 observes both his own previous

actions and private signals, but the current generation of the short-lived player 2 only

observes previous private signals of his predecessors.

There is uncertainty about the type of player 1. Let Ξ ≡ {ξ0}∪ Ξ̂ be the set of all

possible types of player 1. ξ0 is the normal type of player 1. His payoff in the repeated

game is the average discounted sum of stage game payoffs (1− δ)
∑

t≥0 δ
tu1(at). Each

ξ(α̂1) ∈ Ξ̂ denotes a simple commitment type who plays the stage game (mixed)

action α̂1 ∈ ∆(A1) in every period independent of histories. Assume Ξ̂ is either finite

or countable. The type of player 1 is unknown to player 2. Let µ ∈ ∆(Ξ) be player

2’s prior belief about player 1’s type, with full support.

At period t = −1, nature selects a type ξ ∈ Ξ of player 1 according to the

initial distribution µ. Player 2 does not observe the type of player 1. However,

we assume that the uninformed player 2 has access to an exogenous channel which

gradually reveals the true type of player 1. More specifically, conditional on the

type ξ, a stochastic process {ηt(ξ)}t≥0 generates a signal yt ∈ Y after every period’s

play, where Y is a finite set of all possible signals. To distinguish the signals z ∈ Z
generated from each period’s play and the signals y ∈ Y generated by {ηt(ξ)}t≥0,

we call the former endogenous signals and the latter exogenous signals. In addition

to observing previous endogenous signals, each generation of player 2 also observes

all the exogenous signals from earlier periods. We assume that for each type ξ ∈ Ξ,

the stochastic process {ηt(ξ)}t≥0 is independent and identically distributed across t.

1For a finite set X, ∆(X) denotes the set of all probability distributions over X.
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Conditional on ξ, the distribution of the exogenous signals in every period is denoted

by ρ( · |ξ) ∈ ∆(Y ). Notice this assumes that the realization of the exogenous signals

are independent of the play, hence it models the exogenous learning of the uninformed

player 2.

For expositional convenience, we assume player 1 does not observe the exogenous

signals. This assumption is not crucial for our result. The same lower bound will

apply if we assume player 1 also observes the exogenous signals. A private history of

player 1 in period t consists of his previous actions and endogenous signals, denoted

by ht1 ≡ (a0
1, z

0
1 , a

1
1, z

1
1 , . . . , a

t−1
1 , zt−1

1 ) ∈ H1t ≡ (A1 × Z1)t, with the usual notation

H10 = {∅}. A behavior strategy for player 1 is a map

σ1 : Ξ×
∞⋃
t=0

H1t → ∆(A1),

with the restriction that for all ξ(α̂1) ∈ Ξ̂,

σ1(ξ(α̂1), ht1) = α̂1 for all ht1 ∈
∞⋃
t=0

H1t.

A private history of player 2 in period t contains both previous endogenous and

exogenous signals, denoted by ht2 ≡ (z0
2 , y

0
2, z

1
2 , y

1
2, . . . , z

t−1
2 , yt−1

2 ) ∈ H2t ≡ (Z2 × Y )t,

with H20 = {∅}. A behavior strategy for player 2 is a map

σ2 :
∞⋃
t=0

H2t → ∆(A2).

Denote by Σi the strategy space of player i.

Any strategy profile σ ≡ (σ1, σ2) ∈ Σ1 × Σ2, together with the prior µ and the

signal distributions {π( · |a)}a∈A and {ρ( · |ξ)}ξ∈Ξ, induces a probability measure P σ

over the set of states Ω ≡ Ξ×(A1×A2×Z1×Z2×Y )∞. The measure P σ describes how

the uninformed player 2 expects play to evolve. Let P̃ σ be the conditional probability

of P σ given the event that player 1 is the normal type. The measure P̃ σ describes

how play evolves if player 1 is the normal type. We use Eσ[ · ] (resp., Ẽσ[ · ]) to denote

the expectation with respect to the probability measure P σ (resp., P̃ σ).

A Nash equilibrium in this reputation game is a pair of mutual best responses.

