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Abstract

Consider an agent who is unsure of the state of the world and faces compu-
tational bounds on mental processing. The agent receives a sequence of signals
imperfectly correlated with the true state that he will use to take a single de-
cision. The agent is assumed to have a �nite number of �states of mind�that
quantify his beliefs about the relative likelihood of the states, and uses the sig-
nals he receives to move from one state to another. At a random stopping time,
the agent will be called upon to make a decision based solely on his mental
state at that time. We show that under quite general conditions it is optimal
that the agent ignore signals that are not very informative, that is, signals for
which the likelihood of the states is nearly equal. This model provides a possible
explanation of systematic inference mistakes people may make.
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It ain�t so much the things we don�t know that get us into trouble.
It�s the things that we know that just ain�t so.
Artemus Ward

1 Introduction

The past half century has seen the integration of uncertainty into a wide variety
of economic models which has led to increasingly sophisticated analysis of the
behavior of agents facing uncertainty. The incorporation of uncertainty into an
agent�s decision making typically begins with the assumption that the agent
has a probability distribution over the possible outcomes that would result from
decisions she might take. Savage (1954) is often given as justi�cation for such
modeling: when an agent�s preferences over the random outcomes stemming
from decisions the agent might take satisfy a set of seemingly plausible assump-
tions, the agent�s choices will be as though the agent had a probabilistic belief
over some underlying states and maximized expected utility. This �as if�per-
spective has been extraordinarily useful in shaping our models, and although
Savage (1954) is not necessarily meant to be a description of the way people
make decisions, nor a suggestion that agents actually form beliefs, it is standard
to view expected utility maximization as a description of decision making.
This paper starts with two observations. First, the beliefs that we hold often

seem to be relatively crude: we �nd ourselves unable to form precise probability
estimates.1 Second, beliefs sometimes seem questionable, at odds with either
common sense or even scienti�c evidence. Consider the following example.
Robert is convinced that he has ESP (extrasensory perception) and o¤ers

the following statement to support this belief: �I was thinking of my mother last
week and she called right after that.�Robert is not alone in holding such beliefs.
In the U.S. more people believe in ESP than in evolution, and there are twenty
times as many astrologers as there are astronomers.2 Readers who don�t believe
in ESP might dismiss Robert and other believers as under-educated anomalies,
but there are su¢ ciently many similar examples to give pause. Nurses who
work in maternity wards believe (incorrectly) that more babies are born when
the moon is full3 , and it is widely believed that infertile couples who adopt a
child are subsequently more likely to conceive than similar couples who did not
adopt (again, incorrectly).4

We might simply decide that people that hold such beliefs are stupid or
gullible, at the risk of �nding ourselves so described for some of our own beliefs.5

1 In the words of Savage (1954, p58):
"The postulate of personal probability imply that I can determine, to any degree of accuracy

whatsoever, the probability (for me) that the next president will be a Democrat. Now it is
manifest that I cannot determine that number with great accuracy, but only roughly."

2See Gilovich (1991), page 2.
3See G. O. Abell and B. Greenspan (1979).
4See E. J. Lamb and S. Leurgans (1979).
5There are numerous examples of similarly biased beliefs people hold. Research has demon-
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Whether or not we are so inclined, many economic models have at their core
a decision-making module, and those models must somehow take account of
agents�beliefs, however unsound we may think them.
Our interest in the widespread belief in ESP goes beyond the instrumen-

tal concern for constructing accurate decision making modules for our models.
The deeper question is why people hold such questionable beliefs? The simple
(simplistic?) response that a large number of people are stupid is di¢ cult to
accept given the powerful intellectual tools that evolution has provided us in
many domains. How is it that evolution has generated a brain that can scan
the symbols on a page of paper and determine which subway connects to which
bus that will systematically get an individual to work on time, and yet believe
in ESP?
Our aim in this paper is to reconcile the systematic mistakes we observe

in the inferences people draw from their experiences with evolutionary forces
that systematically reward good decisions. We will lay out a model of how an
individual processes sequences of informative signals that (a) is optimal, and (b)
leads to incorrect beliefs such as Robert�s. The reconciliation is possible because
of computational bounds we place on mental processing. Roughly speaking, our
restrictions on mental processing preclude an agent from recalling every signal
he receives perfectly: he must rely on some sort of summary statistic (or belief
state) that captures as well as possible the information content of all the signals
that he has seen. We assume that the agent has a limited number of belief
states. We also assume that he does not have a distinct mental process for each
problem he might face; hence a process may do well for �typical�problems, but
less well for �unusual�problems.6

The restrictions we impose are consistent with the view that beliefs may be
relatively crude. Given the restrictions agents face in our model, they optimally
ignore signals that are very uninformative. Robert�s mistakes will arise naturally
under these conditions.
Robert�s experience of his mother calling right after he thought of her is

quite strong evidence in support of his theory that he has ESP. His problem lies
in his not having taken into account the number of times his mother called when
he hadn�t thought of her. Such an event may have moved Robert�s posterior
belief that he had ESP only slightly, but the accumulation of such small ad-
justments would likely have overwhelmed the small number of instances which
seem important. Our primary point is that the mental processing property that
we suggest leads Robert to conclude that he has ESP �ignoring signals that by

strated that people frequently estimate the connection between two events such as cloud seed-
ing and rain mainly by the number of positive-con�rming events, that is, where cloud seeding
is followed by rain. Cases of cloud seeding and no rain and rain without cloud seeding tend
to be ignored (Jenkins and Ward (1965) and Ward and Jenkins (1965).)

