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Abstract

We study perfect information games with an infinite horizon played
by an arbitrary number of players. This class of games includes in-
finitely repeated perfect information games, repeated games with asyn-
chronous moves, games with long and short run players, games with
overlapping generations of players, and canonical non-cooperative mod-
els of bargaining.

We consider two restrictions on equilibria. An equilibrium is puri-
fiable if close by behavior is consistent with equilibrium when agents’
payoffs at each node are perturbed additively and independently. An
equilibrium has bounded recall if there exists K such that at most one
player’s strategy depends on what happened more than K periods ear-
lier. We show that only Markov equilibria have bounded memory and
are purifiable. Thus if a game has at most one long-run player, all
purifiable equilibria are Markov.
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clarifications (the independence of payoff shocks across players made explicit and K-recall
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1 Introduction

Repeated game theory has shown that punishment strategies, strategies con-
tingent on payoff irrelevant histories, greatly expand the set of equilibrium
outcomes. Yet in much applied analysis of dynamic games, researchers re-
strict attention to Markov equilibria, equilibria in which behavior does not
depend on payoff irrelevant histories. Arguments for focussing on Markov
equilibria include (i) their simplicity; (ii) their sharp predictions; (iii) their
role in highlighting the key payoff relevant dynamic incentives; and (iv) their
descriptive accuracy in settings where the coordination implicit in payoff ir-
relevant history dependence does not seem to occur. However, principled
reasons for restricting attention to Markov equilibria are limited.1

This paper provides a foundation for Markov strategies for dynamic
games with perfect information that rests on two assumptions. First, we
make the restriction that all players (except possibly one) must use bounded-
recall strategies, i.e., strategies that do not depend on the infinite past. Sec-
ond, we require equilibrium strategies to be “purifiable,” i.e., to also con-
stitute an equilibrium of a perturbed game with independent private payoff
shocks in the sense of Harsanyi (1973). Our main result is that Markov
equilibria are the only bounded and purifiable equilibria.

The purifiability requirement reflects the view that our models are only
an approximation of reality, and there is always some private payoff informa-
tion. We make the modest requirement that there must be some continuous
shock under which the equilibrium survives. The boundedness requirement
is of interest for two distinct reasons. First, in many contexts, it is natural to
assume that there do not exist two players who can observe the infinite past:
consider, for example, games between a long-run player and a sequence of
short-run players or in games with overlapping generations of players. Sec-
ond, strategies that depend on what happens in the arbitrarily distant past
do not seem robust to memory problems and/or noisy information. While
we do not formally model the latter justification for focussing on bounded
memory strategy profiles, we believe it makes them interesting objects of
study.2

1For asynchronous choice games, Jehiel (1995) and Bhaskar and Vega-Redondo (2002)
provide a rationale for Markov equilibria based on complexity costs. Maskin and Tirole
(2001) discuss the notion of payoff relevance and the continuity properties of Markov
equilibria; we discuss Maskin and Tirole (2001) in Section 3.2.

2In a different context (repeated games with imperfect public monitoring), Mailath
and Morris (2002, 2006) show that strategies based on infinite recall are not “robust to
private monitoring,” i.e, they cease to constitute equilibrium with even an arbitrarily small
amount of private noise added to public signals.
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Figure 1: The stage game for the chain store. The top payoff is the payoff
to the Entrant.

Our argument exploits special features of the games we study: only one
player moves at a time and there is perfect information. Perfect information
and the purifying payoff shocks imply that if a player conditions upon a
past (payoff irrelevant) event at date t, then some future player must also
condition upon this event. Such conditioning is possible in equilibrium only
if the strategy profile exhibits infinite history dependence. We thus give the
most general version of an argument first laid out by Bhaskar (1998) in the
context of a particular (social security) overlapping generations game. This
argument does not apply with simultaneous moves since two players may
mutually reinforce such conditioning at the same instant, as we discuss in
Section 6.

2 A Long-Run Player/Short-Run Player Example

Consider the following example of a repeated perfect information game, the
chain store game, played between a long-run player and an infinite sequence
of short-run players. In each period, an entrant (the short-run player) must
decide whether to enter or stay out. If the entrant stays out, the stage game
ends; if he enters, then the incumbent (the long-run player) must decide
whether to accommodate or fight. The stage game is depicted in Figure 1.

Each entrant maximizes his stage game payoff, only observing and thus
only conditioning on what happened in the previous period. The incumbent
maximizes the discounted sum of payoffs, observing the entire history. The
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incumbent’s discount factor δ is less than but close to 1. We require equi-
libria to satisfy sequential rationality—each player is choosing optimally at
every possible history.

Ahn (1997, Chapter 3) shows that there is no pure strategy equilibrium
where entry is deterred (for generic values of the discount factor). To provide
some intuition, restrict attention to stationary strategies. Since the entrant
only observes the outcome of the previous period, the entrant’s history is an
element of A = {Out,A,F}. Consider a trigger strategy equilibrium where
the entrant enters after accommodation in the previous period, and stays
out otherwise. For this to be optimal, the incumbent must play a strategy
of the form: F as long as he has not played A in the previous period; A
otherwise. Such a strategy is not sequentially rational, because it is not
optimal to play A when A had been played in the previous period. In this
case, playing A secures a payoff of zero, while a one step deviation to F earns
−(1− δ)c+ δ, which is strictly positive for high enough δ.

There is however a class of mixed strategy equilibria in which entry is
deterred with positive probability in each period. In any equilibrium in this
class, the incumbent plays F with probability 1

2 , independent of history. The
entrant is indifferent between In and Out at any information set, given the
incumbent’s strategy. He plays In with probability p at t = 1. At t > 1 he
plays In with probability p after at−1 ∈ {Out,F}; if at−1 = A, he plays In
with probability q, where q = p + c/[δ(1 + c)]. That is, the difference in
entry probabilities across histories, q − p, is chosen to make the incumbent
indifferent between accommodating and fighting. If we choose p = 0, then
no entry takes place on the equilibrium path. Note that we have a one-
dimensional manifold of equilibria in this class. In any such equilibrium,
the entrant’s beliefs about the incumbent’s response is identical after the
two one-period histories at−1 = A and at−1 ∈ {Out,F}. Nevertheless, the
entrant plays differently.

