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Abstract

We study an individual who faces a dynamic decision problem in which the process
of information arrival is unobserved by the analyst, and hence should be identi�ed
from observed choice data. An information structure is objectively describable if sig-
nals correspond to events of the objective state space. We derive a representation
of preferences over menus of acts that captures the behavior of a Bayesian decision
maker who expects to receive such signals. The class of information structures that
can support such a representation generalizes the notion of a partition of the state
space. The representation allows us to compare individuals in terms of the preciseness
of their information structures without requiring that they share the same prior be-
liefs. We apply the model to study an individual who anticipates gradual resolution of
uncertainty over time. Both the �ltration (the timing of information arrival with the
sequence of partitions it induces) and prior beliefs are uniquely identi�ed.

Key words: Resolution of uncertainty, valuing binary bets more, generalized parti-
tion, subjective �ltration.

1. Introduction

1.1. Motivation

A standard dynamic decision problem involves specifying the set of possible states of nature,

the set of available actions, and the information structure, which is the set of possible signals

about the states that are expected to arrive over time and the probability of each signal

given a state. The idea is that some signals are expected to be observed by an individual

before he takes his �nal decision on the exposure to risk or uncertainty. For example, one

way to analyze a career selection is to assume that potential workers who attend specialized

�First version September 2011. The results in this paper previously appeared in Dillenberger, D., and
P. Sadowski (2012). We thank David Ahn, Brendan Daley, Haluk Ergin, Itzhak Gilboa, Faruk Gul, Peter
Landry, Wolfgang Pesendorfer, Todd Sarver, Andrei Savochkin, and Roee Teper for useful advice.

yDepartment of Economics, University of Pennsylvania. E-mail: ddill@sas.upenn.edu
zDepartment of Economics, Duke University. E-mail: p.sadowski@duke.edu
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schools or training programs, may gradually learn about their skills and abilities that a¤ect

their future occupational choice. In many situations, the analyst may be con�dent in his

understanding of the relevant state space and the relevant set of actions. He may, however,

not be aware of the information structure people perceive. In this case, we would like to

identify the subjective information structure (which contains signals the analyst is unaware

of) from observed choice behavior and tie signals to observable components, that is, describe

them as events of the objective state space.

As we explain in more detail below, we take as primitive a preference relation over sets

(or menus) of acts de�ned over an objective state space. The interpretation is that the

decision maker (henceforth DM) initially chooses among menus and subsequently chooses an

act from the menu. We derive a generalized-partition representation, where the set of possible

signals in the underlying information structure corresponds to subsets of the objective state

space. The representation can be interpreted as follows: the DM behaves as if he has beliefs

about which event he might know at the time he chooses from the menu. For any event, he

calculates his posterior beliefs by excluding all states that are not in that event and applying

Bayes�law with respect to the remaining states. The DM then chooses from the menu the

act that maximizes the corresponding expected utility.

The model can accommodate a variety of information structures that capture interesting

types of learning processes. As the name suggests, the notion of generalized partition extends

the notion of a set partition, according to which the DM learns which cell of a (subjective)

partition contains the true state. In the case of a set partition, signals are deterministic;

that is, for each state there is only one possible event that contains it.1 Another example of

a generalized partition is a random partition, where one of multiple partitions is randomly

drawn and then an event in it is reported. A situation that may give rise to a random partition

is an experiment with uncertainty about its precision. A sequential elimination of candidates,

say during a recruiting process, may also lead to learning via a generalized partition; if k

candidates out of n are to be eliminated in the �rst stage, then the resulting collection of

events the DM might possibly learn is the set of all (n� k)-tuples. We characterize the types
of learning that can be accommodated by a generalized partition.

A di¤erent situation where signals may not be deterministic arises if the DM is unsure

about the exact time at which he will have to choose an act from the menu. In that case,

distinct events that contain the same state may simply correspond to the information the

DM expects to have at di¤erent points in time. Reinterpreting our domain such that the

opportunity to choose from a menu arrives randomly over time, we derive a subjective

�ltration representation that captures a DMwho anticipates gradual resolution of uncertainty

1Partitional learning is analyzed in Dillenberger, Lleras, Sadowski, and Takeoka (2012).
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over time. According to this representation, the DM behaves as if he holds prior beliefs over

the state space and has in mind a �ltration indexed by continuous time (that is, a sequence

of increasingly �ner partitions of the state space). Using Bayes�law, the �ltration together

with the beliefs generate a subjective temporal lottery. Both the �ltration (the timing of

information arrival with the sequence of partitions it induces) and prior beliefs are uniquely

identi�ed.

The description of signals as events of the state space facilitates the behavioral comparison

of two individuals in terms of the information they expect to receive, independently of

their prior beliefs. Any generalized-partition representation induces a natural comparative

measure of �expecting to learn more�. For example, in the case of the subjective-�ltration

representation, one individual expects to learn earlier than another if his �ltration is �ner

at any point in time. We identify the behavioral implications of these measures in terms of

individuals�desire to retain future betting options.

1.2. Formal preview of results

Let S be a �nite state space. An act is a mapping f : S ! [0; 1], where [0; 1] is interpreted

as a utility space. Preferences are de�ned over sets (or menus) of acts. The interpretation is

that the DM initially chooses among menus and subsequently chooses an act from the menu.

If the ultimate choice of an act takes place in the future, then the DMmay expect information

to arrive prior to this choice. Analyzing preferences over future choice situations (menus of

acts rather than the acts themselves) allows us to capture the e¤ect of the information the

DM expects to learn via his value for �exibility. The preference relation over menus of acts

is thus the only primitive of the model, leaving the uncertainty that the DM faces, as well

as his ultimate choice of an act, unmodeled.

Our starting point is a general representation of preferences over menus of acts, which

was �rst derived in Dillenberger, Lleras, Sadowski, and Takeoka (2012, henceforth DLST);

DLST show that a familiar set of axioms is equivalent to a subjective-learning representation,

according to which the value of a menu of acts F is given by

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) , (1)

where p (�) is a unique probability measure on �(S), the space of all probability measures
on S. In representation (1) signals are identi�ed with posterior distributions over S.

In this paper we study a specialized model in which signals are subsets of the state space,

that is, elements of 2S. We maintain the basic axioms of DLST and impose two additional ax-

ioms, Finiteness and Context independence. Finiteness implies that the probability measure
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p in (1) has a �nite support. (Finiteness is obviously necessary since 2S is �nite.) Context

independence captures an idea that resembles Savage�s (1954) sure-thing principle: if f 6= g
only on event I, and if g is unconditionally preferred to f , then the DM would also prefer

g to f contingent upon learning I. The implication of this property in a dynamic decision

problem is that if the DM prefers the singleton menu fgg to ffg, then the DM would prefer

to replace f with g on any menu F 3 f , from which he will choose f only if he learns I. We
identify through preferences a special subset of menus, which we term saturated (De�nition

4). The properties of a saturated menu F 3 f are consistent with the interpretation that the
DM anticipates choosing f from F only contingent on the event fs 2 S jf (s) > 0g : Context
independence requires that if g (s) > 0, f (s) > 0 and fgg is preferred over ffg, then the
DM would prefer to replace f with g on any saturated menu F 3 f .
With these additional axioms, Theorem 1 derives a generalized-partition representation

in which the value of a menu F is given by

V (F ) =
P

I22�(�) max
f2F

�P
s2If (s)� (s)

�
� (I) ,

where � is a probability measure on S with support � (�), and � : 2�(�) ! [0; 1] is such

that for any s 2 � (�), �s de�ned by �s (I) =
(
� (I) if s 2 I
0 if s =2 I

satis�es
P

I��(�)�s (I) = 1.

The pair (�; �) is unique. We call the function �, which speci�es the subjective information

structure, a generalized partition. The probability of being in event I when the state of the

world is s, �s (I), is the same for all states s 2 I. This suggests that the DM is Bayesian

and can only infer which states were excluded. In other words, the relative probability of

any two states within an event is not updated.

