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Abstract

Cross-sectional productivity dispersion is countercyclical, at the plant level and at the

�rm level. I incorporate a �rm�s project choice decision into a �rm dynamics model with

business cycle features to explain this empirical �nding both qualitatively and quantitatively.

In particular, all projects available have the same expected �ow return and di¤er from one

another only in the riskiness level. The endogenous option of exiting the market and limited

funding for new investment jointly play an important role in motivating �rms�risk-taking

behavior. The model predicts that relatively small �rms are more likely to take risk and that

the cross-sectional productivity dispersion, measured as the variance/standard deviation of

�rm-level pro�tability, is larger in recessions.
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1 Introduction

Cross-sectional productivity dispersion tends to rise in bad times. This is the case for pro-

ductivity at the plant, �rm, and industry level. Recently, this phenomenon has attracted growing

attention from economists, with much new evidences from micro-level data sets.1 However, the

signi�cantly negative correlation between uncertainty and aggregate economic conditions is often

treated as a calibration discipline, and not much work has been done to explain it.

In this paper, I provide a possible mechanism through which the worsened aggregate economic

conditions lead to an increase in the measured dispersion in �rm/plant-level productivity.2 The

model employed is close to the standard industry dynamics model with �rm entry and exit built

in the seminal work of Hopenhayn (1992), with aggregate �uctuations in "technology shocks" as

the driving force of business cycles. Meanwhile, it di¤ers from the standard model in that in each

period, after observing the aggregate "technology shock realization," a staying �rm has the option

to adopt a risky project, in addition to a standard safe project whose productivity realization is

determined by the aggregate state. Given the same capital input, the output and productivity

associated with the risky project is a mean-preserving spread of the safe project�s output and

productivity. Although �rms are risk neutral and the risky project does not give a higher �ow

payo¤, there is a positive fraction of �rms that strictly prefer to take the risk. This is because the

option of exit provides a lower bound for a �rm�s continuation value as a function of working capital

and creates a local convexity in it. Therefore, �rms in this region have the incentive to randomize

over their future values by choosing the risky project, and when the uncertain productivity is

realized, dispersion arises. This setup resembles Vereshchagina and Hopenhayn�s (2009) model of

occupational choice. In bad times, this risky region gets larger and the fraction of risky �rms rises.

Consequently, the average or aggregate riskiness in �rms�production increases, and so does the

realized productivity dispersion. Despite the fact that the model is fairly standard with one little

twist, it is capable of generating productivity dispersion negatively correlated with the aggregate

state of the economy, with a correlation coe¢ cient quantitatively in line with the data.

This model�s mechanism is strongly motivated by empirical �ndings. It has features and

implications that mirror the following micro-observations: (1) business cycle indicators lead the

change in productivity dispersion; and (2) in recessions, more �rms become risky and the exit

1Examples are Higson, Holly and Kattuman (2002), Higson, Holly, Kattuman and Platis (2004), Bloom (2009),

Bloom, Floetotto and Jaimovich (2010), Bachmann and Bayer (2011), Arellano, Bai and Kehoe (2009), Bachmann,

Elstner and Sims (2011), Chugh (2010), Kehrig (2011), to name a few.
2This paper is not on �rm theory. In what follows, the di¤erence between a �rm and a plant is not distinguished.

The optimal number of plants/establishments a �rm should have, although an interesting and important question,

is not the focus.



rate is therefore countercyclical; (3) new �rms are relatively small and small �rms have a low

survival rate; (4) small and/or young �rms tend to bear more risk and/or show larger productivity

dispersion.

The �rst two points involve the cyclical change. The increase in measured cross-sectional

dispersion of plant- and/or �rm-level productivity lags the worsened business cycle indicators,

for example, the GDP growth rate, as shown in Bachmann, Elstner and Sims (2011) and Kehrig

(2011) among others. A similar response is observed in the stock market. The last point relates

to the key feature of the model. Although, unfortunately, I do not have direct observations from

the data, there is indirect evidence that implies that there is a larger fraction of risky �rms

in recessions, consisting mainly of small �rms. The exit rate rises in bad times. The �ndings

on the relation between �rm size and exit rate show that small �rms and establishments drive

the negative correlation between the exit rate and business cycles. This indicates that small

�rms are more sensitive to the cyclical change, as the model predicts. The increased exit rate

in bad times is shown in papers such as Campbell (1998) and Jaimovich and Floetotto (2008)

and is discussed in Section 2. Perhaps more direct evidence is found in the cyclical pattern of

price dispersion recently documented in Bachmann and Moscarini (2011) and Berger and Vavra

(2011). Cross-sectional dispersion in price changes is countercyclical, both within and across

sectors. Meanwhile, the dispersion is positively correlated with the frequency of adjustments,

which is also countercyclical. The higher adjustment frequency in bad times can be interpreted

as a result of �rms doing more frequent risky pricing experiments due to lower experimentation

cost, as in Bachmann and Moscarini (2011).