6Early papers that investigated a decision maker who uses a single decision protocol for
a number of similar but not identical problems include Baumol and Quandt (1964). A more
systematic modelling of the idea can be found in Rosenthal (1993), where it is assumed that
an agent will choose among costly rules of thumb that he will employ in the set of games
they face. Lipman (1995) provides a very nice review of the literature on modelling bounds
on rationality resulting from limits on agents�ability to process information.
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themselves have little information �will, in fact, be optimal when �designing�
a mental process that must be applied to large sets of problems when there are
computational bounds.
We lay out our model of mental processes in the next section. The basic

model is essentially that analyzed by Wilson (2004) and by Cover and Hellman
(1970), but our interest di¤ers from that of those authors. In those papers it
is assumed that an agent has bounded memory, captured by a set of memory
states. Agents receive a sequence of signals that are informative about which
of two possible states of Nature is the true state. The question posed in those
papers is how the agent can optimally use the signals to move among the �nite
set of memory states, knowing that at some random time he will be called upon
to make a decision, and his memory state at that time is all the information
about the signals he has received that can be used.
Cover and Hellman and Wilson characterize the optimal way to transit

among states of mind as additional signals arrive when the expected number
of signals the agent receives before making a decision goes to in�nity. Our in-
terest di¤ers. Our point of view is that an agent�s mental system �the set of
states of mind and the transition function �has evolved as an optimal mental
system for a class of problems rather than being designed for a single speci�c
problem or a speci�c number of signals to be received.7 Our interest is then in
understanding the type of bias that a given mental system exhibits across the
di¤erent problems that it confronts.
Biases arise when agents tend to believe in a theory whether or not it is

actually correct. Given our restriction (number of belief states, same mental
process across problems), that biases arise is not surprising: the optimal process
has to balance favorable and unfavorable evidence in a way that re�ects the
variety of signals the agent receives. If a mental system does this balancing
well for some problems, there are other problems for which it will not do well.
Our contribution is in explaining the nature of the biases that are likely to
arise, showing �rst why we expect agents to ignore weak evidence, and then
demonstrating that if indeed weak evidence is ignored, biases are more likely
to arise in favor of theories that generate occasional strong evidence for, and
(very) frequent but weak evidence against.
We lay out our basic belief formation model in Section 2, compare di¤erent

mental systems in section 3 and discuss the implications of our main theorems
in section 4. We discuss our analysis in section 5.

7When there is a limited number of belief states, optimal design requires balancing favorable
and unfavorable evidence in a way that re�ects the distribution over the evidence that is likely
to arise, and the likely number of signals that will be received before a decision is taken. While
we �nd it reasonable that an agent might extract relatively accurate information from a speci�c
observation, it is implausible that they would have detailed knowledge of the distribution over
other possible observations and adjust transitions to that presumed knowledge. Indeed, at the
time one signal is processed, one may not even know the number of signals to be processed.
This di¢ culty would not arise with a continuum of states. One could de�ne the state as the

Bayesian posterior and use Bayesian updating to de�ne transitions accross states. The current
state would then incorporate all relevant information about past signals, and transitions would
be independent of the distribution over signals, or the number of signals received.
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2 The model

Decision problem. There are two states, � = 1; 2. The true state is � = 1 with
probability �0. An agent receives a sequence of signals imperfectly correlated
with the true state, that he will use to take a single decision. The decision
is a choice between two alternatives, a 2 f1; 2g. To �x ideas, we assume the
following payo¤ matrix, where g(a; �) is the payo¤ to the agent when he takes
action a in state �:

g(a; �) 1 2
1 1 0
2 0 1

There are costs c1 and c2 associated with decisions 1 and 2 respectively. Let
c = (c1; c2) denote the cost pro�le, and u(a; �; c) the utility associated with each
decision a when the state is � and cost pro�le is c. We assume that the utility
function takes the form

u(a; �; c) = g(a; �)� ca:

The cost c is assumed to be drawn from a distribution with full support on
[0; 1]� [0; 1]. The cost vector c is known to the agent prior to the decision. It is
optimal to choose a = 1 when the agent�s belief � � 1+c1�c2

2 . In what follows,
we let v(�) denote the payo¤ the agent derives from optimal decision making
when � is his belief that the true state is � = 1. We have:

v(�) = Ec1;c2 maxf� � c1; 1� � � c2g:

It is straightforward to show that v is strictly convex. For example, if costs are
uniformly distributed, v(�) = v(1��) and a calculation shows that for � � 1=2,
v(�) = 1

6 +
4
3 (� �

1
2 )
2(2� �) (see �gure 1).
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Figure 1: v(�) when costs are distributed uniformly

The signals received. Signals are drawn independently, conditional on the
true state �; from the same distribution with density f(� j �), assumed to be
positive and smooth on its support. When signal x arises, there is a state �(x)
that has highest likelihood, namely:

�(x) = argmax
�
f(x j �)

It will be convenient to denote by l(x) the likelihood ratio de�ned by:

l(x) =
f(x j � = �(x))
f(x j � 6= �(x)) :

The state �(x) is the state for which signal x provides support, and the likelihood
ratio l(x) provides a measure of the strength of the evidence in favor of �(x).
We assume that the set of signals x that are not informative (i.e. l(x) = 1) has
measure 0.
We assume that signals are received over time, at dates t = 0; 1; :::, and that

the decision must be taken at some random date � � 1. For simplicity, we
assume that � follows an exponential distribution with parameter 1� �:

P (� = t j � � t) = 1� �:

This assumption captures the idea that the agent will have received a random
number of signals prior to making his decision. The fact that this number is
drawn from an exponential distribution is not important, but makes computa-
tions tractable. The parameter � provides a measure of the number of signals
the agent is likely to receive before he must make a decision: the closer � is to 1,
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the larger the expected number of signals. Note that the agent always receives
at least one signal.
Perceptions. We assume that the agents correctly interpret the signals they

see. That is, when they see x, their perception is that x supports theory e�(x)
and that the strength of the evidence is el(x), and we assume that

e�(x) = �(x) and el(x) = l(x).
Our result that it is optimal for agents to ignore weakly informative signals
is robust to agents making perception errors in which they sometimes incor-
rectly perceive the strength of the evidence they see, and sometimes incorrectly
perceive which theory the evidence supports.8

Limited information processing. A central element of our analysis is that
agents cannot �nely record and process information. Agents are assumed to
have a limited number of states of mind or belief state, and each signal the
agent receives is assumed to (possibly) trigger a change in his state of mind.
We shall assume that transitions may only depend on the perception associated
with the signal just received, so a state of mind e¤ectively corresponds to a
summary statistic. We also have in mind that those transitions apply across
many decision problems that the agent may face, so the transition will not be
overly problem-speci�c or tailored to the particular decision problem at hand.9

Formally a state of mind is denoted s 2 S, where S is a �nite set. For
any signal x received, changes in state of mind depend on the perception (e�;el)
associated with x. We denote by T the transition function:

s0 = T (s;e�;el):
To �x ideas, we provide a simple example. We will later generalize the

approach.

