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Abstract

It is well-known that the ability of the Vickrey-Clarke-Groves (VCG)
mechanism to implement e¢ cient outcomes for private value choice prob-
lems does not extend to interdependent value problems. When an agent�s
type a¤ects other agents�utilities, it may not be incentive compatible for
him to truthfully reveal his type when faced with CGV payments. We
show that when agents are informationally small, there exist small modi�-
cations to CGV that restore incentive compatibility. We further show that
truthful revelation is an approximate ex post equilibrium. Lastly, we show
that in replicated settings aggregate payments su¢ cient to induce truthful
revelation go to zero.
Keywords: Auctions, Incentive Compatibility, Mechanism Design, In-

terdependent Values, Ex Post Incentive Compatibility
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1. Introduction

There is a large literature aimed at characterizing the social choice functions that
can be implemented in Bayes Nash equilibria. This literature typically takes
agents� information as exogenous and �xed throughout the analysis. For some
problems this may be appropriate, but the assumption is problematic for others.
A typical analysis, relying on the revelation principle, maximizes some objective
function subject to an incentive compatibility constraint requiring that truthful
revelation be a Bayes-Nash equilibrium. It is often the case that truthful revela-
tion is not ex post incentive compatible, that is, for a given agent, there are some
pro�les of the other agents�types for which the agent may be better o¤ by mis-
reporting his type than by truthfully revealing it. Truthful revelation, of course,
may still be a Bayes equilibrium, because agents announce their types without
knowing other agents�types: choices must be made on the basis of their beliefs
about other agents�types. The assumption that agents�information is exogenous
can lead to a di¢ culty: if truthful revelation is not ex post incentive compatible,
then agents have incentives to learn other agents�types. To the extent that an
agent can, at some cost, learn something about the types of other agents, then
agents�beliefs at the stage at which agents actually participate in the mechanism
must be treated as endogenous: if an agent can engage in preplay activities that
provide him with some information about other agents�types, then that agent�s
beliefs when he actually plays the game are the outcome of the preplay activity.
A planner who designs a mechanism for which truthful revelation is ex post

incentive compatible can legitimately ignore agents�incentives to engage in espi-
onage to discover other agents�types, and consequently, ex post incentive compat-
ibility is desirable. The Vickrey-Clarke-Groves- mechanism (hereafter VCG)1 for
private values environments is a classic example of a mechanism for which truth-
ful revelation is ex post incentive compatible. For this mechanism, each agent
submits his or her valuation. The mechanism selects the outcome that maximizes
the sum of the agents� submitted valuations, and prescribes a transfer to each
agent. These transfers can be constructed in such a way that it is a dominant
strategy for each agent to reveal his valuation truthfully. Cremer and McLean
(1985) (hereafter CM) consider a similar problem in which agents have private
information, but interdependent valuations; that is, each agent�s valuation can
depend on other agents�information. They consider the mechanism design prob-
lem in which the aim is to maximize the revenue obtained from auctioning an

1See Clarke (1971), Groves (1973) and Vickrey (1961).
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object. They analyze revelation games in which agents announce their types, and
construct special transfers di¤erent from those in the VCG mechanism. Because
each agent�s valuation depends on other agents�announced types, truthful rev-
elation will not generally be a dominant strategy in the CM mechanism. They
show, however, that under certain conditions2 truthful revelation will be ex post
incentive compatible, i.e., the truth is an ex-post Nash equilibrium.
There has recently been renewed interest in mechanisms for which truthful rev-

elation is ex post incentive compatible. Dasgupta and Maskin (2000), Perry and
Reny (2002) and Ausubel (1999) (among others) have used the solution concept
in designing auction mechanisms that assure an e¢ cient outcome. Chung and
Ely (2001) and Bergemann and Morris (2003) analyze the solution concept more
generally. These papers (and Cremer and McLean), however, essentially restrict
attention to the case in which an agent�s private information is one dimensional3,
a serious restriction for many problems. Consider, for example, a problem in
which an oil �eld is to be auctioned, and each agent may have private informa-
tion about the quantity of the oil in the �eld, the chemical characteristics of the
oil, the capacity of his re�nery to handle the oil and the demand for the re�ned
products in his market, all of which a¤ect this agent�s valuation (and potentially
other agents�valuations as well). While the assumption that information is single
dimensional is restrictive, Jehiel et al. (2006) show that for general mechanism de-
sign problems with interdependent values and multidimensional signals, for nearly
all valuation functions, truthful revelation will be an ex post equilibrium only for
trivial outcome functions.
Thus, except for extreme cases, we can hope for ex post equilibria for interde-

pendent value problems only in the case of single dimensional information that .
But even in the single dimensional case, there are di¢ culties. Most work on mech-
anism design in problems with asymmetric information begins with utilities of the
form ui(c; ti; t�i), where c is a possible outcome, ti represents agent i�s private
information and t�i is a vector representing other agents�private information. In
the standard interpretation, ui is a reduced form utility function that de�nes the
utility of agent i for the outcome c under the particular circumstances likely to
obtain given the agent�s information. In the oil �eld problem above, for example,
an agent�s utility for the oil may depend on (among other things) the amount and
chemical composition of the oil and the future demand for oil products, and the

2The conditions are discussed in section 3.
3Formally, what is necessary is that agents�types are ordered in a particular way that typically

fails in multidimensional information settings.
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information of other agents will a¤ect i�s (expected) value for the �eld insofar as
i�s beliefs about the quantity and composition of the oil and the demand for oil
products are a¤ected by their information. In this paper, we begin from more
primitive data in which i has a utility function vi(c; �; ti) where � is a complete
description of the state of nature and ti represents his private information. For
the oil example, � would include those things that a¤ect i�s value for the oil �
the amount and composition of the oil, the demand for oil, etc. The relation-
ship between agents�private information and the state is given by a probability
distribution P over � � T . This formulation emphasizes the fact that the infor-
mation possessed by other agents will a¤ect agent i precisely to the extent that
the information of others provides information about the state of nature.
The reduced form utility function that is normally the starting point for

mechanism design analysis can be calculated from this more primitive structure:
u(c; t) � ��vi(c; �; t)P (�jt). Most work that employs ex post incentive compati-
bility makes additional assumptions regarding the reduced form utility functions
ui. It is typically assumed that each agent�s types are ordered, and that agents�
valuations are monotonic in any agent�s type. Further, it is assumed that the util-
ity function of each individual agent satis�es a classic single-crossing property and
that, across agents, their utilities are linked by an �interagent crossing property.�
This latter property requires that a change in an agent�s type from one type to a
higher type causes his valuation to increase at least as much as any other agent�s
valuation. We show that the conditions on the primitive data of the problem that
would ensure that the reduced form utility functions satisfy these crossing proper-
ties are stringent; the reduced form utility functions associated with very natural
single dimensional information problems can fail to satisfy these properties.
In summary, while ex post incentive compatibility is desirable, nontrivial mech-

anisms for which truthful revelation is ex post incentive compatible fail to exist
for a large set of important problems. We introduce in this paper a notion of weak
"�ex post incentive compatibility: a mechanism is weakly "�ex post incentive
compatible if truthful revelation is ex post incentive compatible with conditional
probability at least 1� ". If truthful revelation is weakly "-ex post incentive com-
patible for a mechanism, then the incentive that agents have to collect information
about other agents is bounded by " times the maximal gain from espionage. If
espionage is costly, a mechanism designer can be relatively comfortable in tak-
ing agents�beliefs as exogenous when " is su¢ ciently small. We show that the
existence of mechanisms for which there are weakly "-incentive compatible equi-
libria is related to the concept of informational size introduced in McLean and
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Postlewaite (2002, 2004). When agents have private information, the posterior
probability distribution on the set of states of the nature � will vary depending
on a given agent�s type. Roughly, an agent�s informational size corresponds to the
maximal expected change in the posterior on � as his type varies, �xing other
agents�types. We show that for any ", there exists a � such that, if each agent�s
informational size is less than �, then there exists an e¢ cient mechanism for which
truthful revelation is a weak "-ex post incentive compatible equilibrium.
The weakly "-ex post incentive compatible mechanism that is used in the proof

of the result elicits agents�private information and employs payments to agents
that depend on their own announcement and the announcements of others. The
payments employed are nonnegative and are small when agents are information-
ally small. When there are many agents, each will typically be informationally
small, and hence, the payment needed to elicit truthful revelation of any agent�s
private information will be small. But the accumulation of a large number of small
payments is potentially large. We show, however, that for a replica problem in
which the number of agents goes to in�nity, agents�informational size goes to zero
exponentially and the aggregate payments needed to elicit the private information
necessary to ensure e¢ cient outcomes goes to zero.
We describe the model in the next section and provide a brief history of ex

post incentive compatibility in Section 3. In Section 4 we introduce a generalized
VCG mechanism and, in Lemma 1, we identify a property of the generalized VCG
mechanism that is fundamental to all of our results. In section 5, we present the
relationship between ex -post incentive compatibility and nonexclusive informa-
tion and extend these observations to the relationship between approximate ex
post incentive compatibility and small informational size in Section 6. In Section
7, we demonstrate that, when agents have su¢ ciently small informational size the
generalized VCG mechanism can be modi�ed by adding small positive transfers
so as to induce truthful revelation as an approximate ex post incentive compati-
ble and an exact Bayes-Nash equilibrium. This result shows that the additional
transfers required to e¤ect exact interim incentive compatibility are small when
agents are informationally small but does not address the size of the sum of these
transfers. In Section 8, we show that, in a "conditionally independent" informa-
tional framework, this sum becomes small as the number of agents increases. The
paper concludes with the discussion Section 9.
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2. The Model

Let � = f�1; ::; �mg represent the �nite set of states of nature and let Ti denote
the �nite set of types of player i. Let C denote the �nite set of social alternatives.
Agent i0s payo¤ is represented by a nonnegative valued function vi : C���Ti !
R+: We will assume that there exists c0 2 C such that vi(c0; �; ti) = 0 for all
(�; ti) 2 � � Ti and that there exists M > 0 such that vi(�; �; �) � M for each i.
Since vi takes on only nonnegative values, c0 is the �uniformly worst� outcome
for all agents. We will say that vi satis�es the pure common value property if vi
depends only on (c; �) 2 C �� and the pure private value property if vi depends
only on (c; ti) 2 C � Ti: Our notion of common value is more general than that
typically found in the literature in that we do not require that all agents have
the same value for a given decision. According to our de�nition of pure common
value, an agent�s �fundamental�valuation depends only on the state �; and not
on any private information he may have.
Let (e�;et1;et2; :::;etn) be an (n+1)-dimensional random vector taking values in

�� T (T � T1 � � � � � Tn) with associated distribution P where

P (�; t1; ::; tn) = Probfe� = �;et1 = t1; :::;etn = tng:
We will make the following full support assumptions regarding the marginal distri-
butions: P (�) =Probfe� = �g > 0 for each � 2 � and P (ti) =Probfeti = tig > 0 for
each ti 2 Ti: If K is a �nite set, let �(K) denote the set of probability measures
on K. The set of probability measures in �(� � T ) satisfying the full support
conditions will be denoted ��

��T : If P 2 ��
��T ; let T

� := ft 2 T jP (t) > 0:g (The
set T � depends on P but we will suppress this dependence to keep the notation
lighter.)
In many problems with di¤erential information, it is standard to assume that

agents have utility functions ui : C � T ! R+ that depend on other agents�
types. It is worthwhile noting that, while our formulation takes on a di¤erent
form, it is equivalent. Given a problem as formulated in this paper, we can de�ne
ui(c; t�i; ti) =

P
�2� [vi(c; �; ti)P (�jt�i; ti)] : Alternatively, given utility functions

ui : C � T ! R+; we can de�ne � � T and de�ne vi(c; t; t0i) = ui(c; t�i; t0i): Our
formulation will be useful in that it highlights the nature of the interdependence:
agents care about other agents�types to the extent that they provide additional
information about the state �. Because of the separation of an agent�s funda-
mental valuation function from other agents�information, this formulation allows
an analysis of the e¤ects of changing the information structure while keeping an
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agent�s fundamental valuation function �xed.
A social choice problem is a collection (v1; ::; vn; P ) where P 2 ��

��T : An
outcome function is a mapping q : T ! C that speci�es an outcome in C for each
pro�le of announced types. We will assume that q(t) = c0 if t =2 T �, where c0 can
be interpreted as a status quo point. A mechanism is a collection (q; x1; ::; xn)
(written simply as (q; (xi)) where q : T ! C is an outcome function and the
functions xi : T ! R are transfer functions. For any pro�le of types t 2 T �; let

v̂i(c; t) = v̂i(c; t�i; ti) =
X
�2�

vi(c; �; ti)P (�jt�i; ti):

Although v̂ depends on P , we suppress this dependence for notational simplicity
as well. Finally, we make the simple but useful observation that the pure private
value model is mathematically identical to a model in which j�j = 1 where jKj
denotes the cardinality of a �nite set K.
Finally, we make the following important notational convention. Throughout

the paper, jj � jj2 will denote the 2-norm and, for notational simplicity, jj � jj will
denote the 1-norm. The real vector spaces on which these norms are de�ned will
be clear from the context.

