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Abstract

There is a large repeated games literature illustrating how future interactions provide

incentives for cooperation. Much of the earlier literature assumes public monitoring: play-

ers always observe precisely the same thing. Departures from public monitoring to private

monitoring that incorporate differences in players’ observations may dramatically compli-

cate coordination and the provision of incentives, with the consequence that equilibria with

private monitoring often seem unrealistically complex.

We set out a model in which players accomplish cooperation in an intuitively plausible

fashion. Players process information via a mental system — a set of psychological states and

a transition function between states depending on observations. Players restrict attention

to a relatively small set of simple strategies, and consequently, might learn which perform

well.

1. Introduction

Cooperation is ubiquitous in long-term interactions: we share driving responsibilities with our

friends, we offer help to relatives when they are moving and we write joint papers with our

colleagues. The particular circumstances of an agent’s interactions vary widely across the variety

of our long-term relationships but the mechanics of cooperation are usually quite simple. When

called upon, we do what the relationship requires, typically at some cost. We tend to be upset
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if our partner seems not to be doing his part and our willingness to cooperate diminishes. We

may be forgiving for a time but stop cooperating if we become convinced the relationship is

one-sided. We sometimes make overtures to renew the relationship when opportunities arise,

hoping to restart cooperation. Incentives to cooperate stem from a concern that the relationship

would temporarily break down, while incentives to be less cooperative when the relationship feels

one-sided stem from the fear of being taken advantage of by a noncooperative partner. Such

simple behavior seems to be conducive to cooperation under a broad range of circumstances,

including those in which we get only a noisy private signal about our partner’s efforts in the

relationship, that is, when our partner does not always know if we are less than satisfied with

their effort.

Despite the fundamental importance of cooperation in understanding human interaction in

small or large groups, the theory of repeated games, while providing important insights about re-

peated interactions, does not capture the simple intuition in the paragraph above. When signals

are private, the quest for “stable” rules of behavior (or equilibria) typically produces complex

strategies that are finely tuned to the parameters of the game (payoffs, signal structure),1 or to

the assumed sequencing/timing of actions and signals.2 These “rules of behavior” fail to remain

stable when the parameters of the game are changed slightly.3 ,4 Their robustness to changes in

timing is typically not addressed, nor is their plausibility. What we propose below is an alter-

native theory/description of how cooperation is accomplished when players are strategic, with

the central concern that cooperation be attained via realistic and intuitively plausible behavior.

1See in particular the belief free literature in repeated games (Piccione (2002) and Ely and Valimaki (2002)).
In belief free equilibria, each player is made indifferent between cooperating and defecting after any history of
play and signals received.

2Repeated relationships are typically modeled as a stage game played repeatedly, with the players choosing
actions simultaneously in the stage game. In reality, the players may be moving sequentially and the signals
they get about others’ actions may not arrive simultaneously. The choice to model a repeated relationship as
simultaneous play is not based on a concern for realism, but for analytic convenience. A plausible theory of
cooperation should not hinge on the fine details of the timing of actions: we should expect that behavior that is
optimal when play is simultaneous to be optimal if players were to move sequentially.

3For example, in Compte and Postlewaite (2013), we show that the Ely-Valimaky construction is not robust
to stochastic changes in the underlying monitoring structure.

4Fundamental to the standard approach to repeated games with private signals is the analysis of incentives of
one party to convey to the other party information about the private signals he received, either directly (through
actual communication), or indirectly (through the action played). Conveying such information is necessary to
build punishments that generate incentives to cooperate in the first place.
Incentives to convey information, however, are typically provided by making each player indifferent between

the various messages he may send (see Compte (1998) and Kandori and Matsushima (1998)), or the various
actions he may play (belief free literature). There are exceptions, and some work such as Sekiguchi (1997) does
have players provided with strict incentives to use their observation. But, these constructions rely on fine tuning
some initial uncertainty about the opponent’s play (as shown in the work of Bagwell (1995)), and they typically
produce strategies that depend in a complex way on past histories (as in Compte (2002)).
Finally, when public communication is allowed and signals are not conditionally independant, strict incentives

to communicate past signals truthfully may be provided (Kandori and Matsushima (1998)). But the equilibrium
construction relies on simultaneous communication protocols.
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A theory of cooperative behavior faces at least two challenges:

A first challenge is a realistic description of strategies. A strategy is a complex object that

specifies behavior after all possible histories, and the number of possible histories increases

exponentially with the number of interactions. If I and my spouse alternate cooking dinner and

whoever cooks can either shirk or put in effort each time they cook, there will be approximately

a billion possible histories after one month. For each of these billion histories, both I and my

spouse will have gotten imperfect signals about the effort put in by the other on the nights they

cooked, and for each of the histories, I must decide whether or not to put in effort the next time

I cook. It is inconceivable that I recall the precise history after even a month let alone after

several years.

A more realistic description is that I rely on some summary statistic in deciding whether or

not to put in effort — the number of times it seemed effort was put in over the past several times

my spouse cooked, for example. In this way, histories are catalogued in a relatively small number

of equivalence classes, and my action today depends only on the equivalence class containing the

history. This concern is not novel. Aumann (1981) suggests focussing on stationary strategies,

with the assumption that the agent only has a finite number of states of mind. The strategies

we shall consider conform to Aumann’s suggestion — endowing agents with a limited number of

mental states.5

However we ask more for a strategy to be realistic than that it can be represented with a

small number of states. Repeated game strategies can often be represented in this way, but then

the classification of histories is for mathematical convenience, and not on an a priori basis of

how individuals pool histories.6 . Rather, our view is that a player’s pooling of histories should
be intuitively plausible, capturing plausible cognitive limitations (inability to distinguish finely

between various signals), and/or reflecting how a player might plausibly interpret or react to

observations.

A second challenge is a theory of cooperative behavior that is consistent with agents coming

to that behavior. In the standard approach to repeated games there is no realistic story of how

players would arrive at the proposed equilibrium strategies. It seems extremely implausible

5The path suggested has led to the study of repeated game equilibria in which players are constrained to
using finite automata (Rubinstein 1986, Neymann (1985,1998), Ben Porath (1993)). It has also led to the study
of repeated game equilibria in which strategies can be implemented by simple automata (Abreu (1986)), or
approximated by finite automata (Kalai Stanford (1988)).

6When public signals are available or when monitoring is perfect, and one considers public equilibria (i.e., in
which players condition behavior on public histories only), a vector of continuation values may be assigned after
any public history, with histories leading to the identical continuation values being categorized into the same
equivalence class. The vector of continuation values may thus be viewed as an endogenous summary statistic
of past signals and play. Under perfect monitoring, Abreu (1988) derives a class of equilibria having a simple
representation (with only few continuation values). A similar logic has been applied by Kalai and Stanford
(1988), who get approximate equilibria with strategies using a finite number of states by partitioning the set of
possible continuation values into a finite number of values.
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that players could compute appropriate strategies through introspection in repeated games with

private signals.7 Equilibrium strategies in such a setting typically rely on my knowing not only

the distribution of signals I receive conditional on the other player’s actions, but also on the

distribution of his signals given my actions, something I never observe. Even if one entertains

the possibility that players compute equilibrium strategies through introspection there is the

question of how the players might know these signal distributions. Alternatively, one might
posit that players could “learn” the equilibrium strategies, but the set of strategies is huge and

it is difficult to see how a player might learn which strategies work well: even if one restricted

attention to strategies that are deterministic functions of histories, finding an optimal strategy

amounts to finding an optimal partition of the histories among all possible partitions.

The path we propose addresses these two challenges. Our view is that the second challenge

calls for a restriction on the strategies that agents choose among. The nature of the restriction

one imposes is a critical issue. In this paper, we propose a priori constraints on how agents
process signals, motivated by plausible psychological considerations or cognitive limitations, and

ask when the restricted family of strategies so generated is conducive to cooperation.8

To summarize, our goal is to find sets of strategies that have the following desirable properties:

(i) the number of strategies in the set should be small enough that players might ultimately

learn which perform well; (ii) the strategies should be based on a cataloging of histories that is

intuitively plausible; (iii) the sets of strategies allow agents to cooperate under a broad set of

circumstances; and (iv) equilibrium cooperation obtains in a way that is robust to the parameters

of the game and the timing of players’ actions. This goal motivates the model that we set out

below. We do not claim that this model is unique in achieving our goal, only that it is a plausible

model that satisfies our stated desiderata.

Before going on we should emphasize two things. First, cooperation is not always possible

in our framework, and second, even when equilibrium cooperation is possible, there is also

an equilibrium in which cooperation doesn’t obtain. We will have nothing to say about what

determines whether the cooperative equilibrium or the uncooperative equilibrium arises when

both exist. Although this is an interesting question, and although we believe that our framework
7 In a different context (that of repeated games with perfect monitoring), Gilboa (1988) and Ben Porath

(1990) have expressed a related concern, distinguishing between the complexity associated with implementing a
repeated game strategy, and the complexity associated with computing best response automata. The concern
that we express is not computational complexity per se, but rather the ability to perform relevant computations
when precise knowledge of distributions is lacking.

8Although Aumann (1981) is not motivated by learning considerations, he mentions that assuming a bound
on the number of states of mind would “put a bound on the complexity a strategy can have, and enable an
analysis in the framework of finite games.” In particular, in the context of a repeated prisoners’ dilemma with
perfect observations, he reports an example in which only few strategies are compared. Although Kalai, Samet
and Stanford (1988) argue that the example lacks robustness, the path we follow is in the spirit of Aumann’s
example.
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makes it more plausible that players would learn to cooperate, this is beyond the scope of this

paper.

