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Abstract

This paper considers the selection of valid and relevant moments for the generalized method

of moments (GMM) estimation. For applications with many candidate moments, our asymp-

totic analysis accommodates a diverging number of moments as the sample size increases. The

proposed procedure achieves three objectives in one-step: (i) the valid and relevant moments

are selected simultaneously rather than sequentially; (ii) all desired moments are selected to-

gether instead of in a stepwise manner; (iii) the parameter of interest is automatically estimated

with all selected moments as opposed to a post-selection estimation. The new moment selection

method is achieved via an information-based adaptive GMM shrinkage estimation, where an

appropriate penalty is attached to the standard GMM criterion to link moment selection to

shrinkage estimation. The penalty is designed to signal both moment validity and relevance for

consistent moment selection and e¢ cient estimation. The asymptotic analysis allows for non-

smooth sample moments and weakly dependent observations, making it generally applicable.

For practical implementation, this one-step procedure is computationally attractive.
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1 Introduction

In many applications of the generalized method of moments (GMM) estimation, the number of

candidate moment conditions is much larger than that of the parameter of interest. However, one

typically does not employ all candidate moment conditions due to two types of concerns. First, some

moments may be invalid, which cause estimation bias if included. Second, some moment conditions

may be redundant. A redundant moment condition does not contain additional information to

improve e¢ ciency and results in additional �nite-sample bias. Therefore, it is important to identify

the valid and relevant (non-redundant) moment conditions, especially when both concerns are

elevated in the presence of many candidate moments. The large number of candidate moments

raises the need as well as challenges for a consistent moment selection method.

This paper proposes a procedure that consistently selects all valid and relevant moments in

an asymptotic framework where the number of candidate moments is allowed to increase with the

sample size. This type of asymptotic framework re�ects the complexity of the problem and the

computation demand associated with a large number of candidate moments. The capacity of the

proposed procedure to handle an increasing number of moments justi�es its excellent �nite-sample

performance and mirrors its computational advantage. It only requires computation with the large

number of candidate moments once. In contrast, all existing methods only allow for a �xed number

of candidate moments in asymptotic analysis and typically require repeated estimations in practical

implementation.

The procedure proposed in this paper takes into account validity and relevance simultaneously,

whereas all existing procedures �rst select valid moments and then select the relevant ones out of

the former set. A one-step procedure is not only computationally attractive, but also avoids the

accumulation of model-selection errors.

The new moment selection method is achieved via an information-based adaptive GMM shrink-

age estimation. The moment selection problem is transformed into a penalized GMM (P-GMM)

estimation and a novel penalty is designed to incorporate information on both validity and rele-

vance for adaptive estimation. The P-GMM estimation not only consistently select all valid and

relevant moment conditions in one step, but also simultaneously estimate the parameter of interest

by incorporating all valid and relevant moments and leaving out all invalid or redundant ones.

Asymptotic results provide bounds on the penalty level to ensure consistent moment selection. We

analyze these bounds as a function of the sample size and the number of moments and provide an

algorithm for practical implementation of our procedure.

The moment selection and estimation results developed in the paper allow for (i) non-smooth

sample moments, (ii) temporal dependence, and (iii) an increasing number of candidate moments.
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High-level assumptions are �rst provided to capture the main characteristics of the problem and

cover all application simultaneously, followed by primitive su¢ cient assumptions. In the framework

of a high-dimensional P-GMM estimation, we develop results on consistency, rate of convergence,

super e¢ ciency, and asymptotic distribution, allowing the dimension of the unknown parameter to

increase with the sample size. The paper focuses on GMM estimation, but the moment selection

procedure works for minimum distance problems as well.

Next, we discuss alternative moment selection procedures available when the number of candi-

date moments is �xed. The standard J test detects the validity of a given set of moment conditions

but it does not specify which ones are invalid and, hence, is not suitable for subset selection. In a

seminal paper, Andrews (1999) proposes a moment selection criterion, based on a trade-o¤ between

the J statistic and the number of moment conditions, and downward and upward testing proce-

dures. These procedures can consistently select the largest set of valid moments. Andrews and Lu

(2001) generalize these methods and study applications to dynamic panel models. Hong, Preston,

and Shum (2003) study moment selection based on the generalized empirical likelihood estimation

using analogous approaches. On the selection of relevant moments, Hall, Inoue, Jana, and Shin

(2007) propose a moment selection criterion that balance the information content and the number

of moments. This procedure can be applied to select relevant moments, after all invalid moments

are left out in the �rst step. For applications to DSGE models, Hall, Inoue, Nason, and Rossi (2010)

propose two moment selection criteria of this sort to select all valid and relevant impulse response

functions for matching estimation. Methods based on the moment selection criteria or sequential

testing are stepwise, which requires intensive computation when the candidate set is large.

For the selection of valid moments, the shrinkage procedure proposed by Liao (2011) enjoys

great computational advantage over the stepwise methods. If it is followed by a stepwise procedure

to select the relevant moments, the computation advantage is diminished. This paper introduces

an information-based penalty that enables a shrinkage method to select valid and relevant moments

simultaneously rather than sequentially. Most importantly, the current paper allows the number of

moments to increase with the sample size, whereas all previous papers select either the valid ones

or the relevant ones over a �xed number of candidate moments. Liao (2011) demonstrates that in-

corporating additional valid moments through shrinkage estimation improves e¢ ciency for strongly

identi�ed parameters and improves the rate of convergence for weakly identi�ed parameters. This

paper focuses on moment selection, assuming parameters are well identi�ed.

The moment selection problem studied in this paper di¤ers from selecting moments and instru-

mental variables (IVs) among those known to be valid for mean square error minimization, as in

Donald and Newey (2001), Donald, Imbens, and Newey (2009), and Kuersteiner (2002), etc. These
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papers focus on moments of similar qualities, but we consider invalid and redundant moments. Our

problem is also di¤erent from that in Inoue (2006), where moment selection is based on con�dence

interval coverage. After our procedure having selected all valid and relevant moments, methods

from these literatures can be applied subsequently.

Our paper contributes to the study of GMM moment validity and relevance and extends it to

a high-dimensional framework. There is a long history on the study of instrumental variable (IV)

and GMM moment validity, starting from Sargan (1958), Hansen (1982), Eichenbaum, Hansen, and

Singleton (1988). More recent papers related to IV and GMM moment validity include Berkowitz,

Caner, and Fang (2012), Conley, Hansen, and Rossi (2012), Doko Tchatoka and Dufour (2012),

Guggenberger (2012), Nevo and Rosen (2012), and DiTraglia (2012), among others.

On the GMM moment relevance, Breusch, Qian, Schmidt, and Whyhowski (1999) discuss that,

even though a moment is valid and useful by itself, it becomes redundant if its residual after pro-

jecting onto an existing set does not contain additional information. In a linear IV model, an IV

is redundant if it does not improve the �rst-stage regression. Im, Ahn, Schmidt, and Wooldridge

(1999) study e¢ cient estimation in dynamic panel models in the presence of such redundant mo-

ments. Hall and Peixe (2003) study the selection of relevant IVs through canonical correlations and

conduct simulations to demonstrate the importance of excluding redundant IVs in �nite sample.

There is a large literature on many weak GMM moments and many weak IVs, see Chao and

Swanson (2005), Stock and Yogo (2005), Han and Phillips (2006), Hansen, Hausman, and Newey

(2005), Newey and Windmeijer (2005), and Andrews and Stock (2006). These papers assume all

moments or IVs are valid, albeit weak. Although our paper also let the number of moments increase

with the sample size, we allow the unknown invalid moments to mix with valid moments and our

objective is moment selection rather than inference.

This paper also complements a growing literature on the application of high-dimensional meth-

ods to the linear IV and GMM estimation. Most papers in this literature investigate e¢ cient

estimation in the presence of many valid IVs. Belloni, Chernozhukov and Hansen (2010) and

Belloni, Chen, Chernozhukov, and Hansen (2012) apply Lasso-type estimation to linear models

with many IVs and show that the optimal IV is well approximated by the �rst stage shrinkage

estimation. The boosting method is suggested for IV selection by Bai and Ng (2009). Carrasco

(2012) studies e¢ cient estimation with many IVs by regularization techniques. Shrinkage estima-

tion for homoskedastic linear IV models is considered by Chamberlain and Imbens (2004) and Okui

(2011). Gautier and Tsybakov (2011) propose a Danzig selector based IV estimator in high di-

mensional models. Kuersteiner and Okui (2010) recommend using the Mallows averaging methods

to approximate the optimal IV in the �rst-stage regression. Caner (2009) and Liao (2011) study
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P-GMM estimation with a �xed number of moments. Caner and Zhang (2012) study adaptive

elastic net GMM estimation with an increasing number of parameters. Fan and Liao (2011) in-

vestigate P-GMM and penalized empirical likelihood estimation in ultra high dimensional models

where the number of parameters increases faster than the sample size and provide a di¤erent type

of asymptotic results. Our paper contributes to this literature by combining the selection of valid

and relevant moments with e¢ cient estimation instead of focusing on the latter, proposing a new

information-based adaptive penalty, and considering a general nonlinear GMM estimation with

possible non-smooth moment conditions and temporally dependent observations.

The rest of the paper is organized as follows. Section 2 describes the three categories of moment

conditions, provides heuristic arguments on how shrinkage estimation distinguishes moments in dif-

ferent categories, and introduces the P-GMM estimator and its information-based penalty. Section

3 derives asymptotic results for the P-GMM estimator, including consistency, rate of convergence,

super e¢ ciency, and asymptotic distribution, and discusses their implications on consistent moment

selection. Section 4 analyzes the asymptotic magnitudes of the information-based penalty and pro-

vides suggestions for practical implementation of the procedure. Section 5 provides �nite-sample

results through simulation. Section 6 concludes and discusses related topics under investigation.

The Appendix includes the proofs and the a simple linear IV model to illustrate the veri�cation of

some assumptions.

Notation is standard. Throughout the paper, k�k denotes the Euclidean norm; �max(A) and
�min(A) denote the largest and smallest eigenvalues of a matrix A; respectively; A � B means that
A is de�ned as B; the expression an = op(bn) means Pr (jan=bnj � �) ! 0 for all � > 0 as n go

to in�nity; an = Op(bn) when Pr (jan=bnj �M) ! 0 as n and M go to in�nity; an � bn means

that (1 + op(1))bn = an and vice versa; �!p� and �!d� denote convergence in probability and

convergence in distribution, respectively; and w.p.a.1 abbreviates with probability approaching 1.

