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Abstract

We investigate whether two players in a long-run relationship can main-
tain cooperation when the details of the underlying game are unknown.
Specifically, we consider a new class of repeated games with private moni-
toring, where an unobservable state of the world influences the payoff func-
tions and/or the monitoring structure. Each player privately learns the state
over time, but cannot observe what the opponent learns. We show that there
are robust equilibria where players eventually obtain payoffs as if the true
state were common knowledge and players played a “belief-free” equilib-
rium. The result is applied to various examples, including secret price-
cutting with unknown demand.
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1 Introduction

Consider an oligopolistic market where firms sell to industrial buyers and interact

repeatedly. Price and volume of transaction in such a market are typically deter-

mined by bilateral negotiation between a seller and a buyer, so that both price and

sales are private information. In such a situation, a firm’s sales level is a noisy

private signal about price of the opponents, as it tends to be low if the opponents

(secretly) undercut their price.1 This is a “secret price-cutting” game of Stigler

(1964), and in the literature, it is assumed that firms know the distribution of sales

as a function of their price. However, in practice, firms may not know the exact

distribution of sales. For example, a firm may know that there is a good chance of

sales decrease if the opponents undercut their price, but may not know the exact

probability of sales decrease. This is likely the case especially when firms enter

a new market, as their information about the market structure is often limited.

In such a case, the firms may acquire more precise information about the sales

distribution through learning by doing. How do the uncertainty about the market

structure and learning influence decision making by the firms? Do they have an

incentive to sustain collusion in the presence of the uncertainty?

Motivated by these questions, this paper develops a general model of repeated

games withprivate monitoring, where players do not know the monitoring struc-

ture. In repeated games with private monitoring, players do not directly observe

their opponents’ actions but instead observe noisy private signals. A secret price-

cutting game is a leading example of private monitoring, and other examples in-

clude relational contracts with subjective evaluations (Levin (2003) and Fuchs

(2007)) and international trade agreements in the presence of concealed trade

barriers (Park (2011)). Past work has shown that a long-term relationship helps

provide incentives to cooperate even under private monitoring,2 but these results

1Harrington and Skrzypacz (2011) report that these properties are common to the recent lysine
and vitamin markets.

2For example, efficiency can be approximately achieved in the prisoner’s dilemma, when ob-
servations are nearly perfect (Sekiguchi (1997), Bhaskar and Obara (2002), Hörner and Olszewski
(2006), Chen (2010), and Mailath and Olszewski (2011)), nearly public (Mailath and Morris
(2002), Mailath and Morris (2006), and Hörner and Olszewski (2009)), statistically independent
(Matsushima (2004)), or even fully noisy and correlated (Fong, Gossner, Hörner and Sannikov
(2011) and Sugaya (2010b)). Kandori (2002) and Mailath and Samuelson (2006) are excellent
surveys. See also Lehrer (1990) for the case of no discounting, and Fudenberg and Levine (1991)
for the study of approximate equilibria with discounting.
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heavily rely on the assumption that players know the exact distribution of private

signals, which is not appropriate in some economic situations, as discussed above.

This paper relaxes such an assumption and examines its impact on equilibrium

outcomes.

Formally, we study two-player repeated games in which the state of the world,

chosen by Nature at the beginning of play, influences the distribution of private

signals and/or the payoff functions of the stage game. Note that the state can affect

the payoff functions directly, and can affect it indirectly through the effect on the

distribution of signals. For example, in a price-setting oligopoly, firms obtain

higher expected payoffs at a given price at states where high sales are likely. Thus

even if the payoff to each sales level is known, uncertainty about the distribution

of sales yields uncertainty about the expected payoffs of the stage game.

Since observations are private in our model, players’ posterior beliefs about

the true state need not coincide in later periods. In particular, while each player

may privately learn the state from observed signals, this learning process may not

lead to “common learning” in the sense of Cripps, Ely, Mailath, and Samuelson

(2008), that is, a player maynot learn that the opponent learns the state, or a

player maynot learn that each player learns that each player learns the state, or

... For example, in the context of secret price-cutting, a firm may privately learn

the true distribution of sales from its own experience, but it cannot observe the

opponent’s past experience and hence may not learn what the opponent learned.

What happens in such a situation? Are they willing to cooperate even though they

may be unsure about what the opponent learned and about what the opponent will

play? The main finding of this paper is that despite the potential complications,

players can still maintain some level of cooperation through appropriate use of

intertemporal incentives.

In our model, to check whether a given strategy profile is sequentially rational,

we need to know players’ beliefs about the true state in general. However, com-

puting these beliefs is intractable in most cases, as beliefs are updated through ob-

served signals and there are infinitely many periods. Accordingly, characterizing

the entire equilibrium set is not an easy task. Instead, we look at a tractable subset

of Nash equilibria, calledbelief-free ex-post equilibriaor BFXE. This allows us to

obtain a clean characterization of the equilibrium payoff set, and as an application,

we show that a large set of payoffs (including Pareto-efficient outcomes) can be
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achieved in many economic examples.

A strategy profile is a BFXE if its continuation strategy constitutes a Nash

equilibrium given any state and given any history. In a BFXE, a player’s belief

about the true state is irrelevant to her best reply, and hence we do not need to

track the evolution of these beliefs over time. This idea is an extension of ex-

post equilibria of static games to dynamic setting. Another important property

of BFXE is that a player’s best reply does not depend on her belief about the

opponent’s private history, so that we do not need to compute these beliefs as well.

This second property is closely related to the concept ofbelief-free equilibriaof

Ely, Hörner, and Olszewski (2005, hereafter EHO), which are effective in the

study of repeated games with private monitoring and with no uncertainty. Note

that BFXE reduce to belief-free equilibria, if the state space is a singleton so that

players know the structure of the game.

As shown by past work, most of belief-free equilibria are mixed strategies, and

players’ randomization probabilities are carefully chosen to make the opponent

indifferent. These indifference conditions are typically violated once the signal

distribution is perturbed; as a result, the existing constructions of belief-free equi-

libria are not robust to a perturbation of the monitoring structure. A challenge in

constructing belief-free equilibria in our setup is that we need to find randomiza-

tion probabilities which satisfy all the indifference conditions even when players

do not know the signal distribution and their beliefs about the signal distribution

can be perturbed. If the same randomization probability satisfies the indifference

conditions for all states, then it is a good candidate for an equilibrium; indeed, it

constitutes a BFXE. A contribution of this paper is to identify a condition under

which such a strong requirement can be satisfied and these equilibria can support a

large set of non-trivial payoffs. The key is that under our informational condition,

there are more possible signals than in the case of “canonical signal space” studied

in the past work, which assures that there be enough room to choose appropriate

randomization probabilities.

To illustrate a concrete idea of BFXE, we begin with simple examples; in

Section 3.2, we consider private provision of public goods where the marginal

profit from contribution is unknown and players learn it through private signals.

In this situation, players cannot observe what the opponent has learned about the

marginal profit; thus it is unclear how players coordinate their play in equilibrium,
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and as a result, various folk theorems derived in past work do not apply. We

explicitly construct a BFXE and show that it attains the Pareto-efficient outcome

in such an environment. Also in Section 3.3, we consider another example where

players’ interests are totally different at different states, and construct a BFXE.

With these complete descriptions of equilibrium strategies, it is easy to see how

players learn the state from private signals and use that information in BFXE. In

particular, it is worth noting that the equilibrium strategies of Section 3.2 exhibit

a simple form of “punish-and-forgive” behavior while those of Section 3.3 take a

different simple form of “learning and adjustment” behavior, which are frequently

observed in real-world activities.

Since BFXE are ex-post equilibria and players’ beliefs about the state of the

world are irrelevant to their best replies, one may wonder what is the value of state

learning in BFXE. The key is that even though players play the same strategy pro-

file regardless of the true state in an ex-post equilibrium, the distribution of future

actions may depend on the true state because players’ future play may depend on

signals today, the distribution of which is influenced by the true state. In partic-

ular, there may be an ex-post equilibrium where for each state of the world, the

distribution of actions conditional on that state assigns a high probability to the

efficient action for that state. In this sense, state learning is valuable even if we

look at ex-post equilibria.

In Section 5, we extend this idea to a general setup and obtain our main re-

sult, the state-learning theorem. It characterizes the set of BFXE payoffs with

patient players under an identifiability condition, and shows that there are BFXE

in which players eventually obtain payoffs as if they knew the true state and played

a belief-free equilibrium for that state. This implies that BFXE can do as well as

belief-free equilibria can do in the known-state game, and that the main results

of EHO extend to the case where players do not know the monitoring structure.

Our identifiability condition guarantees that players privately learn the true state

in the long run, but does not assure that the state becomes (approximate) common

knowledge; hence the result here is not an immediate consequence of the infor-

mational assumption. Applying this state-learning theorem, we show that firms

can maintain collusion under a mild condition even if they do not have precise

information about the market; also we show that there are BFXE approximating

efficiency in many economic examples.
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As argued, the set of BFXE is only a subset of Nash equilibria, and is empty

for some cases (although we show that BFXE exist when players are patient and

some additional conditions are satisfied; see Remark 4). Nevertheless the study

of BFXE can be motivated by the following considerations. First, BFXE can of-

ten approximate the efficient outcome, as we show in several examples. Second,

BFXE are robust to any specification of the initial beliefs, just as for ex-post equi-

libria. That is, BFXE remain equilibria when players are endowed with arbitrary

beliefs which need not arise from a common prior. Third, BFXE are robust to

any specification of how players update their beliefs. For example BFXE are still

equilibria even if players employ non-Bayesian updating of beliefs, or even if each

player may observe unmodeled signals that are correlated with the opponent’s past

private history and/or the true state. Finally, BFXE have a recursive property, in

the sense that any continuation strategy profile of a BFXE is also a BFXE. This

property greatly simplifies our analysis, and may make our approach a promising

direction for future research.

1.1 Literature Review

The notion of BFXE is a generalization of belief-free equilibria, which plays a

central role in the study of repeated games with private monitoring. The idea

of belief-free equilibria is proposed by Piccione (2002) and extended by Ely and

Välimäki (2002), EHO, and Yamamoto (2007). Its limit equilibrium payoff set

is fully characterized by EHO and Yamamoto (2009). Olszewski (2007) is an in-

troductory survey. Kandori and Obara (2006) show that belief-free equilibria can

achieve better payoffs than perfect public equilibria for games with public moni-

toring. Kandori (2011) proposes a generalization of belief-free equilibria, called

weakly belief-free equilibria. Takahashi (2010) constructs a version of belief-

free equilibria in repeated random matching games. Bhaskar, Mailath, and Mor-

ris (2008) investigate the Harsanyi-purifiability of belief-free equilibria. Sugaya

and Takahashi (2010) show that belief-free public equilibria of games with public

monitoring are robust to private-monitoring perturbations.

BFXE is also related to ex-post equilibria. Some recent papers use the “ex-

post equilibrium approach” in different settings of repeated games, such as per-

fect monitoring and fixed states (Hörner and Lovo (2009) and Ḧorner, Lovo, and
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Tomala (2011)), public monitoring and fixed states (Fudenberg and Yamamoto

(2010) and Fudenberg and Yamamoto (2011a)), and changing states with an i.i.d.

distribution (Miller (2012)). Note also that there are many papers working on

ex-post equilibria in undiscounted repeated games; see Koren (1992) and Shalev

(1994), for example.

Among these, the most closely related work is Fudenberg and Yamamoto

(2010), who study the effect of uncertainty about the monitoring structure when

players observe public signals rather than private signals. They look at ex-post

equilibria as in this paper, and show that there are equilibria where players obtain

payoffs as if they knew the state and played an equilibrium for that state. While

our state-learning theorem may look similar to their result, it is not a corollary, be-

cause in our setup, public information is not available so that it is a priori unclear

if ex-post equilibria and belief-free equilibria can be combined in a useful way.

Indeed, in Fudenberg and Yamamoto (2010), players can form a “publicly ob-

servable dummy belief” about the true state based on public signals, which helps

players coordinating their play; see Section 5.3 for more discussions. Note also

that we explicitly construct equilibrium strategies in some examples and illustrate

how players learn the state in ex-post equilibria. Fudenberg and Yamamoto (2010)

do not have such a result.

This paper also contributes to the literature on repeated games with incomplete

information. Many papers study the case where there is uncertainty about the

payoff functions and actions are observable; see Forges (1984), Sorin (1984), Hart

(1985), Sorin (1985), Aumann and Maschler (1995), Cripps and Thomas (2003),

Gossner and Vieille (2003), Wiseman (2005), and Wiseman (2012).

Cripps, Ely, Mailath, and Samuelson (2008) consider the situation where play-

ers try to learn the unknown state of the world by observing a sequence of private

signals over time, and provide a condition under which players commonly learn

the state. In their model, players do observe private signals, but do not choose ac-

tions. On the other hand, we consider strategic players, who might want to deviate

to slow down the speed of learning. Therefore, their result does not directly apply

to our setting.
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2 Repeated Games with Private Learning

Given a finite setX, let 4X be the set of probability distributions overX, and

let P(X) be the set of non-empty subsets ofX, i.e.,P(X) = 2X \ { /0}. Given a

subsetW of �n, let coW denote the convex hull ofW.

We consider two-player infinitely repeated games, where the set of players is

denoted byI = {1,2}. At the beginning of the game, Nature chooses the state of

the worldω from a finite setΩ. Assume that players cannot observe the true state

ω, and letµ ∈4Ω denote their common prior overω.3 Throughout the paper, we

assume that the game begins with symmetric information: Each player’s beliefs

aboutω correspond to the prior. But it is straightforward to extend our analysis to

the case with asymmetric information as in Fudenberg and Yamamoto (2011a).4

Each period, players move simultaneously, and playeri ∈ I chooses an action

ai from a finite setAi and observes a private signalσi from a finite setΣi .5 Let

A≡ ×i∈IAi andΣ = ×i∈I Σi . The distribution of a signal profileσ ∈ Σ depends

on the state of the worldω and on an action profilea ∈ A, and is denoted by

πω(·|a) ∈ 4Σ. Let πω
i (·|a) denote the marginal distribution ofσi ∈ Σi at stateω

conditional ona ∈ A, that is,πω
i (σi |a) = ∑σ−i∈Σ−i

πω(σ |a). Playeri’s realized

payoff is uω
i (ai ,σi), so that her expected payoff at stateω given an action pro-

file a is gω
i (a) = ∑σi∈Σi

πω
i (σi |a)uω

i (ai ,σi). We writeπω(α) andgω
i (α) for the

signal distribution and expected payoff when players play a mixed action profile

α ∈ ×i∈I4Ai . Similarly, we writeπω(ai ,α−i) andgω
i (ai ,α−i) for the signal dis-

tribution and expected payoff when player−i plays a mixed actionα−i ∈ 4A−i .

Let gω(a) denote the vector of expected payoffs at stateω given an action profile

3Because our arguments deal only with ex-post incentives, they extend to games without a
common prior. However, as Dekel, Fudenberg, and Levine (2004) argue, the combination of
equilibrium analysis and a non-common prior is hard to justify.

4Specifically, all the results in this paper extend to the case where each playeri has initial
private informationθi about the true stateω, where the setΘi of playeri’s possible private infor-
mation is a partition ofΩ. Given the true stateω ∈Ω, playeri observesθ ω

i ∈Θi , whereθ ω
i denotes

θi ∈ Θi such thatω ∈ θi . In this setup, private informationθ ω
i allows playeri to narrow down the

set of possible states; for example, playeri knows the state ifΘi = {(ω1), · · · ,(ωo)}. For games
with asymmetric information, we can allow different types of the same player to have different
best replies as in PTXE of Fudenberg and Yamamoto (2011a); to analyze such equilibria, regime
Rshould specify recommended actions for each playeri and each typeθi , i.e.,R= R= (Rθi

i )(i,θi).
5Here we consider a finiteΣi just for simplicity; our results extend to the case with a continuum

of private signals, as in Ishii (2009).
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a.6

As emphasized in the introduction, uncertainty about the payoff functions

and/or the monitoring structure is common in applications. Examples that fit

our model include secret price-cutting with unknown demand function and moral

hazard with subjective evaluation and unknown evaluation distribution. Also a

repeated game with observed actions and individual learning is a special case of

the above model. To see this, letΣi = A×Zi for some finite setZi and assume

that πω(σ |a) = 0 for eachω, a, andσ = (σ1,σ2) = ((a′,z1),(a′′,z2)) such that

a′ , a or a′′ , a. Under this setup, actions are perfectly observable by players (as

σi must be consistent with the action profilea) and players learn the true stateω
from private signalszi . More concrete examples will be given in the next section.

In the infinitely repeated game, players have a common discount factorδ ∈
(0,1). Let (aτ

i ,σ τ
i ) be playeri’s pure action and signal in periodτ, and we de-

note playeri’s private history from period one to period periodt ≥ 1 by ht
i =

(aτ
i ,σ τ

i )t
τ=1. Let h0

i = /0, and for eacht ≥ 0, let Ht
i be the set of all private his-

toriesht
i . Also, we denote a pair oft-period histories byht = (ht

1,h
t
2), and let

Ht be the set of all history profilesht . A strategy for playeri is defined to be a

mappingsi :
⋃∞

t=0Ht
i →4Ai . Let Si be the set of all strategies for playeri, and let

S=×i∈ISi .

We define the feasible payoff set for a given stateω to be

V(ω)≡ co{gω(a)|a∈ A},

that is,V(ω) is the set of the convex hull of possible stage-game payoff vectors

givenω. Then we define the feasible payoff set for the overall game to be

V ≡×ω∈ΩV(ω).

Thus a vectorv ∈ V specifies payoffs for each player and for each state, i.e.,

v = ((vω
1 ,vω

2 ))ω∈Ω. Note that a givenv ∈ V may be generated using different

action distributions in each stateω. If players observeω at the start of the game

and are very patient, then any payoff inV can be obtained by a state-contingent

6If there areω ∈ Ω andω̃ , ω such thatuω
i (ai ,σi) , uω̃

i (ai ,σi) for someai ∈ Ai andσ ∈ Σ,
then it might be natural to assume that playeri does not observe the realized value ofui as the
game is played; otherwise players might learn the true state from observing their realized payoffs.
Since we consider ex-post equilibria, we do not need to impose such a restriction.
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strategy of the infinitely repeated game. Looking ahead, there will be equilib-

ria that approximate payoffs inV if the state isidentifiedby the signals, so that

players learn it over time.

3 Motivating Examples

In this section, we consider a series of examples to illustrate the scope of our

model and the idea of our equilibrium strategies when players learn the true state

from private signals.

3.1 Secret Price Cutting

Suppose that there are two firms in a market. The firms do not know the true

stateω ∈ Ω and they have a common priorµ ∈ 4Ω. In every period, firmi

chooses its priceai ∈ Ai . Firm i’s sales levelyi ∈ Yi depends on the price vec-

tor a = (a1,a2) and an unobservable aggregate shockη ∈ [0,1], which follows

a distributionFω(·|a) with density f ω(·|a). Given (a,η), we denote the corre-

sponding sales level of firmi by yi(a,η). Firm i’s profit isui(ai ,yi) = aiyi−ci(yi)
whereci(yi) is the production cost. In this setup, the distribution of sales level

profile y = (y1,y2) conditional on(ω,a) is given byπω(·|a), whereπω(y|a) =∫
η∈{η̃ |y=(y1(a,η̃),y2(a,η̃))} f ω(η |a)dη . Also, firm i’s expected payoff at stateω

givena is gω
i (a) = ∑yi∈Yi

πω(y|a)ui(ai ,yi).
Rotemberg and Saloner (1986) consider a repeated duopoly model where an

aggregate shockη is observable to the firms and follows an i.i.d. process. The

model here differs from theirs in that (i) an aggregate shock is not observable

and (ii) its distribution is unknown to the firms. This is a natural assumption in

some economic situations; for example, when the firms enter a new market, they

may not know the structure of the market and hence may not know the exact

distribution of an aggregate shock. This is one of the leading examples of our

general model introduced in Section 2. In Section 5.1 we will apply our main

result to this example and give a condition under which the firms can sustain

collusion even if they do not know the distribution of sales.