Definition 1. A strategy profile σ∗ = (σ∗1, σ
∗
2) ∈ Σ1 × Σ2 is a Nash equilibrium if it

satisfies:

(a) for all σ1 ∈ Σ1,

Ẽσ∗
[
(1− δ)

∞∑
t=0

δtu1(at)
]
≥ Ẽ(σ1,σ∗2)

[
(1− δ)

∞∑
t=0

δtu1(at)
]
,
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(b) for all ht2 ∈
⋃
τ≥0H2τ with positive probability under P σ∗ ,

σ∗2(ht2) ∈ arg max
α2∈∆(A2)

Eσ∗
[
u2

(
σ∗1(ht1, ξ), α2

)∣∣∣ht2].
Condition (a) states that given σ∗2, the normal type of player 1 maximizes his

expected lifetime utility. Condition (b) requires that given σ∗1, player 2 updates his

belief via Bayes’ rule along the path of play and plays a myopic best response since

he is short lived.

2.2 Relative entropy

The relative entropy between two probability distributions P and Q over a finite set

X is the expected log likelihood ratio

d(P‖Q) ≡ EP log
P (x)

Q(x)
=
∑
x∈X

P (x) log
P (x)

Q(x)
,

with the usual convention that 0 log 0
q

= 0 if q ≥ 0 and p log p
0

=∞ if p > 0. Relative

entropy is always nonnegative and it is zero if and only if the two distributions are

identical (See Cover and Thomas (2006), Gossner (2011) and Ekmekci, Gossner, and

Wilson (2012) for more details on relative entropy).

Relative entropy measures the speed of the learning process of the uninformed

player 2. For each commitment type ξ(α̂1) ∈ Ξ̂, let λξ(α̂1) be the relative entropy of

the exogenous signal distributions when player 1 is the normal type and when he is

the commitment type ξ(α̂1), i.e.

λξ(α̂1) ≡ d
(
ρ( · |ξ0)

∥∥ρ( · |ξ(α̂1))
)
.

Relative entropy measures how different the two distributions ρ( · |ξ0) and ρ( · |ξ(α̂1))

are. In terms of learning, λξ(α̂1) measures how fast player 2 can learn from exogenous

signals that player 1 is not the commitment type ξ(α̂1) when player 1 is indeed the

normal type. The larger λξ(α̂1) is, the faster the learning process is. This is illustrated

by the two polar cases. If λξ(α̂1) = 0, then the distributions of the exogenous signals

when player 1 is the normal type and when he is of type ξ(α̂1) are identical. In this

case, from the exogenous signals, player 2 can never distinguish the normal type from

the commitment type ξ(α̂1) when player 1 is the normal type. If λξ(α̂1) = ∞, there

must be some signal y ∈ Y which will occur when player 1 is the normal type but will

not occur when player 1 is the commitment type ξ(α̂1). Hence in this case, player

2 will learn that player 1 is not the commitment type ξ(α̂1) for sure in finite time
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when player 1 is the normal type. For other intermediate values 0 < λξ(α̂1) < ∞,

conditional on the normal type, player 2 will eventually know that player 1 is not the

commitment type ξ(α̂1).

The following assumption rules out extremely fast learning. Technically, it re-

quires that the support of ρ( · |ξ) be contained in the support of ρ( · |ξ(α̂1)) for every

commitment type ξ(α̂1).

Assumption 1. λξ(α̂1) <∞ for all ξ(α̂1) ∈ Ξ̂.

Relative entropy measures the error in player 2’s one step ahead prediction on the

endogenous signals. Gossner (2011) first introduced the following notion of ε-entropy-

confirming best response (see also Ekmekci, Gossner, and Wilson (2012)):

Definition 2. The mixed action α2 ∈ ∆(A2) is an ε-entropy-confirming best response

to α1 ∈ ∆(A1) if there exists α′1 ∈ ∆(A1) such that

(a) α2 is a best response to α′1,

(b) d
(
π2( · |α1, α2)

∥∥π2( · |α′1, α2)
)
≤ ε.

The set of all ε-entropy confirming best responses to α1 is denoted by Bε(α1).

The idea of ε-entropy-confirming best response is similar to ε-confirming best

response defined in Fudenberg and Levine (1992). If player 2 plays a myopic best

response α2 to his belief that player 1 plays the action α′1, then player 2 believes

that his endogenous signals realize according to the distribution π2( · |α′1, α2). If

the true action taken by player 1 is α1 instead of α′1, then the true distribution

of player 2’s endogenous signals is indeed π2( · |α1, α2). Hence player 2’s one step

ahead prediction error on his endogenous signals is, measured by relative entropy,

d
(
π2( · |α1, α2)

∥∥π2( ·, |α′1, α2)
)
. The mixed action α2 is an ε-entropy-confirming best

response of α1 if the prediction error is no greater than ε.