Example 1: The agent may be in one of three states of mind fs0; s1; s2g.
His initial state is s0. When he receives a signal x, he gets a perception (e�;el).
The event A+0 = fe� = 1g corresponds to evidence in favor of state � = 1, while
A�0 = fe� 6= 1g corresponds to evidence against � = 1. Transitions are as follows:

8See Compte and Postlewaite (2010) for a discussion.
9With a continuum of states, one could replicate Bayesian updating and nevertheless satisfy

these two constraints (i.e., changes triggered solely by the signal just received, same transition
across problems). It is the limit on the number of states that generates, along with these
constraints, a particular structure on the way sequences of signals are pooled. Sequences of
signals will thus be used less e¢ ciently than a Bayesian would use them.
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Figure 2: Transition function

As the above �gure illustrates, if the agent �nds himself in state s1 when
he is called upon to make his decision, there may be many histories that have
led to his being in state s1. We assume that the agent is limited in that he is
unable to distinguish more �nely between histories. Consequently, S and T are
simply devices that generate a particular pooling of the histories that the agent
faces when making a decision.

Optimal behavior. Our aim is to understand the consequences of limits on
the number of states of mind and exogenous transitions among those states. To
focus on those aspects of mental processing, we assume that the agent behaves
optimally contingent on the state he is in. We do not claim that there are
not additional biases in the way agents process the information they receive;
indeed, there is substantial work investigating whether, and how, agents may
systematically manipulate the information available to them.10

Formally, the set of states of mind S, the initial state, the transition function
T and Nature�s choice of the true state generate a probability distribution over
the states of mind the agent will be in in any period t that he might be called
upon to make a decision. For each given state �, these distributions along
with the probability distribution over the periods that he must make a decision,
determine a probability distribution over the state the agent will be in when he
makes a decision, ��(:) 2 �(S). This distribution along with the probability
distribution over the true state � determines a joint distribution over (s; �),
denoted �(:; :) 2 �(S ��), as well as a marginal distribution over states �(:) 2
�(S).
We assume that the agent is able to identify the optimal decision rule

a(s; c)11 ; that is, that the agent can maximize:X
s;�

�(s; �)Ecu(a(s; c); �; c): (1)

10Papers in this area in psychology include Festinger (1957), Josephs et al. (1992) and
Sedikides et al. (2004). Papers in economics that pursue this theme include Benabou and
Tirole (2002, 2004), Brunnermeier and Parker (2005), Compte and Postlewaite (2004), and
Hvide (2002).
11 It is indeed a strong assumption that the agent can identify the optimal decision rule. As

stated above, our aim is to demonstrate that even with the heroic assumption that the agent
can do this, he will systematically make mistakes in some problems.
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Call �(s) = Prf� = 1 j sg the Bayesian updated belief. The maximum expected
utility can be written as:12

v(S; T ) =
X
s

�(s)v(�(s)):

Note that while one can compute, as a modeler, the distributions �� and
posterior beliefs �, we do not assume that the agent knows them. Rather, our
assumption is that the agent can identify optimal behavior and thus his behav-
ior coincides with that of an agent who would compute posteriors and behave
optimally based on these posteriors. We make the assumption that the agent�s
behavior coincides with that of an agent who computes posteriors optimally not
because we think this is an accurate prediction of how the agent would behave,
but rather to focus on the consequence of the limits on information processing
that we assume. It would not be surprising that biases of various sorts might
arise if no constraints are placed on how an agent makes decisions when called
upon to do so. By assuming that the agent behaves optimally given his mental
system, any biases that arise are necessarily a consequence of our constraints
on his mental processing.
We illustrate our approach next with speci�c examples.

Computations. We consider the mental process of example 1, and we illus-
trate how one computes the distribution over states prior to decision making.
De�ne

p� = Prfe� = 1 j �g:
Thus p1 for example corresponds to the probability that the agent correctly
perceives the true state as being � = 1 when the actual state is � = 1. We
represent a distribution � over states as a column vector:

� =

0@ �(s1)
�(s0)
�(s2)

1A ;
and we let �0 denote the initial distribution over states of mind (i.e., that
distribution puts all weight on s0, so that �

0(s0) = 1). Conditional on the true
state being �, one additional signal moves the distribution over states of mind
from � to M��, where

M� =

0@ p� p� 0
1� p� 0 p�
0 1� p� 1� p�

1A ;
12 Indeed, using �(s; �) = Prf� j sg�(s), the expression (1) can be rewritten as:X

s

�(s)
X
�

Prf� j sgEcu(a(s; c); �; c):

This expression is maximal when the agent chooses a = 1 when �(s)� c1 � 1� �(s)� c2.
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is the transition matrix associated with the mental process of example 1.
Starting from �0, then conditional on the true state being �, the distribution

over states of mind at the time the agent takes a decision will be:

�� = (1� �)
X
n�0

�n(M�)n+1�0

or equivalently,
�� = (1� �)(I � �M�)�1M��0: (2)

These expressions can then be used to derive �(s; �), �(s) and �(s).13

More generally, given any mental process (S; T ), one can associate a transi-
tion matrix M� that summarizes how an additional signal changes the distrib-
ution over states of mind when the true state is �, and then use (2) to derive
the distributions over states �� and further, expected welfare v(S; T ).