In this example, the utility function and signal distribution have very general

forms, and accordingly it is hard to illustrate the idea of our equilibrium construc-

12



tion. In the next two subsections, we consider simpler examples where actions are

perfectly observable, and describe how to construct equilibrium strategies when

players learn the state from private signals. Here we stress that we assume observ-

able actions just to make our exposition as simple as possible. Indeed, as will be

explained, a similar construction is valid even if players observe noisy information

about actions.

3.2 Private Provision of Public Goods

There are two players and two possible states, soΩ = {ω1,ω2}. In each periodt,

each playeri makes a decision on whether to contribute to a public good or not.

Let Ai = {Ci ,Di} be the set of playeri’s possible actions, whereCi means con-

tributing to a public good andDi means no contribution. After making a decision,

each playeri receives a stochastic outputzi from a finite setZi . An outputzi is pri-

vate information of playeri and its distribution depends on the true stateω and on

the total investmenta∈A. Note that many economic examples fit this assumption,

as firms’ profits are often private information and firms are often uncertain about

the distribution of profits. We also assume that a choice of contribution levels is

perfectly observable to players; thus the set of playeri’s signals isΣi = A×Zi ,

andπω(σ |a) = 0 for eachω, a, andσ = (σ1,σ2) = ((a′,z1),(a′′,z2)) such that

a′ , a or a′′ , a. With an abuse of notation, letπω(z|a) denote the joint distribu-

tion of z= (z1,z2) given (a,ω); that is,πω(z|a) = πω((a,z1),(a,z2)|a). We do

not impose any assumption on the joint distribution of(z1,z2), so that outputsz1

andz2 can be independent or correlated. Whenz1 andz2 are perfectly correlated,

our setup reduces to the case where outputs are public information.

Playeri’s actual payoff does not depend on the stateω and is given byui(ai ,σi)=
ũi(zi)−ci(ai), whereũi(zi) is playeri’s profit from an outputzi andci(ai) is cost

of contributions. We assumeci(C) > ci(D) = 0, that is, contribution is costly.

As in the general model introduced in Section 2, the expected payoff of firm

i at stateω is denoted bygω
i (a) = ∑σ∈Σ πω(σ |a)ui(ai ,σi). Note that a player’s

expected payoff depends on the true stateω, as it influences the distribution of

outputsz. We assume that the expected payoffs are as in the following tables:

13



C D

C 3, 3 −1, 4

D 4,−1 0, 0

C D

C 3, 3 1, 4

D 4, 1 0, 0

The left table denotes the expected payoffs for stateω1, and the right table for

stateω2. Note that the stage game is a prisoner’s dilemma at stateω1, and is

a chicken game at stateω2. This captures the situation where contributions are

socially efficient but players have a free-riding incentive; indeed, in each state,

(C,C) is efficient but a player is willing to chooseD when the opponent chooses

C. Another key feature of this payoff function is that players do not know the

marginal benefit from contributing to a public good and do not know whether they

should contribute, given that the opponent does not contribute. Specifically, the

marginal benefit is low inω1 so that a player prefersD to C when the opponent

choosesD, while the marginal profit is high inω2 so that a player prefersC.

Since actions are observable, one may expect that the efficient payoff vector

((3,3),(3,3)) can be approximated by standard trigger strategies. But this ap-

proach does not work, because there is no static ex-post equilibrium in this game

and how to punish a deviator is not obvious. Note also that the folk theorems of

Fudenberg and Yamamoto (2010) and Wiseman (2012) do not apply here, as they

assume that players obtain public (or almost public) information about the true

state in each period. In this example, players learn the true stateω only through

private informationzi and it is unclear whether players are willing to cooperate

after learning the true stateω.

In what follows, we will construct a simple equilibrium strategy with payoff

((3,3),(3,3)), assuming that players are patient. We assume that for eachi and

a∈ A, there are outputszω1
i (a) andzω2

i (a) such that

πω1
i (zω1

i (a)|a)
πω2

i (zω1
i (a)|a)

≥ 2 and
πω2

i (zω2
i (a)|a)

πω1
i (zω2

i (a)|a)
≥ 2 (1)

whereπω
i (·|a) is the marginal distribution ofzi given(ω,a). That is, the marginal

distributions ofzi are sufficiently different at different states, so that given any

action profilea, there is an output levelzω
i that has a sufficiently high likelihood

ratio to test for the true state beingω. This assumption is not necessary for the

existence of asymptotically efficient equilibria (see Section 5.2 for details), but it

considerably simplifies our equilibrium construction, as shown below.
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In our equilibrium, each player uses a strategy which is implemented by a

two-state automaton. Specifically, player1 uses the following strategy:

States:Given any periodt and given any historyht
1, player1 is in one of the

two states, eitherx(1) or x(2). In statex(1), player1 choosesC to “reward” player

2. In statex(2), player1 choosesD to “punish” player2.

Transition after State x(1): Suppose that player1 is currently in the reward

statex(1) so that she choosesC today. For the next period, player1 will switch to

the punishment statex(2) with some probability depending on today’s outcome.

Specifically, given player2’s actiona2 ∈ A2 and player1’s outputz1 ∈ Z1, player

1 will go to the punishment statex(2) with probability β (a2,z1) and stay at the

reward statex(1) with probability 1− β (a2,z1). We setβ (C,z1) = 0 for all z1;

that is, player1 will reward player2 for sure if player2 choosesC today.β (D,z1)
will be specified later, but we will haveβ (D,z1) > 0 for all z1, that is, player1

will punish player2 with positive probability if player2 choosesD today.

Transition after State x(2): Suppose that player1 is in the punishment state

x(2) so that she choosesD today. For the next period, player1 will switch to the

reward statex(1) with some probability depending on today’s outcome. Specif-

ically, given (a2,z1), player1 will go to x(1) with probability γ(a2,z1) and stay

at x(2) with probability1− γ(a2,z1). γ(a2,z1) will be specified later, but we will

haveγ(a2,z1) > 0 for all a2 andz1, that is, player1 will switch to the reward state

with positive probability no mater what player2 does.

PlayC PlayD

β (a2,z1)

γ(a2,z1)

1−β (a2,z1) 1− γ(a2,z1)

Statex(2)Statex(1)

Figure 1: Automaton
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The equilibrium strategy here is simple and intuitive. Consider the automa-

ton with the initial statex(1). This strategy asks a player to cooperate until the

opponent deviates, and to switch to the punishment phasex(2) after a deviation.

In the punishment phase, she choosesD to punish the opponent, and then returns

to the cooperative phasex(1) to forgive the opponent. This “punish-and-forgive”

behavior is commonly observed in the real world.

In what follows, we will show that this punish-and-forgive behavior actually

constitutes an equilibrium if we choose the transition probabilities carefully. The

key idea here is to choose player1’s transition probabilitiesβ andγ in such a way

that player2 is indifferent betweenC andD regardless of player1’s current state

of the automaton and of the state of the worldω. This means that player2 is indif-

ferent betweenC andD after every history, so that any strategy is a best response

to player1’s strategy. Also, we construct player2’s strategy in the same way so

that player1 is always indifferent betweenC andD. Then a pair of such strategies

constitutes an equilibrium, as they are best replies to each other. An advantage of

this equilibrium construction is that a player’s best reply is independent of her be-

lief about the state of the worldω and of her belief about the opponent’s history, so

that we do not need to compute these beliefs to check its incentive compatibility.

We call such a strategy profilebelief-free ex-post equilibrium(BFXE).

More specifically, we will choose the transition probabilities in such a way

that the following properties are satisfied:

• If player1 is currently in the reward statex(1), then player2’s continuation

payoff from today is3 given any state of the worldω, no matter what player

2 plays.

• If player 1 is currently in the punishment statex(2), then player2’s contin-

uation payoff is2 at ω1 and 7
3 at ω2, no matter what player2 plays.

For eachk = 1,2, let v2(k) denote the target payoff vector of player2 given

player1’s statex(k); that is,v2(1)= (vω1
2 (1),vω2

2 (1))= (3,3) andv2(2)= (vω1
2 (2),vω2

2 (2))=
(2, 7

3), wherevω
2 (k) is the target payoff givenx(k) andω. Figure 2 describes these

target payoffs and stage game payoffs. The horizontal axis denotes player2’s pay-

off at ω1, and the vertical axis denotes player2’s payoff atω2. The point(4,4) is

the payoff vector of the stage game when(C,D) is played. Likewise, the points
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(3,3), (−1,1), and(0,0) are generated by(C,C), (D,C), and(D,D), respectively.

The bold line is the convex hull of the set of target payoff vectors,v2(1) andv2(2).

(4,4)

(3,3)

(−1,1)

(0,0)

(2, 7
3)

vω1
2

vω2
2

Figure 2: Payoffs

When the discount factorδ is close to one, there indeed exist the transition

probabilitiesβ andγ such that these target payoffs are exactly achieved. To see

this, consider the case where player1 is currently in the reward statex(1) so

that the target payoff isv2(1) = (3,3). If player 2 choosesC, then player2’s

stage-game payoff today is3 regardless ofω, which is exactly equal to the target

payoff; hence player1 will stay at the statex(1) for the next period, i.e., we set

β (C,z1) = 0 for all z1. On the other hand, if player2 choosesD, then player2’s

stage-game payoff is4 regardless ofω , which is higher than the target payoff. To

offset this difference, player1 will switch to the punishment statex(2) with pos-

itive probabilityβ (D,z1) > 0 for the next period. Here the transition probability

β (D,z1) > 0 is carefully chosen so that the instantaneous gain by playingD and

the expected loss by the future punishment cancel out; i.e., we chooseβ (D,z1)
such that

gω
2 (C,D)−vω

2 (1) =
δ

1−δ ∑
z

πω(z|C,D)β (D,z1)(vω
2 (1)−vω

2 (2)) (2)

for eachω . (Note that the left-hand side is the instantaneous gain by playingD

while the right-hand side is the expected loss in continuation payoffs.) The formal
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proof of the existence of suchβ is given in Appendix A, but the basic idea is to let

β (D,zω2
1 (C,D)) > β (D,z1) for all z1, zω2

1 (C,D), that is, we ask player1 to switch

to the punishment state with a high probability when the output level iszω2
1 (C,D),

which is an indication ofω2. The intuition is that the punishment by switching to

the statex(2) is less harsh atω2 than atω1 (note thatvω2
2 (2) > vω1

2 (2)), and hence

player1 needs to switch tox(2) more likely atω2 to offset player2’s instantaneous

gain.

Likewise, consider the case where player1 is in the punishment statex(2)
so that the target payoff isv2(2) = (2, 7

3). In this case, player1 choosesD, so

that no matter what player2 does, player2’s stage-game payoff is lower than the

target payoff regardless ofω . So player1 will switch to the reward statex(1)
with positive probabilityγ(a2,z1) > 0 to offset this difference. The proof of the

existence of suchγ is very similar to that ofβ and is found in Appendix A.

With such a choice ofβ andγ, player2 is always indifferent betweenC and

D and hence any strategy of player2 is a best reply. Also, as explained, we con-

struct player2’s two-state automaton in the same way, so that player1 is always

indifferent. Then the pair of these strategies constitutes an equilibrium. In partic-

ular, when both players begin their play from the reward statex(1), its equilibrium

payoff is((3,3),(3,3)), as desired.

In this efficient equilibrium, players choose(C,C) forever unless somebody

deviates toD. If player−i deviates and choosesD, playeri punishes this deviation

by switching tox(2) with positive probability and starting to playD. However,

“always playD” is too harsh compared to the target payoff(2, 7
3), and hence player

i comes back tox(1) with some probability after every period. In the long run, both

players come back tox(1) and play(C,C), because this is the unique absorbing

state of the automaton.

The above two-state automaton is a generalization of that of Ely and Välimäki

(2002) for a repeated prisoner’s dilemma with almost-perfect monitoring. The

reason why their equilibrium construction directly extends is that in this example,

the payoffs at different states are “similar” in the sense that for eachω , the action

C can be used to reward the opponent andD to punish. When this structure is

lost, a player is not sure about what action should be taken to reward or punish the

opponent, so that state learning becomes more important. In the next example, we

show how the equilibrium strategies look like in such environments.
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3.3 Conflicting Interests

There are two players and two possible states,ω1 andω2. In each stage game,

player1’s action is eitherU or D, and player2’s action is eitherL or R. They

choose actions simultaneously in each stage game.

In stateω1, the stage game is a prisoner’s dilemma;(U,L) is efficient butD

strictly dominatesU andR strictly dominatesL. In stateω2, the stage game is

also a prisoner’s dilemma, but the role of the actions are reversed. That is,(D,R)
is efficient and(U,L) is a Nash equilibrium. The following tables summarize this

payoff structure:

L R

U 1, 1 −1, 2

D 2,−1 0, 0

L R

U 0, 0 2,−1

D −1, 2 1, 1

Note that the efficient payoff vector((1,1),(1,1)) is not feasible in a one-shot

game, as players need to choose different action profiles at different states to gen-

erate this payoff. (They need to play(U,L) at ω1 and(D,R) at ω2.)

Suppose that each playeri observes an action profile and a noisy private signal

zi ∈ Zi = {zω1
i ,zω2

i } about the true state in every period. The probability ofzω1
i is

2
3 at stateω1 and1

3 at stateω2, regardless of which actions players play. Likewise,

the probability ofzω2
i is 2

3 at stateω2 and 1
3 at stateω1, regardless of actions. So

the signalzω1
i indicates that the true state is likely to beω1 andzω2

i means that

the true state is likely to beω2. Again, this likelihood ratio assumption is not

necessary for the existence of asymptotically efficient equilibria , but it simplifies

our equilibrium construction. We impose no assumption on the joint distribution

of z1 andz2, so these signals can be independent or correlated.

In this example, the payoff functions are totally different at different states, so

that state learning is necessary to provide proper intertemporal incentives. How-

ever, since players learn the true state from private signals, they may not know

what the opponent has learned in the past play and it is unclear how players create

such incentives. Our goal is to give a simple and explicit equilibrium construction

where players learn the state and adjust their actions. As in the previous exam-

ple, our equilibrium is a BFXE, that is, each player is indifferent between the two

actions given any history and given any state of the worldω.
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We will construct an equilibrium where player1 (player2) tries to learn the

true stateω from private signals at the beginning, and then adjust her play to

choose an “appropriate” action; she choosesU (L) when she believes that the true

state isω1, and she choosesD (R) when she believes that the true state isω2.

Specifically, player1’s strategy is described by the following four-state automa-

ton:

States:Given any periodt and after any history, player1 is in one of the four

states,x(1), x(2), x(3), or x(4). Player1 choosesU in statesx(1) andx(2), while

she choosesD in statesx(3) andx(4). As in the previous example, we denote

by v2(k) = (vω1
2 (k),vω2

2 (k)) player2’s ex-post payoffs of the repeated game when

player1’s play begins with the statex(k). Set

v2(1) = (vω1
2 (1),vω2

2 (1)) = (1,0),

v2(2) = (vω1
2 (2),vω2

2 (2)) = (0.8,0.79),

v2(3) = (vω1
2 (3),vω2

2 (3)) = (0.79,0.8),

v2(4) = (vω1
2 (4),vω2

2 (4)) = (0,1).

Roughly, player1 is in statex(1) when she believes that the true state isω1 and

wants to reward player2; thus player2’s target payoff is high atω1 (vω1
2 (1) = 1),

but it is low at ω2 (vω1
2 (1) = 0). Likewise, player1 is in statex(4) when she

believes that the true state isω2 and wants to reward player2. In statesx(2) and

x(3), player1 is still unsure aboutω; she moves back and forth between these two

states for a while, and after learning the true stateω, she moves tox(1) or x(4).
The detail of the transition rule is specified below, but intuitively, when player

1 gets convinced that the true state isω1, she will move tox(1) and choose the

appropriate actionU . Likewise, when player1 becomes sure that the true state is

ω2, she will move tox(4) and chooseD. This “learning and adjustment” allows

player2 to obtain high expected payoffs at bothω1 andω2 when player1 is begins

her play fromx(2) or x(3), as shown in Figure 3.

Transitions after x(1): If player 2 choosesL today, then player1 stays at

x(1) for sure. If player2 choosesR today, then player1 switches tox(4) with

probability 1−δ
δ , and stays atx(1) with probability1− 1−δ

δ .
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vω1
2

vω2
2

(0.79,0.8)
(0.8,0.79)

(1,0)

(0,1)

(−1,2)

(2,−1)

Figure 3: Payoffs

The idea of this transition rule is the following. When player2 choosesL, the

stage game payoff for player2 is (1,0), which is exactly the target payoffv2(1),
so that player1 stays atx(1) for sure. On the other hand, when player2 chooses

R, the stage game payoff for player2 is (2,−1), which is different from the target

payoff. In this case player1 moves tox(4) with positive probability to offset this

difference.

Transitions after x(2): Suppose that player2 choosesL today. If zω1
1 is

observed, player1 goes tox(1) with probability (1−δ )117
δ and stays atx(2) with

the remaining probability. Ifzω2
1 is observed, then she goes tox(3) with probability

(1−δ )4740
δ and stays atx(2) with the remaining probability. That is, player1 moves

to x(1) only when she observeszω1
1 and gets more convinced that the true state is

ω1.

Suppose next that player2 choosesR today. In this case, ifzω1
1 is observed,

player1 goes tox(3) with probability (1−δ )61
δ and stays atx(2) with the remaining

probability. If zω2
1 is observed, then she goes tox(3) with probability (1−δ )238

δ
and stays atx(2) with the remaining probability. Note that player1 will not move

to x(1) in this case regardless of her signalz1. The reason is that when player2

choosesR, her stage-game payoff atω1 is 2, which is too high compared to the

target payoff; to offset this difference, player1 needs to give lower continuation

payoffs to player2 by moving tox(3) rather thanx(1).
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Transitions after x(3): The transition rule is symmetric to the one afterx(2).
Suppose that player2 choosesR today. If zω2

1 is observed, player1 goes tox(4)
with probability (1−δ )117

δ and stays atx(3) with the remaining probability. Ifzω1
1

is observed, then she goes tox(2) with probability (1−δ )4740
δ and stays atx(3) with

the remaining probability.

Suppose next that player2 choosesL today. Ifzω2
1 is observed, player1 goes

to x(2) with probability (1−δ )61
δ and stays atx(3) with the remaining probability.

If zω1
1 is observed, then she goes tox(2) with probability (1−δ )238

δ and stays atx(3)
with the remaining probability.

