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Abstract

This paper considers forecast combination with factor-augmented regression. In this frame-

work, a large number of forecasting models are available, varying by the choice of factors and the

number of lags. We investigate forecast combination using weights that minimize the Mallows

and the leave-h-out cross validation criteria. The unobserved factor regressors are estimated by

principle components of a large panel with N predictors over T periods. With these generated

regressors, we show that the Mallows and leave-h-out cross validation criteria are approximately

unbiased estimators of the one-step-ahead and multi-step-ahead mean squared forecast errors,

respectively, provided that N;T ! 1: In contrast to well-known results in the literature, the
generated-regressor issue can be ignored for forecast combination, without restrictions on the

relation between N and T:

Simulations show that the Mallows model averaging and leave-h-out cross-validation aver-

aging methods yield lower mean squared forecast errors than alternative model selection and

averaging methods such as AIC, BIC, cross validation, and Bayesian model averaging. We apply

the proposed methods to the U.S. macroeconomic data set in Stock and Watson (2012) and �nd

that they compare favorably to many popular shrinkage-type forecasting methods.

JEL Classi�cation: C52, C53
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1 Introduction

Factor-augmented regression has received much attention in high-dimensional problems where

a large number of predictors are available over a long period. Assuming some unobserved latent

factors generate the comovement of all predictors, one can forecast a particular series by the factors

rather than by the original predictors, with the bene�t of signi�cant dimension reduction (Stock

and Watson, 2002). In factor-augmented regression, the factors are determined and ordered by

their importance in driving the covariability of many predictors, which may not be consistent with

their forecast power for the particular series of interest, an issue discussed in Bai and Ng (2008,

2009). In consequence, model speci�cation is necessary to determine which factors should be used

in the forecast regression, in addition to specifying the number of lags of the dependent variable

and the number of lags of the factors included. These decisions vary with the particular series of

interest and the forecast horizon.

This paper proposes forecast combination based on frequentist model averaging criteria. The

forecast combination is a weighted average of the predictions from a set of candidate models that

vary by the choice of factors and the number of lags. The model averaging criteria are estimates of

the mean square forecast errors (MSFE). Hence, the weights that minimize these model averaging

criteria are expected to minimize the MSFE. Two di¤erent types of model averaging methods

are considered: the Mallows model averaging (MMA; Hansen, 2007) and the leave-h-out cross-

validation averaging (CVAh; Hansen, 2010). For one-step-ahead forecasting, the CVAh method is

equivalent to the jackknife model averaging (JMA) from Hansen and Racine (2012). The MMA and

CVAh methods were designed for standard regression models with observed regressors. However,

dynamic factor models involve unobserved factors and their estimation creates generated regressors.

The e¤ect of generated regressors on model selection and combination has not previously been

investigated. This paper makes this extension and provides a theoretical justi�cation for frequentist

model averaging methods in the presence of estimated factors.

We show that even in the presence of estimated factors, the Mallows and leave-h-out cross-

validation criteria are approximately unbiased estimators of the one-step-ahead and multi-step-

ahead MSFE, respectively, provided that N;T ! 1: In consequence, these frequentist model
averaging criteria can be applied to factor-augmented forecast combination without modi�cation.

Thus for model selection and combination, the generated-regressor issue can be safely ignored. This

is in contrast to inference on the coe¢ cients, where Pagan (1984), Bai and Ng (2009), Ludvigson

and Ng (2011), and Gonçalves and Perron(2011) have shown that the generated regressors a¤ect the

sampling distribution. It is worth emphasizing that our result is not based on asymptotic rates of

convergence (such as assuming T 1=2=N ! 0 as in Bai and Ng (2006)); instead it holds because the
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focus is on forecasting rather than parameter estimation. Indeed, in the context of a non-dynamic

factor model (one without lagged dependent variables and no serial correlation) we show that the

Mallows criterion is an unbiased estimate of the MSFE in �nite samples, and retains the classic

optimality developed in Li (1987), Andrews (1991) and Hansen (2007). In dynamic models our

argument is asymptotic, but does not rely on di¤ering rates of convergence.

Our simulations demonstrate the superior �nite-sample performance of the MMA and CVAh

forecasts in the sense of low MSFE. This is consistent with the optimality of MMA and JMA in

the absence of temporal dependence and generated regressors (Hansen, 2007; Hansen and Racine,

2012). In addition, the advantage of CVAh is found most prominent in long-horizon forecast with

serially correlated forecast errors.

We apply the proposed methods to the U.S. macroeconomic data set in Stock and Watson

(2012) and �nd that they compare favorably to many popular shrinkage-type forecasting methods.

The frequentist model averaging approach adopted here extends the large literature on forecast

combination, see Granger (1989), Clemen (1989), Diebold and Lopez (1996), Henry and Clements

(2002), Timmermann (2006), and Stock and Watson (2006), for reviews. Stock and Watson (1999,

2004, 2012) provide detailed empirical evidence demonstrating the gains of forecast combination.

The simplest forecast combination is to use equal weights. Compared to simple model averaging,

MMA and CVAh are less sensitive to the choice of candidate models. Alternative frequentist forecast

combination methods are proposed by Bates and Granger (1969), Granger and Ramanathan (1984),

Timmermann (2006), Buckland, Burnham, and Augustin (2007), Burnham and Anderson (2002),

and Hjort and Claeskens (2003). Hansen (2008) shows that MMA has lower MSFE in one-step-

ahead forecasts than other methods.

Another popular model averaging approach is the Bayesian model averaging (BMA; Min and

Zellner, 1993). The BMA has been widely used in econometric applications, including Sala-i-

Martin, Doppelhofer, and Miller (2004), Brock and Durlauf (2001), Brock, Durlauf, and West

(2003), Avramov (2002), Fernandez, Lay, and Steel (2001a,b), Garratt, Lee, Pesaran, and Shin

(2003), and Wright (2008, 2009). Geweke and Amisano (2011) propose optimal density combination

for forecast models. Compared to BMA, the frequentist model averaging approach here does not

reply on priors and allows for misspeci�cation through the balance of misspeci�cation errors against

overparameterization. Furthermore, our frequentist model averaging approach explicitly deals with

generated-regressors, while BMA has no known adjustment.