1.1. Strategy restrictions

The restrictions on the strategies available to players are a crucial element of our approach. We

are not interested in arbitrary restrictions, but rather, on restrictions that might arise naturally.

As suggested above, we shall first endow each player with a finite set of mental states,

restricting a player to behaving the same way for all histories of the game that lead to the same

mental state. In addition, we shall endow agents with transition functions that describe what

combinations of initial mental state, actions and signals lead to specific updated mental states.

Mental states and transitions jointly define what we call a mental system. Contrasting with

traditional approaches to bounded rationality in repeated games (i.e., the automaton literature),

we do not attempt to endogenize the mental system that would be optimal given the parameters

of the problem and behavior of other players. We do not think of a mental system as a choice

variable, but rather as a natural limitation of mental processing. For example, we might feel

cheated if we have put effort into a relationship and get signals that the other is not reciprocating.

We can think of those histories in which one feels cheated as leading to a mental state (U)pset,

and those histories in which one doesn’t feel cheated as leading to a mental state (N)ormal. In

principle, transitions could be a complex function of past histories, with evidence accumulating

in the background, up to the point where, suddenly, one feels cheated. In principle, whether one

feels cheated could also depend on some aspects of the game being played: in circumstances in

which it is extremely costly for my partner to put in effort, I may not become upset if he does

not seem to be doing so. However, a fundamental aspect of the transition function in our model

is that it is exogenous: the individual does not have control over it.
A mental system characterizes how signals are interpreted and processed. Modeling mental

systems as exogenous reflects our view that there are limits to peoples’ cognitive abilities, and

that evolution and cultural indoctrination should have more influence on one’s mental system

than the particular circumstances in which a specific game is played. Children experience a large

number of diverse interactions, and how they interpret those experiences are affected by their

parents and others they are (or have been) in contact with. A parent may tell his child that the

failure of a partner to have reciprocated in an exchange is not a big deal and should be ignored,

or the parent can tell the child that such selfish behavior is reprehensible and inexcusable.

Repeated similar instances shape how the child interprets events of a particular type. Even in

the absence of direct parental intervention, observing parental reactions to such problems shapes

the child’s interpretations.

Taking the mental system as exogenous has one obvious consequence: this restricts the
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strategies available to agents. The restriction may be drastic when there are only few mental

states. But there is still scope for strategic choices: even if upset, we assume that the agent

still has a choice of what action to choose (either defect or cooperate in the case of a prisoner’s

dilemma). In other words, while the mental system is assumed to be the same across a variety

of games, how one responds to being upset is assumed to be situational, and depend on the

particular game one is involved in, as well as on the behavior of the other player. If the cost
of cooperation is very small, one might be hesitant to defect when upset, and risk breaking a

relationship that is generally cooperative, but not hesitate when the cost is large.

In proposing restrictions on strategies available to agents, we are aware that other types of

restrictions could be proposed. One could for example argue that one’s mental state may be more

adequately represented by a continuous variable, rather than a discrete variable taking only two

values: Upset or Normal. One could also argue that how one plays is determined by the mental

state, and that agents have some control over what makes them Upset. Whatever description

one finds plausible, one central issue remains: what is the scope of strategic choice? What

aspects of choice do agents have control over? Our perspective is that this scope is limited, or at

the very least, the scope should capture the agent’s sophistication, i.e., his ability to tailor his

behavior to the specific environment that he faces. If one finds it plausible to describe strategies

using a continuum of mental states, then, one should also prescribe reasonable restrictions on

the mappings from states to actions that agents would plausibly compare.9

It is beyond the scope of this paper to analyze how the nature of the restriction imposed

affects the ability of agents to cooperate. But the spirit of the exercise we are proposing is this:

to understand which type of restrictions are consistent with cooperation, and for what type of

strategic environment.

Plan. We now turn to the formal model, which follows the steps described above. In Sections

2 and 3, our model assumes that there is occasionally a public signal that facilitates periodic

synchronization. We analyze the circumstances in which cooperation is possible and discuss the

robustness of our result. Next, in section 4 we drop the assumption of such a public signal and

show how synchronization can be accomplished without such a signal. In Section 5 we discuss

the results and possible extensions.

From a positive perspective, our model provides a simple and plausible theory of how players

manage to cooperate despite the fact that signals are private. Strategic choices are limited yet

they are sufficient to highlight (and isolate) the two key differences between games with public
9Strategy restrictions constitute a standard modelling device. One restricts actions or signals to few, thereby

capturing the agents’ inability to finely adjust behavior to the environment. The restrictions proposed here have
a similar objective, that of limiting an agent’s ability to adjust too finely the underlying structure of the problem
he faces. The novelty lies in considering more general classes of restrictions, i.e., not necessarily arising from
measurability conditions (See Compte and Postlewaite (2012) for a discussion of these issues and applications to
other strategic environments).
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and private monitoring: (a) the incentives to trigger punishments, which require that the cost

incurred from remaining cooperative while the other defects be sufficiently large (see section 2);

(b) the difficulty in recoordinating to cooperation once a punishment phase has been triggered.

As explained in Section 4, one solution is that players have asymmetric roles, with one being a

leader and the other a follower. When players have symmetric roles, sustaining cooperation will

require asymmetric responses to good and bad signals respectively, with good signals triggering

a stronger forgiving/redemption effect, as compared with the deterioration that bad signals

produce.

From a broader theoretical perspective, constraints on strategies act as partial commitment

(to using only strategies in that subset). Sources of partial commitment may be informational,

cognitive, or psychological. These constraints may stem from informational, cognitive, or psy-

chological considerations. They may also be interpreted as characterizing the agent’s degree

of sophistication. As explored in Section 2.6, the path proposed illustrates a tension between

sophistication and robustness: sophistication (i.e. a richer set of strategies) may be conducive

to higher cooperation level for some parameters of the games and specific strategies, but it

may decrease the chance of cooperation, i.e., the range of parameters for which these strategies

remain in equilibrium.

2. Model

Gift exchange.

There are two players who exchange gifts each period. Each has two possible actions available,

{D,C}. Action D is not costly and can be thought of as no effort having been made in choosing

a gift. In this case the gift will not necessarily be well received. Action C is costly, and can

be interpreted as making substantial effort in choosing a gift; the gift is very likely to be well-

received in this case. The expected payoffs to the players are as follows:

C D

C 1, 1 −L, 1 + L

D 1 + L,−L 0, 0

L corresponds to the cost of effort in choosing the “thoughtful” gift: you save L when no effort

is made in choosing the gift.

Signal structure.

We assume that there are two possible private signals that player i might receive, yi ∈ Yi =

{0, 1}, where a signal corresponds to how well player i perceives the gift he received. We assume
that if one doesn’t put in effort in choosing a gift, then most likely, the person receiving the
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gift will not think highly of the gift. We will refer to y = 0 as a “bad” signal and y = 1 as

“good”. We restrict attention to two signals in the example, but discuss how the analysis can

be extended to a continuum of signals in Section 3.5.

Formally,

p = Pr{yi = 0 | aj = D} = Pr{yi = 1 | aj = C}.

We assume that p > 1/2 and for most of the main text analysis we consider the case where p is

close to 1.

In addition to this private signal, we assume that at the start of each period, players receive

a public signal z ∈ Z = {0, 1}, and we let

q = Pr{z = 1}.

The existence of a public signal z facilitates our exposition but can be dispensed with, as we

demonstrate in section 4.

2.1. Strategies

As discussed above, players’ behavior in any period will depend on the previous play of the game,

but in a more restricted way than in traditional models. A player is endowed with a mental

system that consists of a finite set Si of mental states the player can be in, and a transition

function Ti that describes what triggers moves from one state to another: the function Ti

determines the mental state player i will be in at the beginning of period t as a function of his

state in period t− 1, his choice of action in period t− 1, and the outcomes of that period and
possibly previous periods. The restriction we impose is that a player may only condition his

behavior on his mental state, and not on finer details of the history.10 Given this restriction, all

mappings from states to actions are assumed admissible. Player i’s set of pure strategies is:

Σi = {σi, σi : Si −→ Ai}.

We will illustrate the basic ideas with an example in which the players can be in one of two

states U(pset) or N(ormal).11 The names of the two states are chosen to convey that at any time

player i is called upon to play an action, he knows the mood he is in, which is a function of the

10Note that our structure requires that players’ strategies be stationary: they do not depend on calendar
time. This rules out strategies of the sort “Play D in prime number periods and play C otherwise”, consistent
with our focus on behavior that does not depend on fine details of the history.
11The restriction to two mental states is for expository purposes. The basic insights that cooperation can be

sustained via intuitively plausible strategies continue to hold when agents have more finely delineated mental
states; we discuss this at the end of this section.
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history of (own) play and signals.12 Both Si and Ti are exogenously given, not a choice: a player
who has made an effort in his choice of gift but receives a bad signal may find it impossible not

to be upset, that is, be in state U .

The transition function for the example, which we will refer to as the leading example below,

is as in the following figure.

N U

y  = 0, z = 0i 

z = 1
Figure 1: Transition

This figure shows which combinations of actions and signals will cause the player to move from

one state to the other. If player i is in state N , he remains in that state unless he receives signals

y = 0 and z = 0, in which case he transits to state U . If i is in state U , he remains in that

state until he receives signal z = 1, at which point he transits to state N regardless of the signal

y.13 The mental system thus determines how observations are aggregated over time, hence how

histories are pooled: some histories lead to state N, others lead to state U.