Transitions after x(4): The transition rule is symmetric to the one afterx(1).
If player2 choosesR today, then stay atx(4). If player2 choosesL today, then go

to x(1) with probability 1−δ
δ , and stay atx(4) with probability 2δ−1

δ

PlayU PlayD
Statex(3)Statex(2)

PlayU PlayD
Statex(4)Statex(1)

Only if z1 = zω1
1 Only if z1 = zω2

1

Only if R

Only if L

Figure 4: Automaton

Simple algebra (like (2) in the previous example) shows that given anyω and

x(k), player2 is indifferent betweenL and R and her overall payoff is exactly

vω
2 (k). This means that any strategy of the repeated game is optimal for player

2, and in particular, if player1’s initial state isx(2), then player2’s overall pay-

off is (0.8,0.79). We can construct player2’s automaton in the same way, and
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it is easy to see that a pair of these automata is an equilibrium of the repeated

game. When both players begin with initial statex(2), the equilibrium payoff

is ((0.8,0.8),(0.79,0.79)), which cannot be achieved in a one-shot game. This

example shows that BFXE is useful even when the payoff functions are totally

different at different states. Note that the equilibrium strategy here takes a simple

form of “learning and adjustment,” which is seemingly a reasonable play when

there is uncertainty of the underlying payoff structure. What we found is that if

the adjustment process is carefully chosen, it actually constitutes an equilibrium.

A natural question here is if there are more efficient equilibria, and in particu-

lar, if we can approximate the payoff vector((1,1),(1,1)). The main reason why

our equilibrium payoff is bounded away from((1,1),(1,1)) is that although play-

ers can obtain precise information about the true stateω in the long run through

private signals, they do not use that information in an efficient way. Too see this,

note that in the above equilibrium, a player’s continuation strategy depends only

on the current state of the automaton and today’s outcome; that is, private signals

in the past play can influence a player’s continuation play only through the current

state of the automaton. But there are only four possible states (x(1), x(2), x(3),
or x(4)) in the automaton, which means that they are less informative aboutω
than the original private signals. (In other words, the state of the automaton can

represent only coarse information aboutω .) Accordingly, players fail to play an

efficient action with a non-negligible probability. For example, even if the true

state isω1, the probability that she reaches the statex(4) in the long run condi-

tional on the true stateω1 and the initial statex(2) is bounded away from zero.

This problem can be solved by considering an automaton with more states; if

we increase the number of states of the automaton, then information classification

becomes finer, which allows us to construct more efficient equilibria. For example,

there is an automaton with six states which generates the following payoffs:7

7These payoffs are generated by the following automaton:
Actions: Player1 choosesU in statesx(1), x(2), andx(3) andD in statesx(4), x(5), andx(6).
Transitions after x(1): If player 2 choosesL today, then player1 stays atx(1) for sure. If

player2 choosesR today, then player1 switches tox(6) with probability 1−δ
δ , and stays atx(1)

with probability1− 1−δ
δ .

Transitions after x(2): Suppose that player2 choosesL today. If zω1
1 is observed, player1

goes tox(1) with probability (1−δ )39
δ and stays atx(2) with the remaining probability. Ifzω2

1 is

observed, then she goes tox(3) with probability (1−δ )1890
δ and stays atx(2) with the remaining
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v2(1) = (vω1
2 (1),vω2

2 (1)) = (1,0),

v2(2) = (vω1
2 (2),vω2

2 (2)) = (0.93,0.9),

v2(3) = (vω1
2 (3),vω2

2 (3)) = (0.927,0.91),

v2(4) = (vω1
2 (4),vω2

2 (4)) = (0.91,0.927),

v2(5) = (vω1
2 (5),vω2

2 (5)) = (0.9,0.93),

v2(6) = (vω1
2 (6),vω2

2 (6)) = (0,1).

We can show that as we increase the number of states of an automaton, more effi-

cient payoffs are achievable and the efficient payoff((1,1),(1,1)) are eventually

approximated.8 Also there are asymptotically efficient equilibria even when we

consider a general signal distribution; see Section 5.2 for more details.

Remark 1. In this section, we have looked at games with observed actions, but a

similar equilibrium construction applies to games with private and almost-perfect

monitoring, where each player does not observe actions directly but receives pri-

vate information about actions with small noise. The idea is that even if small

noise is introduced to the monitoring structure, we can slightly perturb the target

payoffs{vi(k)} and the transition probabilities so that the resulting automaton is

still an equilibrium. The logic is very similar to the one for belief-free equilibria

(Ely and V̈alimäki (2002) and EHO) and hence omitted.

probability. Suppose next that player2 choosesR today. In this case, ifzω1
1 is observed, player

1 goes tox(3) with probability (1−δ )1570
δ3 and stays atx(2) with the remaining probability. Ifzω2

1

is observed, then she goes tox(3) with probability (1−δ )70
δ3 and stays atx(2) with the remaining

probability.
Transitions after x(3): Suppose that player2 choosesL today. If zω1

1 is observed, player1

goes tox(2) with probability (1−δ )1146
δ and stays atx(3) with the remaining probability. Ifzω2

1 is

observed, then she goes tox(4) with probability (1−δ )7095
δ17 and stays atx(3) with the remaining

probability. Suppose next that player2 choosesR today. In this case, ifzω1
1 is observed, player

1 goes tox(4) with probability (1−δ )236
δ17 and stays atx(3) with the remaining probability. Ifzω2

1

is observed, then she goes tox(4) with probability (1−δ )2747
δ17 and stays atx(3) with the remaining

probability.
The specification of the transitions afterx(4), x(5), x(6) is symmetric so that we omit it.
8The formal proof is available upon request.

24



4 Belief-Free Ex-Post Equilibrium

In the previous section, we have constructed equilibrium strategies where each

player is indifferent over all actions given any state of the worldω and given

any past history of the opponent. An advantage of this equilibrium construction

is that we do not need to compute a player’s belief for checking the incentive

compatibility, which greatly simplifies the analysis.

In this section, we generalize this idea and introduce a notion ofbelief-free ex-

post equilibria, which is a special class of Nash equilibria. Given a strategysi ∈Si ,

let si|ht
i
denote the continuation strategy induced bysi when playeri’s past private

history washt
i ∈ Ht

i . For notational convenience, lets|ht denote the continuation

strategy profile given a historyht , i.e.,s|ht = (si |ht
i
)i∈I .

Definition 1. A strategy profiles∈ S is abelief-free ex-post equilibriumor BFXE

if si |ht
i

is a best reply tos−i |ht
−i

in the infinitely repeated game with the true state

ω for eachi ∈ I , ω ∈Ω, t ≥ 0, andht ∈ Ht .

In BFXE, a player’s best reply does not depend on the true state or the op-

ponent’s private history, so that her belief about the state and the past history is

payoff-irrelevant. Thus we do not need to compute these beliefs for the veri-

fication of incentive compatibility, which exactly captures the main idea of the

equilibrium construction in the previous section. BFXE reduces to belief-free

equilibria of EHO in known-state games where|Ω| = 1. Note that repetition of

a static ex-post equilibrium is a BFXE. Note also that BFXE may not exist; for

example, if there is no static ex-post equilibrium and the discount factor is close

to zero, then there is no BFXE.

Given a BFXEs, let Rt
i ⊆ Ai denote the set of all (ex-post) optimal actions for

playeri in periodt, i.e.,Rt
i is the set of allai ∈ Ai such thats̃i(h0

i ) = ai for some

s̃i ∈Si such that̃si is a best reply tos−i |ht−1
−i

given anyht−1
−i andω. LetRt =×i∈IRt

i ,

and we call the setRt theregime for periodt. Note that the regimeRt is non-empty

for any periodt; indeed, if an actionai is played with positive probability after

some historyht−1
i , then by the definition of BFXE,ai is an element ofRt

i . The

equilibrium strategies in the previous section are a special class of BFXE such

that the corresponding regimes are given byRt = A for all t, that is, all actions are

ex-post optimal in every period. For other BFXE,Rt
i can be a strict subset ofAi ;
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e.g., when the stage game has a strict ex-post equilibriuma, playinga in every

period is a BFXE of the repeated game, and it induces the regime sequence such

thatRt
i = {ai} for all i andt. Let R be the set of all possible regimes, i.e.,

R =×i∈IP(Ai) =×i∈I (2Ai \{ /0}).

EHO show that allowing access to public randomization simplifies the analysis

of belief-free equilibria. Here we follow this approach, and study BFXE for games

with public randomization. We assume that players observe a public signaly∈Y

at the beginning of every period, whereY is the set of possible public signals.

Public signals are i.i.d. draws from the same distributionp∈4Y. Let yt denote a

public signal in periodt, and with abuse of notation, letht
i = (yτ ,aτ

i ,σ τ
i )t

τ=1 denote

player i’s history up to periodt. Likewise, letht = (yτ ,(aτ
i ,σ τ

i )i∈I )t
τ=1 denote a

pair of private and public histories up to periodt. LetHt
i be the set of allht

i , andHt

be the set of allht . In this setting, a player’s play in periodt +1 is dependent on

her own history up to periodt and a public signal at the beginning of periodt +1.

Thus a strategy for playeri is defined as a mappingsi :
⋃∞

t=0(H
t
i ×Y) →4Ai .

Let si |(ht
i ,y

t+1) denote the continuation strategy of playeri when her history up to

periodt washt
i and the public signal at the beginning of periodt +1 wasyt+1.

As in EHO, we consider the case whereY = R; this is the case where a public

signaly suggests a regime in each period. LetS∗i denote the set of all strategiessi

such that playeri chooses her action from a suggested regime in each period. That

is, S∗i is the set of allsi such that∑ai∈Ri
si(ht−1

i ,R)[ai ] = 1 for eacht, ht−1
i , andR.

Definition 2. Given a public randomizationp∈4R, a strategy profiles∈ S is a

stationary BFXE with respect top (or BFXE with respect top in short) if (i) si ∈S∗i
for eachi and (ii) s̃i |h0

i ,R
is a best reply tos−i |(ht−1

−i ,R) in the infinitely repeated game

with the true stateω for eachi, ω, t, ht−1
−i , R ands̃i ∈ S∗i .

Clause (i) says that each playeri chooses her action from a suggested regime

in each period. Clause (ii) says that choosing a recommended action is optimal

given any stateω and given any past history(ht−1
−i ,R). In a stationary BFXE,

a regime is randomly chosen according to the same distribution in each period;

this recursive structure allows us to use dynamic programming techniques for the

analysis.
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An important feature of stationary BFXE is that in the limit asδ → 1, the pay-

off set of BFXE without public randomization is equal to the union of the sets of

stationary BFXE payoffs over allp∈ 4R. This is true because public random-

ization can substitute any regime sequence{Rt}∞
t=1 induced by BFXE without

public randomization.9 This feature means that characterizing the limit payoff set

of BFXE without public randomization reduces to computing the limit set of sta-

tionary BFXE payoffs for eachp. In what follows, we will characterize the set of

stationary BFXE payoffs.

Given a discount factorδ ∈ (0,1) and givenp ∈ 4R, let Ep(δ ) denote the

set of BFXE payoffs with respect top, i.e., Ep(δ ) is the set of all vectorsv =
(vω

i )(i,ω)∈I×Ω such that there is a stationary BFXEs with respect top satisfying

(1−δ )E[∑t=1δ t−1gω
i (at)|s,ω, p] = vω

i for all i andω. Note thatv∈ Ep(δ ) spec-

ifies the equilibrium payoff for all players and for all possible states. Also, for

eachi, let Ep
i (δ ) denote the set of playeri’s BFXE payoffs with respect top, i.e.,

Ep
i (δ ) is the set of allvi = (vω

i )ω∈Ω such that there is a BFXE with respect top

such that playeri’s equilibrium payoff at stateω is vω
i for eachω.

The following proposition asserts that given public randomizationp, station-

ary BFXE are interchangeable. To see the reason, lets ands̃ be stationary BFXE

with respect top. By the definition of stationary BFXE, choosing a recommended

action in every period is a best reply tos̃−i |h̃t
−i

for anyt andh̃t
−i , and thus playing

si |ht
i

is a best reply tõs−i |h̃t
−i

for any t, ht
i , andh̃t

−i . Likewise s̃i |ht
i

is a best reply

to s−i |h̃t
−i

for any t, ht
i , andh̃t

−i . Therefore both(s1, s̃2) and(s̃1,s2) are stationary

BFXE.

Proposition 1. Let p∈ 4R, and lets and s̃ be stationary BFXE with respect to

p. Then, the profiles(s1, s̃2) and(s̃1,s2) are also stationary BFXE with respect to

p.

The next proposition states that given public randomizationp, the equilibrium

payoff set has a product structure. This conclusion follows from the fact that

stationary BFXE are interchangeable.

Proposition 2. For anyδ ∈ (0,1) and anyp∈4R, Ep(δ ) =×i∈IE
p
i (δ ).

9The proof is very similar to the on-line appendix of EHO and hence omitted.
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Proof. To see this, fixp∈ 4R, and lets be a stationary BFXE with payoffv =
(v1,v2), and s̃ be a stationary BFXE with payoff̃v = (ṽ1, ṽ2). Since stationary

BFXE are interchangeable,(s1, s̃2) is also a stationary BFXE, and hence player1

is indifferent betweens1 ands̃1 against̃s2. This implies that player1’s payoff from

(s1, s̃2) is equal toṽ1. Also, player2 is indifferent betweens2 ands̃2 againsts1, so

that her payoff from(s1, s̃2) is equal tov2. Therefore(s1, s̃2) is a stationary BFXE

with payoff (ṽ1,v2). Likewise,(s̃1,s2) is a stationary BFXE with payoff(v1, ṽ2).
This argument shows that the equilibrium payoff set has a product structure, i.e.,

if v and ṽ are equilibrium payoffs then(ṽ1,v2) and(v1, ṽ2) are also equilibrium

payoffs. Q.E.D.

Since the equilibrium payoff setEp(δ ) has a product structure, one may expect

that we can characterize the equilibrium payoff set for each player separately.

This idea is formalized as “individual ex-post self-generation” in Appendix D.1.1,

which is useful to establish Proposition 3 in the next section.

Remark 2. One implication from the interchangeability of BFXE is that each

player is willing to play an equilibrium strategy even if she does not have the

correct belief about the opponent’s strategy. To be precise, givenp ∈ 4R, let

Sp = ×i∈IS
p
i be the set of BFXE strategy profiles, whereSp

i be the set of BFXE

strategies of playeri. Then Proposition 1 says that playeri is willing to play an

equilibrium strategysi ∈ Sp
i as long as the opponent chooses her strategy from the

setSp
−i . That is, players are willing to play a BFXE as long as they have correct

beliefs about the randomizationp∈4R of regimes, but not about strategies.

Remark 3. It may be noteworthy that Propositions 1 and 2 are true only for two-

player games. To see this, lets and s̃ be stationary BFXE with respect top in a

three-player game, and consider a profile(s̃1,s2,s3). As in the two-player case,

s̃1 is a best reply to(s2,s3). However,s2 is not necessarily a best reply to(s̃1,s3),
sinces̃1 can give right incentives to player2 only when player3 playss̃3. There-

fore (s̃1,s2,s3) is not necessarily a BFXE. Since Propositions 1 and 2 are key

ingredients in the following sections, it is not obvious whether the theorems in

the following sections extend to games with more than two players. A similar

problem arises in the study of belief-free equilibria in known-state games; see

Yamamoto (2009).
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5 State-Learning Theorem

5.1 General Case

In Section 3, we have focused on some examples and shown that there are BFXE

where players learn the true state from private signals and adjust their continuation

play. In this section, we extend the analysis to a general setup, and show that if a

certain informational condition is satisfied, the set of BFXE payoffs in the limit as

δ → 1 is equal to the product of the limit sets of belief-free equilibrium payoffs

of the corresponding known-state games; that is, there are BFXE in which players

eventually obtain payoffs almost as if they commonly knew the state and played a

belief-free equilibrium for that state. This result is not an immediate consequence

of individual learning, because even if players have learned the true state from

past private signals, they do not know what the opponent has learned in the past

play and hence it is not obvious whether they are willing to play an equilibrium of

the known-state game.

We begin with introducing notation and informational conditions imposed in

this section. Player i’s action plan is ~αi = (αR
i )R∈R such thatαR

i ∈ 4Ri for

eachR∈ R. In words, an action plan~αi specifies what action to play for each

public signalR∈R, in such a way that the specified (possibly mixed) actionαR
i

is chosen from the recommended set4Ri . Let~Ai denote the set of all such player

i’s (possibly mixed) action plans~αi . That is,~Ai =×R∈R4Ri .

Let π̂ω
−i(ai ,α−i) = (π̂ω

−i(a−i ,σ−i |ai ,α−i))(a−i ,σ−i) denote the probability dis-

tribution of (a−i ,σ−i) when players play the action profile(ai ,α−i) at stateω.

That is,π̂ω
−i(a−i ,σ−i |ai ,α−i) = α−i(a−i)∑σi∈Σi

πω(σi ,σ−i |a) for each(a−i ,σ−i).
Given an action plan~α−i , ω, andR, letΠω ,R

−i (~α−i) be a matrix with rowŝπω
−i(ai ,αR

−i)

for all ai ∈ Ai . Let Π(ω ,ω̃),R
−i (~α−i) be a matrix constructed by stacking two matri-

ces,Πω ,R
−i (~α−i) andΠω̃,R

−i (~α−i).

Definition 3. An action plan~α−i has individual full rank for ω at regimeR if

Πω ,R
−i (~α−i) has rank equal to|Ai |. An action plan~α−i hasindividual full rank if it

has individual full rank for allω andR.

Individual full rank implies that player−i can statistically distinguish player

i’s deviation using a pair(a−i ,σ−i) of her action and signal when the true state

29



is ω and the realized public signal isR. Note that this definition is slightly dif-

ferent from those of Fudenberg, Levine, and Maskin (1994) and Fudenberg and

Yamamoto (2010); here we consider the joint distribution of actions and signals,

while they consider the distribution of signals.

Definition 4. For eachω ∈Ω, ω̃ , ω, andR, an action plan~α−i hasstatewise full

rank for (ω , ω̃) at regimeR if Π(ω ,ω̃),R
−i (~α−i) has rank equal to2|Ai |.

Statewise full rank assures that player−i can statistically distinguishω from

ω̃ irrespective of playeri’s play, given that the realized public signal isR. Note

that statewise full rank does not pose any restriction on speed of learning; it may

be that the signal distributions at stateω are close to those at stateω̃, giving rise to

a slow learning process. But it does not pose any problem on our analysis, as we

consider patient players. Again the definition of statewise full rank here is slightly

different from that of Fudenberg and Yamamoto (2010), as we consider the joint

distribution of actions and signals.

Condition IFR. For eachi, every pure action plan~α−i has individual full rank.

This condition is generically satisfied if there are so many signals that|Σ−i | ≥
|Ai | for eachi. Note that under (IFR), every mixed action plan has individual full

rank.

Condition SFR. For eachi and (ω, ω̃) satisfyingω , ω̃ , there is~α−i that has

statewise full rank for this pair at some regimeR∈R.

This condition (SFR) requires that for each pair(ω, ω̃), players can statisti-

cally distinguish these two states. Note that (SFR) is sufficient for each player to

learn the true state in the long run, even if there are more than two possible states.

To identify the true state, we ask a player to collect private signals and to perform

a statistical inference to distinguishω andω̃ for each possible pair(ω, ω̃) with

ω , ω̃. Under (SFR), the true state will be selected in the all relevant statistical

tests; e.g., if there were three possible states and the true state wereω1, thenω1

would be selected in the statistical test for(ω1,ω2) and in the one for(ω1,ω3).
Therefore, if there is a state which is selected in all statistical tests, then she can

conclude that it is the true state. One remark is that while each player can learn the

true state under (SFR), players do not share any common information, and hence
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it is unclear if players can coordinate their play state by state. (In Appendix B, we

provide an example of an equilibrium where each player privately learns the state

but common learning fails.)