As an alternative to the model averaging approach, forecasts can be based on one model picked

by model selection. Numerous model selection criteria have been proposed, including the Akaike

information criterion (AIC; Akaike, 1973), Mallows�Cp (Mallows, 1973), Bayesian information
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criterion (BIC; Schwarz 1978), and cross-validation (Stone, 1974). Bai and Ng (2009) argue that

these model selection criteria are unsatisfactory for factor-augmented regression because they rely

on the speci�c ordering of the factors and the lags, where the natural order may not work well for

the forecast of a particular series. This issue is alleviated in forecast combination by the �exibility

of choosing candidate models. In addition, the above model selection procedures have not been

investigated in the presence of generated regressors; ours is the �rst to make this extension.

This paper complements the growing literature on forecasting with many regressors. In addition

to those discussed above, many papers consider forecast in a data rich environment. Forni, Hallin,

Lippi, and Reichlin (2002, 2005) consider the generalized dynamic factor model and frequency

domain estimation. Bernanke, Boivin, and Eliasz (2005) propose forecast with factor-augmented

vector autoregressive (FAVAR) model. A factor-augmented VARMA model is suggested by Dufour

and Stevanovic (2010). The dynamic factor model is reviewed in Stock and Watson (2011). Bai and

Ng (2008) form target predictors associated with the object of interest. Bai and Ng (2009) intro-

duce the boosting approach. Stock and Watson (2012) describe a general shrinkage representation

that covers special cases like pretest, BMA, empirical Bayes, and bagging (Inoue and Kilian, 2008).

Pesaran, Pick and Timmermann (2011) also investigate multi-step forecasting with correlated er-

rors and factor-augmentation, but in a multivariate framework. Kelly and Pruitt (2011) propose

a three-pass-regression �lter to handle many predictors. Tu and Lee (2012) consider forecast with

supervised factor models. A comprehensive comparison among many competing methods is avail-

able in Kim and Swanson (2010). Ng (2011) provides an excellent review on variable selection and

contains additional references.

The rest of the paper is organized as follows. Section 2 introduces the dynamic factor model

and describes the estimators and combination forecasts. Section 3 provides a detailed description

of forecast selection and combination procedures based on the Mallows and leave-h-out cross-

validation criteria. Section 4 provides theoretical justi�cation by showing the Mallows and leave-

h-out cross-validation criteria are approximately unbiased estimators of the MSFE. Monte Carlo

simulations and an empirical application to U.S. macroeconomic data are presented in Sections 5

and 6. Summary and discussions are provided in Section 7.

2 Model and Estimation

Suppose we have observations (yt; Xit) for t = 1; :::; T and i = 1; :::; N; and the goal is to forecast

yT+h using the factor-augmented regression model

yt+h = �0 + �(L)yt + �(L)
0Ft + "t+h (2.1)
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where h � 1 is the forecast horizon, �2 = E"2t ; and Ft 2 Rr are unobserved common factors

satisfying

Xit = �
0
iFt + eit: (2.2)

The vectors �i 2 Rr are called the factor loadings, eit is called an idiosyncratic error, and �(L) and
�(L) are lag polynomials of order p and q; respectively.1 In matrix notation, (2.2) can be written

as

X = F�0 + e (2.3)

where X is a T �N , F = (F1; :::; FT )0 is T � r; � = (�1; :::; �N )0 is N � r; and e is a T �N error

matrix. We assume that the number of factors r in (2.2) is known, though in practice r can be

consistently selected by the information criteria in Bai and Ng (2002).2

Our contribution is to treat the structures of the lag polynomials �(L) and �(L) in (2.1) as

unknown, and to introduce methods to select the lag structures. Suppose that the forecaster is

considering approximating models for (2.1) which include up to pmax lags of yt and qmax lags of Ft:

Thus the largest possible lag structure for (2.1) includes the regressors

zt = (1; yt; :::; yt�pmax+1; F
0
t ; :::; F

0
t�qmax+1)

0: (2.4)

Given this regressor set, write (2.1) as

yt+h = z
0
tb+ "t+h (2.5)

where b includes all coe¢ cients from (2.1). Now suppose that the forecaster is considering M

approximating models indexed by m = 1; :::;M; where each approximating model m speci�es a

subset zt(m) of the regressors zt. The forecaster�s mth approximating model is then

yt+h = zt(m)
0b(m) + "t+h(m); (2.6)

or in matrix notation

y = Z(m)b(m) + "(m): (2.7)

We do not place any restrictions on the approximating models; in particular, the models

1We assume a su¢ cient number of observations are available in history for the estimation of (2.1) when the left
hand side is y1:

2The averaging methods proposed below also work in practice when r is unknown and the largest approximating
model is chosen to include rmax number of factors, where rmax > r: This is equivalent to employing irrelevant factor
regressors in (2.1), which has insigni�cant e¤ect on the optimal combination forecast.
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may be nested or non-nested. However, the set of models should be selected judiciously so

that the total number of models M is practically and computationally feasible. A simple choice

is to take sequentially nested subsets of zt: Another simple feasible choice is to set zt(m) =

(1; yt; yt�1; :::; yt�m+1; Fmt ; :::; F
m
t�m+1); where F

m
t denote the �rst m factors in Ft: Alternatively,

a relatively simple choice is to set zt(m) = (1; yt; yt�1; :::; yt�p(m)+1; F
m
t ; :::; F

m
t�q(m)+1) where we

separately vary p(m) among (1; 2; :::; P ) and q(m) among (1; 2; :::; Q). The choice of lag structures

is not critical to our treatment.

For estimation we replace the unobservable factors F by their principle component estimateeF = ( eF1; :::; eFT )0 2 RT�r; which is the matrix of r eigenvectors (multiplied by pT ) associated with
the r largest eigenvalues of the matrix XX 0: Let ezt(m) denote zt(m) with the factors Ft replaced
with their estimates eFt; and set eZ(m) = (ez1(m); :::; ezT�h(m))0: The least squares estimate of b(m) is
then bb(m) = ( eZ(m)0 eZ(m))�1 eZ(m)0y with residual b"t+h(m) = yt+h � ezt(m)0bb(m): The least squares
estimate bb(m) is often called a �two-step�estimator as the regressor ezt(m) contains the estimateeFt also known as a �generated regressor�.