De�nition: Let (v1; ::; vn; P ) be a social choice problem. Amechanism (q; (xi))
is:
ex post incentive compatible if truthful revelation is an ex post Nash equilib-

rium: for all i 2 N , all ti; t0i 2 Ti and all t�i 2 T�i such that (t�i; ti) 2 T �;
v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti) � v̂i(q(t�i; t0i); t�i; ti) + xi(t�i; t0i):

strongly ex post incentive compatible if truthful revelation is an ex post dom-
inant strategy equilibrium: for all i 2 N , all ti; t0i 2 Ti , all ��i 2 T�i and all
t�i 2 T�i such that (t�i; ti) 2 T �;

v̂i(q(��i; ti); t�i; ti) + xi(��i; ti) � v̂i(q(��i; t0i); t�i; ti) + xi(��i; t0i):
interim incentive compatible if truthful revelation is a Bayes-Nash equilibrium:

for each i 2 N and all ti; t0i 2 TiX
t�i2T�i

:(t�i;ti)2T �

[v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti)]P (t�ijti)

�
X

t�i2T�i
:(t�i;ti)2T �

[v̂i(q(t�i; t
0
i); t�i; ti) + xi(t�i; t

0
i)]P (t�ijti)
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ex post individually rational if

v̂i(q(t); t) + xi(t) � 0 for all i and all t 2 T �:

feasible if for each t 2 T �; X
j2N

xj(t) � 0:

balanced if for each t 2 T �; X
j2N

xj(t) = 0:

outcome e¢ cient if for each t 2 T �;

q(t) 2 argmax
c2C

X
j2N

v̂j(c; t).

Clearly, strong ex-post IC implies ex post IC and ex post IC implies interim
IC. If, for all i, v̂i(c; t) does not depend on t�i; then the notions of ex post domi-
nant strategy equilibrium and ex post Nash equilibrium coincide. In this private
value setting, the two de�nitions actually reduce to the usual notion of domi-
nant strategy equilibrium. There is, of course, a de�nition of dominant strategy
equilibrium that is appropriate for the actual Bayesian game. This (interim)
equilibrium concept is weaker than ex post dominant strategy equilibrium and
stronger than Bayes-Nash equilibrium, but is not logically nested with respect to
ex-post Nash equilibrium. For a discussion of the relationship between ex post
dominant strategy equilibrium, dominant strategy equilibrium, ex post Nash equi-
librium and Bayes-Nash equilibrium, see Cremer and McLean (1985) (henceforth,
CM (1985)).

3. Monotonicity and Implementation with Interdependent
Values

As mentioned in the introduction, the typical modeling approach to mechanism
design and implementation in quasilinear settings with interdependent valuations
begins with a collection of functions ui : C � T ! R as the primitive objects of
study. In the typical problem, the elements of each Ti are totally ordered and
two �crossing�properties (see below) are imposed. For concreteness, consider an

8



auction for a single indivisible object when agents�valuations for the object exhibit
interdependency. In this problem, one is typically interested in constructing an
ex post e¢ cient auction that awards the object to the bidder who values it most.
While not usually stated explicitly, the typical approach to the ex post e¢ cient
auction problem actually consists of two distinct parts. In the �rst step, an
�interagent crossing condition�(e.g., assumption 3A in CM (1985) is used to show
that ex post e¢ cient allocation of the object is monotone with respect to agents�
types: the probability that agent i is awarded the object when he is of type ti is
not more than the probability that agent i is awarded the object when he is of type
t0i > ti: The second step consists of showing that monotonicity of the allocation rule
established in step 1, together with the usual �single crossing property�, allows one
to explicitly construct an ex post e¢ cient auction mechanism for which truthful
reporting is an ex post Nash equilibrium.
To our knowledge, the earliest construction of an ex post IC mechanism in

the interdependent framework that identi�es the role of monotonicity in this two
step approach to ex post e¢ cient implementation appears in CM (1985). In their
setup, Ti = f1; 2; :::;mig and C � Rn and they de�ne a class of mechanisms as
follows.

De�nition 1: Let q : T ! C be an outcome function. An E(xtraction)-
mechanism is any mechanism (q; (xi)) satisfying

xi(t�i; ti) = xi(t�i; 1)�
tiX

�i=2

[ui(qi(t�i; �i); t�i; �i)� ui(qi(t�i; �i � 1); t�i; �i)]

whenever t�i 2 T�i and ti 2 Tinf1g:

There are many E- mechanisms, depending on the speci�cation of xi(t�i; 1)
for each i and t�i 2 T�i: In their 1985 paper, CM de�ne such mechanisms and
use them (in conjunction with a full rank condition) to derive their full extraction
results. If ti 7! qi(t�i; ti) is monotonic for each i and t�i and if each ui satis�es
the classic single crossing property, then an E-mechanism will implement q as an
ex post Nash equilibrium (this is Lemma 2 in CM (1985).)
If one is interested in implementing a speci�c outcome function (e.g., an ex

post e¢ cient outcome function), then one must make further assumptions that
guarantee that q satis�es the monotonicity condition. This is step 1 in our previous
discussion and this is the point at which the interagent crossing property comes

9



into play. We will illustrate this in the special case of a single object auction
with interdependent valuations studied in CM (1985). In this case, a single object
is to be allocated to one of n bidders. If i receives the object, his value is the
nonnegative number wi(t): In this framework, q(t) = (q1(t); ::; qn(t)) where each
qi(t) � 0 and q1(t) + � � �+ qn(t) � 1 and

ui(qi(t�i; t
0
i); t�i; ti) + xi(t�i; t

0
i) = qi(t�i; t

0
i)wi(t�i; ti) + xi(t�i; t

0
i)

and outcome e¢ ciency means thatX
i2N

qi(t)wi(t) = max
i2N

fwi(t)g:

The next result is extracted from Corollary 2 in CM (1985).

Theorem 1: Suppose that
(i) for each i 2 N; t�i 2 T�i; ti 2 Tinfmig

wi(t�i; ti) < wi(t�i; ti + 1)

(ii) For all i; j 2 N; t�i 2 T�i; ti 2 Tinfmig

wi(t�i; ti + 1)� wj(t�i; ti + 1) � wi(t�i; ti)� wj(t�i; ti)

Then there exists an outcome e¢ cient, ex post IR, ex post IC auction mechanism.

Condition (i) is the single crossing property (called Assumptions 20 in CM
(1985) which, in the auction case, reduces to the simple assumption that an agent�s
valuation for the object is increasing in his own type. Condition (ii) is the inter-
agent crossing property (called Assumptions 3A0 in CM (1985) that guarantees
that i�s probability of winning (i.e., qi(t�i; ti)) is nondecreasing in i�s type ti.
In this paper, we do not take the ui : C � T ! R as the primitive objects of

study. Instead, we derive the reduced form v̂i : C � T ! R from the function
vi : C ��� Ti ! R+ and the conditional distributions P�(�jt): In a single object
auction framework (such as that studied in McLean and Postlewaite (2004)), this
reduced form payo¤ for bidder i is de�ned by the reduced form valuation function

ŵi(t) =
X
�

wi(�; ti)P�(�jt):

10



In this natural special case, the applicability of a result such as Theorem 1 may
require quite restrictive assumptions regarding the underlying data. For example,
suppose that wi(�; ti) = �i� + �i for each i where �i > 0: Then

ŵi(t) = �i

"X
�

�P�(�jt)
#
+ �i := �i�(t) + �i

and conditions (i) and (ii) of Theorem 1 can only be satis�ed if �i = �j: To see
this, note that (ii) is satis�ed only if

(�i � �j)
�
�(t�i; ti + 1)� �(t�i; ti)

�
� 0

and
(�j � �i)

�
�(t�j; tj + 1)� �(t�j; tj)

�
� 0

for each i and j. Consequently, (i) implies that �i = �j:

These observations are not restricted to the case in which each Ti is a totally
ordered �nite set; it is straightforward to show that the same implication holds
for the case that agents�type sets are intervals.
We emphasize again that, in this paper, we do not take the ui : C �T ! R as

the primitive objects of study. We do not investigate the assumptions that vi and
P�(�jt) would need to satisfy in order to apply the monotonicity technique to the
reduced form v̂i: Instead, we take a complementary approach and make certain
assumptions regarding the distribution P 2 ��

��T but no assumptions regarding
the primitive valuation function vi:

4. The Generalized VCGMechanism and Ex post Incentive
Compatibility

Let q be an outcome function and de�ne transfers as follows:

�qi (t) =
X
j2Nni

v̂j(q(t); t)�max
c2C

24X
j2Nni

v̂j(c; t)

35 if t 2 T �

= 0 if t =2 T �

Note that �qi (t) � 0 for each i and t. The resulting mechanism (q; (�qi )) is the
generalized VCG mechanism with interdependent valuations (GVCG for short.)
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(Ausubel (1999) and Chung and Ely (2002) use the term generalized Vickrey
mechanisms, but for di¤erent classes of mechanisms.) It is straightforward to
show that the GVCG mechanism is ex post individually rational and feasible. If
v̂i depends only on ti (as in the pure private value case case where j�j = 1 or,
more generally, when ~� and ~t are stochastically independent), then the GVCG
mechanism reduces to the classical VCG mechanism for private value problems
and it is well known that, in this case, the VCG mechanism satis�es strong ex post
IC. In general, however, the GVCG mechanism will not even satisfy interim IC.
However, we will show that the GVCG mechanism is ex post IC when P satis�es
a property called nonexclusive information (Postlewaite and Schmeidler (1986).
Before proceeding to the main result for nonexclusive information, let us review

the logic of the VCG mechanism in the case of pure private values. In that case,
we obtain (abusing notation slightly),

�qi (t) =
X
j2Nni

v̂j(q(t); tj)�max
c2C

24X
j2Nni

v̂j(c; tj)

35 if t 2 T �

= 0 if t =2 T �

In computing maxc2C
hP

j2Nni v̂j(c; tj)
i
; we maximize the total payo¤of the play-

ers inNni and, as a consequence of the pure private values assumption, only utilize
the information of the agents in Nni. Hence, the value of the optimum only de-
pends on t�i: In the interdependent case, this computation can be extended in
two ways. First, we could maximize the total payo¤ of the players in Nni using
the information of all agents. The associated transfer is then equal to

X
j2Nni

v̂j(q(t); t)�max
c2C

X
j2Nni

"X
�2�

vj(c; �; tj)P (�jt�i; ti)
#
:

Alternatively, we could maximize the total payo¤ of the players in Nni using only
the information of the agents in Nni. The associated transfer is then equal to

X
j2Nni

v̂j(q(t); t)�max
c2C

X
j2Nni

"X
�2�

vj(c; �; tj)P (�jt�i)
#
:

In the �rst payment scheme, agent i pays the cost that he imposes on other agents
assuming that they have access to his information even though he is not present.

12



In the second scheme, agent i pays the cost that he imposes on other agents
assuming that the other agents do not have access to his information. In the pure
private values model, these two approaches yield the same transfer scheme.
These payment schemes induce di¤erent games in the case of interdependent

values. We are interested in the �rst of the payment schemes that uses agent i�s
information when calculating the cost that he imposes on other agents. One can
think of the designer�s problem as encompassing two stages. In the �rst stage,
the designer elicits the agents�information to determine the posterior probability
distribution over the states and makes that probability distribution available to the
agents. The second stage consists of a VCG mechanism where the agents�values
are computed with respect to the probability distribution from the �rst stage. If
the designer has elicited truthful revelation in the �rst stage, the problem in the
second stage is a private values problem, and truthful revelation is a dominant
strategy. The interdependence of agents matters only for the �rst stage; our
method is to show how the designer can extract the information needed to compute
the probability distribution over the states, following which the problem becomes
a private value problem. In this private value problem, the �rst payment scheme
mimics the standard VCG mechanism. This intuition can be formalized using the
two stage implementation game presented in Section 7.3 below.
We next identify a special �gain-bounded�property of the GVCG mechanism

that is key to our results. (All proofs are relegated to the appendix.)