The simple form of the transition function — that given the previous state and the action

taken, it depends only on the most recent signal — is for simplicity. In principle, the transition

function could depend on more than this most recent signal, for example, whether two of the

past three signals was “bad”, or it could also be stochastic. We discuss this at the end of this

section and consider stochastic transitions in Section 4.

Given the mental system above, our candidate behavior for each player i will be as follows,

σi(N) = C

σi(U) = D.

That is, player i plays C as long as he receives a gift that seems thoughtful, that is yi = 1, or

when z = 1. He plays D otherwise. Intuitively, player 1 triggers a “punishment phase” when
12For expository ease we assume that an individual’s payoffs depend on outcomes, but not on the state he is

in. The names that we use for the states suggest that the state itself could well be payoff relevant: whatever
outcome arises, I will be less happy with that outcome if I’m upset. Our framework can easily accommodate
state-dependent payoffs, and the qualitative nature of our conceptual points would be unchanged if we did so.
13For this particular example, transitions depend only on the signals observed, and not on the individual’s

action. In general, it might also depend on the individual’s action.
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he sees y1 = 0, that is, when he didn’t find the gift given to him appropriate. This punishment

phase ends only when signal z = 1 is received.

The public signal z gives the possibility of “resetting” the relationship to a cooperative mode.

If the signal z is ignored and the mental process is defined by

N U

y  = 0, z = 0i 

Figure 2: No “resetting”

then eventually, because signals are noisy, with probability 1 the players will get to state U

under the proposed strategy and this will be absorbing: there would be nothing to change

their behavior. The signal z allows for possible recoordination back to state N (and possibly

cooperation).

In our leading example, players stop being upset for exogenous reasons. Alternatively, in a

two-state mental system the players could move from state U back to state N after seeing a

good signal: you stop being upset as soon as you receive a nice gift.

Formally, players may be either in state N or in state U , but are endowed with the following

transition function.

N U

y  = 0i 

y  = 1i 

Figure 3: Forgiving transition

A player endowed with this alternative mental process, who would cooperate in N and defect

in U , would be following a TIT for TAT strategy.14

2.2. An illustrative experiment

Before continuing with the formal description of our model, it is useful to give a real-world

example to illustrate our idea of a mental system. Cohen et al. (1996) ran several experiments

14We show below that cooperation is essentially impossible if players have this mental process.

10



in which participants (students at the University of Michigan) were insulted by a confederate

who would bump into the participant and call him an “asshole”. The experiment was designed to

test the hypothesis that participants raised in the north reacted differently to the insult than did

participants raised in the south. From the point of view of our model, what is most interesting

is that the insult triggered a physical response in participants from the south. Southerners were

upset by the insult, as shown by cortisol levels, and more physiologically primed for aggression,

as shown by a rise in testosterone. We would interpret this as a transition from one mental state

to another, evidenced by the physiological changes. This transition is plausibly not a choice on

the participant’s part, but involuntary. The change in mental state that is a consequence of

the insult was followed by a change in behavior: Southerners were more likely to respond in an

aggressive manner following the insult than were northerners. Moreover, Southerners who had

been insulted were more than three times as likely to respond in an aggressive manner in a word

completion test than were Southerners in a control group who were not insulted. There was no

significant difference in the aggressiveness of Northerners who were insulted and those who were

not.

The physiological reaction to an insult — what we would think of as a transition from one

state to another — seems culturally driven: physiological reactions to insults were substantially

lower for northern students than for southern students.

Indeed, the point of the Cohen et al. (1996) paper is to argue that there is a southern

“culture of honor” that is inculcated in small boys from an early age. This culture emphasizes the

importance of honor and the defense of it in the face of insults. This illustrates the view expressed

above that the transition function in our model can be thought of as culturally determined.

2.3. Ergodic distributions and strategy valuation

For any pair of players’ strategies there will be an ergodic distribution over the pairs of actions

played.15 The ergodic distribution gives the probability distribution over payoffs in the stage

game, and we take the payoff to the players to be the expected value of their payoffs given this

distribution.

Formally, define a state profile s as a pair of states (s1, s2). Each strategy profile σ induces

transition probabilities over state profiles: by assumption each state profile s induces an action

profile σ(s), which in turn generates a probability distribution over signals, and hence, given the

transition functions Ti, over next period states. We denote by φσ the ergodic distribution over
states induced by σ. That is, φσ(s) corresponds to the (long run) probability that players are

15While in general the ergodic distribution may depend on the initial conditions, we restrict attention to
transition functions for which the distribution is unique.
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in state s.16

We associate with each strategy profile σ the value induced by the ergodic distribution. This

corresponds to computing discounted expected payoffs, and taking the discount to 1.17 We

denote by v(σ) this value (vector). Thus,

v(σ) =
X
s

g(σ(s))φσ(s)

where g(σ(s)) is the payoff vector induced by the strategy profile σ for state profile s.

Equilibrium.

Definition: We say that a profile σ ∈ Σ is an equilibrium if for any player i and any strategy

σ0i ∈ Σi,
vi(σ

0
i, σ−i) ≤ vi(σ).

This is a weaker notion of equilibrium than traditionally used in repeated games because of

the restriction on the set of strategies to be mappings from Si to Ai.18 ,19

2.4. Successful cooperation

We are interested in equilibria in which the players cooperate at least some of the time asymp-

totically. This requires players playing the strategy “play C in N and D in U”.20 We shall call

σ∗i this strategy for player i.

The strategy σ∗ ≡ (σ∗1, σ
∗
2) cannot be an equilibrium for all parameters p, q and L. For

example fix p and q. Then L cannot be too large. If L is sufficiently large it will pay a player

16Formally, define Qσ(s0, s) as the probability that next state profile is s0 when the current state is s. That is,
Qσ is the transition matrix over state profiles induced by σ. The vector φσ solves φσ(s

0) = sQσ(s0, s) φσ(s).
17When discounting is not close to one, then a more complex valuation function must be defined: when σ is

being played, and player i evaluates strategy σ0i as compared to σi, the transitory phase from φσ to φσ0i,σ−i
matters. Note however that the equilibria we will derive are strict equilibria, to they would remain equilibria
under this alternative definition for discount factors sufficiently close to 1.
18We restrict attention to pure strategies. However, our definitions can be easily generalized to accomodate

mixed actions, by re-defining the set Ai appropriately, and having it include mixed actions. However, the spirit of
our approach is that players should adjust play from experience, by checking from time to time the performance
of alternative strategies. So if mixed actions are to be allowed, only few of them, rather than the whole set
of mixed actions, should in our view be considered. We discuss the issue of mixed strategies in detail in the
discussion section below.
19Note that σi as defined should not be viewed as a strategy of the repeated game. A strategy of the repeated

game is a mapping from histories to actions. The strategy σi, along with the mental system (Si, Ti) would
induce a repeated game strategy, once the initial state is specified.
20This is because there cannot be an equilibrium where a player cooperates always, or when he plays D in N

and C in U . Indeed, when player 2 plays D in N and C in U , then, defecting always is the best response for
player 1 because it maximes the chance that player 2 cooperates.
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to deviate to “always defect”: the occasional reward of L to the deviating player will be more

than enough to compensate for causing the opponent to very likely switch from N to U .

Also, L cannot be too small. When a player gets a bad signal he is not sure if his opponent

is now in U and is playing D, or if the signal is a “mistake”. If it’s the latter case, playing D

will likely lead to a spell of noncooperation. If L is small, there is little cost to playing C to

avoid this; thus there is a lower bound on L that is consistent with the strategies above being

an equilibrium.

There is thus an upper bound and a lower bound on L. The upper bound reflects a standard

consideration, that gains from deviating from cooperation should not be too large; otherwise

they cannot be offset by punishment phases. The lower bound is specific to private monitoring

games: private signals can always be ignored, so incentives to trigger punishment have to be

provided; and such incentives obtain when the cost of remaining cooperative while the other

defects is too large. That basic intuition will be unaltered when we move to more mental states.

We now turn to a formal derivation of these two bounds, showing that they can be compat-
ible. We refer to φij as the long-run probability that player 1 is in state i ∈ {U,N} while player
2 is in state j when both players follow σ∗. By definition we have

v1(σ
∗
1, σ
∗
2) = φNN − LφNU + (1 + L)φUN .

By symmetry, φNU = φUN , so this expression reduces to

v1(σ
∗
1, σ
∗
2) = φNN + φUN = Prσ∗(s2 = N) ≡ φN .

Consider now the alternative strategy σD (respectively σC) where player 1 plays D (respectively

C) in both states U and N . Also call φDj (respectively φ
C
j ) the long-run probability that player

2 is in state j ∈ {U,N} when player 1 plays the strategy σD (σC) and player 2 plays σ∗2. We

have:

v1(σ
D, σ∗2) = (1 + L)φDN .

This expression reflects the fact that playing σD induces additional gains when the other is in

the normal state; but this has a cost because of an adverse effect on the chance that player 2 is

in the normal state (φDN < φN when p > 1/2). The expressions above imply that the deviation

to σD is not profitable when

L ≤ L̄ =
φN
φDN
− 1. (2.1)
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When player 1 plays σC , he obtains:

v1(σ
C , σ∗2) = φCN − LφCU .

This expression reflects the fact that playing σC changes the probability that player 2 is in N

(φCN > φN when p > 1/2) in a way that benefits player 1: player 2 is more likely to be in

N when player 1 always cooperates than when he follows σ∗, because he avoids triggering a

punishment/Upset phase when he receives bad signals by mistake. But this has a cost: he loses

L whenever player 2 is in U . The deviation to σC is thus not profitable when

L ≥ L ≡ φCN − φN
φCU

=
φU − φCU

φCU
=

φU
φCU
− 1 (2.2)

We turn to checking when these two bounds are compatible. First we consider p = 1/2 and

p close to 1.