We now establish that none of these mixed strategy equilibria can be
purified if we add small shocks to the game’s payoffs. So suppose that the
entrant gets a payoff shock εz̃t1 from choosing Out while the incumbent gets a
payoff shock εz̃t2 from choosing F. We suppose each z̃ti is drawn independently
across players and across time according to some known density with support
[0, 1]. The shocks are observed only by the player making the choice at the
time he is about to make it. A strategy for the entrant is

ρt : {Out,A,F} × [0, 1]→ ∆(A1),
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while a strategy for the incumbent is

σt : At × [0, 1]→ ∆(A2)

(in principle, it could condition on the history of past payoff shocks, but
this turns out not to matter). Note that ρt+1 does not condition on what
happened at t − 1. Fix a history ht = (a1, a2, . . . , at) ∈ At with at = In
(entry at date t) and zt2 (payoff realization for incumbent). For almost all
zt2, the incumbent has a unique pure best response. Since ρt+1 does not
condition on ht−1,

σt((ht−1, In), zt2) = σt((ĥt−1, In), zt2)

for almost all zt2 and any ĥt−1 ∈ At−1. So the incumbent does not condition
on ht−1. Since the entrant at t also has a payoff shock, it has a unique pure
best response for almost all payoff shock realizations, and so

ρt(h
t−1, zt1) = ρt(h̃

t−1, zt1)

for almost all zt1.
We conclude that for any ε > 0, only equilibria in Markov strategies exist.

If ε is sufficiently small, the incumbent accommodates for all realizations of
his payoff shock, and therefore, with probability one. So the entrant enters
with probability one. Thus, in any purifiable equilibrium of the unperturbed
game, the backwards induction outcome of the stage game must be played
in every period.

3 The Model

3.1 The Perfect Information Game

We consider a potentially infinite dynamic game of perfect information, Γ.
The game has a recursive structure and may also have public moves by
nature. The set of players is denoted by N and the set of states by S, both
of which are countable. Only one player can move at any state, and we
denote the assignment of players to states by ι : S → N . This assignment
induces a partition {S(i) | i ∈ N} of S, where S(i) = {s ∈ S | ι(s) = i} is
the set of states at which i moves. Let A denote the countable set of actions
available at any state; since payoffs are state dependent, it is without loss
of generality to assume that the set of actions is state independent. Let
q (s′|s, a) denote the probability of state s′ following state s when action a is
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played; thus q : S ×A→ ∆ (S). The initial distribution over states is given
by q(∅). Player i has bounded flow payoff ui : S × A → R and a discount
factor δi ∈ [0, 1). Total payoffs in the game are the discounted sum of flow
payoffs. The dynamic game is given by Γ =

{
S,N , ι, q, (ui)i∈N

}
.

This formulation allows for both deterministic and stochastic finite hori-
zons: one (or more) of the states may be absorbing, and gives all players a
zero payoff.

The game starts in a state s0 at period 0 determined by q(∅) and the
history at period t ≥ 1 is a sequence of states and actions, Ht = (S × A)t.
Some histories may not be feasible: if after a history h = (sτ , aτ )tτ=0, the
state s has zero probability under q(· | st, at), then that state cannot arise
after the history h. Since infeasible histories arise with zero probability and
the set of all histories is countable, without loss of generality our notation
often ignores the possibility of infeasible histories. Let H0 = {∅} and H =
∪∞t=0H

t; we write h for a typical element of H, τ (h) for the length of the
history (i.e., τ (h) is the t for which h ∈ Ht), and H∞ = (S ×A)∞ for the
set of outcomes (infinite histories) with typical element h∞. We sometimes
write (h, s) for (h, sτ(h)) = (s0, a0; s1, a1; . . . , sτ(h)−1, aτ(h)−1; sτ(h)), with the
understanding that s = sτ(h). Player i’s payoff as a function of outcome,
Ui : H∞ → R, is

Ui (h∞) = Ui ((st, at)
∞
t=0) = (1− δi)

∞∑
t=0

δtiui(st, at).

A (behavioral) strategy for player i is a mapping bi : H × S(i) → ∆(A).
Write Bi for the set of strategies of player i. A strategy profile b = (bi)i∈N
can be understood as a mapping b : H × S → ∆ (A), specifying a mixed
action at every history. Write Vi (b | h, s) for player i’s expected continuation
utility from the strategy profile b at the history (h, s). This value is given
recursively by

Vi (b | h, s) =
∑
a∈A

bι(s) (a | h, s)

{
(1− δi)ui (s, a)

+δi
∑
s′∈S

q
(
s′ | s, a

)
Vi
(
b | (h, s, a) , s′

)}
.

We write Vi (b) ≡
∑
q(s | ∅)Vi (b| (∅, s)) for player i’s ex ante utility under

strategy profile b.

6



Definition 1 A strategy bi is Markov if for each s ∈ S(i) and histories
h, h′ ∈ H of the same length (i.e., τ(h) = τ(h′)),

bi(h, s) = bi(h′, s).

A Markov strategy is stationary if the two histories h and h′ can be of
different lengths.

A Markov profile is eventually stationary if there exists ` such that for
histories h and h′ where τ(h) ≥ ` and τ(h′) ≥ `, for all i ∈ N and all
s ∈ S(i),

bi(h, s) = bi(h′, s).

Definition 2 A strategy profile b is a subgame perfect Nash equilibrium
(SPNE) if, for all s ∈ S, h ∈ H, and each i ∈ N and b′i ∈ Bi,

Vi((bi, b−i) | h, s) ≥ Vi((b′i, b−i) | h, s). (1)

If b is both Markov and a SPNE, it is a Markov perfect equilibrium.

Many games fit into our general setting:

1. Repeated perfect information games. The state s tracks play in the
perfect information stage game; ui(s, a) is zero whenever (s, a) results
in a non-terminal node of the stage game, and is the payoff at the
terminal node otherwise.

2. Perfect information games played between overlapping generations of
players (Bhaskar (1998) and Muthoo and Shepsle (2010)).

3. Extensive form games between long-lived and short-lived players. Such
games arise naturally in the reputation literature (e.g., Fudenberg and
Levine (1989); Ahn (1997, Chapter 3)).

4. Infinitely repeated games with asynchronous moves, either with a de-
terministic order of moves (as in Maskin and Tirole (1987, 1988a,b),
Jehiel (1995), Lagunoff and Matsui (1997) and Bhaskar and Vega-
Redondo (2002)) or with a random order of moves (as in Matsui and
Matsuyama (1995)).3 In both cases, the state s is the profile of ac-
tions of players whose actions are fixed, and ui(s, a) is the stage game
payoff.

3To incorporate the Poisson process of opportunities to change actions, as in Matsui
and Matsuyama (1995), we would have to incorporate a richer timing structure into our
model. Lagunoff and Matsui (1995) describe a class of ”asynchronously repeated games”
allowing this straightforward extension.
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c1 c2 d
c1 11, 11 6, 9 −20, 20
c2 9, 6 10, 10 −20, 20
d 20,−20 20,−20 0, 0

Figure 2: Payoffs for an augmented prisoners’ dilemma.

5. Non-cooperative bargaining. In each period, a proposer makes an offer
and other players decide sequentially whether to accept or reject the
offer, with either deterministic order of moves (Rubinstein, 1982) or
random order (Chatterjee, Dutta, Ray, and Sengupta, 1993).