The support of a generalized partition � is the set of possible signals and can be inter-

preted as a type of learning. We characterize all collections of events 	 � 2S for which there
is a generalized partition � with support 	. Theorem 2 shows that a necessary and su¢ cient

condition is that 	 be a uniform cover; we say that 	 � 2S is a uniform cover of a set S 0 � S
if there exists k � 1 and a function � : 	! Z+ such that for all s 2 S 0,

P
I2	js2I � (I) = k.

In this case we say that S 0 is covered k times by 	. Note that a set partition is implied if

k = 1. The notion of uniform cover is closely related to the notion of a balanced collection

of weights, as introduced by Shapley (1967) in the context of cooperative games.

As an example of a particular type of learning that can be accommodated in our frame-

work, we show that the domain of menus of acts can capture a DM who expects uncertainty

to resolve gradually over time. To this end, we reinterpret menus as choice situations in

which the opportunity to choose from the menu arrives randomly. In this context, we inter-
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pret two events in the support of � in Theorem 1, both containing the sate s, as relevant for

the DM at di¤erent points in time. If information becomes more precise over time, then the

two events should be ordered by set inclusion. We use the notion of saturated menus to im-

pose an additional axiom, Sequential learning, which formalizes this requirement. Theorem
3 provides a (subjective �ltration) representation in which the value of a menu F is given by

V (F ) =
R
[0;1]

�P
I2Pt maxf2F

�P
s2Sf (s)� (s)

��
dt,

where � is a probability measure on S and fPtg is a �ltration indexed by t 2 [0; 1]. The pair
(�; fPtg) is unique.
Lastly, we use our representation results to compare the behavior of two individuals who

expect to receive di¤erent information. These individuals di¤er in the value they derive

from the availability of binary bets as intermediate actions. Suppose both DM1 and DM2

are sure to receive a certain payo¤ independently of the true state of the world. Roughly

speaking, DM1 values binary bets more than DM2 if for any two states s and s0, whenever

DM1 prefers receiving additional payo¤s in state s over having the option to bet on s versus

s0 (in the form of an act that pays well on s and nothing on s0), so does DM2. Theorem

4 states that in the context of Theorem 1 , DM1 values binary bets more than DM2 if and

only if he expects to receive more information than DM2, in the sense that given the true

state of the world, he is more likely to be able to rule out any other state (i.e. to learn an

event, which contains the true state but not the other state.) In the context of Theorem 3,

Theorem 5 �rst shows that DM1 values binary bets more than DM2 if and only if fP1t g is
�ner than fP2t g (i.e., for any t, all events in P2t are measurable in P1t ). Furthermore, if also
�1 = �2, then fP1t g is �ner than fP2t g if and only if DM1 has more preference for �exibility
than DM2, in the sense that whenever DM1 prefers to commit to a particular action rather

than to maintain multiple options, so does DM2.

1.3. Related literature

As mentioned above, the subjective-learning representation in DLST (2012) is the starting

point for our analysis. Their partitional-learning representation is a special case of the model

outlined in Section 2. It can also be viewed as a special case of the model in Section 3, where

the DM does not expect to learn gradually over time, that is, he forms his �nal beliefs at time

zero, right after he chose a menu. DLST further suggest how to study subjective temporal

resolution of uncertainty by explicitly including the timing of the choice of an act in the

domain. Takeoka (2007) studies subjective temporal resolution of uncertainty by analyzing
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choice between what one might term �compound menus�(menus over menus etc.). In Section

3.2 we compare those two approaches to ours.

More generally, our work is part of the literature on preference over sets of alternatives

which assumes set monotonicity, that is, larger sets are weakly better than smaller ones (see,

for example, Kreps (1979) and Dekel, Lipman, and Rustichini (2001)). Most papers in this

literature study uncertainty over future tastes, and not over beliefs on an objective state

space. Hyogo (2007), Ergin and Sarver (2010), De Olivera (2012), and Mihm and Ozbek

(2012) use preferences over sets of alternatives to study models in which the DM can take

costly actions that a¤ect the process of information acquisition (either about his future tastes

or future beliefs). In our paper the preciseness of information is not a choice variable, but a

preference parameter that can be identi�ed from choice data.

2. Subjective learning with unambiguously describable signals

Let S = fs1; :::; skg be a �nite state space. An act is a mapping f : S ! [0; 1]. Let

F be the set of all acts. Let K (F) be the set of all non-empty compact subsets of F .
Capital letters denote sets, or menus, and small letters denote acts. For example, a typical

menu is F = ff; g; h; :::g 2 K (F). We interpret payo¤s in [0; 1] to be in utils; that is, we
assume that the cardinal utility function over outcomes is known and payo¤s are stated in

its units. An alternative interpretation is that there are two monetary prizes x > y, and

f (s) = ps (x) 2 [0; 1] is the probability of getting the greater prize in state s.2 Let � be a

binary relation over K (F). The symmetric and asymmetric components of � are denoted

by � and �, respectively.
DLST (Theorem 1) derive the following representation of �.

De�nition 1. A subjective-learning representation is a function V : K (F)! R, such that

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) ,

where p (�) is a unique probability measure on �(S), the space of all probability measures
on S.

The axioms that are equivalent to the existence of a subjective-learning representation are

familiar from the literature on preferences over menus of lotteries �Ranking, vNM Continuity,
2Our analysis can be easily extended to the case where, instead of [0; 1], the range of acts is a more

general vector space. In particular, it could be formulated in the Anscombe and Aumann (1963) setting.
Since our focus is on deriving the DM�s subjective information structure, we abstract from deriving the
utility function (which is a standard exercise) by looking directly at utility acts instead of the corresponding
Anscombe-Aumann acts.
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Nontriviality, and Independence �adapted to the domain K (F), in addition to Dominance,
which implies monotonicity in payo¤s, and Set Monotonicity, which captures preference for

�exibility.

A subjective-learning representation does not allow us to identify information indepen-

dently of the induced changes in beliefs. The reason is that the signals are not objectively

describable, that is, they are not stated in terms of the objective state space S. We thus study

a model in which signals in a subjective-learning representation are restricted to correspond

to events, that is, to subsets of S. The DM�s beliefs can then be understood as uncertainty

about the event he will know at the time of choosing from the menu. Throughout this sec-

tion we assume that the relation � admits a subjective-learning representation. Section 2.1
develops a language that allows us to formulate a behavioral axiom, which implies that the

DM cannot draw any inferences from learning an event besides knowing that states outside

that event were not realized. Section 2.2 derives the most general representation in which

signals correspond to events and the relative probability of any two states is the same across

all events that contain them. A set of possible signals can be interpreted as a particular type

of learning. Section 2.3 characterizes the types of learning that can be accommodated.

Since there are only �nitely many distinct subsets of S, the support of the function

p, denoted � (p), in a subjective-learning representation must be �nite. This restriction is

captured by the following axiom, which we also maintain throughout this section:

Axiom 1 (Finiteness). For all F 2 K (F), there is a �nite set G � F with G � F .

The intuition for why Axiom 1 indeed implies that � (p) is �nite is clear: if for any F

there is a �nite subset G of F that is as good as F itself, then only a �nite set of posterior

beliefs can be relevant. The formal statement of this result is provided by Riella (2011,

Theorem 2), who establishes that Axiom 1 is the appropriate relaxation of the �niteness

assumption in Dekel, Lipman, and Rustichini (2009, Axiom 11) if preferences are, as in this

paper, monotonic with respect to set inclusion.

2.1. Axiom Context independence

The axiom we propose in this section captures an idea that resembles Savage�s (1954) sure-

thing principle: if f 6= g only on event I, and if g is unconditionally preferred to f (that

is, fgg � ffg), then the DM would also prefer g to f contingent upon learning I. Since

learning is subjective, stating the axiom requires us to �rst identify how the ranking of acts

contingent on learning an event a¤ects choice over menus. To this end, we now introduce

the notion of saturated menus.
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De�nition 2. Given f 2 F , let fxs be the act

fxs (s
0) =

(
f (s0) if s0 6= s
x if s0 = s

.

Note that � (f) := fs 2 S jf (s) > 0g = fs 2 S jf 0s 6= f g.

De�nition 3. A menu F 2 K (F) is fat free if for all f 2 F and for all s 2 � (f), F �
(Fn ffg) [ ff 0s g.