Lemma A: Suppose that q : T ! C is outcome e¢ cient for the problem
(v1; ::; vn; P ): If (t�i; ti); (t�i; t0i) 2 T �; then

v̂i(q(t�i; t
0
i); t�i; ti) + �

q
i (t�i; t

0
i)� v̂i(q(t�i; ti); t�i; ti) + �

q
i (t�i; ti)

� 2M(n� 1)jjP�(�jt�i; ti)� P�(�jt�i; t0i)jj

In the case of the GVCG mechanism, Lemma A provides an upper bound on the
�ex post gain� to agent i when i�s true type is ti but i announces t0i and others
announce truthfully. An important implication of Lemma A is that an agent�s
gain by misreporting his type is essentially bounded by the degree to which his
type a¤ects the posterior probability distribution on �; we return to this below.
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5. Ex post Incentive Compatibility and Nonexclusive Infor-
mation

If vi does not depend on �, then (letting j�j = 1), we recover Vickrey�s classic
dominant strategy result for the VCG mechanism in the pure private values case
as a special case of Lemma A. We can use lemma A to extend the classic private
values result to a special class of problems with interdependent valuations in which
ex post Nash equilibrium replaces dominant strategy equilibrium. These are the
problems in which P exhibits nonexclusive information.

De�nition 2: A measure P 2 ��
��T satis�es nonexclusive information (NEI)

if
t 2 T � ) P�(�jt) = P�(�jt�i) for all i 2 N

or, equivalently, if

[(t�i; ti) 2 T � and (t�i; t0i) 2 T �]) P�(�jt�i; ti) = P�(�jt�i; t0i) for all i 2 N:

As an immediate application of Lemma A, we have the following result.

Proposition 1: Let fv1; ::; vng be a collection of payo¤functions. If P 2 ��
��T

exhibits nonexclusive information and if q : T ! C is outcome e¢ cient for the
problem (v1; ::; vn; P ); then the GVCG mechanism (q; �qi ) is ex post IC and ex
post IR.

If agents have "zero informational size" �that is, if P exhibits nonexclusive
information �then jjP�(�jt�i; ti)�P�(�jt�i; t0i)jj = 0 if (t�i; ti); (t�i; t0i) 2 T �: Hence,
truth is an ex post Nash equilibrium as a consequence of Proposition 1. Note that
the private values problem in which vi does not depend on � is the special case
of NEI where j�j = 1: Since ex post Nash equilibrium coincides with dominant
strategy equilibrium in the private values case, we conclude that Proposition 1
implies Vickrey�s classic dominant strategy result for the VCG mechanism in the
pure private values case.
It is important to point out that every �reduced form� valuation function

t 7! ui(c; t) is expressible as

ui(c; t) =
X
�2�

vi(c; �; ti)P (�jt�i; ti)

14



by de�ning � = �i2NTi; P (�jt) = 1 if and only if � = t and

vi(c; �; ti) = ui(c; �):

For this formulation of � however, the distribution P 2 ��
��T exhibits NEI if

and only if P (tijt�i) = 1 whenever P (t�i; ti) > 0: Consequently, the vector t�i
determines ti when the NEI assumption holds and the support T � 6= T:
Nonexclusive information, while subsuming the private values model, is a

strong assumption. Our goal in this paper is to identify conditions under which
we can modify the GVCG payments so that the new mechanism is interim IC.
We begin by presenting a continuity result that is motivated by Proposition 1.
If we (informally) think of NEI as meaning that an agent has no e¤ect on the
posterior distribution on � in the presence of the information of other agents,
then we can interpret Proposition 1 as follows: if each agent has �no information
e¤ect�on the posterior on �; then the GVCG is �exactly ex post incentive com-
patible�. We will prove the following continuity result: if each agent has a �small
information e¤ect� on the posterior on �; then the GVCG is �approximately�
ex post incentive compatible. Of course, this result requires that the notions of
�small informational e¤ect� and �approximate ex post incentive compatibility�
be formalized and to accomplish this, we introduce the notions of informational
size and "- ex post Nash equilibrium in the next section.

6. Approximate Ex Post Incentive Compatibility and Small
Informational Size

6.1. Informational Size

If t 2 T �; recall that P�(�jt) 2 �� denotes the induced conditional probability
measure on �. A natural notion of an agent�s informational size is one that mea-
sures the degree to which he can alter the best estimate of the state � when other
agents are announcing truthfully. In our setup, that estimate is the conditional
probability distribution on � given a pro�le of types t. Any pro�le of agents�
types t = (t�i; ti) 2 T � induces a conditional distribution on � and, if agent i
unilaterally changes his announced type from ti to t0i, this conditional distribution
will (in general) change. We consider agent i to be informationally small if, for
each ti; there is a �small�probability that he can induce a �large�change in the
induced conditional distribution on � by changing his announced type from ti to
some other t0i. This is formalized in the following de�nition.
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De�nition 3: Let

I i"(t
0
i; ti) = ft�i 2 T�ij(t�i; ti) 2 T �; (t�i; t0i) 2 T � and jjP�(�jt�i; ti)�P�(�jt�i; t0i)jj > "g

The informational size of agent i is de�ned as

�Pi = max
ti2Ti

max
t0i2Ti

minf" � 0j Probf~t�i 2 I i"(t0i; ti)j~ti = tig � "g:

Loosely speaking, we will say that agent i is informationally small with respect
to P if his informational size �Pi is small. If agent i receives signal ti but reports
t0i 6= ti, the e¤ect of this misreport is a change in the conditional distribution on �
from P�(�jt�i; ti) to P�(�jt�i; t0i): If t�i 2 I"(t0i; ti); then this change is �large�in the
sense that jjP�(�jt̂�i; ti)�P�(�jt̂�i; t0i)jj > ": Therefore, Probf~t�i 2 I"(t0i; ti)j~ti = tig
is the probability that i can have a �large�in�uence on the conditional distribution
on � by reporting t0i instead of ti when his observed signal is ti: An agent is
informationally small if for each of his possible types ti, he assigns small probability
to the event that he can have a �large�in�uence on the distribution P�(�jt�i; ti);
given his observed type. Informational size is closely related to the notion of
nonexclusive information: if all agents have zero informational size, then P must
satisfy NEI. In fact, we have the following easily demonstrated result: P 2 ��

��T
satis�es NEI if and only if �Pi = 0 for each i 2 N: If T � = T; then �P is the
Ky Fan distance between the r.v.s P�(�j~t�i; ti) andP�(�j~t�i; ti) with respect to the
probability measure PT�i(�jti) (see, e.g., Dudley (2002), Section 9.2).4

6.2. Approximate Ex Post Incentive Compatibility

De�nition 4: Let " � 0: A mechanism (q; (xi)) is weakly "� ex post incentive
compatible if for all i and all ti; t0i 2 Ti;

Pr obf(~t�i; ti) 2 T � and v̂i(q(~t�i; t0i); ~t�i; ti) + xi(~t�i; t
0
i))

> v̂i(q(~t�i; ti); ~t�i; ti) + xi(~t�i; ti) + "j~ti = tig � ":

Note that (q; (xi)) is a weakly 0� ex post incentive compatible mechanism if and
only if (q; (xi)) is an ex post incentive compatible mechanism.
Other notions of approximate incentive compatibility and informational size

are possible and these are discussed in Section 9.2 below.
4If X and Y are random variables de�ned on a probability space (
;F ; �) taking values in

a metric space (S; d), then the Ky Fan metric is de�ned as min[" � 0 : �fd(X;Y ) > "g � "]. If
T � = T; then �P is the Ky Fan distance between the r.v.s X = P�(�j~t�i; ti) and Y = P�(�j~t�i; ti)
with respect to the probability measure � = PT�i(�jti).
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6.3. The Result

Proposition 2: Suppose that q : T ! C is outcome e¢ cient for the problem
(v1; ::; vn; P ): Then for every " > 0; there exists � > 0 such that, if �Pi < � for
each agent i, then the GVCG mechanism (q; (�qi )) is weakly "� ex post incentive
compatible.

To explain Proposition 2, note that Lemma A provides an upper bound on the
�ex post gain� to agent i when i�s true type is ti but i announces t0i and others
announce truthfully. If agent i is informationally small, then (informally) we can
deduce that

Pr obfjjP�(�j~t�i; ti)� P�(�j~t�i; t0i)jj � 0j~ti = tig � 1

so truth is an approximate ex post equilibrium for the GVCG in the sense that

Pr obf(v̂i(q(t�i; ti); t�i; ti)+�qi (t�i; ti))�(v̂i(q(t�i; t0i); t�i; ti)+�
q
i (t�i; t

0
i)) >�

0j~ti = tig � 1:

Consequently, we obtain the following continuity result embodied in Proposition
2: for every " > 0; there exists a � > 0 such that truth will be a weak "�ex post
Nash equilibrium whenever �Pi < � for each i.
Lemma A has a second important consequence: if agent i is informationally

small, then truth is an approximate Bayes-Nash equilibrium in the GVCG mech-
anism so the mechanism is approximately interim incentive compatible. More
precisely, we can deduce from Lemma A that the interim expected gain from
misreporting one�s type is essentially bounded from above by one�s informational
size. If we want the mechanism to be exactly interim incentive compatible, then
we must alter the mechanism (speci�cally, construct an augmented GVCG mech-
anism) in order to provide the correct incentives for truthful behavior. We turn
to this next.

7. Bayesian Incentive Compatibility and Augmented Mech-
anisms

Proposition 2, leaves two important questions unanswered. First, we would like
to identify conditions under which agents are informationally small so that an
outcome e¢ cient social choice function is "-ex post implementable for small ": It
is reasonable to conjecture that this will be the case, inter alia, when there are
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many agents, and we provide a precise analysis of this case in Section 8 below.
The second question concerns the possibility of modifying a mechanism via the
introduction of small transfers so that the resulting modi�ed mechanism is ex-
actly, rather than approximately, interim incentive compatible when agents are
informationally small. Given Proposition 2, the existence of such a mechanism is
at least plausible since an agent�s ex post gain from lying, i.e., his ex post informa-
tional rent, is small with high probability when the agent is informationally small.
Consequently, his expected informational rent conditional on his type is small
and truth will be an approximate Bayes-Nash equilibrium when agents are infor-
mationally small. In this section, we provide conditions under which a modi�ed
GVCG mechanism is approximately ex post incentive compatible and (exactly)
Bayesian incentive compatible and the sum of the agents� ex post transfers is
bounded by a number close to 0 when agents are informationally small.

7.1. Variability of Agents�Beliefs

Whether an agent i can be given incentives to reveal his information will depend
on the magnitude of the di¤erence between PT�i(�jti) and PT�i(�jt0i); the conditional
distributions on T�i given di¤erent types ti and t0i for agent i: If P 2 ���T , let
PT�i(�jti) 2 �T=i be the conditional distribution on T�i given that i receives signal
ti and de�ne

�Pi = min
ti2Ti

min
t0i2Tinftig





 PT�i(�jti)
jjPT�i(�jti)jj2

�
PT�i(�jt0i)

jjPT�i(�jt0i)jj2





2
2

where jj � jj2 denotes the 2-norm on RjT�ij: This is the measure of the �variability�
of the conditional distribution PT�i(�jti) as a function of ti:
As mentioned in the introduction, our work is related to that of Cremer and

McLean (1985, 1989). Those papers and subsequent work by McAfee and Reny
(1992) demonstrated how one can use correlation to fully extract the surplus in
certain mechanism design problems. The key ingredient there is the assumption
that the collection of conditional distributions fPT�i(�jti)gti2Ti is a linearly inde-
pendent set for each i. This of course, implies that PT�i(�jti) 6= PT�i(�jt0i) if ti 6= t0i
and, therefore, that �Pi > 0: While linear independence implies that �

P
i > 0, the

actual (positive) size of �Pi is not relevant in the Cremer-McLean constructions,
and full extraction will be possible. In the present work, we do not require that
the collection fPT�i(�jti)gti2Ti be linearly independent (or satisfy the weaker cone
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condition in Cremer and McLean (1988)). However, the �closeness�of the mem-
bers of fPT�i(�jti)gti2Ti is an important issue. It can be shown that for each i,
there exists a collection of numbers & i(t) satisfying 0 � � i(t) � 1 andX

t�i2T�i

[& i(t�i; ti)� & i(t�i; t0i)]PT�i(t�ijti) > 0

for each ti; t0i 2 Ti if and only if �Pi > 0: The elements of the collection f& i(t)gi2I;t2T
can be thought of as �incentive payments�to the agents to reveal their informa-
tion. The above inequality assures that, if the posteriors fPT�i(�jti)gti2Ti are all
distinct, then the incentive compatibility inequalities above are strict. However,
the expression on the left hand side decreases as �P ! 0. Hence, the di¤erence
in the expected reward from a truthful report and from a false report will be very
small if the conditional posteriors are very close to each other. Our results require
that informational size be small relative to the variation in these posteriors.