(i) p = 1/2.

The distribution over player 2’s state is then independent of player 1’s strategy, so φCN =

φN = φDN , hence the two bounds coincide (and they are equal to 0).

(ii) p is close to 1.

Then mistakes are rare, so φN ' 1. When player 1 always defects, player 2 essentially

receives only bad signals. If in state N , this signal triggers a change to U with probability

(1− q). Since it takes on average 1/q periods to return to N , the fraction of the time player 2

spends in N when player 1 always plays D is 1
1+(1−q)/q = q, hence φDN ' q. This gives us the

upper bound

L̄ =
1

q
− 1.

Now assume player 1 follows σC . Mistakes occur with probability (1 − p), leading with

probability (1− q) to an Upset phase of length 1/q, hence φCU ' (1−p)(1− q)/q. When player 1
is following σ∗, he too reacts to bad signals, and in turn induces player 2 to switch to U (though

with one period delay). So φU is larger than φCU , but no larger than 2φ
C
U . Thus

L =
φU
φCU
− 1 ≤ 1

and the two bounds are compatible when q < 1/2.21

The following Proposition, which is obtained by using exact expressions for the long run

21This is a rough approximation of the upperbound. Exact computation for p close to 1 gives L = 1− q.
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distributions, shows that the inequalities are compatible for any p > 1/2 and any q ∈ (0, 1).

Proposition 1: For any p > 1/2 and any q ∈ (0, 1), we have 0 < L < L̄. Besides,

for any q, both L̄ and L are increasing with p.

Details of the computation are in the Appendix.22 We note here that the long-run distribu-

tions are easily derived. For example, the long run probability φNN satisfies

φNN = q + (1− q)p2φNN

(both players are in state N either because resetting to cooperation occurred, or because players

were already in state N and no mistake occurred). Solving, this gives φNN =
q

1−(1−q)p2 .

Finally, there is still a deviation that has not been checked: the possibility that player 1

chooses to play C in U and D in N . We show in the appendix that this deviation can only

be profitable when L is large enough. This thus imposes another upper bound on L, possibly

tighter than L̄. We check that for q not too large, that constraint is not tighter.

Proposition 2: There exists q̄ such that for any q < q̄, p ∈ (1/2, 1) and any
L ∈ (L, L̄), it is an equilibrium for both agents to play the strategy C in N and D

in U .

Our proof of Proposition 2 proposes a formal argument that does not pin down a particular

value for q̄. Direct (but tedious) computations however show that Proposition 2 holds with q̄ as

large as 0.4.

The shaded region in the graph below shows how the range of L for which cooperation is

possible varies as a function of p for the particular value of q equal .3.

22We thank an anonymous referee for suggesting the outline of the calculation.
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Figure 4: p− L combinations that allow cooperation for q = .3

Note that as long as the signal about the opponent’s effort is informative, there are some values

of L for which cooperation is possible. Both the lower bound and upper bound on such L’s are

increasing as p increases, as is the size of the interval of such L’s.

2.5. Tit-for-tat

A mental system generates restrictions on the set of strategies available to players and these

restrictions eliminate potentially profitable deviations. It is not the case, however, that seemingly

reasonable mental systems necessarily make cooperation possible. The Forgiving mental system

described above causes a player to be responsive to good signals: good signals make him switch

back to the normal state.

N U

y  = 0i 

y  = 1i 

Figure 3: Forgiving transition

Along with the strategy of playing C in N and D in U , this mental system induces a tit-for-tat

strategy. With such a mental system however, for almost all values of p the only equilibrium
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entails both players defecting in both states.

Proposition 3: If p 6= 1− 1
2(1+L) , and if each players’ mental process is as defined

above, then the only equilibrium entails defecting in both states.

We leave the proof of this proposition in the appendix, but give the basic idea here. To fix

ideas, consider the case where p is close to 1 and check that it cannot be an equilibrium that

both players follow the strategy σ that plays C in N and D in U . If both players follow σ, then

by symmetry, the induced ergodic distribution will put identical weight on (NN) and (UU): the

dynamic system has equal chances of exiting from (NN) as it has of exiting from (UU). As a

result, players payoff will be bounded away from 1.

Consider next the case where player 1 deviates and plays the strategy σC that plays C at all

states. There will be events where player 2 will switch to U and defect. However, since player 1

continues to cooperate, player 2 will soon switch back to N and cooperate. As a consequence, if

player 1 plays σC , his payoff will remain arbitrarily close to 1. Hence it cannot be an equilibrium

that both players play σ.

2.6. More mental states

The example illustrates how cooperation can be sustained via intuitively plausible strategies

when the strategies available to players are restricted. It also illustrates that in spite of the

restriction, and so long as the constant strategies are included in the set, it is not trivial to

support cooperation, highlighting two relevant economic constraints. This of interest however

only to the degree that the constraints imposed have some claim to realism. We find it compelling

that people use a coarse perception of the past. What is less compelling perhaps is that the

player is restricted to two mental states. The restriction to two mental states in the example,

however, is not crucial for the insight from the example.

Consider a possibly large set of mental states Si = (s1i , ..., s
n
i ), each state s

k
i reflecting an

increasing level of annoyance as k increases. The set of possible strategies expands dramatically

when the number of states rise, so it is natural in this case to focus on a limited set of strategies

— monotone (or threshold) strategies: if one cooperates at one level of annoyance, then one also

cooperates at mental states where one is less annoyed. Assume that when a player cooperates,

receiving a good signal moves him to a lower state if possible (from ski to s
k−1
i for k ≥ 2) with

probability h, while a bad signal moves him to a higher state (from sk to sk+1) with probability

h0. In addition, assume that when a player defects, his state does not change. Signal z = 1

moves the players back to state s1.23

23This assumption is not essential. Signal z = 1 could move players back to some intermediate state n0.
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We denote by σk0 the strategy that cooperates at all states sk for k ≤ k0, and by σ0

the strategy that defects at all states. The parameter k0 thus characterizes the threshold or

leniency level associated with strategy σk0 . We are interested in whether σk0 can be supported

as equilibrium behavior for some k0.

In the appendix, we show that when players restrict attention to threshold strategies the

central qualitative insights in the two state example above continue to hold. When a player

deviates by being more lenient, he triggers a punishment phase less often, but this is at the

expense of having to bear the cost of continuing to cooperate longer in the event the other has

already started a punishment phase. Hence L should not be too small; otherwise that deviation

will be profitable. And if a player deviates by being less lenient, he reacts more quickly to bad

signals (and saves L when the other has already started a punishment phase), but he triggers a

punishment phase more often (which is costly unless L is large). So L should not be too large

otherwise that deviation will be profitable.

In general, when there are many mental states, as we increase the set of strategies that players

are endowed with, the set of parameters for which any given strategy can be an equilibrium is

reduced (because there are more feasible deviations), but there are potentially more equilibrium

strategies.

As the cooperative threshold increases, there typically will be a level beyond which cooper-

ation is infeasible for most parameters. However, as long as threshold strategies constitute an
equilibrium, higher thresholds reduce the probability of entering a punishment phase, and hence

give higher welfare.

2.7. More complicated transition functions

Our leading example analyzes the case in which there are two states and transitions that only

depend on the most recent signal. The latter feature simplifies the computations of the ergodic

distributions, but our analysis and incentive conditions (2.1) and (2.2) would be unchanged

regardless of how complicated the transition functions are. Of course it is not the case that

any transition function is consistent with cooperation, as Proposition 3 illustrates. In general,

however, cooperation will be consistent with more complicated transition functions than that in

the leading example, with the set of parameters for which cooperation is possible depending on

the transition function.

3. Discussion of example

Our leading example illustrates how cooperation can be achieved when strategies are constrained.

Before going on, it is useful to compare this approach with the standard approach. We will then
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discuss extensions.

3.1. Ex ante and interim incentives

The distinction between ex ante and interim incentives is irrelevant in our framework. When a

strategy profile σ = (σ1, σ2) is played, the value that player i obtains is vi(σ) and it is computed

by considering the ergodic distribution over state profiles induced by σ. Neither the date at

which this computation takes place, nor the beliefs that player i might have about the other

player’s current mental state are specified.

We do not specify beliefs because we do not think of players as having common knowledge

over the signal structure nor over the mental systems. However as a modeler, we could very
well consider a particular history hi of the game for player i, define the belief that a player

would have after that history, and compute the continuation payoff vhii (σ) that player i obtains

if he follows σ from then on. Because we are considering arbitrarily patient players, however,

vhii (σ) is arbitrarily close to vi(σ). So if σ is a strict equilibrium in our sense, it will also be

a sequential equilibrium in the usual sense given the assumed strategy restrictions: after any

history hi, conforming to σ is optimal among all the strategies available to player i.

3.2. Pure versus mixed strategies

We have restricted our analysis to pure strategies. A legitimate question is whether our equilib-

rium strategy profile σ∗ remains an equilibrium when the set of strategies is expanded to allow

for mixed strategies. We allow below for mixed strategies in which a player puts weight at least

1− ε on a pure action, with ε small.24

The following Proposition shows that the equilibrium is indeed robust.

Proposition 4: Consider the set of strategies Σεi : Si → Aε
i where Aε

i is the set of

mixed strategies that put weight at least 1 − ε on a pure strategy. Call P ε the set

of parameters (q, p, L) for which σ∗ is a strict equilibrium. If (q, p, L) ∈ P 0 then

(q, p, L) ∈ P ε for ε small enough.