Givenω, let Gω denote the infinitely repeated game where players know that

the true state isω. Consider belief-free equilibria of EHO in this known-state

gameGω , and letEω ,p(δ ) be the payoff set of belief-free equilibria with respect

to public randomizationp in the gameGω given δ . Corollary1 of EHO shows

that, as for BFXE, the payoff set of belief-free equilibria has a product structure for

eachp; that is,Eω,p(δ ) = ×i∈I [m
ω,p
i (δ ),Mω,p

i (δ )]. HereMω,p
i (δ ) andmω ,p

i (δ )
are the maximum and minimum of playeri’s payoffs attained by belief-free equi-

libria with respect top. Let Mω ,p
i andmω,p

i be the limit ofMω,p
i (δ ) andmω ,p

i (δ )
asδ → 1, i.e., Mω,p

i andmω,p
i denote the maximum and minimum of playeri’s

payoffs of belief-free equilibria with respect top in the limit asδ → 1. EHO show

that we can computeMω,p
i andmω,p

i by simple formulas. (For completeness, we

give these formulas in Appendix C.)

The main result of the paper is:

Proposition 3. If (IFR) hold, thenlimδ→1Ep(δ ) = ×ω∈Ω×i∈I [mω ,p
i ,Mω,p

i ] for

eachp ∈ 4R such that (i)Mω,p
i > mω,p

i for all i and ω and (ii) for eachi and

(ω,ω ′), there is~α−i that has statewise full rank for(ω,ω ′) at some regimeRwith

p(R) > 0. Hence, if (IFR) and (SFR) hold and if there isp∈4R such thatMω,p
i >

mω ,p
i for all i andω, thenlimδ→1E(δ ) =

⋃
p∈4R×ω∈Ω×i∈I [mω,p

i ,Mω ,p
i ].

This proposition asserts that given public randomizationp, the limit set of

BFXE payoffs is isomorphic to the set of maps from states to belief-free equi-

librium payoffs. (Recall that the set×i∈I [m
ω ,p
i ,Mω ,p

i ] denotes the limit set of

belief-free equilibrium payoffs given public randomizationp.) In other words,

there are BFXE where players eventually obtain payoffs almost as if they com-

monly learned the state and played a belief-free equilibrium for that state. Note

that this result reduces to Proposition 5 of EHO if|Ω|= 1.

For example, consider the secret price-cutting game in Section 3.1. Assume

that if the firms knew the distribution of an aggregate shockη , there would be

a belief-free equilibrium where the firms earn payoffs Pareto-dominating a static

Nash equilibrium payoff; i.e., we assume that there isp such thatMω,p
i > mω ,p

i

andMω,p
i > gω

i (αNE,ω) for all i andω, whereαNE,ω is a Nash equilibrium of the
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stage game whenω is known. Then the above theorem says that even though the

firms do not know the distribution ofη , they can still maintain the same level of

collusion under (SFR).

An important question is when suchp exists, and a sufficient (though not

necessary) condition is that the uncertainty on the distribution ofη is “small.” To

see this, suppose that the monitoring structure at different states are “close” in that

|πω(σ |a)−π ω̃(σ |a)| < ε for all a, σ , ω, andω̃ whereε > 0 is a small number.

Assume that for some stateω∗ ∈ Ω, there is a belief-free equilibrium where the

firms earn payoffs Pareto-dominating a static Nash equilibrium payoff, that is,

assume that for someω∗ andp∗, Mω∗,p∗
i > mω∗,p∗

i andMω∗,p∗
i > gω

i (αNE,ω∗
) for

eachi. From EHO, we know thatMω ,p
i and mω,p

i are continuous with respect

to πω almost everywhere; thus whenε is sufficiently small, generically we have

Mω,p∗
i > mω,p∗

i and Mω ,p∗
i > gω

i (αNE,ω) for all i and ω, which shows thatp∗

satisfies the assumption. This shows that if the uncertainty is small, the firms can

earn the same profit as in the case with no uncertainty. Note that this is not a

trivial result, because typically equilibrium strategies of EHO depend on the fine

details of the signal distribution and a belief-free equilibrium at stateω∗ is not an

equilibrium at stateω , ω∗ even if the uncertainty is small.

To give the intuition behind Proposition 3, let us focus on BFXE where players

are indifferent over all actions in any period and any state.10 In our equilibria, (i)

player i makes player−i indifferent over all actions given any history and given

any state, and (ii) playeri controls player−i’s payoffs in such a way that player

−i’s continuation payoffs at stateω is close to the target payoff when playeri

has learned that the true state is likely to beω . Property (ii) implies that player

i’s individual state learning is sufficient for player−i’s payoff of the entire game

to approximate the target payoffs state by state. Thus, if each player can indi-

vidually learn the true state, then both players’ payoffs approximate the target

payoffs state by state (although the state may not necessarily be an approximate

common knowledge). Also, players’ incentive compatibility is satisfied, as prop-

erty (i) assures that each player’s play is optimal after every history. Note that

in these equilibrium strategies, playeri’s individual state learning is irrelevant to

her own continuation payoffs, and influences player−i’s payoffs only. Indeed, it

10To be precise, these are stationary BFXE with respect topA∈4R, wherepA is the unit vector
that puts one to the regimeR= A.
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follows from (i) that playeri cannot obtain better payoffs by changing her action

contingently on what she learned from the past history. Therefore, she is willing

to use information about the true state in order to give appropriate payoffs to her

opponent with no concern about her own payoffs.

The formal proof of Proposition 3 is provided in Appendix D, and it consists

of two steps. In the first step, we consider a general environment (i.e., we do

not assume (IFR) or (SFR)) and develop an algorithm to compute the limit set of

BFXE payoffs,limδ→1Ep(δ ). Since we consider games with two or more pos-

sible states, there is often a “trade-off” between equilibrium payoffs for different

states; for example, if a player has conflicting interests at different states, then

increasing her equilibrium payoff for some states may necessarily lower her equi-

librium payoff for other states.11 To take into account the effect of this trade-off,

we build on the linear programming (LP) technique of Fudenberg and Yamamoto

(2010), who characterize the limit payoffs of ex-post equilibria in repeated games

with public and unknown monitoring technology.12 Specifically, for each player

i and for each weighting vectorλi = (λ ω
i )ω∈Ω ∈ R|Ω|, we consider a static LP

problem whose objective function is the weighted sum of playeri’s payoffs at dif-

ferent states, and we demonstrate that the limit set of BFXE payoffs for playeri is

characterized by solving these LP problem for all weighting vectorsλi . Here the

trade-offs between equilibrium payoffs for different states are determined by LP

problems for “cross-state directions”λi that have non-zero components on two

or more states; roughly, low scores in these LP problems mean more trade-offs

11Here is a more concrete example. Suppose that there are two statesω1 andω2. In each stage
game, player1 chooses eitherU or D, and player2 choosesL or R. After choosing actions, player
1 observes both the true state and the actions played, while player2 observes only the actions. The
stage game payoffs are as follows:

L R
U 2, 0 1, 0
D 0, 0 0, 0

L R
U 1, 0 2, 0
D 0, 0 0, 0

Note thatD is dominated byU at both states, and hence player1 always choosesU in any BFXE.
On the other hand, any strategy profiles where player1 chooses the pure actionU after every
history is a BFXE. Therefore, for anyδ , player1’s equilibrium payoff setE1(δ ) is a convex
combination of(1,2) and(2,1). So increasing player1’s equilibrium payoff at stateω1 lowers her
equilibrium payoff atω2.

12Fudenberg and Levine (1994) proposes a linear programming characterization of the equilib-
rium payoff set in repeated games with public monitoring, and Fudenberg and Yamamoto (2010)
extend it to the case where the monitoring structure is unknown.
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between payoffs for different states. See Appendix D.1.2 for details.

Then in the second step of the proof, we apply the algorithm developed in the

first step to games that satisfy (IFR) and (SFR). We show that (i) under (SFR), the

LP problems for all cross-state directions give sufficiently high scores and hence

there is no trade-off between equilibrium payoffs at different states, and (ii) under

(IFR), the LP problems for other directions (“single-state directions”) reduce to

the ones which compute the boundsMω ,p
i and mω,p

i of belief-free equilibrium

payoffs of the known-state games. Combining these two, we can conclude that

limδ→1Ep(δ ) = ×ω∈Ω×i∈I [mω,p
i ,Mω,p

i ]. The proof of (i) is similar to the the

one by Fudenberg and Yamamoto (2010), and its intuition is simple; under (SFR),

player−i can learn the state in the long run and can eventually use different actions

at different states, which means that there is no trade-off between playeri’s payoffs

across states. The proof of (ii) is slightly different from the one by Fudenberg and

Yamamoto (2010). The key in our proof is that we define individual full rank using

joint distributions of(a−i ,σ−i) so that all mixed actions have individual full rank

under (IFR). Then as shown in Lemma 6 in Appendix D.2, the result immediately

follows. On the other hand, Fudenberg and Yamamoto (2010) define individual

full rank using distributions of signals only, and with this definition, some mixed

action profiles may not have individual full rank even if all pure action profiles

have individual full rank. As a result, they need a more careful analysis in order

to prove the counterpart of (ii).

Remark 4. As a corollary of Proposition 3, we can derive a sufficient condition

for the existence of BFXE with patient players. That is, there are BFXE if players

are patient, (IFR) and (SFR) hold, and there isp such thatMω,p
i > mω ,p

i for all

i andω. Note that the last condition “Mω ,p
i > mω ,p

i for all i andω” implies that

there are belief-free equilibria with respect top for each stateω.

5.2 Revisiting the Examples in Section 3

As an application of Proposition 3, we revisit the public goods game in Section

3.2. We have already shown that there are efficient equilibria in the public goods

game if the likelihood ratio condition (1) is satisfied. Now we apply Proposition

3 to this example to show that the likelihood ratio condition (1) is not necessary

for the existence of asymptotically efficient equilibria. Specifically, instead of the
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likelihood ratio condition (1), we assume that for eachi, there is an actionai such

that (πω1
i (zi |ai ,a−i))zi , (πω2

i (zi |ai ,a−i))zi for eacha−i ; this assures that player

i can learn the true stateω from observed signals regardless of the opponent’s

play. We show that there are asymptotically efficient equilibria under this weaker

assumption.

It is easy to see that (SFR) holds under this assumption. Note also that (IFR)

is satisfied in this example, as actions are observable. Hence, Proposition 3 ap-

plies and the limit set of BFXE payoffs is equal to the product of the belief-

free equilibrium payoff sets of the known-state games; in particular, we have

×ω∈Ω ×i∈I [mω,p
i ,Mω ,p

i ] ⊆ limδ→1E(δ ) for eachp. EHO show that when ac-

tions are observable, the boundsMω ,p
i andmω ,p

i of belief-free equilibrium payoffs

are computed by the following simple formulas:13

Mω,p
i = ∑

R∈R

p(R) max
α−i∈4R−i

min
ai∈Ri

gω
i (ai ,α−i) (3)

and

mω,p
i = ∑

R∈R

p(R) min
α−i∈4R−i

max
ai∈Ai

gω
i (ai ,α−i). (4)

We use these formulas to compute the BFXE payoffs in this example. Con-

sider p ∈ 4R such thatp(A) = 1 and p(R) = 0 for other R. From (3) and

(4), we haveMp,ω1
i = Mp,ω2

i = 3, mp,ω1
i = 0, andmp,ω2

i = 1 for eachi. Hence

×i∈I ([0,3]× [1,3]) ⊆ limδ→1E(δ ), which implies that there is a BFXE approx-

imating ((3,3),(3,3)) for sufficiently largeδ . That is, efficiency is achieved for

sufficiently highδ even if the likelihood ratio condition (1) is not satisfied. Also,

it is easy to see that the result extends to the case where the payoff functiongω
i

is perturbed; as long as the payoff matrix is a prisoner’s dilemma atω1 and is a

chicken game atω2, the payoff vectorg(C,C) = (gω
i (C,C))(i,ω) can be approxi-

mated by a BFXE.

Likewise, we can apply Proposition 3 to the example in Section 3.3 to show

that there are asymptotically efficient equilibria. Recall that in Section 3.3, we

construct a BFXE where players learn the state, but its equilibrium payoff is
13In words,Mω,p

i is equal to playeri’s worst payoff at stateω, given that player−i tries to
reward playeri, and given that players have to choose actions from a recommended set. Likewise,
mω,p

i is equal to playeri’s maximum payoff atω, given that player−i tries to punish playeri, and
given that player−i has to choose an action from a recommended set.
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bounded away from the efficient payoff((1,1),(1,1)). Now we show that there

are BFXE approximating the payoff((1,1),(1,1)). To do so, note that both

(IFR) and (SFR) are satisfied in this example, so that from Proposition 3, we

have×ω∈Ω×i∈I [m
ω ,p
i ,Mω ,p

i ]⊆ limδ→1E(δ ) for eachp. Note also that, since ac-

tions are observable,Mω,p
i andmω,p

i are computed by (3) and (4), and we have

Mω,p
i = 1 andmω,p

i = 0 for p such thatp(A) = 1. Combining these two obser-

vations, it follows that there is a BFXE which approximates((1,1),(1,1)) when

δ is large enough; i.e., the efficient outcome((1,1),(1,1)) can be approximated

by BFXE. Also, as in the public goods game, the same result holds even if we

allow more general signal structures; specifically, the likelihood ratio condition

πω
i (zω

i |a) = 2
3 is dispensable, and the signal spaceZi is not necessarily binary. All

we need here is (SFR), which is satisfied as long as there is an actionai such that

(πω1
i (zi |ai ,a−i))zi , (πω2

i (zi |ai ,a−i))zi for eacha−i .

5.3 Comparison with Fudenberg and Yamamoto (2010)

This paper investigates the effect of uncertainty about the monitoring structure in

repeated games with private monitoring. Fudenberg and Yamamoto (2010) study

a similar problem in repeated games with public monitoring, that is, they con-

sider the case where players observe public signals in every period. They find a

sufficient condition for the folk theorem; i.e., they show that under some informa-

tional condition, any feasible and individually rational payoff can be achievable

when players are patient. This means that there are equilibria in which players

eventually obtain payoffs almost as if they commonly knew the state and played

an equilibrium for that state. Their approach and ours are similar in the sense

that both look at ex-post equilibria and characterize the limit equilibrium payoffs

using linear programming problems. However, our state-learning theorem is not

a corollary of Fudenberg and Yamamoto (2010). Indeed, how players learn the

state and use that information in BFXE is different from the one in Fudenberg and

Yamamoto (2010) in the following sense.

The key in Fudenberg and Yamamoto (2010) is to look at public strategies

where players’ play depends only on past public signals. This means that players

ignore all private information such as the first- or higher-order beliefs aboutω;

instead, they perform a statistical test about the true stateω using public signals
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and determine their continuation play. In other words, players form a “publicly

observable dummy belief” about the true stateω which depends only on public

information, and effectively adjust their play. This allows players to coordinate

their play perfectly, and since the publicly observable belief converges to the true

stateω, the target payoff can be achieved state by state. Also, players have no

incentive to deviate because any unilateral deviation will be statistically detected

and hence will be punished in future. Note that the same idea is used in Wiseman

(2012), who studies the case where actions are observable and players receive

both public and private signals about the true state. He proves the folk theorem by

constructing equilibria where players compute a public dummy belief and adjust

their continuation play while all private signals are ignored; his constructive proof

illustrates the usefulness of a public dummy belief more explicitly than the non-

constructive proof of Fudenberg and Yamamoto (2010).

When we consider private monitoring, the above idea does not work because

there is no public information; players cannot form a public dummy belief and

they need to use private signals to learn the true state. Thus in general, players’

higher-order beliefs are relevant to their incentives, which makes the analysis in-

tractable. To avoid such a complication, we consider equilibria where each player

makes her opponent indifferent over the relevant actions given any history. This

belief-free property assures that players’ higher-order beliefs are irrelevant to best

replies and incentive compatibility is automatically satisfied.14 Of course, requir-

ing players to be indifferent comes at a cost in the sense that it is much stronger

than sequential rationality; specifically, we need to find a strategy profile which

satisfies all the indifference conditions independently of the true stateω. Nonethe-

less, we find that this requirement still leaves enough strategies so that BFXE can

support many non-trivial payoffs (including Pareto-efficient outcomes) if (SFR) is

satisfied so that players can individually learn the true state. In other words, our

result shows that ex-post equilibria work nicely even if we look at the case where

14Indeed, we can formally show that players’ higher-order beliefs are irrelevant to the set of
BFXE payoffs in the following sense. As shown in Appendix D.1.1, playeri’s equilibrium payoff
set givenδ is the largest fixed point of the operatorBp

i , and this operator depends on the signal
distributionπ only through the marginal distributionπ−i . This means that the equilibrium payoff
set is the same even if the correlation between private signals changes and players’ higher-order
beliefs are perturbed. (Note that a change in the correlation influences players’ first-order beliefs
as well, but the above result shows that such perturbations of first-order beliefs are irrelevant to
the equilibrium payoff set.)
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players learn the state from private signals (so that they cannot coordinate their

play) and even if we impose many indifference conditions.

In addition to the issue discussed above, note that we explicitly construct

BFXE in some examples. With these constructions, it is easy to see how play-

ers learn the true state from noisy signals in ex-post equilibria. Fudenberg and

Yamamoto (2010) do not provide such a result.

6 Conditionally Independent Signals

6.1 BFXE and Review Strategies

In repeated games with private monitoring and with a known state, the set of

belief-free equilibrium payoffs is typically a strict subset of feasible and individ-

ually rational payoff set. To attain a larger payoff set, several papers combine

the idea of review strategies and belief-free equilibria (belief-free review-strategy

equilibriaof Matsushima (2004), EHO, Yamamoto (2007), and Yamamoto (2012));

this approach works well especially for games withindependent monitoring, where

players observe statistically independent signals conditional on an action profile

and an unobservable common shock. For example, the folk theorem is established

for the repeated prisoner’s dilemma with independent monitoring.

The idea of review strategies is roughly as follows. The infinite horizon is

regarded as a sequence of review phases with lengthT. Within a review phase,

players play the same action and pool private signals. After aT-period play, the

pooled private signals are used to test whether the opponent deviated or not; then

the law of large numbers assures that a player can obtain precise information about

the opponent’s action from this statistical test. The past work constructs a review-

strategy equilibrium such that a player’s play is belief-free at the beginning of each

review phase, assuming that the signal distribution is conditionally independent.

Under conditionally independent monitoring, a player’s private signals within a

review phase does not have any information about whether she could “pass” the

opponent’s statistical test, which greatly simplifies the verification of the incentive

compatibility.

In this subsection, we show that this approach can be extended to the case

where players do not know the true state, although the constructive proof of the
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existing work does not directly apply. Specifically, we consider review strategies

where a player’s play is belief-free and ex-post optimal at the beginning of each

T-period review phase, and we compute its equilibrium payoff set. We find that if

the signal distribution satisfies some informational conditions, there are sequential

equilibria where players eventually obtain payoffs almost as if they commonly

knew the state and played a belief-free review-strategy equilibrium for that state.

Then in the next subsection, we apply this result to a secret price-cutting game,

and show that cartel is self-enforcing even if firms do not have precise information

about the market demand. Also we give a simple equilibrium construction.

As mentioned, the past work has shown that review strategies work well for

games with independent monitoring.15 Here we impose the same assumption on

the signal distribution:

Condition Weak-CI. There is a finite setΣ0, π̃ω
0 : A→ 4Σ0 for eachω, and

π̃ω
i : A×Σ0→4Σi for each(i,ω) such that the following properties hold.