2 An Information-Based Penalized GMM Estimator

2.1 Three Categories of Moments Conditions

There exists a vector of moment conditions n�1
Pn
i=1 g(Zi; �) : � ! Rkn for the estimation of

� 2 Rd� ; where fZi : i = 1; :::; ng is stationary and ergodic and Z is used generically for Zi. We

allow the number of moments kn to increase with the sample size. In particular, we are interested in

applications where kn is much larger than d�: In this case, it is not restrictive to assume that there

exists a relatively small sub-vector of g(Z; �); denoted by gC(Z; �) 2 Rk0 ; for the identi�cation of �
by E [gC(Z; �o)] = 0, where �o is the true value of � and k0 � d�: Typically, these are the moment
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conditions one would use without further exploring the validity and relevance of other candidate

moments. They are a �conservative�set of moment conditions to ensure identi�cation, as indicated

by the letter �C� in the subscript. Given the identi�cation of �o; this paper proposes a moment

selection procedure that explore all other candidate moments and yield the largest set of valid and

relevant moment conditions.

Let gD(Z; �) 2 Rkn�k0 denote all of the moments not used for identi�cation, where �D�indicates
the �doubt�on the validity and/or relevance of these moments. Without loss of generality, write

g(Z; �) =

24 gC(Z; �)

gD(Z; �)

35 : (2.1)

We also use D to denote the indices of all moments in gD(Z; �): Let g`(Z; �) denote an element of

g(Z; �) indexed by `: A moment is valid if E [g`(Zi; �o)] = 0 for ` 2 D: Given its validity, a moment
is considered to be relevant if adding it yields a more e¢ cient estimator than the one based on

E [gC(Zi; �o)] = 0.

By the criteria of validity and relevance, the index set D is divided into three mutually disjoint

sets

D = A [B1 [B0; (2.2)

where A indexes the set of valid and relevant moments, B1 indexes the set of invalid moments,

and B0 indexes the set of redundant moments. Our objective is to consistently estimate the set A;

leaving out all moments indexed by the set B = B1 [B0:

2.2 Heuristic Arguments for Moment Selection from Shrinkage Estimation

For the purpose of moment selection, a slackness parameter � and its true value �o are intro-

duced:

� � E [gD(Z; �)] and �o � E [gD(Z; �o)] : (2.3)

With the introduction of �; all candidate moments, regardless of their validity, can be transformed

to moment equalities and stacked into

E

24 gC(Z; �o)

gD(Z; �o)� �o

35 = 0: (2.4)

This set of moment conditions identi�es both �o and �o and enables their joint estimation. Our

moment selection strategy is based on the estimation of �o: Below we �rst list all desired properties
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of the estimator for consistent moment selection, then propose an estimator of �o that satisfy all

of these properties.

Let b�n denote an estimator of �o with sample size n. Let b�n;` and �o;` denote the estimator
and true value of the slackness parameter associated with moment ` 2 D :We estimate the desired

set A based on the zero elements of b�n; i.e.,
bAn � f` : b�n;` = 0g: (2.5)

For consistent selection of all valid and relevant moments in A, the estimator b�n has to satisfy that
(i) Pr(b�n;` = 0;8` 2 A)! 1 and (ii) Pr(b�n;` = 0;8` 2 B)! 0 for ` 2 B � B1 [B0.

Table 1. Moment Selection Based on Shrinkage Estimation

Category True Value Estimator Desired Property
A� valid and relevant �o;` = 0 Pr(b�n;` = 0)! 1 super e¢ ciency
B1� invalid �o;` 6= 0 Pr(b�n;` = 0)! 0 consistency
B0� redundant �o;` = 0 Pr(b�n;` = 0)! 0 no shrinkage e¤ect

Table 1 summarizes the properties of the slackness parameter and its estimator for all three

categories. First, for the valid and relevant moments (A), �o;` is 0 and we need its estimator to be 0

w.p.a.1. Having an estimator equal its true value w.p.a.1 is a much stronger result than consistency;

the latter only requires the estimator to fall in any local neighborhood of the true value w.p.a.1.

This type of super e¢ ciency property can be achieved by shrinking the estimator of �o;` toward 0

for ` 2 A:
Second, for the invalid moments (B1), the estimator of �o;` di¤ers from 0 w.p.a.1 provided it is

consistent, because �o;` is di¤erent from 0 in this case. Heavy shrinkage of �o;` toward 0 for ` 2 B1
obviously causes estimation bias. To ensure consistency in this category, the shrinkage e¤ect on

the estimator of �o;` has to be controlled for ` 2 B1:
Third, for the redundant moments (B0); �o;` is 0 because the moments are valid. However,

the estimator is required to be di¤erent from 0 in order to leave out redundant moments. This is

completely opposite to the requirement for set A; although �o;` = 0 in both cases. For ` 2 B0; the
shrinkage e¤ect has to be controlled to prevent the estimator of �o;` from having a point mass at 0:

To sum up, consistent moment selection requires a shrinkage estimator of the slackness parame-

ter, however, the shrinkage e¤ect has to be reduced when the moment is either invalid or redundant.

Such requirements motivate the information-based adaptive shrinkage estimation proposed in this

paper. We create a P-GMM estimator that incorporates the measure of validity and relevance for

each moment. This estimator is shown to satisfy all the requirements above and yield consistent
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moment selection.

2.3 Information Measure and GMM Shrinkage

For GMM estimation based on the transformed equalities in (2.4), de�ne

�0 � (�0; �0);

g(Z;�) �

24 gC(Z; �)

gD(Z; �)� �

35 ,
gn(�) � n�1

nX
i=1

g(Zi; �): (2.6)

Moment conditions in (2.4) can be written as E [g(Z;�o)] = 0: The parameter space of � is A �
f(�; �) : � = E [gD(Z; �)] and � 2 �g: For any � = (�0; �0)0 2 A; assume j�`j � C for some C <1
for any element of �:

The e¢ cient estimation and moment selection are simultaneously achieved in the P-GMM es-

timation

b�n = argmin
�2A

"
g0n(�)Wngn(�) + �n

knX
`=1

!n;` j�`j
#
; (2.7)

where Wn is a kn � kn symmetric weight matrix, �n 2 R+ is a tuning parameter that controls
the general penalty level, and !n;` is an information-based adaptive adjustment for each moment

` = 1; :::; kn: This is a LASSO type estimator that penalizes the slackness parameter � with respect

to its L1 norm. The L1 penalty is particularly attractive in our framework because both the GMM

criterion and the penalty function are convex in �; which makes the computation of the P-GMM

estimator easy in practice.

The novelty of the P-GMM estimation lies in the individual adaptive adjustment !n;` which

incorporates information on both validity and relevance. This individual adjustment is crucial

because consistent moment selection requires di¤erent degrees of shrinkage for moment conditions

in di¤erent categories, as listed in Table 1. To this end, de�ne

!n;` = _�r1n;` j _�n;`j
�r2 ; (2.8)

where _�n;` � 0 is an empirical measure of the information in moment `; _�n;` is a preliminary

consistent estimator of �o;`; and r1; r2 are user-selected positive constants. Before discussing the

construction of _�n;` and _�n;`; we �rst list the implications of this individual adjustment on consistent

selection of valid and relevant moments.
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First, when data suggest the moment ` is relevant, the empirical information measure will be

large, which leads to a heavy shrinkage of b�o;` toward 0. In contrast, redundant moments (B0)
are subject to small shrinkage because _�n;` is asymptotically 0 for ` 2 B0: This information-based
adjustment _�n;` di¤erentiates the relevant moments from redundant ones.

Second, when data suggest the moment is likely to be valid, the magnitude of the preliminary

estimator j _�n;`j will be small as _�n;` is consistent, which leads to a large penalty !n;` and hence, a
heavy shrinkage of b�o;` toward 0. In contrast, invalid moments (B1) are subject to small shrinkage
toward 0, avoiding estimation bias. This validity-based adjustment j _�n;`j di¤erentiates the valid
moments from invalid ones. The application of j _�n;`j for adaptive shrinkage resembles the adaptive
LASSO penalty proposed in Zou (2006).

Combining the two types of adaptive adjustment, !n;` provides a unique data-driven method

that separates the valid and relevant moments (A) from the rest. Roughly speaking, the individual

adjustment !n;` is large only when the corresponding moment condition is valid and relevant. In

consequence, the estimator of �o;` is estimated as 0 w.p.a.1 only for ` 2 A; yielding a consistent
moment selection procedure.

Next, we discuss the construction of the empirical information measure _�n;`: For this purpose, we

�rst de�ne its population counterpart �`; which is associated with the degree of e¢ ciency improve-

ment by adding the moment condition indexed by `:When the moment conditions E [gC(Z; �o)] = 0

are used for a GMM estimation of �, the asymptotic variance of the optimal weighted GMM esti-

mator, denoted by _�n; is

Vc �
�
G0c(�o)


�1
c (�o)Gc(�o)

��1
; where

Gc(�) �
@E [gC(Z; �)]

@�0
and


c(�) � lim
n!1

Var

"
n�1=2

nX
i=1

gC(Zi; �)

#
: (2.9)

When another moment ` 2 D is added, de�ne a new variance Vc+` analogously to Vc but with

E [gC(Z; �)] replaced by E [gC+`(Z; �)] ; where gC+`(Z; �) is a vector that stacks gC(Z; �) and

g`(Z; �) together. Because the matrix Vc � Vc+` is positive semi-de�nite, its eigenvalues are al-
ways non-negative. Relevance requires that at least one of its eigenvalues is strictly larger than

zero. Thus, we de�ne �` � �max(Vc�Vc+`) as the measure of information in the moment condition
indexed by `. When �` > 0; the moment ` is considered to be relevant. A suitable consistent

estimator _�n;` is

_�n;` = �max( _Vn;c � _Vn;c+`); (2.10)
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where _Vn;c and _Vn;c+` are consistent estimators of Vc and Vc+`; respectively.1

A suitable preliminary estimator _�n;` can be obtained from a �rst-step GMM estimator _�n,

de�ned as

_�n = argmin
�2A

�
ng0n(�)Wngn(�)

�
: (2.11)

It is clear that this initial estimator _�n can be viewed as a special P-GMM estimator by setting

�n = 0 in (2.7) for all n. Hence, as long as the tuning parameter �n = 0 satis�es the su¢ cient

conditions provided below,2 the properties of the P-GMM estimator, e.g., consistency and rate of

convergence, also hold for the �rst-step GMM estimator _�n.

Now we return to the P-GMM estimation based on (2.7). To achieve consistent model selection,

we �rst derive conditions on the general tuning parameter �n: Intuitively, there exist an upper bound

and a lower bound on the convergence rate of �n: The upper bound ensures that the penalty is small

enough such that b�o;` is consistent with a continuous asymptotic distribution for ` 2 B = B1[B0;
whereas the lower bound ensures that the penalty is large enough such that b�o;` is super e¢ cient
for ` 2 A: In Section 3 below, we treat !n;` as given and derive general bounds (which are functions
of !n;`) on �n. Section 4 provides explicit bounds for �n, following an analysis of the asymptotic

orders of !n;` for moments in di¤erent categories, and suggests methods for choosing the tuning

parameter in practice.