The proof is in the appendix. It is interesting to note that the proof of this Proposition

shows that looking at one-shot deviations generates strictly weaker restrictions than the ones we

consider. The reason is that checking for one-shot deviations only does not ensure that multiple

deviations are deterred.25

24One motivation for doing so is that this is a way to allow a player to deviate for a single period, very
infrequently so, thereby allowing us to effectively check for one-shot deviations.
25The reason for this non-equivalence is that a mental states pools many possible histories, so the structure of

each player’s decision problem becomes analogous to one with imperfect recall, as in the "absent-minded driver"’s
problem examined in Piccione and Rubinstein (1997).
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3.3. Robustness

The example was kept simple in a number of ways to make clear how cooperation could be

achieved when the set of strategies is restricted. Some of the simplifications are not particularly

realistic, but can be relaxed without affecting the basic point that cooperation is possible even

when agents get private signals if strategies are restricted. We pointed out in the introduction

that we are often unsure about the precise timing of actions and signals in repeated relationships

that we study. In Compte and Postlewaite (2008) we show that the assumption in this paper

that the players simultaneously choose actions in the basic stage game can be relaxed so that

their choices are sequential without altering the qualitative conclusions about cooperation. Thus

the equilibrium behavior that we derive is robust not only to changes in payoffs or monitoring

structure, but also to changes in the timing of decisions. That paper also shows that it is

straightforward to extend the analysis to problems in which agents are heterogeneous in costs

and benefits, and in which agents are heterogeneous in their monitoring technologies. In general,

agent heterogeneity typically restricts the set of parameters for which cooperation is possible.

In the initial example that we analyzed an agent received a binary signal about her partner’s

effort. This assumption makes the analysis more transparent but can easily be replaced with a

signal structure in which agents might receive signals in the unit interval, with higher signals

being stronger evidence that the partner put in effort. One may then modify each agent’s mental

system by defining a threshold in the signal set with signals below the threshold treated as “bad”

and signals above treated as “good”. With a mental system modified in this way, the qualitative
features of the equilibria we study are essentially unchanged with this signal structure.26

The extensions examined in Compte and Postlewaite (2008) are not meant only as a ro-

bustness check though. As mentioned in the introduction, our goal is a realistic description

of cooperation when people are strategic and the structure of the games they play varies. In

the face of the variety of the games we play, players’ mental processes should be viewed as the

linchpin of cooperation. These extensions are meant to capture the scope of a given mental

process.

4. Resetting the relationship to cooperation

A central issue in relationships where monitoring is private is ensuring that players have incen-

tives to trigger punishments. When monitoring is public, all players see the same signal, so there

26The difference is that we would no longer have p = Pr(y = 1 | C) = Pr(y = 0 | D). This assumption was
made for convenience, however (so that a single parameter describes the monitoring structure). In the more
general setup suggested here, we would have two parameters: p = Pr(y = 1 | C) and r = Pr(y = 0 | D). Also,
even for a priori symmetric monitoring structures, we could lose the symmetry of the distribution over binary
outcomes if players were to use a different threshold.
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is no problem in coordinating a punishment phase. The issue in private monitoring is as in our

example: when a player gets a bad signal it is equally likely that the other player may or may

not have already received a bad signal, making it a nontrivial decision for a player to begin a

punishment phase.

Another key issue is how do players get back to cooperation once a punishment has been

triggered. We finessed that second issue by assuming the public signal z that facilitated re-

coordination after a punishment period. We demonstrate next how players can coordinate a

move back to cooperation in the absence of a public signal. We first illustrate that the issue of

recoordination is not trivial. We examine the case where the players receive private signals zi,

i = 1, 2 (instead of a public signal z) and where players’ mental systems are as in our leading

example. With this simple mental system, cooperation can be supported if z1 and z2 are highly

correlated. We show however that when the signals zi are independently distributed cooperation

can no longer be supported. Finally, we show two alterations of that simple mental system that

allow cooperation and recoordination.

4.1. The difficulties of recoordination with private signals: An illustration.

Assume that each player i receives a private signal zi ∈ Zi = {0, 1} and consider the mental
process as before with the qualification that Ti is now defined over Zi rather than Z. (See figure

5 below.)

N U

y  = 0,           i 

z  =  1i 

z  =  0i 

Figure 5: Independent “resetting”

If the parameters (p, q, L) are such that incentives are strict in the public resetting signal

case, then by continuity, incentives will continue to be satisfied if the signals zi have the property

that Pr(zi = 1) = q and Pr(z1 = z2) close enough to 1.

The correlation between signals in this information structure cannot be too weak if coopera-

tion is to be possible however: if the two signals z1 and z2 are independent, cooperation cannot

be sustained in equilibrium when p is close to 1.

Proposition 5: Fix the mental system as above with z1 and z2 independent. For

any fixed q ∈ (0, 1), for p close enough to 1, the strategy profile where each player
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cooperates in N and defects in U cannot be an equilibrium.

We leave the proof to the Appendix.

In essence, recoordination is less likely because it requires two simultaneous signals z1 = 1

and z2 = 1, so incentives to trigger punishments are more difficult to provide: the upper and

lower bound on L are no longer compatible.

4.2. Resetting without a public signal

Public and nearly public signals can facilitate the coordination back to cooperation, but they are

not necessary. Slightly more complicated, but still plausible, mental systems can support coop-

eration when there is no correlation in players’ signals. We mention here two such possibilities

that are analyzed in detail in the appendix.

Modified Tit-for-Tat. The first example is a stochastic modification of the Tit-for-Tat exam-

ple discussed in Section 2.5. In that example, bad signals caused a transition from N to U and

a good signal caused a transition back to N . Cooperation was essentially impossible with that

mental system, but cooperation may be possible if the transitions are made stochastic. Suppose

the transitions from N to U are modified so that a bad signal only causes a transition to U with

probability h.27 Also suppose that the transitions from U to N are modified so that (i) with

probability b, player i forgets and transits to N independently of the signal received; and (i) if

still in U , a good signal triggers a transition back to N with probability k.28

Transitions are summarized in Figure 6:

N U

y

(b)

(h)

or y (k)

Figure 6: Modified Tit-forTat

For some configurations of parameters b, h and k, cooperation (play C in N and D in U) will

be an equilibrium for a broad set of values of p and L, demonstrating that robust cooperation

can be achieved without public signals.

Asymmetric mental systems. In the second example the two players have different mental

systems, each with three states N,U and F . Transitions from N to U are as before. Transitions
27Good signals do not cause such transitions.
28Thus, the mental system combines a feature of our initial mental system (exogenous transition to N , or

forgetfulness) and a feature of our Forgiving mental system (transition to N triggered by good signals).
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from U to F are stochastic, depending on independent private signals z1 and z2, zi ∈ {0, 1} and
Pr{zi = 1} = q. (the transitions away from U can be thought of as a player forgetting being

upset).

A key feature of the modified transition functions is that what triggers a change from F

to N differs between the two players. For player 2, such a transition requires receiving a good

signal, y2 = 1. For player 1, such a transition is automatic. These transitions are summarized

in Figure 7.

N U

F

y   =  0, z  = 01  

N U

F

y   =  0, z   = 02 

y  = 12 

Player 1 Player 2

z   =  11  z   =  12  

1  2 

Figure 7: “Successful” independent resetting

We show in the appendix that there is a range of parameters for which it is an equilibrium

strategy for player 1 to cooperate at N and F , and for player 2 to cooperate at N only.29

The key difference with the analysis in section 2 is that players no longer simultaneously

switch back to cooperation (because there is no public signal to support that). Rather, the

transition functions are as though one player acts as a leader in the relationship, and makes an

effort in choosing a gift (i.e., cooperate) as a signal that he understands that the relationship

has broken down and needs to be restarted.

Intuitively, incentives to play C at F are easy to provide for player 1: When player 1 is in F ,

the other player has a non negligible chance (approximately equal to 1/2 if q is small) of being

in F as well, hence playing C in F , though costly, generates a substantial chance of resetting

cooperation. In contrast, incentives to play C at U are much weaker: playing C at U would

also allow player 1 to reset cooperation in the event of a breakdown, but this would be a very

costly strategy as it requires player 1 to possibly cooperate during many periods before player

2 switches back to N .

In this example both players have three state mental systems. It is relatively simple to

demonstrate that one can obtain a similar outcome if player 1 has a two state mental system

29 It can also be demonstrated that the analysis is robust to changes in timing.
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of the forgetting kind, but with slower reactions.30 When player 2 has the mental system in

the current example, re-coordination is solved: when player 1 comes back to N , there is a high

chance that player 2 is already in F (because player 1 is slower to forget). Cooperation by player

1 then makes player 2 transit to N , and because player 1 does not react with probability 1 to

bad signals, there is a substantial chance that both stay in N .

While we do not attempt a characterization of the pairs of mental systems that can support

cooperation in this paper, we point this out to demonstrate that robust cooperation may be

possible even when a public signal is absent, and to suggest that asymmetric mental systems

could help recoordination.

5. Further discussion

Evolution of mental systems. We have taken the mental system — the states and transition

function — to be exogenously given. We did, however, suggest that one might think of these as

having been formed by environmental factors. In the long run, evolution might influence both

the set of mental states that are possible and the transition function. While beyond the scope of

this paper, it would be interesting to understand how evolution shapes mental systems. It is not

the case that evolution should necessarily favor more complicated mental systems; adding more

states to a mental system that allows cooperation might make cooperation then impossible, or

reduce the set of parameters under which cooperation is possible. The question of evolution is

discussed in more detail in Compte and Postlewaite (2009).