For any commitment type ξ(α̂1) ∈ Ξ̂, let

V ξ(α̂1)(ε) ≡ inf
α2∈Bε(α̂1)

u1(α̂1, α2)

be the lowest possible payoff to player 1 if he plays α̂1 while player 2 plays an ε-

entropy-confirming best response to α̂1. Let Vξ(α̂1)( · ) be the pointwise supremum of

all convex functions below V ξ(α̂1). Clearly Vξ(α̂1) is convex and nonincreasing.

3 Main result

For any δ ∈ (0, 1), let U1(δ) denote the infimum of all Nash equilibrium payoffs to the

normal type of player 1 if the discount factor is δ. Our main result is the following:
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Proposition 1. Under Assumption 1, for all δ ∈ (0, 1),

U1(δ) ≥ sup
ξ(α̂1)∈Ξ̂

Vξ(α̂)

(
− (1− δ) log µ

(
ξ(α̂1)

)
+ λξ(α̂1)

)
.

To understand the equilibrium lower bound in Proposition 1, it suffices to consider

the reputation building on each ξ(α̂1) ∈ Ξ̂ since the overall lower bound is obtained

by considering all possible commitment types. Fix a commitment type ξ(α̂1) ∈ Ξ̂.

Proposition 1 states that in any Nash equilibrium, the normal type of player 1 is

assured of a payoff no less than Vξ(α̂1)

(
−(1−δ) log µ(ξ(α̂1))+λξ(α̂1)

)
. Recall that Vξ(α̂1)

is a nonincreasing function. For fixed δ, this lower bound increases with µ(ξ(α̂1)) while

decreases with λξ(α̂1). The intuition is straightforward. A larger prior probability on

the commitment type ξ(α̂1) makes it easier for the normal type of player 1 to build

a reputation on this commitment type. In another word, the cost of reputation

building in the initial periods is smaller in this case which leads to a higher lower

bound. However the learning process goes against reputation building because player

2 eventually learns that player 1 is not the commitment type ξ(α̂1). It is then intuitive

that the speed of learning matters. If the exogenous signals are sufficiently noisy,

then λξ(α̂1) is small and it is hard for player 2 to distinguish the normal type and the

commitment type. This results in a rather slow learning process and hence a high

lower bound. If the learning process is completely uninformative, λξ(α̂1) = 0, then

the lower bound is given by Vξ(α̂1)

(
− (1− δ) log µ(ξ(α̂1))

)
which is exactly the same

lower bound derived in Gossner (2011) without exogenous learning. In general, when

λξ(α̂1) > 0, the lower bound is lower than that in Gossner (2011) due to the learning

effect.

Another parameter in the lower bound is player 1’s discount factor δ. An in-

teresting feature in the lower bound is that δ only appears as a coefficient for the

term log µ(ξ(α̂1)), not for λξ(α̂1). This is because − log µ(ξ(α̂1)) captures the cost

of reputation building in the initial periods while λξ(α̂1) is the learning effect which

remains active as the game evolves. As a result, when player 1 becomes arbitrar-

ily patient, δ → 1, the cost of reputation building in the initial periods becomes

negligible since player 1 places higher and higher weight on the payoff obtained in

later periods, whereas the learning effect remains unchanged. In this case, the lower

bound becomes Vξ(α̂1)

(
λξ(α̂1)

)
.2 Moreover, in the presence of multiple commitment

types, which commitment type is the most favorable is now ambiguous. Intuitively,

this is because the effectiveness of reputation building does not only depend on the

2Since Vξ(α̂1)(ε) is convex, it is continuous at every ε > 0.
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stage game payoff from the commitment type but also on the learning process. Even

if player 2 assigns positive probability on the Stackelberg action, committing to the

Stackelberg action may not help player 1 effectively build a reputation because the

exogenous signals may reveal quickly to player 2 that player 1 is not the Stackelberg

commitment type. This is in a sharp contrast with the result in standard models

without exogenous learning.

We use the following example which is first considered in Wiseman (2009) to

illustrate the lower bound obtained in Proposition 1.

Example. There is a long-lived incumbent, player 1, facing a sequence of short-lived

entrants, player 2. In every period, the entrant chooses between entering (E) and

staying out (S) while the incumbent decides whether to fight (F ) or accommodate

(A). The stage game payoff is given in Figure 1, where a > 1 and b > 0.