(i) For eachω ∈Ω, a∈ A, andσ ∈ Σ,

πω(σ |a) = ∑
σ0∈Σ0

π̃ω
0 (σ0|a)∏

i∈I
π̃ω

i (σi |a,σ0).

(ii) For eachi ∈ I , ω ∈ Ω, anda−i ∈ A−i , rankΠ̃ω
−i(a−i) = |Ai | × |Σ0| where

Π̃ω
−i(a−i) is a matrix with rows(π̃ω

−i(σ−i |ai ,a−i ,σ0))σ−i∈Σ−i for all ai ∈ Ai

andσ0 ∈ Σ0.

Clause (i) says that the signal distribution isweakly conditionally indepen-

dent, that is, after players choose profilea, an unobservable common shockσ0

is randomly selected, and then players observe statistically independent signals

conditional on(a,σ0). Here π̃ω
0 (·|a) is the distribution of a common shockσ0

conditional ona, while π̃ω
i (·|a,σ0) is the distribution of playeri’s private signal

σi conditional on(a,σ0). Clause (ii) is a strong version of individual full rank; i.e.,

it implies that player−i can statistically distinguish playeri’s actionai and a com-

mon shockσ0. Note that clause (ii) is satisfied generically if|Σ−i | ≥ |Ai | × |Σ0|
for eachi. Note also that (Weak-CI) implies (IFR).

In addition to (Weak-CI), we assume that the signals distribution has full sup-

port.
15Sugaya (2010a) construct belief-free review-strategy equilibria without conditional indepen-

dence, but he assumes that there are at least four players.
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Definition 5. The signal distribution hasfull supportif πω(σ |a) > 0 for all ω ∈Ω,

a∈ A, andσ ∈ Σ.

As Sekiguchi (1997) shows, if the signal distribution has full support, then for

any Nash equilibriums∈ S, there is a sequential equilibrium̃s∈ S that yields the

same outcome. Therefore, the set of sequential equilibrium payoffs is identical

with the set of Nash equilibrium payoffs.

Let Nω ,p
i be the maximum of belief-free review-strategy equilibrium payoffs

for the known-state game corresponding to the stateω. Likewise, letnω,p
i be

the minimum of belief-free review-strategy equilibrium payoffs. As EHO and

Yamamoto (2012) show, if the signal distribution is weakly conditionally inde-

pendent, then these values are calculated by the following formulas:

Nω,p
i = ∑

R∈R

p(R) max
a−i∈R−i

min
ai∈Ri

gω
i (a),

nω,p
i = ∑

R∈R

p(R) min
a−i∈R−i

max
ai∈Ai

gω
i (a).

Note that these formulas are similar to (3) and (4) in Section 5.2, but here we do

not allow player−i to randomize actions.

The next proposition is the main result in this section; it establishes that if

the signal distribution is weakly conditionally independent and if each player can

privately learn the true state from observed signal distributions, then there are

sequential equilibria where players eventually obtain payoffs almost as if they

commonly knew the state and played a belief-free review-strategy equilibrium for

that state. Note that this result reduces to Proposition 10 of EHO if|Ω|= 1.

Proposition 4. Suppose that the signal distribution has full support, and that

(SFR) and (Weak-CI) hold. Suppose also that there isp∈4R such thatNω,p
i >

nω,p
i for all i and ω. Then

⋃
p∈4R×i∈I ×ω∈Ω [nω,p

i ,Nω,p
i ] is in the limit set of

sequential equilibrium payoffs asδ → 1.

The proof of this proposition is parallel to that of Proposition 3. Recall that the

proof of Proposition 3 consists of two steps; we first develop the linear program-

ming technique to compute the limit set of BFXE payoffs for general environ-

ments, and then apply it to games that satisfy the identifiability conditions. Here

we follow a similar two-step procedure to prove Proposition 4: We first character-

ize the limit set of review-strategy equilibrium payoffs for general environments
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by extending the linear programming technique in Appendix D, and then apply it

to games that satisfy the informational conditions. See Appendix E for details.

Remark 5. In Proposition 4, we assume the signal distribution to be weakly con-

ditionally independent. The result here is robust to a perturbation of the signal dis-

tribution; that is, any interior point of
⋃

p∈4R×i∈I ×ω∈Ω [nω ,p
i ,Nω,p

i ] is achieved

by a sequential equilibrium if the discount factor is sufficiently close to one and if

the signal distribution is sufficiently close to a weakly-conditionally-independent

distribution. See Yamamoto (2012) for more details.

6.2 Secret Price-Cutting

Now we apply Proposition 4 to the secret price-cutting game in Section 3.1, and

show that firms can maintain a self-enforcing cartel agreement even if they do

now know how profitable the market is. To make our analysis simple, suppose

that there are only two possible states andAi = {C,D}; i.e., in every period, firm

i chooses either the high priceC or the low priceD.

We assume thatui andπ are such that (SFR) and (Weak-CI) hold,16 and such

that the stage game is the prisoner’s dilemma for both states; i.e.,(C,C) is efficient

but D dominatesC at each state. Then Proposition 4 applies so that for each

p∈4R, the set×i∈I×ω∈Ω [nω,p
i ,Nω,p

i ] is in the limit set of sequential equilibrium

payoffs asδ → 1. In particular forp such thatp(A) = 1, we haveNω ,p
i = gω

i (C,C)
andnω ,p

i = gω
i (D,D) for eachi andω. Therefore the efficient payoffg(C,C) can

be approximated by a sequential equilibrium.

Also, in this example, we can explicitly construct asymptotically efficient

equilibria. The equilibrium construction here is an extension of the BFXE in

Section 3.2. Specifically, the infinite horizon is regarded as a sequence of review

phases withT periods, and in each review phase, playeri is either in “reward

state”x(1) or “punishment state”x(2). When playeri is in the reward statex(1),
she chooses the high priceC for T periods to reward the opponent. On the other

hand, when she is in the punishment statex(2), she chooses the low priceD for

T periods to punish the opponent. At the end of each review phase, playeri tran-

sits overx(1) and x(2), where the transition probability depends on the recent

16Matsushima (2004) gives a condition under which the signal distribution of a secret price-
cutting game is weakly conditionally independent.
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T-period history.

As in Section 3.2, letv2(k) = (vω1
2 (k),vω2

2 (k)) denote the target payoff of

player 2 when player1’s current state isx(k). Set vω
2 (1) = gω

2 (C,C)− ε and

vω
2 (2) = gω

2 (D,D)+ ε for eachω whereε is a small positive number; that is, we

let the target payoff at the reward state be close to the payoff by(C,C), and the

target payoff at the punishment state be close to the payoff by(D,D).
The key of our equilibrium construction is to choose playeri’s transition rule

carefully so that player−i is indifferent between being inx(1) and in x(2) in

the initial period of a review phase, regardless of the state of the worldω. For

example, suppose that player1 is in the reward statex(1) and will chooseC for

the nextT periods. Sincegω
2 (C,D) > gω

2 (C,C) > vω
2 (1) for eachω, player2’s

average payoff for the nextT periods will be greater than the target payoffvω
2 (1)

regardless of the true stateω and of what player2 will do. To offset this extra

profit, player1 will switch to the punishment statex(2) after theT-period play

with positive probability. Specifically, at the end of the review phase with length

T, player1 performs statistical tests about the true stateω and about player2’s

play using the information pooled within theT periods, and then determines the

transition probability. This transition rule is an extension of that in Section 3.2;

recall that in the automaton constructed in Section 3.2, the transition probability

β depends both on an observed actiona2 and on a private signalz1 which is

sufficiently informative aboutω in the sense that the likelihood ratio condition

(1) is satisfied. Here in the secret price-cutting model, actions are not directly

observable and the likelihood ratio condition may not be satisfied; instead, player

1 aggregates information duringT periods to perform statistical tests abouta2 and

ω. This allows player1 to obtain (almost) precise information abouta2 andω,

so that as in Section 3.2, we can find transition probabilities which make player2

indifferent between being atx(1) andx(2). Also, we can show that when player1

uses some sophisticated statistical tests, it is suboptimal for player2 to mixC and

D in aT-period play, which means that player2 is willing to follow the prescribed

strategy. The construction of the statistical tests is similar to that in Section 3.2.3

of Yamamoto (2012), and hence omitted.17

17More specifically, the construction of the statistical test here is very similar to that for the case
where the stateω is known and the opponent has four possible actions, because in this example,
player i needs to identify a pair(ω,a−i) of the state of the world and the opponent’s action and
there are four possible pairs(ω,a−i).
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The same argument applies to the case where player1’s current state isx(2);
we can show that there is a transition rule afterx(2) such that player2 is indifferent

being atx(1) andx(2) and is not willing to mixC andD in a T-period play for

each stateω , and such that the target payoffv2(2) is exactly achieved.

We can define player2’s strategy in the same way, and it is easy to see that

the pair of these strategies constitute an equilibrium. In particular, when the initial

state isx(1) for both players, the equilibrium payoff isvi(1) for each playeri.

Sinceε can be arbitrarily small, the equilibrium payoff is almost efficient.

7 Concluding Remarks

In this paper, we study repeated games with private monitoring where players’

payoffs and/or signal distributions are unknown. We look at a tractable subset of

Nash equilibria, called BFXE, and show that if the individual and statewise full-

rank conditions hold, then the limit equilibrium payoff set is isomorphic to the

set of maps from states to belief-free equilibrium payoffs for the corresponding

known-state game. That is, there are BFXE in which the payoffs are approxi-

mately the same as if players commonly learned the true state and played a belief-

free equilibrium for that state. Also, we describe equilibrium strategies in some

examples, which illustrates how players learn the state and use that information in

ex-post equilibria.

As mentioned, BFXE is only a subset of sequential equilibria, and a larger

payoff set can be attained using “belief-based” equilibria. Unfortunately, belief-

based equilibria do not have a recursive structure, and hence the the study of these

equilibria would require different techniques. Whether the folk theorem obtains

by considering belief-based equilibria is an interesting future research.18

18Throughout this paper, we have assumed that players cannot communicate with each other;
so an interesting question is whether a larger payoff set can be attained when we allow players
to communicate. For known-state games, Kandori and Matsushima (1998) (as well as Compte
(1998)) show that the folk theorem obtains under private monitoring if players can communicate.
By combining their proof techniques with the ex-post equilibrium approach of Fudenberg and Ya-
mamoto (2010), we can show that their result extend to the case of unknown monitoring structure;
i.e., the folk theorem obtains under mild informational conditions even if the state of the world is
unknown. Detailed manuscripts are available upon request.
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Appendix A: Equilibrium Strategies in Public Goods Provision

In this appendix, we complete the equilibrium construction in the public goods

game in Section 3.2. Our goal is to chooseβ andγ such that player2’s target

payoffv2(k) is exactly achieved at bothx(1) andx(2).
With an abuse of notation, we writeπω

1 (zω̃
1 |a) for πω

1 (zω̃
1 (a)|a); that is,πω

1 (zω̃
1 |a)

means the probability that player1 observeszω̃
1 (a) given (ω,a). Recall that

β (C,z1) = 0 for all z1. We set

β (D,z1) =





1−δ
δ

· 1+2πω2
1 (zω2|C,D)−3πω1

1 (zω2|C,D)
2πω2

1 (zω2|C,D)−2πω1
1 (zω2|C,D)

if z1 = zω2
1 (C,D)

1−δ
δ

· 2πω2
1 (zω2|C,D)−3πω1

1 (zω2|C,D)
2πω2

1 (zω2|C,D)−2πω1
1 (zω2|C,D)

otherwise

,

γ(C,z1) =





1−δ
δ

· 1+2πω1
1 (zω1|D,C)−3πω2

1 (zω1|D,C)
πω1

1 (zω1|D,C)−πω2
1 (zω1|D,C)

if z1 = zω1
1 (D,C)

1−δ
δ

· 2πω1
1 (zω1|D,C)−3πω2

1 (zω1|D,C)
πω1

1 (zω1|D,C)−πω2
1 (zω1|D,C)

otherwise

,

γ(D,z1) =





1−δ
δ

· 3+4πω2
1 (zω2|D,D)−7πω1

1 (zω2|D,D)
2πω2

1 (zω2)|D,D)−2πω1
1 (zω2|D,D)

if z1 = zω2
1 (D,D)

1−δ
δ

· 4πω2
1 (zω2|D,D)−7πω1

1 (zω2|D,D)
2πω2

1 (zω2|D,D)−2πω1
1 (zω2|D,D)

otherwise

.

Note thatβ andγ are in the interval(0,1) whenδ is large enough. Also we can

check that for eachω the following equalities are satisfied:

vω
2 (1) = (1−δ )gω

2 (C,C)+δ ∑
z1

πω
2 (z1|C,C)[β (C,z1)vω

2 (2)+(1−β (C,z1))vω
2 (1)],

vω
2 (1) = (1−δ )gω

2 (C,D)+δ ∑
z1

πω
2 (z1|C,D)[β (D,z1)vω

2 (2)+(1−β (D,z1))vω
2 (1)],

vω
2 (2) = (1−δ )gω

2 (D,C)+δ ∑
z1

πω
2 (z1|D,C)[γ(C,z1)vω

2 (1)+(1− γ(C,z1))vω
2 (2)],

vω
2 (2) = (1−δ )gω

2 (D,D)+δ ∑
z1

πω
2 (z1|D,D)[γ(D,z1)vω

2 (1)+(1− γ(D,z1))vω
2 (2)].

The first equality shows that when player1 begins her play with statex(1) and

when player2 choosesC today, then the target payoffvω
2 (1) is achieved at bothω.
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The second equality shows that the same target payoffvω
2 (1) is still achieved even

when player2 choosesD rather thanC. Combining these two, we can conclude

that player2 is indifferent betweenC andD if player 1 is in statex(1). The next

two equalities show that the same is true when player1 is in statex(2), that is, if

player1’s current state isx(2), player2 is indifferent betweenC andD and the

target payoffvω
2 (2) is exactly achieved at bothω . So β and γ specified above

satisfy all the desired conditions.

Appendix B: Failure of Common Learning

In this appendix, we present an example where players do not achieve approxi-

mate common knowledge but players adjust their actions according to their own

individual learning and obtain high payoffs state by state. The example here is

a simple extension of that in Section 4 of Cripps, Ely, Mailath, and Samuelson

(2008).

The following notation is useful. LetZi be the set of all non-negative integers,

i.e., Zi = {0,1,2, · · ·}. Let Z = ×i ∈ IZi . In the example of Cripps, Ely, Mailath,

and Samuelson (2008), each playeri observes a noisy signalzi ∈ Zi about the true

stateθ ∈ {θ ′,θ ′′} in every period. Letπ̂1 ∈ 4Z denote the joint distribution of

z= (z1,z2) at stateθ ′, and letπ̂2 ∈ 4Z denote the distribution at stateθ ′′, (For

example, the probability of the signal profilez = (0,0) is θ ′ given π̂1, andθ ′′

givenπ̂2.)

In this appendix, we consider the following example. There are two players

and two possible states, so thatΩ = {ω1,ω2}. Players have a common initial

prior over states,12-1
2. Each player has two possible actions;A1 = {U,D} and

A2 = {L,R}. Actions are observable, and in addition each playeri observes a

noisy signalzi ∈ Zi about the true state in every period. The joint distribution of

z= (z1,z2) is dependent only on the true state (i.e., it does not depend on actions

played), and assume that the joint distribution ofz is exactly the same as the

example of Cripps, Ely, Mailath, and Samuelson (2008); i.e., the joint distribution

is equal toπ̂1 at stateω1 and toπ̂2 at stateω2.19 The expected payoffs for state

19In this setup, playeri’s signal space isΣ = A×Zi , which is not a finite set. But it is straightfor-

ward to see that the results in Section 5 extend to the case of infinitely many signals, by considering

a finite partition ofZi . See Ishii (2009). Also, a version of (SFR) is satisfied in this example.

45



ω1 is shown in the left panel, and those for stateω2 is in the right.

L R

U 1, 1 0, 1

D 1, 0 0, 0

L R

U 0, 0 1, 0

D 0, 1 1, 1

In this stage game, player1’s action influences player2’s payoff only. Specifically,

the actionU is efficient (i.e., gives high payoffs to player2) at stateω1, while the

actionD is efficient at stateω2. Likewise, player2’s action influences player1’s

payoff only; the efficient action isL at stateω1 and isR at stateω2. Note that

players are indifferent between two actions given any state, thus all action profiles

are ex-post equilibria of the one-shot game.

Given a natural numberT, let s(T) be the following strategy profile of the

infinitely repeated game:

• Players mix two actions with12-1
2 in periodt for eacht = 1, · · · ,T.

• Let qi(hT
i |s(T))∈4Ω be playeri’s belief about the state at the end of period

T. From periodT +1 on, player1 choosesU forever if q1(hT
1 |s(T))[ω1]≥

1
2, and choosesD forever otherwise. Likewise, player2 choosesL forever if

q2(hT
2 |s(T))[ω1]≥ 1

2, and choosesR forever otherwise.

In words, players try to learn the true state in the firstT periods (“the learning

phase”), and then adjust their continuation play to achieve high payoffs state by

state. This strategy profiles(T) is a stationary BFXE given anyT, since actions

do not influence the distribution ofz and all action profiles are ex-post equilibria

of the one-shot game.

In this example, the limit equilibrium payoff (asδ → 1) approximates the

efficient payoff vector((1,1),(1,1)) for T sufficiently large, since each player can

obtain arbitrarily precise information about the state during the learning phase. On

the other hand, the stateω2 cannot be (approximate) common knowledge during

the learning phase, even if we takeT sufficiently large. Indeed, as Section 4 of

Cripps, Ely, Mailath, and Samuelson (2008) shows, there isp > 0 such that given

any T sufficiently large, the stateω2 can never be commonp-belief at dateT

conditional on the strategy profiles(T).
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Appendix C: Computing Mω ,p
i and mω,p

i

In this appendix, we provide a formula to computeMω ,p
i and mω,p

i , the maxi-

mum and minimum of belief-free equilibrium payoffs in the limit asδ → 1. (4)

and (5) of EHO show how to compute the maximum and minimum of belief-free

equilibrium payoffs. In our notation,

Mω,p
i = sup

~α−i

Mω,p
i (~α−i),

mω,p
i = inf

~α−i

mω,p
i (~α−i)

where

Mω,p
i (~α−i) = max

vω
i ∈�

xω
i :R×A−i×Σ−i→�

vω
i subject to

(i) vω
i = ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
gω

i (aR
i ,a−i)

+πω
−i(a

R
i ,a−i) ·xω

i (R,a−i)

]

for all (aR
i )R∈R s.t. aR

i ∈ Ri for eachR∈R,

(ii) vω
i ≥ ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
gω

i (aR
i ,a−i)

+πω
−i(a

R
i ,a−i) ·xω

i (R,a−i)

]

for all (aR
i )R∈R s.t. aR

i ∈ Ai for eachR∈R,

(iii) xω
i (R,a−i ,σ−i)≤ 0, for all R∈R, a−i ∈ A−i , andσ−i ∈ Σ−i .

and

mω,p
i (~α−i) = min

vω
i ∈�

xω
i :R×A−i×Σ−i→�

vω
i subject to

(i) vω
i = ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
gω

i (aR
i ,a−i)

+πω
−i(a

R
i ,a−i) ·xω

i (R,a−i)

]

for all (aR
i )R∈R s.t. aR

i ∈ Ri for eachR∈R,

(ii) vω
i ≥ ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
gω

i (aR
i ,a−i)

+πω
−i(a

R
i ,a−i) ·xω

i (R,a−i)

]

for all (aR
i )R∈R s.t. aR

i ∈ Ai for eachR∈R,

(iii) xω
i (R,a−i ,σ−i)≥ 0, for all R∈R, a−i ∈ A−i , andσ−i ∈ Σ−i .
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Appendix D: Characterizing the Set of BFXE Payoffs

In this appendix, we prove Proposition 3. Appendix D.1 provides a preliminary

result, that is, we consider general environments (i.e., we do not assume (IFR)

or (SFR)) and develop an algorithm to compute the set of BFXE payoffs in the

limit as δ → 1. This is an extension of the linear programming techniques of

Fudenberg and Levine (1994), EHO, and Fudenberg and Yamamoto (2010). Then

in Appendix D.2, we apply the algorithm to games that satisfy (IFR) and (SFR) to

prove Proposition 3.