A fully symmetric case.
We illustrate our ideas under a symmetry assumption. We assume that

�0 = 1=2 and consider a symmetric signal structure:

Assumption 1: x 2 [0; 1], f(x j � = 1) = f(1� x j � = 2).

Figure 3 below shows an example of such density functions for each of the
two states � = 1; 2, assuming that f(x j � = 1) = 2x.14

Figure 3: State contingent density functions

13�(s; 1) = �0�1(s), �(s; 2) = (1� �0)�1(s), and �(s) =
P
� �(s; �)

14Given our symmetry assumption, this implies f(x j � = 2) = 2(1� x). So signals x above
1=2 are evidence in favor of � = 1, and the strength of the evidence (l(x) = x

1�x ) gets large
when x gets close to 1.
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A signal x < 1=2 is evidence in favor of � = 2 while a signal x > 1=2 is
evidence in favor of � = 1. If � = 1 is the true state the horizontally shaded
region below the density function given � = 1 and to the right of 1=2 represents
the probability of a signal in favor of � = 1, while the diagonally shaded region
to the left of 1=2 represents the probability that the signal is �misleading�, that
is, of a signal in favor of � = 2.
The probability of a �correct�signal is thus

p �
Z 1

1=2

f(x j 1)dx = 3=4;

while the probability of a �misleading�or �wrong�signal is 1=4. In other words,
if the decision maker is in the mental state that is associated with � = 1, s1,
there is a 1=4 chance that the next signal will entail his leaving that mental
state.
More generally, under assumption 1, one can de�ne

p � Prfe� = 1 j � = 1g = Prfe� = 2 j � = 2g
as the probability of a correct signal. The probability of a wrong signal is 1� p,
and the parameter p thus fully determines the transition probabilities across
states, hence contingent on the true state � the probability distributions ��
over the states (s2; s0; s1) are fully determined by p and �. We have:

Proposition 1: For � = 1, the probability distribution �� over the
states of mind (s2; s0; s1) is: �� = ((1� p)�(1� �p); �(2� �)�p(1�
p); p�(1� �(1� p))) where � = 1

1��2p(1�p)

�2 is obtained by symmetry. In the case of Figure 3 for example, p = 3=4.
So if the expected number of signals is very large (that is, if � is close to
1), the probability distribution over his states of mind (s2; s0; s1) is close to
(1=13; 3=13; 9=13) if the true state is � = 1, and close to (9=13; 3=13; 1=13)
if the true state is � = 2.
These distributions illustrate how the true state � a¤ects the mental state s

in which the agent is likely to be in upon taking a decision. Because signals are
not perfect, the agent�s mental state is not a perfect indication to the decision
maker of the true state, but it is an unbiased one in the following minimal sense:

��(s1) > ��(s2) when � = 1

��(s1) < ��(s2) when � = 2

Finally, proposition 1 permits to derive the expected distribution � over
states,15 and thus the posterior beliefs at each mental state. It also permits
welfare analysis. To get a simple expression, assume that the distribution over

15� = 1
2
(�1 + �2)
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costs (c1; c2) is symmetric, which implies that v(�) = v(1� �). Then expected
welfare is:

2�(s1)v(�(s1)) + (1� 2�(s1))v(
1

2
);

where �(s1) and �(s1) are derived from Proposition 1.16

As one expects, welfare increases with the precision of the signal (p): as p
or � get closer to 1, Bayesian beliefs become more accurate (conditional on s1
or s2), and there is a greater chance that the agent will end up away from s0.

3 Comparing mental processes

Our objective. Our view is that a mental processing system should work well in
a variety of situations, and our main interest lies in understanding which mental
process (S; T ) works reasonably well, or better than others. In this section, we
show that there is always a welfare gain to ignoring mildly informative signals.

3.1 An improved mental process

We return to our basic mental system de�ned in example 1, but we now assume
that a signal must be minimally informative to generate a transition, that is, to
be taken as evidence for or against a particular state. Formally, we de�ne:

A+ = fe� = 1;el > 1 + �g and A� = fe� = 2;el > 1 + �g:
In other words, the event A = fel < 1 + �g does not generate any transition.

Call (S; T �) the mental process associated with these transitions. Compared
to the previous case (� = 0), the pooling of histories is modi�ed. We may
expect that because only more informative events are considered, the agent�s
welfare contingent on being in state s1 or s2 will be higher (posterior beliefs
conditional on s1 or s2 are more accurate). However, since the agent is less
likely to experience transitions from one state to another, the agent may have
a greater chance of being in state s0 when making a decision.

We illustrate this basic tradeo¤ by considering the symmetric case discussed
above with f(x j � = 1) = 2x. Figure 4 below indicates the signals that are
ignored for � = 1: a signal x 2 (1=3; 2=3) generate likelihoods in (1=2; 2), and
are consequently ignored by the transition T 1:

16We have �(s1) = p
1��(1�p)
1�2�p(1�p) and �(s1) =

1�2�(1�p)p
2�2�2(1�p)p . Note that �(s1) > p for all

values of �. Intuitively, being in state of mind s = s1 means that the balance of news in
favor/against state s1 tilts in favor of s1 by on average of more than just one signal. The
reason is that if the agent is in state 1, it is because he just received a good signal, and because
last period he was either in state 0 (in which case, by symmetry, the balance must be 0) or in
state 1 (in which case the balance was already favorable to state s1).
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Figure 4

When � = 1, the shaded regions in Figure 5 to the right of 2=3 to the left of 1=3
indicate respectively the probabilities of signals in support of �1 and in support
of �2, and signals in the interval (1=3; 2=3) are ignored. Now, probabilities of
�correct�and �misleading�signals are 5=9 and 1=9 respectively, and the ergodic
distribution for T 1 is (1=31; 5=31; 25=31). Under T 1, when � is close to 1, the
probability that the decision maker is in the mental state associated with the
true state is nearly 5=6, as compared with the probability under T 0, slightly
less than 3=4. In addition, posterior beliefs are more accurate: �(s1) = 25=26
under T 0, and �(s1) = 9=10 under T 0.
Larger � would lead to even more accurate posteriors, with �(s1) converging

to 1 as � goes to in�nity. But this increase in accuracy comes at a cost. The
probabilities �(s) are those associated with the ergodic distribution, but the
decision maker will get a �nite (random) number signals, and the expected
number of signals he will receive before making a decision will be relatively
small unless � is close to 1. When � increases, the probability that the signal
will be ignored in any given period goes to 1. Consequently, there is a tradeo¤ in
the choice of �: higher � leads to an increased probability of getting no signals
before the decision maker must decide, but having more accurate information if
he gets some signals.