E S

F −1, −1 a, 0

A 0, b a, 0

Figure 1: Chain store stage game.

The stage game is infinitely repeated with perfect monitoring. There are two types

of player 1, the normal type, denoted by ξ0, and a simple commitment type, denoted

by ξ(F ) who plays the stage game Stackelberg action F in every period independent

of histories. The prior probability of ξ(F ) is µ(ξ(F )). The exogenous signals observed

by player 2 only take two values: y and y. Assume ρ(y|ξ0) = β, ρ(y|ξ(F )) = α and

β > α. Thus

λξ(F ) = β log
β

α
+ (1− β) log

1− β
1− α

.

Now we apply Proposition 1 in this setting. Because monitoring is perfect, it is

easy to see Bε(F ) = {S} when ε < log b+1
b

. Therefore, we have

Vξ(F )(ε) =

{
a− a+1

log b+1
b

ε, if ε < log b+1
b
,

−1 if ε ≥ log b+1
b
.

Proposition 1 then implies for all δ ∈ (0, 1)

U1(δ) ≥ a− a+ 1

log b+1
b

(
− (1− δ) log µ(ξ(F )) + λξ(F )

)
,

and in the limit

lim inf
δ→1

U1(δ) ≥ a− (a+ 1)
λξ(F )

log b+1
b

. (1)
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Wiseman (2009) considers symmetrically distributed signals, i.e., β = 1−α > 1/2,

and derives a lower bound of a − (a + 1)
log β

1−β
log b+1

b

. Because in this symmetric case

λξ(F ) = (2β − 1) log β
1−β , this bound is lower than that in (1). As signals become less

informative, i.e. β → 1
2
, both lower bounds become arbitrarily close to player 1’s

Stackelberg payoff.

Although it is not surprising that exogenous learning affects reputation building,

why does it take this particular form, i.e. the relative entropy of the exogenous signals?

As mentioned previously, the “finite number of surprises” argument in Fudenberg and

Levine (1989) does not apply because of the downward pressure on posterior beliefs

due to exogenous learning. In this particular example, the uninformed entrants may

enter infinitely many times even if he is always fought after any entry. Moreover, re-

ceiving the signal y always decreases the posterior beliefs (recall ρ(y|ξ0) > ρ(y|ξ(F )))

which is the source of the downward pressure. Thus the strength of this downward

pressure depends exactly on how frequently the entrants can receive the signal y

which, together with the size of surprise, in turn determines how long it takes for the

posterior beliefs to return after a surprise. In other words, the size of surprise and the

relative frequency of exogenous signals together determine the frequency of entries.

If it takes a long time for the posterior beliefs to return, then the entrants can not

enter too frequently and the incumbent can effectively build a reputation.

To see this, fix any Nash equilibrium σ. For any history h∞ in which F is always

played, let {µt}t≥0 be player 2’s posterior belief on the commitment type along this

history. Player 2 is willing to enter in period t only if

Prob(F ) ≡ µt + (1− µt)σ1(ξ0, h
t)(F ) ≤ b

b+ 1
.

So, if player 2 enters in period t, we must have

µt ≤
b

b+ 1
(2)

and

σ1(ξ0, h
t)(F ) ≤ b

b+ 1
. (3)

We examine the odds ratio {µt/(1 − µt)}t≥0 along this history. Since the entrant is

always fought along this history, the odds ratio evolves as

µt+1

1− µt+1

=
(α
β

)
1y(yt)(1− α

1− β
)
1y(yt) µt

(1− µt)σ1(ξ0, ht)(F )
∀t ≥ 0,

where for y ∈ {y, y}, 1y is the indicator function, 1y(y
t) = 1 if yt = y and 0 otherwise.