Our next examples show that there are interesting Markov equilibria in
perfect information games, the possibility for non-stationary Markov behav-
ior, as well as the restrictive power of Markov.

Example 1 [An asynchronous move repeated game] Consider the augmented
prisoners’ dilemma illustrated in Figure 2. With asynchronous moves, player
1 moves in odd periods and player 2 in even periods (since time begins at
t = 0, player 2 makes the first move). State and action sets are S = A =
{c1, c2, d} and the state encodes the action taken in the previous period (so
q (s′ | s, a) = 1 if s′ = a and 0 otherwise). Suppose the initial state is given
by c1.

There are two stationary pure strategy Markov equilibria: Let b∗ : S →
A be the Markov strategy given by b∗(s) = s. It is straightforward to verify
that b∗ is a perfect equilibrium for δ ∈

[
1
2 ,

20
31

]
. Let b† : S → A be the Markov

strategy given by b†(c1) = b†(c2) = c2 and b†(d) = d. It is straightforward
to verify that b† is a perfect equilibrium for δ ∈

[
1
2 ,

2
3

]
.

Finally, denote by bα : S → ∆(A) the Markov strategy given by bα(c1) =
α◦ c1 +(1−α)◦ c2, bα(c2) = c2, and bα(d) = d. Suppose it is player i’s turn.
At (h, c2), the payoff from following bα is

Vi(bα | h, c2) = 10. (2)

At (h, c1), the payoff from choosing c1, and then following bα, is

(1− δ)11 + δα{(1− δ)11 + δVi(bα | (h, c1, c1), c1)}
+ δ(1− α){(1− δ)6 + δVi(bα | (h, c1, c1), c2)}, (3)

while the payoff from choosing c2, and then following bα, is

(1− δ)9 + δVi(bα | (h, c1), c2)}. (4)
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coalition 1’s payoff 2’s payoff 3’s payoff

{1, 2} 9 3 0
{2, 3} 0 9 3
{1, 3} 3 0 9

Figure 3: Payoffs to players in each pairwise coalition for Example 2. The
excluded player receives a payoff of 0.

In order for player i to be willing to randomize, (3) must equal (4), with this
common value being Vi(bα | h, c1). Since Vi(bα | (h, c1), c2) = 10, (4) implies
Vi(bα | h, c1) = 9 + δ, and solving (3) for α yields

α =
(4δ − 2)
(5− δ)δ

. (5)

This is a well defined probability for δ ≥ 1
2 . Moreover, bα, for α satisfying

(5), is a Markov equilibrium for δ ∈
[

1
2 ,

2
3

]
.

For any time t, the nonstationary Markov strategy specifying for periods
before or at t, play according to b∗, and for periods after t, play according
to bα, for α satisfying (5), is a Markov perfect equilibrium for δ ∈ (1

2 ,
2
3).

An outcome path in which player 1 always plays c1 and player 2 al-
ways plays c2 is a subgame perfect equilibrium outcome path for sufficiently
patient players – this is supported by permanent d after any deviation. How-
ever, this is not the outcome path of any Markov perfect equilibrium.

F

The nonstationary equilibrium in Example 1 is, in a sense, trivial, since
it is eventually stationary. As we will see, this type of non-stationarity is
not purifiable.

The next example illustrates nontrivial nonstationarity.

Example 2 [Pure Markov requires nonstationarity] This coalition forma-
tion game is a simplification of Livshits (2002). There are three players. In
the initial period, a player i is selected randomly and uniformly to propose
a coalition with one other player j, who can accept or reject. If j accepts,
the game is over with payoffs given in Figure 3. If j rejects, play proceeds
to the next period, with a new proposer randomly selected. If no coalition
is formed, all players receive a payoff of 0. Note that there is a cycle in
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preferences: 1 prefers the coalition with 2, who prefers the coalition with 3,
who in turn prefers the coalition with 1.

For δ < 3/4, there is a unique Markov perfect equilibrium and this equi-
librium is stationary and in pure strategies with every proposal immediately
accepted. For δ > 3/4, there is no Markov perfect equilibrium in station-
ary pure strategies. There is a stationary Markov perfect equilibrium in
mixed strategies, with the responder randomizing between acceptance and
rejection, accepting with probability 3(1− δ)/δ.

If 3/4 < δ <
√

3/4, there are two nonstationary pure strategy Markov
equilibria. In one, offers are accepted in odd periods and rejected in even
periods, while in the other offers are accepted in even periods and rejected in
odd. (For larger values of δ, pure strategy Markov equilibria display longer
cycles.)

An example of a non-Markov perfect equilibrium when 3/4 < δ <
√

3/4
is the following: in the first period, if 1 is selected, then 1 chooses 3, who
accepts (the specification of play after 3 rejects can follow any Markov per-
fect equilibrium). If 1 chooses 2, then 2 rejects, with play then following the
Markov perfect equilibrium with acceptance in odd periods (recall that the
first period is period 0, so that after 2’s rejection, the next period is odd and
so there is immediate acceptance). If 2 or 3 are selected, then play follows
the Markov perfect equilibrium with acceptance in even periods.

F

3.2 Markov equilibria and payoff relevance

In Definition 1, we have taken the state space and the corresponding notion
of a Markov strategy as a primitive. The restriction to Markov strategies
is often motivated by the desire to restrict behavior to only depend on the
payoff relevant aspects of history. By construction, since payoffs at any
date only depend upon the state and upon the action taken, our states
capture everything that is payoff-relevant in the history of the game (but
may capture more). Maskin and Tirole (2001) describe a natural definition
of the coarsest possible notion of payoff-relevant (or Markov) state.4 While
in general, two states s and s′ reached in the same period in our state space
S may be payoff equivalent, a sufficient condition ruling this out is that for

4Loosely, Maskin and Tirole (2001) use payoff equivalence to induce a partition H∗over
histories of the same length. A Markov state is an element of this partition. H∗ is the
coarsest partition with the property that for every profile measurable with respect to that
partition, each player has a best response measurable with respect to that partition.
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every pair s, s′ ∈ S(i), ui(s, a) is not an affine transformation of ui(s′, a)
(Mailath and Samuelson, 2006, Proposition 5.6.2).5

Since small changes in payoffs can destroy payoff equivalence, the set
of Markov states as defined by Maskin and Tirole (2001) does not behave
continuously with respect to the payoffs ui, i.e. the set of payoffs for which
the set of Markov states is given by S is not closed).6 This failure of con-
tinuity may be viewed as a criticism of the concept. In particular, suppose
that Γ̂ denotes a game with the same extensive form as Γ, where payoffs
are allowed to depend nontrivially on histories, so that payoffs are given
by ûi : H × S × A → R. Apart from the specification of payoffs, Γ and Γ̂
coincide. Then, for generic assignment of payoffs, every SPNE of Γ̂ will be
Markov, and Markov has no restrictive power in Γ̂. Moreover, this will be
true even if |ûi(h, s, a)− ui(s, a)| is small.

