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Abstract

We investigate whether two players in a long-run relationship can main-
tain cooperation when the details of the underlying game are unknown.
Specifically, we consider a new class of repeated games with private moni-
toring, where an unobservable state of the world influences the payoff func-
tions and/or the monitoring structure. Each player privately learns the state
over time, but cannot observe what the opponent learns. We show that there
are robust equilibria where players eventually obtain payoffs as if the true
state were common knowledge and players played a “belief-free” equilib-
rium. The result is applied to various examples, including secret price-
cutting with unknown demand.
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1 Introduction

Consider an oligopolistic market where firms sell to industrial buyers and interact
repeatedly. Price and volume of transaction in such a market are typically deter-
mined by bilateral negotiation between a seller and a buyer, so that both price and
sales are private information. In such a situation, a firm’s sales level is a noisy
private signal about price of the opponents, as it tends to be low if the opponents
(secretly) undercut their price.This is a “secret price-cutting” game of Stigler
(1964), and in the literature, it is assumed that firms know the distribution of sales
as a function of their price. However, in practice, firms may not know the exact
distribution of sales. For example, a firm may know that there is a good chance of
sales decrease if the opponents undercut their price, but may not know the exact
probability of sales decrease. This is likely the case especially when firms enter
a new market, as their information about the market structure is often limited.
In such a case, the firms may acquire more precise information about the sales
distribution through learning by doing. How do the uncertainty about the market
structure and learning influence decision making by the firms? Do they have an
incentive to sustain collusion in the presence of the uncertainty?

Motivated by these questions, this paper develops a general model of repeated
games withprivate monitoring where players do not know the monitoring struc-
ture. In repeated games with private monitoring, players do not directly observe
their opponents’ actions but instead observe noisy private signals. A secret price-
cutting game is a leading example of private monitoring, and other examples in-
clude relational contracts with subjective evaluations (Levin (2003) and Fuchs
(2007)) and international trade agreements in the presence of concealed trade
barriers (Park (2011)). Past work has shown that a long-term relationship helps
provide incentives to cooperate even under private monitGrimgf, these results

IHarrington and Skrzypacz (2011) report that these properties are common to the recent lysine
and vitamin markets.

2For example, efficiency can be approximately achieved in the prisoner’s dilemma, when ob-
servations are nearly perfect (Sekiguchi (1997), Bhaskar and Obara (2@8grtdnd Olszewski
(2006), Chen (2010), and Mailath and Olszewski (2011)), nearly public (Mailath and Morris
(2002), Mailath and Morris (2006), anddrher and Olszewski (2009)), statistically independent
(Matsushima (2004)), or even fully noisy and correlated (Fong, GossiieneHand Sannikov
(2011) and Sugaya (2010b)). Kandori (2002) and Mailath and Samuelson (2006) are excellent
surveys. See also Lehrer (1990) for the case of no discounting, and Fudenberg and Levine (1991)
for the study of approximate equilibria with discounting.
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heavily rely on the assumption that players know the exact distribution of private
signals, which is not appropriate in some economic situations, as discussed above.
This paper relaxes such an assumption and examines its impact on equilibrium
outcomes.

Formally, we study two-player repeated games in which the state of the world,
chosen by Nature at the beginning of play, influences the distribution of private
signals and/or the payoff functions of the stage game. Note that the state can affect
the payoff functions directly, and can affect it indirectly through the effect on the
distribution of signals. For example, in a price-setting oligopoly, firms obtain
higher expected payoffs at a given price at states where high sales are likely. Thus
even if the payoff to each sales level is known, uncertainty about the distribution
of sales yields uncertainty about the expected payoffs of the stage game.

Since observations are private in our model, players’ posterior beliefs about
the true state need not coincide in later periods. In particular, while each player
may privately learn the state from observed signals, this learning process may not
lead to “common learning” in the sense of Cripps, Ely, Mailath, and Samuelson
(2008), that is, a player manyot learn that the opponent learns the state, or a
player maynot learn that each player learns that each player learns the state, or
... For example, in the context of secret price-cutting, a firm may privately learn
the true distribution of sales from its own experience, but it cannot observe the
opponent’s past experience and hence may not learn what the opponent learned.
What happens in such a situation? Are they willing to cooperate even though they
may be unsure about what the opponent learned and about what the opponent will
play? The main finding of this paper is that despite the potential complications,
players can still maintain some level of cooperation through appropriate use of
intertemporal incentives.

In our model, to check whether a given strategy profile is sequentially rational,
we need to know players’ beliefs about the true state in general. However, com-
puting these beliefs is intractable in most cases, as beliefs are updated through ob-
served signals and there are infinitely many periods. Accordingly, characterizing
the entire equilibrium set is not an easy task. Instead, we look at a tractable subset
of Nash equilibria, calletielief-free ex-post equilibriar BFXE This allows us to
obtain a clean characterization of the equilibrium payoff set, and as an application,
we show that a large set of payoffs (including Pareto-efficient outcomes) can be



achieved in many economic examples.

A strategy profile is a BFXE if its continuation strategy constitutes a Nash
equilibrium given any state and given any history. In a BFXE, a player’s belief
about the true state is irrelevant to her best reply, and hence we do not need to
track the evolution of these beliefs over time. This idea is an extension of ex-
post equilibria of static games to dynamic setting. Another important property
of BFXE is that a player’s best reply does not depend on her belief about the
opponent’s private history, so that we do not need to compute these beliefs as well.
This second property is closely related to the conceftedief-free equilibriaof
Ely, Horner, and Olszewski (2005, hereafter EHO), which are effective in the
study of repeated games with private monitoring and with no uncertainty. Note
that BFXE reduce to belief-free equilibria, if the state space is a singleton so that
players know the structure of the game.

As shown by past work, most of belief-free equilibria are mixed strategies, and
players’ randomization probabilities are carefully chosen to make the opponent
indifferent. These indifference conditions are typically violated once the signal
distribution is perturbed; as a result, the existing constructions of belief-free equi-
libria are not robust to a perturbation of the monitoring structure. A challenge in
constructing belief-free equilibria in our setup is that we need to find randomiza-
tion probabilities which satisfy all the indifference conditions even when players
do not know the signal distribution and their beliefs about the signal distribution
can be perturbed. If the same randomization probability satisfies the indifference
conditions for all states, then it is a good candidate for an equilibrium; indeed, it
constitutes a BFXE. A contribution of this paper is to identify a condition under
which such a strong requirement can be satisfied and these equilibria can support a
large set of non-trivial payoffs. The key is that under our informational condition,
there are more possible signals than in the case of “canonical signal space” studied
in the past work, which assures that there be enough room to choose appropriate
randomization probabilities.

To illustrate a concrete idea of BFXE, we begin with simple examples; in
Section 3.2, we consider private provision of public goods where the marginal
profit from contribution is unknown and players learn it through private signals.
In this situation, players cannot observe what the opponent has learned about the
marginal profit; thus it is unclear how players coordinate their play in equilibrium,



and as a result, various folk theorems derived in past work do not apply. We
explicitly construct a BFXE and show that it attains the Pareto-efficient outcome
in such an environment. Also in Section 3.3, we consider another example where
players’ interests are totally different at different states, and construct a BFXE.
With these complete descriptions of equilibrium strategies, it is easy to see how
players learn the state from private signals and use that information in BFXE. In
particular, it is worth noting that the equilibrium strategies of Section 3.2 exhibit
a simple form of “punish-and-forgive” behavior while those of Section 3.3 take a
different simple form of “learning and adjustment” behavior, which are frequently
observed in real-world activities.

Since BFXE are ex-post equilibria and players’ beliefs about the state of the
world are irrelevant to their best replies, one may wonder what is the value of state
learning in BFXE. The key is that even though players play the same strategy pro-
file regardless of the true state in an ex-post equilibrium, the distribution of future
actions may depend on the true state because players’ future play may depend on
signals today, the distribution of which is influenced by the true state. In partic-
ular, there may be an ex-post equilibrium where for each state of the world, the
distribution of actions conditional on that state assigns a high probability to the
efficient action for that state. In this sense, state learning is valuable even if we
look at ex-post equilibria.

In Section 5, we extend this idea to a general setup and obtain our main re-
sult, the state-learning theorem. It characterizes the set of BFXE payoffs with
patient players under an identifiability condition, and shows that there are BFXE
in which players eventually obtain payoffs as if they knew the true state and played
a belief-free equilibrium for that state. This implies that BFXE can do as well as
belief-free equilibria can do in the known-state game, and that the main results
of EHO extend to the case where players do not know the monitoring structure.
Our identifiability condition guarantees that players privately learn the true state
in the long run, but does not assure that the state becomes (approximate) common
knowledge; hence the result here is not an immediate consequence of the infor-
mational assumption. Applying this state-learning theorem, we show that firms
can maintain collusion under a mild condition even if they do not have precise
information about the market; also we show that there are BFXE approximating
efficiency in many economic examples.



As argued, the set of BFXE is only a subset of Nash equilibria, and is empty
for some cases (although we show that BFXE exist when players are patient and
some additional conditions are satisfied; see Remark 4). Nevertheless the study
of BFXE can be motivated by the following considerations. First, BFXE can of-
ten approximate the efficient outcome, as we show in several examples. Second,
BFXE are robust to any specification of the initial beliefs, just as for ex-post equi-
libria. That is, BFXE remain equilibria when players are endowed with arbitrary
beliefs which need not arise from a common prior. Third, BFXE are robust to
any specification of how players update their beliefs. For example BFXE are still
equilibria even if players employ non-Bayesian updating of beliefs, or even if each
player may observe unmodeled signals that are correlated with the opponent’s past
private history and/or the true state. Finally, BFXE have a recursive property, in
the sense that any continuation strategy profile of a BFXE is also a BFXE. This
property greatly simplifies our analysis, and may make our approach a promising
direction for future research.

1.1 Literature Review

The notion of BFXE is a generalization of belief-free equilibria, which plays a
central role in the study of repeated games with private monitoring. The idea
of belief-free equilibria is proposed by Piccione (2002) and extended by Ely and
Valimaki (2002), EHO, and Yamamoto (2007). Its limit equilibrium payoff set
is fully characterized by EHO and Yamamoto (2009). Olszewski (2007) is an in-
troductory survey. Kandori and Obara (2006) show that belief-free equilibria can
achieve better payoffs than perfect public equilibria for games with public moni-
toring. Kandori (2011) proposes a generalization of belief-free equilibria, called
weakly belief-free equilibria. Takahashi (2010) constructs a version of belief-
free equilibria in repeated random matching games. Bhaskar, Mailath, and Mor-
ris (2008) investigate the Harsanyi-purifiability of belief-free equilibria. Sugaya
and Takahashi (2010) show that belief-free public equilibria of games with public
monitoring are robust to private-monitoring perturbations.

BFXE is also related to ex-post equilibria. Some recent papers use the “ex-
post equilibrium approach” in different settings of repeated games, such as per-
fect monitoring and fixed states @rher and Lovo (2009) anddtiner, Lovo, and



Tomala (2011)), public monitoring and fixed states (Fudenberg and Yamamoto
(2010) and Fudenberg and Yamamoto (2011a)), and changing states with an i.i.d.
distribution (Miller (2012)). Note also that there are many papers working on
ex-post equilibria in undiscounted repeated games; see Koren (1992) and Shalev
(1994), for example.

Among these, the most closely related work is Fudenberg and Yamamoto
(2010), who study the effect of uncertainty about the monitoring structure when
players observe public signals rather than private signals. They look at ex-post
equilibria as in this paper, and show that there are equilibria where players obtain
payoffs as if they knew the state and played an equilibrium for that state. While
our state-learning theorem may look similar to their result, it is not a corollary, be-
cause in our setup, public information is not available so that it is a priori unclear
if ex-post equilibria and belief-free equilibria can be combined in a useful way.
Indeed, in Fudenberg and Yamamoto (2010), players can form a “publicly ob-
servable dummy belief” about the true state based on public signals, which helps
players coordinating their play; see Section 5.3 for more discussions. Note also
that we explicitly construct equilibrium strategies in some examples and illustrate
how players learn the state in ex-post equilibria. Fudenberg and Yamamoto (2010)
do not have such a result.

This paper also contributes to the literature on repeated games with incomplete
information. Many papers study the case where there is uncertainty about the
payoff functions and actions are observable; see Forges (1984), Sorin (1984), Hart
(1985), Sorin (1985), Aumann and Maschler (1995), Cripps and Thomas (2003),
Gossner and Vieille (2003), Wiseman (2005), and Wiseman (2012).

Cripps, Ely, Mailath, and Samuelson (2008) consider the situation where play-
ers try to learn the unknown state of the world by observing a sequence of private
signals over time, and provide a condition under which players commonly learn
the state. In their model, players do observe private signals, but do not choose ac-
tions. On the other hand, we consider strategic players, who might want to deviate
to slow down the speed of learning. Therefore, their result does not directly apply
to our setting.



2 Repeated Games with Private Learning

Given a finite selX, let AX be the set of probability distributions ov&r, and
let 2(X) be the set of non-empty subsetsXfi.e., Z(X) = 2X\ {0}. Given a
subsetV of R", let cdV denote the convex hull &#.

We consider two-player infinitely repeated games, where the set of players is
denoted byt = {1,2}. At the beginning of the game, Nature chooses the state of
the worldw from a finite seQ. Assume that players cannot observe the true state
w, and lety € AQ denote their common prior over.® Throughout the paper, we
assume that the game begins with symmetric information: Each player’s beliefs
aboutw correspond to the prior. But it is straightforward to extend our analysis to
the case with asymmetric information as in Fudenberg and Yamamoto (2b11a).

Each period, players move simultaneously, and player chooses an action
a; from a finite setA; and observes a private signal from a finite set¥;.> Let
A= Xjg A andZ = xj¢ Zj. The distribution of a signal profile € Z depends
on the state of the worldo and on an action profila € A, and is denoted by
n?(-|la) € AZ. Let i*(-|a) denote the marginal distribution of € Z; at statew
conditional ona € A, that is, t°(gi|a) = S5 .5, T¥(0la). Playeri’s realized
payoff isu®(a;, gi), so that her expected payoff at stabegiven an action pro-
file ais g*”(a) = S ges, M (ail@)uP (&, 01). We write m*(a) andg(a) for the
signal distribution and expected payoff when players play a mixed action profile
a € Xigl AA;. Similarly, we writert®(a;, a_i) andg®(a;, a_) for the signal dis-
tribution and expected payoff when player plays a mixed actiom_; € AA ;.

Let g“(a) denote the vector of expected payoffs at statgiven an action profile

3Because our arguments deal only with ex-post incentives, they extend to games without a
common prior. However, as Dekel, Fudenberg, and Levine (2004) argue, the combination of
equilibrium analysis and a non-common prior is hard to justify.

4Specifically, all the results in this paper extend to the case where each plagsrinitial
private informationg about the true stat®, where the se®; of playeri’s possible private infor-
mation is a partition of2. Given the true state € Q, playeri observe$® ¢ ©;, wheref® denotes
8 € ©; such thatw € 8. In this setup, private informatiof” allows playeti to narrow down the
set of possible states; for example, play&nows the state i©; = {(w), -+, (wy)}. For games
with asymmetric information, we can allow different types of the same player to have different
best replies as in PTXE of Fudenberg and Yamamoto (2011a); to analyze such equilibria, regime
R should specify recommended actions for each plaged each typé;, i.e.,, R=R= (Rie' )i,6)-

SHere we consider a finitE; just for simplicity; our results extend to the case with a continuum
of private signals, as in Ishii (2009).
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As emphasized in the introduction, uncertainty about the payoff functions
and/or the monitoring structure is common in applications. Examples that fit
our model include secret price-cutting with unknown demand function and moral
hazard with subjective evaluation and unknown evaluation distribution. Also a
repeated game with observed actions and individual learning is a special case of
the above model. To see this, Bt= A x Z; for some finite se¥; and assume
that 1(o|a) = 0 for eachw, a, ando = (01,02) = ((&,z1),(a’,2)) such that
a #aora’ #a. Under this setup, actions are perfectly observable by players (as
g; must be consistent with the action profdeand players learn the true state
from private signalg;. More concrete examples will be given in the next section.

In the infinitely repeated game, players have a common discount factor
(0,1). Let (&, ql") be playeri’s pure action and signal in period and we de-
note playeri's private history from period one to period peribd> 1 by hf =
(af, o)t _;. Leth? =0, and for eacht > 0, let H} be the set of all private his-
torieshf. Also, we denote a pair dfperiod histories by = (h,h.), and let
H! be the set of all history profiles. A strategy for player is defined to be a
mappings : UroH{ — AA;. LetS be the set of all strategies for playieand let
S= XjalS.

We define the feasible payoff set for a given statt® be

V(w) = cof{g”(a)lac A},

that is,V (w) is the set of the convex hull of possible stage-game payoff vectors
givenw. Then we define the feasible payoff set for the overall game to be

Thus a vectowv € V specifies payoffs for each player and for each state, i.e.,
v=((V{,v9))weq. Note that a giverv € V may be generated using different
action distributions in each state If players observev at the start of the game
and are very patient, then any payoff\incan be obtained by a state-contingent

6)f there arew € Q and @ # w such thatu® (&, gj) # uf’(a;n) for somea; € A ando € 2,
then it might be natural to assume that plaiyeloes not observe the realized valueupts the
game is played; otherwise players might learn the true state from observing their realized payoffs.
Since we consider ex-post equilibria, we do not need to impose such a restriction.

11



strategy of the infinitely repeated game. Looking ahead, there will be equilib-
ria that approximate payoffs M if the state isdentifiedby the signals, so that
players learn it over time.

3 Motivating Examples

In this section, we consider a series of examples to illustrate the scope of our
model and the idea of our equilibrium strategies when players learn the true state
from private signals.