Because σ1(ξ, ht)(F ) is always less than or equal to 1, we have

µt+1

1− µt+1

≥
(α
β

)
1y(yt)(1− α

1− β
)
1y(yt) µt

1− µt
(4)
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if player 2 stays out in period t. Because inequality (3) holds if player 2 enters in

period t, we have

µt+1

1− µt+1

≥
(α
β

)
1y(yt)(1− α

1− β
)
1y(yt) b+ 1

b

µt
1− µt

(5)

if he enters in period t. For any t ≥ 1, let nE(t), ny(t) be the number of entries and

the number of signal y’s respectively in history ht. Inequalities (4), (5) and simple

induction imply

µt
1− µt

≥
(b+ 1

b

)nE(t)(α
β

)ny(t)(1− α
1− β

)t−ny(t) µ(ξ(F ))

1− µ(ξ(F ))
∀t ≥ 1. (6)

Moreover, if player 2 enters in period t, inequality (2) implies

b ≥ µt
1− µt

. (7)

Hence inequalities (6) and (7) together yield

b ≥
(b+ 1

b

)nE(t)(α
β

)ny(t)(1− α
1− β

)t−ny(t) µ(ξ(F ))

1− µ(ξ(F ))
(8)

for all t at which player 2 enters. Let {tk}k≥0 be the sequence of periods in which

entry occurs. By taking log and dividing both sides by tk, inequality (8) implies

lim sup
k→∞

nE(tk)

tk
≤ 1

log b+1
b

lim
k→∞

[ny(tk)
tk

log
β

α
+
(
1− ny(tk)

tk

)
log

1− β
1− α

]
=

λξ(F )

log b+1
b

,

because limt ny(t)/t = β by law of large numbers. Because for every t ≥ 1, there

exists k ≥ 0 such that tk ≤ t < tk+1 and nE(t)/t = nE(tk)/t ≤ nE(tk)/tk, the above

inequality also holds for the whole sequence

lim sup
t→∞

nE(t)

t
≤

λξ(F )

log b+1
b

.

This inequality states exactly what we have mentioned above: the fraction of entries

along a typical history is determined by the size of surprise b+1
b

and the relative

frequency of the exogenous signals λξ(F ). Lastly, because this inequality holds for all

Nash equilibria, we have

lim inf
δ→1

U1(δ) ≥
(
1−

λξ(F )

log b+1
b

)
a+

λξ(F )

log b+1
b

(−1) = a− (a+ 1)
λξ(F )

log b+1
b

.

This is exactly the lower bound in (1).
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4 Proof of Proposition 1

One important property of relative entropy is the chain rule. Let P and Q be two

distributions over the product X × Y (see for example Cover and Thomas (2006)

Chapter 2 and Gossner (2011)). The chain rule states that the relative entropy of P

and Q can be expanded as the sum of a relative entropy and a conditional relative

entropy:

d(P‖Q) = d(PX‖QX) + EPX (d(P ( · |x)‖Q( · |x))),

where PX (resp., QX) is the marginal distribution of P (resp., Q) over X and P ( · |x)

(resp., Q( · |x)) is the conditional probability of P (resp., Q) over Y given x.

Fix a commitment type ξ(α̂1) ∈ Ξ̂. Suppose σ = (σ1, σ2) is a Nash equilibrium

of the reputation game with exogenous learning. Let P σ be the probability measure

over Ξ × (A1 × A2 × Z1 × Z2 × Y )∞ induced by σ, µ and {ρ( · |ξ)}ξ∈Ξ, as in section

2. Let P̂ σ be the conditional probability of P σ given the event that player 1 is the

commitment type ξ(α̂1). The measure P̂ σ determines how the play evolves if player

1 is of type ξ(α̂1).

Let σ′1 ∈ Σ1 be the strategy for player 1 in which the normal type of player

1 mimics the behavior of the commitment type ξ(α̂1), i.e. σ′1(ξ0, h
t
1) = α̂1 for all

ht1 ∈
⋃
t≥0H1t. Let σ′ = (σ′1, σ2). The probability measure P̃ σ′ (recall from section 2,

P̃ σ′ = P σ′
(
·
∣∣{ξ0}×(A1×A2×Z1×Z2×Y )∞

)
) describes how the normal type of player

1 expects the play to evolve if he deviates to the commitment strategy of ξ(α̂1). The

only difference between P̃ σ′ and P̂ σ is the distributions of player 2’s exogenous signals.

Because we assume the realizations of player 2’s exogenous signals only depend on the

type of player 1 and are independent of the play, for all ht ∈ (A1×A2×Z1×Z2×Y )t

we have

P̃ σ′(ht) = P̂ σ(ht)
t−1∏
τ=0

ρ(yτ |ξ0)

ρ(yτ |ξ(α̂1))
,

where y0, y1, · · · , yt−1 are the exogenous signals contained in the history ht. Notice

by Assumption 1, ρ(y|ξ(α̂1)) > 0 whenever ρ(y|ξ0) > 0. Hence the right hand side of

the above equality is well defined.