If a menu F is fat free, then for any act f 2 F and any state s 2 � (f), eliminating s
from � (f) reduces the value of the menu.3 In particular, removing an act f from the fat-free

menu F must make the menu strictly worse.

De�nition 4. A menu F 2 K (F) is saturated if it is fat free and satis�es
(i) for all f 2 F and s =2 � (f), there exists " > 0 such that F � F [ f "s for all " < "; and
(ii) if G * F then F [G � (F [G) n fgg for some g 2 F [G.

De�nition 4 says that if F is a saturated menu, then (i) if an act f 2 F does not yield
any payo¤ in some state, then the DM�s preferences are insensitive to slightly improving f

in that state; and, (ii) adding a collection of acts to a saturated menu implies that there is

at least one act in the new menu that is not valued by the DM. In particular, the extended

menu is no longer fat-free.

To better understand the notions of fat-free and saturated menus, consider the following

example.

Example 1. Suppose that there are two states S = fs1; s2g. If the act f yields positive
payo¤s in both states but only one of them is non-null,4 then ffg is not fat-free. If both
states are non-null and f does not yield positive payo¤s on one of them, then the set ffg
is not saturated according to De�nition 4 (i). If the two states are non-null and f yields

positive payo¤s in both, then ffg is fat-free, but it is not necessarily saturated. For example,
if the DM expects to learn the true state for sure, that is, �1 (p) = f(1; 0) ; (0; 1)g, then for
" > 0 and g = (f (s1) + "; 0), both ff; gg � ffg and ff; gg � fgg, which means that ffg is
not saturated according to De�nition 4 (ii). On the other hand, if the DM expects to learn

3Our notion resembles the notion of �fat-free acts� suggested by Lehrer (2012). An act f is fat-free if
when an outcome assigned by f to a state is replaced by a worse one, the resulting act is strictly inferior to
f . In our setting, a �nite fat-free set contains acts, for all of which reducing an outcome in any state in the
support results in an inferior set.

4In the context of a subjective-learning representation, a state s is non-null if
R

�(S)

� (s) dp (�) > 0:
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nothing, that is j�1 (p)j = 1, then for all g, either ff; gg � ffg or ff; gg � fgg, which means
that ffg is saturated.

Claim 1. A saturated menu F , with f (s) < 1 for all f 2 F and all s 2 S, always exists.
Furthermore, if F is saturated, then F is �nite.

Proof. See Appendix 6.1
The following two claims illustrate properties of saturated menus in the context of a

subjective-learning representation. In all that follows, we only consider saturated menus

that consist of acts f with f(s) < 1 for all s 2 S. For ease of exposition, we refrain from
always explicitly stating this assumption.

Claim 2. If F is saturated, then there is a one-to-one correspondence between F and the

set of posterior beliefs.

Proof. See Appendix 6.2
Claim 2 connects the de�nition of a saturated menu with the idea that the DM might be

required to make a decision when his state of knowledge is any one of the posterior beliefs

from a subjective-learning representation. Claim 2 says that any act in a saturated menu is

expected to be chosen under exactly one such belief.

The next claim demonstrates that the support of any act in a saturated menu coincides

with that of the belief under which the act is chosen. For any act f in a given saturated

menu F , let �f 2 � (p) be the belief such that f = argmax
f 02F

P
s2Sf

0 (s)�f (s). By Claim 2,

�f exists and is unique.

Claim 3. If F is saturated and f 2 F then � (f) = � (�f ).

Proof. If f (s) > 0 and �f (s) = 0, then F � (Fn ffg) [ ff 0s g, which is a contradiction to
F being fat-free (and, therefore, saturated.) If f (s) = 0 and �f (s) > 0, then for any " > 0,

F � F [ ff "sg, which is a contradiction to F being saturated.
We are now ready to state the central axiom of this section.

Axiom 2 (Context independence). Suppose F is saturated and f 2 F . Then for all g
with � (g) = � (f),

fgg � ffg implies (Fn ffg) [ fgg � F:

Suppose the DM prefers committing to g over committing to f , where both g and f pay

strictly positive amounts only on the event � (f). The axiom then requires that the DM

would prefer to replace f with g on any saturated menu that contains f . To motivate this
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axiom, note that Claim 3 suggests that from a saturated menu F 3 f , DM plans to choose

f if and only if he learns � (f). We would like to assume that fgg � ffg and � (f) = � (g)
imply that g is preferred to f contingent on � (f). Hence, (Fn ffg) [ fgg � F should hold.
This is Axiom 2.

2.2. Generalized-partition representation

De�nition 5. A function � : 2S
0 ! [0; 1] is a generalized partition of S 0 � S if for any

s 2 S 0, �s de�ned by �s (I) =
(
� (I) if s 2 I
0 if s =2 I

satis�es
P

I�S0�s (I) = 1.

We interpret �s (I) as the probability of signal I contingent on the state being s. The

special case of a set partition corresponds to � taking only two values, zero and one. In that

case, for every s 2 S 0 there exists a unique Is 2 2S
0
with s 2 Is and �s (Is) = 1. Furthermore,

s0 2 Is implies that Is = Is0, that is, �s0 (Is) = 1 for all s0 2 Is.5

De�nition 6. The pair (�; �) is a generalized-partition representation if (i) � : S ! [0; 1] is

a probability measure; (ii) � : 2�(�) ! [0; 1] is a generalized partition of � (�); and (iii)

V (F ) =
P

I22�(�) max
f2F

�P
s2If (s)� (s)

�
� (I)

represents �.

The fact that �s (I) is independent of s (conditional on s 2 I) re�ects the idea that the
DM cannot draw any inferences from learning an event other than that states outside that

event were not realized. Indeed, Bayes�law implies that for any s; s0 2 I,

Pr (s jI )
Pr (s0 jI ) =

�s (I)� (s) =� (I)

�s0 (I)� (s0) =� (I)
=
� (s)

� (s0)
(2)

independent of I. In that sense, the signals that support a generalized partition can be

objectively described as events in � (�). It is worth noting that the notion of generalized

partition is meaningful also in the context of objective learning, that is, when the function

� is exogenously given.

Assume that the relation � admits a subjective-learning representation. We now show

that further imposing Axiom 1 and Axiom 2 is both necessary and su¢ cient for having a

generalized-partition representation.

5If � is partitional, then it is uniquely identi�ed via its support, � (�). Throughout the paper, we use �
and � (�) interchangeably when referring to a set partition.
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Theorem 1. Suppose that the relation � admits a subjective-learning representation (as

in (1)). Then � satis�es Axioms 1 and 2 if and only if it has a generalized-partition repre-
sentation, (�; �). Furthermore, the pair (�; �) is unique.

Proof. See Appendix 6.3.

2.3. A characterization of generalized partitions

De�nition 6 implies that (�; �) is a generalized-partition representation if and only if � is

a generalized partition of � (�). Equation (2) of the previous section observes that � is

a generalized partition of � (�) if and only if the signals in its support can be objectively

described as events in � (�). As we illustrate below, the set of events that are supported as

possible signals can be interpreted as a particular type of learning. We now characterize the

types of learning that can give rise to a generalized partition. Formally, we characterize the

set n
	 � 2S0

���there is a generalized partition � : 2S0 ! [0; 1] with � (�) = 	
o
:

De�nition 7. A set S 0 � S is covered k times by a collection of events 	 � 2S if there is a
function � : 	! Z+, such that for all s 2 S 0,

P
I2	js2I � (I) = k.

De�nition 8. A collection of events 	 � 2S is a uniform cover of a set S 0 � S, if (i)

S 0 =
S
I2	I; and (ii) there exists k � 1, such that S 0 is covered k times by 	.

Remark 1. In the context of cooperative games, Shapley (1967) introduces the notion of
a balanced collection of weights. Denote by C the set of all coalitions (subsets of the set N
of players). The collection (L)L2C of numbers in [0; 1] is a balanced collection of weights if

for every player i 2 N , the sum of L over all the coalitions that contain i is 1. Suppose

	 � 2S is a uniform cover of a set S 0 � S. Then there exists k � 1 such that for all s 2 S 0,P
I2	js2I

�(I)
k
= 1. In the terminology of Shapley, the collection

�
�(I)
k

�
I2	

of numbers in

[0; 1] is, thus, a balanced collection of weights.