However, as Maskin and Tirole (2001, p. 194) note, one of the philosoph-
ical considerations embodied by Markov perfect equilibrium is that “minors
causes should have minor effects.”7 We interpret this as a requirement that
if two histories are almost payoff irrelevant, then behavior at these two
histories should be almost the same. This immediately yields upper hemi-
continuity:8

Lemma 1 Suppose {Γ̂m}m is a sequence of perturbations of Γ satisfying,
5Maskin and Tirole (2001) use cardinal preferences to determine payoff equivalence, and

hence the presence of affine transformations. If there are no strictly dominated strategies,
this corresponds to saying that games are equivalent if the better-response relation is the
same for all conjectures in both games. This is, in general, a stronger requirement than
the equivalence of best responses in both games (Morris and Ui, 2004).

6Roughly speaking, two histories correspond to different Maskin and Tirole (2001)
states if a collection of equalities (corresponding to payoff equivalence) fail. Clearly, equal-
ities can fail along a convergent sequence and yet hold in the limit. Consequently, two
histories will not be payoff equivalent (i.e., correspond to different states) along a sequence
of convergent payoffs, and yet be payoff equivalent (correspond to the same state) in the
limit .

7This is not simply a technical requirement. Markov in the absence of some kind of
continuity requirement can be consistent with behavior that is clearly not in the spirit of
Markov, see Proposition 2 and the following discussion in Mailath and Samuelson (2001).

8The failure of the Markov perfect equilibrium correspondence to be upper hemi-
continuous in Maskin and Tirole (2001) (see their footnote 11) is due to their notion
of Markov state, and is related to our earlier observation that the set of payoffs for which
the set of Markov states in a particular period is given by the states in S reachable in
that period is not closed. Maskin and Tirole (2001, Section 4) shows that for finite games,
generically (in the space of payoffs of Γ), Markov equilibria of Γ (in the Maskin-Tirole
sense) can be approximated by Markov equilibria of near-by Γ̂.
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for all h ∈ H, for all s ∈ S, and all a ∈ A,

|ûmi (h, s, a)− ui(s, a)| → 0 as m→∞.

Suppose bm is a SPNE of Γ̂m and bm → b∗ as m→∞. If, for all h, h′ ∈ H
of the same length, for all s ∈ S,∣∣∣bmι(s)(h, s)− bmι(s)(h′, s)∣∣∣→ 0 as m→∞, (6)

then b∗ is a Markov perfect equilibrium of Γ.

Proof. The profile b∗ is trivially a SPNE of Γ (this is just upper-
hemicontinuity of the SPNE correspondence). Fix a state s and two his-
tories of the same length, h and h′. For all ε > 0, for sufficiently large
m, the convergence of bm to b∗ implies

∣∣∣bmι(s)(h, s)− b∗ι(s)(h, s)∣∣∣ < ε and∣∣∣bmι(s)(h′, s)− b∗ι(s)(h′, s)∣∣∣ < ε, and (6) implies
∣∣∣bmι(s)(h, s)− bmι(s)(h′, s)∣∣∣ < ε.

The triangle inequality then yields
∣∣∣b∗ι(s)(h, s)− b∗ι(s)(h′, s)∣∣∣ < 3ε. Because

this inequality holds for all ε > 0, we have
∣∣∣b∗ι(s)(h, s)− b∗ι(s)(h′, s)∣∣∣ = 0, and

so b∗ is Markov.

Note that Lemma 1 shows that b∗ is Markov in the sense of Definition
1, not in the sense of Maskin and Tirole (2001).

The observation that for generic payoff assignments, every subgame per-
fect equilibrium of Γ̂ will be Markov does not imply that every non-Markov
perfect equilibrium of Γ can be approximated by a (Markov) equilibrium in
any near-by Γ̂. We present an example in the appendix.

3.3 The Game with Payoff Shocks

We now allow for the payoffs in the underlying game to be perturbed, as
in Harsanyi (1973). We require that the payoff shocks respect the recursive
payoff structure of the infinite horizon game, i.e., to not depend upon history
except via the state: Let Z be a full dimensional compact subset of R|A| and
write ∆∗ (Z) for the set of measures with support Z generated by strictly
positive densities.9 At each history (h, s), a payoff shock zi ∈ Z is drawn
according to µsi ∈ ∆∗(Z).10 The payoff shocks are independently distributed

9Our analysis only requires that the support be in Z, but notation is considerably
simplified by assuming Z is the support.

10Since both A and S are countable, there are only countably many histories, and so
we do not require a continuum of independent random variables.
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across players and histories. We write µs := ×iµsi for the product measure on
ZN . If the player moving at state s chooses action a, i’s payoff is augmented
by εzai , where ε > 0. Thus, players’ stage payoffs in the perturbed game
depend only on the current state, action, and payoff shock (s, a, z), and are
given by

ũi (s, a, z) = ui (s, a) + εzai .

We denote the perturbed game by Γ (ε, µ).
To describe strategies, we first describe players’ information more pre-

cisely. Write zi(h, s) for the sequence of payoff shocks realized for player
i along (h, s), and z̃i(h, s) for player i’s current shock (thus z̃i(h, s) is the
last element of the sequence zi (h, s)); and z(h, s) for the sequence of payoff
shock profiles realized for all players up to (h, s). Hopefully without con-
fusion, we suppress the arguments (h, s), leaving the context to clarify the
dimensionality of the various vectors, so that for (h, s),

z̃i ∈ Z, zi ∈ Zτ(h)+1, and z ∈ (Zτ(h)+1)N .

A behavior strategy for player i in the perturbed game, b̃i, specifies player
i’s mixed action b̃i(h, s, zi), at every history (h, s) with s ∈ S(i) and for every
realization of i’s payoff shocks zi. The set of all behavior strategies for player
i is denoted B̃i.

The definition of sequential rationality requires us to have notation to
cover unreached information sets. A belief assessment for player i specifies,
for every feasible history h ∈ H and s ∈ S(i), a belief

πh,si ∈ ∆
(∏

j 6=i Z
τ(h)+1

)
(7)

over the payoff shocks z−i that have been observed by other players at history
(h, s). Note that, as suggested by the structure of the perturbed game,
we require that these beliefs are independent of player i’s private payoff
shocks, zi; beyond this requirement, we impose no further restrictions (such
as independence of payoff shocks across players or periods)—see Remark 1.

Player i’s “value” function is recursively given by, for a given strategy
profile b̃,

Ṽi(b̃ | h, s, z) =
∑
a∈A

b̃ι(s)(a | h, s, zι(s))

(1− δi)ũi(s, a, z̃i)

+δi
∑
s′∈S

q(s′ | s, a)
∫
Ṽi(b̃ | (h, s, a), s′, (z, z))µs

′
(dz)

]
.