7.2. The Result

Let (zi)i2N be an n-tuple of functions zi : T ! <+ each of which assigns to each
t 2 T a nonnegative number, interpreted as a �reward�to agent i. If (q; x1; ::xn)
is a mechanism, then the associated augmented mechanism is de�ned as (q; x1 +
z1; ::; xn + zn) and will be written simply as (q; (xi + zi)):

Theorem 2: Let (v1; ::; vn) be a collection of payo¤ functions.

(i) Suppose that P 2 ��
��T satis�es �

P
i > 0 for each i and suppose that

q : T ! C is outcome e¢ cient for the problem (v1; ::; vn; P ): Then there exists an
augmented GVCG mechanism (q; �qi + zi) for the social choice problem problem
(v1; ::; vn; P ) satisfying ex post IR and interim IC.

(ii) For every " > 0; there exists a � > 0 such that, whenever P 2 ��
��T

satis�es
max
i
�Pi � �min

i
�Pi ;

and whenever q : T ! C is outcome e¢ cient for the problem fv1; ::; vn; Pg; there
exists an augmented GVCG mechanism (q; (�qi + zi)) with 0 � zi(t) � " for every
i and t satisfying ex post IR, interim IC and weak "�ex post IC. Consequently,P

i(�
q
i + zi) � n":
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7.3. A Two Stage implementation Game

Informally, Theorem 2 can be explained in the following way. If a problem is a
pure private value problem, then the VCG mechanisms will implement e¢ cient
outcomes. In the presence of interdependent values, these mechanisms are no
longer incentive compatible. With interdependent values, a given agent�s utility
depends on other agents�types, insofar as their types are correlated with the state
�. If there is correlation in the components of the agents�information that are
related to �, then those components can be truthfully elicited via payments to the
agents that are of the magnitude of their informational sizes; it is these payments
that �augment� the GVCG transfers. Once the part of an agent�s information
that a¤ects the probability distribution over the states is obtained, the problem
becomes a private value problem, and VCG-type payments can be used to extract
the residual private information that agents may have, that is, their private values.
This informal description can be formalized as a two stage game. Fix a social

choice problem (v1; ::; vn; P ) and assume that T = T � to simplify the presentation.
Next, suppose that q : T ! C is an outcome e¢ cient social choice function for
(v1; ::; vn; P ). In particular,

q(t) 2 argmax
c2C

X
i2N

v̂i(c; t) = argmax
c2C

X
i2N

"X
�2�

vi(c; �; ti)P�(�jt)
#

for each t 2 T and recall that, given q, the GVCG transfers are de�ned as follows:

�qi (t) =
X
j2Nni

v̂j(q(t); t)�max
c2C

24X
j2Nni

v̂j(c; t)

35 if t 2 T:

For each � 2 �(�); let

wi(c; �; ti) =
X
�2�

vi(c; �; ti)�(�):

Throughout this section, we will use the following notational convention:

�(t�i; ti) = P�(�jt�i; ti) and ��(t�i; ti) = P�(�jt�i; ti):

With this convention, note that for t = (t�iti) we have

wi(c; �(t); ti) =
X
�2�

vi(c; �; ti)��(t) =
X
�2�

vi(c; �; ti)P�(�jt) = v̂i(c; t):
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Next, de�ne for each � 2 �(�) an outcome function q̂(�j�) : T ! C where

q̂(tj�) 2 argmax
c2C

X
j2N

wj(c; �; tj):

and q̂(tj�(t)) is chosen so that

q̂(tj�(t)) = q(t) for each t 2 T:

Finally, de�ne transfers as follows:

x̂i(tj�) =
X
j2Nni

wj(q̂(tj�); �; tj)�max
c2C

24X
j2Nni

wj(c; �; tj)

35
and note that q̂(tj�(t)) = q(t) for each t 2 T implies that

x̂i(tj�(t)) = �qi (t):

The mechanism (q̂; x̂) is the simple VCG mechanism for the private value problem
in which i�s valuation is wi(c; �; ti) and � is treated as a parameter. Consequently,
it is a dominant strategy to honestly report one�s type, i.e.,

ti 2 argmax
si2Ti

wi(q̂(t�i; sij�); �; ti) + x̂i(t�i; sij�)

for all ti 2 Ti; t�i 2 T�i and � 2 �(�):
We now de�ne an extensive form game that formalizes the two stage process

that lies behind the intuition for the augmented GVCG mechanism. Let (zi)i2N
be an n-tuple of functions zi : T ! R+ each of which assigns to each t 2 T a
nonnegative number zi(t) interpreted as a �reward�to agent i.

Stage 1: Each agent i learns his type ti and makes a (not necessarily honest)
report ri 2 Ti of his signal to the mechanism designer. If (r1; ::; rn) is the pro�le
of stage 1 reports, then agent i receives the nonnegative payment zi(r1; ::; rn) and
the game moves to stage 2.

Stage 2: If (r1; ::; rn) = r 2 T is the announced type pro�le in stage 1,
the mechanism designer publicly posts the probability measure �(r) = P�(�jr).
Agents observe this posting (but not the reported pro�le r) and make a second
(not necessarily honest) report to the mechanism designer. If (s 1; ::; sn) = s 2 T
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is the second stage pro�le of reports, then the mechanism designer chooses the
social alternative q̂(sj�(r)); each agent i receives the transfer x̂i(sj�(r)) and the
game ends.

To �x ideas, note that player i�s ex post payo¤ when i�s type is ti; the players
report (r1; ::; rn) = r in stage 1 and (s 1; ::; sn) = s in stage 2 is given by

wi(q̂(sj�(r)); �(r); ti) + x̂i(sj�(r)) + zi(r):

Let
� := f�(t)jt 2 Tg = fP�(�jt)jt 2 Tg

denote the (�nite) set of conditional measures on �: A strategy for agent i in
this game is a pair (�i; �i) where �i : Ti ! Ti speci�es a type dependent report
�i(ti) 2 Ti in stage 1 and �i : Ti � � � Ti ! Ti speci�es a second stage report
�i(ri; �; ti) 2 Ti as a function of i�s �rst stage report ri 2 Ti; the posted distribution
� 2 �; and i0s type ti 2 Ti:

In stage 1, players are asked to reveal their private information in order to
compute the posterior distribution on the state space �: Stage 2 is a simple imple-
mentation problem with private values in which the mechanism designer chooses
a socially optimal action for the posterior computed in stage 1 and players are
assessed their (private value) VCG transfers. If agents are truthful in both stages
of the game, then for type pro�le t, the ex post payo¤ to agent i corresponding to
type pro�le t is

wi(q̂(tj�(t)); �(t); ti) + x̂i(tj�(t)) + zi(t) = wi(q(t); ti) + �i(t) + zi(t)

= v̂i(q(t); t) + �i(t) + zi(t):

Consequently, we are interested in a Perfect Bayesian Equilibrium (PBE) as-
sessment for the two stage implementation game consisting of a strategy pro�le
(�i; �i)i2N and a system of second stage beliefs in which players truthfully report
their private information at each stage.

De�nition: A strategy (�i; �i) for player i is truthful for i if �i(ti) = ti for all
ti 2 Ti and �i(ti; �; ti) = ti for all � 2 � and t 2 T : A strategy pro�le (�i; �i)i2N
is truthful if (�i; �i) is truthful for each player i.

Formally, a system of beliefs for player i is a collection of probability measures
on �� T�i indexed by Ti � �� Ti; i.e., a collection of the form

f�i(�jri; �; ti) 2 �(�� T�i � T�i) : (ri; �; ti) 2 Ti � �� Tig:
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with the following interpretation: when player i of type ti reports ri in Stage
1 and observes the posted distribution �; then player i assigns probability mass
�i(�; r�i; tijri; �; ti) to the event that other players have true types t�i and have
reported r�i and that the state of nature is �: As usual, an assessment is a pair
f(�i; �i)i2N ; (�i)i2Ng consisting of a strategy pro�le and a system of beliefs for
each player.

De�nition 5: An assessment f(�i; �i)i2N ; (�i)i2Ng is an incentive compatible
Perfect Bayesian equilibrium (ICPBE) assessment if f(�i; �i)i2N ; (�i)i2Ng is a
Perfect Bayesian equilibrium assessment and the pro�le (�i; �i)i2N is truthful.

We can prove the following two results.

Proposition 3: Suppose that P 2 ��
��T satis�es �

P
i > 0 for each i. Then

there exist (zi)i2N such that the associated two stage game has a ICPBE.

Proposition 4: For every " > 0; there exists a � > 0 such that, whenever
P 2 ��

��T satis�es
max
i
�Pi � �min

i
�Pi ;

there exist (zi) with 0 � zi(t) � " for every i such that the associated two stage
game has a ICPBE.

It may seem strange that, in the two stage mechanism above, the agents are
announcing their types twice. Since the mechanism �knows� the agents� types
after the �rst stage, why ask them to report a second time? There are several
reasons to structure the problem as we have. For many problems an agent�s type
may consist of di¤erent parts, some of which a¤ect the beliefs about the state
� and some of which do not. For the oil auction example, an agent may have
geological information that a¤ects his beliefs regarding the amount of oil in the
tract, and may also have information regarding the amount of oil in his current
inventory. When an agent�s type can be decomposed into distinct parts in this
way, only the part relevant to � need be announced in the �rst stage and only the
part that concerns the agent�s inventory need be announced in the second stage.
Having two separate announcements also allows us to distinguish an agent�s

rent associated with his information regarding � from the rent associated with
information not related to �. It�s useful to distinguish these, since, as we show
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below, the �rst will often asymptotically vanish as the number of agents gets
large while the second typically does not. In addition, the �rst of the two rents is
independent of other agents�preferences while the second is not.

8. Asymptotic Results

Informally, an agent is informationally small when the probability that he can
a¤ect the posterior distribution on � is small. One would expect, in general,
that agents will be informationally small in the presence of many agents. For
example, if agents receive conditionally independent signals regarding the state
�, then the announcement of one of many agents is unlikely to signi�cantly alter
the posterior distribution on �. Hence, it is reasonable to conjecture that (under
suitable assumptions) an agent�s informational size goes to zero in a sequence of
models with an increasing number of agents. Consequently, the required rewards
zi that induce truthful behavior will also go to zero as the number of agents grows.
We will show below that this is in fact the case. Of greater interest, however, is
the behavior of the aggregate reward necessary to induce truthful revelation. The
argument sketched above only suggests that each individual�s zi becomes small as
the number of agents goes to in�nity, but does not address the asymptotic behavior
of the sum of the zi�s. Roughly speaking, the size of the zi that is necessary to
induce agent i to reveal truthfully is of the order of magnitude of his informational
size. Hence, the issue concerns the speed with which agents�informational size
goes to zero as the number of agents increases. We will demonstrate below that,
under reasonably general conditions, agents�informational size goes to zero at an
exponential rate and that the total reward

P
i2N zi goes to zero as the number of

agents increases.

8.1. Notation and De�nitions:

We will assume that all agents have the same �nite signal set Ti = A. Let
Jr = f1; 2; :::; rg. For each i 2 Jr; let vri : C � � � A ! <+ denote the payo¤
to agent i. For any positive integer r, let T r = A � � � � � A denote the r-fold
Cartesian product and let tr = (tr1; ::; t

r
r) denote a generic element of T

r:

De�nition 6: A sequence of probability measures fP rg1r=1 with P r 2 �(��
T r) is a conditionally independent sequence if there exists P 2 �(� � A) such
that
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(a) P (�; t) > 0 for all (�; t) 2 ��A and for every �; �̂ with � 6= �̂; there exists
a t 2 A such that P (tj�) 6= P (tj�̂):
(b) For each r and each (�; t1; ::; tr) 2 �� T r;

P r(tr1; ::; t
r
rj�) = Probfetr1 = t1;etr2 = t2; :::;etrr = trj~� = �g = rY

i=1

P (tij�):

Because of the symmetry in the objects de�ning a conditionally independent
sequence, it follows that, for �xed r, the informational size of each i 2 Jr is the
same. In the remainder of this section we will drop the subscript i and will write
�P

r
for the value of the informational size of agents in Jr:

Lemma B: Suppose that fP rg1r=1 is a conditionally independent sequence.
For every " > 0 and every positive integer k, there exists an r̂ such that

rk�P
r � "

whenever r > r̂.

The proof is provided in the appendix and is an application of a classic large
deviations result due to Hoe¤ding (1960). With this lemma, we can prove the
following asymptotic result.