To better understand the notion of uniform cover, consider the following example. Sup-

pose S = fs1; s2; s3g. Any partition of S, for example ffs1g ; fs2; s3gg, is a uniform cover of S
(with k = 1). A set that consists of multiple partitions, for example ffs1g ; fs2; s3g ; fs1; s2; s3gg,
is a uniform cover of S (in this example with k = 2). The set 	 = ffs2; s3g ; fs1; s2; s3gg is
not a uniform cover of S, because

P
Ijs12I � (I) <

P
Ijs22I � (I) for any � : 	! Z+. The set

ffs2; s3g ; fs1g ; fs2g ; fs3gg, however, is a uniform cover of S with

� (I) =

(
2 if I = fs1g
1 otherwise

:

11



Lastly, the set ffs1; s2g ; fs2; s3g ; fs1; s3gg is a uniform cover of S (with k = 2), even though
it does not contain a partition.

An empirical situation that gives rise to a uniform cover consisting of two partitions is an

experiment that reveals the state of the world if it succeeds, and is completely uninformative

otherwise. For a concrete example that gives rise to a uniform cover that does not contain a

partition, consider the sequential elimination of n candidates, say during a recruiting process.

If k candidates are to be eliminated in the �rst stage, then the resulting uniform cover is the

set of all (n� k)-tuples.

Theorem 2. A collection of events 	 is a uniform cover of S 0 � S if and only if there is a
generalized partition � : 2S

0 ! [0; 1] with � (�) = 	.

Proof. See Appendix 6.4
Theorem 2 characterizes the types of learning that can be accommodated by a generalized-

partition representation. To illustrate it, let us consider a speci�c example. An oil company

is trying to learn whether there is oil in a particular location. Suppose the company can

perform a test-drill to determine accurately whether there is oil, s = 1, or not, s = 0. In

that case, the company learns the partition ff0g ; f1gg, and � (f0g) = � (f1g) = 1 provides
a generalized-partition representation given the �rm�s prior beliefs � on S = f0; 1g.
Now suppose that there is a positive probability that the test may not be completed

(for some exogenous reason, which is not indicative of whether there is oil or not). The

company will either face the trivial partition ff0; 1gg, or the partition ff0g ; f1gg, and
hence 	 = ff0; 1g ; f0g ; f1gg. Suppose the company believes that the experiment will

succeed with probability q. Then � (f0; 1g) = 1 � q and � (f0g) = � (f1g) = q provides a

generalized-partition representation given the company�s prior beliefs � on S = f0; 1g.
We can extend the previous example and suppose the company is trying to assess the

size of an oil �eld by drilling in l proximate locations, which means that the state space is

now f0; 1gl. As before, any test may not be completed, independently of the other tests.
This is an example of a situation where the state consists of l di¤erent attributes (i.e., the

state space is a product space), and the DM may learn independently about any of them.

Such learning about attributes also gives rise to a uniform cover that consists of multiple

partitions and can be accommodated.

To �nd a generalized-partition representation based on (i) a uniform cover 	 of a state

space S, for which there is a collection � of partitions whose union is 	; (ii) a probability

distribution q on �; and (iii) a measure � on S, one can set � (I) =
P

P2�jI2P q (P). We
refer to the pair (q;�) as a random partition.

12



Lastly, reconsider the example of sequential elimination of candidates outlined above.

Suppose that there are three candidates and one of them will be eliminated in the �rst round.

The state space is then S = fs1; s2; s3g and the uniform cover of events the DM might learn

is given by 	 = ffs1; s2g ; fs2; s3g ; fs1; s3gg. Suppose that, contingent on person i being
the best candidate, the DM considers any order of elimination of the other candidates as

equally likely. This corresponds to the generalized partition with � (I) = 0:5 for all I 2 	
and � (I) = 0 otherwise. The pair (�; �) is then a generalized-partition representation for

any prior beliefs � with full support on S.

3. Subjective temporal resolution of uncertainty

Suppose that the DM anticipates uncertainty to resolve gradually over time. The pattern

of resolution might be relevant if, for example, the time at which the DM has to choose an

alternative from the menu is random and continuously distributed over some interval, say

[0; 1]. An alternative interpretation is that at any given point in time t 2 [0; 1] the DM
chooses one act from the menu. At time 1, the true state of the world becomes objectively

known. The DM is then paid the convex combination of the payo¤s speci�ed by all acts

on the menu, where the weight assigned to each act is simply the amount of time the DM

held it. That is, the DM derives a utility �ow from holding a particular act, where the

state-dependent �ow is determined ex-post, at the point when payments are made. In both

cases, the information available to the DM at any point in time t might be relevant for his

choice. This section is phrased in terms of random timing of second-stage choice.

In a context where the �ow of information over time is objectively given, it is common

to describe it as a �ltered probability space, that is, a probability space with a �ltration on

its sigma algebra. We would like to replicate this description in the context of subjective

learning. We interpret two events in the support of � in Theorem 1, both containing state

s, as relevant for the DM at di¤erent points in time. If signals arrive sequentially, then

information becomes more precise over time, that is, the two events should be ordered by set

inclusion. Using the notion of saturated menus, we now impose an additional axiom on �,
which captures this restriction. The resulting representation can be interpreted as follows:

the DM holds beliefs over the states of the world and has in mind a �ltration indexed

by continuous time. Using Bayes� law, the �ltration and prior beliefs jointly generate a

subjective temporal lottery. Our domain is rich enough to allow both the �ltration, that is

the timing of information arrival and the sequence of partitions induced by it, and the beliefs

to be uniquely identi�ed from choice behavior.

13



3.1. Subjective �ltration

De�nition 9. An act f contains act g if � (g) ( � (f).

De�nition 10. Acts f and g do not intersect if � (g) \ � (f) = ;.

Axiom 3 (Sequential learning). If F is saturated and f; g 2 F then either f and g do
not intersect or one contains the other.

As we explained above, in order to interpret two distinct events that contain state s as

being relevant for the DM at di¤erent points in time, they must be ordered by set inclusion.

Using Claim 3, this is the content of Axiom 3.

De�nition 11. The pair (�; fPtg) is a subjective �ltration representation if (i) � is a prob-
ability measure on S; (ii) fPtg is a �ltration on � (�) indexed by t 2 [0; 1];6 and

V (F ) =
R
[0;1]

�P
I2Pt maxf2F

�P
s2If (s)� (s)

��
dt:

represents �.

Note that there can only be a �nite number of times at which the �ltration fPtg becomes
strictly �ner. The de�nition does not require P0 = f� (�)g.

Theorem 3. Suppose that the relation � admits a Generalized-partition representation (as
in De�nition 6). The relation � satis�es Axiom 3 if and only if it has a subjective �ltration

representation, (�; fPtg). Furthermore, the pair (�; fPtg) is unique.

Proof. See Appendix 6.5
If the DM faces an (exogenously given) random stopping time that is uniformly distrib-

uted on [0; 1],7 then Theorem 3 implies that he behaves as if he holds prior beliefs � and

expects to learn over time as described by the �ltration fPtg.
We now brie�y sketch the proof of Theorem 3. Given a generalized-partition represen-

tation (�; �) as in Theorem 1, Axiom 3 allows us to construct a random partition (q;�) as

de�ned at the end of Section 2.3, where the partitions in � can be ordered by increasing

6Slightly abusing notation, we identify a �ltration with a right-continuous and nondecreasing function
from [0; 1] to 2�(�).

7It is straightforward to accommodate any other exogenous distribution of stopping times. An alternative
interpretation is that the distribution of stopping times is not uniform because of an external constraint,
but because the DM subscribes to the principle of insu¢ cient reason, by which he assumes that all points
in time are equally likely to be relevant for choice.
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�neness. If the DM faces a random stopping time that is uniformly distributed on [0; 1],

then we can interpret q (P) as the time for which the DM expects partition P 2 � to be
relevant. This interpretation is captured in the time dependency of fPtg. The construction
of (q;�) is recursive. First, for each state s 2 S, we �nd the largest set in � (�) that in-
cludes s. The collection of those sets constitutes P1. The probability q (P1) corresponds to
the smallest weight any of those sets is assigned by �, that is, q (P1) = minI2P1 (� (I)). To
begin the next step, we calculate adjusted weights, �1, as follows: for any set I 2 P1, let
�1 (I) = � (I) � q (P1). For any set I 2 � (�) nP1, let �1 (I) = � (I). The set � (�1) then

consists of all sets I 2 P1 with � (I) > q (P1) and all sets in � (�) nP1. Recursively, construct
Pn according to �n�1. By Theorem 1,

P
I22S js2I � (I) = 1 for all s 2 � (�), which guarantees

that the inductive procedure is well de�ned. It must terminate in a �nite number of steps

due to the �niteness of 2S.