The least squares forecast of yT+h by the mth approximating model is

byT+hjT (m) = ezT (m)0bb(m): (2.8)

Forecast combinations can be constructed by taking weighted averages of the forecasts byT+hjT (m):
These take the form

byT+hjT (w) = MX
m=1

w(m)byT+hjT (m); (2.9)

where w(m); m = 1; :::;M , are forecast weights. Let w = (w(1); :::; w(M))0 denote the weight

vector. We will require that the weights are non-negative and sum to one, e.g., 0 � w(m) � 1

and
PM
m=1w(m) = 1; or equivalently that w 2 HM ; the unit simplex in RM : Forecast combination

generalizes forecasting based on a single model as the latter obtains by setting w(m) = 1 for a

single model m:

3 Forecast Selection and Combination

The problem of forecast selection is choosing the forecast byT+hjT (m) from the set m = 1; :::;M:

The problem of forecast combination is selecting the weight vector w from HM . In this section we
describe the Mallows and leave-h-out cross-validation criteria for forecast selection and combination.

Factor models are distinct from conventional forecasting models in that they involve generated

regressors (the estimated factors). As shown by Pagan (1984), in general the presence of generated
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regressors a¤ects the asymptotic distribution of two-step parameter estimates such as bb(m). The
details for dynamic factor models have been worked out by Bai and Ng (2006, 2009). Bai and

Ng (2006) show that the generated regressor e¤ect is asymptotically negligible if T 1=2=N ! 0;

that is, if the cross-sectional dimension is su¢ ciently large so that the �rst-step estimation error

is of a smaller stochastic order than the second-step estimation error. Bai and Ng (2009) re�ne

this analysis, showing that the �rst stage estimation increases the asymptotic variance by a factor

related to both T and N . Consequently, they propose to adjust the boosting stopping rule for MSE

minimization. The lesson from this literature is that we should not neglect the e¤ect of generated

regressors when considering model selection.

The Mallows (1973) criterion is a well-known unbiased estimate of the expected squared �t

in the context of homoskedastic regression with independent observations. The criterion applies

to any estimator whose �tted values are a linear function of the dependent variable y: In the

context of model selection with estimated factors, the �tted regression vector is eZ(m)bb(m) =eZ(m)( eZ(m)0 eZ(m))�1 eZ(m)0y and in the context of forecast combination the �tted regression vector
is
PM
m=1w(m)

eZ(m)( eZ(m)0 eZ(m))�1 eZ(m)0y: In both cases the �tted values are a linear function of
y if eZ(m) is not a function of y; which occurs in any non-dynamic factor model (that is, model (2.1)
without lagged dependent variables). This is because the generated regressors eZ(m) are a func-
tion only of X. (Recall, eF are the eigenvectors of XX 0 associated with the r largest eigenvalues.)

Consequently, the Mallows criterion is directly applicable without modi�cation to non-dynamic

homoskedastic factor models, and Mallows selection and averaging retains the optimality proper-

ties described in Li (1987), Andrews (1991), and Hansen (2007). This is a simple yet exciting

insight. It is also quite surprising given the failure of conventional inference in the presence of

generated regressors. Our intuition is that while generated regressors in�ate the variance of the pa-

rameter estimates, they symmetrically in�ate the Mallows criterion, and thus the criterion remains

informative.

Unfortunately this �nite-sample argument does not apply directly to the dynamic model (2.1)

with lagged dependent variables. Therefore in the next section we use asymptotic arguments to

establish the validity of the Mallows criterion for the dynamic factor model. It follows that the

unadjusted Mallows criterion is appropriate for forecast selection and combination for dynamic

factor models.

We now describe the Mallows criterion for selection and combination. Let k(m) = dim(zt(m))

denote the number of regressors in the mth model. The Mallows criterion for forecast selection is

CT (m) =
1

T

TX
t=1

b"t(m)2 + 2b�2T
T
k(m); (3.1)
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where b�2T is a preliminary estimate of �2:We suggest b�2T = (T�k(M))�1PT
t=1 b"t(M)2 using a large

approximate model M so that b�2T is approximately unbiased for �2: The Mallows selected model isbm = argmin1�m�M CT (m) and the selected forecast is byT+hjT (bm): Numerically, this is accomplished
by estimating each model m; calculating CT (m) for each model, and �nding the model bm with the

smallest value of the criterion.

For forecast combination, the Mallows criterion for weight selection is

CT (w) =
1

T

TX
t=1

 
MX
m=1

w(m)b"t(m)!2 + 2b�2T
T

MX
m=1

w(m)k(m): (3.2)

The Mallows selected weight vector is obtained by �nding the weight vector w which minimizes

CT (w): We can write this as bw = argmin
w2HM

CVT (w) (3.3)

and the selected forecast is byT+hjT ( bw): Following Hansen (2008) we call this the MMA forecast.

Numerically, the solution (3.3) minimizes the quadratic function CT (w) subject to a set of equality

and inequality constraints, and is easiest accomplished using a quadratic programming algorithm,

which are designed for this situation. Quadratic programming routines are available in standard

languages including Gauss, Matlab, and R.

The Mallows criterion is simple and convenient, but it is restrictive in that it requires the error

"t+h to be conditionally homoskedastic and serially uncorrelated. The homoskedasticity restriction

can be avoided by instead using leave-one-out cross validation as in Hansen and Racine (2012),

which is a generally valid selection criterion under heteroskedasticity. The leave-one-out cross-

validation criterion, however, still requires the error to be serially uncorrelated, yet when h > 1 the

error "t+h is generally a moving average process and thus is serially correlated.

To incorporate serial correlation, Hansen (2010) has recommended using the leave-h-out cross-

validation criterion which is the sum of squared leave-h-out prediction residuals.