3.1 Secret Price Cutting

Suppose that there are two firms in a market. The firms do not know the true
statew € Q and they have a common prigr € AQ. In every period, firmi
chooses its pricey € A;. Firm i’s sales levely; € Y; depends on the price vec-
tor a = (a3,a2) and an unobservable aggregate shgck [0, 1], which follows

a distributionF“(-|a) with density f®(-|a). Given(a,n), we denote the corre-
sponding sales level of firinby y;(a, ). Firmi’s profit isu;(a;,yi) = ayi — Ci (Vi)
wherec;(y;) is the production cost. In this setup, the distribution of sales level
profile y = (y1,y2) conditional on(w,a) is given byn®(-|a), wheren®(y|a) =
fne{ﬁ|y:(yl(a7,~7)7y2(a_ﬁ))} f¥(n|a)dn. Also, firm i's expected payoff at state
givenais g°(a) = T,y (y/a)ui(a, ).

Rotemberg and Saloner (1986) consider a repeated duopoly model where an
aggregate shock is observable to the firms and follows an i.i.d. process. The
model here differs from theirs in that (i) an aggregate shock is not observable
and (ii) its distribution is unknown to the firms. This is a natural assumption in
some economic situations; for example, when the firms enter a new market, they
may not know the structure of the market and hence may not know the exact
distribution of an aggregate shock. This is one of the leading examples of our
general model introduced in Section 2. In Section 5.1 we will apply our main
result to this example and give a condition under which the firms can sustain
collusion even if they do not know the distribution of sales.

In this example, the utility function and signal distribution have very general
forms, and accordingly it is hard to illustrate the idea of our equilibrium construc-

12



tion. In the next two subsections, we consider simpler examples where actions are
perfectly observable, and describe how to construct equilibrium strategies when
players learn the state from private signals. Here we stress that we assume observ-
able actions just to make our exposition as simple as possible. Indeed, as will be
explained, a similar construction is valid even if players observe noisy information
about actions.

3.2 Private Provision of Public Goods

There are two players and two possible state€ so{wi, w,}. In each period,

each player makes a decision on whether to contribute to a public good or not.
Let Ai = {C;,D;} be the set of playei's possible actions, whei@ means con-
tributing to a public good an®; means no contribution. After making a decision,
each player receives a stochastic outpyfrom a finite seZ;. An outputz is pri-

vate information of playeirand its distribution depends on the true statand on

the total investmerd € A. Note that many economic examples fit this assumption,
as firms’ profits are often private information and firms are often uncertain about
the distribution of profits. We also assume that a choice of contribution levels is
perfectly observable to players; thus the set of plaigesignals isZ; = A x Zj,
and®(ola) = 0 for eachw, a, ando = (01,02) = ((&,z1),(a",2)) such that

a # aora’ #a. With an abuse of notation, |et”(za) denote the joint distribu-
tion of z= (z,2) given (a, w); that is, m“(zja) = n*((a,z),(a,z)|a). We do

not impose any assumption on the joint distribution(af z»), so that outputg;
andz, can be independent or correlated. Whemandz, are perfectly correlated,
our setup reduces to the case where outputs are public information.

Playeri’s actual payoff does not depend on the statnd is given by (a, g;) =
Gi(z) —ci(a), whereli(z) is playeri’s profit from an outputy andci(g;) is cost
of contributions. We assune(C) > ¢;(D) = 0, that is, contribution is costly.

As in the general model introduced in Section 2, the expected payoff of firm
| at statew is denoted byg®(a) = S 55 M¥(0la)ui(a;, 0;). Note that a player’s
expected payoff depends on the true stateas it influences the distribution of
outputsz. We assume that the expected payoffs are as in the following tables:

13



C D C D
Cc| 33 |-14 C|33|14
D[4,-1| 0,0 D|41]00

The left table denotes the expected payoffs for stateand the right table for
statew,. Note that the stage game is a prisoner’s dilemma at sbgtend is

a chicken game at state,. This captures the situation where contributions are
socially efficient but players have a free-riding incentive; indeed, in each state,
(C,C) is efficient but a player is willing to chood2 when the opponent chooses

C. Another key feature of this payoff function is that players do not know the
marginal benefit from contributing to a public good and do not know whether they
should contribute, given that the opponent does not contribute. Specifically, the
marginal benefit is low iy, so that a player prefeid to C when the opponent
choose®d, while the marginal profit is high iny so that a player prefefs.

Since actions are observable, one may expect that the efficient payoff vector
((3,3),(3,3)) can be approximated by standard trigger strategies. But this ap-
proach does not work, because there is no static ex-post equilibrium in this game
and how to punish a deviator is not obvious. Note also that the folk theorems of
Fudenberg and Yamamoto (2010) and Wiseman (2012) do not apply here, as they
assume that players obtain public (or almost public) information about the true
state in each period. In this example, players learn the true statdy through
private informationz and it is unclear whether players are willing to cooperate
after learning the true state.

In what follows, we will construct a simple equilibrium strategy with payoff
((3,3),(3,3)), assuming that players are patient. We assume that foriesuth
ac A, there are outputg™ (a) andz*(a) such that

EM@R) g BRE@E

(2 (a)la) (2 (a)la)
wherernt®(-|a) is the marginal distribution of given(w,a). That is, the marginal
distributions ofz are sufficiently different at different states, so that given any
action profilea, there is an output levef’ that has a sufficiently high likelihood
ratio to test for the true state being This assumption is not necessary for the
existence of asymptotically efficient equilibria (see Section 5.2 for details), but it
considerably simplifies our equilibrium construction, as shown below.

(1)

14



In our equilibrium, each player uses a strategy which is implemented by a
two-state automaton. Specifically, playlenses the following strategy:

States: Given any period and given any history, player1 is in one of the
two states, eithex(1) or x(2). In statex(1), playerl choose£ to “reward” player
2. In statex(2), playerl choose® to “punish” player2.

Transition after State x(1): Suppose that playdris currently in the reward
statex(1) so that she choos€stoday. For the next period, play&mwill switch to
the punishment statg2) with some probability depending on today’s outcome.
Specifically, given playe?’s actiona, € A; and playerl’s outputz; € Z;, player
1 will go to the punishment statg2) with probability 3(ap,z1) and stay at the
reward statex(1) with probability 1 — B(az,z). We setB(C,z) = 0 for all z;
that is, playetd will reward player2 for sure if player2 choose€ today.3(D, z)
will be specified later, but we will havg(D,z;) > O for all z1, that is, playerl
will punish player2 with positive probability if playe® choose® today.

Transition after State x(2): Suppose that playdris in the punishment state
X(2) so that she choos&today. For the next period, play&mwill switch to the
reward statex(1) with some probability depending on today’s outcome. Specif-
ically, given (ap,z1), playerl will go to x(1) with probability y(ap,z1) and stay
atx(2) with probability1 — y(ap,z). y(ap,z1) will be specified later, but we will
havey(ay,z1) > 0 for all a, andzy, that is, played will switch to the reward state
with positive probability no mater what play2rdoes.

1-B(az,z1) 1-vy(az,z1)

Statex(1) Statex(2)

PlayC PlayD

Figure 1: Automaton
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The equilibrium strategy here is simple and intuitive. Consider the automa-
ton with the initial statex(1). This strategy asks a player to cooperate until the
opponent deviates, and to switch to the punishment ph@eafter a deviation.

In the punishment phase, she chod3ds punish the opponent, and then returns
to the cooperative phasgl) to forgive the opponent. This “punish-and-forgive”
behavior is commonly observed in the real world.

In what follows, we will show that this punish-and-forgive behavior actually
constitutes an equilibrium if we choose the transition probabilities carefully. The
key idea here is to choose playes transition probabilitie$ andy in such a way
that player?2 is indifferent betwee® andD regardless of playel's current state
of the automaton and of the state of the waddThis means that playeris indif-
ferent betweel® andD after every history, so that any strategy is a best response
to playerl’s strategy. Also, we construct play2s strategy in the same way so
that playerl is always indifferent betwedd andD. Then a pair of such strategies
constitutes an equilibrium, as they are best replies to each other. An advantage of
this equilibrium construction is that a player’s best reply is independent of her be-
lief about the state of the worl@ and of her belief about the opponent’s history, so
that we do not need to compute these beliefs to check its incentive compatibility.
We call such a strategy profitelief-free ex-post equilibriugBFXE).

More specifically, we will choose the transition probabilities in such a way
that the following properties are satisfied:

e If player1is currently in the reward stai€1), then playe’s continuation
payoff from today i3 given any state of the worla, no matter what player
2 plays.

e If player1is currently in the punishment stat€?), then playe2's contin-
uation payoff is2 at w; and% at wp, N0 matter what playez plays.

For eachk = 1,2, let v»(k) denote the target payoff vector of play2given
playerl’s statex(K); thatis,vo(1) = (V3*(1),V52(1)) = (3,3) andva(2) = (V5*(2),V52(2)) =
(2, %), wherevg’ (k) is the target payoff giver(k) andw. Figure 2 describes these
target payoffs and stage game payoffs. The horizontal axis denotes playay-
off at cn, and the vertical axis denotes play¥s payoff atw,. The point(4,4) is
the payoff vector of the stage game wh&)D) is played. Likewise, the points
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(3,3), (—1,1), and(0,0) are generated b{C,C), (D,C), and(D, D), respectively.
The bold line is the convex hull of the set of target payoff vectar§l) andvs(2).

V<202 (47 4)
(3,3)
(2,4
(-1,1
(0,0) 78

Figure 2: Payoffs

When the discount factad is close to one, there indeed exist the transition
probabilities andy such that these target payoffs are exactly achieved. To see
this, consider the case where playlers currently in the reward statg1l) so
that the target payoff is>(1) = (3,3). If player 2 choose<C, then player2's
stage-game payoff today &regardless ofv, which is exactly equal to the target
payoff; hence playet will stay at the statex(1) for the next period, i.e., we set
B(C,z) = Ofor all z;. On the other hand, if playé& choose®, then player2's
stage-game payoff ¥ regardless oév, which is higher than the target payoff. To
offset this difference, playet will switch to the punishment stat€?2) with pos-
itive probability 3(D,z;) > O for the next period. Here the transition probability
B(D,z) > Qs carefully chosen so that the instantaneous gain by playiagd
the expected loss by the future punishment cancel out; i.e., we clfid@se; )
such that

BB(C.0) (1) = 1= 3 T(ZC.D)BOD.2) (1) ~B(2) ()

for eachw. (Note that the left-hand side is the instantaneous gain by pldying
while the right-hand side is the expected loss in continuation payoffs.) The formal
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proof of the existence of sughis given in Appendix A, but the basic idea is to let
B(D,Z?(C,D)) > B(D,z) forall z # Z*(C, D), that is, we ask playefrto switch

to the punishment state with a high probability when the output Ie\@Z(@, D),
which is an indication otv,. The intuition is that the punishment by switching to
the statex(2) is less harsh aiy than atw (note thaty?(2) > v5*(2)), and hence
playerl needs to switch t&(2) more likely atay, to offset playe?’s instantaneous
gain.

Likewise, consider the case where playeis in the punishment state2)
so that the target payoff i&(2) = (2,%). In this case, playet choosedD, so
that no matter what playe&does, playel’s stage-game payoff is lower than the
target payoff regardless @b. So playerl will switch to the reward state(1)
with positive probabilityy(az,z;) > 0 to offset this difference. The proof of the
existence of suclyis very similar to that of3 and is found in Appendix A.

With such a choice o8 andy, player2 is always indifferent betwee@ and
D and hence any strategy of playgrs a best reply. Also, as explained, we con-
struct player2’'s two-state automaton in the same way, so that playisralways
indifferent. Then the pair of these strategies constitutes an equilibrium. In partic-
ular, when both players begin their play from the reward stétg its equilibrium
payoffis((3,3),(3,3)), as desired.

In this efficient equilibrium, players choog€,C) forever unless somebody
deviates td. If player—i deviates and choosE€s playeri punishes this deviation
by switching tox(2) with positive probability and starting to pled. However,
“always playD” is too harsh compared to the target pa;(df,f%), and hence player
i comes back ta(1) with some probability after every period. In the long run, both
players come back t®(1) and play(C,C), because this is the unique absorbing
state of the automaton.

The above two-state automaton is a generalization of that of Ely atich&ki
(2002) for a repeated prisoner’s dilemma with almost-perfect monitoring. The
reason why their equilibrium construction directly extends is that in this example,
the payoffs at different states are “similar” in the sense that for eathe action
C can be used to reward the opponent &ntb punish. When this structure is
lost, a player is not sure about what action should be taken to reward or punish the
opponent, so that state learning becomes more important. In the next example, we
show how the equilibrium strategies look like in such environments.
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3.3 Conflicting Interests

There are two players and two possible statesand w,. In each stage game,
player1’'s action is eithelJ or D, and player2's action is eitheiL or R. They
choose actions simultaneously in each stage game.

In statew,, the stage game is a prisoner’s dilemn(id; L) is efficient butD
strictly dominatedJ andR strictly dominated.. In statewp, the stage game is
also a prisoner’s dilemma, but the role of the actions are reversed. Tt i),
is efficient and U, L) is a Nash equilibrium. The following tables summarize this
payoff structure:

L R L R
ul 11 |-12 ul 00 |2-1
D|2-1 00 D|-1,2 11

Note that the efficient payoff vectd(1,1),(1,1)) is not feasible in a one-shot
game, as players need to choose different action profiles at different states to gen-
erate this payoff. (They need to pléy,L) atw; and(D,R) atwy.)

Suppose that each playiesbserves an action profile and a noisy private signal
z € Z; = {Z*,Z*} about the true state in every period. The probabilitg3fis
% at statew and% at statew,, regardless of which actions players play. Likewise,
the probability ofzi‘*’2 is % at statew, and% at statew, regardless of actions. So
the signalzi“’l indicates that the true state is likely to hg and zi“’2 means that
the true state is likely to bey. Again, this likelihood ratio assumption is not
necessary for the existence of asymptotically efficient equilibria , but it simplifies
our equilibrium construction. We impose no assumption on the joint distribution
of zy andz, so these signals can be independent or correlated.

In this example, the payoff functions are totally different at different states, so
that state learning is necessary to provide proper intertemporal incentives. How-
ever, since players learn the true state from private signals, they may not know
what the opponent has learned in the past play and it is unclear how players create
such incentives. Our goal is to give a simple and explicit equilibrium construction
where players learn the state and adjust their actions. As in the previous exam-
ple, our equilibrium is a BFXE, that is, each player is indifferent between the two
actions given any history and given any state of the warld
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We will construct an equilibrium where playér(player?2) tries to learn the
true statew from private signals at the beginning, and then adjust her play to
choose an “appropriate” action; she choddg4.) when she believes that the true
state iswy, and she choosd3 (R) when she believes that the true statevs
Specifically, played’s strategy is described by the following four-state automa-
ton:

States: Given any period and after any history, playdris in one of the four
statesx(1), x(2), x(3), orx(4). Playerl choosedJ in statesx(1) andx(2), while
she choosed in statesx(3) andx(4). As in the previous example, we denote
by va(k) = (v5*(K),V52(K)) player2's ex-post payoffs of the repeated game when
playerl's play begins with the statgk). Set

v2(1) = (v3*(1),%5%(1)) = (1,0),
V2(2) = (v31(2),¥3%(2)) = (0.8,0.79),
v2(3) = (v3*(3),V3%(3)) = (0.79,0.8),
V2(4) = (v3*(4),v3*(4)) = (0.2).

Roughly, playerl is in statex(1) when she believes that the true statevisand
wants to reward playet; thus player’s target payoff is high atn (vg’l(l) =1),

but it is low atw, (Vo*(1) = 0). Likewise, playerl is in statex(4) when she
believes that the true stateds and wants to reward player In states(2) and
X(3), playerlis still unsure aboutv; she moves back and forth between these two
states for a while, and after learning the true stateshe moves ta(1) or x(4).
The detail of the transition rule is specified below, but intuitively, when player
1 gets convinced that the true statews, she will move tox(1) and choose the
appropriate actiob). Likewise, when playet becomes sure that the true state is
oy, she will move tox(4) and choos®. This “learning and adjustment” allows
player2 to obtain high expected payoffs at bath andw, when playel is begins
her play fromx(2) or x(3), as shown in Figure 3.

Transitions after x(1): If player 2 choosed. today, then playel stays at
x(1) for sure. If player2 choosesR today, then playefl switches tox(4) with
probabilityl;d‘s, and stays at(1) with probability1 — °
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(0,1) (0.79,0.8)

(0.8,0.79)
(1,0)
Vg
(27 _1)

Figure 3: Payoffs

The idea of this transition rule is the following. When plagerthoosed., the
stage game payoff for playeris (1,0), which is exactly the target payo#p(1),
so that played stays atx(1) for sure. On the other hand, when plagsthooses
R, the stage game payoff for play2is (2, —1), which is different from the target
payoff. In this case player moves tox(4) with positive probability to offset this
difference.

Transitions after x(2): Suppose that playe? choosed. today. Ile‘*’l IS
observed, playet goes tox(1) with probability(l$)117 and stays ax(2) with
the remaining probability. I£* is observed, then she goes@) with probability
(1"24740 and stays at(2) with the remaining probability. That is, playgmoves
to x(1) only when she observe§* and gets more convinced that the true state is
wr.

Suppose next that play@rchooseR today. In this case, ii‘l*’l is observed,
playerl goes tax(3) with probability(l_T‘s)61 and stays at(2) with the remaining
probability. If z(l*’2 is observed, then she goesx(@®) with probability(l%)238
and stays ax(2) with the remaining probability. Note that play&will not move
to x(1) in this case regardless of her sigagal The reason is that when play2r
chooseR, her stage-game payoff ay is 2, which is too high compared to the
target payoff; to offset this difference, playkneeds to give lower continuation

payoffs to playe2 by moving tox(3) rather tharx(1).
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Transitions after x(3): The transition rule is symmetric to the one afté2).

Suppose that playet choosesR today. Ile‘"2 is observed, playet goes tox(4)

with probability (1"?117 and stays ax(3) with the remaining probability. It‘l*’l

is observed, then she goesd@) with probability% and stays ax(3) with
the remaining probability.

Suppose next that play@rchoosed. today. Ifz‘l*’Z is observed, playet goes

to x(2) with probability(l’T‘S)61 and stays ax(3) with the remaining probability.

If Z}* is observed, then she goesd@) with probability(l%)238 and stays at(3)

with the remaining probability.