Theorem 3: Suppose that fP rg1r=1 is a conditionally independent sequence.
Let M and " be positive numbers. Let f(vr1; ::; vrr)gr�1 be a sequence of payo¤
function pro�les and for each r, let fqP r(r); �P r1 (r); ::; �P

r

r (r)g denote the GVCG
mechanism for the SCP (vr1; ::; v

r
r ; P

r): Suppose that 0 � vri (�; �; �) � M for all r
and i 2 Jr and that P satis�es the following condition: for each pair t; t0 in A with
t 6= t0; there exists as s 2 A such thatX

�

P (sj�)P (�jt) 6=
X
�

P (sj�)P (�jt0):

Then for every " > 0; there exists an r̂ such that for all r > r̂, there exists
an augmented GVCG mechanism (qr; �r1 + z

r
1; ::; �

r
r + z

r
r) for the social choice

problem (vr1; ::; v
r
r ; P

r) satisfying ex post IR, interim IC and weak "�ex post IC.
Furthermore, for each i 2 Jr and each tr 2 T r; zri (tr) � 0 and

Pr
i2Jr z

r
i (t

r) � ":

25



8.2. An Auction Application

The signi�cance of Theorem 3 can be illustrated in the case of a Vickrey auction
with interdependent valuations as studied in McLean and Postlewaite (2004).
For simplicity, suppose that T � = T: If i receives the object, his value is the
nonnegative number wi(�; ti) and his �reduced form�value is

ŵi(t) =
X
�

wi(�; ti)P�(�jt) for each t 2 T:

In this framework, q(t) = (q1(t); ::; qn(t)) where each qi(t) � 0 and q1(t) + � � � +
qn(t) � 1 and

v̂i(q(t�i; t
0
i); t�i; ti) + xi(t�i; t

0
i) = qi(t�i; t

0
i)ŵi(t�i; ti) + xi(t�i; t

0
i):

Finally, outcome e¢ ciency means thatX
i2N

qi(t)wi(t) = max
i2N

fwi(t)g:

Let w�(t) := maxi ŵi(t) and let I(t) := fi 2 N jŵi(t) = w�(t)g: If

q�i (t) =
1

jI(t)j if i 2 I(t)

= 0 if i =2 I(t)

then q� is outcome e¢ cient. De�ning w��i(t) := maxj:j 6=ifwj(t)g; it is easy to verify
that the GVCG transfers associated with q� are given by

��i (t) = �
w��i(t)

jI(t)j if i 2 I(t)

= 0 if i =2 I(t):

If the GVCG mechanism (q�; (��i )) were ex post IC (as in the pure private value
case or, more generally, the case of nonexclusive information), then the auction-
eer�s ex post revenue would be exactly

�
nX
i=1

��i (t) =
X
i2I(t)

w��i(t)

jI(t)j :
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In an augmented mechanism (q�; (��i + zi)); the auctioneer�s ex post revenue is

�
nX
i=1

��i (t) =
X
i2I(t)

w��i(t)

jI(t)j �
nX
i=1

zi(t)

so the auctioneer�s ex post revenue is reduced by the total of the reward payments
necessary to elicit truthful revelation of types. In a large conditionally independent
model of an auction, we know that the rewards zi can be constructed so that the
augmented mechanism (q�; (��i + zi)) is ex post IR, interim IC and approximately
ex post IC. Furthermore, the sum

Pn
i=1 zi(t) is converging to zero as the number

of bidders grows. Consequently, the auctioneer�s ex post revenue will be close
to the auctioneer�s ex post revenue from the unaugmented GVCG auction in the
presence of many bidders.

9. Discussion

9.1. Relation to the literature

Jehiel, Meyer-ter-Vehn, Moldovanu and Zame (2006) showed that , generically,
the only mechanisms for which truthful revelation of types is an ex post equilib-
rium in the presence of interdependent valuations and multidimensional signals
must be constant. That is, the revealed information cannot a¤ect the mechanism
outcome. In order to explain the connection between their model and results of
this paper, we need to reformulate our basic model to accommodate in�nite signal
sets. Suppose that � is �nite but now, as in Jehiel et al., suppose that agent i�s
type ti is drawn from Ti = [0; 1]

ki ; ki > 1.
Let T = �i2NTi, let P 2 �(�� T ) be a probability measure whose marginal

on T has full support and suppose that the conditional probability function

t 2 T 7! P (�jt)

exists and satis�es the smoothness hypotheses imposed in Jehiel et al. For any
pro�le of types t 2 T �; we again de�ne

v̂i(c; t) = v̂i(c; t) =
X
�2�

vi(c; �; ti)P (�jt)

so that the map
t 2 T 7! v̂i(c; t)
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also satis�es the smoothness hypotheses imposed in Jehiel et al.
In this model with a continuum of multidimensional types, Proposition 2 holds

verbatim: for every " > 0; there exists � > 0 such that, if �Pi < � for each agent
i, then the GVCG mechanism (q; (�qi )) is weakly "� ex post incentive compat-
ible. That is, there are interesting nonconstant mechanisms for which truthful
revelation of types is an approximate ex post equilibrium.

9.2. Alternative Notions of Informational Size and approximate Ex Post
Nash Equilibrium

Roughly speaking, when an agent has informational size ", then that agent�s (con-
ditional) probability that he can change the posterior distribution on � by more
than " is at most ". One might consider an alternative de�nition of informational
size whereby an agent�s informational size is " if with probability one he cannot
change the posterior distribution on � by more than ":

De�nition 7: The strict informational size of agent i is de�ned as

�Pi = max
ti2Ti

max
t0i2Ti

max
t�i2T�i

fjjP�(�jt�i; ti)� P�(�jt�i; t0i)jj : (t�i; ti); (t�i; t0i) 2 T �g:

We will refer to an agent as strictly informationally small if his strict informational
size is small. From the de�nitions, it follows that �Pi � �Pi . For economic
problems with a small number of agents, it is often the case that every agent is
informationally small but no agent is strictly informationally small. For example,
consider a problem with two equiprobable states, �1 and �2; and three agents, each
of whom receives a noisy signal about the state �: With very accurate signals,
each agent�s signal is the true state � with high probability. In this case, it is
easy to verify that any agent who unilaterally misreports his signal will, with high
probability, have only a small e¤ect on the posterior distribution and, consequently,
agents are informationally small. However, it is also easy to see that agents
will not be strictly informationally small. When the agents� signals are very
accurate, then all agents� signals will correspond to the true state � with high
probability. However, the probability that two agents, say agent 1 and agent 2,
receive di¤erent signals is positive. In this case, agent 3�s announcement will have
a large e¤ect on the posterior distribution: whether he announces �1 or �2, one of
the other two agents�announcements will match his announcement and one will
not. Consequently, agent 3 cannot be strictly informationally small in this case.
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The discussion above illustrates the advantage of analyses that employ the
weaker notion of informational size rather than strict informational size: a large
and interesting class of problems is covered by the former notion that will not be
covered by the latter. There is, of course, a cost: theorems employing the weaker
hypothesis will have weaker consequences. If a mechanism satis�es our notion of
weak "�ex post IC, then with (conditional) probability at most "; a change in an
agent�s reported type (given other agents�types) will increase his utility by more
than ": This, of course allows for the possibility that a change could lead to a large
increase in his utility for some (low probability) pro�les of other agents�types.
The small probability of large utility gains is connected to the fact that, with small
probability, an agent�s report will have a large e¤ect on the posterior distribution.
In interdependent type mechanisms, an agent�s transfer depends on other agents�
valuations, and those valuations depend on the posterior distribution on �; large
changes in the posterior distribution can translate into large changes in utility.
The above discussion suggests a stronger notion of approximate ex post incen-

tive compatibility:

De�nition 8: Let " � 0: A mechanism is "- ex post incentive compatible if
truthful revelation is an "�ex post Nash equilibrium: if for all i, all ti; t0i 2 Ti and
all t�i 2 T�i such that (t�i; ti) 2 T �;

(v̂i(q(t�i; t
0
i); t�i; ti) + xi(t�i; t

0
i))� (v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti)) � ":

That is, a mechanism is "- ex post incentive compatible if, with conditional prob-
ability one, no agent can increase his utility by more than " regardless of other
agents�types. Ex post incentive compatibility is stronger than "- ex post incentive
compatibility, and "- ex post incentive compatibility is stronger than weak "- ex
post incentive compatibility.
Recall that Proposition 1 provides the following continuity result for the GVCG

mechanism: for every " > 0; there exists a � > 0 such that truth will be an weak
"�ex post Nash equilibrium whenever �Pi < � for each i. Strict informational
size is related to "- ex post incentive compatibility in the same way: for every
" > 0; there exists a � > 0 such that truth will be an "�ex post Nash equilibrium
whenever �Pi < � for each i.

9.3. Pure Common Value Problems and GVCG Transfers

For pure common value problems, there is (by de�nition) no residual private
information, so it might seem that the VCG-type payments can be dispensed
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with. However, simply dropping the GVCG payments introduces a problem. In
the description of the intuition of the proof of Theorem 1, we pointed out that
the part of an agent�s information that a¤ects the utility of other agents can be
extracted by augmenting the VCG payments. If agent i has true type ti but
announces t0i when other agents announce t�i; then the ex post payo¤ to agent i
in the unaugmented GVCG mechanism is

Ui(t
0
ijt�i; ti) := v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i):

As a consequence of Lemma A, we know that the gain from a lie (i.e., Ui(t0ijt�i; ti)�
Ui(tijt�i; ti)) is small if jjP�(�jt�i; ti)�P�(�jt�i; t0i)jj is small. If we simply drop the
GVCG transfers, then the gain to lying (i.e., v̂i(q(t�i; t0i); t�i; ti)�v̂i(q(t�i; ti); t�i; ti))
will typically no longer be small when jjP�(�jt�i; ti)�P�(�jt�i; t0i)jj is small. Con-
sequently, it will no longer be true that small informational size assures that an
agent�s information can be extracted with small payments. There are two impor-
tant properties of the GVCG payments in our framework: they are used to elicit
agents�private information and, in addition, they assure that an agent�s ex post
payo¤ behaves nicely with respect to the posterior distribution on �:
For pure private value problems, Green and La¤ont (1979) show that the VCG

payments are essentially unique. It may be the case that when there is a nontriv-
ial private value component to agents�information, transfers that embody VCG
payments are necessary, but for pure common value problems that is not the case.
For pure common value problems with positive variability, there exist transfer
schemes that have no relation to the GVCG mechanism. What is necessary is
that the transfer payments accomplish what the GVCG payments accomplish:
they must ensure that small changes in the posterior distribution on � do not
translate into a large utility gain. This requires a �continuity�assumption on the
mapping from posterior distributions on � into agents�utilities and we address
this in the next section.

9.4. Gain-Bounded Mechanisms

In a typical implementation or mechanism design problem, one computes the
mechanism for each instance of the data that de�nes the social choice problem.
Therefore, in most cases of interest, the mechanism is parametrized by the val-
uation functions and probability structure that de�ne the social choice problem.
If we �x a pro�le (v1; ::; vn) of payo¤ functions, then we can analyze the para-
metric dependence of the mechanism on the probability distribution P and this
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dependence can be modelled as a mapping that associates a mechanism with each
P 2 ��

��T . We will denote this mapping P 7! (qP ; xP1 ; ::; x
P
n ): For example, the

mapping naturally associated with the GVCG mechanism is de�ned by

qP (t) 2 argmax
c2C

X
j2N

X
�2�

vi(c; �; ti)P (�jt�i; ti) if t 2 T �

qP (t) = c0 if t =2 T �

and

xPi (t) =
X
j2Nni

X
�2�

vi(q
P (t); �; ti)P (�jt�i; ti)�max

c2C

24X
j2Nni

X
�2�

vi(c; �; ti)P (�jt�i; ti)

35 if t 2 T �

= 0 if t =2 T �:

De�nition 9: Let (v1; ::; vn) be a pro�le of payo¤ functions. For each P 2
��
��T , let (q

P ; xP1 ; ::; x
P
n ) be a mechanism for the social choice problem (v1; ::; vn; P ):

We will say that the mapping P 7! (qP ; xP1 ; ::; x
P
n ) is gain-bounded with respect to

conditional probabilities, or simply gain-bounded, if there exists a K > 0 such that
for all P 2 ��

��T ;

v̂i(q
P (t�i; t

0
i); t�i; ti) + x

P
i (t�i; t

0
i)� v̂i(qP (t�i; ti); t�i; ti) + xPi (t�i; ti)

� KjjP�(�jt�i; ti)� P�(�jt�i; t0i)jj

whenever (t�i; ti); (t�i; t0i) 2 T �:

Note that, in De�nition 9 above, the social choice function need not be outcome
e¢ cient. Lemma A shows that the GVCG mechanism is gain-bounded with (K =
2M(n�1)) and this is the essential property of the GVCG mechanism that drives
Propositions 1 and 2 and Theorem 2. In fact, using the same proof, an important
extension of Theorem 2 holds for any gain-bounded mechanism.