Remark 2. At the time of menu choice, the DM holds beliefs over all possible states of the

world. If he expects additional information to arrive before time-zero (at which point his

beliefs commence to be relevant for choice from the menu), then time-zero information is

described by a non-trivial partition of � (�), that is, P0 6= f� (�)g. If one wants to assume
that the (subjective) �ow of information cannot start before time-zero, then the following

additional axiom is required:

Axiom 4 (Initial node). If F is saturated, then there exists f 2 F such that f contains
g for all g 2 F with g 6= f .

Under the assumptions of Theorem 3, if � also satis�es Axiom 4, then P0 = f� (�)g. That
is, the tree (�; fPtg) has a unique initial node (see Claim 10 in Appendix 6.5).

3.2. Reevaluation of our domain

In this section we compare our model of subjective �ltration to two di¤erent approaches that

have been suggested in the literature to study a DM who expects uncertainty to be gradually

resolved over time.

Takeoka (2007) analyzes choice between what one might term �compound menus of acts�

(menus over menus etc.), that is K (K:::K (F)). The domain of compound menus provides
a way to talk about compound uncertainty (without objective probabilities). It has the

advantage that it can capture situations where the DM faces intertemporal trade-o¤s, for

example if today�s action may limit tomorrow�s choices. However, while only the initial choice

is modeled explicitly, the interpretation of choice on this domain now involves multiple stages,

say 0, 1=2, and 1, at which the DMmust make a decision. That is, the pattern of information
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arrival (or, at least, the collection of times at which an outside observer can detect changes

in the DM�s beliefs) is objectively given. In that sense, the domain only partially captures

subjective temporal resolution of uncertainty. Furthermore, the domain of compound menus

becomes increasingly complicated, as the resolution of uncertainty becomes �ner.8

DLST (2012) extend the domain of menus of acts to one in which the DM can choose

not only among menus but also the future time by which he will make his choice of an act

from the menu. More formally, they consider the domain K (F) � [0; 1], where a typical
element (F; t) represents a menu and a time by which an alternative from the menu must

be chosen. DLST can accommodate intertemporal trade-o¤s, as perceived from the ex-ante

point of view. For example, the DM can compare the alternatives (F; t) and (G; t0), where

t > t0 and F � G; while anticipating late resolution of uncertainty provides an incentive to
postpone his decision, the available menu at the later time will be worse. DLST provide a

representation of preferences over K (F)� [0; 1] that pins down how the DM�s knowledge will
be improved through time and how this improved knowledge a¤ects the values of di¤erent

choice problems (menus). While the dimensionality of K (F) � [0; 1] is signi�cantly lower
than that of K (K:::K (F)), it still requires the elicitation of the DM�s ranking over menus
of acts for every point in time.

In this paper we take a di¤erent approach to study subjective temporal resolution of

uncertainty: we specify a single set of feasible intermediate actions, which is the relevant

constraint on choice at all points in time. At the �rst stage, the DM chooses a menu of

acts and only this choice is modeled explicitly. The innovation lies in our interpretation of

choice from the menu. Whether we think of an exogenous distribution for the stopping time

or of a model where the DM derives a utility �ow, the information that the DM has at any

point in time might be relevant for his ultimate choice from a menu. Our approach does not

accommodate choice situations where the set of feasible actions may change over time. It

also cannot capture the intertemporal trade-o¤ as in DLST. Its main advantage, however, is

that it allows us (as we argue in the text) to uniquely pin down the timing of information

arrival in continuous time, the sequence of induced partitions, and the DM�s prior beliefs

from the familiar, much smaller, and analytically tractable domain of menus of acts.

4. Comparing valuations of binary bets

Under the assumptions of Theorem 1, we compare the behavior of two individuals in terms

of the amount of information each expects to acquire.
8Note that the set of menus over acts is in�nitely dimensional. Hence, even the three-stage model considers

menus that are subsets of an in�nite dimensional space.
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Fix k 2 (0; 1� c) such that fcg �i ffg for i = 1; 2, where

f (bs) =
8><>:
c+ k if bs = s
0 if bs = s0
c otherwise

:

Let

f 0 (bs) = ( c+ k0 if bs = s
c otherwise

:

Relative to the certain payo¤ c, the act f is a bet with payo¤s k in state s and �c in state
s0. The act f 0 yields extra payo¤ k0 in state s.

De�nition 12. DM1 values binary bets more than DM2 if for all s; s0 2 S and k0 2 [0; k],
(i) ff 0g �1 fcg , ff 0g �2 fcg; and
(ii) ff 0g �1 ff; cg ) ff 0g �2 ff; cg.

Condition (i) says that the two DMs agree on whether or not payo¤s in state s are

valuable. Condition (ii) says that DM1 is willing to pay more in state s to have the bet f

available.9

A natural measure of the amount of information that a DM expects to receive is how

likely he expects to be able to distinguish any state s from any other state s0 whenever s is

indeed the true state. Observe that Pr (fI js 2 I, s0 =2 I g js) =
P

Ijs2I,s0 =2I � (I).

Theorem 4. If DM1 and DM2 have preferences that can be represented as in Theorem 1,

then DM1 values binary bets more than DM2 if and only if � (�1) = � (�2) and

P
Ijs2I,s0 =2I �

1 (I) �
P

Ijs2I,s0 =2I �
2 (I)

for all s; s0 2 � (�1) :

Proof. See Appendix 6.6
Consider the following de�nition of �more preference for �exibility�(see DLST and ref-

erences therein), according to which DM1 has more preference for �exibility than DM2 if

whenever DM1 prefers to commit to a particular action rather than to retain an option to

choose, so does DM2.

9The notion of valuing binary bets more extends the notion of valuing more binary bets, which was
introduced and characterized in DLST, in the context of partitional learning. While in both versions the
two DMs should have the same set of states on which payo¤s are valuable, the intensity of preferences does
not play any role in DLST, while it does here.
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De�nition 13. DM1 has more preference for �exibility than DM2 if for all f 2 F and for

all G 2 K (F),
ffg �1 G implies ffg �2 G.

DLST (Theorem 2) show that DM1 has more preference for �exibility than DM2 if and

only if DM2�s distribution of posterior beliefs (in a subjective-learning representation) is

a mean-preserving spread of DM1�s. Our notion of valuing binary bets more weakens the

notion of more preference for �exibility.10 Accordingly, Theorem 4 compares the behavior of

two individuals who expect to learn di¤erently, without requiring that they share the same

prior beliefs; instead, the only requirement is that their prior beliefs have the same support.

Under the assumptions of Theorem 3, we can characterize the notion of preference for

�exibility and the value of binary bets via the DM�s subjective �ltration.

De�nition 14. DM1 learns earlier than DM2 if fP1t g is weakly �ner than fP2t g :

Theorem 5. If DM1 and DM2 have preferences that can be represented as in Theorem 3,

then:

(i) DM1 values binary bets more than DM2 if and only if DM1 learns earlier than DM2;

(ii) DM1 has more preference for �exibility than DM2 if and only if DM1 learns earlier

than DM2 and they have the same prior beliefs, �1 = �2.

Proof. See Appendix 6.7
Theorem 5 shows that under the assumptions of Theorem 3, the characterization of more

preference for �exibility di¤ers from that of the weaker notion of valuing binary bets more

solely by requiring that the prior beliefs are the same.

5. Concluding remarks

In this paper we show how to identify unobserved information instead of taking it as a

primitive of a model. We provide minimal conditions under which a subjective information

structure can be elicited from choice behavior and can be described solely in terms of the

objective state space S. The set of possible signals in the corresponding generalized-partition

representation corresponds to events, that is, subsets of S. The notion of generalized partition

extends the notion of a set partition by dropping the requirement of deterministic signals.