Welfare
Assume that costs are drawn uniformly. We will plot expected welfare as a

function of � for various values of � for the example above.
Each mental process (S; T �) and state � generates transitions over states as

a function of the signal x. Speci�cally, let � = �
2(2+�) . When for example the

current state is s0 and x is received, the agent moves to state s1 if x > 1
2 + �,

he moves to state s2 if x < 1
2 � �, and he remains in s0 otherwise. Denote by
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y = Prfe� = 1;el < 1 + � j � = 1g and z = Prfe� = 2;el < 1 + � j � = 1g.17
Conditional on each state � = 1; 2, the transition matrices are given by:

M�=1
� =

0@ p+ z p� y 0
1� p� z y + z p� y

0 1� p� z 1� p+ y

1A
and symmetrically:

M�=2
� =

0@ 1� p+ y 1� p� z 0
p� y y + z 1� p� z
0 p� y p+ z

1A :
As before, these matrices can be used to compute the distributions ��, the
posterior belief �(s1) and the probability �(s1), hence the welfare associated
with T � . Increasing � typically raises �(s1) (which is good for welfare), but, for
large values of �, it also makes it more likely to end up in s0 (which adversely
a¤ects welfare. Figure 6 shows how welfare varies as a function of � for two
values of �, � = 0:5 (the lower line) and � = 0:8 (the upper line). These
correspond to expected numbers of signals equal to 2 and 5 respectively.

Figure 5: Welfare as a function of �

Note that for a �xed value of �, for very high values of � there would be
little chance of ever transiting to either s1 or s2, hence, with high probability
the decision would be taken in state s0. This clearly cannot be optimal, so �
cannot be too large. Figure 6 also suggests that a value of � set too close to

17y = (1=2 + �)2 � (1=2)2 = �(1 + �), and z = (1=2)2 � (1=2� �)2 = �(1� �).
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0 would not be optimal either. The graph illustrates the basic trade-o¤: large
�0s run the risk of never leaving the initial state while small �0s have the agent
leaving the �correct�state too easily. When � is su¢ ciently large, the �rst e¤ect
is small; consequently, the larger �, the larger is the optimal value of �.

3.2 Simple mental processes.

The advantage of ignoring weakly informative signals in the example above does
not depend on the symmetry assumption, nor on the speci�c mental system
of the example. We �rst generalize the example to a class of simple mental
processes, as de�ned below.
A simple mental process is described by a set of states of mind S and transi-

tions T 0 which specify for each state s 2 S and perception e� 2 f1; 2g a transition
to state T 0(s;e�). Note that the transition depends only on the perception of
which state the signal is most supportive of and not on the strength of the signal.
We shall restrict attention to mental processes for which T 0 has no absorbing
subset. Consider any such simple mental process (S; T 0). We de�ne a modi�ed
simple mental process as a simple mental process that ignores weak evidence.
Speci�cally, we de�ne (S; T �) as the mental process that coincides with (S; T 0)
when the perception of the strength of the evidence is su¢ ciently strong, that
is when fel > 1 + �g, and that does not generate a change in the agent�s mental
state when fel < 1 + �g.
Denote by W (�; �) the welfare associated with mental process (S; T �), and

denote byW the welfare that an agent with a single mental state would derive.18

The next proposition states that for any value of �, so long asW (�; 0) > W and
that all states are reached with positive probability, an agent strictly bene�ts
from having a mental process that ignores poorly informative signals.19

Proposition 2: Consider a simple mental process (S; T 0). There
exist a > 0 and �0 > 0 such that for all � and � 2 [0; �0]:

W (�; �)�W (�; 0) � a�q(�)[W (�; 0)�W ];

where q(�) = mins2S �(s) denotes the minimum weight on any given
state when (S; T 0) is used.

Proof: See appendix.

The left hand side of the inequality in the proposition is the welfare increase
that results from modifying the transition function (S; T 0) by ignoring signals

18W = v(�0).
19 In this paper we limit attention to the case that there are two possible theories. Compte

and Postlewaite (2010) discuss the case when there are more than two theories. As one
would expect, it continues to be optimal to ignore weakly informative signals in that case. In
addition, they argue that agents may tend to see patterns in the data they get when there are
no patterns.
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for which the strength of the evidence is less than �. The proposition states
that the gain is a positive proportion of the value of information for the initial
transition function.

3.3 Generalization

A simple mental process does not distinguish mild and strong evidence. As we
shall see, a more sophisticated mental process that distinguishes between mild
and strong evidence can sometimes improve welfare. We next extend the class of
mental systems we consider to include a class of sophisticated mental processes
and show that our insight that ignoring weak evidence improves welfare holds
in this larger class.
Let us emphasize that our objective is not to characterize optimal mental

processes. A mental process that is optimal for a particular problem would need
to be tailored to the particular distribution f , the parameter � for that problem
as well as the particular utilities attached to each decision. Rather, our view
is that a mental process will be applied to many problems, and that in gen-
eral, identifying how a mental process should be amended to improve welfare,
or identifying the class of problems for which one mental process would outper-
form another are di¢ cult tasks. Our result illustrates that there is, however,
one direction of change, ignoring weak evidence, that unambiguously improves
welfare.20

A class of sophisticated mental system.
We �rst de�ne a class of level-k transitions. Consider an increasing sequence

of (�1; :::; �k�1), and set �0 = 0; �k = +1. Any perception el 2 (1+�eh�1; 1+�eh)
with eh 2 f1; :::; kg is labelled as a perception of strength eh. A level-k transition
is a transition function for which, given the current state, two perceptions of the
same strength generate the same transitions. The agent�s perception can thus
be summarized by a pair (e�;eh).
The �gure below provides an example of a level 2 mental system, where

strong signals (eh = 2) never induce a transition to state s0.