3 Asymptotic Theory

3.1 Consistency and Rate of Convergence

De�ne the sample moments

gn(�) � n�1
nX
i=1

g(Zi; �): (3.1)

Note that gn(�) does not involve centering with the slackness parameter �:

Throughout the paper, let C denote some generic �nite positive constant.

Suppose E [g(Z; �)] is di¤erentiable in �. De�ne the partial derivative

�(�) � @E [g(Z; �)]
@�0

and �o � �(�o). (3.2)

Assumption 1. (i) For any " > 0, inff�2�:k���ok�"g kE [gC(Z; �)]k > �" for some �" > 0.
(ii) sup�2� kgn(�)� E [g(Z; �)]k = op(1).

1When the moments are non-smooth, there are various ways of estimating Gc(�o). The estimation based on
random perturbation, for example, is one of the attractive procedures (see, e.g., Chen, Hahn and Liao, 2012).

2See Assumptions P1, P2, and P4.
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(iii) E [g(Z; �)] is di¤erentiable in � and supjj���ojj<�n jj0n [�(�)� �o] jj ! 0 for any �n ! 0 and

n 2 Rkn with jjnjj = 1:
(iv) C�1 � �min(�0o�o) � �max(�0o�o) � C:
(v) Wn is symmetric and non-stochastic with C�1 � �min(Wn) � �max(Wn) � C w.p.a.1.

Assumption 1(i) is a standard identi�able uniqueness condition for �o. Assumption 1(ii) is

essentially a uniform law of large numbers (ULLN) and it requires uniform convergence of the sample

moments to the population moments. Assumptions 1(iii) and 1(iv) impose standard regularity

conditions on the �rst order derivative of the population moments. Assumptions 1(v) imposes

regularity conditions on the weight matrix.

Assumption P1. The tuning parameter �n satis�es that �n
P
`2B1 !n;` = op(1).

Assumption P1 imposes an upper bound on �n; which ensures that the penalty is small enough

such that it does not cause inconsistency of the estimator. By construction, the P-GMM criterion

has two parts, where the former is a quadratic form minimized by the true value of the parameter

asymptotically and the latter is minimized by � = 0: When the penalty is too large, it shifts the

estimator of �o;` towards 0 for all ` and causes estimation bias for �o;` 6= 0: For this reason, the

upper bound in Assumption P1 only involves the invalid moments in B1:

Lemma 1 Suppose Assumptions 1 and P1 hold. Then, jjb�n � �ojj !p 0:

Comment. De�ne

dn = min
`2B1

���o;`�� :
If the slackness parameters �o;` for any ` 2 B1 satisfy dn � C > 0, i.e., slackness parameters for

invalid moments do not converge to 0; then using Lemma 1, we deduce that

Pr

�
min
`2B1

jb�n;`j > 0� � Pr

�
min
`2B1

h
j�o;`j � jb�n;` � �o;`ji > 0�

� Pr

�
dn �max

`2B1
jb�n;` � �o;`j > 0�

� Pr (C � jjb�n � �ojj > 0)! 1; as n!1 (3.3)

which immediately implies that our method does not select the invalid moment conditions w.p.a.1.

From the last inequality in (3.3), we see that the lower bound restriction min`2B1
���o;`�� � C can

be relaxed by taking advantage of the convergence rate of b�n.
Next, we derive the rate of convergence of the P-GMM estimator b�n; whose dimension increases

with the sample size.
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Assumption 2. For a sequence of constants �n ! 0;

sup
jj���ojj��n

kgn(�)� E [g(Zi; �)]k = Op(�n)

for any �n ! 0:

Assumption 2 is a high-level condition on the convergence rate of the empirical process indexed

the moment functions. When the number of moment conditions is �xed, Assumption 2 holds with

�n = n
�1=2; following standard empirical process results; see Andrews (1994). Here, the sequence

of constants �n is introduced to allow for an increasing number of moments kn !1: Assumption
2� below provides su¢ cient conditions under which Assumption 2 holds with �n =

p
kn=n:

In Assumption 2� below, let g`(Z; �) denote an element of g(Z; �) indexed by ` = 1; :::; kn:

Assumption 2� (i) The observations are i.i.d.

(ii) g`(Z; �) is di¤erentiable in � with the partial derivative denoted by g�;`(Z; �):

(iii) max`�kn E(jj sup�2� g`(Zi; �)jj2 + jj sup�2� g�;`(Zi; �)jj2) � C:
(iv) � is compact.

Lemma 2 Assumption 2� implies that Assumption 2(i) holds with �n =
p
kn=n:

For some models, it is easier to verify Assumption 2y below; which is a high-level assumption

and can replace Assumptions 1 and 2, in conjecture with Assumption 1(v). Under Assumption 2y

below, Assumption P1 can also be omitted when Assumption P2 holds.

Assumption 2y (i) jjgn(�0)� E[g(Zi; �0)]jj = Op(�n):
(ii) jjgn(�)� gn(�0)jj � jj� � �0jj:

For a subset S � D, let !n;S denote a vector that collects !n;` for all ` 2 S:

Assumption P2. The tuning parameter �n satis�es that �n k!n;B1k = Op(�n):

Assumption P2 imposes an upper bound on �n; under which the penalization is small enough

such that the rate of convergence of the P-GMM estimator is determined by the GMM sample

moment rather than the penalization. Because !n;` > 0 for any ` 2 B1, we see that k!n;B1k <P
`2B1 !n;`. Hence, Assumption P1 is not strictly weaker than Assumption P2, although the latter

imposes a speci�c rate on �n k!n;B1k. As in Assumption P1, this condition is only imposed on the
invalid moments B1 because its purpose is to restrict estimation bias due to penalization.

12



Lemma 3 (a) Suppose Assumptions 1, 2, P1, hold and �n k!n;B1k = Op(1). Then,

kb�n � �ok = Op(�n + �n k!n;B1k):
(b) Suppose Assumptions 1, 2, P1 and P2 hold. Then, kb�n � �ok = Op(�n):
(c) Parts (a) and (b) hold with Assumptions 1, 2, P1 replaced by Assumptions 1(v), 2y, P2.

Comment. 1. The rate of convergence in Lemma 3 is employed to derive the super e¢ ciency

associated with set A (Theorem 1 below) and the asymptotic normality associated with Set B

(Theorem 2 below).

2. It is clear that when �n = 0 for all n, Assumptions P1 and P2 are trivially satis�ed. Hence

if Assumptions 1, 2 or Assumptions 1(v), 2y hold, from Lemma 3 we immediately have

k _�n � �ok = Op(�n): (3.4)

The convergence rate of the �rst-step GMM estimator _�n is useful to construct the adaptive penalty

and tuning parameter, as illustrated in Section 4.

If the slackness parameters �o;` for any ` 2 B1 satisfy �n = o(dn), using the same arguments in
(3.3), we have

Pr

�
min
`2B1

jb�n;`j > 0� � Pr�dn�n > jjb�n � �ojj
�n

�
! 1; as n!1 (3.5)

which combined with the result in (3.3), immediately yields the following corollary.

Corollary 1 (Invalid Moments) (a) Suppose Assumptions 1, 2, and P1 hold. If we further have

dn � C > 0, then
Pr
�b�n;` = 0, for any ` 2 B1�! 0 as n!1. (3.6)

(b) Suppose Assumptions 1, 2, P1 and P2 hold. If we further have �n = o(dn), then (3.6) holds.

(c) Parts (a) and (b) hold with Assumptions 1, 2, P1 replaced by Assumptions 1(v), 2y, P2.

Comment. Corollary 1 implies that the probability that the P-GMM estimation selects any invalid

moment condition goes to zero. Part (a) is implied by the consistency of the P-GMM estimator

when the magnitudes of the slackness parameters �o;` for any ` 2 B1 are uniformly bounded from
below. Part (b) indicates that the invalid moment conditions will not be selected w.p.a.1 even when

the magnitudes of the slackness parameters �o;` for any ` 2 B1 converge to zero at certain rate.
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3.2 Super E¢ ciency

We select the valid and relevant moments in A based on shrinkage estimation. To this end,

the shrinkage e¤ect has to be large enough to ensure all slackness parameter �o;` for ` 2 A are

estimated as 0 w.p.a.1. Assumption P3 imposes a lower bound on �n for this purpose. Assumption

P3 only involves the valid and relevant conditions in A because only �` for ` 2 A are desired to be
penalized heavily. This is a key condition to achieve the shrinkage result on moment selection.

Assumption P3. The tuning parameter �n satis�es that ��1n �nmax`2A !
�1
n;` = op(1).

Theorem 1 (a) Suppose Assumptions 1, 2, P1-P3 hold. Then,

Pr
�b�n;` = 0, for all ` 2 A�! 1 as n!1.

(b) Part (a) holds with Assumptions 1, 2, P1 replaced by Assumptions 1(v), 2y, P2.

Comments: 1. Theorem 1 shows that all valid and relevant moments are simultaneously selected

w.p.a.1., allowing for an increasing number of moments in A as n!1:
2. Corollary 1 and Theorem 1 are necessary but not su¢ cient to show that the set A is

consistently estimated. For this purpose, it remains to show that any redundant moments in B0

are not selected w.p.a.1.

3.3 Asymptotic Normality

Next, we establish the asymptotic distribution of the P-GMM estimator. Following this asymp-

totic distribution, we conclude that all redundant moments are left out by the moment selection

procedure, in addition to the invalid ones covered by Corollary 1. The following assumptions are

needed to derive the asymptotic normal distribution.

De�ne

�n(�) � gn(�)� E [g(Zi; �)] : (3.7)

Assumption 3. (i) For a sequence of constants &n ! 0;

sup
jj�1��ojj��n;jj�2��ojj��n

jj�n(�1)� �n(�2)jj
n�1=2 + jj�1 � �2jj

= Op(&n) (3.8)

for any �n converges to 0 slower than �n: (ii) &n�n = o(n�1=2):

Assumption 3(i) is a stochastic equicontinuity condition that accommodates non-smooth mo-

ment conditions. Similar stochastic equicontinuity conditions are employed in Pakes and Pollard
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(1989), Andrews (2002), and Chen, Linton, van Keilegom (2003), among others. Empirical process

results in Pollard (1984), Andrews (1994), and van der Vaart and Wellner (1996) can be used for

the veri�cation. When the number of moments is �xed, to ensure the root-n consistency of the

GMM estimator, it is su¢ cient to show Assumption 3(i) holds with op(1) on the right hand side.

A speci�c convergence rate &n of the modulus of continuity of the empirical process �n(�) has

to be derived in (3.8) to accommodate an increasing number of moments. Assumption 3� below,

when applied together with Assumption 2�; provides primitive su¢ cient conditions under which

Assumption 3(i) holds with &n =
p
kn=n.