13



Since player i does not know all the coordinates of z, player i’s expected
payoff from the profile b̃ is given by∫

Ṽi(b̃ | h, s, (zi, z−i)) πh,si (dz−i). (8)

Definition 3 Strategy b̃i is a sequential best response to (b̃−i, πi), if for
each h ∈ H, s ∈ S(i), zi ∈ Zτ(h)+1, and b̃′i ∈ B̃i,∫

Ṽi((b̃i, b̃−i) | h, s, ((zi, z−i)) πh,si (dz−i)

≥
∫
Ṽi((b̃′i, b̃−i) | h, s, (zi, z−i)) π

h,s
i (dz−i).

Strategy b̃i is a sequential best response to b̃−i if strategy b̃i is a sequential
best response to (b̃−i, πi) for some πi.

Definition 4 A strategy b̃i is shock history independent if for all h ∈ H,
s ∈ S(i), and shock histories zi, z′i ∈ Zτ(h)+1,

b̃i(h, s, zi) = b̃i(h, s, z′i)

when z̃i = z̃′i = z, for almost all z ∈ Z.

Lemma 2 If b̃i is a sequential best response to any b̃−i, then b̃i is a shock
history independent strategy.

Proof. Fix a player i, h ∈ H, s ∈ S(i), and payoff shock history z.
Player i’s next period expected continuation payoff under b̃ from choosing
action a this period, Vi(a, b̃−i, πi | h, s), is given by∑

s′

q(s′ | s, a)
∫∫

max
b̃i

Ṽi(b̃i, b̃−i | (h, s, a), s′, z, z′) µs
′
(dz′)πh,s,a,s

′

i (dz−i).

Since b̃−i and πh,s,a,s
′

i do not depend on player i’s shocks, the maximization
implies that Vi(a, b̃−i, πi | h, s) also does not depend on those shocks. Thus,
his total utility is

(1− δi)[ui(s, a) + εz̃ai ] + δiVi(a, b̃−i, πi | h, s).

Since Z has full dimension and µs is absolutely continuous, player i can
only be indifferent between two actions a and a′ for a zero measure set of

14



z ∈ Z. For other z, there is a unique best response, and so it is shock history
independent.

A shock history independent strategy (ignoring realization of z of mea-
sure 0) can be written as

b̃i : H × S(i)× Z → ∆ (A) .

If all players are following shock history independent strategies, we can
recursively define value functions for a given strategy profile b̃ that do not
depend on any payoff shock realizations:

V ∗i (b̃ | h, s) =
∫ ∑

a∈A
b̃ι(s)(a | h, s, z̃ι(s))

[
(1− δi)ũi(s, a, z)

+δi
∑
s′∈S

q(s′ | s, a)V ∗i (b̃ | (h, s, a), s′)

]
µs(dz). (9)

It is now immediate from Lemma 2 that beliefs over unreached informa-
tion sets are essentially irrelevant in the notion of sequential best responses,
because, while behavior can in principle depend upon prior payoff shocks,
optimal behavior does not.

Lemma 3 A profile b̃ is a profile of mutual sequential best responses if,
and only if, for all i, b̃i is shock history independent, and for each h ∈ H,
s ∈ S(i) and b̃′i ∈ B̃i,

V ∗i ((b̃i, b̃−i) | h, s) ≥ V ∗i ((b̃′i, b̃−i) | h, s). (10)

Remark 1 Because the perturbed game has a continuum of possible payoff
shocks in each period, and players may have sequences of unreached infor-
mation sets, there is no standard solution concept that we may appeal to.
Our notion of sequential best response is very weak (not even requiring that
the beliefs respect Bayes’ rule on the path of play). The only requirement is
that each player’s beliefs over other players’ payoff shocks be independent of
his own shocks. For information sets on the path of play, this requirement
is implied by Bayes’ rule. Tremble-based refinements imply such a require-
ment at all information sets, though they may imply additional restrictions
across information sets. This requirement is not implied by the notion of
“weak perfect Bayesian equilibrium” from Mas-Colell, Whinston, and Green
(1995), where no restrictions are placed on beliefs off the equilibrium path:

15



this would allow players to have different beliefs about past payoff shocks
depending on their realized current payoff realization.

However, Lemma 3 implies that once we impose mutuality of sequential
best responses, any additional restrictions have no restrictive power. It is
worth noting why no belief assessment πh,si appears either in the description
of V ∗i , (9), or in Lemma 3: Player i’s expected payoff from the profile b̃, given
in (8), is the expectation over past payoff shocks of other players, z−i (h, s),
as well as all future payoff shocks. Critically, in this expectation, as implied
by the structure of the perturbed game, it is assumed that all future shocks
are distributed according to µ, independent of all past shocks.

�

Given Lemma 3 and the discussion in Remark 1, the following definition
is natural:

Definition 5 A perfect Bayesian equilibrium is a profile of mutual sequen-
tial best responses.

Even though the private payoff shocks are drawn from a continuum, each
period’s decision can be viewed as a finite dimensional one, and so existence
of PBE is guaranteed for any µ and ε for standard reasons (a sketch of the
proof is in the appendix).

Lemma 4 The perturbed game Γ(ε, µ) has a PBE for all ε > 0 and µ with
µs ∈ ∆∗(ZN ) for all s ∈ S.

The definition of Markov shock history independent strategies naturally
generalizes that for the unperturbed game: a strategy b̃i is Markov if for
each s ∈ S(i), for almost all z ∈ Z, and histories h, h′ ∈ H with τ(h) = τ(h′),

b̃i(h, s, z) = b̃i(h′, s, z).

Definition 6 A shock history independent strategy b̃i has K-recall if for
each s ∈ S(i), histories h, h′ ∈ H satisfying τ(h) = τ(h′) = t, and almost
all z ∈ Z,

b̃i(h, s, z) = b̃i(h′, s, z)

whenever (sk, ak)t−1
k=t−K = (sk, ak)t−1

k=t−K . A strategy bi has infinite recall if
it does not have K-recall for any K. A Markov strategy is a 0-recall strategy
(there being no restriction on h and h′).

A K-recall strategy is stationary if the two histories can be of different
lengths.

16



The following is the key result of the paper.

Lemma 5 If b̃i is a sequential best response to b̃−i and does not have K-
recall, then for some j 6= i, b̃j does not have (K + 1)-recall.

Proof. If b̃i does not have K-recall, then there exist h and h′ with
τ (h) = τ (h′) = t ≥ K and s ∈ S(i)

(sk, ak)t−1
k=t−K = (s′k, a

′
k)
t−1
k=t−K

and
b̃i (h, s, z) 6= b̃i

(
h′, s, z

)
(11)

for a positive measure of z.
Suppose that b̃j has (K+1)-recall for each j 6= i. Since histories (h, s, a)

and (h′, s, a) agree in the last K + 1 periods, player i’s continuation value
from playing action a at (h, s) and at (h′, s) is the same, for all s′:

V ∗i ((b̃i, b̃−i) | (h, s, a), s′) = V ∗i ((b̃i, b̃−i) | (h′, s, a), s′).