To construct this criterion, de�ne the leave-h-out prediction residual e"t+h;h(m) = yt+h �ezt(m)0ebt;h(m) where ebt;h(m) is the least squares coe¢ cient from a regression of yt+h on ezt(m)
with the observations in periods ft � h + 1; :::; t + h � 1g omitted. This leave-h-out residual uses
the full-sample estimated factors eFt. When h = 1 the prediction residual has the simple formulae"t+h;h(m) = b"t+h(m)(1� ezt(m)0( eZ(m)0 eZ(m))�1ezt(m))�1: For h > 1; Hansen (2010) has shown that
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it can be computed via the formula

e"t+h;h(m) = b"t+h(m) + ez0t(m)
0@ X
jj�tj�h

ezj(m)ez0j(m)
1A�10@ X

jj�tj<h
ezj(m)b"j+h(m)

1A : (3.4)

The cross-validation criterion for forecast selection is

CVh;T (m) =
1

T

TX
t=1

e"t;h(m)2: (3.5)

The cross-validation selected model is bm = argmin1�m�M CVh;T (m) and the selected forecast isbyT+hjT (bm):
For forecast combination, the cross-validation criterion is

CVh;T (w) =
1

T

TX
t=1

 
MX
m=1

w(m)e"t;h(m)
!2
: (3.6)

The cross-validation selected weight vector minimizes CVh;T (w), that is,

bw = argmin
w2HM

CVh;T (w): (3.7)

As for Mallows combination, (3.7) is conveniently solved via quadratic programming, as the criterion

(3.6) is quadratic in w. The cross-validation selected combination forecast is byT+hjT ( bw); and we
call this the leave-h-out cross-validation averaging (CVAh) forecast.

4 Asymptotic Theory

In this section, we provide theoretical justi�cation for the Mallows criterion and the leave-h-out

cross-validation criterion with estimated factors. In the �rst subsection we describe the technical

assumptions, and in the second describe the connection between in-sample �t, mean-squared error,

and mean-squared forecast error. In the third sub-section we show that the Mallows criterion is

an approximately unbiased estimator of the MSFE in the case of one-step-ahead forecasts and

conditional homoskedasticity. In the fourth we examine the leave-h-out cross-validation criterion,

and show a similar result for multi-step forecasts allowing for conditional heteroskedasticity.
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4.1 Assumptions

Let Ft = �(yt; Xt; yt�1; Xt�1; :::) denote the information set at time t. Let C denote a generic

constant. For a matrix A; A > 0 denotes A is positive de�nite.

Assumption R.

(i) E("t+hjFt) = 0:
(ii) (z0t; "t+h; e1t; :::; eNt) is strictly stationary.

(iii) Ejjztjj4 � C; E"4t � C; and E(ztz0t) > 0:
(iv) T�1=2

PT
t=1 zt"t+h !d N(0;
); where 
 =

P
jjj<h E(ztz0t�j"t+h"t+h�j):

Assumption R(i) implies that "t+h is conditionally unpredictable at time t; but when h > 1

it does not imply that "t+h is serially uncorrelated. This is consistent with the fact that the h-

step-ahead forecast error "t+h typically is a moving average process of order h � 1: Assumption
R(ii) assumes the data is strictly stationary, which simpli�es the asymptotic theory, and links the

in-sample �t of the averaging estimator to its out-of-sample performance. (See Section 4.2 below for

details.) Assumptions R(iii)-R(iv) are standard moment bounds and the central limit theorem, the

latter satis�ed under standard weak dependence conditions. The speci�c form of 
 in Assumption

R(iv) follows from stationarity and Assumption R(i).

Assumption F.

(i) The factors satisfy E kFtk4 � C and T�1
PT
t=1 FtF

0
t !p �F > 0:

(ii) The loading �i is either deterministic such that k�ik � C or it is stochastic such that E k�ik4 �
C: In either case, N�1�0�!p �� > 0:

(iii) E(eit) = 0; Ejeitj8 � C:
(iv) E(eitejs) = �ij;ts; j�ij;tsj � �ij for all (t; s); and j�ij;tsj � � ts for all (i; j) such thatN�1PN

i;j=1 �ij

� C; T�1
PT
t;s=1 � ts � C; and (NT )�1

P
i;j;t;s=1 j�ij;tsj � C:

(v) For every (t; s); EjN�1=2PN
i=1[eiseit � E(eiseit)]j4 � C:

(vi) The variables f�ig; fFig; feitg are three mutually independent groups. Dependence within each
group is allowed.

(vii) For each t; Ejj(NT )�1=2
PT�h
s=1

PN
i=1(Fs + "s+h)(eiteis � E(eiteis))jj2 � C:

(viii) For all (i; t); Ejj(NT )�1=2
PT�h
t=1

PN
i=1 �ieit"t+hjj2 �M; where E(�ieit"t+h) = 0:

Assumption F is similar to Assumptions A-D in Bai and Ng (2006) and Assumptions 1-4 of

Gonçalves and Perron (2011).3 Assumptions F(i) and F(ii) ensure that there are r non-trivial

3Assumption F does not include Assumption C4 of Bai and Ng (2006) and Assumption 3(e) of Gonçalves and
Perron (2011). The reason is that the objective of the present paper does not require invoking the asymptotic
distribution of the estimated factors established in Bai (2003).

10



strong factors. This does not accommodate weak factors as in Onatski (2012). Assumptions

F(iii)-F(v) allow for heteroskedasticity and weak dependence in both the time series and cross-

sectional dimensions, an approximate factor structure as in Chamberlain and Rothschild (1983)

and Connor and Korajczyk (1986, 1993). Assumption F(vi) can be replaced by high-level moment

conditions, such as Assumptions D and F2 of Bai (2003) and Assumptions 3(a), 3(c), and 3(d)

of Gonçalves and Perron (2011). Assumption F(vii) and F(viii) impose weak dependence between

the idiosyncratic errors and the regression error as well as bounded moments for the sum of some

zero-mean random variables. They are analogous to Assumptions 3(b), 4(a), and 4(b) of Gonçalves

and Perron (2011), who also provide su¢ cient conditions under mutual independence of f�ig; feisg
and f"t+hg. A condition similar to Assumption (vii) also is employed by Assumption F1 in Bai

(2003).