Let P σ
2 , P̃ σ′

2 and P̂ σ
2 be the marginal distributions of P σ, P̃ σ′ and P̂ σ respectively

on player 2’s histories (Z2 × Y )∞, and let {P σ
2t}t≥1, {P̃ σ′

2t }t≥1 and {P̂ σ
2t}t≥1 be the

corresponding finite dimensional distributions. In period −1 before the play, player 2

believes that P σ
2t is the distributions of his signals (both endogenous and exogenous)

in the first t periods. However, if player 1 is the normal type and he deviates to the

commitment strategy of ξ(α̂1), P̃ σ′
2t is the true distribution of player 2’s signals in the

12



first t periods. The following lemma gives an upper bound on the prediction errors

in player 2’s first t periods signals.

Lemma 1. For all t ≥ 1,

d
(
P̃ σ′

2t ‖P σ
2t

)
≤ − log µ

(
ξ(α̂1)

)
+ tλξ(α̂1).

Proof. We show this by a simple calculation:

d(P̃ σ′

2t

∥∥P σ
2t) ≡

∑
ht2∈H2t

P̃ σ′

2t (ht2) log
P̃ σ′

2t (ht2)

P σ
2t(h

t
2)

=
∑

ht2∈H2t

P̃ σ′

2t (ht2) log

[
P̂ σ

2t(h
t
2)

P σ
2t(h

t
2)

t−1∏
τ=0

ρ(yτ |ξ0)

ρ(yτ |ξ(α̂1))

]

=
∑

ht2∈H2t

P̃ σ′

2t (ht2) log
P̂ σ

2t(h
t
2)

P σ
2t(h

t
2)

+
∑

ht2∈H2t

P̃ σ′

2t (ht2) log
( t−1∏
τ=0

ρ(yτ |ξ0)

ρ(yτ |ξ(α̂1))

)
.

Notice the second term is the relative entropy of the distributions on player 2’s ex-

ogenous signals in the first t periods when player 1 is the normal type and when

he is the commitment type ξ(α̂1). Because the exogenous signals are conditionally

independent across time, the chain rule implies the second term is exactly tλξ(α̂1).

Moreover, since P̂ σ
2t is obtained by conditioning P σ

2t on the event that player 1 is the

commitment type ξ(α̂1), we have

P̂ σ
2t(h

t
2)

P σ
2t(h

t
2)
≤ µ

(
ξ(α̂1)

)
∀ht2 ∈ H2t.

Therefore the first term is no greater than − log µ(θ̂). These two observations imply

the desired result.

For any private history ht2 ∈
⋃
t≥0H2t, P

σ
2,t+1 (resp., P̃ σ′

2,t+1) induces player 2’s one

step ahead prediction on his endogenous signals zt2 ∈ Z2, denoted by pσ2t( · |ht2) (resp.,

p̃σ
′

2t( · |ht2)).3 In the equilibrium, at the information set ht2, player 2 believes that his

endogenous signals will realize according to pσ2t( · |ht2). But if player 2 had known that

player 1 was the normal type and played like the commitment type ξ(α̂1), then player

2 would predict his endogenous signals according to p̃σ
′

2t( · |ht2).

3If ht2 has probability 0 under Pσ, i.e. it is not reached in the equilibrium σ, then the one step

ahead prediction is not well defined. But this does not matter because we will consider the average

(over ht2) one step prediction errors.

13



For any t ≥ 1, let Ẽσ′
2t [ · ] denote the expectation over H2t with respect to the

probability measure P̃ σ′
2t . The following lemma is a direct application of the chain

rule.

Lemma 2. For all t ≥ 0,

Ẽσ′

2t

[
d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
)]
≤ d
(
P̃ σ′

2,t+1

∥∥P σ
2,t+1

)
− d
(
P̃ σ′

2t

∥∥P σ
2t

)
,

where d
(
P̃ σ′

2,0

∥∥P σ
2,0

)
≡ 0.