Assumption 3(ii) restricts the rate at which kn diverges to 1: When �n = &n =
p
kn=n;

Assumption 3(ii) holds provided kn = o(n1=2); i.e., the number of moment conditions increases

slower than n1=2:

Assumption 3�. g`(Z; �) is twice di¤erentiable in � with the second partial derivative denoted by

g��;`(Z; �) and E
�
jj sup�2� g��;`(Zi; �)jj2

�
� C for any ` � 1:

Lemma 4 (a) Assumptions 2� and 3� imply that Assumption 3(i) hold with &n =
p
kn=n:

(b) Assumptions 2� and 3� and kn = o(n1=2) imply Assumption 3(ii):

Without loss of generality for the asymptotic results below, write � = (�A; �B); where �A and

�B denote the subvector of � that collects �` for ` 2 A and ` 2 B; respectively. The set B = B1[B0
includes both the invalid moments B1 and the redundant moments B0: Let b�A;n and b�B;n denote
the P-GMM estimators of �A and �B; respectively. Theorem 1 shows b�A;n = 0 w.p.a.1. It remains
to develop the asymptotic distribution of b�B;n; together with the distribution of b�n: To this end,
de�ne

�0B � (�0; �0B): (3.9)

Now we stack all moment conditions and de�ne

g(Z;�B) �

2664
gC(Z; �)

gA(Z; �)

gB(Z; �)� �B

3775 ; (3.10)

where gA(Z; �) denotes the valid and relevant moments and gB(Z; �) denotes the invalid or redun-

dant moments. Because g(Z;�B) is linear in �B; the partial derivative of E [g(Zi; �B)] w.r.t. �B
only depends on �: De�ne

��(�) �
@E [g(Z;�B)]

@�0B
and �� � ��(�o): (3.11)
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The di¤erence between g(Z;�B) and g(Z;�) de�ned in (2.6) is that �A = 0 in g(Z;�B): Because

the true value of �A is 0; g(Z;�o) = g(Z;�B;o) by de�nition. Hence, the sample average of g(Z;�B;o)

can be written as gn(�o): De�ne the long-run variance of the sample moments


n � Var(n1=2gn(�o)): (3.12)

For i.i.d. observations, this variance matrix is simpli�ed to 
n = E[g(Z;�o)g0(Z;�o)] for all n:

Assumption 4. (i) For any n 2 Rkn and jjnjj = 1;

0n
p
n
�1=2n gn(�o)!d N(0; 1):

(ii) C�1 � �min(
n) � �max(
n) � C for all n:
(iii) C�1 � �min(�0���) � �max(�0���) � C:

Assumption 4(i) assumes a triangular array central limit theorem for scalar random variables.

Assumption 4(ii) requires that the long-run variance matrix 
n is positive de�nite and bounded

for all n. Assumption 4(iii) imposes the same regularity condition to �0���:

Assumption P4. The tuning parameter �n satis�es that �n k!n;Bk = op(n�1=2):

Assumption P4 imposes an upper bound on �n; which ensures that the P-GMM estimator of

any �nite-dimensional parameter has a mean-zero asymptotic normal distribution. Assumption P4

implies Assumption P2. It also implies Assumption P1 given that kn = o(n):

De�ne a covariance matrix

�n �
�
�0�Wn��

��1
(�0�Wn
nWn��)

�
�0�Wn��

��1
: (3.13)

Theorem 2 (a) Suppose Assumptions 1-4 and P3-P4 hold. Then,

0n
p
n��1=2n (b�B;n � �B;0)!d N(0; 1)

for any n 2 Rkn with jjnjj = 1:
(b) Part (a) holds with Assumptions 1 and 2 replaced by Assumptions 1(v) and 2y.

Comments. 1. The asymptotic distribution of the P-GMM estimator is derived by a perturbation

on a local parameter space (see, e.g., Shen (1997)), allowing for non-smooth sample moments and

an increasing number of parameters.
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2. Theorem 2, in conjuncture with the Cramer-Wold device, yields the asymptotic distribution

of b�n. This asymptotic distribution can be applied to conduct inference for the parameter of

interest �o: Although the primary purpose of the paper is moment selection, the P-GMM estimator

automatically produces an estimator for �o; imposing all valid and relevant moment conditions in

the estimation and leaving out all invalid or redundant moments. Therefore, the P-GMM estimator

of �o is asymptotically equivalent to the ideal but infeasible �oracle�estimator one would get with

the complete knowledge of which moments are valid and relevant. Simulation results in Section

5 demonstrate that the P-GMM estimator of �o is comparable to this oracle estimator in their

�nite-sample performances.

Because b�n;` has an asymptotic normal distribution for ` 2 B, the probability that b�n;` = 0

approaches 0 for any ` 2 B: The set B includes both the invalid moments B1 and the redundant

moments B0: This result is particularly important for the latter, which is not covered by Corollary

1. Corollary 2 states that any �xed subset of redundant moments are left out w.p.a.1 by the moment

selection procedure.

Corollary 2 (Redundant Moments) (a) Suppose Assumptions 1-4 and P3-P4 hold. Then,

Pr
�b�n;` = 0; for any ` 2 _B0

�
= 0 as n!1

where _B0 is any �xed subset of B0.

(b) Part (a) holds with Assumptions 1 and 2 replaced by Assumptions 1(v) and 2y.

Comment. Combining Theorem 1 and Corollaries 1 and 2, we conclude that, by the P-GMM

estimation, the invalid moment conditions are not selected with probability approaching 1, the

valid and relevant moment conditions are selected with probability approaching 1 and any subset

of the redundant moment conditions are not selected with probability approaching 1.

Finally, we consider the estimation of A by combining results in Theorem 1 and Corollaries 1

and 2. Theorem 1 implies that

Pr(A � bAn)! 1 (3.14)

as n!1; i.e., all valid and relevant moments are selected asymptotically. On the other hand,

Pr( bAn � A) = 1� Pr(
S
`2B

b�n;` = 0)
� 1� Pr(

S
`2B1

b�n;` = 0)� Pr( S
`2B0

b�n;` = 0): (3.15)
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Note that

Pr(
S
`2B1

b�n;` = 0)! 0 (3.16)

by Corollary 1. For the redundant moments,

Pr(
S
`2B0

b�n;` = 0) � X
`2B0

Pr(b�n;` = 0); where
Pr(b�n;` = 0) ! 0 for any ` 2 B0: (3.17)

By (3.17),

Pr(
S
`2B0

b�n;` = 0)! 0 (3.18)

provided that the cardinality of B0 is bounded or it increases slowly such that Pr(b�n;` = 0) ! 0

for any ` 2 B0 implies that
P
`2B0 Pr(

b�n;` = 0) ! 0. Under this condition, (3.14)-(3.18) together

yield

lim
n!1

Pr
� bAn = A� = 1: (3.19)

4 Selection of the Tuning Parameter

The asymptotic results established in the previous section provide restrictions on the tuning

parameter �n. These restrictions are implicit in the sense that they depend on the individual

information-based adaptive penalties !n;` de�ned in (2.8), whose asymptotic magnitudes depend

on the validity as well as relevance of the moment condition ` by construction. In this section,

we analyze these individual penalties under general conditions and provide an explicit asymptotic

bounds for the tuning parameter �n. These explicit bounds only depend on the sample size and the

total number of moments. A practical choice is suggested. At the end of this session, an algorithm

is listed for the practical implementation of the procedure.

To construct the adaptive penalty !n;` in (2.8), preliminary estimators _�n;` and _�n;` are em-

ployed, as de�ned in (2.10) and (2.11). From (3.4), we see that the �rst-step GMM estimators _�n;`

have the joint �n rate of convergence. To analyze the asymptotic order of !n;`, we assume that the

preliminary estimators _�n;` are
p
n consistent for their true values. Note that these preliminary

estimators rely on standard GMM estimation with a �xed number of moments and a �xed number

of well-identi�ed unknown parameters.

Assumption 5. _�n;` = �` +Op(n�1=2) for any ` 2 D:

In Assumption 5, we do not specify the nature of the information measure �`. It is clear that

the de�nition of the index set B0 can be generalized to be B0 = f` : �` = O(n�1=2)g, because
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in both cases (�` = 0 and �` = O(n�1=2)), the empirical information measure _�n;` goes to zero

at the root-n rate. We call a moment condition ` nearly redundant, if �` = O(n�1=2). The near

redundancy concept allows for not exact redundancy in �nite-sample.

4.1 Practical Choice of the Tuning Parameter

Now we discuss practical choice of the penalty coe¢ cient �n under the guidance of Assumptions

P3 and P4. To investigate the bound suggested by Assumption P3, note that max`2A !
�1
n;` =

Op(max`2A j _�n;`jr2): Because �o;` = 0 for all ` 2 A; max`2A j _�n;`j � (
P
`2A j _�n;` � �o;lj2)1=2 �

jj _�n � �ojj = Op(�n); where the Op(�n) term follows from (3.4). Hence, Assumption P3 suggests

��1n = o(�
�(r2+1)
n ): When �n = (kn=n)1=2 as given in Lemma 4; the lower bound for �n is

��1n = o((kn=n)
�r2=2�1=2): (4.1)

To investigate the bound suggested by Assumption P4, note thatmin`2B1 j _�n;`j > dn�jj _�n��ojj
using arguments analogous to that in (3.3). Note that jj _�n � �ojj = Op(�n) by (3.4): Hence,

d�1n min`2B1 j _�n;`j > 1�op(1) provided that �n = o(dn):Given that we have shown d�1n min`2B1 j _�n;`j
is bounded away from 0 for ` 2 B1; we know that jj!B1jj � Op(k

1=2
n d

�r2=2
n ). Suppose r1 � r2 is

large such that !n;` = op(1) for ` 2 B0; then Assumption P4 suggests

�n = o(d
r2=2
n k�1=2n n�1=2): (4.2)

In practice, the choice of �n is a balance of the two conditions in (4.1) and (4.2). On the one

hand, selecting valid and relevant moments require �n to converge to 0 slower than k
�r2=2�1=2
n nr2=2+1=2

and as slow as possible. On the other hand, leaving out invalid or redundant moments requires �n

to converge to 0 faster than k�1=2n n�1=2 and as fast as possible.3 We recommend balancing these

two requirements by choosing

�n = c k
r2=4
n n�1=2�r2=4; (4.3)

where c is a loading coe¢ cient. Asymptotic theories do not impose requirement on c: In practice,

one common approach to choose level parameters of this sort is through cross validation.

4.2 Algorithm for Empirical Implementation

For practical implementation, our procedure is executed in the following steps.

(1). A preliminary estimator _�n;` follows from (2.11) for all ` 2 D:
3Because dn is unknown, we use the scale coe¢ cient c to accommodate its �nite-sample e¤ect.
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(2). Estimate the information measure �n;` by (2.10) and construct the adaptive individual penalty

!n;` by (2.8) for a given pair of (r1; r2), for all ` 2 D: The constants satisfy r1 > r2 > 0:
(3). Construct the general penalty �n by (4.3) with c > 0:

(4). Estimate b�0n = (b�0n; b�0n) by the P-GMM estimator de�ned in (2.7).