Theorem 4: Let (v1; ::; vn) be a collection of payo¤ functions and suppose
that P 7! (qP ; xP1 ; ::; x

P
n ) is gain-bounded.

(i) If �Pi > 0 for each i, then there exists an augmented mechanism (q
P ; (xPi +

zPi )) for the social choice problem problem (v1; ::; vn; P ) satisfying ex post IR and
interim IC.
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(ii) For every " > 0; there exists a � > 0 such that, whenever P 2 ��
��T

satis�es
max
i
�Pi � �min

i
�Pi ;

there exists an augmented mechanism (qP ; (xPi + z
P
i )) with 0 � zPi (t) � " for

every i and t satisfying ex post IR, interim IC and weak "�ex post IC.

We now present an example of a balanced gain-bounded mechanism for pure
common value models which is quite di¤erent from the GVCG mechanism. Let
(v1; ::; vn) be a collection of payo¤ functions. For each P 2 ��

��T suppose that
qP : T ! C is a social choice function for the problem (v1; ::; vn; P ) and de�ne
transfer payments associated with qP as follows:

�Pi (t) =
1

n

X
j

v̂j(q
P (t); t)� v̂i(qP (t); t):

In this simple scheme, agent i receives money if his individual payo¤ is less than
the average payo¤ and he pays out money if his individual payo¤ is greater than
the average payo¤. Furthermore, note thatX

i

�Pi (t) = 0

so that the mechanism (qP ; (�Pi )) is balanced for each P 2 ��
��T .

If qP is outcome e¢ cient for the problem (v1; ::; vn; P ), then the associated
mechanism with transfer payments (�Pi )i2N is gain-bounded in pure common value
problems (though not for general problems).

Theorem 5: Let (v1; ::; vn) be a collection of payo¤ functions satisfying the
pure common value assumption. For each P 2 ��

��T suppose that q
P : T ! C

is outcome e¢ cient for the problem (v1; ::; vn; P ) and let (�
P
i ) be the transfer

payments associated with qP as de�ned as above.

(i) The mapping P 7! (qP ; �P1 ; ::; �
P
n ) is gain-bounded.

(ii) If �Pi > 0 for each i, then there exists an augmented mechanism (q
P ; �Pi +

zPi gi2N for the social choice problem problem (v1; ::; vn; P ) satisfying ex post IR
and interim IC.
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(iii) For every " > 0; there exists a � > 0 such that, whenever P 2 ��
��T

satis�es
max
i
�Pi � �min

i
�Pi ;

there exists an augmented mechanism (qP ; �Pi +z
P
i ) for the social choice problem

problem (v1; ::; vn; P ) with 0 � zPi (t) � " for every i and t satisfying ex post IR,
interim IC and weak "�ex post IC.
The augmented mechanism of Theorem 5(iii) is not balanced in general, but we

do know that 0 �
P

i(�
P
i + z

P
i ) =

P
i z
P
i � n": If n" is small then this mechanism

is �nearly�balanced.

9.5. Extending the Model

A result more general than Theorem 2 is possible and we discuss this now. In many
problems of interest, an agent�s type has several components, only some of which
are correlated with the state of nature �: For example, consider the bidding model
studied in McLean and Postlewaite (2004). There, ti = (ai; si) 2 Ai � Si := Ti is
the type of a bidder on an oil tract in which � represents the amount of oil in the
tract, ai represents the bidder�s private extraction cost and si represents a signal
(resulting from, e.g., geological tests) that is correlated with �: Let P 1 (resp. P 2)
denote the marginal of P on �� S1 � � � � � Sn (resp. A1 � � � � � An:) If

P (�; t1; ::; tn) = P (�; a1; s1; ; ::; an; sn) = P
1(�; s1; ; ::; sn)P

2(a1; ::an)

so that only a bidder�s signal is informationally relevant with respect to �; then

P�(�jt1; ::; tn) = P 2�(�js1; ; ::; sn)

implying that �Pi = 0 for each i. However, it is the relationship between infor-
mational size and variation in beliefs computed with respect to P 1 that matters.
If each �P

1

i is small enough relative to �P
1

i ; the conclusion of Theorem 1 will still
hold. In particular, if each �P

1

i is small enough relative to �P
1

i ; then we can still
�nd an augmented mechanism (q; (�qi + zi)) in which each zi is small and depends
only on the announced signal pro�le (s1; :; sn):
Using precisely the same argument as that for Theorem 2, we have the following

generalization.

Theorem 6: Let (v1; ::; vn) be a collection of payo¤ functions. Suppose that
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Ti = Ai � Si for each i and suppose that

P (�; t1; ::; tn) = P (�; a1; s1; ; ::; an; sn) = P
1(�; s1; ; ::; sn)P

2(a1; ::an)

for each (�; t1; ::; tn) 2 �� T1 � � � � � Tn:
(i) Suppose that P 2 ��

��T satis�es �
P 1

i > 0 for each i and suppose that
q : T ! C is outcome e¢ cient for the problem (v1; ::; vn; P ): Then there exists an
augmented GVCG mechanism (q; �qi + zi) for the social choice problem problem
(v1; ::; vn; P ) satisfying ex post IR and interim IC.

(ii) For every " > 0; there exists a � > 0 such that, whenever P 2 ��
��T

satis�es
max
i
�P

1

i � �min
i
�P

1

i ;

and whenever q : T ! C is outcome e¢ cient for the problem (v1; ::; vn; P ); there
exists an augmented GVCG mechanism (q; (�qi + zi)) with 0 � zi(t) � " for every
i and t satisfying ex post IR, interim IC and weak "�ex post IC. Consequently,P

i(�
q
i + zi) � n":

10. Proofs:

We begin with a simple result regarding Lipschitz continuity of the optimal value
function.
Lemma 1: For each S � N and for each p 2 �(�); let

FS(p) = max
ĉ2C

X
�2�

X
i2S
vi(ĉ; �; ti)p(�):

Then for each p; p0 2 �(�);

jFS(p)� FS(p0)j � jSjM jjp� p0jj:

Proof : Choose S � N and p; p0 2 �(�): Choose c and c0 so thatX
�2�

X
i2S
vi(c; �; ti)p(�) = max

ĉ2C

X
�2�

X
i2S
vi(ĉ; �; ti)p(�)X

�2�

X
i2S
vi(c

0; �; ti)p(�) = max
ĉ2C

X
�2�

X
i2S
vi(ĉ; �; ti)p

0(�)
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Then,

FS(p)� FS(p0) =
X
�2�

X
i2S
vi(c; �; ti) [p(�)� p0(�)] +

X
�2�

X
i2S
[vi(c; �; ti)� vi(c0; �; ti)] p0(�)

�
X
�2�

X
i2S
vi(c; �; ti) [p(�)� p0(�)]

� jSjM jjp� p0jj:

Reversing the roles of p and p0 yields the result.

10.1. Proof of Lemma A

Choose (t�i; ti); (t�i; t0i) 2 T �: Then

v̂i(q(t�i; ti); t�i; ti) + �i(t�i; ti) = v̂i(q(t�i; ti); t�i; ti) +
X
j2Nni

v̂j(q(t�i; ti); t�i; ti)

�max
c2C

24X
j2Nni

v̂j(c; t�i; ti)

35
and

v̂i(q(t�i; t
0
i); t�i; ti) + �i(t�i; t

0
i) = v̂i(q(t�i; t

0
i); t�i; ti) +

X
j2Nni

v̂j(q(t�i; t
0
i); t�i; ti)

�
X
j2Nni

v̂j(q(t�i; t
0
i); t�i; ti)

+
X
j2Nni

v̂j(q(t�i; t
0
i); t�i; t

0
i)�max

c2C

24X
j2Nni

v̂j(c; t�i; t
0
i)

35
Since

v̂i(q(t�i; ti); t�i; ti) +
X
j2Nni

v̂j(q(t�i; ti); t�i; ti)

� v̂i(q(t�i; t
0
i); t�i; ti) +

X
j2Nni

v̂j(q(t�i; t
0
i); t�i; ti)
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we conclude that

(v̂i(q(t�i; ti); t�i; ti) + �i(t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + �i(t�i; t0i))

� max
c2C

24X
j2Nni

v̂j(c; t�i; t
0
i)

35�max
c2C

24X
j2Nni

v̂j(c; t�i; ti)

35
�
X
j2Nni

v̂j(q(t�i; t
0
i); t�i; t

0
i) +

X
j2Nni

v̂j(q(t�i; t
0
i); t�i; ti)

Lemma 1 implies that

max
c2C

24X
j2Nni

v̂j(c; t�i; t
0
i)

35�max
c2C

24X
j2Nni

v̂j(c; t�i; ti)

35 � �(n�1)M jjP�(�jt�i; ti)�P�(�jt�i; t0i)jj:
so the result follows from the observation that������
X
j2Nni

v̂j(q(t�i; t
0
i); t�i; ti)�

X
j2Nni

v̂j(q(t�i; t
0
i); t�i; t

0
i)

������ � (n�1)M jjP�(�jt�i; ti)�P�(�jt�i; t0i)jj:
10.2. Proof of Proposition 2

Suppose that (t�i; ti) 2 T � and de�ne

Ui(t
0
ijt�i; ti) = v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i):

If (t�i; t0i) =2 T �; then

Ui(t
0
ijt�i; ti)� Ui(tijt�i; ti) = (v̂i(c0; t�i; ti) + 0)� (v̂i(q(t�i; ti); t�i; ti) + �qi (t�i; ti))

= � (v̂i(q(t�i; ti); t�i; ti) + �qi (t�i; ti))
� 0

and we conclude that

Ui(t
0
ijt�i; ti)� Ui(tijt�i; ti) > 2M(n� 1)�Pi implies that (t�i; t0i) 2 T �:

Applying Lemma A, we observe that

ft�ij(t�i; ti) 2 T � and Ui(t0ijt�i; ti)� Ui(tijt�i; ti) > 2M(n� 1)�Pi g
= ft�ij(t�i; ti) 2 T �; (t�i; t0i) 2 T �;

and Ui(t0ij~t�i; ti)� Ui(tij~t�i; ti) > 2M(n� 1)�Pi
	

� ft�i 2 T�ij (t�i; ti) 2 T �; (t�i; t0i) 2 T �; jjP�(�jt�i; ti)� P�(�jt�it0i)jj > �̂Pi g:
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If " > 0; then choosing 0 < � < minf "
2M(n�1) ; "g and �̂

P
i < � yields

Pr obf(~t�i; ti) 2 T � and Ui(t0ij~t�i; ti)� Ui(tij~t�i; ti) > "g
� Pr obf(~t�i; ti) 2 T � and Ui(t0ij~t�i; ti)� Ui(tij~t�i; ti) > 2M(n� 1)�Pi g
� Pr obf (~t�i; ti) 2 T �; (~t�i; t0i) 2 T �; jjP�(�j~t�i; ti)� P�(�j~t�it0i)jj > �̂Pi g
� �̂Pi
� "

and the proof is complete.

10.3. Proof of Theorem 2

We prove part (ii) �rst. Choose " > 0: Recall that 0 � vi(�; �; �) � M for each i
and let jT j denote the cardinality of T . Choose � so that

0 < � < min

(
"

4M(n+ 1)
p
jT j
;
"

4

)
Suppose that P 2 ��

��T satis�es

max
i
�Pi � �min

i
�Pi :

De�ne �̂P = maxi �Pi and �
P = mini �

P
i . Therefore �̂

P � ��P :
Now we de�ne an augmented GVCG mechanism. For each t 2 T; de�ne

zi(t�i; ti) = "
PT�i(t�ijti)
jjPT�i(�jti)jj2

:

Since 0 � PT�i (t�ijti)
jjPT�i (�jti)jj2

� 1; it follows that

0 � zi(t�i; ti) � "

for all i, t�i and ti:For each (t�i; ti) 2 T �, de�ne

Ui(t
0
ijt�i; ti) = v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i):

The augmented VCG mechanism fq; �qi + zigi2N is clearly ex post e¢ cient.
Individual rationality follows from the observations that

v̂i(q(t); t) + �
q
i (t) � 0
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and
zi(t) � 0:

Claim 1: For i and for each ti; t0i 2 Ti;X
t�i:(t�i;ti)2T �

(zi(t�ijti)� zi(t�ijt0i))P (t�ijti) =
X
t�i

(zi(t�ijti)� zi(t�ijt0i))P (t�ijti) �
"

2
p
jT j
�Pi

Proof of Claim 1:X
t�i

(zi(t�ijti)� zi(t�ijt0i))P (t�ijti) =
X
t�i

"

�
PT�i(t�ijti)
jjPT�i(�jti)jj2

�
PT�i(t�ijt0i)
jjPT�i(�jt0i)jj2

�
P (t�ijti)

=
"jjPT�i(�jti)jj2

2





 PT�i(�jti)
jjPT�i(�jti)jj2

�
PT�i(�jt0i)

jjPT�i(�jt0i)jj2





2
� "

2
p
jT j
�Pi :

This completes the proof of Claim 1.