Transitions after x(4): The transition rule is symmetric to the one aftet).
If player 2 chooseRR today, then stay at(4). If player2 choosed. today, then go
to x(1) with probability 152, and stay ax(4) with probability 25

Statex(2) Statex(3)

PlayU PlayD

Only if z = Z* Only if z = ;2

Onlyif R
Statex(1) Statex(4)

PlayU PlayD
Only if L

Figure 4: Automaton

Simple algebra (like (2) in the previous example) shows that giveruaagd
x(k), player?2 is indifferent betweer andR and her overall payoff is exactly
vy (k). This means that any strategy of the repeated game is optimal for player
2, and in particular, if playel’s initial state isx(2), then player2’s overall pay-
off is (0.8,0.79). We can construct play&'s automaton in the same way, and
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it is easy to see that a pair of these automata is an equilibrium of the repeated
game. When both players begin with initial stad®), the equilibrium payoff

is ((0.8,0.8),(0.79,0.79)), which cannot be achieved in a one-shot game. This
example shows that BFXE is useful even when the payoff functions are totally
different at different states. Note that the equilibrium strategy here takes a simple
form of “learning and adjustment,” which is seemingly a reasonable play when
there is uncertainty of the underlying payoff structure. What we found is that if
the adjustment process is carefully chosen, it actually constitutes an equilibrium.

A natural question here is if there are more efficient equilibria, and in particu-
lar, if we can approximate the payoff vectdd, 1), (1,1)). The main reason why
our equilibrium payoff is bounded away froffil, 1), (1,1)) is that although play-
ers can obtain precise information about the true stabe the long run through
private signals, they do not use that information in an efficient way. Too see this,
note that in the above equilibrium, a player’s continuation strategy depends only
on the current state of the automaton and today’s outcome; that is, private signals
in the past play can influence a player’s continuation play only through the current
state of the automaton. But there are only four possible statés &(2), x(3),
or X(4)) in the automaton, which means that they are less informative about
than the original private signals. (In other words, the state of the automaton can
represent only coarse information aboa) Accordingly, players fail to play an
efficient action with a non-negligible probability. For example, even if the true
state iswy, the probability that she reaches the stai) in the long run condi-
tional on the true statey and the initial state(2) is bounded away from zero.

This problem can be solved by considering an automaton with more states; if
we increase the number of states of the automaton, then information classification
becomes finer, which allows us to construct more efficient equilibria. For example,
there is an automaton with six states which generates the following pdyoffs:

"These payoffs are generated by the following automaton:
Actions: Playerl choosed) in state(1), x(2), andx(3) andD in statex(4), x(5), andx(6).
Transitions after x(1): If player 2 choosed. today, then playel stays atx(1) for sure. If

player2 chooseR today, then playel switches tox(6) with probability%, and stays ax(1)

with probability 1 — 35°.
Transitions after x(2): Suppose that playet choosed. today. Ifzi"l is observed, playet
goes tox(1) with probability@ and stays ax(2) with the remaining probability. Iti"2 is

observed, then she goesx(8) with probability %)1890 and stays ak(2) with the remaining
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Va(1) = (V3%(1),V52(1)) = (1,0),

V2(2) = (V51(2),v5%(2)) = (0.93,0.9),
V2(3) = (V31(3),V5%(3)) = (0.927,0.91),
Vao(4) = (V3%(4),V52(4)) = (0.91,0.927),
V2(5) = (V51(5),v52(5)) = (0.9,0.93),
v2(6) = (V3"(6),V52(6)) = (0,1).

We can show that as we increase the number of states of an automaton, more effi-
cient payoffs are achievable and the efficient pay@ff1),(1,1)) are eventually
approximated. Also there are asymptotically efficient equilibria even when we
consider a general signal distribution; see Section 5.2 for more details.

Remark 1. In this section, we have looked at games with observed actions, but a
similar equilibrium construction applies to games with private and almost-perfect
monitoring, where each player does not observe actions directly but receives pri-
vate information about actions with small noise. The idea is that even if small
noise is introduced to the monitoring structure, we can slightly perturb the target
payoffs{vi(k)} and the transition probabilities so that the resulting automaton is
still an equilibrium. The logic is very similar to the one for belief-free equilibria
(Ely and Valimaki (2002) and EHO) and hence omitted.

probability. Suppose next that play2rchoosesk today. In this case, ii‘l*’l is observed, player
1 goes tox(3) with probabllltyL1570 and stays ax(2) with the remaining probability. %>
is observed, then she goesx@) with probab|I|ty (1= 5 0 and stays ax(2) with the remaining
probability.

Transitions after x(3): Suppose that player choosed. today. Ile‘"l is observed, playet
goes tox(2) with pl’ObEibI“tyM and stays ax(3) with the remaining probability. 1£;? is
observed, then she goesx@!) with probablllty (1= (?1;095 and stays ak(3) with the remaining
probability. Suppose next that play2rchoosesR today. In this case, it‘l"l is observed, player
1 goes tox(4) with probablhty (1-0)236 5 stays ax(3) with the remaining probability. 1£>

517
is observed, then she goesdd) with probablllty%g747 and stays ax(3) with the remaining

probability.
The specification of the transitions aftdl), x(5), X(6) is symmetric so that we omit it.
8The formal proof is available upon request.
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4 Belief-Free Ex-Post Equilibrium

In the previous section, we have constructed equilibrium strategies where each
player is indifferent over all actions given any state of the wandand given
any past history of the opponent. An advantage of this equilibrium construction
is that we do not need to compute a player’s belief for checking the incentive
compatibility, which greatly simplifies the analysis.

In this section, we generalize this idea and introduce a notiteloéf-free ex-
post equilibrig which is a special class of Nash equilibria. Given a straseg\§,
lets |h} denote the continuation strategy inducedsbyhen playei’s past private
history wash! € H!. For notational convenience, Igt; denote the continuation
strategy profile given a histotty, i.e.,s|y = (s |h})ie|.

Definition 1. A strategy profiles € Sis abelief-free ex-post equilibriuror BFXE
if 5|y is a best reply t®_i|;  in the infinitely repeated game with the true state
wforeachi €I, we Q,t >0, andht € Ht,

In BFXE, a player’s best reply does not depend on the true state or the op-
ponent’s private history, so that her belief about the state and the past history is
payoff-irrelevant. Thus we do not need to compute these beliefs for the veri-
fication of incentive compatibility, which exactly captures the main idea of the
equilibrium construction in the previous section. BFXE reduces to belief-free
equilibria of EHO in known-state games whef2| = 1. Note that repetition of
a static ex-post equilibrium is a BFXE. Note also that BFXE may not exist; for
example, if there is no static ex-post equilibrium and the discount factor is close
to zero, then there is no BFXE.

Given a BFXEs, let Rt C A denote the set of all (ex-post) optimal actions for
playeri in periodt, i.e., Rf is the set of all; € A such that§(hi0) = g; for some
§ € S such tha§ is a best reply te_i| -1 given anyh'>! andw. LetR = xi¢R,,
and we call the sé®' theregime for peﬁbd. Note that the regimB is non-empty
for any periodt; indeed, if an actiorg; is played with positive probability after
some historyhi ~1, then by the definition of BFXEg is an element oR. The
equilibrium strategies in the previous section are a special class of BFXE such
that the corresponding regimes are giverRby= A for all t, that is, all actions are
ex-post optimal in every period. For other BFX®,can be a strict subset &;

25



e.g., when the stage game has a strict ex-post equilibaiuptaying a in every
period is a BFXE of the repeated game, and it induces the regime sequence such
thatR = {a} for all i andt. Let.% be the set of all possible regimes, i.e.,

Z = xia P(A) = xic1 (25 \{0}).

EHO show that allowing access to public randomization simplifies the analysis
of belief-free equilibria. Here we follow this approach, and study BFXE for games
with public randomization. We assume that players observe a public gignél
at the beginning of every period, wheYeis the set of possible public signals.
Public signals are i.i.d. draws from the same distribuppan AY. Lety! denote a
public signal in period, and with abuse of notation, I6t= (y*,af, g)._, denote
playeri’s history up to period. Likewise, letht = (y',(af, o7)ic)t_, denote a
pair of private and public histories up to period_etH! be the set of al!, andH*
be the set of alht. In this setting, a player’s play in peridd- 1 is dependent on
her own history up to periodand a public signal at the beginning of period 1.

Thus a strategy for playeris defined as a mapping : Ui o(H! x Y) — AA,.
Lets ](h},ym) denote the continuation strategy of playevhen her history up to
periodt washt and the public signal at the beginning of pertog1 wasy**2.

As in EHO, we consider the case whate- #; this is the case where a public
signaly suggests a regime in each period. Betdenote the set of all strategiss
such that playerchooses her action from a suggested regime in each period. That
is, §' is the set of all such thaty , g s(ht~1 R)[aj] = 1 for eacht, hi~%, andR

Definition 2. Given a public randomizatiop € AZ, a strategy profils € Sis a
stationary BFXE with respect fo(or BFXE with respect t@in short) if (i) s € §
for eachi and (i) § |hio7R is a best reply ta_; |(ht_—il7R) in the infinitely repeated game
with the true stateo for eachi, w, t, h‘_*il, Rand§ € §'.

Clause (i) says that each playezhooses her action from a suggested regime
in each period. Clause (ii) says that choosing a recommended action is optimal
given any statev and given any past histor@htjil,R). In a stationary BFXE,

a regime is randomly chosen according to the same distribution in each period;
this recursive structure allows us to use dynamic programming techniques for the
analysis.
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An important feature of stationary BFXE is that in the limit@as- 1, the pay-
off set of BFXE without public randomization is equal to the union of the sets of
stationary BFXE payoffs over app € AZ. This is true because public random-
ization can substitute any regime sequefiBg}® ; induced by BFXE without
public randomizatiofd. This feature means that characterizing the limit payoff set
of BFXE without public randomization reduces to computing the limit set of sta-
tionary BFXE payoffs for eaclp. In what follows, we will characterize the set of
stationary BFXE payoffs.

Given a discount factod € (0,1) and givenp € AZ, let EP(J) denote the
set of BFXE payoffs with respect tp, i.e., EP(J) is the set of all vectors =
(V) i,w)el xo Such that there is a stationary BFX$with respect top satisfying
(1-0)E[y—1 0 1g¥(a")|s, w, p] = v¥ for all i andw. Note thatv € EP(5) spec-
ifies the equilibrium payoff for all players and for all possible states. Also, for
eachi, let Eip(5) denote the set of play&s BFXE payoffs with respect tp, i.e.,
EP(8) is the set of alvj = (V?),ecq such that there is a BFXE with respectpio
such that players equilibrium payoff at statev is v for eachc.

The following proposition asserts that given public randomizappstation-
ary BFXE are interchangeable. To see the reasos,dats be stationary BFXE
with respect tgp. By the definition of stationary BFXE, choosing a recommended
action in every period is a best replyo;|j; i for anyt andﬁt_i, and thus playing
S|t is @ best reply té_i| for anyt, hf, andht ;. Likewise§|y; is a best reply
to s_i|j i for anyt, ht, andﬁt_i. Therefore botl{s;, %) and(&;,s,) are stationary
BFXE.

Proposition 1. Let p € AZ, and lets and S be stationary BFXE with respect to
p. Then, the profilegs;, $) and (81, s;) are also stationary BFXE with respect to

p.

The next proposition states that given public randomizapidhe equilibrium
payoff set has a product structure. This conclusion follows from the fact that
stationary BFXE are interchangeable.

Proposition 2. For anyJ € (0,1) and anyp € A%, EP(8) = xicEP(d).

9The proof is very similar to the on-line appendix of EHO and hence omitted.
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Proof. To see this, fixp € AZ, and lets be a stationary BFXE with payoff =
(v1,v2), and$§ be a stationary BFXE with payoff = (V1,%). Since stationary
BFXE are interchangeablés;, %) is also a stationary BFXE, and hence plager

is indifferent betwees; and$; against,. This implies that playet’s payoff from
(s1,%) is equal tov;. Also, player2 is indifferent betwees, and$, againsts;, so

that her payoff from(s;, %) is equal tov,. Therefore(s;,$,) is a stationary BFXE

with payoff (V1,v,). Likewise,(51,s) is a stationary BFXE with payoffvy, V»).

This argument shows that the equilibrium payoff set has a product structure, i.e.,
if v andV are equilibrium payoffs thef¥y,v;2) and (vq,V) are also equilibrium
payoffs. Q.E.D.

Since the equilibrium payoff s&P(d) has a product structure, one may expect
that we can characterize the equilibrium payoff set for each player separately.
This idea is formalized as “individual ex-post self-generation” in Appendix D.1.1,
which is useful to establish Proposition 3 in the next section.

Remark 2. One implication from the interchangeability of BFXE is that each
player is willing to play an equilibrium strategy even if she does not have the
correct belief about the opponent’s strategy. To be precise, givem\Z, let

S® = xS be the set of BEXE strategy profiles, whe§®be the set of BFXE
strategies of player Then Proposition 1 says that playes willing to play an
equilibrium strategy € Sp as long as the opponent chooses her strategy from the
setSEi. That is, players are willing to play a BFXE as long as they have correct
beliefs about the randomizatigne A% of regimes, but not about strategies.

Remark 3. It may be noteworthy that Propositions 1 and 2 are true only for two-
player games. To see this, keandS be stationary BFXE with respect in a
three-player game, and consider a prof8g s,s3). As in the two-player case,

§ is a best reply tdsp,s3). However,s; is not necessarily a best reply (8, s3),
since$; can give right incentives to play@ronly when playeB playss;. There-

fore (81,,53) is not necessarily a BFXE. Since Propositions 1 and 2 are key
ingredients in the following sections, it is not obvious whether the theorems in
the following sections extend to games with more than two players. A similar
problem arises in the study of belief-free equilibria in known-state games; see
Yamamoto (2009).
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5 State-Learning Theorem

5.1 General Case

In Section 3, we have focused on some examples and shown that there are BFXE
where players learn the true state from private signals and adjust their continuation
play. In this section, we extend the analysis to a general setup, and show that if a
certain informational condition is satisfied, the set of BFXE payoffs in the limit as

0 — 1is equal to the product of the limit sets of belief-free equilibrium payoffs

of the corresponding known-state games; that is, there are BFXE in which players
eventually obtain payoffs almost as if they commonly knew the state and played a
belief-free equilibrium for that state. This result is not an immediate consequence
of individual learning, because even if players have learned the true state from
past private signals, they do not know what the opponent has learned in the past
play and hence it is not obvious whether they are willing to play an equilibrium of
the known-state game.

We begin with introducing notation and informational conditions imposed in
this section. Player i's action planis @; = (aR)gres such thataR € AR for
eachRe Z. In words, an action pla@; specifies what action to play for each
public signalR € #, in such a way that the specified (possibly mixed) act'r&w
is chosen from the recommended 2€R%;. Letﬁq denote the set of all such player
i's (possibly mixed) action plang;. That is,A = xge2 AR

Let 7% (&, 0-i) = (% (a-i,0-i|&,0-i))@a o) denote the probability dis-
tribution of (a_ij,0_;) when players play the action profile;, a_;) at statew.

That is, % (a_i, 0_i|a;,a_i) = a_i(a_j) Y ges, (05, 0-i|a) for each(a_j, g_;).
Given an action plad_;, w, andR, letM“R(a_;) be a matrix with rowst® (a;, aR.)
for all gy € A. Let I'I(f*i”&))’R(a_i) be a matrix constructed by stacking two matri-
ces,N“R(a_;) andn®Ra_).

Definition 3. An action pland_; hasindividual full rank for w at regimeR if
I'I‘f;R(a_i) has rank equal ttA|. An action pland_; hasindividual full rankif it

has individual full rank for alkvo andR.

Individual full rank implies that playeri can statistically distinguish player
i's deviation using a paifa_i,0_;) of her action and signal when the true state

29



is w and the realized public signal B Note that this definition is slightly dif-
ferent from those of Fudenberg, Levine, and Maskin (1994) and Fudenberg and
Yamamoto (2010); here we consider the joint distribution of actions and signals,
while they consider the distribution of signals.

Definition 4. For eachw € Q, & # w, andR, an action plar@_; hasstatewise full
rank for (e, &) at regimeR if 1'““"R(@_;) has rank equal tajA;|.

Statewise full rank assures that playéarcan statistically distinguisbv from
@ irrespective of player's play, given that the realized public signalRs Note
that statewise full rank does not pose any restriction on speed of learning; it may
be that the signal distributions at staéere close to those at stafg giving rise to
a slow learning process. But it does not pose any problem on our analysis, as we
consider patient players. Again the definition of statewise full rank here is slightly
different from that of Fudenberg and Yamamoto (2010), as we consider the joint
distribution of actions and signals.

Condition IFR. For each, every pure action plad_; has individual full rank.

This condition is generically satisfied if there are so many signalgZhgt>
|Ai| for eachi. Note that under (IFR), every mixed action plan has individual full
rank.

Condition SFR. For eachi and (w, @) satisfyingw # @, there isd_; that has
statewise full rank for this pair at some regiRe Z.

This condition (SFR) requires that for each pais, @), players can statisti-

cally distinguish these two states. Note that (SFR) is sufficient for each player to
learn the true state in the long run, even if there are more than two possible states.
To identify the true state, we ask a player to collect private signals and to perform
a statistical inference to distinguish and éo for each possible paifw, ¢) with

w # @. Under (SFR), the true state will be selected in the all relevant statistical
tests; e.g., if there were three possible states and the true statewyehen w,

would be selected in the statistical test fov;, ) and in the one fofw, w;).
Therefore, if there is a state which is selected in all statistical tests, then she can
conclude that it is the true state. One remark is that while each player can learn the
true state under (SFR), players do not share any common information, and hence
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itis unclear if players can coordinate their play state by state. (In Appendix B, we
provide an example of an equilibrium where each player privately learns the state
but common learning fails.)