20An immediate corollary of Proposition 2 is that if one considers a �nite collection of
problems, then Proposition 2 applies to that collection with q de�ned as a minimum weight
on states of mind across all problems considered.
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Given any level k mental system for which T (s; (e�;e1)) 6= s for some s, one
may consider a modi�ed mental system T � that would coincide with T whenel > 1 + �, but that would ignore signals for which el < 1 + �.
The following proposition shows the bene�t of ignoring weak information.

We denote again by W (�; �) the welfare associated with the modi�ed mental
process. The original level k mental system along with an initial distribution
over states of mind generates (for each value of �) posteriors conditional on the
state. Denote by �(�) the smallest di¤erence between these posteriors.21 We
have:

Proposition 3: Consider any level k mental system (S; T ) such
that T (s; (e�;e1)) 6= s for some s. Then, there exists a > 0 and �0 > 0
such that for all � 2 [0; �0] and all �,

W (�; �)�W (0; �) � a�[�(�)]2q(�);

where q(�) = mins2S �(s) denote minimum weight on any given
state when (S; T ) is used.

Proof: See Appendix.

A welfare comparison.
It is easy to see that the more sophisticated mental system that permits

di¤erent transitions from a state depending on the strength of the evidence may
lead to higher welfare than a simple mental system that does not consider the
strength. It is also easy to see that distinguishing between weaker and stronger
signals, with di¤erent transitions following weaker and stronger signals may not
be welfare optimal. Suppose that for all signals in favor of a given state, the
likelihood ratios are nearly equal; it typically will not pay to treat di¤erently
the signals in the transition.
This discussion points out an important feature of an optimal mental system.

The optimal transition following a particular signal does not depend only on the
strength of that signal, but rather depends on the strengths of other signals that
might have been received and the distribution over the possible signals. This is
in stark contrast to the case of Bayesian updating, where the �transition�from
a given state (the prior) to a new state (the posterior) depends only on the
likelihood ratio of the signal.

4 Consequences of ignoring weak evidence

What are the consequences of the fact that � > 0 for an agent�s transition
function? As we discussed in the introduction, our view is that there is a mental
process that summarizes the signals an agent has received in a mental state,

21�(�) > 0 except possibly for a �nite number of values of � or initial distribution over
states.
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and that the agent chooses the optimal action given his mental state when he is
called upon to make a decision. Agents do not have a di¤erent mental process
for every possible decision they might some day face. Rather, the mental process
that aggregates and summarizes their information is employed for a variety of
problems with di¤erent signal structures f . � is set optimally across a set of
problems, not just for a speci�c distribution over signals f (that in addition
would be correctly perceived). When � is set optimally across problems, it
means that for some problems, where players frequently receive mild evidence
and occasionally strong evidence, there is a bias (see below) towards the theory
that generates occasional strong evidence, while Bayesian updating might have
supported the alternative theory.22 Worse, the bias worsens when the number
of signals received rises.

Speci�cally, each state of mind re�ects a belief state (possibly more or less
entrenched) about whether a particular theory is valid. In our basic three mental
state example, being in state s1 is meant to re�ect the agent�s belief that � =
1 is likely to hold, while s2 is meant to re�ect the belief that � = 2 is likely
to hold; also, s0 re�ects some inability to form an opinion as to which is the
true state. One interpretation is that these beliefs states are what the decision
maker would report if asked about his inclination as to which state holds.
We de�ned earlier a minimal sense in which a decision maker would have

unbiased beliefs, namely that he is more likely to be in mental state s1 rather
than state s2 (hence to lean towards believing � = 1 rather than � = 2) whenever
the true state is � = 1 (and similarly when the true state is � = 2).
As we saw earlier, our symmetric example resulted in unbiased beliefs. In

addition, increasing � from 0 makes the mental system more accurate: if he
does not receive too few messages, the probability that the decision maker is in
the mental state associated with the true state increases.
As one moves away from symmetric cases, however, having a positive �

may be a source of bias and receiving more signals may actually worsen the
bias. Suppose that an agent faces a �nite set of problems of the type analyzed
above, with a probability distribution over those problems. Then there will be
� > 0 for the stochastic problem, with the agent optimally ignoring signals with
likelihood ratio less than 1 + �. Suppose that we now add to the �nite set of
problems an asymmetric problem such as the ESP problem in which there is
occasional strong evidence in favor of the theory, and frequent weak evidence
against the theory. Speci�cally, suppose that the likelihood of the signals against
the theory are below 1+�=2. If the probability associated with this new problem
is su¢ ciently small, there will be a �0 > �=2 such that the agent will optimally
ignore signals with likelihood less than 1+�0, and hence, ignore evidence against
the theory that the agent has ESP.
In general, a mental system that is optimal in the processing of signals for

a set of problems will ignore informative signals whose strength falls below
22Note that we do not have in mind that the decision maker would have biased posterior

beliefs. We have assumed throughout the paper that the decision maker maximizes welfare
in choosing an action given his mental state at the time he decides, implying that he behaves
as if he had correct posterior beliefs.
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some (strictly positive) threshold. Whatever is that threshold, there will be
asymmetric problems that generate biased beliefs: although the theory is false,
occasional evidence in favor of the theory is noted while the frequent evidence
against the theory is overlooked.
The discussion above does not, of course, imply that all individuals should

fall prey to the belief that they have ESP. Di¤erent individuals will receive dif-
ferent signals. Some individuals may read scienti�c articles that argue against
ESP, signals that are evidence against ESP, and in addition, above the individ-
ual�s threshold.