10To see this, note that Condition (ii) in De�nition 12 is implied by De�nition 13 and Condition (i) in
De�nition 12 is implied by Claim 1 in DLST, which states that if DM1 has more preference for �exibility
than DM2 then ffg �1 fgg if and only if ffg �2 fgg.
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We show that the model can accommodate a variety of information structures that induce

interesting types of learning processes.

We now provide a simple example, the purpose of which is to demonstrate an empirically

plausible behavioral pattern which our axioms accommodate, but is precluded under the

stronger requirement of learning by a partition of S. Consider the state space fs1; s2g and
the menu f(1; 0) ; (0; 1) ; (1� "; 1� ")g, which contains the option to bet on either state, as
well as an insurance option that pays reasonably well in both states. A DM who is uncertain

about the information he will receive by the time he has to choose from the menu may

strictly prefer this menu to any of its subsets (for " small enough). For instance, an investor

may value the option to make a risky investment in case he understands the economy well,

but also values the option to make a safe investment in case a lot of uncertainty remains

unresolved at the time of making the investment choice. Our axioms accommodate this

ranking. In contrast, such a ranking of menus is ruled out if signals are deterministic. If

the DM expects to learn the true state, then preference for �exibility stems exclusively from

the DM�s prior uncertainty about the true state and the insurance option is irrelevant, that

is, f(1; 0) ; (0; 1) ; (1� "; 1� ")g � f(1; 0) ; (0; 1)g. And if the DM does not expect to learn

the true state, then, for " small enough, he anticipates choosing the insurance option with

certainty, that is, f(1; 0) ; (0; 1) ; (1� "; 1� ")g � f(1� "; 1� ")g.
It is worth emphasizing the merit of taking the objective state space and the acts de�ned

on it as primitives of the model. Unaware of the collection of random variables the DM

might observe, an analyst may wish to follow Savage (1954) and postulate the existence of

a grand state space that describes all conceivable sources of uncertainty. This expanded

state-space surely captures all the uncertainty which is relevant for the DM. Identi�cation of

beliefs on a larger state space, however, generally requires a much larger collection of acts,

which poses a serious conceptual problem, as in many applications the domain of choice (the

available acts) is given. In that sense, acts �and the state space on which they are de�ned

� should be part of the primitives of the model.11 Instead of enlarging the state space,

our approach identi�es a behavioral criterion for checking whether a given state space (e.g.

the one acts are naturally de�ned on in a particular application) is large enough: behavior

satis�es Context independence (Axiom 2) if and only if the resolution of any subjective

uncertainty corresponds to an event in the state space.

11Gilboa, Postlewaite, and Schmeidler (2009a, 2009b) point out the problems involved in using an analytical
construction, according to which states are de�ned as functions from acts to outcomes, to generate a state
space that captures all conceivable sources of uncertainty. First, since all possible acts on this new state
space should be considered, the new state space must be extended yet again, and this iterative procedure
does not converge. Second, the constructed state space may include events that are never revealed to the
DM, and hence some of the comparisons between acts may not even be potentially observable. (A related
discussion appears in Gilboa (2009, Section 11.1.)
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6. Appendix

6.1. Proof of Claim 1

We will construct a menu that satis�es De�nition 4 with f (s) < 1 for all f 2 F and all

s 2 S. Let F�(S) := ff 2 F : kfk2 = 1g be the positive segment of the k � 1 dimensional
unit sphere. There is an isomorphism between �(S) and F�(S) with the mapping � !
argmax
f2F�(S)

�P
s2Sf (s)� (s)

�
. For L � �(S) let FL � F�(S) be the image of L under this map-

ping. Finiteness of � (p) implies that F�(p) is �nite. Let f�(p);� := argmax
f2F�(p)

�P
s2Sf (s)� (s)

�
and (implicitly) de�ne ��(p);f by f = argmax

f2F�(p)

�P
s2Sf (s)��(p);f (s)

�
. Because F�(S) is the

positive segment of a sphere, � (s) > 0 for � 2 � (p) if and only if f�(p);� (s) > 0. This

implies that F�(p) � F�(p)n ffg [ ff 0s g for all f 2 F�(p) and s 2 S with f (s) > 0.

Hence, F�(p) is fat-free (De�nition 3). We claim that F�(p) is a saturated menu. Con-

sider condition (i) in De�nition 4. If f (s) = 0, then ��(p);f (s) = 0. Hence, there ex-

ists " > 0 such that F�(p) � F�(p) [
n
f
f(s)+"
s

o
for all " < ". Finally, consider condition

(ii) in De�nition 4. Let G * F�(p). If F�(p) [ G � F�(p) then the condition is triv-

ially satis�ed. Suppose F�(p) [ G � F�(p). Then, there exist � 2 � (p) and g 2 G withP
s2Sg (s)� (s) >

P
s2Sf�(p);� (s)� (s). Then F�(p) [G �

�
F�(p) [G

�
n
�
f�(p);�

	
.

6.2. Proof of Claim 2

If F is saturated and f 2 F , then there exists � such that f = argmax
�P

s2Sf (s)� (s)
�
(if

not, then F � Fn ffg). We should show that if f = argmax
�P

s2Sf (s)� (s)
�
, then for all

�0 6= �, f =2 argmax
�P

s2Sf (s)�
0 (s)

�
. Suppose to the contrary that there exist � 6= �0 such

that f = argmax
�P

s2Sf (s)� (s)
�
and f 2 argmax

�P
s2Sf (s)�

0 (s)
�
. Then f (s) > 0 for

all s 2 � (�) [ � (�0) by De�nition 4 (i). We construct an act f 0, which does better than f
with respect to belief �0 and does not change the argmax with respect to any other belief in

which f was not initially the best. Since � 6= �0, there exist two states, s and s0, such that
�0 (s) > � (s) and �0 (s0) < � (s0). Let

f 0 (bs) =
8><>:
f (bs) if bs =2 fs; s0g
f (bs) + " if bs = s
f (bs)� � if bs = s0 ;

where "; � > 0 are such that:

(1) "�0 (s)� ��0 (s0) > 0, and
(2) "� (s)� �� (s0) < 0.
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The two conditions can be summarized as "
�
2
�
�0(s0)
�0(s) ;

�(s0)
�(s)

�
� (0;1). Note that one can

make " and � su¢ ciently small (while maintaining their ratio �xed) so that, by continuity, f 0

does not change the argmax with respect to any other belief in which f was not initially the

best. Hence f 0 =2 F and F [ f 0 � (F [ f 0) n fgg for all g 2 F [ f 0, which is a contradiction
to F being saturated.

6.3. Proof of Theorem 1

Axiom 1 is obviously necessary for the representation. We thus only verify that the repre-

sentation implies Axiom 2. Suppose then that F is saturated with f 2 F , and let g satisfy
� (g) = � (f) and fgg � ffg, which implies that

V (fgg)� V (ffg) =
P

I22�(�)
P

s2I [g (s)� f (s)]� (s) � (I) (3)

=
P

s2S
P

I22�(�)js2I [g (s)� f (s)]� (s) � (I)

=
P

s2S [g (s)� f (s)]� (s)
P

I22�(�)js2I � (I)

=
P

s2S [g (s)� f (s)]� (s) � 0:

Since F is saturated, Claim 2 and Claim 3 imply that there exists If 2 � (�) such that

V (F ) =
hP

s2Iff (s)� (s)
i
� (If ) +

P
I22�(�)=If max

f 02F=ffg

�P
s2If (s)� (s)

�
� (I)

�
hP

s2Ifg (s)� (s)
i
� (If ) +

P
I22�(�)=If max

f 02F=ffg

�P
s2If (s)� (s)

�
� (I)

� V ((Fn ffg) [ fgg) ,

where the �rst inequality uses Equation (3) and the second inequality is because the addition

of the act g might increase the value of the second component. Therefore, (Fn ffg)[fgg � F .
The su¢ ciency part of Theorem 1 is proved using the following claims. The �rst estab-

lishes that a strict version of Axiom 2 also holds.