The latter two points are closely related, as the exit hazard is a special form of �rm-level risk.

The relation between �rm size and dynamics is well established and can be traced back to, for

example, Dunne, Roberts, and Samuelson (1988). This is discussed further in Section 2. The

�ndings on �rm size and riskiness mainly come from two directions. First, it is well established

in the entrepreneurship literature that entrepreneurs, especially poorer ones, bear a substantial

amount of risk and tend to hold largely undiversi�ed assets by investing heavily in their own �rms,

despite little or no premium in doing so. The risk here is interpreted as either the dispersion in

small �rm owners�personal income or the dispersion in return to private equity. At the same time,

privately owned businesses are, on average, smaller in scale, measured in terms of either capital

stock, number of employees, or output.3 The second stream of empirical �ndings, more relevant

to my work, regards the productivity and �rm size di¤erential. Gertler and Gilchrist (1994), using

the Quarterly Financial Report for Manufacturing Corporations, �nd that smaller �rms exhibit

3Examples of work in this direction are Hamilton (2000), Moskowitz and Vissing-Jorgensen (2002), and Herranz,

Krasa and Villamil (2009). See Quadrini (2009) for a detailed review.
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a higher standard deviation in sales growth rates than larger ones do. Dhawan (2001) looks at

publicly traded �rms in Compustat and �nds that small �rms have a higher failure rate and a larger

standard deviation in pro�t rate, while, conditional on surviving, small �rms show a higher average

pro�t rate. The superior pro�tability in small �rms is reducd if pro�ts are adjusted according to

the failure rates. Here, Dhawan de�nes the pro�t rate as operating income per unit of capital,

and he de�nes the �rm-level riskiness or volatility as the variance in the random realizations of

production. Using his de�nitions, my model generates the same pattern of pro�t rate and riskiness

di¤erential by size. There is also evidence from outside the U.S. For example, using a �rm-level

German data set, USTAN, that covers the majority of German industries, Bachmann and Bayer

(2011) �nd decreasing productivity risk in �rm size, where the risk is measured as the average

cross-sectional standard deviation in log-di¤erences in �rm-level Solow residuals.

The goal of this paper is to complement existing theories on what causes the negative cor-

relation between business cycles and cross-sectional productivity dispersion. It is true that, if

measured uncertainty and aggregate economic conditions are correlated, the cause can be from

either direction. The real option literature that aims to explain such countercyclicality suggests

the opposite direction for a causal relationship, from increased uncertainty to decline in aggregate

economic activity. An in�uential paper in this area is Bloom (2009), which was later general-

ized by Bloom et al. (2010). Bloom shows that increased uncertainty, through the channel of

adjustment costs to capital and labor, leads to a larger option value of waiting and a pause in

investment and employment. A sizable drop in aggregate economic activity occurs because of this

"wait-and-see" e¤ect. The time-varying uncertainty is twofold in his model: (1) the time series

standard deviation of productivity can be either high or low, evolving as a Markov process, and

(2) the one-step-ahead conditional variance of this Markov process depends on current realization.

However, Bachmann and Bayer (2011) and Bachmann, Elstner and Sims (2011) show that there

is little evidence of sizable "wait-and-see" e¤ects in the data. In addition, the process of entry and

exit is neglected. Arellano, Bai and Kehoe (2009) do consider the entry and exit dynamics that

interact with �nancial constraints, but, again, the causal direction is from a time series uncertainty

shock to a sizable response in aggregate variables.

It is important to note that the importance of the uncertainty shock is not denied in this

paper, and the inverted causality may still be true. But there is an issue regarding measuring

uncertainty, which relates to the lead-lag relationship between uncertainty and cycles. Time

series variances of major business condition indicators are often interpreted as uncertainty. In

addition, a parallel family of uncertainty measures concerns the realized cross-sectional dispersion

in micro-level performance, which includes, among other things, the cross-sectional variance in

measured �rm-level total factor productivities, levels or growth rates, and sales growth rates.
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However, realized cross-sectional dispersion is only a proxy for uncertainty. Besides, increased

micro-level cross-sectional dispersion tends to lag recessions. This suggests a possible causality

from an aggregate economic state to measured uncertainty, in particular, cross-sectional dispersion

in productivities. This paper looks at this interesting issue from an angle di¤erent from the one

adopted by the aforementioned literature.