Claim 2: For each i and for each ti; t0i 2 Ti;X
t�i:(t�i;ti)2T �

[Ui(tijt�i; ti)� Ui(t0ijt�i; ti)]P (t�ijti)

� �(n+ 1)2M�̂P

Proof of Claim 2: De�ne

Ai(t
0
i; ti) = ft�i 2 T�ij (t�i; ti) 2 T �; (t�i; t0i) 2 T �; jjP�(�jt�i; ti)�P�(�jt�it0i)jj > �̂Pg

and

Bi(t
0
i; ti) = ft�i 2 T�ij (t�i; ti) 2 T �; (t�i; t0i) 2 T �; jjP�(�jt�i; ti)�P�(�jt�it0i)jj � �̂Pg

and
Ci(t

0
i; ti) = ft�i 2 T�ij (t�i; ti) 2 T �; (t�it0i) =2 T �g

Since �Pi � �̂P ; we conclude that

Probf~t�i 2 Ai(t0i; ti)j~ti = tig � �Pi � �̂P :
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Next, note that

0 � v̂i(q(t�i; ti); t�i; ti) + �qi (t�i; ti) � v̂i(q(t�i; ti); t�i; ti) �M

for all i; ti and t�i: Therefore,

jUi(t0ijt�i; ti)j = jv̂i(q(t�i; t0i); t�i; ti)� v̂i(q(t�i; t0i); t�i; t0i)
+ v̂i(q(t�i; t

0
i); t�i; t

0
i) + �

q
i (t�i; t

0
i)j

� jv̂i(q(t�i; t0i); t�i; ti)� v̂i(q(t�i; t0i); t�i; t0i)j
+ jv̂i(q(t�i; t0i); t�i; t0i) + �

q
i (t�i; t

0
i)j

� 3M

for all i; ti; t0i and t�i: Applying the de�nitions and Lemma A, it follows thatX
t�i2Ai(t0i;ti)

[Ui(tijt�i; ti)� Ui(t0ijt�i; ti)]P (t�ijti) � �4M
X

t�i2Ai(t0i;ti)

P (t�ijti) � �4M�̂P :

In addition, X
t�i2Bi(t0i;ti)

[Ui(tijt�i; ti)� Ui(t0ijt�i; ti)]P (t�ijti)

� �2M(n� 1)
X

t�i2Bi(t0i;ti)

jjP�(�jt�i; ti)� P�(�jt�it0i)jjP (t�ijti)

� �2M(n� 1)�̂P

and, �nally,X
t�i2Ci(t0i;ti)

[Ui(tijt�i; ti)� Ui(t0ijt�i; ti)]P (t�ijti)

=
X

t�i2Ci(t0i;ti)

[(v̂i(q(t�i; ti); t�i; ti) + �
q
i (t�i; ti))� (v̂i(c0; t�i; ti) + 0)]P (t�ijti)

=
X

t�i2Ci(t0i;ti)

(v̂i(q(t�i; ti); t�i; ti) + �
q
i (t�i; ti))P (t�ijti)

� 0:

Combining these observations completes the proof of the claim 2.
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Applying Claims 1 and 2, it follows that

X
t�i:(t�i;ti)2T �

[Ui(tijt�i; ti)� Ui(t0ijt�i; ti)]P (t�ijti)

+
X

t�i:(t�i;ti)2T �
(zi(t�i; ti)� zi(t�i; t0i))P (t�ijti)

� "

2
p
jT j
�Pi � (n+ 1)2M�̂P

� 0:

and the mechanism is interim incentive compatible. If (t�i; ti) 2 T � but t�i =2
Ai(t

0
i; ti); then �

P � 2 implies that

Ui(t
0
ijt�i; ti)� Ui(tijt�i; ti) � 2M(n� 1)�P � 2M(n� 1)

"

4M(n+ 1)
p
jT j
�P � ":

In addition, �P � 2 implies that �P � "
4
�P � ": Therefore,

Pr obf(~t�i; ti) 2 T � and

v̂i(q(~t�i; t
0
i); ~t�i; ti) + xi(~t�i; t

0
i)) � v̂i(q(~t�i; ti); ~t�i; ti) + xi(~t�i; ti) + "j~ti = tig

� Probf~t�i =2 Ai(t0i; ti)j~ti = tig
= 1� Probf~t�i 2 Ai(t0i; ti)j~ti = tig
� 1� �P

� 1� "

and it follows that the mechanism is weakly "-ex post incentive compatible. This
completes the proof of part (ii).
Part (i) follows from the computations in part (ii). We have shown that, for any

positive number �, there exists an augmented GVCG mechanism fq; �qi + zigi2N
satisfyingX
t�i:(t�i;ti)2T �

[(v̂i(q(t�i; ti); t�i; ti) + �
q
i (t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i))]P (t�ijti)

� �

2
p
jT j
�Pi � (n+ 1)2M�̂P

for each i and each ti; t0i: If �
P
i > 0 for each i, then � can be chosen large enough

so that incentive compatibility is satis�ed. This completes the proof of part (i).
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10.4. Proofs of Propositions 3 and 4

We begin with the following Lemma.

Lemma C: For each t 2 T and all �; �0 2 �(�);"X
�2�

vi(q̂(tj�0); �; ti)�0(�) + x̂i(tj�0)
#
�
"X
�2�

vi(q̂(tj�); �; ti)�(�) + x̂i(tj�)
#
� (2n�1)M jj���0jj:

Proof:"X
�2�

vi(q̂(tj�); �; ti)�(�) + x̂i(tj�)
#
�
"X
�2�

vi(q̂(tj�0); �; ti)�0(�) + x̂i(tj�0)
#

=
X
k

X
�2�

vk(q̂(tj�); �; ti)�(�)�max
c2C

24X
j2Nni

X
�2�

vj(c; ; �; tj)�(�)

35
�
X
k

X
�2�

vk(q̂(tj�0); �; ti)�(�) +
X
k

X
�2�

vk(q̂(tj�0); �; ti)�(�)

�
X
k

X
�2�

vk(q̂(tj�0); �; ti)�0(�) + max
c2C

24X
j2Nni

X
�2�

vj(c; ; �; tj)�
0(�)

35
� max

c2C

24X
j2Nni

X
�2�

vj(c; ; �; tj)�
0(�)

35�max
c2C

24X
j2Nni

X
�2�

vj(c; ; �; tj)�(�)

35
+
X
k

X
�2�

vk(q̂(tj�0); �; ti)[�(�)� �0(�)]

� �(n� 1)M jj� � �0jj � nM jj� � �0jj
where the �nal inequality follows from Lemma A.

Proof of Proposition 4:
Step 1: Next, let �j(tj) = tj for each j and for each (ri; �; ti) 2 Ti���Ti; let

�i(ri; �; ti) 2 argmax
si2Ti

X
t�i2T�i

X
�2�

[vi(q̂(t�i; sij�); �; ti) + x̂i(t�i; sij�)]�i(�; t�ijri; �; ti):

where

�i(�; t�ijri; �; ti) =
��(t�i; ti)P (t�ijti)P
t̂�i:�(t̂�i;ri)=�

P (t̂�ijti)
if �(t�i; ri) = �

= 0 otherwise
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To show that (�i; �i) is truthful, we must show that �i(ti; �; ti) = ti; i.e., that

ti 2 argmax
si2Ti

X
t�i2T�i

X
�2�

[vi(q̂(t�i; sij�); �; ti) + x̂i(t�i; sij�)]�i(�; t�ijti; �; ti):

for each ti and each � 2 �: To see this, note thatX
t�i2T�i

X
�2�

[vi(q̂(t�i; sij�); �; ti) + x̂i(t�i; sij�)]�i(�; t�ijti; �; ti)

=
X

t�i2T�i
:�(t�i;ti)=�

X
�2�

[vi(q̂(t�i; sij�); �; ti) + x̂i(t�i; sij�)]
"

��(t�i; ti)P (t�ijti)P
t̂�i:�(t̂�i;ti)=�

P (t̂�ijti)

#

=
X

t�i2T�i
:�(t�i;ti)=�

"X
�2�

vi(q̂(t�i; sij�); �; ti)��(t�i; ti) + x̂i(t�i; sij�)
#"

P (t�i; ti)P
t̂�i:�(t̂�i;ti)=�

P (t̂�i; ti)

#

=
X

t�i2T�i
:�(t�i;ti)=�

"X
�2�

vi(q̂(t�i; sij�); �; ti)�(�) + x̂i(t�i; sij�)
#"

P (t�i; ti)P
t̂�i:�(t̂�i;ti)=�

P (t̂�i; ti)

#

�
X

t�i2T�i
:�(t�i;ti)=�

"X
�2�

vi(q̂(t�i; tij�); �; ti)�(�) + x̂i(t�i; tij�)
#"

P (t�i; ti)P
t̂�i:�(t̂�i;ti)=�

P (t̂�i; ti)

#

=
X

t�i2T�i

X
�2�

[vi(q̂(t�i; tij�); �; ti) + x̂i(t�i; tij�)]�i(�; t�ijti; �; ti)

and the proof is complete.

Step 2: Next, we construct beliefs that are consistent with the strategy pro�le
(�; �): Suppose that player is of true type ti; the other players have true type
pro�le t�i; player i reports ri in stage 1 and reports si in stage 2. Given the
de�nition of �j; it follows that each player di¤erent from i reports truthfully in
stage 1 implying that t�i is reported in stage 1 by players di¤erent from i. Since i
has reported ri; all players will observe the posted distribution �(t�i; ri) at stage
2. Upon observing �(t�i; ri) and having reported truthfully in stage 1, it follows
from the de�nition of �j that each player j 6= i reports �j(tj; �(t�i; ri); tj) = tj
in stage 2. Since �j(tj) = tj for each j and P (tj) > 0 for each j, it follows that
player i of type ti who has chosen report ri in stage 1 and who observes � 2 � at
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stage 2 will assign positive probabilityX
t̂�i:�(t̂�i;ri)=�

P (t̂�ijti) > 0

to the event
ft̂�i 2 T�i : �(t̂�i; ri) = �g:

It follows that i�s updated beliefs regarding (�; r�i; t�i) are given by

�i(�; r�i; t�ijri; �; ti) =
��(t�i; ti)P (t�ijti)P
t̂�i:�(t̂�i;ri)=�

P (t̂�ijti)
if t�i = r�i and �(t�i; ri) = �

= 0 otherwise

Note that the mild abuse of notation is justi�ed by the observation thatX
r�i2T�i

�i(�; r�i; t�ijri; �; ti) = �i(�; t�ijti; �; ti)

We complete the proof that (�; �; �) is an ICPBE in the two steps.