Given w, let G¥ denote the infinitely repeated game where players know that
the true state isv. Consider belief-free equilibria of EHO in this known-state
gameG®, and letE“:P(d) be the payoff set of belief-free equilibria with respect
to public randomizatiorp in the gameG® given d. Corollary1 of EHO shows
that, as for BFXE, the payoff set of belief-free equilibria has a product structure for
eachp; that is,E®P(6) = xic|[M*P(5),M*P(8)]. HereM®P(5) andm®P(5)
are the maximum and minimum of playiés payoffs attained by belief-free equi-
libria with respect tgp. Let M*P andm®P be the limit ofM*P(5) andm™P(5)
asé — 1, i.e.,, M”P andm®P denote the maximum and minimum of play&r
payoffs of belief-free equilibria with respect pon the limit aséd — 1. EHO show
that we can computél®P andm®™P by simple formulas. (For completeness, we
give these formulas in Appendix C.)

The main result of the paper is:

Proposition 3. If (IFR) hold, thenlims_,; EP(8) = X weq Xiel [M™P,M*P] for
eachp € A such that ()M > m™P for all i and w and (i) for eachi and
(w, '), there isd_; that has statewise full rank fdiw, ') at some regim& with
p(R) > 0. Hence, if (IFR) and (SFR) hold and if therggs A% such thaMi“”p >
mP for all i and w, thenlim_,;1 E(8) = Upcaz X wea Xier (M7, M{P].

This proposition asserts that given public randomizaiorihe limit set of
BFXE payoffs is isomorphic to the set of maps from states to belief-free equi-
librium payoffs. (Recall that the setic[m™P,M*P] denotes the limit set of
belief-free equilibrium payoffs given public randomizatipr) In other words,
there are BFXE where players eventually obtain payoffs almost as if they com-
monly learned the state and played a belief-free equilibrium for that state. Note
that this result reduces to Proposition 5 of EHQX}f = 1.

For example, consider the secret price-cutting game in Section 3.1. Assume
that if the firms knew the distribution of an aggregate shgc¢khere would be
a belief-free equilibrium where the firms earn payoffs Pareto-dominating a static
Nash equilibrium payoff; i.e., we assume that therg such thatM“P > m»P
andM*P > g@(aNE®) for all i andw, whereaNE is a Nash equilibrium of the
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stage game whew is known. Then the above theorem says that even though the
firms do not know the distribution af, they can still maintain the same level of
collusion under (SFR).

An important question is when sugh exists, and a sufficient (though not
necessary) condition is that the uncertainty on the distributiopisf‘small.” To
see this, suppose that the monitoring structure at different states are “close” in that
|m®(g)a) — n®(gla)| < ¢ for all a, 0, w, and® wheree > 0 is a small number.
Assume that for some state® € Q, there is a belief-free equilibrium where the
firms earn payoffs Pareto-dominating a static Nash equilibrium payoff, that is,
assume that for some* andp*, M® P > m?" P andM® P > g®(aNE©") for
eachi. From EHO, we know tham”P andmP are continuous with respect
to n® almost everywhere; thus whenis sufficiently small, generically we have
MPP" > m®P" and M*P" > g@(aNE®) for all i and w, which shows thap*
satisfies the assumption. This shows that if the uncertainty is small, the firms can
earn the same profit as in the case with no uncertainty. Note that this is not a
trivial result, because typically equilibrium strategies of EHO depend on the fine
details of the signal distribution and a belief-free equilibrium at staités not an
equilibrium at statev # w* even if the uncertainty is small.

To give the intuition behind Proposition 3, let us focus on BFXE where players
are indifferent over all actions in any period and any stétl our equilibria, (i)
playeri makes player-i indifferent over all actions given any history and given
any state, and (ii) playarcontrols player-i’s payoffs in such a way that player
—i’'s continuation payoffs at stat@® is close to the target payoff when playier
has learned that the true state is likely tode Property (ii) implies that player
i's individual state learning is sufficient for playeti’s payoff of the entire game
to approximate the target payoffs state by state. Thus, if each player can indi-
vidually learn the true state, then both players’ payoffs approximate the target
payoffs state by state (although the state may not necessarily be an approximate
common knowledge). Also, players’ incentive compatibility is satisfied, as prop-
erty (i) assures that each player’s play is optimal after every history. Note that
in these equilibrium strategies, playi&r individual state learning is irrelevant to
her own continuation payoffs, and influences play€s payoffs only. Indeed, it

10To be precise, these are stationary BFXE with respept to A%, wherep” is the unit vector
that puts one to the reginie= A.
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follows from (i) that playeli cannot obtain better payoffs by changing her action
contingently on what she learned from the past history. Therefore, she is willing
to use information about the true state in order to give appropriate payoffs to her
opponent with no concern about her own payoffs.

The formal proof of Proposition 3 is provided in Appendix D, and it consists
of two steps. In the first step, we consider a general environment (i.e., we do
not assume (IFR) or (SFR)) and develop an algorithm to compute the limit set of
BFXE payoffs,lims_1EP(d). Since we consider games with two or more pos-
sible states, there is often a “trade-off” between equilibrium payoffs for different
states; for example, if a player has conflicting interests at different states, then
increasing her equilibrium payoff for some states may necessarily lower her equi-
librium payoff for other state$! To take into account the effect of this trade-off,
we build on the linear programming (LP) technique of Fudenberg and Yamamoto
(2010), who characterize the limit payoffs of ex-post equilibria in repeated games
with public and unknown monitoring technolod.Specifically, for each player
i and for each weighting vectdy = (A®),cq € R, we consider a static LP
problem whose objective function is the weighted sum of plagerayoffs at dif-
ferent states, and we demonstrate that the limit set of BFXE payoffs for player
characterized by solving these LP problem for all weighting vecipréiere the
trade-offs between equilibrium payoffs for different states are determined by LP
problems for “cross-state directiong; that have non-zero components on two
or more states; roughly, low scores in these LP problems mean more trade-offs

HHere is a more concrete example. Suppose that there are twocstaaes w,. In each stage
game, playef chooses eithdd or D, and playe? choosed. or R. After choosing actions, player
1 observes both the true state and the actions played, while ajeserves only the actions. The
stage game payoffs are as follows:

L R L R
Uuj20]|10 Uu|ll10]|20
D|[00|00 D|00|00

Note thatD is dominated by at both states, and hence playalways chooses in any BFXE.
On the other hand, any strategy profievhere playerl chooses the pure actidsh after every
history is a BFXE. Therefore, for any, player1's equilibrium payoff setE;(d) is a convex
combination of(1,2) and(2,1). So increasing playet's equilibrium payoff at statey lowers her
equilibrium payoff atuwy.

?Fudenberg and Levine (1994) proposes a linear programming characterization of the equilib-
rium payoff set in repeated games with public monitoring, and Fudenberg and Yamamoto (2010)
extend it to the case where the monitoring structure is unknown.
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between payoffs for different states. See Appendix D.1.2 for detalils.

Then in the second step of the proof, we apply the algorithm developed in the
first step to games that satisfy (IFR) and (SFR). We show that (i) under (SFR), the
LP problems for all cross-state directions give sufficiently high scores and hence
there is no trade-off between equilibrium payoffs at different states, and (ii) under
(IFR), the LP problems for other directions (“single-state directions”) reduce to
the ones which compute the boundls”® and m*P of belief-free equilibrium
payoffs of the known-state games. Combining these two, we can conclude that
lims_1 EP(8) = Xgeq Xicl [MPP,M®P]. The proof of (i) is similar to the the
one by Fudenberg and Yamamoto (2010), and its intuition is simple; under (SFR),
player—i can learn the state in the long run and can eventually use different actions
at different states, which means that there is no trade-off between ptagayoffs
across states. The proof of (ii) is slightly different from the one by Fudenberg and
Yamamoto (2010). The key in our proof is that we define individual full rank using
joint distributions of(a_;, 0_;) so that all mixed actions have individual full rank
under (IFR). Then as shown in Lemma 6 in Appendix D.2, the result immediately
follows. On the other hand, Fudenberg and Yamamoto (2010) define individual
full rank using distributions of signals only, and with this definition, some mixed
action profiles may not have individual full rank even if all pure action profiles
have individual full rank. As a result, they need a more careful analysis in order
to prove the counterpart of (ii).

Remark 4. As a corollary of Proposition 3, we can derive a sufficient condition
for the existence of BFXE with patient players. That is, there are BFXE if players
are patient, (IFR) and (SFR) hold, and therepisuch thatM*® > m®P for all

i andw. Note that the last conditiorM®P > m*P for all i andw” implies that
there are belief-free equilibria with respectdgdor each stateo.

5.2 Revisiting the Examples in Section 3

As an application of Proposition 3, we revisit the public goods game in Section
3.2. We have already shown that there are efficient equilibria in the public goods
game if the likelihood ratio condition (1) is satisfied. Now we apply Proposition
3 to this example to show that the likelihood ratio condition (1) is not necessary
for the existence of asymptotically efficient equilibria. Specifically, instead of the
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likelihood ratio condition (1), we assume that for eactiere is an actiog; such

that (™ (z|aj,a-i))5 # (2(z|ai,ai)), for eacha_j; this assures that player

i can learn the true stai® from observed signals regardless of the opponent’s
play. We show that there are asymptotically efficient equilibria under this weaker
assumption.

It is easy to see that (SFR) holds under this assumption. Note also that (IFR)
is satisfied in this example, as actions are observable. Hence, Proposition 3 ap-
plies and the limit set of BFXE payoffs is equal to the product of the belief-
free equilibrium payoff sets of the known-state games; in particular, we have
X weq Xiel [M>PMPP] C lims_,,E(8) for eachp. EHO show that when ac-
tions are observable, the bourd§"P andmP of belief-free equilibrium payoffs
are computed by the following simple formul&s:

w,p __ . o |
s RGZ% P(R) A I A (a,0-) @)
and
"= o1t (a,a). 4
m Rez/ p(R) min  maxgf(ay,a-i) @

We use these formulas to compute the BFXE payoffs in this example. Con-
sider p € A% such thatp(A) = 1 and p(R) = 0 for otherR. From (3) and
(4), we haveMP* = MP“2 = 3 mP® = 0, andmP*2 = 1 for eachi. Hence
Xiel([0,3] x [1,3]) C lims_1 E(d), which implies that there is a BFXE approx-
imating ((3,3),(3,3)) for sufficiently larged. That is, efficiency is achieved for
sufficiently highd even if the likelihood ratio condition (1) is not satisfied. Also,
it is easy to see that the result extends to the case where the payoff fugiction
is perturbed; as long as the payoff matrix is a prisoner’s dilemma, &nd is a
chicken game atw,, the payoff vectog(C,C) = (g*(C,C)); », can be approxi-
mated by a BFXE.

Likewise, we can apply Proposition 3 to the example in Section 3.3 to show
that there are asymptotically efficient equilibria. Recall that in Section 3.3, we
construct a BFXE where players learn the state, but its equilibrium payoff is

BIn words, Mi’”’p is equal to playei's worst payoff at statev, given that player-i tries to
reward playef, and given that players have to choose actions from a recommended set. Likewise,
m‘*"p is equal to player's maximum payoff atv, given that player-i tries to punish playei, and

given that player-i has to choose an action from a recommended set.
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bounded away from the efficient paydffl,1),(1,1)). Now we show that there
are BFXE approximating the payofi{1,1),(1,1)). To do so, note that both
(IFR) and (SFR) are satisfied in this example, so that from Proposition 3, we
havex geq Xiel [M™P,M?P] C lim5_, E(8) for eachp. Note also that, since ac-
tions are observabldd®P andm®P are computed by (3) and (4), and we have
M“P = 1 andm®P = 0 for p such thatp(A) = 1. Combining these two obser-
vations, it follows that there is a BFXE which approximaté 1), (1,1)) when

0 is large enough; i.e., the efficient outcorti&, 1), (1,1)) can be approximated

by BFXE. Also, as in the public goods game, the same result holds even if we
allow more general signal structures; specifically, the likelihood ratio condition
n®(z¥)a) = % is dispensable, and the signal spdces not necessarily binary. All

we need here is (SFR), which is satisfied as long as there is an acsaoh that

(T (zlai, 1))z # (% (zlai.a.1)) for eacha .

5.3 Comparison with Fudenberg and Yamamoto (2010)

This paper investigates the effect of uncertainty about the monitoring structure in
repeated games with private monitoring. Fudenberg and Yamamoto (2010) study
a similar problem in repeated games with public monitoring, that is, they con-
sider the case where players observe public signals in every period. They find a
sufficient condition for the folk theorem; i.e., they show that under some informa-
tional condition, any feasible and individually rational payoff can be achievable
when players are patient. This means that there are equilibria in which players
eventually obtain payoffs almost as if they commonly knew the state and played
an equilibrium for that state. Their approach and ours are similar in the sense
that both look at ex-post equilibria and characterize the limit equilibrium payoffs
using linear programming problems. However, our state-learning theorem is not
a corollary of Fudenberg and Yamamoto (2010). Indeed, how players learn the
state and use that information in BFXE is different from the one in Fudenberg and
Yamamoto (2010) in the following sense.

The key in Fudenberg and Yamamoto (2010) is to look at public strategies
where players’ play depends only on past public signals. This means that players
ignore all private information such as the first- or higher-order beliefs ataput
instead, they perform a statistical test about the true staising public signals
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and determine their continuation play. In other words, players form a “publicly
observable dummy belief” about the true statevhich depends only on public
information, and effectively adjust their play. This allows players to coordinate
their play perfectly, and since the publicly observable belief converges to the true
statew, the target payoff can be achieved state by state. Also, players have no
incentive to deviate because any unilateral deviation will be statistically detected
and hence will be punished in future. Note that the same idea is used in Wiseman
(2012), who studies the case where actions are observable and players receive
both public and private signals about the true state. He proves the folk theorem by
constructing equilibria where players compute a public dummy belief and adjust
their continuation play while all private signals are ignored; his constructive proof
illustrates the usefulness of a public dummy belief more explicitly than the non-
constructive proof of Fudenberg and Yamamoto (2010).

When we consider private monitoring, the above idea does not work because
there is no public information; players cannot form a public dummy belief and
they need to use private signals to learn the true state. Thus in general, players’
higher-order beliefs are relevant to their incentives, which makes the analysis in-
tractable. To avoid such a complication, we consider equilibria where each player
makes her opponent indifferent over the relevant actions given any history. This
belief-free property assures that players’ higher-order beliefs are irrelevant to best
replies and incentive compatibility is automatically satisfi&@®f course, requir-
ing players to be indifferent comes at a cost in the sense that it is much stronger
than sequential rationality; specifically, we need to find a strategy profile which
satisfies all the indifference conditions independently of the true taldonethe-
less, we find that this requirement still leaves enough strategies so that BFXE can
support many non-trivial payoffs (including Pareto-efficient outcomes) if (SFR) is
satisfied so that players can individually learn the true state. In other words, our
result shows that ex-post equilibria work nicely even if we look at the case where

Indeed, we can formally show that players’ higher-order beliefs are irrelevant to the set of
BFXE payoffs in the following sense. As shown in Appendix D.1.1, plajgesquilibrium payoff
set givend is the largest fixed point of the operaIBI?, and this operator depends on the signal
distribution 7t only through the marginal distributiomn_j. This means that the equilibrium payoff
set is the same even if the correlation between private signals changes and players’ higher-order
beliefs are perturbed. (Note that a change in the correlation influences players’ first-order beliefs
as well, but the above result shows that such perturbations of first-order beliefs are irrelevant to
the equilibrium payoff set.)
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players learn the state from private signals (so that they cannot coordinate their
play) and even if we impose many indifference conditions.

In addition to the issue discussed above, note that we explicitly construct
BFXE in some examples. With these constructions, it is easy to see how play-
ers learn the true state from noisy signals in ex-post equilibria. Fudenberg and
Yamamoto (2010) do not provide such a result.

6 Conditionally Independent Signals

6.1 BFXE and Review Strategies

In repeated games with private monitoring and with a known state, the set of
belief-free equilibrium payoffs is typically a strict subset of feasible and individ-
ually rational payoff set. To attain a larger payoff set, several papers combine
the idea of review strategies and belief-free equilibb@lief-free review-strategy
equilibria of Matsushima (2004), EHO, Yamamoto (2007), and Yamamoto (2012));
this approach works well especially for games viiiithe pendent monitoringvhere
players observe statistically independent signals conditional on an action profile
and an unobservable common shock. For example, the folk theorem is established
for the repeated prisoner’s dilemma with independent monitoring.

The idea of review strategies is roughly as follows. The infinite horizon is
regarded as a sequence of review phases with lehgtithin a review phase,
players play the same action and pool private signals. Aftemperiod play, the
pooled private signals are used to test whether the opponent deviated or not; then
the law of large numbers assures that a player can obtain precise information about
the opponent’s action from this statistical test. The past work constructs a review-
strategy equilibrium such that a player’s play is belief-free at the beginning of each
review phase, assuming that the signal distribution is conditionally independent.
Under conditionally independent monitoring, a player’s private signals within a
review phase does not have any information about whether she could “pass” the
opponent’s statistical test, which greatly simplifies the verification of the incentive
compatibility.

In this subsection, we show that this approach can be extended to the case
where players do not know the true state, although the constructive proof of the

38



existing work does not directly apply. Specifically, we consider review strategies
where a player’s play is belief-free and ex-post optimal at the beginning of each
T-period review phase, and we compute its equilibrium payoff set. We find that if
the signal distribution satisfies some informational conditions, there are sequential
equilibria where players eventually obtain payoffs almost as if they commonly
knew the state and played a belief-free review-strategy equilibrium for that state.
Then in the next subsection, we apply this result to a secret price-cutting game,
and show that cartel is self-enforcing even if firms do not have precise information
about the market demand. Also we give a simple equilibrium construction.

As mentioned, the past work has shown that review strategies work well for
games with independent monitorifhig).Here we impose the same assumption on
the signal distribution:

Condition Weak-Cl. There is a finite sekq, 7’ : A — Ay for eachw, and
7?1 Ax 39 — A for each(i, w) such that the following properties hold.

(i) Foreachwe Q,ac A ando € Z,

n’(ola) = ; ﬁé”(aola)l_’ i (dila, 0o).

(i) For eachi € |, w € Q, anda_j € A_j, rank 1% (a_;) = |A| x |Zo| where
I:I‘fi(a_i) is a matrix with rows(71%(o_j|aj,a_i, 0p))o ex ; for all & € A
anday € 2.