(5). The indices of the valid and relevant moments are estimated by bAn = f` : b�n;` = 0g:
5 Simulation

For �nite-sample investigation, we consider a simple linear regression model

Y1 = Y2�o + u; (5.1)

where Y1; Y2 2 R are endogenous and �o 2 R is the parameter of interest. For applications with

exogenous variables on the right hand side, Y1 and Y2 can be viewed as the residuals obtained

after projections onto these exogenous variables. Valid and relevant IVs ZC 2 R2 are available for
the identi�cation of �o: In addition, a vector of candidate IVs ZD 2 R10 are considered, without
knowing their validity or relevance. The candidate IVs comprise of ZD = (ZA; ZB0;ZB1); where

ZA 2 R2 is valid and relevant, ZB0 2 R4 is redundant, and ZB1 2 R4 is invalid. Speci�cally, the
relationship between the endogenous variable Y2 and the valid and relevant IVs ZC and ZA is

Y2 = �
0
CZC + �

0
AZA + v: (5.2)

We generate

(ZC ; ZA; ZB0; Z
�
B1; u; v) � N(0;�); where � = diag(�AC ;�B;�uv): (5.3)

By construction, (ZC ; ZA; ZB0;Z�B1) are all valid, but only ZC and ZA are relevant based on (5.2).

The invalid IVs ZB1 are obtained by contaminating Z�B1 with the structural error u: Speci�cally,

ZB1;` = Z
�
B1;` + c` � u; (5.4)

where ZB1;` and Z�B1;` are the `-th element of ZB1 and Z
�
B1; respectively. The structure of (5.4)

indicates that the degree of endogeneity of an invalid IV varies with the coe¢ cient c`; which is

given below.

Parameters in the data generating process are as follows. (i) �o = 0:5, (ii) �C = (�o; 0:1)0, where

the value �o = 0:1 or 0:3 to experiment di¤erent identi�cation strength, (iii) �A = (0:5; 0:5); (iv)
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�AC is a 4� 4 matrix with the (i; j)-th element being 0:2ji�jj, (v) �B is an 8� 8 identity matrix,
(vi) �u;v is a 2� 2 matrix with diagonal elements (0:5; 1) and o¤-diagonal elements (0:6; 0:6); (vii)
For co = 0:2 or 0:5 and ` = 1; :::; 4; the coe¢ cients in (5.4) are c1 = co; c2 = co + (0:8 � c)=3;
c3 = co + 2(0:8� c)=3; c4 = 0:8: A larger value of co is associated with stronger endogeneity of the
invalid IVs.

For each speci�cation of (�o; co), we generate i.i.d. observations with sample size n = 250 and

n = 2500. To construct the information-based penalty in (2.8), the user-selected constants are

r1 = 3 and r2 = 2: The preliminary estimator _�n;` is constructed by sample analogs of the variance

matrix and the preliminary estimator _�n;` follows from (2.11). The number of simulation repetition

is 5000. The projected scaled sub-gradient method (active-set variant) method proposed in Schmidt

(2010) is employed to solve the minimization problem in the GMM shrinkage estimation.

Table 2. Performance of Moment Selection by GMM Shrinkage Estimation

�o = 0:3
n = 250 n = 2500

co = 0:5 .0000 .6888 .1878 .1234 .0000 .9606 .0284 .0011
co = 0:2 .0006 .6874 .1884 .1236 .0000 .9602 .0278 .0120

�o = 0:1
n = 250 n = 2500

co = 0:5 .0016 .4944 .4932 .0108 .0000 .9028 .0946 .0026
co = 0:2 .0112 .4908 .4866 .0114 .0000 .9026 .0950 .0024

For each parameter combination, four numbers are reported. The �rst number is the probability of "selecting
any invalid IVs". The second number is the probability of "selecting all valid and relevant IVs". The third
number is the probability of "selecting all valid and relevant IVs plus some redundant IVs". The fourth column
is the probability of all other events.

Table 2 presents the �nite-sample performance of the moment selection procedure by the GMM

shrinkage estimation. We �rst look at the case with strong identi�cation (�o = 0:3); strong endo-

geneity of invalid IVs (co = 0:5), and moderate sample size (n = 250): In this case, the probability

of any invalid IVs being selected is about 0. Hence, the shrinkage procedure succeeds in selecting

only the valid IVs. With a probability of 0:69; ZA is the set of IVs selected. With a probability

of 0:19; ZA plus some elements in ZB0 are selected. This implies that with a probability of 0:88;

the shrinkage procedure selects all of the valid and relevant IVs. When sample size is n = 2500;

the probability of selecting all and only the valid and relevant IVs is 0:96; whereas the probability

of selecting invalid IVs is 0 and the probability of selecting redundant IVs is as low as 0:03: Re-

ducing the degree of identi�cation and reducing the degree of endogeneity for the invalid IVs both

make moment selection more challenging In the extreme case with relatively weak identi�cation
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(�0 = 0:1) and weak endogeneity (co = 0:2), the procedure is robust at not including any invalid IVs

but tend to include some redundant ones. The probability of including redundant IVs is reduced

signi�cantly when sample size increases.

Table 3. Finite Sample Bias (BS), Standard Deviation (SD) and RMSE (RE) of Estimators of �o

Automatic Conservative
(�o; co) n = 250 n = 2500 n = 250 n = 2500

BS SD RE BS SD RE BS SD RE BS SD RE
(.3 .5) .0042 .0815 .0816 .0001 .0232 .0232 -.0013 .1614 .1614 .0003 .0501 .0501
(.3 .2) .0042 .0816 .0817 .0001 .0232 .0232 -.0013 .1614 .1614 .0003 .0501 .0501
(.1 .5) .0026 .0856 .0857 .0001 .0248 .0248 -.0035 .2613 .2613 .0006 .0786 .0786
(.1 .2) .0030 .0847 .0848 .0001 .0248 .0248 -.0035 .2613 .2613 .0006 .0786 .0786

Pooled (infeasible) Aggressive
(�o; co) n = 250 n = 2500 n = 250 n = 2500

BS SD RE BS SD RE BS SD RE BS SD RE
(.3 .5) .0049 .0754 .0755 .0004 .0232 .0232 .1203 .1337 .1799 .1191 .0433 .1267
(.3 .2) .0049 .0754 .0755 .0004 .0232 .0232 .0931 .1187 .1508 .0902 .0378 .0977
(.1 .5) .0057 .0810 .0812 .0004 .0248 .0248 .1377 .1422 .1979 .1364 .0463 .1441
(.1 .2) .0057 .0810 .0812 .0004 .0248 .0248 .1068 .1265 .1655 .1034 .0404 .1110

Post-Shrinkage Oracle (infeasible)
(�o; co) n = 250 n = 2500 n = 250 n = 2500

BS SD RE BS SD RE BS SD RE BS SD RE
(.3 .5) .0054 .0904 .0906 .0002 .0237 .0237 .0017 .0744 .0744 .0000 .0231 .0231
(.3 .2) .0054 .0904 .0906 .0002 .0237 .0237 .0017 .0744 .0744 .0000 .0231 .0231
(.1 .5) .0028 .0842 .0842 .0000 .0247 .0247 .0021 .0800 .0800 .0000 .0247 .0247
(.1 .2) .0033 .0821 .0821 .0000 .0247 .0247 .0021 .0800 .0800 .0000 .0247 .0247

(i) The "automatic" estimation is obtained simultaneously with moment selection. (ii) The "conservative"
estimation uses ZC . (iii) The "pooled" estimation uses all valid IVs, including ZC , ZA, and ZB0. (iv) The
"aggressive" estimation uses all available IVs, including invalid ones. (v) The "post-shrinkage" estimation uses
ZC plus IVs selected by the shrinkage procedure. (vi) The "oracle" estimation uses ZC and ZA.

The P-GMM estimator proposed in this paper produces an automatic estimate of �o in the

shrinkage estimation. Table 3 summaries �nite-sample properties of this estimator, denoted by

�automatic�in Table 3, and compares it with several alternative estimators. Some of the alternative

estimators are infeasible, but serve as good benchmarks. To show the e¢ ciency improvement by

using more relevant and valid IVs, we compare the �automatic� estimator with a �conservative�

estimator, which only uses ZC without further exploring information in other candidate IVs. This

comparison shows that the �automatic�estimator enjoys smaller standard deviation and root mean

square error (RMSE) than the �conservative� estimator in all scenarios considered. To show the
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�nite-sample improvement by excluding redundant IVs, the �automatic�estimator is compared to

a �pooled�estimator, which uses all valid IVs ZC ; ZA; and ZB0: This comparison indicates that the

�automatic�estimator has smaller �nite-sample bias. Note that this �pooled�estimator is actually

infeasible because it excludes all invalid IVs and include all valid IVs. Table 2 suggests that there is

a non-negligible probability that some valid and relevant IVs are not selected when the sample size

is moderate; which is why the standard deviation of the �automatic� estimator is slighter larger

than that of the �pooled�estimator for n = 250: This di¤erence disappears for n = 2500: To show

the importance of excluding invalid IVs, the �automatic�estimator is compared to an �aggressive�

estimator, which uses all candidate IVs regardless of their validity. This comparison suggests that

including invalid IVs increases �nite-sample bias as expected. The �post-shrinkage� estimator is

the GMM estimator uses all IVs selected by the shrinkage procedure. The di¤erence between the

�automatic�estimator and the �post-shrinkage�estimator is small, although the former tends to

have smaller bias and the latter has smaller standard deviation in some cases. Finally, an important

comparison is between the �automatic�estimator and the infeasible �oracle�estimator, which uses

the desirable IVs ZC and ZA: This comparison indicates that the �nite-sample properties of the

�automatic� estimator are comparable to those of the �oracle� estimator, even for a moderate

sample size, and the two are basically the same when the sample size is large.

In sum, the GMM shrinkage estimator proposed in this paper not only produces consistent

moment selection, as indicated in Table 2, but also automatically estimate the parameter of interest.

Table 3 shows that this �automatic� estimator dominates all other feasible estimators and it is

comparable to the ideal but infeasible �oracle�estimator in terms of �nite-sample bias and variance.

6 Conclusion

This paper studies moment selection when the number of moments diverges with the sample size,

allowing for both invalid and redundant moments in the candidate set. We show that the moment

selection problem can be transformed to a P-GMM estimation problem, which consistently selects

the subset of valid and relevant moments and automatically estimates the parameter of interest. In

consequence, the P-GMM estimator is not only robust to the potential mis-speci�cation introduced

by invalid moments but also robust to the possible �nite-sample bias introduced by redundant

moments.