Claim 4. Suppose F is saturated and f 2 F . Then for all g with � (g) = � (f),

fgg � ffg implies (Fn ffg) [ fgg � F:

Proof. For " > 0 small enough, let

h (s) =

(
f (s) + " if s 2 � (f)

0 if s =2 � (f)
:
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Then fgg � fhg and � (h) = � (g). A subjective-learning representation implies that F [
fhg � F . Let

F 0 :=

(
argmax
f 02F[fhg

�P
s2Sf

0 (s)� (s)
������ � 2 � (p)

)
:

Then F 0 � F [ fhg and F 0 is saturated. By Axiom 2,

(F 0n fhg) [ fgg � F 0:

Furthermore, F 0n fhg � Fn ffg and, since any � that admits a subjective-learning rep-

resentation is monotonic with respect to set inclusion, (Fn ffg) [ fgg � (F 0n fhg) [ fgg.
Collecting all the preference statements established above completes the proof:

(Fn ffg) [ fgg � (F 0n fhg) [ fgg � F 0 � F [ fhg � F:

Claim 5. If �; �0 2 � (p) and � 6= �0 then � (�) 6= � (�0)

Proof. Suppose there are �; �0 2 � (p), � 6= �0, but � (�) = � (�0). Let F�(p) be the

saturated menu constructed in the proof of Claim 1. Then there are f; g 2 F�(p) with f 6= g
but � (f) = � (g). Without loss of generality, suppose that fgg � ffg. For " > 0 small

enough, let

h (s) =

(
g (s) + " if s 2 � (f)

0 if s =2 � (f)

and let

F :=

�
arg max

f2F�(p)[fhg

�P
s2Sf (s)� (s)

�
j� 2 � (p)

�
:

F is a saturated menu with F � F�(p)[fhg. For " > 0 small enough, f; h 2 F . Furthermore,
fhg � fgg � ffg. Then, by Claim 4 Fn ffg = (Fn ffg) [ fhg � F , which contradicts

monotonicity with respect to set inclusion.

The measure p over�(S) in a subjective-learning representation is unique. Consequently

the prior, � (s) =
R
�(S)

� (s) dp, is also unique. By Claim 5, we can index each element

� 2 � (p) by its support � (�) 2 2S and denote a typical element by � (� jI ), where � (s jI ) = 0
if s =2 I 2 2S. This allows us to replace the integral over �(S) with a summation over 2S

according to a unique measure bp,
V (F ) =

P
I22S max

f2F

�P
s2Sf (s)� (s jI )

� bp (I) ; (4)
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and to write � (s) =
P

Ijs2I � (s jI ) bp (I).
Claim 6. For all s; s0 2 I 2 � (bp),

� (s jI )
� (s0 jI ) =

� (s)

� (s0)
:

Proof. Suppose to the contrary that there are s; s0 2 I 2 � (bp) such that
� (s jI )
� (s0 jI ) <

� (s)

� (s0)
:

Given a saturated menu F , let fI := argmax
f2F

Pbs2S f (bs)� (bs jI ). By continuity, and since
fI (s

0) > 0, there exists an act h with

h (bs) =
8><>:
fI (bs) if bs =2 fs; s0g
fI (bs) + " if bs = s
fI (bs)� � if bs = s0 ;

where "; � > 0 are such that:

(1) "� (s)� �� (s0) > 0, and
(2) "� (s jI )� �� (s0 jI ) < 0:
Note that using Claim 2 and Claim 3 one can make " and � su¢ ciently small (while

maintaining their ratio �xed), so that, by continuity and �niteness of � (bp), h does not
change the argmax with respect to any other belief in � (bp). Then fhg � ffIg, but F �
Fn ffIg [ fhg, which contradicts Axiom 2.

Claim 7. For all s 2 I 2 � (bp), � (s jI ) = �(s)
�(I)
.

Proof. Using Claim 6,

� (I) :=
P

s02I� (s
0) =

� (s)

� (s jI )
P

s02I� (s
0 jI ) = � (s)

� (s jI )

) � (s jI ) = � (s)

� (I)
:

De�ne � (I) := bp(I)
�(I)
. Using Claim 7, we can substitute � (s) � (I) for � (s jI ) bp (I) in (4).

Bayes�law implies that �s (I) =

(
� (I) if s 2 I
0 if s =2 I

.
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6.4. Proof of Theorem 2

(if) Let 	 be a uniform cover of S 0. Let k � 1 be the smallest number of times that S 0 is
covered by 	. Set � (I) = �(I)

k
for all I 2 	.

(only if) Suppose that � : 2S0 ! [0; 1] is a generalized partition, with � (�) = 	. In addition

to � (I) = 0 for I =2 	, the conditions that � should satisfy can be written as A�	 = 1, where

A is a jS 0j � j	j matrix with entries ai;j =
(
1 s 2 I
0 s =2 I

�����, �	 is a j	j-dimensional vector with
entries (� (I))I2	, and 1 is a jS 0j-dimensional vector of ones.
Suppose �rst that � (I) 2 Q\ (0; 1] for all I 2 	. Rewrite the vector �	 by expressing all

entries using the smallest common denominator, � 2 N+. Then 	 is a generalized partition
of size �. To see this, let � (I) := ��(I) for all I 2 	. Then

P
I2	js2I � (I) =

P
I2	js2I �� (I) = �

for all s 2 S 0.
It is thus left to show that if �	 2 (0; 1]j	j solves A�	 = 1, then there is also �0	 2

[Q \ (0; 1]]j	j such that A�0	 = 1.
Let bP be the set of solutions for the system A�	 = 1. Then, there exists X 2 Rk (with

k � j	j) and an a¢ ne function f : X ! Rj	j such that c�	 2 bP implies c�	 = f (x) for some
x 2 X. We �rst make the following two observations:
(i) there exists f as above, such that x 2 Qk implies f (x) 2 Qj	j

;

(ii) there exists an open set eX � Rk such that f (x) 2 bP for all x 2 eX
To show (i), apply the Gauss elimination procedure to get f and X as above. Using the

assumption thatA has only rational entries, the Gauss elimination procedure (which involves

a sequence of elementary operations on A) guarantees that x 2 Qk
implies f (x) 2 Qj	j

.

To show (ii), suppose �rst that �� 2 bP \ (0; 1)j	j and ��	 =2 Qj	j. By construction,
��	 = f (x�), for some x� 2 X. Since ��	 2 (0; 1)

j	j and f is a¢ ne, there exists an open

ball B" (x�) � Rk such that f (x) 2 bP \ (0; 1)j	j for all x 2 B" (x
�), and in particular

for x0 2 B" (x
�) \ Qk

(6= �). Then �0	 = f (x0) 2 [Q \ (0; 1]]j	j. Lastly, suppose that

��	 2 bP \ (0; 1]j	j and that there are 0 � l � j	j sets I 2 	, for which � (I) is uniquely
determined to be 1. Then set those l values to 1 and repeat the above procedure for the

remaining system of j	j �l linear equations.

6.5. Proof of Theorem 3

It is easy to check that any preferences with a subjective �ltration representation as in

Theorem 3 satisfy Axiom 3. The rest of the axioms are satis�ed since Theorem 3 is a special
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case of Theorem 1.

To show su¢ ciency, �rst observe that by Axiom 3 and Claim 2, I,I 0 2 � (�) implies that
either I � I 0, or I 0 � I, or I \ I 0 = ;. This guarantees that for anyM � � (�) and s 2 � (�),
argmax
I2M

fjIj js 2 I g is unique if it exists.

For any state s 2 � (�), let Is1 = argmax
I2�(�)

fjIj js 2 I g. De�ne T1 := fIs1 js 2 � (�)g. Let

�1 = min
I2T 1

(� (I)). Set

�1 (I) =

(
� (I)� �1 if I 2 T1
� (I) if I =2 T1

:

Let �n : � (�) ! [0; 1] for n 2 N. Inductively, if for all s 2 � (�) there exists I 2 � (�n)
such that s 2 I, then for any s 2 � (�) let Isn+1 = argmax

I2�(�n)
fjIj js 2 I g. De�ne Tn+1 :=�

Isn+1 js 2 � (�)
	
. Let �n+1 = min

I2Tn+1
(�n (I)). Set

�n+1 (I) =

(
�n (I)� �n+1 if I 2 Tn+1

�n (I) if I =2 Tn+1
:

Let N + 1 be the �rst iteration in which there exists s 2 � (�) which is not included in
any I 2 � (�N). Axiom 1 implies that N is �nite and that (T n)n=1;::;N is a sequence of

increasingly �ner partitions, that is, for m > n, Ism � Isn for all s, with strict inclusion for

some s.