Extensions of the model.31 Our model has no explicit communication. In the three state

asymmetric example, Player 1 was exogenously designated as the leader in the relationship,

and one can interpret the decision to play C in state F as an implicit communication that the

relationship should restart. There, communication was noisy (because the other player does not

receive a good signal with probability one) and costly (it costs L, and L cannot be too small if

cooperation is to be achieved). One could mimic the implicit communication in this example

with explicit communication by allowing player 1 to send a message at the end of each period,

and by defining the transition induced by the message, if sent, on both players’ mental states.

Direct utility from being in a mental state. There is no utility attached to mental states in

our model; the states U and N are no more than collections of histories. It is straightforward to

extend our model to the case in which utility is attached to states, or to particular transitions

between states (going from upset to normal, for example).

30By slower reactions, we mean that he reacts to bad signals with probability smaller than 1, say 1/2, and
that he forgets (and transit back to N independently of the signal received) with a probability smaller than q,
say q/2.
31These extensions are discussed in more detail in Compte and Postlewaite (2009).
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Cooperation in larger groups. The basic structure and ideas in this paper can be extended

to the case of many agents who are randomly matched. As is intuitive, the range of parameters

for which cooperation is possible is smaller than in the two-person case because there is a longer

time between a player’s first defection and when he first meets opponents who do not cooperate

as a result of his defection.32

Social norms. We have restricted attention to play in a prisoner’s dilemma game to focus

attention on the central ingredients of our model. It is straightforward to extend the basic idea

to more general games, including asymmetric games. There may exist a “norm” that prescribes

acceptable behavior for a wide variety of problems, with agents receiving noisy signals about

whether their partner has followed the norm or not. Two-state mental systems will allow support

of the norm in a manner similar to the cooperation that is possible in the model we analyze in

this paper. Agents will follow a norm’s prescriptions when they are in the “normal” state, and

behave in their own self interest following observations that suggest their partner has violated

the norm.

5.1. Related literature

Although we have emphasized the difficulty in supporting cooperation when signals are private,

there are monitoring structures for which cooperation is relatively easy to sustain. This can be

the case when players’ signals are almost public: for any signal a player receives, the probability

that other players have received the same signal is close to one. Mailath and Morris (2002) then

show that if players’ strategies depend only on a finite number of past signals, the introduction

of the small amount of noise into the players’ signals doesn’t matter, because each can predict

very accurately what other players will next do.33 This is in sharp contrast to our example.

First, the signals that players get are not helpful in predicting the signal received by the other

player, and second, however accurate signals are, there are times (in state U for example) when

a player may not be able to accurately predict what his opponent will do.34

As mentioned in the introduction, one branch of the repeated game literature aims at taking

into account the complexity of strategies into account, assuming players use finite automata to

32There is a literature that analyzes the possibility of cooperation when players are repeatedly randomly
matched (Kandori (1992) and Okuno-Fujiwara and Postlewaite (1995)), but in these models, some public infor-
mation is or becomes available to players.
33When one moves away from almost public signal monitoring, beliefs about each other’s past histories may

begin to matter, and even checking that a candidate strategy profile is an equilibrium becomes difficult, even
when the strategy can be represented as an automaton with a small number of states. Phelan and Skrzypacz
(2006) address this issue. See also Kandori and Obara (2007) for a related treatment.
34This is because even as p gets close to 1, the probability Pr(s2 = U | s1 = U) = φσUU/(φ

σ
UU + φσUN ) remains

bounded away from 0 and 1.
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implement their strategies.35 The strategies that we consider can be represented as automata,

yet we differ from this literature in several respects. First, in this literature players choose both

the transition function and the mapping from states to actions, taking fixed only the number

of states available given the automaton’s size. In contrast, we take players’ transition functions

as fixed with players’ choices being only the mapping from states to actions.36 Second, to

our knowledge, this literature does not consider games with private monitoring. Third, this

literature used automata primarily as a tool to capture the complexity of a given strategy, while

we emphasize the restriction on the set of strategies as a modelling device to capture the players’

limited ability to tailor their behavior to the underlying parameters of the game. Fourth, our

modeling strategy takes more seriously mental systems as being a plausible, if crude, model of

the process by which players may interact, thereby shaping the restriction that we consider.

The model we study reduces to a dynamic game of a particular kind in which the underlying

state is the profile of mental states.37 Most of the literature in dynamic games assumes that

in each period, there is a state that is known to both players,38 while in our model the state is

partially known: each player only knows his own mental state.

Following Mobius (2001), there is an active literature on favor/gift exchange between two

players. The payoff structure of the stage game is analogous to the gift exchange model that

we consider, and in some of these models players may receive relevant private information (for

example about the opportunity to do favors as in Abdulkadiroglu and Bagwell (2007)).39 These

papers, however, assume public observations (i.e. whether a favor has been made) that allow

players to coordinate future play.

Finally, in a recent paper, Romero (2010) provides an interesting example which, at least

at a formal level, bears some resemblance to ours: there is a restriction to a limited set of

automata that each individual may consider using (hence a limited set of strategies), and one of

these automata (Win Stay Lose Shift) is an equilibrium in this restricted class.40 This strategy

facilitates recoordination when moves are simultaneous, but does poorly when players move in

sequence: it would typically generate long sequences of miscoordinations after a bad signal.41

35The complexity of a player’s strategy is defined to be the minimal size of a machine that can implement that
strategy. See, e.g., Abreu and Rubinstein (1988) and Ben-Porath (1993)
36There has also been work in single-person decision making problems that is analogous to the papers using

automata to capture complexity costs. See Wilson (2004) and Cover and Hellman (1970) for such models of
single-person decision problems and Monte (2007) for a strategic treatment of such models. While we take
agents’ transition functions as fixed, the focus of this literature is on characterizing the optimal transition rule.
37We thank Eilon Solan for this observation. Dynamic games have the property that the structure of the

continuation game varies with some underlying state. The dynamic nature of the game would be reinforced if we
attached payoffs to being in a particular mental state.
38However see Altman et al. (2005).
39Hauser and Hopenhayn (2008) analyze a similar model in continuous time.
40Win Stay Lose Shift is an automaton that plays C after Cy or Dy, and D otherwise.
41After an initial bad signal y (unfortunately) received by player 1, say, the most likely sequence of signals
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6. Appendix

Proof of Proposition 1
In what follows, we define µ = (1− q)/q.

Recall that φDj denotes the long run probability that player 2 is in state j when 1 defects at

all states and 2 plays σ∗2. We have: φ
D
N = q + (1− q)(1− p)φDN , implying that

φDN =
q

1− (1− q)(1− p)
=

1

1 + µp

Similarly we have φCN = q + (1− q)pφCN , implying that

φCN =
q

1− (1− q)p
=

1

1 + µ(1− p)

Recall that φijdenote the long-run probability that player 1 is in state i ∈ {U,N} while player
2 is in state j, under the candidate equilibrium σ∗. As we already explained, we have φNN =

q + (1− q)p2φNN implying that

φNN =
q

1− (1− q)p2
=

1

1 + µ(1− p2)

Next, we similarly have φUN = (1− q)(1− p)φUN + (1− q)p(1− p)φNN ; implying that

φUN =
µp(1− p)

1 + µp
φNN ,

hence:

φN = (1 +
µp(1− p)

1 + µp
)φNN = (

1 + µ(1− p2) + µ(2p− 1)
1 + µp

)φNN

= φDN (1 + µ(2p− 1)φNN)

These equalities allow us to derive the bounds L̄ and L as a function of µ and p (and to simplify

computations, φNN). Specifically,

We have:

L̄ =
φN
φDN
− 1 = µ(2p− 1)φNN .

would lead to persistent miscoordination:

player 1’s play and signals C y D y C y D y D y C y D
player 2’s play and signals C y D y D y C y D y D y
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We then use φN = φDN (1 + L̄) and L = 1−φN
1−φCN

− 1 to obtain, after some algebra:

L = L̄pφDN =
p

1 + pµ
L̄

This shows that L < L̄. Besides, since φNN increases with p, and since p
1+pµ increases with p,

both L̄ and L are increasing functions of p. Q.E.D.

Proof of Proposition 2
We already checked that for any L ∈ (L, L̄), neither σC nor σD are profitable deviations. To

complete the proof, we need to check that the strategy eσ that plays D in N and C in U is not

profitable. Call eφ the long run distribution over state profiles. We have:
v1(eσ, σ∗2) = (1 + L)eφNN +

eφUN − LeφUU .
Since v1(σ∗1, σ

∗
2) = φN , the deviation is not profitable whenever (letting eφN = eφNN +

eφUN ):
(eφNN − eφUU )L < φN − eφN

Lemma 1: φN > eφN
Intuitively, under eσ, player 1 plays D in N , triggering player 2 to exit from N . There is a

small counterbalancing effect because with probability (1− p)2 players may end up in UN and

play CC. However this is not enough to increase the long-run probability that 2 is in N above

φN .

Lemma 2: There exists q̄ such that for all q < q̄ and p ∈ (1/2, 1), eφNN < eφUU
Intuitively, since player 1 plays D in N , it is relatively easy to exit from NN to NU and

then to UU (the probability of such exit is bounded away from 0, uniformly on p ∈ (1/2, 1),
while exit from UU requires an occurrence of the resetting signal z.

Combining these two Lemmas implies that under the conditions of Lemma 2, eσ cannot be a
profitable deviation.