Hence, player i’s total expected utility from choosing action a at either (h, s)
or (h′, s) is

(1− δi)ũi(s, a, z) + δi
∑
s′∈S

q(s′ | s, a)V ∗i ((b̃i, b̃−i) | (h, s, a), s′).

For almost all z, there will be a unique a maximizing this expression, con-
tradicting our premise (11).

Corollary 1 If b̃ is a perfect Bayesian equilibrium of the perturbed game,
then either b̃ is Markov or at least two players have infinite recall.

Example 3 [The Chain Store] It is an implication of Lemma 5 that the
one-period recall mixed strategy equilibria from the chain store game of
Section 2 cannot be approximated by any equilibrium of Γ(ε, µ) when the
short-lived player is restricted to a bounded recall strategy. On the other
hand, any such equilibrium can be approximated if we allow both players to
play infinite recall strategies.

We now show this explicitly for the mixed equilibrium where the en-
trant chooses Out with probability one after Out or F in the previous period
and randomizes with probability c/[δ(1 + c)] after In, while the incumbent
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randomizes with equal probability on A and F after any history. The con-
struction is similar to one described in Bhaskar, Mailath, and Morris (2008,
Section 5). For any history h ∈ H ≡ ∪t{Out,A,F}t, let k(h) be the num-
ber of periods of A at the end of h (so that if k(h) = 0, A was not played
in the last period). Define H(κ) ≡ {h ∈ H : k(h) = κ}; the collection
{H(κ) : κ ∈ Z+} is a partition of H. Our strategy profile is measurable
with respect to this partition. We denote by ρκ : [0, 1] → {Out, In} the
strategy of the entrant, and by σκ : [0, 1] → {A,F} the strategy of the
incumbent at any history h ∈ H(κ). The payoff shocks for the entrant (in-
cumbent, respectively) are drawn from [0, 1] according to the distribution
function F1 (F2, resp.).

We begin by setting ρ0(z1) = Out for all z ∈ [0, 1), which requires the
entrant face a probability of A of no more than (1 + ε)/2. We accordingly
set σ0(z2) = A for all z2 ≤ z0

2 , where z0
2 satisfies F2(z0

2) = (1+ε)/2, implying
a probability of A of exactly (1 + ε)/2 (which can be made arbitrarily close
to 1/2 by choosing ε small). The construction proceeds recursively. Let
zκi be the marginal type for player i at a history h ∈ H(κ), so that the
probability of In is F1(zκ1 ) and the probability of A is F2(zκ2 ) at such a
history. Indifference for the entrant at h requires

1 + εzκ1 = F2(zκ2 )2,

yielding an equation determining the incumbent’s marginal type as a func-
tion of the entrant’s:

zκ2 = F−1
2 [ (1+εzκ1 )

2 ]. (12)

Turning to optimality for the incumbent, let V κ(A) be the value to the
incumbent from playing A at a history h ∈ H(κ) after the entrant chooses
In (which is current payoff shock independent), and V κ(F, z2) be the value
to the incumbent from playing F at a history h ∈ H(κ) after the entrant
chooses In and payoff shock z2. Then, for all κ ≥ 0,

V κ(F, z2) = (1− δ)(−c+ εz2) + δW 0

and
V κ(A) = δF1(zκ+1

1 )V κ+1 + δ(1− F1(zκ+1
1 ))W 0,

where W 0 = 1 is the continuation value to the incumbent of the entrant
choosing Out, and V κ is the continuation value to the incumbent at a history
h ∈ H(κ) after the entrant has chosen In, but before the incumbent’s payoff
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shock is realized:

V κ = F2(zκ2 )V κ(A) + (1− F2(zκ2 ))E[V κ(F, z2) | z2 > zκ2 ]
= F2(zκ2 )V κ(F, zκ2 ) + (1− F2(zκ2 ))E[V κ(F, z2) | z2 > zκ2 ]
= V κ(F, zκ2 ) + (1− F2(zκ2 ))E[V κ(F, z2)− V κ(F, zκ2 ) | z2 > zκ2 ]
= (1− δ)(−c+ εzκ2 ) + δ + ε(1− F2(zκ2 ))(1− δ)E[z2 − zκ2 | z2 > zκ2 ].

Observe that we now have an expression for V κ+1 in terms of zκ+1
2 , which

using (12), gives V κ+1 in terms of zκ+1
1 . We thus have an implicit difference

equation, since given zκ1 (and so zκ2 from (12)), the requirement that zκ2
be indifferent, V κ(F, zκ2 ) = V κ(A), implicitly determines zκ+1

1 , and so on.
Observe that for ε = 0, for all κ ≥ 1, F1(zκ1 ) = c/[δ(c+1)] and F2(zκ2 ) = 1/2,
and so for ε small, the implied behavior in Γ(ε, µ) is close to the one-period
recall mixed strategy equilibrium.

F

3.4 Purification in the Games of Perfect Information

We now consider the purifiability of equilibria in the unperturbed game,
while maintaining our restriction to bounded recall strategies. Purification
has several meanings in the literature (see Morris (2008)). One question
asked in the literature is when can we guarantee that every equilibrium
is essentially pure by adding noise to payoffs (e.g., Radner and Rosenthal
(1982))? It is trivially true that our shocks ensure that there is an essentially
pure equilibrium (we build in enough independence to guarantee that this
is the case) and that there are no equilibria with nontrivial mixing.

We follow Harsanyi (1973) in being interested in the relation between
equilibria of the unperturbed game and equilibria of the perturbed game.
But our definition of purifiability is very weak: we require only that there
exists a sequence of equilibria of a sequence of perturbed games that converge
to the desired behavior.

Fix a strategy profile b of the unperturbed game. We say that a sequence
of current shock strategies b̃ki in the perturbed game converges to a strategy
bi in the unperturbed game if expected behavior (taking expectations over
shocks) converges, i.e., for each h ∈ H, s ∈ Si and a ∈ A,∫

b̃ki (a | h, s, z)µs(dz)→ bi(a | h, s) (13)
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Definition 7 The strategy profile b is K-recall purifiable if there exist µki :
S → ∆∗(Z) and εk → 0, such that there is a sequence of profiles {b̃k}∞k=1

converging to b, with b̃k a perfect Bayesian equilibrium of the perturbed game
Γ(µk, εk) for each k, and b̃ki having K-recall for all (but perhaps one) i.