Step 3: Deviations at second stage information sets are unpro�table.
The second stage expected payo¤ to player i given the beliefs �i de�ned above

is X
t�i2T�i

X
r�i2T�i

X
�2�

�
vi(q̂((�j(rj; �; tj))j 6=i; sij�); �; ti)

+x̂i((�j(rj; �; tj))j 6=i; sij�)
�
�i(�; r�i; t�ijri; �; ti)

=
X

t�i2T�i

X
�2�

[vi(q̂(t�i; sij�); �; ti) + x̂i(t�i; sij�)]�i(�; t�ijri; �; ti)

so the de�nition of �i implies that

�i(ri; �; ti) 2
argmax

si2Ti

X
t�i2T�i

X
r�i2T�i

X
�2�

�
vi(q̂((�j(rj; �; tj))j 6=i; sij�); �; ti)

+x̂i((�j(rj; �; tj))j 6=i; sij�)
�
�i(�; r�i; t�ijri; �; ti)

Step 4: Coordinated deviations at stages 1 and 2 are unpro�table.
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To show that coordinated deviations are unpro�table for player i, we assume
that other players use (��i; ��i) and we must show that, for any ri 2 Ti and
�̂i : Ti � �� Ti ! Ti; we haveX

t�i2T�i

 X
�2�

[vi(q̂(t�i; tij�(t�i; ti)); �; ti)��(t�i; ti)

+x̂i(t�i; tij�(t�i; ti))] + zi(t�i; ti)
�
P (t�ijti)

�
X

t�i2T�i

 X
�2�

h
vi(q̂(t�i; �̂i(ri; �(t�i; ri); ti)j�(t�i; ri)); �; ti)��(t�i; ri)

+x̂i(t�i; �̂i(ri; �(t�i; ri); ti)j�(t�i; ri))
i
+ zi(t�i; ri)

�
P (t�ijti)

for each ti 2 Ti:Note that for each t�i and each ri;

max
si2Ti

"X
�2�

[vi(q̂(t�i; sij�(t�i; ri)); �; ti)��(t�i; ri) + x̂i(t�i; sij�(t�i; ri))]
#

=
X
�2�

[vi(q̂(t�i; tij�(t�i; ri)); �; ti)��(t�i; ri) + x̂i(t�i; tij�(t�i; ri))]

so it su¢ ces to show thatX
t�i2T�i

 X
�2�

vi(q̂(t�i; tij�(t�i; ti)); �; ti)��(t�i; ti) + x̂i(t�i; tij�(t0�i; ti)) + zi(t�i; ti)
!
P (t�ijti)

�
X

t�i2T�i

 X
�2�

vi(q̂(t�i; tij�(t�i; ri)); �; ti)��(t�i; ri) + x̂i(tj�(t�i; ri)) + zi(t�i; ri)
!
P (t�ijti)

From Lemma C, it follows that X
�2�

vi(q̂(t�i; tij�(t�i; ri)); �; ti)��(t�i; ri) + x̂i(tj�(t�i; ri))
!

�
 X
�2�

vi(q̂(t�i; tij�(t�i; ti)); �; ti)��(t�i; ti) + x̂i(t�i; tij�(t0�i; ti))
!

� (2n� 1)M jj�(t�i; ri)� �(t�i; ti)jj
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Therefore,

X
t�i2T�i

 X
�2�

vi(q̂(t�i; tij�(t�i; ri)); �; ti)��(t�i; ri) + x̂i(tj�(t�i; ri)) + zi(t�i; ri)
!
P (t�ijti)

�
X

t�i2T�i

 X
�2�

vi(q̂(t�i; tij�(t�i; ti)); �; ti)��(t�i; ti) + x̂i(t�i; tij�(t0�i; ti)) + zi(t�i; ti)
!
P (t�ijti)

�
X

t�i2T�i

(2n� 1)M jj�(t�i; ri)� �(t�i; ti)jjP (t�ijti) +
X

t�i2T�i

[zi(t�i; ri)� zi(t�i; ti)]P (t�ijti)

Choosing

zi(t�i; ti) = "
PT�i(t�ijti)
jjPT�i(�jti)jj2

:

it follows that
0 � zi(t�i; ti) � "

since 0 � PT�i (t�ijti)
jjPT�i (�jti)jj2

� 1; for all i, t�i and ti: Therefore,X
t0�i2T�i

[zi(t�i; ri)� zi(t�i; ti)]P (t�ijti) � �
"

2
p
jT j
�Pi

Choosing
0 < � <

"

2(2n� 1)M
p
jT j

yields the result.

Proof of Proposition 3: Using the same argument as that for part (i) of
Theorem 2, Proposition 3 follows immedediately from the proof of Proposition 4
above

10.5. Proof of Lemma B

For each � 2 �; let P (�j�) denote the conditional measure on A given � 2 � and
for each r, let P�(�jtr) denote the conditional measure on � given tr 2 T r: For
each � 2 A; let f�(tr) = #fi 2 Jrjtri = �g and de�ne f(tr) = (f�(tr))�2A:
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Step 1 : If s 2 A and tr�i 2 T r�1; then����f�(tr�i; s)r
�
f�(t

r
�i)

r � 1

���� =

����f�(tr�i) + 1r
�
f�(t

r
�i)

r � 1

���� = r � 1� f�(tr�i)
r(r � 1) � 1

r
if � = s����f�(tr�i; s)r

�
f�(t

r
�i)

r � 1

���� =

����f�(tr�i)r
�
f�(t

r
�i)

r � 1

���� = f�(tr�i) 1

r(r � 1) �
1

r
if � 6= s

implying that 



f�(tr�i; s)r
�
f�(t

r
�i)

r � 1





 � jAj
r
:

Step 2: For each �; let

�(�) := max
�̂ 6=�

Y
�2A

"
P (�j�̂)
P (�j�)

#P (�j�)
and let R = max� �(�): Let �� 2 �(�) denote the Dirac measure with ��(�) = 1
and let � := min�2� P (�): There exists a � > 0 such that, for each � 2 � and each
r,

jjf(t
r)

r
� P (�j�)jj < � ) jj�� � P�(�jtr)jj �

2Rr=2

�

To see this, �x � and note that Assumption (a) in the de�nition of conditionally
independent sequence and the strict concavity of the function ln(�) imply that
�(�) < 1 . Again by computing the logarithm, there exists a �� > 0 such that

Y
�2A

"
P (�j�̂)
P (�j�)

# f�(t
r)

r
�P (�j�)

� 1p
�(�)

whenever �̂ 6= � and jjf(t
r)
r
�P (�j�)jj < ��: Letting R = max� �(�) and � = min ��;

we conclude that for each � 2 �; jjf(t
r)
r
� P (�j�)jj < � implies that

P�(�̂jtr)P (�)
P�(�jtr)P (�̂)

=

24Y
�2A

"
P (�j�̂)
P (�j�)

#P (�j�)Y
�2A

"
P (�j�̂)
P (�j�)

# f�(t
r)

r
�P (�j�)

35r � "�(�) 1p
�(�)

#r
� Rr=2

whenever �̂ 6= �. Therefore, jjf(t
r)
r
� P (�j�)jj < � implies that

jj�� � P�(�jtr)jj = 2
X
�̂ 6=�

P�(�̂jtr) � 2
X
�̂ 6=�

P (�̂)

P (�)
P�(�jtr)Rr=2 �

2Rr=2

�
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Step 3 : To complete the argument, choose � and ti; t0i 2 A and note that for all
su¢ ciently large r we have

jjP�(�jtr�i; ti)� P�(�jtr�i; t0i)jj >
4Rr=2

�

) 9s 2 A : jj�� � P�(�jtr�i; s)jj >
2Rr=2

�

) 9s 2 A : jj
f(tr�i; s)

r
� P (�j�)jj � �

) 9s 2 A : jj
f(tr�i)

r � 1 � P (�j�)jj+ jj
f(tr�i; s)

r
�
f(tr�i)

r � 1 jj � �

) jj
f(tr�i)

r � 1 � P (�j�)jj � � �
jAj
r

) jj
f(tr�i)

r � 1 � P (�j�)jj � �=2:

Applying Hoe¤ding�s inequality (see Hoe¤ding (1963)), it follows that for all suf-
�ciently large r we have

Pr obfjj
f(~tr�i)

r � 1 � P (�j�)jj � �=2j
~� = �g � 2jAj exp(�(r � 1)�

2

2
):

Therefore,

Pr obfjjP�(�j~tr�i; ti)� P�(�j~tr�i; t0i)jj >
4Rr=2

�
j~ti = tig

� Pr obfjj
f(~tr�i)

r � 1 � P (�j�)jj � �=2j
~ti = tig

=
X
�

Pr obfjj
f(~tr�i)

r � 1 � P (�j�)jj � �=2j
~� = �gP (�jti)

� 2jAj exp(�(r � 1)�
2

2
)

Hence, for all r su¢ ciently large,

�P
r

i � maxf4R
r=2

�
; 2jAj exp(�(r � 1)�

2

2
)g:
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10.6. Proof of Theorem 3

The proof is essentially identical to that of Theorem 2. First, note that (T r)� = T r:
For notational ease, we will write qi; �i; and zi instead of qri ; �

r
i and z

r
i and T; t; t�i

and ti instead of T r; tr; tr�i and t
r
i : Choose " > 0: Let M be the bound de�ned in

the statement of the Theorem. For each (t1; ::tr) 2 T; For each �; � 2 A; let

Q(�j�) =
X
�

P (�j�)P (�j�)

so that

jjQ(�j�)jj2 =
"X
�2A

Q(�j�)2
# 1
2

For each i and (t1; ::tr) 2 T; , de�ne

zri (t�i; ti) =
"

r

Q(ti+1jti)
jjQ(�jti)jj2

if i = 1; ::; r � 1

=
"

r

Q(t1jtr)
jjQ(�jtr)jj2

if i = r

Therefore,
0 � zri (t�i; ti) �

"

r
for all i, t�i and ti. Individual rationality of the augmented mechanism follows
from the observations that

v̂i(q(t); t) + xi(t) � 0

and
zi(t) � 0:

If �; �0 2 A with � 6= �0; then, by assumption, Q(�j�) 6= Q(�j�0) and, therefore,

�� := min
�2A

min
�02Anf�g





 Q(�j�)
jjQ(�j�)jj2

� Q(�j�0)
jjQ(�j�0)jj2





2
2

> 0:

Finally, note thatX
s2A

�
Q(sjti)
jjQ(�jti)jj2

� Q(sjt0i)
jjQ(�jti)jj2

�
Q(sjti) =

jjQ(�jti)jj2
2

�� � ��

2
p
jAj
:
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Claim 1: Let jAj denote the cardinality of A. ThenX
t�i

(zri (t�ijti)� zri (t�ijt0i))P r(t�ijti) �
"

2r
p
jAj
��

Proof of Claim 1: If 1 � i � r � 1; thenX
t�i

(zri (t�ijti)� zri (t�ijt0i))P r(t�ijti) =
X
ti+1

X
t�fi;i+1g

"

r

�
Q(ti+1jti)
jjQ(�jti)jj2

� Q(ti+1jt0i)
jjQ(�jti)jj2

�
P r(t�ijti)

=
X
ti+1

"

r

�
Q(ti+1jti)
jjQ(�jti)jj2

� Q(ti+1jt0i)
jjQ(�jti)jj2

�
Q(ti+1jti)

� "

2r
p
jAj
��:

A similar computation is applied when i = r and this completes the proof of Claim
1.

Claim 2:X
ti

[(v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + xi(t�i; t0i))]P r(t�ijti) � �2M(r+1)

Proof of Claim 2: For each (t�i; ti) 2 T , de�ne

Ui(t
0
ijt�i; ti) = v̂i(q(t�i; t0i); t�i; ti) + �i(t�i; t0i):

As in the proof of Theorem 2, de�ne

Ai(t
0
i; ti) = ft�i 2 T�ij jjP r�(�jt�i; ti)� P r�(�jt�it0i)jj > �̂P

rg

and
Bi(t

0
i; ti) = ft�i 2 T�ij jjP r�(�jt�i; ti)� P r�(�jt�it0i)jj � �̂P

rg:
Using the arguments of Theorem 2, we conclude that

Probf~t�i 2 Ai(t0i; ti)j~ti = tig � �P
r

;

0 � v̂i(q(t�i; ti); t�i; ti) + �i(t�i; ti) � v̂i(q(t�i; ti); t�i; ti) �M
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and
jv̂ri (q(t�i; t0i); t�i; ti) + xi(t�i; t0i)j � 3M j

for all i; ti; t0i and t�i: Again using the arguments of Theorem 2, it follows thatX
t�i2Ai(t0i;ti)

[Ui(tijt�i; ti)� Ui(t0ijt�i; ti)]P r(t�ijti) � �4M�̂P :

and that X
t�i2Bi(t0i;ti)

[Ui(tijt�i; ti)� Ui(t0ijt�i; ti)]P r(t�ijti) � �2M(r � 1)�P
r

Combining these observations completes the proof of the claim 2.

Applying Lemma B and Claims 1 and 2, it follows that, for su¢ ciently large
r,

X
t�i

(Ui(tijt�i; ti) + zi(t�i; ti))P r(t�ijti)�
X
t�i

(Ui(t
0
ijt�i; ti) + zi(t�i; t0i))P r(t�ijti)

=
X
t�i

[Ui(tijt�i; ti)� Ui(t0ijt�i; ti)]P r(t�ijti) +
X
t�i

(zi(t�i; ti)� zi(t�i; t0i))P r(t�ijti)

� "

2r
p
jAj
�� � 2M(r � 1)�P r

=
1

r

"
"

2
p
jAj
�� � 2Mr(r � 1)�P r

#
� 0:

and the proof of interim IC is complete.
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