To check Lemma 1 formally, let us compute explicitly the long-run probabilities eφij . The
long run probability eφNN satisfies: eφNN = q + (1− q)p(1− p)eφNN implying that

eφNN =
q

1− (1− q)p(1− p)
=

1

1 + µ(1− p(1− p))
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where µ = (1− q)/q. We similarly have eφNU = (1− q)(1− p)eφNU +(1− q)p2eφNN implying that

eφNU =
µp2

1 + µp
eφNN ,

and eφUN = (1− q)peφUN + (1− q)p(1− p)eφNN , implying that

eφUN = µp(1− p)

1 + µ(1− p)
eφNN ,

Simple algebra permits to conclude that eφN = eφNN +
eφNU < φN . Q.E.D.

Proof of Proposition 3
Consider first the case where each player i follows the strategy σ∗i that plays C in N and

D in U , and let φ denote the long-run distribution over states induced by σ∗ = (σ∗1, σ
∗
2). By

symmetry, and since the dynamic system has equal chances of exiting from NN and of exiting

from UU , we have:

φNN = φUU and φNU = φUN (6.1)

The value to player 1 from following that strategy is thus

v1(σ
∗
1, σ
∗
2) = φNN + (1 + L)φUN − LφNU

= φNN + φUN =
1

2
(φNN + φUN + φNU + φUU )

=
1

2
.

Now if player 1 cooperates in both states (σC), player 2 will switch back and forth between states

N and U , spending a fraction p of the time in state N . The value to player 1 from following

that strategy is thus:

v(σC , σ) = p+ (1− p)(−L)

and it exceeds 1/2 if

p > 1− 1

2(1 + L)
.

If player 1 defects in both states (σD), player 2 will again switch back and forth between states

N and U , but now spending a fraction 1− p of the time in state N . The value to player 1 from

following that strategy is thus:

v(σD, σ) = (1− p)(1 + L)
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which exceeds 1/2 as soon as p < 1− 1
2(1+L) .

Finally, if player 1 follows the strategy bσ that plays D in N and C in U , then, as above,

the dynamic system has equal chances of exiting from (NN) as it has of exiting from (UU).

Therefore, equalities (6.1) hold for the profile (bσ, σ), and the value to player 1 from following bσ
thus remains equal to 1/2. It follows that unless p = 1− 1

2(1+L) , the strategy profiles (σ, σ) and

(bσ, σ) cannot be equilibria. Similar considerations show that the strategy profile (bσ, bσ) cannot
be an equilibrium. As a result, only strategy profiles that are constant across states may be in

equilibrium, hence the only equilibrium entails defecting in both states.

Many states with threshold strategies
Consider a possibly large set Si = (s1, ..., sn), and to fix ideas, define the following transition

over states. Assume that when a player cooperates, receiving a good signal moves him to a lower

state (from sk to sk−1) with probability h, while a bad signal moves him to a higher state (from

sk to sk+1) with probability h0. When a player defects, his state does not change. Signal z = 1

moves the players back to state s1.42

Denote by σk0 the strategy that cooperates at all states s
k for k ≤ k0, and by σ0 the strategy

that defects at all states. The parameter k0 thus characterizes the leniency level associated with

strategy σk0 . Note that the strategies σ0 and σn coincide respectively with σD and σC , and

that, given our assumed transition, the strategy σ1 could be derived with two states as before.

We are interested in whether σk0 can be supported as equilibrium behavior for some k0 not

small.

Fix k0 ≥ 1. For any k, the strategy profile (σk, σk0) induces an ergodic distribution over

actions profiles a ∈ A = {CC,CD,DC,DD}, which we denote by φk = {φak}a∈A. It will also
be convenient to denote by φ2,Ck the probability that 2 cooperates when (σk, σk0) is played:

φ2,Ck = φCCk + φDC
k . We shall say that players are in a cooperative phase when CC is being

played, and in a punishment phase otherwise. When CD or DC is being played, we shall say

that players are in a transition phase.43

We have:

v1(σk, σk0) = φCCk + (1 + L)φDC
k − LφCDk

= φ2,Ck − L(φCDk − φDC
k )

By symmetry, we have φDC
k0 = φCDk0 , so v1(σk0 , σk0) = φ2,Ck0 so equilibrium conditions write as

φ2,Ck − L(φCDk − φDC
k ) ≤ φ2,Ck0 for all k.

42This assumption is not essential. Signal z = 1 could move players back to some state n0.
43Thus a punishment phase starts by a transition phase (unless both start defecting simultaneously).
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From these conditions we thus obtain either lower or upper constraint on L. For example, if

player 1 adopts a more lenient strategy (k > k0), he triggers a punishment phase less often so

φ2,Ck > φ2,Ck0 , the equilibrium condition requires φCDk > φDC
k (transition phases should be on

average more costly to the more lenient player) and it imposes a lower bound on L.

Proof of Proposition 4
Consider parameters (p, q, L) for which σ∗ is a strict equilibrium. We investigate whether

player 1 has a profitable deviation when he puts weight at least 1 − ε on a pure strategy. If

player 1 deviates to a strategy nearby σC , he obtains a payoff nearby v1(σC , σ∗), so since σ∗ is

strict, these deviations cannot be profitable for ε small enough. The same argument applies to.

σD or eσ (the strategy that plays D in N and C in U).

So we only need to investigate the case where player 1 would put weight 1− ε on σ∗. Note

that because ε is arbitrarily small (so that deviations occur arbitrarily infrequently).

Case 1: deviations to σD.

We consider first deviations that put weight ε on σD. We call σε,D1 that strategy, and φε,d

the long run distribution over state profiles induced by (σε,D1 , σ∗2), so that φ
0,d = φ corresponds

to the long-run distribution induced by σ∗. The condition that σε,D1 is not profitable for ε small

enough writes as:

∂

∂α
[φα,dNN − Lφα,dNU + (1 + L)φα,dUN ] |α=0 +Lφ

0,d
N < 0, (6.2)

where the first term in this expression characterize the (adverse) effect on long-run probabilities

induced by the deviation, while the second characterizes the extra gain player 1 obtains from

playing D (these gains happen when player 2 is in the normal state.

Define p(α) = p(1 − α) + α(1 − p) = p − α(2p − 1). We have φα,dNN = q + (1− q)pp(α)φα,dNN ,

implying:

φα,dNN =
1

1 + µpp(α)

We also have φα,dNU = (1− q)[(1− p)φα,dNU + (1− p(α))pφα,dNN ], and φα,dUN = (1− q)[(1− p)φα,dUN +

(p(α))(1− p)φα,dNN ], thus implying:

φα,dNU =
µp(1− p(α))

1 + µp
φα,dNN and φα,dUN =

µp(α)(1− p)

1 + µp
φα,dNN .

It is immediate to see that ∂
∂α [φ

α,d
UN − φα,dNU ] |α=0< 0, so for (6.2) to hold, it is sufficient that

Lφ0,dN < −∂φ
α,d
N

∂α
|α=0 (6.3)
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Letting h(α) = µp(α)(1−p)
1+µp , so that φα,dN = (1 + h(α))φα,dNN , and h = h(0), we get

−∂φ
α,d
N

∂α
|α=0= −(1 + h)

∂φα,dNN

∂α
|α=0 −h0(0)φα,dNN

Using −h0(0) = µ(1−p)(2p−1)
1+µp and −∂φα,dNN

∂α = µp(2p− 1)(φα,dNN )
2, inequality (6.3) holds when

L < pµ(2p− 1)φNN + (1− p)µ(2p− 1) 1

1 + µp

Since 1
1+µp > 1

1+µp2 = φNN , expression (6.3) holds a fortiori when

L < p(µ(2p− 1)φNN = L̄

Case 2: Deviations to σC .

Using similar notations, the condition that σε,C1 is not profitable for ε small enough writes

as:

∂

∂α
[φα,cNN − Lφα,cNU + (1 + L)φα,cUN ] |α=0 −LφU < 0, (6.4)

where the first term in this expression characterizes the (now positive) effect on long-run prob-

abilities induced by the deviation, while the second characterizes the extra loss player 1 suffers

from playing C in events where player 2 is in state U .

It is immediate to check that

φα,cNN = φ0,cNN = φNN φα,cNU = φ0,cNU = φNU , and φα,cUN =
µp(1− p)

1 + µ(1− p(α))
φNN

Condition (6.4) is thus equivalent to

(1 + L)
∂φα,cUN

∂α
< LφU

Since ∂φα,cUN

∂α = µ(2p−1)
1+µp φ0,cUN , since φ

0,c
UN = µp(1−p)

1+µp φ0,cNN , since φU = 1 − φNN − φUN and since

1− φNN = µ(1− p2)φNN , one obtains

L > L ≡ µp(2p− 1)
(1 + µp)2 + µp(1 + µp2)

Simple algebra shows that for any p > 1/2 and µ > 0, L > L.44

44Recall that L = µp(2p−1)
(1+µp)(1+µ(1−p2)) .
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Finally, observe that for deviations to strategies that would put weight on all σC , σD andeσ, the first order effect for ε small is a combination of the effect characterized above, so these
deviations are not profitable either.

Proof of Proposition 5
Assume p is close to 1. Under σ, cooperation phases last 1

2(1−p)(1−q) on average (because

each player has a chance (1 − p)(1 − q) of switching to U in each period), and punishment

phases last 1
q2 (since only in events where both players get signal z = 1 at the same date that

recoordination on cooperation is possible).45 So for p close enough to 1, the value to following

the proposed strategy profile is 1.

Compared to the case where z is public, the incentives to play C at N are unchanged: if

player 1 plays D at both states, his opponent will be cooperative once every 1/q periods on

average, hence the condition

L < 1/q − 1 (6.5)

still applies.