5 Discussion

In our approach, the agent receives signals (x) that he interprets as support for
theories he thinks possible. We formalized this process by de�ning a transition
function that captures how he takes a signal into account. However we do not
have in mind that the agent is fully aware of this mental process. The transition
function or mental system aggregates the agent�s perceptions over time, and the
agent�s choice is only to choose the optimal behavior conditional for each belief
state he may be in when a decision is called for.
The transition function is not optimized for a speci�c problem. Rather, the

mental system is assumed to operate for a set of problems that typically di¤er
in the probability distributions over the signals conditional on the true state
of nature and in the expected number of signals the agent will receive prior
to making a decision. Our interest then is to investigate modi�cations of the
mental system that increase the agent�s welfare across the set of problems he
faces.
The limitation on the number of belief states is central to our analysis.

We suggested computational bounds as the basis for this limitation, but the
limitation may capture other aspects of decision making. It may, for example,
be due to an inability to �nely distinguish between various states of mind.
Alternatively, states of mind might be instrumental in making good decisions,
because as the number of states rise, the problem of �nding the optimal mapping
from belief state to action becomes increasingly complex.

We have explored relatively simple classes mental processes. Our insight
that ignoring weak evidence improves welfare holds not only for these mental
processes, but holds more generally. In particular, it is not a property that
would only hold for the optimal transition: the central ingredient is whether
the agent has distinct posteriors at each state of mind. This property must be
satis�ed for the optimal transition (as otherwise states of mind would not be
used e¢ ciently) but it holds much more generally.
Relatively simple mental processes are of interest for reasons beyond those

laid out above. Simple processes can be e¤ective when agents make errors
in estimating strength of evidence (likelihood ratios).23 Simple processes are

23Of course the alternative causality is plausible as well: it is because we have few states
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less sensitive to errors in assessing strength of evidence than more complex
processes, including Bayesian updating. This in the spirit of Gilovitch�s (1991)
fast and frugal trees: don�t try to look at all possible symptoms and weight them
appropriately taking in consideration the detailed characteristics of a patient:
just look at the most informative symptoms.

We have mentioned a number of instances in which people have beliefs that
are at odds with the evidence. It has been suggested that superstitions might
arise because of con�rmatory bias �a tendency to interpret ambiguous evidence
as con�rming one�s current beliefs.24 Without rejecting the possibility of con�r-
matory bias, it is useful to point out some di¤erences. First, con�rmatory bias
is essentially neutral: whatever the initial beliefs an agent may have, they will
be reinforced by subsequent evidence. This is not the case in our model. While
both models might result in an agent believing he has ESP when in fact he does
not, the reverse will not be the case in our model; it is precisely the asymmetry
in the strength of signals that leads to biased beliefs in some problems: some sig-
nals are ignored not because they contradict �rst impressions but because they
are weak. Second, with respect to con�rmatory bias, there remains a question of
how such a bias can survive evolutionary pressures. Shouldn�t individuals who
were subject to this bias be selected against? The biased beliefs that arise in our
model, on the other hand, are precisely a consequence of evolutionary pressure:
given resource constraints that lead to �nite belief states, biased beliefs must
arise in an optimal mental system.

Extensions.
1. Consider a variant of the problem we analyze in which there is a random

termination date, but the agent makes a decision in every period until then.
The basic results carry over to that setup: The agent will want to ignore signals
that have likelihood close to 1.
2. Consider a variant of the problem in which the agent can delay making

a decision. Instead of there being a random time at which the agent must
make a decision, suppose that in any period the agent delays his decision with
probability �, and the agent discounts at rate �. � is then endogenous and there
is a tradeo¤ between accuracy and delay. The basic results carry over to this
problem: The agent will want to ignore signals that have likelihood close to 1.
3. In early versions of this paper, we have explored an extension to cases

where the set of possible theories is greater than two. This extension poses
interesting challenges relative to the de�nition of simple transitions. A signal
now potentially comes with a vector of likelihood ratios, and a plausible mental
process for an agent would entail the agent extracting which theory e� is sup-
ported by the evidence (based on likelihoods): e�(x) = argmax f(x j �). It is
relatively easy to see that for some distributions over signals, there will be an
inherent bias against some theories, because even when they hold true, there

that we don�t care about the exact strength.
24See, e.g., Rabin and Schrag (1999).
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may be no signals that support them relative to all other possible theories.25

Ignoring weak evidence may only reinforce that bias.

6 Appendix

Proof of Proposition 2:
Proof: We �x some initial state, say s0. A history h refers to a termination

date � � 1 and a sequence of perceptions ((e�0;el0); (e�1;el1); :::; (e���1;el��1)). De-
note by H�

s the set of histories h that lead to state s (starting from initial state
s0) when the mental process is (S; T �). Also denote by Hs;s0 the set of histories
that lead to state s under (S; T 0) and to state s0 under (S; T �).
For any set of histories H, we denote by �(H) the Bayesian posterior, con-

ditional on the event fh 2 Hg :

�(H) =
Pr(H j � = 1)

Pr(H)
�0:

By de�nition of W (�; �), we have:

W (�; �) =
X
s2S

Pr(H�
s )v(�(H

�
s )):

Now let �W denote the welfare that the agent would obtain if he could distinguish
between the sets Hs;s0 for all s; s0. We have:

�W =
X
s;s02S

Pr(Hs;s0)v(�(Hs;s0)):

We will show that there exist constants c and c0, and �0 such that for all � < �0,

W (�; �) � �W � c[� ln�]2 (3)

and
W (�; 0) � �W � c0�: (4)

Intuitively, welfare is �W when the agent can distinguish between allHs;s0 . Under
(S; T �), he cannot distinguish between all Hs;s0 :

H�
s = [s0Hs0;s:

Under (S; T 0), he cannot distinguish between all Hs;s0 either, but the partition-
ing is di¤erent:

H0
s = [s0Hs;s0 : (5)

25For example, if one considers a signal is a sequence of two draws of 1�s and 0�s, and if
draws can be either independant (� = 1), autocorrelated (� = 2) or anti-correlated (� = 3),
then 11 and 00 are evidence of auticorrelation, while 10 and 01 are evidence of anticorrelation.
So even when draws are independent, the agent will tend to see patterns.
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Because each mental process corresponds to a pooling of histories coarser
than Hs;s0 , and because v is a convex function, both W (�; 0) and W (�; �) are
smaller than �W . What we show below however is that the loss is negligible in
latter case (of second order in �), while it is of �rst order in the former case.
We use three Lemmas, the proofs of which are straightforward. We let

q = min
s
PrH0

s and � =W (�; 0)�W . We assume that q > 0. In what follows,

we choose � small so that 
(�) � Pr[el < 1 + �] is small compared to q.26
Lemma 1: There exists a constant c and �0 such that for all � < �0
and �: ���(Hs0;s)� �(H�

s )
�� � c� j ln� j : (6)

Proof: The event Hs0;s di¤er from H�
s only because there are dates

t where the perception (e�t;elt) has elt < 1 + �. For any �xed �� < 1
and any � � �� < 1, there are a bounded number of such dates, in
expectation, so the conclusion follows. For � close to 1, the number
of such dates may become large. However, to determine posteriors
up to O(�), there are only a number of perceptions prior to the
decision comparable to j ln� j that matter.27 So the conclusion
follows as well.28

Lemma 2: There exist constants c0 and �0 such that for all � and
� < �0, there exist s and s

0 6= s with Pr(Hs;s0) � c0� such that :���(Hs;s0)� �(H0
s )
�� � c0[W (�; 0)�W ]1=2:

Proof: We shall say that two states s and s0 are consecutive when
there is a perception e� such that s0 = T (s;e�). Let � = W (�; 0) �
W > 0. There must exist two states s, s0 (not necessarily consecu-
tive) such that

���(H0
s0)� �(H0

s )
�� � c0�1=2. Since T has no absorb-

ing subset, there must exist a �nite sequence of consecutive states
s(0); :::; s(k); :::; s(K) such that s(0) = s and s(K) = s0. Hence there

must exist two consecutive states s0; s00 such that
����(H0

s00
)� �(H0

s0)
��� �

c0�
1=2=N (where N is the total number of states). The events H0

s00

and H�
s00
both consist of the union of Hs00;s00 and of events that

have probability comparable to 
(�) � Prfel < 1 + �g. For �
small enough, 
(�) can be made small compared to q. The pos-

teriors �(H0
s00
) and �(H�

s00
) must thus both be close to �(Hs00;s00)

26This is possible because f is smooth and because the event fel = 1g has measure 0.
27More precisely, consider the last date prior to the decision where the state is s0. Because

there is a �nite number of states and no absorbing subsets, the probability of not going through
s0 during T periods is at most equal to �T for some � < 1. So for T comparable to j ln� j,
there is a probability o(�) to stay away from s0. So with probability 1 � o(�), fewer than
O(j ln� j) perceptions matter.
28Note that the bound can be improved, because the expected fraction of the time where

(e�t;elt) has elt < 1 + � gets close to 0 with �.
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hence close to each other. Applying Lemma 1, it then follows that���(Hs0;s00)� �(H0
s0)
�� � c0�1=2 for some c0 independent of �. Since

s0 and s00 are consecutive, the event Hs0;s00 must have probability at
least comparable to 
(�), hence at least comparable to � (since f is
smooth).

Lemma 3: Let m; �m such that �m � v00 � m. For � small, we have,
forgetting second order terms in �:

�
�m

2
(�1��0)2 � (1��)v(�0)+�v(�1)�v(��0+(1��)�1) � �m

2
(�1��0)2:

SinceX
s2S

Pr(Hs;s0)�(Hs;s0) = �(
[
s

Hs;s0)
X
s2S

Pr(Hs;s0) = �(H
�
s0) Pr(H

�
s0);

we have:

�W �W (�; �) =
X
s02S

"X
s2S

Pr(Hs;s0)[v(�(Hs;s0))� v(�(H�
s0))]

#

=
X
s02S

Pr(H�
s0)

"X
s2S

Pr(Hs;s0)

Pr(H�
s0)

[v(�(Hs;s0))� v(
X
s2S

Pr(Hs;s0)

Pr(H�
s0)

�(Hs;s0))]

#
:

Applying Lemma 3 thus yields:

�W �W (�; �) � cmax
s;bs;s0 j �(Hs;s0)� �(Hbs;s0) j2;

and Lemma 1 gives a lower bound on W (�; �).
To get the upper bound on W (�; 0), we use:X

s02S
Pr(Hs;s0)�(Hs;s0) = �(

[
s0

Hs;s0)
X
s02S

Pr(Hs;s0) = �(H
0
s ) Pr(H

0
s ),

and write:

�W �W (�; 0) =
X
s2S

"X
s02S

Pr(Hs;s0)[v(�(Hs;s0))� v(�(H0
s ))]

#
:

Lemmas 2 and 3 (using s and s0 as de�ned in Lemma 2) then yield a lower
bound:

�W �W (�; 0) � c�[�(Hs;s0)� �(H0
s )]

2:

Proof of Proposition 3. The proof is almost identical to that of Proposition
2. The di¤erence is that the appropriate version of Lemma 2 is now much
simpler to obtain. Assume �(�) > 0. Since T (s; (e�;e1)) 6= s for some s, then we
immediately obtain that there are two states s; s0 such that Pr(Hs;s0) = O(�)
and

���(H0
s0)� �(H0

s )
�� � �(�), which further implies, using the same argument

as in Lemma 2 that: ���(Hs;s0)� �(H0
s )
�� � c�(�)

for some constant c.
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