4.2 MSE and MSFE

We �rst show that the MSFE is close to the expected in-sample squared error. To see this, write

the conditional mean in (2.1) as �t so that the equation is yt+h = �t + "t+h or as a T � 1 vector as
y = �+ ": Similarly for any forecast combination w; write b�t(w) =PM

m=1w(m)ezt(m)0bb(m) and in
vector notation y = b�(w) + b"(w):

Now de�ne the in-sample squared error

LT (w) =
1

T

TX
t+h=1

�
"2t+h + (�t � b�t(w))2�

=
1

T
"0"+

1

T
(�� b�(w))0 (�� b�(w)) : (4.1)

The �rst term is independent of the model weights. The second term measures the �t of the

estimate b�(w) for the conditional mean �: The expectation of the in-sample squared error is the
in-sample mean-squared error:

MSET (w) = ELT (w)

= E
�
"2t+h + (�t � b�t(w))2� : (4.2)
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Now observe that the MSFE of the point forecast byT+hjT (w) is
MSFET (w) = E

�
yT+h � byT+hjT (w)�2

= E
�
"2T+h + (�T � b�T (w))2�

' E
�
"2t+h + (�t � b�t(w))2�

= MSET (w) (4.3)

the second equality holds since "T+h is uncorrelated with b�T (w); and the approximation in the
third line follows from stationarity of (yt; eFt). This calculation shows that the MSFE is close to the
MSE, which is the expected in-sample �t LT (w).

The Mallows and leave-h-out cross-validation criteria are designed as estimates of LT (w). The

near equivalence with MSFE shows that these criteria are also estimates of MSFE and are thus

appropriate forecast selection criteria.

The approximation rests on whether the distribution of (yt; eFt) is approximately stationary. This
holds since the principle component estimate eFt is a weighted average of Xt = (X1t; :::; XNt); where
the weight is an approximately orthogonal transformation of �; which holds under Assumption F

as shown by Bai and Ng (2002) and Bai (2003). Combined with the stationarity and independence

conditions in Assumptions R(ii) and F(vi), it follows that (yt; eFt) is approximately stationary as
claimed.

4.3 Mallows Criterion

In this section we restrict attention to the case of one-step forecasts (h = 1) and conditional

homoskedasticity. Thus Assumption R(i) is strengthened to E("t+1jFt) = 0 and E("2t+1jFt) = �2:
Under these conditions we show that the Mallows criterion is an asymptotically unbiased estimate

of the in-sample �t LT (w):

To see this, recalling the de�nitions of � and b�(w) given in Section 4.2, we can see that b�(w) =eP (w)y = eP (w)�+ eP (w)"; where eP (w) =PM
m=1w(m)

eP (m) and eP (m) = eZ(m)( eZ(m)0 eZ(m))�1 eZ(m)0:
Thus the residual vector equals

b"(w) = "+ �� b�(w)
= "+

�
I � eP (w)��� eP (w)": (4.4)

12



We calculate that

1

T

TX
t=1

 
MX
m=1

w(m)b"t(m)!2 = 1

T
b"(w)0b"(w)

= LT (w) + 2
1

T
(�� b�(w))0 "

= LT (w) + 2
1

T
�0
�
I � eP (w)� "� 2 1

T
"0 eP (w)": (4.5)

It follows that

CT (w) = LT (w) + T
�1=2r1T (w) + T

�1r2T (w) (4.6)

where

r1T (w) = 2
1p
T
�0
�
I � eP (w)� "

r2T (w) = �2
 
"0 eP (w)"� b�2T MX

m=1

w(m)k(m)

!
: (4.7)

This shows that the Mallows criterion equals the in-sample �t LT (w) plus two remainder terms.

We now show that r1T (w) and r2T (w) converge in distribution to zero mean random variables. This

provides an asymptotic justi�cation for treating CT (w) as an approximately unbiased estimate of

LT (w): Consequently, selecting the weight vector (or model) to minimize CT (w) is a reasonable

approximation to the minimization of LT (w); and hence the MSFE.

We �rst take r2T (w): First, note that if b�2T is estimated using a large model which includes the
true lags as a special case (or if the number of lags increases with sample size) then b�2T !p �

2.

Set P (w) =
PM
m=1w(m)P (m) where P (m) = Z(m) (Z(m)

0Z(m))�1 Z(m)0: Under Assumption R,

E("t+1jFt) = 0 and E("2t+1jFt) = �2; then T�1=2Z(m)0"!d N(0; �
2V (m)) and T�1Z(m)0Z(m)!p

V (m), where V (m) = Ezt(m)z0t(m): It follows that "0P (m)" !d �
2�(m); where �(m) � �2k(m): We

deduce that

r02T (w) = �2
 

MX
m=1

w(m)
�
"0P (m)"� b�2Tk(m)�

!
!d �2

MX
m=1

w(m)�2 (�(m)� k(m)) = �(w); (4.8)

where E�(w) = 0:
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We next show that r2T (w)� r02T (w) is asymptotically negligible. To this end, write

"0 eP (m)"
=
h
T�1=2ZH(m)

0"+AT
i0 �
T�1ZH(m)

0ZH(m) +B1T +B
0
1T +B2T

��1 h
T�1=2ZH(m)

0"+AT
i
;

AT = T
�1=2

� eZ(m)� ZH(m)�0 ";
B1T = T

�1
� eZ(m)� ZH(m)�0 ZH(m);

B2T = T
�1
� eZ(m)� ZH(m)�0 � eZ(m)� ZH(m)� ; (4.9)

and ZH(m) = Z(m)H(m) for some full-rank block-diagonal matrix H(m) that transforms the

factor column spaces in Z(m):4 Let CNT = min[N;T ]: By Lemma A.1 of Bai and Ng (2006),

B1T = Op(C
�1
NT ) and B2T = Op(C

�1
NT ) under Assumptions R and F, showing that the estimated

factors approximately span the column spaces of the true factors in large sample. By Lemma A.1 of

Gonçalves and Perron (2011), AT = Op(C
�1
NT ); under Assumptions R and F.