Clause (i) says that the signal distributionweakly conditionally indepen-
dent that is, after players choose profde an unobservable common shogk
is randomly selected, and then players observe statistically independent signals
conditional on(a, gp). Here§’(-|a) is the distribution of a common shoak
conditional ona, while 7i*(-|a, 0p) is the distribution of player’s private signal
o; conditional on(a, ap). Clause (ii) is a strong version of individual full rank; i.e.,
itimplies that playeri can statistically distinguish playés actiona; and a com-
mon shockop. Note that clause (i) is satisfied generically|3f_;| > |Aj| x |Zo|
for eachi. Note also that (Weak-Cl) implies (IFR).

In addition to (Weak-ClI), we assume that the signals distribution has full sup-
port.

15Sugaya (2010a) construct belief-free review-strategy equilibria without conditional indepen-
dence, but he assumes that there are at least four players.
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Definition 5. The signal distribution h&sill supportif *(oja) > Oforall we Q,
acA ando € 3.

As Sekiguchi (1997) shows, if the signal distribution has full support, then for
any Nash equilibriuns € S there is a sequential equilibriufe Sthat yields the
same outcome. Therefore, the set of sequential equilibrium payoffs is identical
with the set of Nash equilibrium payoffs.

Let Ni‘*”IO be the maximum of belief-free review-strategy equilibrium payoffs
for the known-state game corresponding to the statelLikewise, Ietni“”ID be
the minimum of belief-free review-strategy equilibrium payoffs. As EHO and
Yamamoto (2012) show, if the signal distribution is weakly conditionally inde-
pendent, then these values are calculated by the following formulas:

N®P — R) max ming®(a
| <y p( >€Li€R7iai€Ri gl ( )7
w,p H w

not= R) min maxg*(a).

i REZ%D( ) ,min maxg”(a)

Note that these formulas are similar to (3) and (4) in Section 5.2, but here we do
not allow player—i to randomize actions.

The next proposition is the main result in this section; it establishes that if
the signal distribution is weakly conditionally independent and if each player can
privately learn the true state from observed signal distributions, then there are
sequential equilibria where players eventually obtain payoffs almost as if they
commonly knew the state and played a belief-free review-strategy equilibrium for
that state. Note that this result reduces to Proposition 10 of EHQ) i 1.

Proposition 4. Suppose that the signal distribution has full support, and that
(SFR) and (Weak-ClI) hold. Suppose also that theggds/AZ such thale‘”IO >

P for all i and w. ThenUpcaz Xiel Xwea NP, NP is in the limit set of
sequential equilibrium payoffs @&— 1.

The proof of this proposition is parallel to that of Proposition 3. Recall that the
proof of Proposition 3 consists of two steps; we first develop the linear program-
ming technique to compute the limit set of BFXE payoffs for general environ-
ments, and then apply it to games that satisfy the identifiability conditions. Here
we follow a similar two-step procedure to prove Proposition 4: We first character-
ize the limit set of review-strategy equilibrium payoffs for general environments
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by extending the linear programming technique in Appendix D, and then apply it
to games that satisfy the informational conditions. See Appendix E for details.

Remark 5. In Proposition 4, we assume the signal distribution to be weakly con-
ditionally independent. The result here is robust to a perturbation of the signal dis-
tribution; that is, any interior point dfj pc s Xiel Xweq N7, N*P] is achieved

by a sequential equilibrium if the discount factor is sufficiently close to one and if
the signal distribution is sufficiently close to a weakly-conditionally-independent
distribution. See Yamamoto (2012) for more details.

6.2 Secret Price-Cutting

Now we apply Proposition 4 to the secret price-cutting game in Section 3.1, and
show that firms can maintain a self-enforcing cartel agreement even if they do
now know how profitable the market is. To make our analysis simple, suppose
that there are only two possible states @pe- {C,D}; i.e., in every period, firm

i chooses either the high pri€eor the low priceD.

We assume that; andrt are such that (SFR) and (Weak-Cl) héfdand such
that the stage game is the prisoner’s dilemma for both statesd,€) is efficient
but D dominatesC at each state. Then Proposition 4 applies so that for each
pe AZ, the setxicl X weq NP, NP isin the limit set of sequential equilibrium
payoffs a®d — 1. In particular forp such thap(A) = 1, we havé\li“)’IO =g~(C,C)
andn®P = g®(D, D) for eachi andw. Therefore the efficient payoff(C,C) can
be approximated by a sequential equilibrium.

Also, in this example, we can explicitly construct asymptotically efficient
equilibria. The equilibrium construction here is an extension of the BFXE in
Section 3.2. Specifically, the infinite horizon is regarded as a sequence of review
phases withT periods, and in each review phase, playes either in “reward
state”x(1) or “punishment stateX(2). When playeii is in the reward statg(1),
she chooses the high pri€efor T periods to reward the opponent. On the other
hand, when she is in the punishment stg®), she chooses the low prid for
T periods to punish the opponent. At the end of each review phase, plagar
sits overx(1) andx(2), where the transition probability depends on the recent

18Matsushima (2004) gives a condition under which the signal distribution of a secret price-
cutting game is weakly conditionally independent.
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T-period history.

As in Section 3.2, letrz(k) = (V5*(k),v52(k)) denote the target payoff of
player 2 when playerl’s current state ix(k). Setvy(1) = g3 (C,C) — ¢ and
v (2) = g5(D,D) + € for eachw wheree is a small positive number; that is, we
let the target payoff at the reward state be close to the payof€b®), and the
target payoff at the punishment state be close to the paydibbi).

The key of our equilibrium construction is to choose playgtransition rule
carefully so that player-i is indifferent between being ir(1) and inx(2) in
the initial period of a review phase, regardless of the state of the warl&or
example, suppose that playkis in the reward statg(1) and will chooseC for
the nextT periods. Sincgy(C,D) > g9 (C,C) > v5'(1) for eachw, player2's
average payoff for the next periods will be greater than the target paydff(1)
regardless of the true state and of what playe@ will do. To offset this extra
profit, playerl will switch to the punishment stateg2) after theT-period play
with positive probability. Specifically, at the end of the review phase with length
T, playerl performs statistical tests about the true statand about playe?’'s
play using the information pooled within tieperiods, and then determines the
transition probability. This transition rule is an extension of that in Section 3.2;
recall that in the automaton constructed in Section 3.2, the transition probability
B depends both on an observed actanand on a private signa; which is
sufficiently informative aboutv in the sense that the likelihood ratio condition
(1) is satisfied. Here in the secret price-cutting model, actions are not directly
observable and the likelihood ratio condition may not be satisfied; instead, player
1 aggregates information durifgperiods to perform statistical tests abagand
w. This allows playerl to obtain (almost) precise information ab@gtand w,
so that as in Section 3.2, we can find transition probabilities which make [#ayer
indifferent between being at1) andx(2). Also, we can show that when player
uses some sophisticated statistical tests, it is suboptimal for Ragemix C and
D in aT-period play, which means that play2is willing to follow the prescribed
strategy. The construction of the statistical tests is similar to that in Section 3.2.3
of Yamamoto (2012), and hence omitted.

More specifically, the construction of the statistical test here is very similar to that for the case
where the statev is known and the opponent has four possible actions, because in this example,
playeri needs to identify a paifw,a_;) of the state of the world and the opponent’s action and
there are four possible paife),a_;).
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The same argument applies to the case where plEyeurrent state i%(2);
we can show that there is a transition rule af(@) such that playe? is indifferent
being atx(1) andx(2) and is not willing to mixC andD in a T-period play for
each stateo, and such that the target payeo#f(2) is exactly achieved.

We can define playe?’s strategy in the same way, and it is easy to see that
the pair of these strategies constitute an equilibrium. In particular, when the initial
state isx(1) for both players, the equilibrium payoff ig(1) for each playei.
Sincee can be arbitrarily small, the equilibrium payoff is almost efficient.

7 Concluding Remarks

In this paper, we study repeated games with private monitoring where players’
payoffs and/or signal distributions are unknown. We look at a tractable subset of
Nash equilibria, called BFXE, and show that if the individual and statewise full-
rank conditions hold, then the limit equilibrium payoff set is isomorphic to the
set of maps from states to belief-free equilibrium payoffs for the corresponding
known-state game. That is, there are BFXE in which the payoffs are approxi-
mately the same as if players commonly learned the true state and played a belief-
free equilibrium for that state. Also, we describe equilibrium strategies in some
examples, which illustrates how players learn the state and use that information in
ex-post equilibria.

As mentioned, BFXE is only a subset of sequential equilibria, and a larger
payoff set can be attained using “belief-based” equilibria. Unfortunately, belief-
based equilibria do not have a recursive structure, and hence the the study of these
equilibria would require different techniques. Whether the folk theorem obtains
by considering belief-based equilibria is an interesting future reséérch.

8Throughout this paper, we have assumed that players cannot communicate with each other;
S0 an interesting question is whether a larger payoff set can be attained when we allow players
to communicate. For known-state games, Kandori and Matsushima (1998) (as well as Compte
(1998)) show that the folk theorem obtains under private monitoring if players can communicate.
By combining their proof techniques with the ex-post equilibrium approach of Fudenberg and Ya-
mamoto (2010), we can show that their result extend to the case of unknown monitoring structure;
i.e., the folk theorem obtains under mild informational conditions even if the state of the world is
unknown. Detailed manuscripts are available upon request.
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Appendix A: Equilibrium Strategies in Public Goods Provision

In this appendix, we complete the equilibrium construction in the public goods
game in Section 3.2. Our goal is to chogseandy such that playeP’s target
payoffvy (k) is exactly achieved at bott{1) andx(2).

With an abuse of notation, we writg’(z2|a) for 7°(Z°(a) |a); that is, (2| a)
means the probability that playédr observesz‘f’(a) given (w,a). Recall that
B(C,z) = 0for all z;. We set

((1-8 1+2m*(z2|C,D) - 3m*(z*2|C,D)

5 2m%([C.D)— 2 (#[C.D) 2=7%C.D)
B(D,Zl): Tél)z Té’s’l ’
1-90 2m*(zZ*2|C,D)—3m"(z*2|C,D) .
5 'ZTf’Z(z‘*’z|C,D)—2TLf’l(Z‘*’2|C,D) otherwise
(1-6 1+2nf*l(z‘*’l|D,C)—3nf’2(zwl]D7C) L
5 P@po @@pe ' 2Ta P
V(C7Zl): n:f.)l TLf)Z 5
1-90 2m™*(zZ:|D,C)—3m*%(z*2|D,C) .
s . rcj*(zﬂh|D,C)—rl{"Z(Z“’llD,C) otherwise
((1-6 3+4m*(z2|D,D) - 7m™(z2|D,D) . =
5 2m(z)p.D) 2 ap,D) 24 (D)
y(szl): TL‘LLOZ Té;.)l
1—- 06 4m%2(Z2|D,D) — 7 (22|D,D) :
5 '2nf’2(zwzyD,D)—2nf’l(z‘*’2\D,D) otherwise

\

Note thatB andy are in the interva(0,1) whend is large enough. Also we can
check that for each the following equalities are satisfied:

V3'(1) = (1-9)97(C,C) + 0 m’(z1|C,C)[B(C,z1)v7'(2) + (1 - B(C,z1))v5' (1)),
V3'(1) = (1-9)97'(C,D) + 8 y ’(z1|C,D)[B(D,z1)v5’(2) + (1 - B(D,z2))v3'(1)],

v3(2)

(1-0)g7(D,C)+ 38 m’(21|D,C)[y(C, 22)v3'(1) + (1 - ¥(C,z1))V7'(2)],

V3'(2) = (1-9)g7'(D,D) + 8y m’(21|D, D)[y(D,21)v3'(1) + (1 - y(D,z1) V5’ (2)].

The first equality shows that when playkbegins her play with state(1) and
when playeR choose£ today, then the target payoff’ (1) is achieved at both.
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The second equality shows that the same target pa§¢f) is still achieved even
when player2 choose® rather tharC. Combining these two, we can conclude
that player2 is indifferent betwee© andD if player 1 is in statex(1). The next
two equalities show that the same is true when pldyierin statex(2), that is, if
player1’s current state ix(2), player2 is indifferent betweel© andD and the
target payoffvs’(2) is exactly achieved at bottw. So 8 andy specified above
satisfy all the desired conditions.

Appendix B: Failure of Common Learning

In this appendix, we present an example where players do not achieve approxi-
mate common knowledge but players adjust their actions according to their own
individual learning and obtain high payoffs state by state. The example here is
a simple extension of that in Section 4 of Cripps, Ely, Mailath, and Samuelson
(2008).

The following notation is useful. Led; be the set of all non-negative integers,
ie.,zZ,={0,1,2,---}. LetZ = x; € 1Z;. In the example of Cripps, Ely, Mailath,
and Samuelson (2008), each playebserves a noisy signalc Z; about the true
stated € {6',0"} in every period. Lettt € AZ denote the joint distribution of
z= (z1,2) at stated’, and letf* € AZ denote the distribution at sta&, (For
example, the probability of the signal profite= (0,0) is 8’ given 7t, and 8”
given )

In this appendix, we consider the following example. There are two players
and two possible states, so tiat= {w,wp}. Players have a common initial
prior over states%-%. Each player has two possible actiodg; = {U,D} and
A = {L,R}. Actions are observable, and in addition each playebserves a
noisy signalz € Z; about the true state in every period. The joint distribution of
z= (z1,2p) is dependent only on the true state (i.e., it does not depend on actions
played), and assume that the joint distributionzak exactly the same as the
example of Cripps, Ely, Mailath, and Samuelson (2008); i.e., the joint distribution
is equal tofTt at statew;, and to7® at statew.'® The expected payoffs for state

9n this setup, playeirs signal space i& = A x Z;, which is not a finite set. But it is straightfor-
ward to see that the results in Section 5 extend to the case of infinitely many signals, by considering
a finite partition ofz;. See Ishii (2009). Also, a version of (SFR) is satisfied in this example.
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w is shown in the left panel, and those for stateis in the right.

L R L R
ul131/01 uj|o00|10
D[1,0]00 D|01]|11

In this stage game, playgis action influences play&'s payoff only. Specifically,
the actiornJ is efficient (i.e., gives high payoffs to play2y at statecw,, while the
actionD is efficient at statev,. Likewise, player2’s action influences playek's
payoff only; the efficient action it at statew, and isR at statew,. Note that
players are indifferent between two actions given any state, thus all action profiles
are ex-post equilibria of the one-shot game.

Given a natural numbef, let s(T) be the following strategy profile of the
infinitely repeated game:

e Players mix two actions wit§-3 in periodt for eacht = 1,---, T.

e Letqi(h'|s(T)) € AQ be playei’s belief about the state at the end of period
T. From periodT + 1 on, playerl choosesJ forever if gy (h] [S(T))[cvr] >
%, and chooseb forever otherwise. Likewise, play@rchoosed. forever if
g2(h] |S(T))[en] > % and chooseR forever otherwise.

In words, players try to learn the true state in the firgperiods (“the learning
phase”), and then adjust their continuation play to achieve high payoffs state by
state. This strategy profilgT) is a stationary BFXE given any, since actions

do not influence the distribution afand all action profiles are ex-post equilibria

of the one-shot game.

In this example, the limit equilibrium payoff (a& — 1) approximates the
efficient payoff vectof(1,1), (1,1)) for T sufficiently large, since each player can
obtain arbitrarily precise information about the state during the learning phase. On
the other hand, the state cannot be (approximate) common knowledge during
the learning phase, even if we taKesufficiently large. Indeed, as Section 4 of
Cripps, Ely, Mailath, and Samuelson (2008) shows, thepes0 such that given
any T sufficiently large, the statey, can never be commop-belief at dateT
conditional on the strategy profigT).
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Appendix C: Computing M“P and m*"

In this appendix, we provide a formula to compd&”P and m*P, the maxi-
mum and minimum of belief-free equilibrium payoffs in the limitas— 1. (4)
and (5) of EHO show how to compute the maximum and minimum of belief-free
equilibrium payoffs. In our notation,
M>P = supM*P(a_i),
a-j

mPP = inf > (di)

where

MOP(@_) = max v®  subjectto
vPeR
XA xA_ixZ_i—R

. W _ R . glw(a1R7a—|>
O =2 PR 2 )| L) eRa) ]
for all (al)re S.t.aR € R, for eachRe %,

gi (al aii)

+14 (@ a4) (R a)

@i v°= 3y pR 5 afi(a)

Re% a_jcA

for all (al)re S.t.aR € A for eachR e %,
(i) x*(Ra.j,0.) <0, foralRe Z,a i€ A j ando_jcZ ;.

and

m*P(a_) = min v®  subject to
vPeR
X B XA XZ_—R

o R(a | @) ]
) v REZOZD(R)LGZ\ aZi(a-i)

+ (e i) X (Raci)

for all (a)rey s.t.a € R for eachR e 2,

) R.. | O (@ a )
(ii) Vf’zRezgp(RLéia—i(&') +79 (&R, aLi)-Xa‘"(RﬁLi)]

for all (a)rey s.t.a € A for eachR e Z,

(i) x*(Ra.j,0-i) >0, foralRe #Z,a_j€A_j,ando_j € Z_j.
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Appendix D: Characterizing the Set of BFXE Payoffs

In this appendix, we prove Proposition 3. Appendix D.1 provides a preliminary
result, that is, we consider general environments (i.e., we do not assume (IFR)
or (SFR)) and develop an algorithm to compute the set of BFXE payoffs in the
limit as & — 1. This is an extension of the linear programming techniques of
Fudenberg and Levine (1994), EHO, and Fudenberg and Yamamoto (2010). Then
in Appendix D.2, we apply the algorithm to games that satisfy (IFR) and (SFR) to
prove Proposition 3.

D.1 Linear Programming Problems and BFXE
D.1.1 Individual Ex-Post Generation

To begin, we give a recursive characterization of the set of stationary BFXE pay-
offs for general discount fact@y. This is a generalization of the self-generation
theorems of Abreu, Pearce, and Stacchetti (1990) and EHO.