An interesting and challenging question related to this paper is inference on the parameter of

interest �o when moment selection is necessary. Although the asymptotic distribution developed

in this paper can be used to conduct inference on �o, this limiting distribution ignores the moment
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selection error in �nite sample. As a result, a robust inference procedure with correct asymptotic

size is an important issue for the P-GMM estimator. This is related to the post model selection

inference problem investigated by Leeb and Pötscher (2005, 2008), Andrews and Guggenberger

(2009, 2010), Guggenberger (2010), Belloni, Chernozhukov, and Hansen (2011), and McCloskey

(2012), among others. Robust inference on the parameter of interest is beyond the scope of this

paper and investigated in future research.
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7 Appendix

7.1 Proofs on Asymptotic Results

For notation simplicity, de�ne

m(�) � E
�
gC(Zi; �)

gD(Zi; �)

�
and m(�) � E

�
gC(Zi; �)

gD(Zi; �)� �

�
: (7.1)

Proof of Lemma 1. De�ne �n(�) � gn(�)�m(�): Note that �n(�) = gn(�)�m(�) for any � 2 A,
and �n(�o) = gn(�o) because m(�o) = 0: Hence,

g0n(�o)Wngn(�o) = �n(�o)
0Wn�n(�o) = op(1) (7.2)

by Assumption 1(ii) and �max(Wn) � C for some C < 1 w.p.a.1, where the latter holds by

Assumptions 1(v).

The de�nition of b�n implies that
g0n(b�n)Wngn(b�n) + �n knX

`=1

!n;`

���b�n;`��� � g0n(�o)Wngn(�o) + �n

knX
`=1

!n;`
���o;`�� : (7.3)

This in turn yields

jjgC(b�n)jj2 + jjgD(b�n)� b�njj2 = jjg(b�n)jj2 = op(1) (7.4)

because (i) �n
Pkn
`=1 !n;`jb�n;`j > 0; (ii) g0n(�o)Wngn(�o) = op(1) by (7.2); (iii) �o;` = 0 for ` =2 B1;

(iv) �n
P
`2B1 !n;`

���o;`�� = op(1) by Assumption P1 and that j�o;`j is bounded, and (iv) �min(Wn) �
C for some C > 0 w.p.a.1.

Write

g(b�n) =
24 gC(

b�n)
gD(

b�n)� b�n
35 : (7.5)

Then, jjgC(b�n)jj = op(1) and jjgD(b�n)� b�njj = op(1) by (7.4). Together with the triangle inequality
and Assumptions 1(i), 1(ii), jjgC(b�n)jj = op(1) implies that b�n !p �o:

To show the consistency of b�n, we �rst show that under Assumptions 1(iii) and 1(iv), there is
sup

jj���ojj��n
kE [g(Zi; �)� g(Zi; �o)]k ! 0 for any �n ! 0: (7.6)
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For this purpose, we notice that

kE [g(Zi; �)� g(Zi; �o)]k �
h
jj0�;n[�(e�)� �o]jj+ jj0�;n�ojji� jj� � �ojj (7.7)

where e� lies between � and �o and �;n = (� � �o)=jj� � �ojj. From the inequality in (7.7) and

Assumptions 1(iii), 1(iv), we deduce that

sup
jj���ojj��n

kE [g(Zi; �)� g(Zi; �o)]k � �n sup
jj���ojj��n

h
jj0�;n[�(e�)� �o]jj+ C1=2i! 0 (7.8)

for any �n ! 0. This proves (7.6).

Let EZ [�] denote the expectation taking with respect to the distribution of Z. To show the

consistency of b�n note thatb�n � �o � jjgD(b�n)� �ojj+ jjb�n � gD(b�n)jj
� jjgD(b�n)� EZ [gD(Zi;b�n)]jj+ jjEZ [gD(Zi;b�n)]� EZ [gD(Zi; �o)]jj+ op(1)
= op(1); (7.9)

where the �rst inequality follows from the triangle inequality, the second inequality holds by the

triangle inequality, E[gD(�o)] = �o; and (7.4), and the equality follows from Assumptions 1(ii),

(7.6), and the consistency of b�n: This completes the proof. �
Proof of Lemma 3. De�ne bn � �n k!n;B1k : We �rst prove part (a). Assumption 2, together
with Assumption 1(v), implies that

g0n(�o)Wngn(�o) = Op(�
2
n): (7.10)

The inequalities in (7.3) and the equation (7.10) imply that

g0n(b�n)Wngn(b�n) + �n X
`2B1

!n;`

���b�n;`��� � �n X
`2B1

!n;`
���o;`��+Op(�2n): (7.11)

By the Cauchy-Schwarz inequality,

�n
X
`2B1

!n;`
���o;`��� �n X

`2B1
!n;`

���b�n;`��� � bn kb�n � �ok : (7.12)
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The inequalities in (7.11) and (7.12) imply that

g0n(b�n)Wngn(b�n) � bn kb�n � �ok+Op(�2n): (7.13)

Applying gn(b�n) = m(b�n) + �n(b�n); we obtain
g0n(b�n)Wngn(b�n) = h

m(b�n) + �n(b�n)i0Wn

h
m(b�n) + �n(b�n)i

= m(b�n)0Wnm(b�n) + �n(b�n)0Wn�n(b�n) + 2m(b�n)0Wn�n(b�n)
� jjm(b�n)jj2 + jjm(b�n)jjOp(�n) +Op(�2n); (7.14)

w.p.a.1, using �n(b�n) = Op(�n) by Assumption 2 and 0 < C�1 � �min(Wn) � �max(Wn) � C for

some C <1 w.p.a.1 by Assumption 1(v). Because m(�o) = 0;

jjm(b�n)jj2 = jjEZ [g(Zi;b�n)]� EZ [g(Zi; �o)]jj2 + jjb�n � �ojj2 (7.15)

By a mean-value expansion,

EZ [g(Zi;b�n)]� EZ [g(Zi; �o)] = �(e�n)(b�n � �o) (7.16)

for some e�n between b�n and �o: Assumptions 1(iii) and 1(iv) and the consistency of b�n imply that
jj�(e�n)(b�n � �o)jj2 = jjb�n � �ojj2jjb0n[�(e�n)� �o] + b0n�(�o)jj2

= jjb�n � �ojj2[jjb0n�(�o)jj2 + op(1)] � jjb�n � �ojj (7.17)

where bn = (b�n � �o)=jjb�n � �ojj. Combining (7.15)-(7.17) yields
jjm(b�n)jj � jjb�n � �ojj (7.18)

w.p.a.1, which in turn gives

g0n(b�n)Wngn(b�n) � jjb�n � �ojj2 + jjb�n � �ojjOp(�n) +Op(�2n) (7.19)

w.p.a.1, in conjuncture with (7.14).

By (7.13) and (7.19), we have

kb�n � �ok2 �Op(�n + bn) kb�n � �ok+Op(�2n) � 0: (7.20)
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This implies that kb�n � �ok = Op(�n + bn).
To verify part (b), note that Assumption 2y implies that (i) jjgn(�o)jj = Op(�n) and (ii) jjgn(�)�

gn(�o)jj � jj�� �ojj: Also note that

g0n(b�n)Wngn(b�n)� g0n(�o)Wngn(�o)

= [gn(b�n)� gn(�o)]0Wn [gn(b�n)� gn(�o)]
+2 [gn(b�n)� gn(�o)]0Wngn(�o)

� C kgn(b�n)� gn(�o)k2 � kgn(b�n)� gn(�o)k kgn(�o)k
� [C + op(1)] kb�n � �ok2 �Op(�n) kb�n � �ok ; (7.21)

where the �rst inequality follows from Assumption 1(v) and the Cauchy-Schwarz inequality and

the second inequality holds by Assumptions 2y(i) and 2y(ii). By the triangle inequality and the

Cauchy-Schwarz inequality, we have

�n
X
j2B1

!n;j

���b�n;j���� �n X
j2B1

!n;j
���o;j��

� ��n
X
j2B1

!n;j

���b�n;j � �o;j��� � ��n k!n;B1k kb�n � �ok : (7.22)

By Assumption P2 and the inequalities in (7.3), (7.21) and (7.22), we get

kb�n � �ok2 � [Op(�n) + �n k!n;B1k] kb�n � �ok � 0; (7.23)

which implies that jjb�n � �ojj = Op(�n + bn). �
Proof of Theorem 1. We start with part (a). By the Karush�Kuhn�Tucker (KKT) optimality

condition, b�n;` = 0 if
jWn(ko + `)gn(b�n)j < �����n!n;`2

���� ; (7.24)

where Wn(ko + `) is a row of Wn associated with !n;`. Hence,

Pr
�b�n;` = 0, ` 2 A� � Pr�max

`2A

����Wn(ko + `)gn(b�n)
�n!n;`

���� < 1

2

�
: (7.25)

To obtain the desired result, it remains to show

max
`2A

����Wn(ko + `)gn(b�n)
�n!n;`

���� = op(1): (7.26)
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Following Assumptions 1(v),

0 < C2 �Wn(ko + `)W
0
n(ko + `) � C1 <1 (7.27)

w.p.a.1 for some constants C1 and C2. By the Cauchy-Schwarz inequality and (7.27),

max
`2A

����Wn(ko + `)gn(b�n)
�n!n;`

���� � max`2A

kWn(ko + `)k
�n!n;`

kgn(b�n)k � C kgn(b�n)k
�n

max
`2A

!�1n;`: (7.28)

for some constant 0 < C <1: By the triangle inequality,

kgn(b�n)k � km(b�n)k+ jj�n(b�n)jj = Op(�n); (7.29)

where the equality follows from (7.18), Lemma 3(b) under Assumption P2, and Assumption 2.