Claim 8. � (I) =
P

n�N jI2Tn �n for all I 2 � (�).

Proof. First note that by the de�nition of N , � (I) �
P

n�N jI2Tn �n for all I 2 � (�). If
the claim were not true, then there would exist I 0 2 � (�) such that � (I 0) >

P
n�N jI02Tn �n.

Pick s0 2 I 0. At the same time, by the de�nition of N , there exists s00 2 � (�) such that if
s00 2 I 2 � (�) then � (I) =

P
n�N jI2Tn �n. We have,

� (s00) =
P

I2�(�) Pr (s
00 jI ) � (I)� (I) =

P
I2�(�) Pr (s

00 jI )� (I)
P

n�N jI2Tn �n

=
P

n�N Pr
�
s00
���Is00n ���Is00n � �n = � (s00)Pn�N�n;

where the last equality follows from Claim 7. Therefore,
P

n�N�n = 1. At the same time

� (s0) =
P

I2�(�) Pr (s
0 jI ) � (I)� (I) >

P
I2�(�) Pr (s

0 jI )� (I)
P

n�N jI2Tn �n

=
P

n�N Pr
�
s0
���Is0n ���Is0n � �n = � (s0)Pn�N�n = � (s

0) ;

which is a contradiction.
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Claim 8 implies that � (�N+1) = ;. Let �m := 0 and for t 2 [0; 1) de�ne the �ltration
fPtg by

Pt := Tn, for n such that
Pn�1

m=0�m � t <
Pn

m=0�m.

The pair (�; fPtg) is thus a subjective �ltration. The next claim establishes that (�; fPtg)
is unique.

Claim 9. If
�b�;n bPto� induces a representation as in Theorem 3, then �b�;n bPto� = (�; fPtg).

Proof. � and � are unique according to Theorem 1. We already observed that I \ bI = ;,bI � I, or I � bI for any I,bI 2 � (�) : Suppose that fPtg 6= n bPto. Then there exist t 2 (0; 1)
and I 2 � (�), such that I 2 Pt and I =2 bPt. Fix s 2 I. There is bI 2 bPt with s 2 bI and,
therefore, either bI � I or I � bI. Assume, without loss of generality, that bI � I. Let M =

fI 0 2 � (�) : I � I 0g. Let � (M) :=
P

I�M� (I) and � (M) =
P

I�M� (I) =
P

I�M
P

s2I� (s).

Then according to (�; fPtg), � (M)� (M) � t, while according to
�b�;n bPto�, � (M)� (M) <

t, which is a contradiction to the uniqueness of (�; �) in Theorem 1.

The last claim formalizes the observation in Remark 2.

Claim 10. If � also satis�es Axiom 4, then P0 = f� (�)g :

Proof. Suppose to the contrary, that there are fI; I 0g � P0 such that I \ I 0 = ; and
I [ I 0 � � (�). Then, any saturated F includes some act h with � (h) � I and another act g
with � (g) � I 0, but it does not include an act that contains both h and g, which contradicts
Axiom 4.

6.6. Proof of Theorem 4

Let � be represented as in Theorem 1. Consider the menu fc; fg. We make the following
two observations: �rst, ff 0g � fcg if and only if s =2 � (�). Second, since conditional on any
I 3 s; s0

Pr (s jI )
Pr (s0 jI ) =

� (s)

� (s0)

and since fcg � ffg,
Pbs2I f (bs)� (bs) > cPbs2I � (bs) if and only if s 2 I but s0 =2 I. These

are the only events in which DM expects to choose f from fc; fg. Note that

V (fc; fg) = c+ � (s) k
P

Ijs2I, s0 =2I � (I)

and that

V (ff 0g) = c+ � (s) k0:
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Therefore, ff 0g � fc; fg if and only if
P

Ijs2I, s0 =2I � (I) � k0

k
.

By the �rst observation, De�nition 12 (i) is equivalent to the condition � (�1) = � (�2).

By the second observation, De�nition 12 (ii) is equivalent to the condition

P
Ijs2I, s0 =2I �

1 (I) � k0

k
)
P

Ijs2I, s0 =2I �
2 (I) � k0

k

for all k0 2 [0; k], or, P
Ijs2I, s0 =2I �

1 (I) �
P

Ijs2I, s0 =2I �
2 (I) .

6.7. Proof of Theorem 5

(i) DM1 does not learn earlier than DM2 ,
there exists t such that P1t is not �ner than P2t ,
there exists two states s; s0, such that s; s0 2 I for some I 2 P1t , but s; s0 =2 I 0 for any

I 0 2 P2t ,
Pr2 (fI js 2 I, s0 =2 I g js) =

P
Ijs2I,s0 =2I �

2 (I) � 1 � t, but Pr1 (fI js 2 I, s0 =2 I g js) =P
Ijs2I,s0 =2I �

1 (I) < 1� t ,
DM1 does not value binary bets more than DM2.

(ii) (if) Suppose fP1t g is weakly �ner than fP2t g and that �1 = �2 = �. Fix a time t. Any I 2
P2t is measurable in P1t , that is, there is a collection of sets Ik � P1t such that I = [

k
Ik. Since

the max operator is convex,
P

Ik
maxf2F

�P
s2Ikf (s)� (s)

�
� maxf2F

�P
s2If (s)� (s)

�
.

Since t was arbitrary, we have

V 1 (F ) =
R
[0;1]

�P
I2P1t

max
f2F

�P
s2If (s)� (s)

��
dt

�
R
[0;1]

�P
I2P2t

max
f2F

�P
s2If (s)� (s)

��
dt = V 2 (F ) :

Claim 1 in DLST states that if DM1 has mor preference for �exibility than DM2 then

ffg �1 fgg if and only if ffg �2 fgg, which means that for any f , V 1 (ffg) = V 2 (ffg).
Therefore, V 2 (F ) � V 2 (ffg) implies V 1 (F ) � V 1 (ffg).
(only if) By Theorem 2 in DLTS, more preference for �exibility implies that �1 = �2. It is

left to show that having more preference for �exibility implies learning earlier. For i = 1; 2,

let

ti (I) = min
�
t
��I is measurable in P it 	
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if de�ned, otherwise let ti (I) = 1. Let,

�i (I) = max
�
t
��I 2 P it 	�min�t ��I 2 P it 	

if de�ned, otherwise let �i (I) = 0. We make the following intermediate claim.

Claim 11. DM1 has more preference for �exibility than DM2 implies that for all I 2 2�(�)

P
I0�I�

1 (I 0)� (I 0) �
P

I0�I�
2 (I 0)� (I 0) :

Proof. Suppose that there is I 2 2S with
P

I0�I �
2 (I 0)� (I 0) >

P
I0�I �

1 (I 0)� (I 0). Obvi-

ously I  � (�). De�ne the act f by

f (s) =

(
� > 0 if s 2 I
0 if s =2 I

:

Let c denote the constant act that gives c > 0 in every state, such that � > c > �(I)
�(I00)� for

all I 00 2 2�(�) with I  I 00. Then Vi (ff; cg) = c+ (� � c)
P

I0�I �
i (I 0)� (I 0). Finally, pick c0

such that

(� � c)
P

I0�I�
2 (I 0)� (I 0) > c0 � c > (� � c)

P
I0�I�

1 (I 0)� (I 0) ;

to �nd ff; cg �2 fc0g but fc0g �1 ff; cg, and hence DM1 cannot have more preference for
�exibility than DM2.

Under the assumptions of Theorem 3,

P
I0�I�

i (I 0)�i (I 0) = �i (I)
�
1� ti (I)

�
:

By Claim 11, DM1 has more preference for �exibility than DM2 implies that t1 (I) � t2 (I)
for all I, which is equivalent to fP1t g being weakly �ner than fP2t g.
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