By definition, any continuation strategy of a stationary BFXE is also a sta-
tionary BFXE. Thus a stationary BFXE specifies BFXE continuation play af-
ter any one-period historgy,a, g). Letw(y,a,0) = (W’(y,a,0))(i,w)cI xq d€-
note the continuation payoffs corresponding to one-period higRmg, o). Note
that playeri’s continuation payoffw(y,a, o) at statew does not depend on
(&, 0), since the continuation play is an equilibrium given &y, g;); thus
we write w”(y,a_j,0_j) for playeri’s continuation payoff. Letw®(y,a i) =
(WP(Y,a-i,0-i))o ez ;,» and we writerr®, (a) - w*(y,a_) for playeri’s expected
continuation payoff at stai® given a public signay and an action profile. (Re-
call thatn (a) is the marginal distribution of playeri’s private signals at state
w.) Also, letw;(y,a_i,0_;) = (W*(y,a_i,0-i)) weq-

For a payoff vector; € RI®l to be a BFXE payoff, it is necessary thais an
average of today’s payoff and the (expected) continuation payoff, and that player
is willing to choose actions recommended by a public signalperiod one. This
motivates the following definition:

Definition 6. For & € (0,1), W C RI?, andp € A2, playeri’s payoff vector
Vi = (V) weq € R/? is individually ex-post generated with respect{ W, p) if
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there is player-i's action pland_; € A_; and a functionw; : Z x A_ x S_ij — W
such that

=3 pR Y alia)

Rez

(1-8)g (. a ) )
+on4 (@R a ) we(Ra )

for all w € Q and(al)rc4 satisfyingal € R, for eachR € #, and
(1-3)gf (& ai)
V> p(R) afi(a) (6)
| RGZ% iiG&i I |

+om%(af,a i) -wP(Ra i)
for all w € Q and(al)rc4 satisfyingal € A for eachR € Z.

The first constraint is “adding-up” condition, meaning that for each state
the target payoff/* is exactly achieved if player chooses an action from the
recommended s& C A contingently on a public sign&. The second constraint
is ex-post incentive compatibility, which implies that playédras no incentive to
deviate from such recommended actions.

For eachd € (0,1),i €1, W C RI?l, andp € A%, let BP(5,W) denote the
set of all playeri’s payoff vectorsy; € RI? individually ex-post generated with
respect tqd, W, p).

Definition 7. A subset of RI? is individually ex-post self-generating with re-
spect ta(3, p) if W C BP(6,W).

The following two propositions provide a recursive characterization of the set
of stationary BFXE payoffs for any discount factére (0,1). Proposition 5,
which is a counterpart to the second half of Proposition 2 of EHO, asserts that
the equilibrium payoff set is a fixed point of the operaﬁﬁ’r Proposition 6 is a
counterpart to the first half of Proposition 2 of EHO, and shows that any bounded
and individually ex-post self-generating set is a subset of the equilibrium payoff
set. Taken together, it turns out that the set of BFXE payoffs is the largest set of
individually ex-post self-generating set. The proofs of the propositions are similar
to Abreu, Pearce, and Stacchetti (1990) and EHO, and hence omitted.

Proposition 5. For everyd € (0,1) andp € A%, EP(8) = xicBP(3,EP(5)).
Proposition 6. For eachi € |, let W be a subset oR/? that is bounded and

individually ex-post self-generating with respect{& p). ThenxjcW C EP(9).
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D.1.2 Linear Programming Problem and Bound ofEP(9)

Here we provide a bound on the set of BFXE payoffs, by considering a linear
programming (LP) problem for each directianwhere each componeat of the
vector A; corresponds to the weight attached to playeipayoff at statew. In
particular, trade-offs between equilibrium payoffs at different states are character-
ized by solving LP problems for “cross-state” directioghat have two or more
non-zero components (i.e., directiohghat put non-zero weights to two or more
states).

LetA; be the set of alhj = (A%) weq € RI%! such thatA| = 1. For eactRe %,
iel,d€(0,1),d_;j€e A_;, andA; € A\;, consider the following LP problem.

kP(@_i,Ai,0) = max Ai -V subject to

v,eRI9|
Wi ZxA_ix%_i—RI9

(i) (5) holds for allw € Q and(al)re4 s.t.aR € R for eachR e Z,
(i) (6) holds for allw € Q and(al)re s.t.aR € A for eachR € %,
(i) Ai-vi>A-wi(Raj,o0) foralRe Z,a_j € A_j,ando_j € Z_;.

If there is no(vj,w;) satisfying the constraints, mp(a_i,/\i,a) = —oo0, |If for
everyk > 0 there is(v;,w;) satisfying all the constraints and-v; > k, then let
Kp(a,i,/\i,a) = oo, With an abuse of notation, whemis a unit vector such that
p(R) = 1 for some regimeR, we denote the maximal score K§(d_i, Ai).

As we have explained in the previous section, (i) is the “adding-up” constraint,
and (ii) is ex-post incentive compatibility. Constraint (iii) requires that the contin-
uation payoffs lie in the half-space corresponding to direcitiaand payoff vector
vi. Thus the solutiorkip(a,i,)\i,é) to this problem is the maximal score toward
directionA; that is individually ex-post generated by the half-space corresponding
to directionA; and payoff vectow;.

Note that constraint (iii) allows “utility transfer across states.” To see how this
constraint works, recall that playeri obtains (possibly noisy) information about
the true state from her private sigral;. Let A; be such thaA,” > 0 for all w to
make our exposition as simple as possible. Constraint (iii) makes the following
scheme feasible:

o If player —i observes a signat_; which indicates that the true state is likely
to bew, then she chooses a continuation strategy (i.e., choose a continuation
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payoff vectorw;(R,a_j, 0_;)) that yields higher payoffs to playémt state
w but lower payoffs at staté.

e If player —i observes a signat_; which indicates that the true state is likely
to bed, then she chooses a continuation strategy that yields higher payoffs
to playeri at statedo but lower payoffs at state.

In this scheme, playeri adjusts her continuation play contingently on her state
learning, so that high expected continuation payoffs are obtained at both states.
This shows that under constraint (iii), state learning can help improving players’
overall payoffs. Note that this issue does not appear in EHO, as they study known-
state games.
Foreachwe Q, Re #,a_j, ando_; € Z_j, let
6 W

Xiw(RvéLiaO-—i) = m(m(Rv&iaa—i) —Vi’).

Also, in order to simplify our notation, let’(Ra_;) = (X*(R,a-i,0-i))o ex ;
and letx (R a_i,0_;) = (X*(R,a-i, 0_i))weq. Arranging constraints (i) through
(iii), we can transform the above problem to:

(LP-Individual) max Aj -V subject to

ViGIR‘Q‘
X BxA_x5_i—RI<

. Ve — R i
) v Rg%p(R)iieZual(&)

for all w € Q and(al)gex s.t.aR € R for eachR e #,
g”(a ai) ]

giw(aiRaii)
+m¥ (@R a ) - x°(Ra)

(i) v> 3 pR) Z\_afﬂ(au)

R +1% (@R, a) X°(Ra )

for all w € Q and(al)ge s.t.aR € A for eachR e Z,
(i) Ai-x(Ra.j,0-i) <0, foralRe#Z,a €A _jando_je€X_j.

Since & does not appear in constraints (i) through (iii) of (LP-Individual), the
scorekip(a_i,)\i,é) is independent 0®. Thus we will denote it bygp(a_i,)\i).
Note also that, as in EHO, only the marginal distributimn matters in (LP-
Individual); that is, the scorl&;p(&_i,/\i) depends on the signal distributieronly
through the marginal distributiort ;.

51



Now let
kP(A) = sup KP(@-i.A)

a,ié/&,i
be the highest score that can be approximated in dirediidoy any choice of
d_;. For each); € Aj andk; € R, let Hi(Aj, k) = {vi € RI%|A;-v; < k}. Let
Hi(Ai, ki) = RI®l for k; = o, andH;(A;, ki) = 0 for k; = —oo. Then let

HP(A) = Hi(Ai, kP (A))

be the maximal half-space in directian and let

Qip: n Hip()\i)

AeN;

be the intersection of half-spaces overillLet
QP = x;c1Qf.
Lemma 1.
(@) KP(G-i,A) = Yrez PIRKX(T-i, Ai).
(b) kP(Ai) = Yrez P(RKF(A).
(c) QP is bounded.

Proof. Inspecting the set of the constraints in the transformed problem, we can
check that solving this LP problem is equivalent to finding the continuation pay-
offs (W’(R,a-i,0-i))(wa ;0 for each regimer in isolation. This proves part
().

Note that the maximal scovk?(&_i,)\i) is dependent on an action plan ;
only througha®,, and the remaining componerrhéfi for R# R are irrelevant.
Therefore, we have

sup Y P(RIK(@-i,A) = 5 p(R) sup ki(a-i,Ai)
g_jcA_jReZz ReZ# a_jeA_j
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for any p € AZ. Using this and part (a), we obtain

KP(Ai) = sup KP(d-i,A))

a_icA
= sup 5 p(RK(@-i,A)
0_jcA_ ReZz
= 3 p(R) sup kI(@-i,A)
ReZ# a_ieAj
P(RK(A)
ReZ#

so that part (b) follows.
To prove part (c), considek; € A; such thatA® # 0 for somew € Q and
/\i‘b = Ofor all & # w. Then from constraint (i) of (LP-Individual),

ra)

Dy AW @ R a o (&
NM=ATE=AT 9 PR 2 a"<a")[ (@R ) xO(Ra)

for all (al)res such thataR € R for eachR € %. Since constraint (iii) of (LP-
Individual) implies than,“*1% (a) - x*(R,a_j) <O for allac AandRe %, it
follows that
Ai-vi < maxA®g(a).
acA

Thus the maximal score for thig is bounded. Lef\ be the set ofA; € Aj such
thatA,” # O for somew € Q and)\‘*’ Oforall @ # w. Then the seM),, en Hi P(A)
is bounded. This proves part (c), sif@ C Ny ca HP(A)). Q.E.D.

Parts (a) and (b) of the above lemma show that the LP problem reduces to
computing the maximal score for each regiRen isolation. The next lemma
establishes that the set of BFXE payoffs with respeqgp te included in the set

QP.

Lemma 2. For everyd € (0,1), p € A%, andi € 1, EP(8) C coEP(8) C QP.
ConsequentlyP(8) C coEP(8) € QP.

The proof is analogous to Theorem 3.1 (i) of Fudenberg and Levine (1994);
we provide the formal proof in Appendix D.1.4 for completeness.
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D.1.3 ComputingE(d) with Patient Players

In Appendix D.1.2, it is shown that the equilibrium payoff &#%(d) is bounded

by the setQP. Now we prove that this bound is tight when players are patient.
As argued by Fudenberg, Levine, and Maskin (1994), whiés close to one, a
small variation of the continuation payoffs is sufficient for incentive provision,
so that we can focus on the continuation payeiffaear the target payoff vector

v. Based on this observation, we obtain the following lemma, which asserts that
“local generation” is sufficient for self-generation with patient players.

Definition 8. A subsetW of RI? is locally ex-post generating with respect to
p € AZ if for eachv; € W, there is a discount facta¥, € (0,1) and an open
neighborhood)y, of vj such thatv NUy, C BP(3y,W).

Lemma 3. For eachi € |, letW be a subset dR!®! that is compact, convex, and
locally ex-post generating with respectpas AZ. Then there i € (0,1) such
that xjcW C EP() forall 6 € (5,1).

Proof. This is a generalization of Lemma 4.2 of Fudenberg, Levine, and Maskin
(1994). Q.E.D.

The next lemma shows that the §ftis included in the limit set of stationary
BFXE payoffs with respect tp.

Definition 9. A subsetW of RI? is smoothif it is closed and convex; it has a

nonempty interior; and there is a unique unit normal for each point on its bound-
20

ary:

Lemma 4. For eachi € |, letW be a smooth subset of the interior@f. Then
there isd € (0,1) such that ford € (8,1), xjcW C EP(5).

The proof is similar to Theorem 3.1 (ii) of Fudenberg and Levine (1994), and
again we give the formal proof in Appendix D.1.4 for completeness. To prove
the lemma, we show that a smooth subAgts locally ex-post generating; then
Lemma 3 applies and we can conclude ttis in the equilibrium payoff set
when players are patient.

20A sufficient condition for each boundary pointWf to have a unique unit normal is that the
boundary ofM is aC2-submanifold ofR/<.
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Combining Lemmas 2 and 4, we obtain the next proposition, which asserts
that the limit set of stationary BFXE payoffs with respecttes equal to the set

QP.
Proposition 7. If dimQP = |Q| for eachi € I, thenlim5_.; EP(8) = QP.

Now we characterize the limit set of all stationary BFXE payoHE$d) =
Upenz EP(9). This is a counterpart of Proposition 4 of EHO.

Proposition 8. Suppose that there ig € A% such thatdiinp = |Q| for each
iel. Thenliméﬂl E(5) = UpeA% Qp.

Proof. From Proposition 7, it follows thdims_.1 E(8) = Upe 4 QP if dimQP =
|Q| for alli € 1 andp € AZ. Here we prove that the same conclusion holds if
there isp € AZ such thatimQ;” = |Q| for eachi € I.

Letv; be an interior point ofJ,c 14 QP. It suffices to show that there s¢
AZ such thay, is an interior point ofQP. Let p € A% be such thatimQP = |Q|
for eachi € I, andV; be an interior point ofQP. Sincey; is in the interior of
Upenz QP, there areli andk € (0,1) such thaf is in the interior ofJpc a4 QP
andkV, + (1— k)% = v;. Let p € AZ be such thafi € QP, and letp € AZ be
such thatp = kp+ (1—k)p.

We claim thatv; is an interior point ofQP. From Lemma 1(b),

() = T pRIKEA)

ReZ%
=k Y RN +(1-K) Y BRK(A)
ReZz ReZ#

=kkP(A)) + (1= K)KP ()

for all A;. SinceV; is in the interior ofQP, we havekip()\i) > Aj -V for all A;.
Likewise, sinceli € QP, kP(A) > A; - ¥, for all A;. Substituting these inequalities,

kip(/\i) > KA Vi + (1= K)A -V = A+ v

for all A;. This shows thay; is an interior point ofQP. Q.E.D.
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D.1.4 Proofs of Lemmas 2 and 4

Lemma 2. For everyd € (0,1), p € A%, andi € 1, EP(8) C coEP(6) C QP.
ConsequentlygP(8) C coEP(8) € QP.

Proof. It is obvious thaEP(5) C coEP(6). Suppose d&P(8) ¢ QP. Then, since
the score is a linear function, there arec EP(6) andA; such that; - v > kP().
In particular, sinceE”(5) is compact, there are € EP(8) andA; such that; -
vi > KkP(A) andA;-vi > A;-¥ for all G € coEP (). By definition, v is individually
ex-post generated bw; such thawi(R,a_i, 0_;) € EP(8) C coEP(8) C H(Aj, Ai -
v¥) for all o_; € Z_;. But this implies thakip(/\i) is not the maximum score for
directionA;, a contradiction. Q.E.D.

Lemma 4. For eachi € |, letW be a smooth subset of the interior@f. Then
there isd € (0,1) such that ford € (8,1), xjc|W C EP(5).

Proof. From lemma l(C)Qip is bounded, and hend#| is also bounded. Then,
from Lemma 3, it suffices to show the is locally ex-post generating, i.e., for
eachy; € W, there ared, € (0,1) and an open neighborhodd}, of v; such that
WUy, € B(&,W).

First, considewr; on the boundary oi{. Let A be normal toM atv;, and let
ki = Ai -vi. SinceW € Qi C HP(A)), there aredr_j, %, andw; such that; - % > A; -
vi = ki, Vi is individually ex-post generated usiag ; andw; for somed € (0,1),
andw; (R a_j,0_i) € Hi(Aj,Ai - V) forall Re #,a_j € A, ando_; € Z_;. For
eachd € (3,1), let

wi(Raj,0 ) = 0-0 Vi + 6(1_@ (Wi(R,a_i,o_i) _Y fvi) .
0(1-9) o0(1-9) o

By constructiony; is individually ex-post generated usimg ; andw; for §, and
there isk > 0 such thaiwi(R,a_j, 0_j) — Vvi| < k(1 —9). Also, sinceA; -V > A; -
vi =k andw; (R a_j,0_j) € Hi(Aj,Ai-Vi) forallRe Z,a_j € A_j,ando_; € Z_j,
there ise > 0 such thawwi(R,a_j,0_j) — % is in Hi(Aj, ki —¢) for all Re Z,
ajc€A ando_j € Z_i. Then,wi(Ra_j,0-i) € Hi(Aj,k — gg%g%e) for all
ReZ,a i€ A jando_j € Z_j, and as in the proof of Theorem 3.1 of FL,
it follows from the smoothness & thatw;(R a_j,0_;) € intW for sufficiently
larged, i.e.,v; is individually ex-post generated with respect toNhtsingd_;.

To enforcey; in the neighborhood ofj, use thisd_; and a translate of;.
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Next, considew; in the interior ofW. Choose; arbitrarily, and letd_; and
w; be as in the above argument. By constructigris individually ex-post gen-
erated byd_; andw;. Also, w;(R a_j,o0_;) € intW for sufficiently larged, since
lwi(Ra_j,0_ij) —Vi| < k(1—9) for somek > 0andv; € intW. Thus,y; is enforced
with respect to indf whend is close to one. To enforag in the neighborhood of
v;, use thisd_; and a translate ofj;, as before. Q.E.D.

D.2 Proof of Proposition 3

Proposition 3. If (IFR) hold, thenlims_; EP(8) = X peq Xicl [M*P, M*P] for
eachp € A such that ()M > m®P for all i and w and (ii) for eachi and
(w, '), there isd_; that has statewise full rank fdi, ') at some regim& with
p(R) > 0. Hence, if (IFR) and (SFR) hold and if therefis A% such thaM®P >
mP for all i and w, thenlim_,;1 E(8) = Upcaz X weq Xier (M7, M{*P].