5 It is worth pointing

out that the normalization in AT is T�1=2, making it a stronger result than sample average. Because

AT ; B1T ; and B2T are all negligible as N;T !1; we conclude that r2T (w)� r02T (w) = op(1). We
have shown that r2T (w)!d �(w) when N;T !1; as desired.

The arguments above are analogous to those in Bai and Ng (2006) on the e¤ect of factor

estimation on con�dence intervals. However, the above results hold without imposing the strong

T 1=2=N ! 0 condition used in Bai and Ng (2006).

We next take r1T (w): As in the above argument we can show that r1T (w) = r01T (w) + op(1)

where r01T (w) =
PM
m=1w(m)

1p
T
�0 (I � P (m)) ": Notice that � = Zb where Z = (z1; :::; zT )0 and b

is the true coe¢ cients in (2.5). Then under Assumption R,

1p
T
�0 (I � P (m)) " = 1p

T
b0Z 0 (I � P (m)) "!d S(m) � N(0; �2Q(m)); (4.10)

where Q(m) = plim b0Z 0 (I � P (m))Zb: Thus

r1T (w) = r
0
1T (w) + op(1)!d S(w) =

MX
m=1

w(m)S(m): (4.11)

and ES(w) = 0:
4The exact form of H(m) is based on the transformation matrix H de�ned in Lemma A.1 of Bai and Ng (2006),

with adjustments that each approximate model only invoves a subset of all factors and their lags. In addition, H(m)
is block-diagonal, where the upper-left block associated with the lags of yt is an identity matrix. As such, H(m) only
rotates the columns of factors and their lags.

5Assumptions R and F imply all assumptions in Bai and Ng (2006) and Goncales and Perron (2011) used to obtain
the desired results.
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We have established the following result.

Theorem 1 Suppose h = 1; E(e2t jFt�1) = �2; and Assumptions R and F hold: For �xed M and

w; and N;T !1;
CT (w) = LT (w) + T

�1=2r1T (w) + T
�1r2T (w);

where

r1T (w)!d �(w);

r2T (w)!d S(w);

E�(w) = 0 and ES(w) = 0:

Theorem 1 shows that for one-step homoskedastic forecasting, the Mallows criterion CT (w) is

equal to the in-sample squared error LT (w) plus terms of smaller stochastic order with asymptotic

zero means. Thus CT (w) is an asymptotically unbiased estimator of ELT (w) 'MSFET (w): This
holds for any weight vector w; and holds even though the regressors are estimated factors. This

result is similar to the theory of Hansen (2008) for forecast combination without estimated factors.

While Theorem 1 establishes that the Mallows criterion is asymptotically unbiased for the

MSFE, it does not establish that the selected weight vector is asymptotically e¢ cient in the sense

of Shibata (1980), Ing and Wei (2005), or Schorfheide (2005) for forecast selection, or Hansen (2007)

in the case of model averaging. In particular, Ing and Wei (2005) show that in an in�nite-order

autoregressive (AR) model with i.i.d. innovations, the AR order selected by the Akaike or Mallows

criterion is asymptotically optimal in the sense of minimizing the one-step-ahead MSFE among all

candidate models. No similar result exists for forecast combination, and a rigorous demonstration

of optimality is beyond the scope of this paper. Nevertheless, the asymptotic unbiasedness of the

Mallows criterion shown in Theorem 1, the existing optimality results on Mallows model averaging,

and the optimality theory of Ing and Wei (2005) together suggest that Mallows forecast combination

in the presence of estimated factors is a reasonable weight selection method.

4.4 Multi-Step Forecast with Leave-h-out cross-validation Averaging

When h > 1 or the errors are possibly conditionally heteroskedastic the Mallows criterion

applies an incorrect parameterization penalty. Instead, following Hansen (2010) we recommend

the leave-h-out cross-validation criterion for forecast selection and combination. In this section we

provide a theoretical foundation for this criterion in the presence of estimated factors.

First, as is shown in the proof of Theorem 2 of Hansen (2010), the cross-validation criterion is

approximately equal to a penalized sum-of-squared errors. To see this, use the computation formula
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(3.4) to write

MX
m=1

w(m)e"t;h(m) = b"t+h(w) + MX
m=1

w(m)ez0t(m)
0@ X
jj�tj�h

ezj(m)ez0j(m)
1A�10@ X

jj�tj<h
ezj(m)b"j+h(m)

1A
(4.12)

where b"t+h(w) =PM
m=1w(m)b"t+h(m): Applied to de�nition (3.6) we �nd

CVh;T (w)

=
1

T

TX
t=1

0@b"t+h(w) + MX
m=1

w(m)ez0t(m)
0@ X
jj�tj�h

ezj(m)ez0j(m)
1A�10@ X

jj�tj<h
ezj(m)b"j+h(m)

1A1A2

=
1

T

TX
t=1

b"t+h(w)2 +
2

T

TX
t=1

b"t+h(w) MX
m=1

w(m)ez0t(m)
0@ X
jj�tj�h

ezj(m)ez0j(m)
1A�10@ X

jj�tj<h
ezj(m)b"j+h(m)

1A+ T�2r3T
=
1

T

TX
t=1

b"t+h(w)2 + 2

T

MX
m=1

w(m) tr
�bV (m)�1b
(w;m)�+ T�2r3T (4.13)

where

bV (m) = 1

T

X
jj�tj�h

ezj(m)ez0j(m);
b
(w;m) = X

jjj<h

1

T

TX
t=1

ezt�j(m)ez0t(m)b"t+h(w)b"t+h�j(m); (4.14)

and

r3T =
1

T

TX
t=1

0@ MX
m=1

w(m)ez0t(m)
0@ 1
T

X
jj�tj�h

ezj(m)ez0j(m)
1A�10@ X

jj�tj<h
ezj(m)b"j+h(m)

1A1A2
= Op(1): (4.15)

Combined with expansion (4.5), we �nd

CVh;T (w) = LT (w) + T
�1=2r1T (w) + T

�1r�2T (w) + T
�2r3T ; where

r�2T (w) = �2
 
"0 eP (w)"� MX

m=1

w(m) tr
�bV (m)�1b
(w;m)�! : (4.16)
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Under Assumption R,

T�1=2Z(m)0" ! d G(m) � N(0;
(m)); where


(m) =
X
jjj<h

E(zt(m)z0t�j(m)"t+h"t+h�j): (4.17)

Combined with the arguments presented in the previous section, we deduce that

"0 eP (m)" ! d G(m)
0V (m)�1G(m);bV (m) ! p V (m) = Ezt(m)zt(m)0;b
(w;m) ! p 
(m): (4.18)

It follows that

r�2T (w)!d S
�(w) = �2

MX
m=1

w(m)
�
G(m)0V (m)�1G(m)� tr

�
V (m)�1
(m)

��
: (4.19)

Since EG(m)G(m)0 = 
(m) it is not hard to calculate that ES�(w) = 0: We have established the

following result.