Incentives to defect at U however are much harder to provide. As before, by cooperating at

U , player 1 ensures that a punishment phase is not triggered in the event state profile is UN .

But there is another beneficial effect. In the event state profile UU occurs, the punishment phase

that follows will last only 1/q periods (as simultaneous transition to N is no longer required).

So player 1 will only have incentives to defect at U if:

1

2
L(1/q) > 1/q2,

or equivalently

L > 2/q,

a condition that is incompatible with inequality (6.5).

Thus strategy σ cannot be an equilibrium: the length of punishment phases is substantially

reduced when playing C at U , which makes playing C at U an attractive option.

Recoordination with stochastic tit-for-tat

The analysis in Section 2.4 applies: following the candidate equilibrium strategy σ∗ induces a

long run payoff equal to φN ; deviating to σ
D generates a payoff equal to (1+L)φDN , and deviating

45Omitting terms comparable to (1 − p), this is true whether the current state profile is (U,U), (U,N) or
(N,U).
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to σC generates a payoff equal to φCN −LφCU . Deterring these deviations thus, as before, requires:

L =
φU
φCU
− 1 < L < L̄ =

φN
φDN
− 1.

The difference with Section 2.4 however is that the long run probabilities take different val-

ues (they are functions of p, b, k and h), and these long-run probabilities are more difficult to

compute. We state here our main result:

Proposition 6: L < L̄ if and only if h < (1− b)k.

Intuitively, the higher k and the smaller h, the easier it is to recoordinate on state NN from

state UU . Indeed, once one player, say player 1, switches to N and cooperates, the other player

will be likely to switch to N in the next period if k is large enough. If h is high as well however,

then it is quite possible that the player who has initiated a move back to cooperation (i.e. player

1) returns to state U before player 2 switches to N , and recoordination does not occur.

In the following graph, the (p, L) for which the two inequalities above are compatible when

h = b = 0.1 and k = 0.9 are those between the two curves:

0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

Note that this graph shows the parameters for which a player does not gain by deviating to

the strategy σC that plays C at all states, or to the strategy σD that plays D at all states. For

these parameters, σ∗ is an equilibrium if only threshold strategies are considered. If we include

the possibility that a player deviates to the strategy σDC that plays C at U and D at N , then

another (possibly tighter) upper constraint must hold. Intuitively, σDC is a “manipulative”

strategy in which a player cooperates to induce the other cooperate, and then defects, hoping

that the other would not react too quickly: this strategy may be profitable precisely when the

other is quickly forgiving (k high), and slow to react to bad signals (h small). The following

figure adds this new upper constraint to the set of parameters for which σ∗ is an equilibrium.
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The figure is again drawn for b = h = 0.1 and k = 0.9.
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The middle curve is the new upper constraint that must be satisfied to ensure that σDC is not

a profitable deviation.

Computations: Proposition 6 is an immediate corollary of a stronger result which we now

state, and which applies to any mental system where transitions depend only on the signal

received. Any mental system induces probabilities that a given player will switch from one state

to the other, as a function of the action (C or D) played by the other player. For transitions

from N to U , we let:

pC = Pr(N → U | C) and pD = Pr(N → U | D)

and for transitions from U to N :

qC = Pr(U → N | C) and qD = Pr(U → N | D).

The following proposition holds:

Proposition 7. Assume pD > pC and qC > qD. Then L < L̄ if and only if

pC + qC > pD + qD.

When pD > pC and qC > qD, the mental system has a Tit-for-Tat flavor: a player tends to

become upset when his opponent defects, and forgiving when his opponent cooperates. Propo-

sition 7 says that a necessary condition for such a mental system to support cooperation is

that forgiveness induced by cooperation (qC − qD) is stronger than the deterioration induced

by defection (pD − pC). Proposition 6 is a corollary because given our assumption about the
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mental system, we have:

pC = (1− p)h and pD = ph

qC = b+ (1− b)pk and qD = b+ (1− b)(1− p)k

so the conditions of Proposition 7 are satisfied.

Proof: We need to compute φDN , φ
C
N and φN and check whether and when ∆ ≡ φN (1 −

φCN )− (1− φN )φ
D
N is positive. The long-run probabilities φCN and φDN are easy to compute. We

have φCN = (1− pC)φ
C
N + qC(1− φCN ), which yields:

φCN =
qC

qC + pC
.

Similarly, we have φDN = (1− pD)φ
D
N + qD(1− φDN ), implying that:

φDN =
qD

qD + pD
.

To compute φN = φNN +φUN , we have to find a probability vector φ = (φNN , φNU , φUN , φUU )

which is fixed point of:

φ = φ.M where M =

⎛⎜⎜⎜⎜⎝
(1− pC)

2 (1− pD)qC qC(1− pD) (qD)
2

(1− pC)pC (1− pD)(1− qC) pDqC qD(1− qD)

pC(1− pC) pDqC (1− pD)(1− qC) (1− qD)qD

(pC)
2 pD(1− qC) pD(1− qC) (1− qD)

2

⎞⎟⎟⎟⎟⎠ .

It can be verified that for all (pC , pD, qC , qD) satisfying the conditions of the proposition, ∆ has

the same sign as

(pC + qC − pD − qD)[(pD − pC)qC + pD(qC − qD)].

Recoordination with asymmetric mental systems
In this example the two players have different mental systems, each with three statesN,U and

F . Transitions from N to U are as before. Transitions from U to F are stochastic, depending on

independent private signals z1 and z2, zi ∈ {0, 1} and Pr{zi = 1} = q. For player 2, a transition

from F to N requires receiving a good signal, y2 = 1 while for player 1, such a transition is

automatic. These transitions are summarized in Figure 7.
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N U

F

y   =  0, z  = 01  

N U

F

y   =  0, z   = 02 

y  = 12 

Player 1 Player 2

z   =  11  z   =  12  

1  2 

Figure 7: “Successful” independent resetting

Our candidate equilibrium strategy pair is as follows. For player 1,

σ1(N) = C,σ1(U) = D and σ1(F ) = C

and for player 2,

σ2(N) = C, σ2(U) = D,σ2(F ) = D.

Intuitively, when the state profile is (N,N), both players cooperate until one player receives a

bad signal and triggers a punishment phase. Once a punishment phase starts, two events may

occur: Either player 2 moves to state F before or at the same time player 1 moves to F . In

that case, the most likely event is that players will coordinate back to (N,N) (with probability

close to 1).46 Alternatively, player 1 moves to state F before player 2 moves to state F . In that

case, the most likely event is that players switch to (N,F ) or (N,U), and then back to state U

for player 1, hence coordination back to (N,N) will take longer.

We show here the calculations of the set of q − L combinations that are consistent with

cooperation when p is close to 1. We illustrate the main transitions for the state pairs for the

case where p is close to 1 and q is small, but not too small:

0 < 1− p¿ q ¿ 1.

46This is because once in state profile (F,F ), player 1 plays C and moves to N , while player 2 receives (with
probability close to 1) signal y2 = 1, hence also moves to N .
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F,F (q)
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(1-p)

(~1)

(~1)

Figure 8: Transition of mental state

As mentioned above, we restrict attention in this example to this case; for the more general case

where q is larger, tedious computations are required. We only report graphically the set of q−L
combinations for which the proposed strategy profile is an equilibrium (as shown in Figure 8).

Analysis:

When players follow the proposed strategy profile, they alternate between long phases of

cooperation (of length 1/π with π ' 2(1 − p)), and relatively short punishment phases (of

approximate length 2/q).

Incentives for player 1 at U . Under the proposed equilibrium strategy profile, the expected

loss that player 1 incurs (compared to being in the cooperative phase) until coordination back

to cooperation occurs is approximately 2/q.47

When player 1 cooperates at U , he avoids triggering a punishment phase in the event (U,N),

so the occurrences of punishment phases are reduced by 1/2. In addition, punishment phases

are shorter, as coordination back to cooperation occurs as soon as player 2 transits to F (hence

punishment length is reduced to 1/q), however they are more costly per period of punishment,

as player 1 loses an additional L in each period (compared to the case where he would play D).

The condition is thus:
2

q
<
1

2
(
1

q
)(1 + L)

47The exact cost is larger because before recoordination actually occurs, there is at least one period (and
possibly more periods in case of failed attempts) in which player 1 cooperates while player 2 still defects. It can
be shown that a better approximation of the cost is 2/q + 1

2
+ 3(1 + L).
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or equivalently:

L > 3.

Incentives of player 2 at N : Defection generates short periods of cooperation (cooperation

lasts 2 periods), during which player 2 gains an additional payoff of L, and long periods of

punishment (that last 1/q periods) during which player 2 looses 1. Hence the condition

2L <
1

q
.

We omit the verification of the other incentives, which are easily checked and automatically

satisfied. QED

In the case that p is close to 1, cooperation can be sustained for the q and L combinations

in the shaded region in Figure 9.
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Figure 9: Values of q and L for which cooperation is possible (for p close to 1).

The key difference with the previous analysis is that players no longer simultaneously switch

back to cooperation (because there is no public signal to allow that). Intuitively, incentives to

play C at F are easy to provide for player 1: When player 1 is in F , the other player has a non

negligible chance (approximately equal to 1/2 if q is small) of being in F as well, hence playing

C in F , though costly, generates a substantial chance of resetting cooperation. In contrast,

incentives to play C at U are much weaker: playing C at U would also allow player 1 to reset

cooperation in the event of a breakdown, but this would be a very costly strategy as it requires

player 1 to possibly cooperate during many periods before player 2 switches back to N .
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