Proposition 7 in Appendix D.1.3 shows that the limit equilibrium payoff set
is characterized by a series of linear programming problems (LP-Individual). To
prove Proposition 3, we compute the maximal score of (LP-Individual) for each
directionA; for games that satisfy (IFR) and (SFR).

We first consider “cross-state” directiong and prove that under (SFR), the
scores for these directions are so high that the maximal half spaces in these di-
rections impose no constraints on the equilibrium payoff set, that is, there is no
trade-off between equilibrium payoffs for different states. Specifically, Lemma 5
shows that the maximal scores for cross-state directions are infinitely laiige if
has statewise full rank.

Lemma 5. Suppose thadi_; has individual full rank, and has statewise full rank
for (w, ) at regimeR. Then for anyp and A; satisfyingp(R) > 0, A® # 0, and
A% 0, we havekP(d_i, Aj) = oo.

This lemma is analogous to Lemma 6 of Fudenberg and Yamamoto (2010),
and we give the formal proof in Appendix D.2.1 for completeness. The main idea
is that if @_; has statewise full rank fdrw, @), then “utility transfer” betweermo
and® can infinitely increase the score.

Next we compute the maximal scores for the remaining “single-state” direc-
tions. Consider (LP-Individual) for directioh such that® = 1 for somew and
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A; ® — 0for all @+ w. If (IFR) holds, then there is continuation payoffs that make
playeri indifferent over all actions, so that constraints (i) and (i) for: w are
vacuous. Then it turns out that the problem is identical to the one that computes
M“P(@_;), and hence we haw (1) = M*P. (See Appendix E.) Likewise, con-
sider (LP-Individual) for directior; such that® = —1 for somew andA® = 0

for all @ # w. If (IFR) holds, then the problem is isomorphic to the one that
computesn®P(@_), and as a result we hakd(A;) = —m*P. The next lemma

summarizes these discussions.

Lemma 6. Suppose that (IFR) holds. Fa; such thatA® =1 and)\“’ 0 for
all @ # w, kP(A)) = M®P. For A such than® = —1 andA® = 0 for all © # w,

kP(A) = —mPP.

Now we are ready to prove Proposition 3; we use Lemmas 5 through 6 to
compute the scores of (LP-Individual) for various directions.

Proof of Proposition 3.From Proposition 8 of Appendix D.1.3, it suffices to show
thatQP = X geq[m®P, M®P] for eachi, w, andp. Let A? be the set of all single-
state directions, that ig\; is the set of al\; € A; such thaz,* # 0 for somew
and)\i‘:’ =0 for all @ # w. Then it follows from Lemma 5 that under (SFR), we
haveﬂ;‘ie/\* HP(Ai) € HP(A)) for all A ¢ A7, Therefore,QP = Ny A HP(A) =
Naen- HP(Ai). Note that, from Lemma 6, we haw’(A;) = {vi € RI%|v® <
M?P1 for A € AF such thal® = 1, andHP (X)) = {v; € R/ |v® > m*P} for each
/\. € A; such that\® = —1. ThereforeQP = M. ca- HP (Ai) = X gea[m”P, M),
and Propositions 7 and 8 apply. Q.E.D.

D.2.1 Proof of Lemmab

Lemma 5. Suppose thad_; has individual full rank, and has statewise full rank
for (w, &) at regimeR. Then for anyp and A; satisfyingp(R) > 0, A® # 0, and
A% 0, we havekP(d_i, ) = .

Proof. First, we claim that for everk > 0, there exist(z(R, ai,0-i))(ai0)
and(Z’(Ra_i,0-i))(a, 0 ;) Such that

S af@0miE) #Ra) - 5 )

a_icA_j i
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forall g € A,

> af(a)nti(a) 2’ (Raq)=0 (8)
for all g € A, and
A°Z°(Ra i, o) +/\i‘7’z|-‘D(R,aLi,o_i) =0 9

forallajc A jando € X i, where’(Ra i) = (Z°(Ra i,0.i))g ez, and
Z(Ra i) = (Z’(Ra.i,0.i))o s, To prove that this system of equations in-
deed has a solution, eliminate (9) by solving fﬁ’r(R,aLi, 0_i). Then, there re-
main 2|A;| linear equations, and its coefficient matrixﬁé_“i”a’)’R(&,i). Since
statewise full rank implies that this coefficient matrix has raj#|, we can solve
the system.

For eachR€ Z and@ € Q, let (WP(R,a_i,0_i))(a , ¢ ;) be such that

> afi(an|a-oula+em@-wRa)] =0 (10

for all & € A;. In words, the continuation payoffs are chosen so that for each
state® and for each realized public signB| playeri is indifferent among all
actions and his overall payoff is zero. Note that this system has a solution, since
a has individual full rank.

Letk > MaXga ;.0 A Wi(Ra_j,o_;), and chooséz’(Ra-i,0-i))@a ;.0

and(z°(R,a-i,0-i))(a ;0 ;) to satisfy (7) through (9). Then, let

) WP(Ra o) +Z°(Ra,0.) if (R®)=(Rw)
wWP(Rai,0)={ W(Ra o)+ Raio) if (R =(R®)
WP(Ra i,0.) otherwise

for eacha_; € A_jando_j € Z_;. Also, let

R . A
o_ ) Ao if W=w
' 0 otherwise

We claim that thigvi,w;) satisfies constraints (i) through (iii) in the LP prob-
lem. It follows from (10) that constraints (i) and (ii) are satisfied for@al w, @.
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Also, using (7) and (10), we obtain
LGS af(a) [(1-8)g°(a.a) + 675 (@) wi(Rai)|

Re#

=3 PR 5 afi(an|(1-o)glaa) + o () i (Ra)

ReZ a €A
+0p(R) Z\ af(ai)m(a)-2°(R.a)

a_jcA_j

K
A®
for all & € Ay. This shows thatvi, w;) satisfies constraints (i) and (ii) foo. Like-
wise, from (8) and (10),v;, w;) satisfies constraints (i) and (ii) far. Furthermore,
using (9) andk > max(fz.,a,i,o,i))‘i Wi(li, a_j,o_j), we have

Ai-wi(Ra i, o) =Ai-Wi(Ra j,0)+A°Z’(Ra i, o)+ A2 (Rai,0.)
=Ai-Wi(Ra_j,0_i) <k=Aj-v
foralla_j € A_jando_j € Z_;, and we have
Ai-wi(Rai,0.i) =Ai-Wi(Ra o) <k= AV
forallR#R a_j € A_j, ando_; € £_;. Hence, constraint (ii) holds.

Therefore k”(@_i,Ai) > Ai-vi = k. Sincek can be arbitrarily large, we con-
cludekP(a_i, Ai) = o. Q.E.D.

Appendix E: Characterizing the Set of Review-Strategy Payoffs

In this appendix, we prove Proposition 4. Appendix E.1 gives a preliminary result;
we consider general environments and develop an algorithm to compute the set of
review-strategy equilibrium payoffs. Then in Appendix E.2, we apply the algo-
rithm to games that satisfy (IFR), (SFR), and (Weak-Cl) and prove Proposition
4.

E.1 Linear Programming Problems and Review Strategies

Here we consideT -period review strategies where a player’s play is belief-free
and ex-post optimal at the beginning of eaktperiod review phase, and com-
pute its equilibrium payoff set. Specifically, we extend the static LP problem of
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Appendix D toT-period LP problems, and establish that the intersection of the
corresponding hyperplanes is the limit set of review-strategy equilibrium payoffs.
Kandori and Matsushima (1998) also considieperiod LP problems to charac-
terize the equilibrium payoff set for repeated games with private monitoring and
communication, but our result is not a straightforward generalization of theirs and
requires a new proof technique. We elaborate this point in Remark 6 below.

Let § be the set of playei's strategies for & -period repeated game, that
is, §' is the set of al" : U - H! — AA. Let 1:“(a) denote the distribution
of private signals(a}i,--- ,GL) in a T-period repeated game at statewhen
players choose the action proféefor T periods; that isyT'; (o, -+, 0™ |a) =
M, (0t [a). Also, letm:®(s",a i) denote the distribution dfa?;,---, 0T,
when player—i chooses actioa_; for T periods but player playssT € ST. Let
giT""(gT,aLi,é) denote player’'s average payoff for & -period repeated game at
statew, when playei playss' and player-i chooses ; for T periods.

In Appendix D, we consider LP problems where one-shot game is played and
playeri receives a sidepaymer{’ contingent on the opponent’s history of the
one-shot game. Here we consider LP problems whérepariod repeated game
is played and player receives a sidepaymer{’ contingent on the opponent’s
T-period history. In particular, we are interested in a situation where players per-
form an action plan profil& in the first period (i.e., players observe a public
signalR € # with distribution p € A% before play begins, and choose a pos-
sibly mixed action from a recommended set in the first period) and then in the
second or later period, players play the pure action chosen in the first period. Also
we assume that® depends om'; only though the initial public signal, player
—i’s action in period one, and the sequence of playés private signals from
period one to period; that is, a sidepayment to playeat statew is denoted
by xX*(R a_i,al;,---,a";). In this scenario, playets expected overall payoff at
statew (i.e., the sum of the average stage-game payoffs of tperiod repeated
game and the sidepayment) when playeinooses an actiog is equal to

1-6 ¢

RZ% p(R) ZA at(a) [ﬁ;glgf"(aﬁrﬂ}m(a) XP(Ra i)

=3 PR Y aRai) |g@+ %@ (Ra)).

Rex# a_icA_
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wherex’(Ra i) = ({*(R.ai,0%;,---,0%)) (41 .. o7). Here, note thatt:”(a)
denotes the distribution dio?;,---,0,) at statew when the profilea is played
for T periods, and the termI;‘”(a) -X(R,a_j) is the expected sidepayment when
the initial public signal ifR and the profilea is played forT periods.

Now we introduce th& -period LP problem. For eadf,d_j, A, d,K) where
K> 0, let kip(T, d_i,A,d,K) be a solution to the following problem:

(T-LP) max Ai-Vi  subjectto
v,eRI€
X% X A_j X (Z,i)TH]ng‘

. V|w _ R 5 i giw(aiRv a—i) ]
(i) RGZ% p( )&;\ia (a-i)

+%(@R a ) - x*(Ra )

for all w € Q and(al)rex s.t.aR € R for eachR e Z,

g (s R a i, )
+1%(s R a) X (Ra)

i 0> R R(a
(i) v Rez%p( )&i;ia (@)

for all w € Q and(s' Nres s.t.§5 7 e § for eachRe 2,

(i) Ai-x(Ra.,ot,---,07)<0
forallRe #Z,a i€ A, and(al;,---,07) e ()T,
(IV) ’Xi(R,&i,OEi,"' ao-—ri)‘ S K

forall Re #Z,a i € A i, and(al;,---,07) e (Z ).

Constraint (i) implies adding-up, that is, the target paypis exactly achieved if
playeri chooses an action from the recommended set in the first period and plays
the same action until periofl. Constraint (ii) is incentive compatibility, that is,
playeri is willing to choose her action from the recommended set and to play
the same action until periofl. Constraint (iii) says that a paymextlies in the
half-space corresponding to directidn Note that constraints (i) through (iii) of
(T-LP) are similar to those of (LP-Individual). Constraint (iv) has not appeared
in (LP-Individual), and is new to the literature, as explained in Remark 6 below.
This new constraint requires a paymanto be bounded by some parameiter

Recall that the scorkP(d_i, Ai, ) of (LP-Individual) does not depend ah
aso does not appear in (LP-Individual). It maybe noteworthy that the same tech-
nique does not apply tor€LP). To see this, note that playes average payoff
giT"”(gT’R, a_i,0) of theT-period interval depends anwhen player plays a non-
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constant action. Then a pdiv;,x;) that satisfies constraint (ii) for sond&emay
not satisfy constraint (ii) fod # &. Therefore the score oT €LP) may depend on
5'21

Let
kP(T,7i,6,K) = sup kP(T,d_i,A,6,K),
ﬁ_ie:&_i
KP(T, i, K) = liminf kP(T, A, 8,K).
KP(T, i) = Jim KP(T, Ai,K),
HP (T, A) = Hi(A, KP(T, ),
and

QP(T)= () HP(T. ).
AN
Note thatkP(T,Ai,K) here is defined to be the limit inferior &(T, A, 5,K),
sincekP(T, A;, 8,K) may not have a limit ad — 1. On th other hand”(T, A;,K)
has a limit aK — o, sincekP(T,A;,K) is increasing with respect .

The next proposition is a counterpart to Lemma 4, which shows that the set
xicIQP(T) is a subset of the set of sequential equilibrium payoffs. Note that here
we do not assume the signal distribution to be conditionally independent. The
proof of the proposition is given in Appendix E.1.1.

Proposition 4. Suppose that the signal distribution has full support. Teand
p be such thatimQP(T) = |Q] for eachi € I. Then the sekic QP(T) is in the
limit set of sequential equilibrium payoffs as— 1.

In the proof of the proposition, we (implicitly) show that for any payeoft
Xiel Qip(T), there is a sequential equilibrium with payefand such that a player’s
play is belief-free and ex-post optimal at the beginning of each review phase with
lengthT (while actions in other periods are not necessarily belief-free or ex-post

2INote that the new constraint (iv) is not an issue here; indeed, it is easy to check that even if
we add (iv) to the set of constraints of (LP-Individual) the score of the new LP problem does not
depend ord.
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optimal). That is, here we considperiodically belief-freeand periodically ex-
postequilibria?? Note that the proof of this proposition is not a straightforward
generalization of Lemma 4, becausappears in constraint (ii) offtLP). See the
following remark for more discussions.

Remark 6. Kandori and Matsushima (1998) also considieperiod LP problems

to characterize the equilibrium payoff set for games with private monitoring and
communication, but our result is not a mere adaptation of theirs. A main differ-
ence is that Kandori and Matsushima (1998) impose “uniform incentive compat-
ibility,” which requires the payment scheme to satisfy incentive compatibility for
all 5 € [8,1). They show that with this strong version of incentive compatibility,
the local decomposability condition is sufficient for a'¥éto be self-generating

for high ¢ as in Fudenberg and Levine (1994). On the other hand, our LP problem
does not impose uniform incentive compatibility, so that a payment scReinae
satisfies the incentive compatibility constraint (ii) fdrmay not satisfy (ii) for

d¢e (0,1). Due to this failure of monotonicity, the local decomposability condi-
tion is not sufficient for a sétV to be self-generating. Instead, we use the fact
that the uniform decomposability condition of Fudenberg and Yamamoto (2011b)
is sufficient for a setV to be self-generating. The uniform decomposability con-
dition requires the continuation payoffg to be within (1 — &)K of the target
payoffv e W for all 4, and to prove this property we use the new constraint (iv).
Our new LP problem is tractable in the following analysis, as we need to check
the incentive compatibility only for a gived. Note also that the side payment
schemex constructed in the proof of Lemma 9 satisfies constraints (i) through (iv)
of (T-LP) but does not satisfy the uniform incentive compatibility of Kandori and
Matsushima (1998).

Remark 7. In (T-LP) we restrict attention to the situation where players play the
same action throughout thie-period interval, but this is not necessary. That is,
even if we consider a LP problem where players play a more coniple&riod
strategy, we can obtain a result similar to Proposition 4.

2%precisely speaking, in these equilibria, a player’s play at the beginning of each review phase is
strongly belief-freén the sense of Yamamoto (2012); that is, a player’s play is optimal regardless
of the opponent’s past histoand regardless of the opponent’s current actitmdeed, constraints
(i) and (ii) of (T-LP) imply that playei’s play is optimal given any realization af ;.
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E.1.1 Proof of Proposition 4

Proposition 9. Suppose that the signal distribution has full support. Teand
p be such thatimQP(T) = |Q| for eachi € I. Then the sekicQP(T) is in the
limit set of sequential equilibrium payoffs as— 1.

To prove this proposition, we begin with some preliminary results.

Definition 10. Playeri’s payoffv; = (V?) weq € RI®l isindividually ex-post gener-
ated with respect téT, 5, W, p) if there is an action plad_; € ,&_i and a function
Wi Z x A_j X (Z_i)T — W such that

(1-3")gP(af,a )

w _ R .
W= PR 2 ] sTreea ) i“(R,au)]

for all w € Q and(al)re4 satisfyingal € R for eachR € %, and

(1-8")g" (% EL)

Ve 5
P22 PR3 ON@D) | e Ry <Rau>]

forall we Q and(gT’R)Reg satisfyinqu’R c § foreachRe #.

Let Bip(T, 0,W) be the set of alV; individually ex-post generated with respect
to (T,5,W, p). A subset of RI? is individually ex-post self-generating with
respect tqT, , p) if W C BP(T,8,W, p)

Lemma 6. For eachi € |, letW be a subset dR?! that is bounded and individ-
ually ex-post self-generating with respect d, p). Thenxic/W is in the set of
sequential equilibrium payoffs with public randomizatiofor .

Proof. Analogous to Proposition 6. Q.E.D.

Given anyv; € RI®, A e Aj, € > 0, K >0, andd € (0,1), let Gy, e k.5 be
the set of alV € RI®l such tha; -v; > A;-V/ 4 (1 — &) and such tha/ is within
(1—-0)K of v;. (See Figure 5, where this set is label&l™)

Definition 11. A subsetW of R/l is uniformly decomposable with respect to
(T, p) if there ares > 0, K > 0, andd € (0, 1) such that for any; € W, & € (5, 1),
andA; € Aj, there ared_j andw; : Z x A_j x (Z_;)T — W such that(d_;,v;) is
enforced byw; for & and such thaw;(Ra_i,01;,---,07;) € Gy, , .k 57 for all
(Raj,at, .- o).
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Ai

Figure 5: Set.

Lemma 7. Suppose that a subsét of R/l is smooth, bounded, and uniformly
decomposable with respect @, p). Then there isd € (0,1) such thatw is
individually ex-post self-generating with respec(19 6, p) for anyd < (3, 1).

Proof. Analogous to Fudenberg and Yamamoto (2011b). Q.E.D.

Lemma 8. Any smooth subs&t of the interior of Q°(T) is bounded and uni-
formly decomposable with respect(fb, p).