Theorem 2 Suppose Assumptions R and F hold. For any h � 1, �xed M and w; and N;T !1;

CVh;T (w) = LT (w) + T
�1=2r1T (w) + T

�1r�2T (w) + T
�2r3T ;

where

r1T (w)!d �(w);

r�2T (w)!d S
�(w);

E�(w) = 0 and ES�(w) = 0; and r3T = Op(1):

Theorem 2 is similar in form to Theorem 1. It shows that the leave-h-out cross-validation cri-

terion is equal to the in-sample squared error LT (w) plus terms of smaller stochastic order with

asymptotic zero means. Thus CVh;T (w) is an asymptotically unbiased estimator of ELT (w) '
MSFET (w): This holds for any weight vector w; even though the regressors are estimated fac-

tors, for any forecast horizon h; and allows for conditional heteroskedasticity. Theorem 2 extends

Theorem 2 of Hansen (2010) to forecasting with factor-augmentation.

The conventional Mallows criterion imposes an incorrect penalty because 
(m) 6= �2V (m); as in
Hansen and Hodrick (1980). This inequality arises when the error "t+h is serially correlated (which
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occurs when h > 1) or conditionally heteroskedastic. This insight suggests that the performance

of the Mallows criteria will deteriorate when the serial dependence of the forecast error is strong

and the forecast horizon is long, and this is conformed by our simulations. A potential solution

is to use an alternative penalty (e.g., a robust Mallows criterion). We recommend the leave-h-out

cross-validation criterion as it makes this adjustment automatically, works well in �nite samples,

and is conceptually straightforward to generalize to more complicated settings.

5 Finite Sample Investigation

In this section, we investigate the �nite-sample MSFE of the MMA and CVAh methods. The

data generating process is analogous to that considered in Bai and Ng (2009), but we focus on

linear models and add moving average dynamics to the multi-step forecast error. Let Fjt denote

the jth component of Ft: For j = 1; :::; r; i = 1; :::; N; and t = 1; :::; T; the approximate factor model

is

Xit = �iFt +
p
reit;

Fjt = �jFjt�1 + ujt;

eit = �ieit�1 + �it; (5.1)

where r = 4; �i � N(0; rIr); �j � U [0:2; 0:8]; �i � U [0:3; 0:8]; (ujt; �it) � N(0; I2), i.i.d. over t, for
all j and i: The values of �j and �i are drawn once and held �xed over simulation repetitions. The

regression equation for forecast is

yt+h = �1F2t + �2F4t + �3F2t�1 + �4F4t�1 + �5F2t�2 + �6F4t�2 + "t+h;

"t+h =
h�1X
j=1

�jvt+h�j ; (5.2)

where vt � N(0; 1), i.i.d. over t, and fvtg is independent of fujsg and f�isg for any t and s:
As such, only two factors and their lags are relevant for forecasting. The parameters are � =

(�1; :::; �6) = c[0:5; 0:5; 0:2; 0:2; 0:1; 0:1]; where c is a scaling parameter ranging from 0.2 to 1.2 for

h = 1. For multi-step forecasting, the moving average parameter � ranges from 0.1 to 0.9 and the

scale parameter c is held at 1: The sample size is N;T = 100 and 50,000 simulation repetitions are

conducted.
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Figure 1. Relative MSFE to LS for h = 1; 4; 8; and 12: CVhMA is leave-h-out cross validation model averaging.
MMA is Mallows model averaging. BMA is Bayesian model averaging. CVh is model selection with leave-h-out
cross validation. BIC is model selection with Bayesian information criterion.

The set of candidate regressors for model averaging and model selection is

Zt = (1; yt; :::; yt�pmax ; eF 0t ; :::; eF 0t�pmax); (5.3)

where pmax = 5: The number of factors in eFt is selected by ICp2 in Bai and Ng (2002). Model
averaging are performed over sequentially nested models. We also considered alternative ways to

arrange the factors and their lags in Zt and simulation results show the same pattern. Model

selection methods also are computed over sequentially nested models.

We compare the MSFE of various model averaging and model selection methods. The model

averaging methods include leave-h-out cross-validation averaging (CVAh), jackknife model averag-

ing (JMA), Mallows model averaging (MMA), and Bayesian model averaging (BMA).6 The model

6The Bayesian model averaging is computed with weight w(m) = exp(�BIC(m)=2)=
PM

i=1 exp(�BIC(i)=2);
where BIC(m) is the BIC for the mth model.
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selection methods include leave-h-out cross validation, jackknife cross validation, Mallows model

selection, AIC, and BIC. Selected procedures are reported in Figure 1, with the omitted ones dom-

inated by some of the reported procedures. The relative MSFE in Figure 1 is normalized by the

MSFE for the least-squares forecast with all regressors in Zt. Thus a value smaller than 1 implies
superior performance relative to unconstrained least-squares.