Proof. Let q2,t+1( · |ht2, zt2) (resp., q̃2,t+1( · |ht2, zt2)) be the one step ahead prediction on

his exogenous signals if he had observed his past private history ht2 and current period

endogenous signal zt2, induced by P σ
2,t+1 (resp., P̃ σ′

2,t+1). Because Assumption 1 and

Lemma 1 implies d
(
P̃ σ′

2t

∥∥P σ
2t

)
<∞ for all t ≥ 1, applying chain rule twice yields

d
(
P̃ σ′

2,t+1

∥∥P σ
2,t+1

)
− d
(
P̃ σ′

2t

∥∥P σ
2t

)
= Ẽσ′

2t

[
d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
)]

+ E†2,t+1

[
d
(
q̃2,t+1( · |ht2, zt2)‖q2,t+1( · |ht2, zt2)

)]
,

where E†2,t+1 is with respect to the marginal distribution of P̃ σ′
2,t+1 over (Z2×Y )t×Z2.

The desired result is obtained by noting that the last term in the above expression is

nonnegative because relative entropy is always nonnegative.

Let dδ,σξ(α̂1) be the expected average discounted sum of player 2’s one step ahead

prediction errors if player 1 is the normal type and he deviates to mimicking the

commitment type ξ(α̂1)

dδ,σξ(α̂1) ≡ Ẽσ′
[
(1− δ)

∞∑
t=0

δtd
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
)]

= (1− δ)
∞∑
t=0

δtẼσ′

2t

[
d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
)]
,

where δ is player 1’s discount factor.

The next lemma, combining Lemma 1 and Lemma 2, provides an upper bound

for dξ(α̂1).

Lemma 3.

dδ,σξ(α̂1) ≤ −(1− δ)µ
(
ξ(α̂1)

)
+ λξ(α̂1).
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Proof.

dδ,σξ(α̂1) ≤ (1− δ)
∞∑
t=0

δt
(
d
(
P̃ σ′

2,t+1‖P σ
2,t+1

)
− d
(
P̃ σ′

2t ‖P σ
2t

))
= (1− δ)

∞∑
t=0

δtd
(
P̃ σ′

2,t+1‖P σ
2,t+1

)
− (1− δ)

∞∑
t=0

δtd
(
P̃ σ′

2t ‖P σ
2t

)
= (1− δ)2

∞∑
t=1

δt−1d
(
P̃ σ′

2t ‖P σ
2t

)
≤ (1− δ)2

∞∑
t=1

δt−1
[
− log µ

(
ξ(θ̂)

)
+ tλξ(α̂1)

]
= −(1− δ) log µ

(
ξ(θ̂)

)
+ λξ(α̂1),

where the first inequality comes from Lemma 2 and the second inequality from Lemma

1.

An important feature of Lemma 3 is that the upper bound on the expected pre-

diction error is independent of P σ and P̃ σ′ , which allows us to bound player 1’s payoff

in any Nash equilibrium.

Proof of Proposition 1. In equilibrium, at any information set ht2 ∈
⋃
t≥0H2t that

is reached with positive probability, σ2(ht2) is a best response to E
(
σ1(ξ, ht1)

∣∣ht2) and

his one step ahead prediction on his endogenous signals is pσ2t( · |ht2). If player 1 is

the normal type and he deviates to mimicking ξ(α̂1), the one step ahead prediction

is p̃σ
′

2t( · |ht2). Thus at any ht2 with positive probability under P̃ σ′ , player 2 plays a

d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
)
-entropy confirming best response to α̂1.4 Because σ is a Nash

equilibrium, the deviation is not profitable. Hence in equilibrium, the payoff to the

normal type is at least as high as

Ẽσ′
[
(1− δ)

∞∑
t=0

δtu1(at)
]

= (1− δ)
∞∑
t=0

δtẼσ′

2t

[
u1

(
α̂1, σ2(ht2)

)]
≥ (1− δ)

∞∑
t=0

δtẼσ′

2t

[
V ξ(α̂1)

(
d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
))]

≥ (1− δ)
∞∑
t=0

δtẼσ′

2t

[
Vξ(α̂1)

(
d
(
p̃σ
′

2t( · |ht2)‖pσ2t( · |ht2)
))]

≥ Vξ(α̂1)

(
− (1− δ) log µ

(
ξ(α̂1)

)
+ λξ(α̂1)

)
,

4Because P̃σ
′

is absolutely continuous with respect to Pσ.
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where the second inequality comes from the definition of Vξ(α̂1) and the last inequal-

ity from Jesen’s inequality and Lemma 3. Since the Nash equilibrium σ and the

commitment type ξ(α̂1) are arbitrary, the result follows.
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