D.1 Linear Programming Problems and BFXE

D.1.1 Individual Ex-Post Generation

To begin, we give a recursive characterization of the set of stationary BFXE pay-

offs for general discount factorδ . This is a generalization of the self-generation

theorems of Abreu, Pearce, and Stacchetti (1990) and EHO.

By definition, any continuation strategy of a stationary BFXE is also a sta-

tionary BFXE. Thus a stationary BFXE specifies BFXE continuation play af-

ter any one-period history(y,a,σ). Let w(y,a,σ) = (wω
i (y,a,σ))(i,ω)∈I×Ω de-

note the continuation payoffs corresponding to one-period history(R,a,σ). Note

that playeri’s continuation payoffwω
i (y,a,σ) at stateω does not depend on

(ai ,σi), since the continuation play is an equilibrium given any(ai ,σi); thus

we write wω
i (y,a−i ,σ−i) for player i’s continuation payoff. Letwω

i (y,a−i) =
(wω

i (y,a−i ,σ−i))σ−i∈Σ−i , and we writeπω
−i(a) ·wω

i (y,a−i) for player i’s expected

continuation payoff at stateω given a public signaly and an action profilea. (Re-

call thatπω
−i(a) is the marginal distribution of player−i’s private signals at state

ω.) Also, letwi(y,a−i ,σ−i) = (wω
i (y,a−i ,σ−i))ω∈Ω.

For a payoff vectorvi ∈�|Ω| to be a BFXE payoff, it is necessary thatvi is an

average of today’s payoff and the (expected) continuation payoff, and that playeri

is willing to choose actions recommended by a public signaly in period one. This

motivates the following definition:

Definition 6. For δ ∈ (0,1), Wi ⊆ �|Ω|, and p ∈ 4R, player i’s payoff vector

vi = (vω
i )ω∈Ω ∈�|Ω| is individually ex-post generated with respect to(δ ,Wi , p) if

48



there is player−i’s action plan~α−i ∈ ~A−i and a functionwi : R×A−i×Σ−i →Wi

such that

vω
i = ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
(1−δ )gω

i (aR
i ,a−i)

+δπω
−i(a

R
i ,a−i) ·wω

i (R,a−i)

]
(5)

for all ω ∈Ω and(aR
i )R∈R satisfyingaR

i ∈ Ri for eachR∈R, and

vω
i ≥ ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
(1−δ )gω

i (aR
i ,a−i)

+δπω
−i(a

R
i ,a−i) ·wω

i (R,a−i)

]
(6)

for all ω ∈Ω and(aR
i )R∈R satisfyingaR

i ∈ Ai for eachR∈R.

The first constraint is “adding-up” condition, meaning that for each stateω,

the target payoffvω
i is exactly achieved if playeri chooses an action from the

recommended setRi ⊆Ai contingently on a public signalR. The second constraint

is ex-post incentive compatibility, which implies that playeri has no incentive to

deviate from such recommended actions.

For eachδ ∈ (0,1), i ∈ I , Wi ⊆ �|Ω|, andp ∈ 4R, let Bp
i (δ ,Wi) denote the

set of all playeri’s payoff vectorsvi ∈ �|Ω| individually ex-post generated with

respect to(δ ,Wi , p).

Definition 7. A subsetWi of �|Ω| is individually ex-post self-generating with re-

spect to(δ , p) if Wi ⊆ Bp
i (δ ,Wi).

The following two propositions provide a recursive characterization of the set

of stationary BFXE payoffs for any discount factorδ ∈ (0,1). Proposition 5,

which is a counterpart to the second half of Proposition 2 of EHO, asserts that

the equilibrium payoff set is a fixed point of the operatorBp
i . Proposition 6 is a

counterpart to the first half of Proposition 2 of EHO, and shows that any bounded

and individually ex-post self-generating set is a subset of the equilibrium payoff

set. Taken together, it turns out that the set of BFXE payoffs is the largest set of

individually ex-post self-generating set. The proofs of the propositions are similar

to Abreu, Pearce, and Stacchetti (1990) and EHO, and hence omitted.

Proposition 5. For everyδ ∈ (0,1) and p∈4R, Ep(δ ) =×i∈IB
p
i (δ ,Ep

i (δ )).

Proposition 6. For eachi ∈ I , let Wi be a subset of�|Ω| that is bounded and

individually ex-post self-generating with respect to(δ , p). Then×i∈IWi ⊆ Ep(δ ).
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D.1.2 Linear Programming Problem and Bound ofEp(δ )

Here we provide a bound on the set of BFXE payoffs, by considering a linear

programming (LP) problem for each directionλi where each componentλi of the

vectorλi corresponds to the weight attached to playeri’s payoff at stateω. In

particular, trade-offs between equilibrium payoffs at different states are character-

ized by solving LP problems for “cross-state” directionsλi that have two or more

non-zero components (i.e., directionsλi that put non-zero weights to two or more

states).

Let Λi be the set of allλi = (λ ω
i )ω∈Ω ∈�|Ω| such that|λi |= 1. For eachR∈R,

i ∈ I , δ ∈ (0,1), ~α−i ∈ ~A−i , andλi ∈ Λi , consider the following LP problem.

kp
i (~α−i ,λi ,δ ) = max

vi∈�|Ω|
wi :R×A−i×Σ−i→�|Ω|

λi ·vi subject to

(i) (5) holds for allω ∈Ω and(aR
i )R∈R s.t. aR

i ∈ Ri for eachR∈R,

(ii) (6) holds for allω ∈Ω and(aR
i )R∈R s.t. aR

i ∈ Ai for eachR∈R,

(iii) λi ·vi ≥ λi ·wi(R,a−i ,σ−i) for all R∈R, a−i ∈ A−i , andσ−i ∈ Σ−i .

If there is no(vi ,wi) satisfying the constraints, letkp
i (~α−i ,λi ,δ ) = −∞. If for

everyk > 0 there is(vi ,wi) satisfying all the constraints andλi · vi > k, then let

kp
i (~α−i ,λi ,δ ) = ∞. With an abuse of notation, whenp is a unit vector such that

p(R) = 1 for some regimeR, we denote the maximal score bykR
i (~α−i ,λi).

As we have explained in the previous section, (i) is the “adding-up” constraint,

and (ii) is ex-post incentive compatibility. Constraint (iii) requires that the contin-

uation payoffs lie in the half-space corresponding to directionλi and payoff vector

vi . Thus the solutionkp
i (~α−i ,λi ,δ ) to this problem is the maximal score toward

directionλi that is individually ex-post generated by the half-space corresponding

to directionλi and payoff vectorvi .

Note that constraint (iii) allows “utility transfer across states.” To see how this

constraint works, recall that player−i obtains (possibly noisy) information about

the true state from her private signalσ−i . Let λi be such thatλ ω
i > 0 for all ω to

make our exposition as simple as possible. Constraint (iii) makes the following

scheme feasible:

• If player−i observes a signalσ−i which indicates that the true state is likely

to beω, then she chooses a continuation strategy (i.e., choose a continuation

50



payoff vectorwi(R,a−i ,σ−i)) that yields higher payoffs to playeri at state

ω but lower payoffs at statẽω.

• If player−i observes a signal̃σ−i which indicates that the true state is likely

to beω̃, then she chooses a continuation strategy that yields higher payoffs

to playeri at stateω̃ but lower payoffs at stateω.

In this scheme, player−i adjusts her continuation play contingently on her state

learning, so that high expected continuation payoffs are obtained at both states.

This shows that under constraint (iii), state learning can help improving players’

overall payoffs. Note that this issue does not appear in EHO, as they study known-

state games.

For eachω ∈Ω, R∈R, a−i , andσ−i ∈ Σ−i , let

xω
i (R,a−i ,σ−i) =

δ
1−δ

(wω
i (R,a−i ,σ−i)−vω

i ).

Also, in order to simplify our notation, letxω
i (R,a−i) = (xω

i (R,a−i ,σ−i))σ−i∈Σ−i

and letxi(R,a−i ,σ−i) = (xω
i (R,a−i ,σ−i))ω∈Ω. Arranging constraints (i) through

(iii), we can transform the above problem to:

(LP-Individual) max
vi∈�|Ω|

xi :R×A−i×Σ−i→�|Ω|

λi ·vi subject to

(i) vω
i = ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
gω

i (aR
i ,a−i)

+πω
−i(a

R
i ,a−i) ·xω

i (R,a−i)

]

for all ω ∈Ω and(aR
i )R∈R s.t. aR

i ∈ Ri for eachR∈R,

(ii) vω
i ≥ ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
gω

i (aR
i ,a−i)

+πω
−i(a

R
i ,a−i) ·xω

i (R,a−i)

]

for all ω ∈Ω and(aR
i )R∈R s.t. aR

i ∈ Ai for eachR∈R,

(iii) λi ·xi(R,a−i ,σ−i)≤ 0, for all R∈R, a−i ∈ A−i andσ−i ∈ Σ−i .

Sinceδ does not appear in constraints (i) through (iii) of (LP-Individual), the

scorekp
i (~α−i ,λi ,δ ) is independent ofδ . Thus we will denote it bykp

i (~α−i ,λi).
Note also that, as in EHO, only the marginal distributionπ−i matters in (LP-

Individual); that is, the scorekp
i (~α−i ,λi) depends on the signal distributionπ only

through the marginal distributionπ−i .
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Now let

kp
i (λi) = sup

~α−i∈~A−i

kp
i (~α−i ,λ )

be the highest score that can be approximated in directionλi by any choice of

~α−i . For eachλi ∈ Λi andki ∈ �, let Hi(λi ,ki) = {vi ∈ �|Ω||λi · vi ≤ ki}. Let

Hi(λi ,ki) =�|Ω| for ki = ∞, andHi(λi ,ki) = /0 for ki =−∞. Then let

H p
i (λi) = Hi(λi ,k

p
i (λi))

be the maximal half-space in directionλi , and let

Qp
i =

⋂

λi∈Λi

H p
i (λi)

be the intersection of half-spaces over allλi . Let

Qp =×i∈IQ
p
i .

Lemma 1.

(a) kp
i (~α−i ,λi) = ∑R∈R p(R)kR

i (~α−i ,λi).

(b) kp
i (λi) = ∑R∈R p(R)kR

i (λi).

(c) Qp
i is bounded.

Proof. Inspecting the set of the constraints in the transformed problem, we can

check that solving this LP problem is equivalent to finding the continuation pay-

offs (wω
i (R,a−i ,σ−i))(ω ,a−i ,σ−i) for each regimeR in isolation. This proves part

(a).

Note that the maximal scorekR
i (~α−i ,λi) is dependent on an action plan~α−i

only throughαR
−i , and the remaining componentsα R̃

−i for R̃, R are irrelevant.

Therefore, we have

sup
~α−i∈~A−i

∑
R∈R

p(R)kR
i (~α−i ,λi) = ∑

R∈R

p(R) sup
~α−i∈~A−i

kR
i (~α−i ,λi)
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for any p∈4R. Using this and part (a), we obtain

kp
i (λi) = sup

~α−i∈~A−i

kp
i (~α−i ,λi)

= sup
~α−i∈~A−i

∑
R∈R

p(R)kR
i (~α−i ,λi)

= ∑
R∈R

p(R) sup
~α−i∈~A−i

kR
i (~α−i ,λi)

= ∑
R∈R

p(R)kR
i (λi)

so that part (b) follows.

To prove part (c), considerλi ∈ Λi such thatλ ω
i , 0 for someω ∈ Ω and

λ ω̃
i = 0 for all ω̃ , ω. Then from constraint (i) of (LP-Individual),

λi ·vi = λ ω
i vω

i = λ ω
i ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
gω

i (aR
i ,a−i)

+πω
−i(a

R
i ,a−i) ·xω

i (R,a−i)

]

for all (aR
i )R∈R such thataR

i ∈ Ri for eachR∈ R. Since constraint (iii) of (LP-

Individual) implies thatλ ω
i πω

−i(a) · xω
i (R,a−i) ≤ 0 for all a ∈ A and R∈ R, it

follows that

λi ·vi ≤max
a∈A

λ ω
i gω

i (a).

Thus the maximal score for thisλi is bounded. LetΛ∗i be the set ofλi ∈ Λi such

thatλ ω
i , 0 for someω ∈Ω andλ ω̃

i = 0 for all ω̃ ,ω. Then the set
⋂

λi∈Λ∗i H p
i (λi)

is bounded. This proves part (c), sinceQp
i ⊆

⋂
λi∈Λ∗i H p

i (λi). Q.E.D.

Parts (a) and (b) of the above lemma show that the LP problem reduces to

computing the maximal score for each regimeR in isolation. The next lemma

establishes that the set of BFXE payoffs with respect top is included in the set

Qp.

Lemma 2. For everyδ ∈ (0,1), p ∈ 4R, and i ∈ I , Ep
i (δ ) ⊆ coEp

i (δ ) ⊆ Qp
i .

Consequently,Ep
i (δ )⊆ coEp

i (δ )⊆Qp
i .

The proof is analogous to Theorem 3.1 (i) of Fudenberg and Levine (1994);

we provide the formal proof in Appendix D.1.4 for completeness.
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D.1.3 ComputingE(δ ) with Patient Players

In Appendix D.1.2, it is shown that the equilibrium payoff setEp(δ ) is bounded

by the setQp. Now we prove that this bound is tight when players are patient.

As argued by Fudenberg, Levine, and Maskin (1994), whenδ is close to one, a

small variation of the continuation payoffs is sufficient for incentive provision,

so that we can focus on the continuation payoffsw near the target payoff vector

v. Based on this observation, we obtain the following lemma, which asserts that

“local generation” is sufficient for self-generation with patient players.

Definition 8. A subsetWi of �|Ω| is locally ex-post generating with respect to

p ∈ 4R if for eachvi ∈Wi , there is a discount factorδvi ∈ (0,1) and an open

neighborhoodUvi of vi such thatWi ∩Uvi ⊆ Bp
i (δvi ,Wi).

Lemma 3. For eachi ∈ I , letWi be a subset of�|Ω| that is compact, convex, and

locally ex-post generating with respect top∈4R. Then there isδ ∈ (0,1) such

that×i∈IWi ⊆ Ep(δ ) for all δ ∈ (δ ,1).

Proof. This is a generalization of Lemma 4.2 of Fudenberg, Levine, and Maskin

(1994). Q.E.D.

The next lemma shows that the setQp is included in the limit set of stationary

BFXE payoffs with respect top.

Definition 9. A subsetWi of �|Ω| is smoothif it is closed and convex; it has a

nonempty interior; and there is a unique unit normal for each point on its bound-

ary.20

Lemma 4. For eachi ∈ I , let Wi be a smooth subset of the interior ofQp
i . Then

there isδ ∈ (0,1) such that forδ ∈ (δ ,1),×i∈IWi ⊆ Ep(δ ).

The proof is similar to Theorem 3.1 (ii) of Fudenberg and Levine (1994), and

again we give the formal proof in Appendix D.1.4 for completeness. To prove

the lemma, we show that a smooth subsetWi is locally ex-post generating; then

Lemma 3 applies and we can conclude thatWi is in the equilibrium payoff set

when players are patient.

20A sufficient condition for each boundary point ofWi to have a unique unit normal is that the
boundary ofWi is aC2-submanifold of�|Ω|.
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Combining Lemmas 2 and 4, we obtain the next proposition, which asserts

that the limit set of stationary BFXE payoffs with respect top is equal to the set

Qp.

Proposition 7. If dimQp
i = |Ω| for eachi ∈ I , thenlimδ→1Ep(δ ) = Qp.

Now we characterize the limit set of all stationary BFXE payoffs,E(δ ) =⋃
p∈4R Ep(δ ). This is a counterpart of Proposition 4 of EHO.

Proposition 8. Suppose that there isp ∈ 4R such thatdimQp
i = |Ω| for each

i ∈ I . Thenlimδ→1E(δ ) =
⋃

p∈4R Qp.

Proof. From Proposition 7, it follows thatlimδ→1E(δ ) =
⋃

p∈4R Qp if dimQp
i =

|Ω| for all i ∈ I and p ∈ 4R. Here we prove that the same conclusion holds if

there isp∈4R such thatdimQp
i = |Ω| for eachi ∈ I .

Let vi be an interior point of
⋃

p∈4R Qp. It suffices to show that there isp∈
4R such thatvi is an interior point ofQp. Let p̂∈4R be such thatdimQp̂

i = |Ω|
for eachi ∈ I , and v̂i be an interior point ofQp̂. Sincevi is in the interior of⋃

p∈4R Qp, there arẽvi andκ ∈ (0,1) such that̃vi is in the interior of
⋃

p∈4R Qp

andκ v̂i +(1−κ)ṽi = vi . Let p̃∈ 4R be such that̃vi ∈ Qp̃, and letp∈ 4R be

such thatp = κ p̂+(1−κ)p̃.

We claim thatvi is an interior point ofQp. From Lemma 1(b),

kp
i (λi) = ∑

R∈R

p(R)kR
i (λi)

=κ ∑
R∈R

p̂(R)kR
i (λi)+(1−κ) ∑

R∈R

p̃(R)kR
i (λi)

=κkp̂
i (λi)+(1−κ)kp̃

i (λi)

for all λi . Sincev̂i is in the interior ofQp̂, we havekp̂
i (λi) > λi · v̂i for all λi .

Likewise, sincẽvi ∈Qp̃, kp̃
i (λi)≥ λi · ṽi for all λi . Substituting these inequalities,

kp
i (λi) > κλi · v̂i +(1−κ)λi · ṽi = λi ·vi

for all λi . This shows thatvi is an interior point ofQp. Q.E.D.
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D.1.4 Proofs of Lemmas 2 and 4

Lemma 2. For everyδ ∈ (0,1), p ∈ 4R, and i ∈ I , Ep
i (δ ) ⊆ coEp

i (δ ) ⊆ Qp
i .

Consequently,Ep
i (δ )⊆ coEp

i (δ )⊆Qp
i .

Proof. It is obvious thatEp
i (δ )⊆ coEp

i (δ ). Suppose coEp
i (δ ) * Qp

i . Then, since

the score is a linear function, there arevi ∈ Ep
i (δ ) andλi such thatλi ·vi > kp

i (λi).
In particular, sinceEp

i (δ ) is compact, there arev∗i ∈ Ep
i (δ ) andλi such thatλi ·

v∗i > kp
i (λi) andλi ·v∗i ≥ λi · ṽi for all ṽi ∈ coEp

i (δ ). By definition,v∗i is individually

ex-post generated bywi such thatwi(R,a−i ,σ−i) ∈ Ep
i (δ )⊆ coEp

i (δ )⊆H(λi ,λi ·
v∗i ) for all σ−i ∈ Σ−i . But this implies thatkp

i (λi) is not the maximum score for

directionλi , a contradiction. Q.E.D.