The inequalities in (7.28), (7.29), and Assumption P3 imply that

max
`2A

����Wn(ko + `)gn(b�n)
�n!n;`

���� = ��1n max
`2A

!�1n;`Op(�n) = op(1): (7.30)

Next, we prove part (b). Under Assumption 2y, we have

kgn(b�n)k � kgn(b�n)� gn(�o)k+ kgn(�o)k
� [C + op(1)] kb�n � �ok+Op(�n) = Op(�n) (7.31)

where the �rst inequality follows from the triangle inequality, the second inequality is by Assump-

tions 2y(i), 2y(ii), and Lemma 3(c). This completes the proof. �

Proof of Lemma 2. Let "n = o(n�1=2) be a sequence of constants such that (i) �n k!n;Bk =
Op("n), (ii) &n�n = O("n) under Assumptions 3(ii) and P4. De�ne

b��B;n = b�B;n + "nu�n; where u�n = (�0�Wn��)
�1�n; (7.32)

where �n 2 Rkn and jj�njj � 1: Because both Wn and �0��� have bounded eigenvalues by Assump-

tions 1(v) and 4(iii), jju�njj � C for some C <1 w.p.a.1. Hence,

k"nu�nk
2 = "2njju�njj2 = O("2n) = o(n�1) (7.33)

w.p.a.1. Write b��B;n = (b��n; b��B;n); then b��B;n � b�B;n = Op("2n).
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By the de�nition of b�n,
g0n(b�n)Wngn(b�n) + �n knX

`=1

!n;`

���b�n;`��� � g0n(b��B;n)Wngn(b��B;n) + �nX
`2B

!n;`

���b��n;`��� (7.34)

where b��n;` is the element of b��B;n corresponding to b�n;`. By Theorem 1, the left hand side of (7.34)

satis�es that

g0n(b�n)Wngn(b�n) + �n knX
`=1

!n;`

���b�n;`��� = g0n(b�B;n)Wngn(b�B;n) + �nX
`2B

!n;`

���b�n;`��� (7.35)

w.p.a.1. The triangle inequality and the Cauchy-Schwarz inequality imply that������nX
`2B

!n;`

����b��n;`���� ���b�n;`����
�����

� �n
X
`2B

!n;`

���b��n;` � b�n;`��� = �n"nX
`2B

!n;`
��u�n;`��

� "n�n k!n;Bk
u�n;B = Op("2n); (7.36)

where u�n;B � (u�n;d�+1; :::; u
�
n;d�+dB

)0 is the vector of perturbation on � and the Op("2n) follows from

jju�n;Bjj � C for some C <1 and Assumption P4. Combining (7.34)-(7.36) yields

g0n(b��B;n)Wngn(b��B;n)� g0n(b�B;n)Wngn(b�B;n) � Op("2n): (7.37)

De�ne

I1;n = �n(b��B;n)� �n(b�B;n): (7.38)

Because g(Zi; �) in linear in �;

gn(�) = m(�) + �n(�): (7.39)

Applying this equality, we obtain

gn(b��B;n)� gn(b�B;n) = m(b��B;n)�m(b�B;n) + I1;n; (7.40)

which implies that

jjgn(b��B;n)� gn(b�B;n)jj2 � 2jjm(b��B;n)�m(b�B;n)jj2 + 2I21;n = Op("2n); (7.41)

where the Op("2n) term follows from (i) jjm(b��B;n)�m(b�B;n)jj2 = Op("2n) by Assumption 4(iii) and
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jjb��B;n � b�B;njj = Op("
2
n) and (ii) I1;n = Op(&nn

�1=2) = Op(&n�n) = Op("n) by Assumptions 3(i),

3(ii), and jjb��n � b�njj = Op("n): Write the left hand side of (7.37) as
g0n(b��B;n)Wngn(b��B;n)� g0n(b�B;n)Wngn(b�B;n) (7.42)

=
�
gn(b��B;n)� gn(b�B;n)�0Wn

�
gn(b��B;n)� gn(b�B;n)�+ 2 �gn(b��B;n)� gn(b�B;n)�0Wngn(b�B;n):

This and (7.41) imply that

�
m(b��B;n)�m(b�B;n) + I1;n�0Wngn(b�B;n) � Op("2n): (7.43)

De�ne

I0;n = �n(b�B;n)� �n(�o): (7.44)

Then

gn(b�B;n) = gn(�o) +m(b�B;n)�m(�B;0) + I0;n: (7.45)

Plugging (7.45) into (7.43) yields

Op("
2
n) �

�
m(b��B;n)�m(b�B;n)�0Wn (gn(�o) +m(b�B;n)�m(�B;0))
+A+B + C; where

A = I 01;nWn[gn(�o) +m(b�B;n)�m(�B;0) + I0;n]
B =

�
m(b��B;n)�m(b�B;n)�0WnI0;n

C = I 01;nWnI0;n: (7.46)

The extra term A = op("nn
�1=2) because I1;n = Op(&nn

�1=2); jjgn(�o)jj = Op(�n); m(b�B;n) �
m(�B;0) = Op(�n); I0;n = Op(&n�n) = O("n): The extra terms are B = Op("

2
n) and C = Op("

2
n)

because m(b��B;n) �m(b�B;n) = Op("n); kI0;nk = O("n): Therefore, the inequality in (7.46) implies
that �

m(b��B;n)�m(b�B;n)�0Wn (gn(�o) +m(b�B;n)�m(�B;0)) � op("nn�1=2): (7.47)

By mean-value expansions,

m(b��B;n)�m(b�B;n) = ��(e��B;n)(b��B;n � b�B;n)
m(b�B;n)�m(�B;0) = ��(e�B;n)(b�B;n � �B;0) (7.48)
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for e��B;n between b��B;n and b�B;n and e�B;n between b�B;n and �B;0: By (7.32), (7.47), and (7.48),
0n(�

0
�Wn��)

�1��(e��B;n)0Wn

h
n1=2gn(�o) + ��(e�B;n)n1=2(b�B;n � �B;0)i � op(1): (7.49)

Next, de�ne b��B;n = b�B;n � "nu�n and using the same arguments in deriving (7.49), we deduce that
0n(�

0
�Wn��)

�1��(e��B;n)0Wn

h
n1=2gn(�o) + ��(e�B;n)n1=2(b�B;n � �B;0)i � op(1): (7.50)

The inequalities in (7.49) and (7.50) and the consistency of b�n yield���0n(�0�Wn��)
�1��(e��B;n)0Wn

h
n1=2gn(�o) + ��(e�B;n)n1=2(b�B;n � �B;0)i��� = op(1): (7.51)

Following Assumptions 1(iii)-i(v) and the consistency of b�n;
jj(�0�Wn��)

�1��(e��B;n)Wn��(e�B;n)� Id�+dB jj !p 0;

jj��(e��B;n)� ��jj = op(1): (7.52)

This and (7.51) together give

0nn
1=2(b�B;n � �B;0)(1 + op(1)) = �0n(�0�Wn��)

�1 (�� + op(1))
0Wnn

1=2gn(�o) + op(1): (7.53)

Let n 2 Rkn be an arbitrary vector with jjnjj = 1: Take

0n � 0n(�
0
�Wn
nWn��)

�1=2 ��0�Wn��
�
= 0n�

�1=2
n ;

�0n � 0n(�
0
�Wn
nWn��)

�1=2��
0Wn


1=2
n : (7.54)

Obviously, jj�njj = 1 and jjnjj � 1: With this choice of �n and n; the right hand side of (7.53)

satis�es

0n(�
0
�Wn��)

�1 (�� + op(1))
0Wnn

1=2gn(�o)

= 0n(�
0
�Wn
nWn��)

�1=2 (�� + op(1))
0Wn


1=2
n

h
n1=2
�1=2n gn(�o)

i
=
�
�0n + op(1)

� h
n1=2
�1=2n gn(�o)

i
! d N(0; 1); (7.55)

where the op(1) term in the second equality follows from the bounds of Wn;
n; and �0��� in

Assumptions 1(v), 4(ii), and 4(iii) and the convergence in distribution follows from Assumption
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4(i). By the Slutsky Theorem, (7.53), and (7.55), we obtain

0n�
�1=2
n n1=2(b�B;n � �B;0) = 0nn1=2(b�B;n � �B;0)!d N(0; 1): (7.56)

The same results hold in part (b) because the rate of convergence and super e¢ ciency results hold

under this set of conditions according to Lemma 3(c) and Theorem 1(b). This completes the proof.

�

7.2 Proofs on Su¢ cient Conditions

Proof of Lemma 2. De�ne F = fg`(Z; �) : � 2 �g: By Lemma (2.13) of Pakes and Pollard (1989),
F is Euclidean for the envelope F = sup�2� jg`(Z; �)j + sup�2� jg�;`(Z; �)j under Assumption 2�:
For the de�nition of a Euclidean class of functions, see (2.7) of Pakes and Pollard (1989). By the

maximal inequality (Section 4.3 of Pollard (1989) ), for any n;

E sup
�2�

(g`(Zi; �)� Eg`(Zi; �))2 � Cn�1: (7.57)

Hence,

E sup
�2�

jjg(Zi; �)� Eg`(Zi; �)jj2 � Cknn�1; (7.58)

which implies

sup
�2�

jjg(Zi; �)� Eg`(Zi; �)jj = Op(
p
kn=n) (7.59)

by the Markov�s inequality. �

Proof of Lemma 4. When the sample moments are di¤erentiable, let g�(Z; �) denote the partial

derivative wrt �: By a mean-value expansion and an exchange of �E�and �@�,

�n(�1)� �n(�2) =
"
n�1

nX
i=1

g�(Zi;e�)� Eg�(Zi;e�)
#
(�1 � �2): (7.60)

for some e� between �1 and �2; where e� can be di¤erent for di¤erent rows. Applying the proof of
Lemma 2 with g`(Z; �) replaced by g�;`(Zi;e�) under Assumptions 2� and 3�; we obtain

E sup
�2�

jjn�1
nX
i=1

g�;`(Zi; �)� Eg�;`(Zi; �)jj2 � Cn�1 (7.61)
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for all n and `: Hence,

E sup
�2�

jjn�1
nX
i=1

g�(Zi; �)� Eg�(Zi; �)jj2 � Cknn�1: (7.62)

Combining (7.60) and (7.62), we have

sup
�1;�22�

jj�n(�1)� �n(�2)jj
jj�1 � �2jj

� sup
�2�

jjn�1
nX
i=1

g�;`(Zi; �)� Eg�;`(Zi; �)jj

= Op(
p
kn=n); (7.63)

where the inequality follows from the Cauchy-Schwarz inequality and the Op(
p
kn=n) term follows

from the Markov�s inequality. This veri�es Assumption 3(i) with &n =
p
kn=n: Assumption 3(ii)

holds because �n&n = kn=n = o(n�1=2) when kn = o(n1=2): �

7.3 Example: A Linear Model with Instrumental Variables

In this example, we consider a simple linear IV model to illustrate the veri�cation of some

general assumptions. The model

Yi = Xi�o + ui; (7.64)

Xi = W �
i + vi =

qX
j=1

�j;oZ1;j;i +
1X

j=q+1

�j;oZ1;j;i + vi; (7.65)

where Yi, Xi are scaler endogenous variables and Z1;j , j 2 Z � f1; 2; :::g, are the excluded exogenous
variable. We assume that

E[uijZ1;j;i] = 0 for all j (7.66)

and the empirical researcher has the �rst q instrumental variables to construct the moment condi-

tions for identi�cation.

The rest of the IVs are mixed with invalid IVs W1;j in the sense that E[uiW1;j;i] 6= 0 for j 2 B1,
and redundant IVs in the sense that E[XiW2;j;i] = 0 for j 2 B0. In this example, we have

E [(Yi �Xi�o)Z1;j;i] = 0 with j 2 Q � f1; :::; qg (7.67)
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for identi�cation and consistent estimation of �o; and the following moment conditions

E [(Yi �Xi�o)Z1;j;i]
?
= 0 with j 2 A � ZnQ; (7.68)

E [(Yi �Xi�o)W1;j;i]
?
= 0 with j 2 B1; (7.69)

and E [(Yi �Xi�o)W2;j;i]
?
= 0 with j 2 B0: (7.70)

For the ease of notation, we use Z2n;i to denote the instrumental variables in the second set for

selection and Z1;i = (Z1;1;i; :::; Z1;q;i)0 to denote the instrumental variables in the �rst set that are

known to be valid and relevant for identi�cation.