Proof. As in Lemma 1, one can check th@f(T) is bounded, and so 4. Let
& > 0 be such thalv| — V| > & for all v/ € W andv/’ € QP(T). By definition, for
everyij € \i, kip(T,)\i) > maX,cy Ai -V +E. Therefore for each; € A;, there are
), € (0,1) andK,, > 0 such that for any € (5,,,1), there isd_; ,, 5 such that
KP(T,d i x.5.Ai,0,Ky,) > maXyew Ai - Vi +£.

Given A andd € (8,,1), let¥ ) s € R% andx ) 5 : Z x ALi x ()T —
RI®I be such that all the constraints of the LP problem(foyd_; 5 5, Ai, 8,Kj,)
are satisfied and such thit-v, ). 5 > maXew Ai -Vl + £. Then for eaclv; € W,
letw; ) 5.y * % x A x (2_i)T — RI% be such that

1-57 -
Wi7/\i757vi(R7a—iaGEiv"' aGIi) =Vi+ 5T (Vi _Vi7)\i75+xi7)\i75(R7a—iaUiia‘" ,UIi))
foreach(Ra_i,0%;,---,0";). By construction(d_; », 5, Vi) is enforced by, . 5,

for 8. Also, lettinge = % andIZAi = Kj, +Supzewy SUpée(S,\i,l) Vi — Vi 5.5l it fol-
lows thatw 5 (R a-i,0%,++,0T) € Gy 5 2k, o7 (To see this, note first
that the pair(V », 5,%; »,.5) satisfies constraints (i) and (iv) of the LP problem so
thatsupée@i’l) < maxgea |(97(a))wea| + Ky, This and the boundedness

Virs
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of W show thaK,, < e. Sinced; - 5, 5(Ra_i,0%;,---,07;) <0andA; -V 5 >

maxyew Ai - Vi +& > Ai -vi + &, it follows thatA; - w; 5, 5, (R,a-i, 0%, ,07)) <
Ai -V — 1—34515 <Ai-Vi—(1-08")E&. Also,w, ) sy (Rai,0%, -, 0T;) is within
1—3451&“ of i, as|x y s(Rai, 0, -, 07)| < Ky.)

Note that for each\; € A;, there is an open sét) 5 C RI€ containingA;
such thani’,\i’ZSKAi’éT - GVi’Ai/VSKAijaT foranyvi €W, (Ra_j,a%;,---,07,), and
Al e ANinUy, 5, (See Figure 6, wher@vi’,\i,ZSKAi,éT and GViJ\i/’s’K)\i’éT are la-
beled ‘G” and “G',” respectively.) Then we have, 5. (R a_i,0%;,---,07;) €
Gy av.e &y o7 for anyvi € W, (Ra.j,aly,---,0), andA! € AinU, 5., since
Wi sy (Ras, oli,---,00) € Gy, Ai 26 Ry, 8T

Figure 6:G C G..

The set\; is compact, sqU), s}xen has afinite subcovefUy, s}, 5. For
eachvi and);, leta”, ) 5= a_i7Ai/75~andvvf’Ai’6M =W ) 5.y, WhereA] € Aj is such
thatA; € UAi@é. LetK = max, & K- Then(ajw(s,vi) is enforced b);(/vi’i)\_é’\,i
andw, 5, chooses the continuation payoffs from theGgt), . k s7. Note that
nowK is independent od;, and thus the proof is completed. Q.E.D.

From the above lemmas, Proposition 4 follows.

E.2 Proof of Proposition 4

Proposition 4. Suppose that the signal distribution has full support, and that
(SFR) and (Weak-Cl) hold. Suppose also that thegpds/AZ% such thatN®P >

n>P for all i and w. ThenUpcay Xiel Xweq NP, NPT is in the limit set of
sequential equilibrium payoffs as— 1.
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Proposition 4 in Appendix E.1 establishes that the limit set of review-strategy
equilibrium payoffs is characterized by a series of linear programming problems
(T-LP). To prove Proposition 4, we solve thedel(P) for various directions for
games that satisfy (IFR) and (SFR) and apply Proposition 4. The next lemma is
an extension of Lemma 5, which assert that under (SFR), the scored &f)(for
cross-state directions are so high that the half-spaces for these directions impose
no restriction on the séd”(T). Note that the lemma does not require the signal
distribution to be weakly conditionally independent. The proof of the lemma is
found in Appendix E.2.1

Lemma 9. Suppose that (IFR) holds. Suppose also that has individual full
rank, and has statewise full rank fotw, @) at regimeR. Then for everyp with
p(R) > 0 and for everyk > O there isK > 0 such that®(T,d_i, Ai, §,K) > k for
all (T, Ai,d,K) such thai\,* 0, )\i°~J + 0, andK > K. Therefore, if suclii_; exists,
thenkP(T, Aj) = o for all pandA; such thatp(R) > 0, A® # 0 andA® # 0.

Next we consider¥-LP) for single-state directions. Lemma 10 shows that
under (Weak-Cl), the scores of {LP) for single-state directions are bounded
by the extreme values of belief-free review-strategy equilibrium payoffs of the
known-state game. The proof is found in Appendix E.2.1.

Lemma 10. Suppose that (Weak-Cl) holds. Suppose also that the signal distri-
bution has full support. Theliminfr_.k"(T,Aj) = NP for A; € A such that
A% =1, andliminfr_okP(T,Aj) = —n®P for A € Aj such than © = —1.

Combining the above three lemmas with Proposition 4, we obtain Proposition

E.2.1 Proofs of Lemmas 9 and 10

Lemma 9. Suppose that (IFR) holds. Suppose also that has individual full
rank, and has statewise full rank fotw, ) at regimeR. Then for everyp with
p(R) > 0 and for everyk > 0 there isK > 0 such that”(T,d_i, Ai, §,K) > k for
all (T, A, 8,K) such thai\,* # 0, Ai‘b # 0, andK > K. Therefore, if suclai_; exists,
thenkP(T,Aj) = o for all p and; such thatp(R) > 0, A® # 0 andA® # 0.
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Proof. Since (IFR) holds, there i5: A_; x =_; — RI9l such that

o@+ 3 mi(oul@z’(ai o) =g’@.a)+ Yy ni(oila,ai)z’ (@i o)
O_j€2_j O_j€2_j

forall e Q,ac A anda # &. Thatis,z is chosen in such a way that player

i is indifferent over all actions in a one-shot game if she receives a payment

z(a_j,0_) after play. In particular we can choogeso that

Ai-z(aj,0-i) <0

foralla_j € A_jando_; € Z_;. LetV; € R9 be playeii’s payoff of the one-shot
game with paymers; when player—i playsd_; and a public signaR follows a
distributionp; that is,

W= R R(ai)|g@o 1 (0 ila)2(a_i, 0
Rez,%’p< )ii;‘a (a )[g (8,0) + (o_ila)z’(aj,o )]

O_j€2_j

for someg;.

Also, it follows from Lemma 5 that for ever > 0, there arej, € R/?l and
% % x A x Z_ij — RI9l such thai(¥i, %) satisfies constraints (i) through (i) of
(LP-Individual) and such thak; - % > Tk+ (T — 1)|A; - %i]. Let

V=g 5T<.+225f1>

and

1-90
Xi(R,a_i,O-Ei,"' ’O-Ii) = 1—90T ( R ai,0. + 225T 1 a—|7 )) :

Then this(v;, x;) satisfies constraints (i) through (iii) of {LP). Also, letting

K> max [f(Rai, o)+ max (T—1)z(a o),

(Ra_j,0_j) (ai,0.i)
condition (iv) also holds. Sinca -v; >k, the lemma follows. Q.E.D.

Lemma 10. Suppose that (Weak-Cl) holds. Suppose also that the signal distri-
bution has full support. Thefiminfr_.kP(T,Aj) = NP for A; € Aj such that
A® =1, andliminfr_okP(T,Aj) = —nP for A; € Aj such than,® = —1.
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Proof. We first consider directiod; such thai® = 1. Let d_; be such that for
eachR, player—i chooses a pure acti@®; whereaR; is such that

2 PR min o (a,a%;) = NP.
Consider the problemT(LP) for (T,d_j, Ai,d,K). Since (IFR) holdsg_; has
individual full rank so that for eact # w, there isxi‘7J that makes playerindif-
ferent in every period. Therefore we can ignore constraint (ii)iot w. Sec-
tion 3.3 of Yamamoto (2012) shows that under (Weak-Cl), for anyO0 there is
T > 0 such that for anyl > T, there ared € (0,1) andK > 0 such that for any
5 € (5,1), there is(v®, x*) such thaiv® — N“*P| < ¢ and all the remaining con-
straints of T-LP) are satisfied. This shows thaninft_.kP(T,A;) > N®P for

A € N\i such that,® = 1. Also, it follows from Proposition 1 of Yamamoto (2012)
thatkP(T,Ai) < N*P for anyT. Therefore we havéminfr_.kP(T,Aj) = NP

A similar argument shows thiminfr_,. kP(T,Aj) = —nP for A; € Aj such that
A9 =—1. Q.E.D.

70



References

Abreu, D., D. Pearce, and E. Stacchetti (1990): “Toward a Theory of Discounted
Repeated Games with Imperfect Monitoringgtonometricéb8, 1041-1063.

Aumann, R., and M. Maschler (1995Repeated Games with Incomplete Infor-
mation MIT Press, Cambridge, MA. With the collaboration of R.E. Stearns.

Bhaskar, V., G.J. Mailath, and S. Morris (2008): “Purification in the Infinitely
Repeated Prisoner’s DilemmaReview of Economic Dynami&4, 515-528.

Bhaskar, V., and I. Obara (2002): “Belief-Based Equilibria in the Repeated Pris-
oner’s Dilemma with Private Monitoring, Journal of Economic Theor$02,
40-69.

Chen, B. (2010): “A Belief-Based Approach to the Repeated Prisoners’ Dilemma
with Asymmetric Private Monitoring, Journal of Economic Theory45, 402-
420.

Compte, O. (1998): “Communication in Repeated Games with Imperfect Private
Monitoring,” Econometric&6, 597-626.

Cripps, M., J. Ely, G.J. Mailath, and L. Samuelson (2008): “Common Learning,”
Econometricar6, 909-933.

Cripps, M., and J. Thomas (2003): “Some Asymptotic Results in Discounted
Repeated Games of One-Side Incomplete Informatittgthematics of Oper-
ations Researc8, 433-462.

Dekel, E., D. Fudenberg, and D.K. Levine (2004): “Learning to Play Bayesian
Games,”Games and Economic Behavidi6, 282-303.

Ely, J., J. Hbrner, and W. Olszewski (2005): “Belief-Free Equilibria in Repeated
Games,"Econometricar3, 377-415.

Ely, J., and J. ¥limaki (2002): “A Robust Folk Theorem for the Prisoner’s
Dilemma,” Journal of Economic Theorj02, 84-105.

Fong, K., O. Gossner, J.dtiner, and Y. Sannikov (2011): “Efficiency in a Re-
peated Prisoner’s Dilemma with Imperfect Private Monitoring,” mimeo.

Forges, F. (1984): “Note on Nash Equilibria in Infinitely Repeated Games with
Incomplete Information,International Journal of Game Theof3, 179-187.

Fuchs, W. (2007): “Contracting with Repeated Moral Hazard and Private Evalu-
ations,” American Economic Reviedv, 1432-1448.

71



Fudenberg, D., and D.K. Levine (1991): “Approximate Equilibria in Repeated
Games with Imperfect Private InformationJournal of Economic Theory4,
26-47.

Fudenberg, D., and D.K. Levine (1994): “Efficiency and Observability in Games
with Long-Run and Short-Run Playerslburnal of Economic Theor§2, 103-
135.

Fudenberg, D., D.K. Levine, and E. Maskin (1994): “The Folk Theorem with
Imperfect Public Information,Econometrica&62, 997-1040.

Fudenberg, D., D.K. Levine, and S. Takahashi (2007): “Perfect Public Equilib-
rium when Players are Patientames and Economic Behaviét, 27-49.

Fudenberg, D., and Y. Yamamoto (2010): “Repeated Games where the Payoffs
and Monitoring Structure are UnknowrEconometrica/8, 1673-1710.

Fudenberg, D., and Y. Yamamoto (2011a): “Learning from Private Information in
Noisy Repeated GamesJournal of Economic Theory46, 1733-17609.

Fudenberg, D., and Y. Yamamoto (2011b): “The Folk Theorem for Irreducible
Stochastic Games with Imperfect Public MonitoringJournal of Economic
Theoryl46, 1664-1683.

Gossner, O., and N. Vieille (2003): “Strategic Learning in Games with Symmetric
Information,” Games and Economic Behavid2, 25-47.

Harrington, J., and A. Skrzypacz (2011): “Private Monitoring and Communica-
tion in Cartels: Explaining Recent Collusive PracticeStherican Economic
Reviewl01, 2425-2449.

Hart, S. (1985): “Nonzero-Sum Two-Person Repeated Games with Incomplete
Information,” Mathematics of Operations Researt, 117-153.

Horner, J., and S. Lovo (2009): “Belief-Free Equilibria in Games with Incomplete
Information,” Econometricar 7, 453-487.

Horner, J., S. Lovo, and T. Tomala (2011): “Belief-Free Equilibria in Games with
Incomplete Information: Characterization and Existengetirnal of Economic
Theory146, 1770-1795.

Horner, J., and W. Olszewski (2006): “The Folk Theorem for Games with Private
Almost-Perfect Monitoring,Econometricar4, 1499-1544.

72



Horner, J., and W. Olszewski (2009): “How Robust is the Folk Theorem with
Imperfect Public Monitoring?,” Quarterly Journal of Economic$24, 1773-
1814.

Ishii, Y. (2009): “Folk Theorem with a Continuum of Public Signals,” mimeo.

Kandori, M. (2002): “Introduction to Repeated Games with Private Monitoring,”
Journal of Economic Theorj02, 1-15.

Kandori, M. (2011): “Weakly Belief-Free Equilibria in Repeated Games with
Private Monitoring,”Econometrica/9, 877-892.

Kandori, M., and H. Matsushima (1998): “Private Observation, Communication
and Collusion,”Econometricé6, 627-652.

Kandori, M., and I. Obara (2006): “Efficiency in Repeated Games Revisited: the
Role of Private StrategiesEconometricar2, 499-519.

Koren, G. (1992): “Two-Person Repeated Games where Players Know Their Own
Payoffs,” mimeo.

Lehrer, E. (1990): “Nash Equilibria afi-Player Repeated Games with Semi-
Standard Information,International Journal of Game Theof, 191-217.

Levin, J. (2003): “Relational Incentive Contractsfmerican Economic Review
93, 835-857.

Mailath, G.J., and S. Morris (2002): “Repeated Games with Almost-Public Mon-
itoring,” Journal of Economic Theord02, 189-228.

Mailath, G.J., and S. Morris (2006): “Coordination Failure in Repeated Games
with Almost-Public Monitoring,” Theoretical Economic$, 311-340.

Mailath, G.J., and W. Olszewski (2011): “Folk Theorems with Bounded Recall
and (Almost) Perfect Monitoring,”"Games and Economic Behavidl, 174-
192.

Mailath, G.J., and L. Samuelson (2006)Repeated Games and Reputations:
Long-Run Relationship®xford University Press, New York, NY.

Matsushima, H. (2004): “Repeated Games with Private Monitoring: Two Play-
ers,” Econometricar2, 823-852.

Miller, D. (2012): “Robust collusion with private informationReview of Eco-
nomic Studie§9, 778-811.

73



Olszewski, W. (2007): “A Simple Exposition of Belief-Free Equilibria in Re-
peated GamesEconomics Bulletib8, 1-16.

Park, J-H. (2011): “Enforcing International Trade Agreements with Imperfect
Private Monitoring,”Review of Economic Studi&8, 1102-1134.

Piccione, M. (2002): “The Repeated Prisoner’s Dilemma with Imperfect Private
Monitoring,” Journal of Economic Theorj02, 70-83.

Radner, R. (1985): “Repeated Principal-Agent Games with Discountipho-
metrica53, 1173-1198.

Rotemberg, J.J., and G. Saloner (1986): “A Supergame-Theoretic Model of Price
Wars during Booms,American Economic Reviens, 390-407.

Sekiguchi, T. (1997): “Efficiency in Repeated Prisoner’s Dilemma with Private
Monitoring,” Journal of Economic Theory6, 345-361.

Shaleyv, J. (1994): “Nonzero-Sum Two-Person Repeated Games with Incomplete
Information and Known-Own Payoffs(zames and Economic Behavibr246-
259.

Sorin, S. (1984): “Big Match with Lack of Information on One Side (Part 1),”
International Journal of Game Theofy3, 201-255.

Sorin, S. (1985): “Big Match with Lack of Information on One Side (Part II),
International Journal of Game Theofy, 173-204.

Stigler, G.J. (1964): “A Theory of Oligopoly,Journal of Political Economy 2,
44-61.

Sugaya, T. (2010a): “Belief-Free Review-Strategy Equilibrium without Condi-
tional Independence,” mimeo.

Sugaya, T. (2010b): “Folk Theorem in a Prisoners’ Dilemma without Conditional
Independence,” mimeo.

Sugaya, T., and S. Takahashi (2010): “Coordination Failure in Repeated Games
with Private Monitoring,” mimeo.

Takahashi, S. (2010): “Community Enforcement when Players Observe Partners’
Past Play,"Journal of Economic Theori45, 42-62.

Wiseman, T. (2005): “A Partial Folk Theorem for Games with Unknown Payoff
Distributions,” Econometrica/ 3, 629-645.

74



Wiseman, T. (2012) “A Partial Folk Theorem for Games with Private Learning,”
Theoretical Economicg, 217-239.

Yamamoto, Y. (2007): “Efficiency Results iN Player Games with Imperfect
Private Monitoring,”Journal of Economic Theor§35, 382-413.

Yamamoto, Y. (2009): “A Limit Characterization of Belief-Free Equilibrium Pay-
offs in Repeated GamesJournal of Economic Theory/44, 802-824.

Yamamoto, Y. (2012): “Characterizing Belief-Free Review-Strategy Equilibrium
Payoffs under Conditional Independencdpurnal of Economic Theor¥47,
1998-2027.

75