Lemma 4. For eachi ∈ I , let Wi be a smooth subset of the interior ofQp
i . Then

there isδ ∈ (0,1) such that forδ ∈ (δ ,1),×i∈IWi ⊆ Ep(δ ).

Proof. From lemma 1(c),Qp
i is bounded, and henceWi is also bounded. Then,

from Lemma 3, it suffices to show thatWi is locally ex-post generating, i.e., for

eachvi ∈Wi , there areδv ∈ (0,1) and an open neighborhoodUvi of vi such that

W∩Uvi ⊆ B(δvi ,W).
First, considervi on the boundary ofWi . Let λ be normal toWi at vi , and let

ki = λi ·vi . SinceWi ⊂Qi ⊆H p
i (λi), there are~α−i , ṽi , andw̃i such thatλi · ṽi > λi ·

vi = ki , ṽi is individually ex-post generated using~α−i andw̃i for someδ̃ ∈ (0,1),
andw̃i(R,a−i ,σ−i) ∈ Hi(λi ,λi · ṽi) for all R∈R, a−i ∈ A−i , andσ−i ∈ Σ−i . For

eachδ ∈ (δ̃ ,1), let

wi(R,a−i ,σ−i) =
δ − δ̃

δ (1− δ̃ )
vi +

δ̃ (1−δ )
δ (1− δ̃ )

(
w̃i(R,a−i ,σ−i)− vi− ṽi

δ̃

)
.

By construction,vi is individually ex-post generated using~α−i andwi for δ , and

there isκ > 0 such that|wi(R,a−i ,σ−i)−vi |< κ(1−δ ). Also, sinceλi · ṽi > λi ·
vi = ki andw̃i(R,a−i ,σ−i) ∈Hi(λi ,λi · ṽi) for all R∈R, a−i ∈ A−i , andσ−i ∈ Σ−i ,

there isε > 0 such thatw̃i(R,a−i ,σ−i)− vi−ṽi

δ̃
is in Hi(λi ,ki − ε) for all R∈ R,

a−i ∈ A−i , and σ−i ∈ Σ−i . Then, wi(R,a−i ,σ−i) ∈ Hi(λi ,ki − δ̃ (1−δ )
δ (1−δ̃ )

ε) for all

R∈ R, a−i ∈ A−i and σ−i ∈ Σ−i , and as in the proof of Theorem 3.1 of FL,

it follows from the smoothness ofWi that wi(R,a−i ,σ−i) ∈ intWi for sufficiently

largeδ , i.e., vi is individually ex-post generated with respect to intWi using~α−i .

To enforceui in the neighborhood ofvi , use this~α−i and a translate ofwi .
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Next, considervi in the interior ofWi . Chooseλi arbitrarily, and let~α−i and

wi be as in the above argument. By construction,vi is individually ex-post gen-

erated by~α−i andwi . Also, wi(R,a−i ,σ−i) ∈ intWi for sufficiently largeδ , since

|wi(R,a−i ,σ−i)−vi |< κ(1−δ ) for someκ > 0andvi ∈ intWi . Thus,vi is enforced

with respect to intWi whenδ is close to one. To enforceui in the neighborhood of

vi , use this~α−i and a translate ofwi , as before. Q.E.D.

D.2 Proof of Proposition 3

Proposition 3. If (IFR) hold, thenlimδ→1Ep(δ ) = ×ω∈Ω×i∈I [mω ,p
i ,Mω,p

i ] for

eachp ∈ 4R such that (i)Mω,p
i > mω,p

i for all i and ω and (ii) for eachi and

(ω,ω ′), there is~α−i that has statewise full rank for(ω,ω ′) at some regimeRwith

p(R) > 0. Hence, if (IFR) and (SFR) hold and if there isp∈4R such thatMω,p
i >

mω ,p
i for all i andω, thenlimδ→1E(δ ) =

⋃
p∈4R×ω∈Ω×i∈I [mω,p

i ,Mω ,p
i ].

Proposition 7 in Appendix D.1.3 shows that the limit equilibrium payoff set

is characterized by a series of linear programming problems (LP-Individual). To

prove Proposition 3, we compute the maximal score of (LP-Individual) for each

directionλi for games that satisfy (IFR) and (SFR).

We first consider “cross-state” directionsλi , and prove that under (SFR), the

scores for these directions are so high that the maximal half spaces in these di-

rections impose no constraints on the equilibrium payoff set, that is, there is no

trade-off between equilibrium payoffs for different states. Specifically, Lemma 5

shows that the maximal scores for cross-state directions are infinitely large if~α−i

has statewise full rank.

Lemma 5. Suppose that~α−i has individual full rank, and has statewise full rank

for (ω, ω̃) at regimeR. Then for anyp andλi satisfyingp(R) > 0, λ ω
i , 0, and

λ ω̃
i , 0, we havekp

i (~α−i ,λi) = ∞.

This lemma is analogous to Lemma 6 of Fudenberg and Yamamoto (2010),

and we give the formal proof in Appendix D.2.1 for completeness. The main idea

is that if~α−i has statewise full rank for(ω, ω̃), then “utility transfer” betweenω
andω̃ can infinitely increase the score.

Next we compute the maximal scores for the remaining “single-state” direc-

tions. Consider (LP-Individual) for directionλi such thatλ ω
i = 1 for someω and
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λ ω̃
i = 0 for all ω̃ , ω. If (IFR) holds, then there is continuation payoffs that make

player i indifferent over all actions, so that constraints (i) and (ii) forω̃ , ω are

vacuous. Then it turns out that the problem is identical to the one that computes

Mω,p
i (~α−i), and hence we havekp

i (λi) = Mω,p
i . (See Appendix E.) Likewise, con-

sider (LP-Individual) for directionλi such thatλ ω
i =−1 for someω andλ ω̃

i = 0

for all ω̃ , ω. If (IFR) holds, then the problem is isomorphic to the one that

computesmω,p
i (~α−i), and as a result we havekp

i (λi) = −mω,p
i . The next lemma

summarizes these discussions.

Lemma 6. Suppose that (IFR) holds. Forλi such thatλ ω
i = 1 and λ ω̃

i = 0 for

all ω̃ , ω, kp
i (λi) = Mω,p

i . For λi such thatλ ω
i = −1 andλ ω̃

i = 0 for all ω̃ , ω,

kp
i (λi) =−mω,p

i .

Now we are ready to prove Proposition 3; we use Lemmas 5 through 6 to

compute the scores of (LP-Individual) for various directions.

Proof of Proposition 3.From Proposition 8 of Appendix D.1.3, it suffices to show

thatQp
i =×ω∈Ω[mω ,p

i ,Mω ,p
i ] for eachi, ω, andp. Let Λ∗i be the set of all single-

state directions, that is,Λ∗i is the set of allλi ∈ Λi such thatλ ω
i , 0 for someω

andλ ω̃
i = 0 for all ω̃ , ω. Then it follows from Lemma 5 that under (SFR), we

have
⋂

λ̃i∈Λ∗ H p
i (λ̃i) ⊆ H p

i (λi) for all λi < Λ∗i , Therefore,Qp
i =

⋂
λi∈Λ H p

i (λi) =⋂
λi∈Λ∗ H p

i (λi). Note that, from Lemma 6, we haveH p
i (λi) = {vi ∈ �|Ω||vω

i ≤
Mω,p

i } for λi ∈Λ∗i such thatλ ω
i = 1, andH p

i (λi) = {vi ∈�|Ω||vω
i ≥mω,p

i } for each

λi ∈Λ∗i such thatλ ω
i =−1. Therefore,Qp

i =
⋂

λi∈Λ∗ H p
i (λi) =×ω∈Ω[mω ,p

i ,Mω ,p
i ],

and Propositions 7 and 8 apply. Q.E.D.

D.2.1 Proof of Lemma 5

Lemma 5. Suppose that~α−i has individual full rank, and has statewise full rank

for (ω, ω̃) at regimeR. Then for anyp andλi satisfyingp(R) > 0, λ ω
i , 0, and

λ ω̃
i , 0, we havekp

i (~α−i ,λi) = ∞.

Proof. First, we claim that for everyk > 0, there exist(zω
i (R,a−i ,σ−i))(a−i ,σ−i)

and(zω̃
i (R,a−i ,σ−i))(a−i ,σ−i) such that

∑
a−i∈A−i

αR
−i(a−i)πω

−i(a) ·zω
i (R,a−i) =

k
δ p(R)λ ω

i
(7)
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for all ai ∈ Ai ,

∑
a−i∈A−i

αR
−i(a−i)π ω̃

−i(a) ·zω̃
i (R,a−i) = 0 (8)

for all ai ∈ Ai , and

λ ω
i zω

i (R,a−i ,σ−i)+λ ω̃
i zω̃

i (R,a−i ,σ−i) = 0 (9)

for all a−i ∈ A−i andσ−i ∈ Σ−i , wherezω̃
i (R,a−i) = (zω̃

i (R,a−i ,σ−i))σ−i∈Σ−i and

zω̃
i (R,a−i) = (zω̃

i (R,a−i ,σ−i))σ−i∈Σ−i . To prove that this system of equations in-

deed has a solution, eliminate (9) by solving forzω̃
i (R,a−i ,σ−i). Then, there re-

main 2|Ai | linear equations, and its coefficient matrix isΠ(ω ,ω̃),R
−i (~α−i). Since

statewise full rank implies that this coefficient matrix has rank2|Ai |, we can solve

the system.

For eachR̂∈R andω̂ ∈Ω, let (w̃ω̂
i (R̂,a−i ,σ−i))(a−i ,σ−i) be such that

∑
a−i∈A−i

α R̂
−i(a−i)

[
(1−δ )gω̂

i (a)+δπ ω̂
−i(a) · w̃ω̂

i (R̂,a−i)
]

= 0 (10)

for all ai ∈ Ai . In words, the continuation payoffs̃wi are chosen so that for each

stateω̂ and for each realized public signalR̂, player i is indifferent among all

actions and his overall payoff is zero. Note that this system has a solution, since

α has individual full rank.

Let k > max(R̂,a−i ,σ−i) λi · w̃i(R̂,a−i ,σ−i), and choose(zω
i (R,a−i ,σ−i))(a−i ,σ−i)

and(zω̃
i (R,a−i ,σ−i))(a−i ,σ−i) to satisfy (7) through (9). Then, let

wω̂
i (R̂,a−i ,σ−i) =





w̃ω
i (R,a−i ,σ−i)+zω

i (R,a−i ,σ−i) if (R̂, ω̂) = (R,ω)
w̃ω̃

i (R,a−i ,σ−i)+zω̃
i (R,a−i ,σ−i) if (R̂, ω̂) = (R, ω̃)

w̃ω̂
i (R̂,a−i ,σ−i) otherwise

for eacha−i ∈ A−i andσ−i ∈ Σ−i . Also, let

vω̂
i =

{
k

λ ω
i

if ω̂ = ω
0 otherwise

.

We claim that this(vi ,wi) satisfies constraints (i) through (iii) in the LP prob-

lem. It follows from (10) that constraints (i) and (ii) are satisfied for allω̂ , ω, ω̃.
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Also, using (7) and (10), we obtain

∑
R̂∈R

p(R̂) ∑
a−i∈A−i

α R̂
−i(a−i)

[
(1−δ )gω

i (ai ,a−i)+δπ ω̂
−i(a) ·wω

i (R̂,a−i)
]

= ∑
R̂∈R

p(R̂) ∑
a−i∈A−i

α R̂
−i(a−i)

[
(1−δ )gω

i (ai ,a−i)+δπ ω̂
−i(a) · w̃ω

i (R̂,a−i)
]

+δ p(R) ∑
a−i∈A−i

αR
−i(a−i)π ω̂

−i(a) ·zω
i (R,a−i)

=
k

λ ω
i

for all ai ∈ Ai . This shows that(vi ,wi) satisfies constraints (i) and (ii) forω . Like-

wise, from (8) and (10),(vi,wi) satisfies constraints (i) and (ii) for̃ω. Furthermore,

using (9) andk > max(R̂,a−i ,σ−i) λi · w̃i(R̂,a−i ,σ−i), we have

λi ·wi(R,a−i ,σ−i) =λi · w̃i(R,a−i ,σ−i)+λ ω
i zω

i (R,a−i ,σ−i)+λ ω̃
i zω̃

i (R,a−i ,σ−i)

=λi · w̃i(R,a−i ,σ−i) < k = λi ·vi

for all a−i ∈ A−i andσ−i ∈ Σ−i , and we have

λi ·wi(R̂,a−i ,σ−i) = λi · w̃i(R̂,a−i ,σ−i) < k = λi ·vi

for all R̂, R, a−i ∈ A−i , andσ−i ∈ Σ−i . Hence, constraint (iii) holds.

Therefore,kp
i (~α−i ,λi) ≥ λi · vi = k. Sincek can be arbitrarily large, we con-

cludekp
i (~α−i ,λi) = ∞. Q.E.D.

Appendix E: Characterizing the Set of Review-Strategy Payoffs

In this appendix, we prove Proposition 4. Appendix E.1 gives a preliminary result;

we consider general environments and develop an algorithm to compute the set of

review-strategy equilibrium payoffs. Then in Appendix E.2, we apply the algo-

rithm to games that satisfy (IFR), (SFR), and (Weak-CI) and prove Proposition

4.

E.1 Linear Programming Problems and Review Strategies

Here we considerT-period review strategies where a player’s play is belief-free

and ex-post optimal at the beginning of eachT-period review phase, and com-

pute its equilibrium payoff set. Specifically, we extend the static LP problem of
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Appendix D toT-period LP problems, and establish that the intersection of the

corresponding hyperplanes is the limit set of review-strategy equilibrium payoffs.

Kandori and Matsushima (1998) also considerT-period LP problems to charac-

terize the equilibrium payoff set for repeated games with private monitoring and

communication, but our result is not a straightforward generalization of theirs and

requires a new proof technique. We elaborate this point in Remark 6 below.

Let ST
i be the set of playeri’s strategies for aT-period repeated game, that

is, ST
i is the set of allsT

i :
⋃T−1

t=0 Ht
i →4Ai . Let πT,ω

−i (a) denote the distribution

of private signals(σ1
−i , · · · ,σT

−i) in a T-period repeated game at stateω when

players choose the action profilea for T periods; that is,πT,ω
−i (σ1

−i , · · · ,σT
−i |a) =

∏T
t=1πω

−i(σ t
−i |a). Also, letπT,ω

−i (sT
i ,a−i) denote the distribution of(σ1

−i , · · · ,σT
−i)

when player−i chooses actiona−i for T periods but playeri playssT
i ∈ ST

i . Let

gT,ω
i (sT

i ,a−i ,δ ) denote playeri’s average payoff for aT-period repeated game at

stateω, when playeri playssT
i and player−i choosesa−i for T periods.

In Appendix D, we consider LP problems where one-shot game is played and

player i receives a sidepaymentxω
i contingent on the opponent’s history of the

one-shot game. Here we consider LP problems where aT-period repeated game

is played and playeri receives a sidepaymentxω
i contingent on the opponent’s

T-period history. In particular, we are interested in a situation where players per-

form an action plan profile~α in the first period (i.e., players observe a public

signalR∈ R with distribution p ∈ 4R before play begins, and choose a pos-

sibly mixed action from a recommended set in the first period) and then in the

second or later period, players play the pure action chosen in the first period. Also

we assume thatxω
i depends onhT

−i only though the initial public signal, player

−i’s action in period one, and the sequence of player−i’s private signals from

period one to periodT; that is, a sidepayment to playeri at stateω is denoted

by xω
i (R,a−i ,σ1

−i , · · · ,σT
−i). In this scenario, playeri’s expected overall payoff at

stateω (i.e., the sum of the average stage-game payoffs of theT-period repeated

game and the sidepayment) when playeri chooses an actionai is equal to

∑
R∈R

p(R) ∑
a−i∈A−i

αR(a−i)

[
1−δ
1−δ T

T

∑
t=1

δ t−1gω
i (a)+πT,ω

−i (a) ·xω
i (R,a−i)

]

= ∑
R∈R

p(R) ∑
a−i∈A−i

αR(a−i)
[
gω

i (a)+πT,ω
−i (a) ·xω

i (R,a−i)
]
,
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wherexω
i (R,a−i) = (xω

i (R,a−i ,σ1
−i , · · · ,σT

−i))(σ1
−i ,··· ,σT

−i)
. Here, note thatπT,ω

−i (a)

denotes the distribution of(σ1
−i , · · · ,σT

−i) at stateω when the profilea is played

for T periods, and the termπT,ω
−i (a) ·xω

i (R,a−i) is the expected sidepayment when

the initial public signal isR and the profilea is played forT periods.

Now we introduce theT-period LP problem. For each(T,~α−i ,λi ,δ ,K) where

K > 0, let kp
i (T,~α−i ,λi ,δ ,K) be a solution to the following problem:

(T-LP) max
vi∈�|Ω|

xi :R×A−i×(Σ−i)T→�|Ω|

λi ·vi subject to

(i) vω
i = ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
gω

i (aR
i ,a−i)

+πT,ω
−i (aR

i ,a−i) ·xω
i (R,a−i)

]

for all ω ∈Ω and(aR
i )R∈R s.t. aR

i ∈ Ri for eachR∈R,

(ii) vω
i ≥ ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
gT,ω

i (sT,R
i ,a−i ,δ )

+πT,ω
−i (sT,R

i ,a−i) ·xω
i (R,a−i)

]

for all ω ∈Ω and(sT,R
i )R∈R s.t. sT,R

i ∈ ST
i for eachR∈R,

(iii) λi ·xi(R,a−i ,σ1
−i , · · · ,σT

−i)≤ 0

for all R∈R, a−i ∈ A−i , and(σ1
−i , · · · ,σT

−i) ∈ (Σ−i)T .

(iv) |xi(R,a−i ,σ1
−i , · · · ,σT

−i)| ≤ K

for all R∈R, a−i ∈ A−i , and(σ1
−i , · · · ,σT

−i) ∈ (Σ−i)T .

Constraint (i) implies adding-up, that is, the target payoffvi is exactly achieved if

playeri chooses an action from the recommended set in the first period and plays

the same action until periodT. Constraint (ii) is incentive compatibility, that is,

player i is willing to choose her action from the recommended set and to play

the same action until periodT. Constraint (iii) says that a paymentxi lies in the

half-space corresponding to directionλi . Note that constraints (i) through (iii) of

(T-LP) are similar to those of (LP-Individual). Constraint (iv) has not appeared

in (LP-Individual), and is new to the literature, as explained in Remark 6 below.

This new constraint requires a paymentxi to be bounded by some parameterK.

Recall that the scorekp
i (~α−i ,λi ,δ ) of (LP-Individual) does not depend onδ ,

asδ does not appear in (LP-Individual). It maybe noteworthy that the same tech-

nique does not apply to (T-LP). To see this, note that playeri’s average payoff

gT,ω
i (sT,R

i ,a−i ,δ ) of theT-period interval depends onδ when playeri plays a non-
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constant action. Then a pair(vi ,xi) that satisfies constraint (ii) for someδ may

not satisfy constraint (ii) for̃δ , δ . Therefore the score of (T-LP) may depend on

δ .21

Let

kp
i (T,λi ,δ ,K) = sup

~α−i∈~A−i

kp
i (T,~α−i ,λ ,δ ,K),

kp
i (T,λi ,K) = liminf

δ→1
kp

i (T,λi ,δ ,K),

kp
i (T,λi) = lim

K→∞
kp

i (T,λi ,K),

H p
i (T,λi) = Hi(λi ,k

p
i (T,λi)),

and

Qp
i (T) =

⋂

λi∈Λi

H p
i (T,λi).