Since the supporting sequence of private payoff shocks is allowed to de-
pend on the strategy profile b, and the distribution µk is itself indexed by k,
this notion of purifiability is almost the weakest possible.11 Our notion cru-
cially maintains the recursive payoff structure of the infinite horizon game
(in particular, we require that the payoff shocks are intertemporally inde-
pendent). Allowing for intertemporally dependent payoff shocks violates the
spirit of our analysis.

The strongest notion of purification, closer to the spirit of Harsanyi
(1973), would require that for all fixed private shock distributions µ : S →
∆∗(Z), and for all sequences εk → 0, there is an equilibrium b̃k of the per-
turbed game Γ(µ, εk) with b̃k converging to b. We refer to this notion as
Harsanyi purification. Clearly, if a profile is Harsanyi purifiable, then it is
purifiable.

Our main result is the following:

Proposition 1 If b is a K-recall purifiable SPNE, then b is Markov. More-
over, if b is also eventually stationary, then it is stationary.

Proof. The first assertion is an immediate implication of Corollary 1.
To prove the second assertion, suppose that b is eventually stationary.

Then there exists a date t, a state s, and two histories, h and h′, of length
t such that the profile is stationary after t, and bι(s)(h, s) 6= bι(s)(h′, s). But
then in near-by games with payoff shocks, there is a positive set of payoff
shocks for which the optimal behavior at (h, s) differs from that at (h′, s),
which is impossible because the continuation play is identical after (h, s, a)
and (h′, s, a).

We immediately have the following corollary. (An argument similar to
that given in the proof of the second assertion of Proposition 1 above proves
the second claim in this corollary.)

Corollary 2 If Γ is the infinite repetition of a finite perfect information
game with a unique backward induction equilibrium, then the only K-recall

11It is also worth noting that we only require pointwise convergence in (13). For infinite
horizon games, we may ask for uniform (in h) convergence, as is done in the positive result
(Theorem 3) in Bhaskar, Mailath, and Morris (2008). Negative results are clearly stronger
with pointwise convergence.
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purifiable equilibrium is the infinite repetition of the backward induction equi-
librium of Γ. If Γ has multiple backward induction equilibria, the only K-
recall purifiable equilibria has infinite recall is an infinite sequence of history-
independent specifications of a backward induction equilibrium.

4 Existence of Markov, purifiable Markov, and
Harsanyi-purifiable Markov equilibria.

The unperturbed game is a particularly simple stochastic game of perfect
information, since the set of players, set of states, and set of actions are
all countable. The existence of stationary Markov equilibria in behavior
strategies follows from Escobar (2008, Corollary 14).

Turning to purifiability, for finite players and states, a direct argument
shows that every Markov perfect equilibrium is purifiable, even in the ab-
sence of any regularity assumptions or arguments. The proof is complicated
by two features: future payoffs (including the contributions from the payoff
shocks) affect current values and so the returns from different state tran-
sitions, and perturbing actions results in both perturbed flow payoffs and
perturbed transitions in the dynamic.

Lemma 6 Suppose there is a finite number of players, N , and S is finite.
Every stationary Markov perfect equilibrium in the unperturbed game is pu-
rifiable.

Proof. Let b : S → ∆ (A) be a stationary Markov equilibrium of the
unperturbed game. Write A∗ (s) for the set of actions that are (possibly
weak) best responses at state s. Fix a sequence of Markov strategy profiles
{bk} converging to b (i.e., bk (a | s) → b (a | s) for each a and s) with sup-
port of bk (· | s) equal to A∗ (s). Recall that Z, a full dimensional compact
subset of RA, is the support of each player’s payoff shocks. Without loss
of generality, we may assume the 0-vector is in the interior of Z. For each
action a ∈ A∗(s), write Z∗ (a, s) for the collection of payoff shock profiles
favoring action a among those played with positive probability, i.e.,

Z∗ (a, s) =
{
z ∈ ZN |zaι(s) > za

′

ι(s) for all a′ ∈ A∗ (s) , a′ 6= a
}

.

Note that the union of the closures of the sets (Z∗ (a, s))a∈A∗(s) is ZN , i.e.,⋃
a∈A∗(s)

cl (Z∗ (a, s)) = ZN .
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Write a∗ (z, s) for the action satisfying z ∈ Z∗(a, s). (Such an action is
unique for almost all z, choose arbitrarily when it is not unique.) For a
Markov strategy b′, we can write Vi (b′ | s) for the expected payoff to player
i from b′ in the unperturbed game starting in state s.

Two matrices, Q and Qk, describe the state transitions under b and bk

respectively. Their ss′-th elements are given by

[Q]ss′ =
∑
a

bι(s)(a | s)q(s′ | s, a)

and
[Qk]ss′ =

∑
a

bkι(s)(a | s)q(s
′ | s, a).

For player i, the flow payoffs under b and bk are described by the two |S|-
dimensional vectors, ui and uki , with s-th elements

[ui]s = (1− δi)
∑
a

bι(s)(a | s)ui(s, a)

and
[uki ]s = (1− δi)

∑
a

bkι(s)(a | s)ui(s, a).

It is immediate that the vector of values Vi(b) = [Vi(b | s)]s∈S can be
calculated as (I− δiQ)−1ui, where I is the |S|-dimensional identity matrix.
For each k, set

∆k
i ≡ (I− δiQk)(I− δiQ)−1ui − uki .

Since bk → b, Qk → Q, uki → ui, and so limk ∆k
i (s) = 0 for all s. Set

εk = max
{
k−1,

√
maxi,s

∣∣∆k
i (s)

∣∣}, so that εk → 0. We first determine µk

on Z∗(a, s) be setting

µk(Z∗(a, s)) = bkι(s)(a | s).

For k sufficiently large, we can complete the specification of µk(s) ∈ ∆(ZN )
by choosing a strictly positive density on each Z∗(a, s) so that12

∑
a∈A∗(s)

bkι(s)(a | s)Eµk(s)[z
a
i | Z∗(a, s)] =

∆k
i (s)

(1− δi)εk
. (14)

12Since 0 is in the interior of Z, there are both positive and negative values of zai in
Z∗(a, s), and since for large k, the right side of (14) is close to 0, such densities will exist.
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Now consider the strategy profile b̃k in the perturbed game Γ
(
µk, εk

)
given

by

b̃kι(s) (a|s, z) =

{
1, if z ∈ Z∗ (a, s) ,
0, if z ∈ Z∗ (a′, s) , for any a′ ∈ A∗ (s) , a′ 6= a.

The specification of b̃ on the (zero measure) boundaries of the sets Z∗ (a, s)
is irrelevant. By construction, expected behavior under b̃k equals bk.

It remains to verify that, for sufficiently large k, b̃k is a PBE of the
perturbed game (i.e., each b̃ki is a sequential best response to b̃k−i). The
expected payoff from b̃k evaluated before the realization of the state s payoff
shock is denoted Ṽ k

i (b̃k | s). Expressed as the vector Ṽi(b̃) = [Ṽ k
i (b̃k | s)]s,

it satisfies the equation

Ṽk
i (b̃k) = uki + ∆k

i + δiQkṼk
i (b̃k).