We next provide su¢ cient conditions for Assumptions 2y; 3; and 4, when the moment conditions

are constructed from this linear IV model.

De�ne Z 0n;i � (Z 01;i; Z
0
2n;i) and �Z 0n;i � (Yi; Xi; Z

0
n;i). Let Zn;i(j) denote the j-th component in

Zn;i

Condition 1 Suppose (i). f �Zn;igi�n is a triangle array of i.i.d. process; (ii). E[Z4n;i(j)] < C,

E[W �2
i ] <1 and E[Zn;iZ 0n;i] = Iq+kn for all n and j; (iii). E[u4i

��Zn;i] < C and E[v4i ��Zn;i] < C; (iv).
there are �nite constants �1 and �2 such that

Pq
j=1 �

2
j;o = �

2
1 > 0 and limn!1 E

h
viZ

0
2n;i

i
E [viZ2n;i] =

�22.

For the linear IV model, the following results hold. We assume kn = o(n1=2):

Lemma 5 (a) Under Condition 1,

kgn(�o)k2 = Op (kn=n) (7.71)

and kgn(�)� gn(�o)k2 �
h
1 +Op(kn=n) +Op(

p
kn=n)

i
k� � �ok2 : (7.72)

Hence, Assumption 2y holds with �n =
p
kn=n:

(b) Under Condition 1, Assumption 3 holds with &n =
p
kn=n:

(c) Condition 1 implies Assumption 4.

Proof of Lemma 5. We �rst show part (a). First note that by de�nition,

gC(Z; �) = (Yi �Xi�)Z1;i;

gD(Z; �) = (Yi �Xi�)Z2n;i:
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and we can rewrite

kgn(�o)k2 =

0@ 1
n

Pn
i=1 uiZ1;i

1
n

Pn
i=1 (uiZ2n;i)

1A00@ 1
n

Pn
i=1 uiZ1;i

1
n

Pn
i=1 (uiZ2n;i)

1A
=

 1n
nX
i=1

uiZ1;i


2

+

 1n
nX
i=1

(uiZ2n;i � E[uiZ2n;i])

2

: (7.73)

Using the Markov�s inequality, Condition 1(i)-(iii), we have

 1n
nX
i=1

uiZ1;i


2

= Op(n
�1) and

 1n
nX
i=1

(uiZ2n;i � E[uiZ2n;i])

2

= Op(knn
�1): (7.74)

By de�nition, we have

gn(�)� gn(�o) =

0@ �1
n

Pn
i=1XiZ1;i

�1
n

Pn
i=1XiZ2n;i

1A (� � �o) � �Gn(� � �o): (7.75)

As a result, we have

kgn(�)� gn(�o)k2 = (� � �o)0G
0
nGn(� � �o): (7.76)

By de�nition, we can rewrite

1

n

nX
i=1

XiZn;i � E [XiZn;i]

=
1

n

nX
i=1

[W �
i Zn;i � E [W �

i Zn;i]] +
1

n

nX
i=1

[viZn;i � E [viZn;i]] : (7.77)

Using Condition 1(i)-(iii) and the Hölder�s inequality, we get

E

24 1n
nX
i=1

[W �
i Zn;i � E [W �

i Zn;i]]


2
35 � 1

n

q+knX
j=1

E
�
W �2
i Z

2
n;i

�
= O(kn=n) (7.78)

which, together with the Markov�s inequality, implies that 1n
nX
i=1

[W �
i Zn;i � E [W �

i Zn;i]]

 = Op(pkn=n): (7.79)
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Similarly, we can show that 1n
nX
i=1

[viZn;i � E [viZn;i]]
 = Op(pkn=n): (7.80)

From the results in (7.79) and (7.80), we get

Gn � E �Gn�2 =
 1n

nX
i=1

XiZn;i � E [XiZn;i]

2

= Op(kn=n) (7.81)

which implies that

(� � �o)0 hG0nGn � E �Gn�0 E �Gn�i (� � �o)
�
Gn � E �Gn�2 k� � �ok2 + 2 k� � �okE �Gn� (� � �o)Gn � E �Gn�

= Op(kn=n) k� � �ok2 +Op(
p
kn=n) k� � �ok

E �Gn� (� � �o) : (7.82)

Note that the eigenvalues of E
�
Gn
�0 E �Gn� are bounded by some general constants, which together

with the inequality in (7.82) implies that

(� � �o)0 hG0nGn � E �Gn�0 E �Gn�i (� � �o)
=
h
Op(kn=n) +Op(

p
kn=n)

i
k� � �ok2 : (7.83)

Now, combining the results in (7.76) and (7.83), we deduce that

kgn(�)� gn(�o)k2 = (� � �o)0E
�
Gn
�0 E �Gn� (� � �o)

+(� � �o)0
h
G
0
nGn � E

�
Gn
�0 E �Gn�i (� � �o)

�
h
1 +Op(kn=n) +Op(

p
kn=n)

i
k� � �ok2 (7.84)

which �nishes part (a).

Next, we verify Assumption 3 in part (b). For any �1 and �2 with k�1 � �2k � �, we have

gn(�1)� gn(�2)� [m(�1)�m(�2)]

=

0@ �1
n

Pn
i=1 [XiZ1;i � E (XiZ1;i)]

�1
n

Pn
i=1 [XiZ2n;i � E (XiZ2n;i)]

1A (�1 � �2)
� �

�
Gn � E

�
Gn
��
(� � �o) (7.85)
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which together with (7.81) implies that

sup
jj�1��2jj��

kgn(�1)� gn(�2)� [m(�1)�m(�2)]k = O(
p
kn=n�): (7.86)

Hence, we have &n =
p
kn=n and �n =

p
kn=n in the linear IV example. This ensures that

&n�n = O("n) is satis�ed when kn=
p
n = o(1).

Next, we show part (c). To verify Assumption 4(i), we only need to check the Lindeberg

condition of the triangle array CLT. For this purpose, we de�ne

�i;n = n
�1=20n


�1=2
n g( �Zi; �o) � n�1=20n
�1=2n

0@ uiZ1;i

uiZ2n;i � �o

1A ; (7.87)

then we have

nX
i=1

E
�
�2i;nIf�i;n > �g

�
= nE

h�
�i;n=�

�2
If�i;n=� > 1g

i
� 1

n�4
E
��
0n


�1=2
n g( �Zi; �o)g

0( �Zi; �o)

�1=2
n n

�2�
: (7.88)

As (0nAn)
2 � 0nA2n0nn for any symmetric matrix, we deduce that

E
��
0n


�1=2
n g( �Zi; �o)g

0( �Zi; �o)

�1=2
n n

�2�
� 0n


�1=2
n E

h�
g( �Zi; �o)g

0( �Zi; �o)
�2i

�1=2n n

0
n


�1
n n: (7.89)

If Assumption 4(ii) holds (which is veri�ed independently below), we have

E
��
0n


�1=2
n g( �Zi; �o)g

0( �Zi; �o)

�1=2
n n

�2�
� E

h�
0ng( �Zi; �o)

�2 g( �Zi; �o)2i
�
r
E
h�
0ng( �Zi; �o)

�4irE hg( �Zi; �o)4i
� E

hg( �Zi; �o)4i (7.90)

where the second inequality is the Hölder�s inequality and the last inequality is by the Cauchy-
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Schwarz inequality. Next by the Cauchy-Schwarz inequality, we get

g( �Zi; �o)4 = �
g0( �Zi; �o)g( �Zi; �o)

�2
=
�
g0( �Zi; �o)g( �Zi; �o)

�2
� (q + kn)

qX
j=1

E
�
u4iZ

4
1;j;i

�
+ 4(q + kn)

knX
i=1

E
��
u4iZ

4
2n;j;i + �

4
o;j

��
� q(q + kn)C + 8(q + kn)

knX
i=1

E
�
u4iZ

4
2n;j;i

�
� C(q + kn)2 (7.91)

which, together with (7.88), (7.89), (7.90) and (7.91), implies that

nX
i=1

E
�
�2i;nIf�i;n > �g

�
� Ck2n
n�4

= o(1)

where the last equality is by k2n=n = o(1). Hence the the Lindeberg condition holds in the linear

IV model, which veri�es Assumption 4(i).

Assumption 4(ii) holds with


n = E

0@ uiZ1;i

uiZ2n;i

1A0@ uiZ1;i

uiZ2n;i

1A0

(7.92)

and is implied by Condition 1(ii) and (iii) automatically.

Next, we verify Assumption 4(iii). De�ne �1 = E [XiZ1;i] and �2;n = E [XiZ2n;i], then

�0��� =

0@ �01�1 + �
0
2;n�2;n �02;n

�2;n Ikn

1A : (7.93)

It is clear that �� has full column rank, hence �0��� is strictly positive de�nite. Let �n;� be the

eigenvalues of �0��� such that �n;� 6= 1, then

0 = det

240@ �01�1 + �
0
2;n�2;n � �n;� �02;n

�2;n Ikn � �n;�Ikn

1A35
=

�
�01�1 + �

0
2;n�2;n � �n;� �

�02;n�2;n

1� �n;�

�
(1� �n;�)kn ; (7.94)

which means that �n;� satis�es

�2n;� � (1 + �01�1 + �02;n�2;n)�n;� + �01�1 = 0: (7.95)
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The above equation has the following two solutions

�n;�;� =
�0n�n �

q
(�0n�n)

2 � 4�01;n�1;n
2

and

�n�;+ =
�0n�n +

q
(�0n�n)

2 � 4�01;n�1;n
2

; (7.96)

where �n � 1+�01�1+�02;n�2;n. This implies that the eigenvalues of �0��� are bounded from below
by min(�n;�;�; 1) and bounded from above by max(�n�;+; 1). Under Condition 1(ii) and (iv), we

have

�n;�;� =
2�01�1

�0n�n +
p
(�0n�n)

2 � 4�01�1

� �01�1
1 + �01�1 + �

0
2;n�2;n

! �21
1 + E

�
W �2
i

�
+�22

> 0 (7.97)

and

�n;�;+ =
�0n�n +

q
(�0n�n)

2 � 4�01;n�1;n
2

� 1 + �01�1 + �
0
2;n�2;n ! 1 + E

�
W �2
i

�
+�22 <1: (7.98)

From the results in (7.97) and (7.98), we deduce that the eigenvalues of �0��� are bounded by some

general constants. This completes the proof. �
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