Figure 1 shows that CVAh has the best overall performance, followed by MMA. For the one-

step-ahead forecast, CVAh and MMA are comparable. They dominate all other methods except

when the scale parameter c is around 0.2, an extreme situation with very low signal-to-noise ratio

in the forecast equation. For the multi-step forecasts, the advantage of CVAh is prominent when

the forecast horizon is long and the serial dependence in the forecast error is strong. For example,

when h = 8 and � = 0:8; the relative MSFE for CVAh is 80%, around 10% smaller than that for

model selection by BIC or cross validation, 7% smaller than that for BMA, and 3% smaller than

that for MMA. Simulation results demonstrate the same pattern when we experiment with di¤erent

speci�cations of the regression coe¢ cients and the true number of factors and lags.

6 Empirical Application

In this section, we apply the MMA, JMA, and CVAh to forecast U.S. macroeconomic series and

compare them to various shrinkage-type methods discussed in Stock and Watson (2012). We adopt

the approach in Stock and Watson (2012) that places nonzero weights on principle components

beyond the �rst few. Thus, results here complement those in Stock and Watson (2012) by adding

frequentist forecast combination methods to the list covered by their shrinkage representation, such

as pretest methods, Bayesian model averaging, empirical Bayes, and bagging.

The data set, taken from Stock and Watson (2012), consists of 143 U.S. macroeconomic time

series with quarterly observations from the second quarter of 1960 to the last quarter of 2008. The

series are transformed by taking logarithm and/or di¤erencing as described in Table B.1 of Stock

and Watson (2012). The principle component estimates of the factors are computed from the 109

lower-level disaggregate series and all 143 series are used as the dependent variables to be forecast.

Following Stock and Watson (2012), the MSFE is computed in two ways: a rolling pseudo out-

of-sample forecast method (Table 1) and a cross-validation method (Table 2). The length of the

rolling window is 100-h: The rolling results pertain to the post-1984 �Great Moderation�period

due to the need for a large startup sample.

We report relative root mean squared error (RMSE) relative to the dynamic factor model with

5 factors (DFM-5). Stock and Watson (2012) show that DFM-5 improves upon AR(4) model in
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Table 1. Relative RMSE to DFM5, Rolling Forecast, 1985-2008

h = 1 h = 2 h = 4
percentile 0:250 0:500 0:750 0:250 0:500 0:750 0:250 0:500 0:750

CVAh 0:983 1:003 1:016 0:962 0:992 1:014 0:964 0:985 1:012
JMA 0:983 1:003 1:016 0:962 0:996 1:013 0:972 0:994 1:020
MMA 0:992 1:009 1:031 0:974 1:004 1:025 0:975 1:007 1:034
BMA 0:993 1:014 1:053 0:976 1:009 1:038 0:979 1:014 1:047

Table 2. Relative RMSE to DFM5, Cross Validation, Subsample 1985-2008

h = 1 h = 2 h = 4
percentile 0:250 0:500 0:750 0:250 0:500 0:750 0:250 0:500 0:750

CVAh 0:974 0:992 1:007 0:956 0:981 0:996 0:923 0:958 0:981
JMA 0:974 0:992 1:007 0:958 0:980 0:998 0:924 0:961 0:985
MMA 0:982 0:998 1:014 0:960 0:986 1:008 0:928 0:966 0:995
BMA 0:965 0:991 1:013 0:953 0:983 1:006 0:924 0:964 0:999

more than 75% of series and the shrinkage methods o¤er little or no improvements over DFM-5 on

average. Hence, DFM-5 serves as a good benchmark for the comparison.

Tables 1-2 can be viewed as extensions of Table 2 and Table S-2A in Stock and Watson (2012),

with three frequentist model averaging methods added to existing results.7 The same forecast

horizons, h = 1; 2; 4; are considered. Entries in the Tables are percentiles of distributions of RMSEs

over the 143 variables being forecast. A value smaller than 1 at the median implies that the method

considered is superior to DFM-5 for more than half of all series.

Table 1 shows that for h = 4 with rolling method, CVAh improves upon DFM-5 by at least

1:5% for half of all series and by at least 3:6% for one-fourth of all series. In contrast, Table 2

of Stock and Watson (2012) shows that all shrinkage methods considered are inferior to DFM-5

for more than half of all series. JMA (equivalently, CVA1) is only slightly inferior to CVAh and

MMA is comparable to other shrinkage methods. The same trend holds for h = 2, although the

di¤erence is not as signi�cant as that for h = 4: When h = 1; all averaging and shrinkage methods

are comparable to DFM-5.

Table 2 shows that for h = 4, CVAh improves upon DFM-5 by at least 4:2% for half of all series

and by at least 1:9% for three-fourth of all series, where MSFE is computed by cross-validation

methods. In this case, other shrinkage methods also o¤er improvements upon DFM-5 for some

series, but no method does so for as many as three-fourth of all series, according to Table S-2A in

Stock and Watson (2012). A category analysis as in Stock and Watson (2012) shows that these

7The results on BMA is taken from Stock and Watson (2012). Comaprable results on AR(4), OLS, pretest,
bagging, and Logit methods are also available in Stock and Watson (2012) and its supplement.
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frequentist forecast combination methods also tend to do well when some shrinkage methods show

improvements and there remain hard-to-forecast series.

7 Conclusion

This paper proposes frequentist model averaging approach for forecast combination with the

factor-augmented regression, where the unobserved factors are estimated by the principle compo-

nents of a large panel of predictors. The Mallows model averaging (MMA) and the leave-h-out

cross-validation averaging (CVAh) criteria are shown to be approximately unbiased estimators of

the MSFE in one-step and multi-step forecasts, respectively, provided N;T !1 in the panel data.

Thus, the generated regressor issue is negligible, without any requirement on the relative size of N

and T: Monte Carlo simulations and empirical application support the theoretical result that these

frequentist model averaging criteria are designed to mirror the MSFE such that the weight vector

selected approximately minimizes the MSFE.

The forecast combination methods proposed in this paper can be extended and adapted to a

broader class of applications. One extension is to generalize the single variable forecast to the

multivariate forecast in the factor-augmented vector autoregressive (FAVAR) model by Bernanke,

Boivin, and Eliasz (2005). Second, nonlinear factor-augmented regression should be considered, as

discussed in Bai and Ng (2009). Finally, interval forecast based on model averaging is an important

but challenging topic (Leeb and Pötscher, 2003, 2008). These topics are investigated in future

research.
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