This implies

(I− δiQk)Ṽk
i (b̃k) = uki + ∆k

i

= (I− δiQk)(I− δiQ)−1ui,

and so
Ṽk
i (b̃k) = (I− δiQ)−1ui = Vi(b).

It is now immediate that each b̃ki is a sequential best response to b̃k−i for
sufficiently large k, since the payoff from an action a ∈ A, conditional on
the realization zi in the perturbed game is

(1− δi)ui(s, a) + εk(1− δi)zi + δi
∑
s′

q(s′ | s, a)Ṽi(b̃k | s′)

= (1− δi)ui(s, a) + εk(1− δi)zi + δi
∑
s′

q(s′ | s, a)Vi(b | s′).

(Since Z is bounded, even large realizations of zi cannot reverse the strict
suboptimality of actions not in A∗(s) for sufficiently small εk).

We conjecture that with additional regularity assumptions, Markov equi-
libria will be Harsanyi purifiable. Doraszelski and Escobar (2008) provided
conditions for the Harsanyi purifiability of Markov equilibria. While the
class of games they study do not encompass those in the present paper, it
seems likely that appropriately modifying their method to account for the
perfect information structure of the unperturbed game will yield Harsanyi
purification of all Markov equilibria for generic games (where the genericity
notion will need to reflect our game structure).
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5 Exogenous Memory Bounds

The analysis of Section 3 does not require players to recall the entire history
(as required by the definition of perfect information). In particular, suppose
each player i has restricted memory in the sense that he or she only knows
the previous Ti periods (because he or she was not in the game, or forgets
earlier periods). If the player knows calendar time, then

bi : Z+ ×HTi × S(i)→ ∆(A). (15)

If the player does not know calendar time, then a behavior strategy is a
mapping

bi : HTi × S(i)→ ∆(A). (16)

(In both (15) and (16), if player i could be asked to move in a period t < Ti,
the domain of bi should include shorter histories). The analysis in Section
3 applies essentially without change to either notion of behavior strategy.
(While agents will now have beliefs over actions and states in periods before
their memory, these beliefs play no role in the analysis.)

This observation immediately yields the following result.

Proposition 2 Suppose there is at most one long-lived player and all the
other players are finitely-lived, with a uniform bound on the length of their
lives. Suppose there is a uniform bound on the length of history any short-
lived player learns at birth. Then, the only purifiable SPNE are Markov.
Moreover, if the short-lived players do not know calendar time (so that the
strategies satisfy (16)), then the only purifiable SPNE are stationary Markov.

6 Discussion

Our results do not extend to games where more than one player moves at
a time, e.g. repeated synchronous move games. Mailath and Morris (2002)
and Mailath and Olszewski (2008) give examples of strict, and hence purifi-
able, finite recall strategy profiles. In this context, one might conjecture the
weaker result that purifiability would rule out the “belief-free” strategies re-
cently introduced by Piccione (2002) and Ely and Välimäki (2002). Bhaskar,
Mailath, and Morris (2008) show that the one period recall strategies of Ely
and Välimäki (2002) are not purifiable via one period recall strategies in
the perturbed game; however, they are purifiable via infinite recall strate-
gies. The purifiability of such belief free strategies via finite recall strategies
remains an open question.
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A Appendix

A.1 Some non-Markov equilibria cannot be approximated.

We return to the chain store game of Section 2, denoted Γ, and modify it
as follows. Assume, as before, that the short run player only observes the
outcome of the stage game in the previous period, but now allow the payoffs
in the stage game to depend upon this outcome.13 Specifically, we assume
that in Γ̂, the entrant’s payoff at each terminal node of the stage game is
augmented by ηEa′a, and that of the incumbent by ηIa′a, where a′ ∈ {Out,A,F}
is the stage game terminal node reached in the previous period and a is the
terminal node in the current period. Assume that all the values ηEa′a and
ηIa′a are close to 0. Then, by arguments similar to those in Section 2, there
cannot be a pure strategy equilibrium where entry is deterred in each period.
Consider a stationary mixed strategy equilibrium where the incumbent fights
with probability σ(A) ∈ (0, 1) when at−1 = A. This implies the indifference
condition

δṼ (A) = −(1− δ)(c+ ηAA − ηAF ) + δṼ (F),

where Ṽ (a) denotes his value function when the outcome in the previous
period was a.

The payoff difference between accommodation and fighting when at−1 =
Out is given by

δṼ (A) + (1− δ)(c+ ηOUTA − ηOUTF )− δṼ (F).

Restricting attention to generic values of η, we see that

σ(Out) =
{

0 if ηOUTA − ηOUTF > ηAA − ηAF
1 if ηOUTA − ηOUTF < ηAA − ηAF .

For Out to be an absorbing state, a necessary condition is that ηOUTA−
ηOUTF < ηAA− ηAF . In other words, the outcome of the mixed equilibrium
of Γ where entry is deterred in every period can be approximated in Γ̂ only
under this condition, and not otherwise. Furthermore, the outcomes of none
of the continuum of equilibria of Γ where entry occurs with positive prob-
ability after all one period histories can be approximated in Γ̂, for generic
values of η. This follows from σ(Out) and σ(A) can both be interior only if
ηOUTA − ηOUTF = ηAA − ηAF .

13We assume that outcomes in previous periods do not affect payoffs in order to ensure
that the short run player is playing a complete information game.
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A.2 Sketch of proof of Lemma 4.

Consider first perturbed games with a finite horizon and state space (and so
finite number of players). From Lemma 2, all sequential best responses must
be shock history independent. Moreover, the action specified by sequential
best response in a period has a finite-dimensional characterization: at each
history-state, (h, s), for any two actions a and a′, there is a half-space H
such that player ι(s) prefer a to a′ if the payoff shock is in H ∩ Z, and a′

to a if not. In other words, player ι(s)’s ranking of actions at history (h, s)
has a finite dimensional description (since H does). Let Γη(ε, µ) denote the
finite “doubly” perturbed game in which a choice of action a leads to a with
probability 1−η and a uniform distribution over A with probability η. This
can be viewed as a finite game, and so it has a Nash equilibrium. Moreover,
extracting a convergent subsequence from the sequence of equilibria as η → 0
yields a PBE of the (finite) perturbed game Γ(ε, µ).

Finally, consider the general perturbed game Γ(ε, µ) with infinite horizon
and/or countably infinite state spaces. Since such a game is continuous at
infinity and a similar property is satisfied with respect to the state space,
the game can be approximated by a sequence of perturbed games with finite
horizons and finite state spaces. A PBE of Γ(ε, µ) can then obtained as the
limit of a convergent sequence of PBE of the finite games.
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