Note thatkp
i (T,λi ,K) here is defined to be the limit inferior ofkp

i (T,λi ,δ ,K),
sincekp

i (T,λi ,δ ,K) may not have a limit asδ → 1. On th other handkp
i (T,λi ,K)

has a limit asK → ∞, sincekp
i (T,λi ,K) is increasing with respect toK.

The next proposition is a counterpart to Lemma 4, which shows that the set

×i∈IQ
p
i (T) is a subset of the set of sequential equilibrium payoffs. Note that here

we do not assume the signal distribution to be conditionally independent. The

proof of the proposition is given in Appendix E.1.1.

Proposition 4. Suppose that the signal distribution has full support. LetT and

p be such thatdimQp
i (T) = |Ω| for eachi ∈ I . Then the set×i∈IQ

p
i (T) is in the

limit set of sequential equilibrium payoffs asδ → 1.

In the proof of the proposition, we (implicitly) show that for any payoffv ∈
×i∈IQ

p
i (T), there is a sequential equilibrium with payoffv and such that a player’s

play is belief-free and ex-post optimal at the beginning of each review phase with

lengthT (while actions in other periods are not necessarily belief-free or ex-post

21Note that the new constraint (iv) is not an issue here; indeed, it is easy to check that even if
we add (iv) to the set of constraints of (LP-Individual) the score of the new LP problem does not
depend onδ .
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optimal). That is, here we considerperiodically belief-freeandperiodically ex-

postequilibria.22 Note that the proof of this proposition is not a straightforward

generalization of Lemma 4, becauseδ appears in constraint (ii) of (T-LP). See the

following remark for more discussions.

Remark 6. Kandori and Matsushima (1998) also considerT-period LP problems

to characterize the equilibrium payoff set for games with private monitoring and

communication, but our result is not a mere adaptation of theirs. A main differ-

ence is that Kandori and Matsushima (1998) impose “uniform incentive compat-

ibility,” which requires the payment scheme to satisfy incentive compatibility for

all δ̃ ∈ [δ ,1). They show that with this strong version of incentive compatibility,

the local decomposability condition is sufficient for a setW to be self-generating

for highδ as in Fudenberg and Levine (1994). On the other hand, our LP problem

does not impose uniform incentive compatibility, so that a payment schemex that

satisfies the incentive compatibility constraint (ii) forδ may not satisfy (ii) for

δ̃ ∈ (δ ,1). Due to this failure of monotonicity, the local decomposability condi-

tion is not sufficient for a setW to be self-generating. Instead, we use the fact

that the uniform decomposability condition of Fudenberg and Yamamoto (2011b)

is sufficient for a setW to be self-generating. The uniform decomposability con-

dition requires the continuation payoffsw to be within (1− δ )K of the target

payoff v∈W for all δ , and to prove this property we use the new constraint (iv).

Our new LP problem is tractable in the following analysis, as we need to check

the incentive compatibility only for a givenδ . Note also that the side payment

schemex constructed in the proof of Lemma 9 satisfies constraints (i) through (iv)

of (T-LP) but does not satisfy the uniform incentive compatibility of Kandori and

Matsushima (1998).

Remark 7. In (T-LP) we restrict attention to the situation where players play the

same action throughout theT-period interval, but this is not necessary. That is,

even if we consider a LP problem where players play a more complexT-period

strategy, we can obtain a result similar to Proposition 4.

22Precisely speaking, in these equilibria, a player’s play at the beginning of each review phase is
strongly belief-freein the sense of Yamamoto (2012); that is, a player’s play is optimal regardless
of the opponent’s past historyand regardless of the opponent’s current action. Indeed, constraints
(i) and (ii) of (T-LP) imply that playeri’s play is optimal given any realization ofa−i .
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E.1.1 Proof of Proposition 4

Proposition 9. Suppose that the signal distribution has full support. LetT and

p be such thatdimQp
i (T) = |Ω| for eachi ∈ I . Then the set×i∈IQ

p
i (T) is in the

limit set of sequential equilibrium payoffs asδ → 1.

To prove this proposition, we begin with some preliminary results.

Definition 10. Playeri’s payoffvi = (vω
i )ω∈Ω ∈�|Ω| is individually ex-post gener-

ated with respect to(T,δ ,Wi , p) if there is an action plan~α−i ∈ ~A−i and a function

wi : R×A−i× (Σ−i)T →Wi such that

vω
i = ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
(1−δ T)gω

i (aR
i ,a−i)

+δ TπT,ω
−i (aR

i ,a−i) ·wT,ω
i (R,a−i)

]

for all ω ∈Ω and(aR
i )R∈R satisfyingaR

i ∈ Ri for eachR∈R, and

vω
i ≥ ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
(1−δ T)gT,ω

i (sT,R
i ,a−i)

+δ TπT,ω
−i (sT,R

i ,a−i) ·wT,ω
i (R,a−i)

]

for all ω ∈Ω and(sT,R
i )R∈R satisfyingsT,R

i ∈ ST
i for eachR∈R.

Let Bp
i (T,δ ,Wi) be the set of allvi individually ex-post generated with respect

to (T,δ ,Wi , p). A subsetWi of �|Ω| is individually ex-post self-generating with

respect to(T,δ , p) if Wi ⊆ Bp
i (T,δ ,Wi , p)

Lemma 6. For eachi ∈ I , letWi be a subset of�|Ω| that is bounded and individ-

ually ex-post self-generating with respect to(T,δ , p). Then×i∈IWi is in the set of

sequential equilibrium payoffs with public randomizationp for δ .

Proof. Analogous to Proposition 6. Q.E.D.

Given anyvi ∈ �|Ω|, λi ∈ Λi , ε > 0, K > 0, andδ ∈ (0,1), let Gvi ,λi ,ε,K,δ be

the set of allv′i ∈�|Ω| such thatλi ·vi ≥ λi ·v′i +(1−δ )ε and such thatv′i is within

(1−δ )K of vi . (See Figure 5, where this set is labeled “G.”)

Definition 11. A subsetWi of �|Ω| is uniformly decomposable with respect to

(T, p) if there areε > 0, K > 0, andδ ∈ (0,1) such that for anyvi ∈Wi , δ ∈ (δ ,1),
andλi ∈ Λi , there are~α−i andwi : R×A−i × (Σ−i)T →Wi such that(~α−i ,vi) is

enforced bywi for δ and such thatwi(R,a−i ,σ1
−i , · · · ,σT

−i) ∈ Gvi ,λi ,ε,K,δ T for all

(R,a−i ,σ1
−i , · · · ,σT

−i).

65



λi

(1−δ )ε(1−δ )K

vi

Wi
G

Figure 5: SetG.

Lemma 7. Suppose that a subsetWi of �|Ω| is smooth, bounded, and uniformly

decomposable with respect to(T, p). Then there isδ ∈ (0,1) such thatWi is

individually ex-post self-generating with respect to(T,δ , p) for anyδ ∈ (δ ,1).

Proof. Analogous to Fudenberg and Yamamoto (2011b). Q.E.D.

Lemma 8. Any smooth subsetWi of the interior ofQp
i (T) is bounded and uni-

formly decomposable with respect to(T, p).

Proof. As in Lemma 1, one can check thatQp
i (T) is bounded, and so isWi . Let

ε̃ > 0 be such that|v′i −v′′i |> ε̃ for all v′i ∈Wi andv′′i ∈Qp
i (T). By definition, for

everyλi ∈Λi , kp
i (T,λi) > maxv′i∈Wi

λi ·v′i + ε̃. Therefore for eachλi ∈Λi , there are

δ λi
∈ (0,1) andKλi

> 0 such that for anyδ ∈ (δ λi
,1), there is~α−i,λi ,δ such that

kp
i (T,~α−i,λi ,δ ,λi ,δ ,Kλi

) > maxv′i∈Wi
λi ·v′i + ε̃.

Given λi andδ ∈ (δ λi
,1), let ṽi,λi ,δ ∈ �|Ω| andxi,λi ,δ : R×A−i × (Σ−i)T →

�|Ω| be such that all the constraints of the LP problem for(T,~α−i,λi ,δ ,λi ,δ ,Kλi
)

are satisfied and such thatλi · ṽi,λi ,δ > maxv′i∈Wi
λi · v′i + ε̃. Then for eachvi ∈Wi ,

let wi,λi ,δ ,vi
: R×A−i× (Σ−i)T →�|Ω| be such that

wi,λi ,δ ,vi
(R,a−i ,σ1

−i , · · · ,σT
−i)= vi +

1−δ T

δ T (vi− ṽi,λi ,δ +xi,λi ,δ (R,a−i ,σ1
−i , · · · ,σT

−i))

for each(R,a−i ,σ1
−i , · · · ,σT

−i). By construction,(~α−i,λi ,δ ,vi) is enforced bywi,λi ,δ ,vi

for δ . Also, lettingε = ε̃
2 andK̃λi

= Kλi
+supv′i∈Wi

supδ∈(δ λi
,1) |v′i − ṽi,λi ,δ |, it fol-

lows thatwi,λi ,δ ,vi
(R,a−i ,σ1

−i , · · · ,σT
−i) ∈ Gvi ,λi ,2ε,K̃λi

,δ T . (To see this, note first

that the pair(ṽi,λi ,δ ,xi,λi ,δ ) satisfies constraints (i) and (iv) of the LP problem so

thatsupδ∈(δ λi
,1) |ṽi,λi ,δ | ≤maxa∈A |(gω

i (a))ω∈Ω|+Kλi
. This and the boundedness

66



of Wi show thatK̃λi
< ∞. Sinceλi ·xi,λi ,δ (R,a−i ,σ1

−i , · · · ,σT
−i)≤ 0 andλi · ṽi,λi ,δ >

maxv′i∈Wi
λi ·v′i + ε̃ ≥ λi ·vi + ε̃, it follows thatλi ·wi,λi ,δ ,vi

(R,a−i ,σ1
−i , · · · ,σT

−i)≤
λi ·vi − 1−δ T

δ T ε̃ < λi ·vi − (1−δ T)ε̃. Also, wi,λi ,δ ,vi
(R,a−i ,σ1

−i , · · · ,σT
−i) is within

1−δ T

δ T K̃λi
of vi , as|xi,λi ,δ (R,a−i ,σ1

−i , · · · ,σT
−i)|< Kλi

.)

Note that for eachλi ∈ Λi , there is an open setUλi ,δ ⊆ �|Ω| containingλi

such thatGvi ,λi ,2ε,K̃λi
,δ T ⊆Gvi ,λ ′i ,ε,K̃λi

,δ T for anyvi ∈Wi , (R,a−i ,σ1
−i , · · · ,σT

−i), and

λ ′i ∈ Λi ∩Uλi ,δ ,vi
. (See Figure 6, whereGvi ,λi ,2ε,K̃λi

,δ T andGvi ,λ ′i ,ε,K̃λi
,δ T are la-

beled “G” and “G′,” respectively.) Then we havewi,λi ,δ ,vi
(R,a−i ,σ1

−i , · · · ,σT
−i) ∈

Gvi ,λ ′i ,ε,K̃λi
,δ T for any vi ∈Wi , (R,a−i ,σ1

−i , · · · ,σT
−i), andλ ′i ∈ Λi ∩Uλi ,δ ,vi

, since

wi,λi ,δ ,vi
(R,a−i ,σ1

−i , · · · ,σT
−i) ∈Gvi ,λi ,2ε,K̃λi

,δ T .

vi
λ ′i

λi

(1−δ T)2ε
(1−δ T)ε(1−δ T)K̃λi

GG

G′

Figure 6:G⊆G′.

The setΛi is compact, so{Uλi ,δ}λi∈Λi
has a finite subcover{Uλi ,δ}λi∈Λ̃. For

eachvi andλi , let~α∗−i,λi ,δ =~α−i,λ ′i ,δ andw∗i,λi ,δ ,vi
= wi,λ ′i ,δ ,vi

, whereλ ′i ∈ Λ̃i is such

thatλi ∈Uλ ′i ,δ . Let K = maxλi∈Λ̃i
K̃λi

. Then(~α∗−i,λi ,δ ,vi) is enforced byw∗i,λi ,δ ,vi

andw∗i,λi ,δ ,vi
chooses the continuation payoffs from the setGvi ,λi ,ε,K,δ T . Note that

nowK is independent ofλi , and thus the proof is completed. Q.E.D.

From the above lemmas, Proposition 4 follows.

E.2 Proof of Proposition 4

Proposition 4. Suppose that the signal distribution has full support, and that

(SFR) and (Weak-CI) hold. Suppose also that there isp∈4R such thatNω,p
i >

nω,p
i for all i and ω. Then

⋃
p∈4R×i∈I ×ω∈Ω [nω,p

i ,Nω,p
i ] is in the limit set of

sequential equilibrium payoffs asδ → 1.
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Proposition 4 in Appendix E.1 establishes that the limit set of review-strategy

equilibrium payoffs is characterized by a series of linear programming problems

(T-LP). To prove Proposition 4, we solve these (T-LP) for various directions for

games that satisfy (IFR) and (SFR) and apply Proposition 4. The next lemma is

an extension of Lemma 5, which assert that under (SFR), the scores of (T-LP) for

cross-state directions are so high that the half-spaces for these directions impose

no restriction on the setQp
i (T). Note that the lemma does not require the signal

distribution to be weakly conditionally independent. The proof of the lemma is

found in Appendix E.2.1

Lemma 9. Suppose that (IFR) holds. Suppose also that~α−i has individual full

rank, and has statewise full rank for(ω, ω̃) at regimeR. Then for everyp with

p(R) > 0 and for everyk > 0 there isK > 0 such thatkp
i (T,~α−i ,λi ,δ ,K) > k for

all (T,λi ,δ ,K) such thatλ ω
i , 0, λ ω̃

i , 0, andK > K. Therefore, if such~α−i exists,

thenkp
i (T,λi) = ∞ for all p andλi such thatp(R) > 0, λ ω

i , 0 andλ ω̃
i , 0.

Next we consider (T-LP) for single-state directions. Lemma 10 shows that

under (Weak-CI), the scores of (T-LP) for single-state directions are bounded

by the extreme values of belief-free review-strategy equilibrium payoffs of the

known-state game. The proof is found in Appendix E.2.1.

Lemma 10. Suppose that (Weak-CI) holds. Suppose also that the signal distri-

bution has full support. ThenliminfT→∞ kp
i (T,λi) = Nω,p

i for λi ∈ Λi such that

λ ω
i = 1, andliminfT→∞ kp

i (T,λi) =−nω ,p
i for λi ∈ Λi such thatλ ω

i =−1.

Combining the above three lemmas with Proposition 4, we obtain Proposition

4.

E.2.1 Proofs of Lemmas 9 and 10

Lemma 9. Suppose that (IFR) holds. Suppose also that~α−i has individual full

rank, and has statewise full rank for(ω, ω̃) at regimeR. Then for everyp with

p(R) > 0 and for everyk > 0 there isK > 0 such thatkp
i (T,~α−i ,λi ,δ ,K) > k for

all (T,λi ,δ ,K) such thatλ ω
i , 0, λ ω̃

i , 0, andK > K. Therefore, if such~α−i exists,

thenkp
i (T,λi) = ∞ for all p andλi such thatp(R) > 0, λ ω

i , 0 andλ ω̃
i , 0.
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Proof. Since (IFR) holds, there iszi : A−i×Σ−i →�|Ω| such that

gω̃
i (a)+ ∑

σ−i∈Σ−i

π ω̃
−i(σ−i |a)zω̃

i (a−i ,σ−i)= gω̃
i (a′i ,a−i)+ ∑

σ−i∈Σ−i

π ω̃
−i(σ−i |a′i ,a−i)zω̃

i (a−i ,σ−i)

for all ω̃ ∈ Ω, a∈ A, anda′i , ai . That is,zi is chosen in such a way that player

i is indifferent over all actions in a one-shot game if she receives a payment

zi(a−i ,σ−i) after play. In particular we can choosezi so that

λi ·zi(a−i ,σ−i)≤ 0

for all a−i ∈ A−i andσ−i ∈ Σ−i . Let v̂i ∈�|Ω| be playeri’s payoff of the one-shot

game with paymentzi when player−i plays~α−i and a public signalR follows a

distributionp; that is,

v̂ω
i = ∑

R∈R

p(R) ∑
a−i∈A−i

αR
−i(a−i)

[
gω

i (a,δ )+ ∑
σ−i∈Σ−i

πω
−i(σ−i |a)zω

i (a−i ,σ−i)

]

for someai .

Also, it follows from Lemma 5 that for everyk > 0, there arẽvi ∈ �|Ω| and

x̃i : R×A−i×Σ−i →�|Ω| such that(ṽi , x̃i) satisfies constraints (i) through (iii) of

(LP-Individual) and such thatλi · ṽi ≥ Tk+(T−1)|λi · v̂i |. Let

vi =
1−δ
1−δ T

(
ṽi +

T

∑
τ=2

δ τ−1v̂i

)

and

xi(R,a−i ,σ1
−i , · · · ,σT

−i) =
1−δ
1−δ T

(
x̃i(R,a−i ,σ1

−i)+
T

∑
τ=2

δ τ−1zi(a−i ,σ τ
−i)

)
.

Then this(vi ,xi) satisfies constraints (i) through (iii) of (T-LP). Also, letting

K > max
(R,a−i ,σ−i)

|x̃i(R,a−i,σ−i)|+ max
(a−i ,σ−i)

(T−1)|zi(a−i ,σ−i)|,

condition (iv) also holds. Sinceλi ·vi ≥ k, the lemma follows. Q.E.D.

Lemma 10. Suppose that (Weak-CI) holds. Suppose also that the signal distri-

bution has full support. ThenliminfT→∞ kp
i (T,λi) = Nω,p

i for λi ∈ Λi such that

λ ω
i = 1, andliminfT→∞ kp

i (T,λi) =−nω ,p
i for λi ∈ Λi such thatλ ω

i =−1.
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Proof. We first consider directionλi such thatλ ω
i = 1. Let~α−i be such that for

eachR, player−i chooses a pure actionaR
−i whereaR

−i is such that

∑
R∈R

p(R) min
ai∈Ri

gω
i (ai ,a

R
−i) = Np

i .

Consider the problem (T-LP) for (T,~α−i ,λi ,δ ,K). Since (IFR) holds,~α−i has

individual full rank so that for each̃ω , ω, there isxω̃
i that makes playeri indif-

ferent in every period. Therefore we can ignore constraint (ii) forω̃ , ω. Sec-

tion 3.3 of Yamamoto (2012) shows that under (Weak-CI), for anyε > 0 there is

T > 0 such that for anyT > T, there areδ ∈ (0,1) andK > 0 such that for any

δ ∈ (δ ,1), there is(vω
i ,xω

i ) such that|vω
i −Nω,p

i |< ε and all the remaining con-

straints of (T-LP) are satisfied. This shows thatliminfT→∞ kp
i (T,λi) ≥ Nω,p

i for

λi ∈Λi such thatλ ω
i = 1. Also, it follows from Proposition 1 of Yamamoto (2012)

thatkp
i (T,λi) ≤ Nω ,p

i for anyT. Therefore we haveliminfT→∞ kp
i (T,λi) = Nω ,p

i .

A similar argument shows thatliminfT→∞ kp
i (T,λi) =−nω,p

i for λi ∈ Λi such that

λ ω
i =−1. Q.E.D.
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