The other paper that entertains the same causal direction as mine is Bachmann and Moscarini

(2011). They build a model in which �rms need to run costly experimentation and hence learn

about their own market powers. As a result of lower experimentation costs, the dispersion of

productivity measured in sales is larger during recessions due to more experiments being conducted.

My model shares a similar feature with theirs, in that the option of exiting promotes the risky

performance of �rms, while the rest of the mechanism is very di¤erent. At the same time, my

model di¤ers from theirs by predicting that smaller �rms are the major contributors to productivity

dispersion and entry/exit dynamics.

The rest of the paper is organized as follows. Section 2 describes the stylized facts on the

cyclical dispersion of productivity, �rm size distribution, and dynamics. Section 3 contains a

simple three-period model that illustrates the mechanism and shows preliminary results. Section

4 takes the simple model to an in�nite horizon. Section 5 concludes.

2 Empirical Facts

Cyclical Productivity Dispersion. Eisfeldt and Rampini (2006) use data from Compustat
and �nd countercyclical movement of dispersion in Tobin�s q. At the same time, they show a simi-

lar pattern for dispersion of total factor productivity growth rates at the four-digit SIC level, with

a correlation of �0:465. Bloom (2009) shows that U.S. stock market volatility, as measured by

the VXO index, is positively correlated with the cross-sectional standard deviations of �rm pro�t

growth, �rm stock return, and industrial TFP growth at the four-digit SIC level, but its correlation

with industrial production is signi�cantly negative. Moreover, Bloom, Floetotto and Jaimovich

(2010) take an even closer look at this issue and examine the Census of Manufactures. They �nd

that various measures of uncertainty are signi�cantly countercyclical at all establishment, �rm,

industry, and aggregate levels. Bachmann and Bayer (2011) use a long panel of German �rm-level

micro-data that covers all single-digit industries to show that the correlation between dispersion

in growth rates of �rm-level TFP, sale, and value added and economic performance is signi�cantly

negative. This pattern is maintained in subsamples divided by sector and by size. Although taken

from a di¤erent economy, their USTAN data set has the clear advantage in coverage. Moreover, by

looking at di¤erent size quantiles, they document that average time series productivity dispersion
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in smaller �rms tends to be larger than in bigger �rms. Chugh (2010) explores the pro�tability se-

ries constructed by Cooper and Haltiwanger (2006) from the Longitudinal Research Database and

calculates the cyclical correlation between average productivity and the dispersion of pro�tability

to be �0:97. However, the sample is of relatively short length, covering only 1977-1988, a period
that exhibits an unusually large degree of opposite movement. Kehrig (2011) focuses more on

the dispersion of productivity levels rather than pro�t rates. He looks at the establishment-level

data of the U.S. manufacturing sector that consists of the Annual Survey of Manufactures, the

Census of Manufactures, the Plant Capacity Utilization Survey, and the Longitudinal Business

Database. Although the manufacturing sector as a whole shows a countercyclical dispersion in

establishment-level TFP, the durable goods industries show stronger cyclicality and it is the �rms

in the bottom quantile of the productivity distribution that drive the dispersion dynamics.

In this paper, I study how the aggregate economic state a¤ects the dispersion in micro-level

productivity. To link my model to data, ideally, the aggregate state is the average productivity

measured as the cross-sectional average of plant-level TFP, and the dispersion is then the variance

or inter-quantile range of plant-level TFP. Lacking the plant-level data, I use industry data at the

four-digit SIC level to approximate the desired measures. The paper is silent on the validity of this

approximation, but Bloom et al. (2010) show that the countercyclical patterns of productivity

dispersion are similar at the plant, �rm, and industry levels.

The upper panel of Figure 1 shows the co-movement of di¤erent business cycle indicators. In

particular, I claim that the average TFP is a valid aggregate state indicator for the manufacturing

sector. The correlation coe¢ cient between average TFP (HP �ltered) and sectoral output (HP

�ltered) is 0:86 with a p-value of scale 10�9. The average TFP corresponds to the cyclical indicator

used throughout the model, and the �uctuation in TFP represents a technology or productivity

shock, which drives the dynamics of the model economy. Following Eisfeldt and Rampini (2006)

and Bloom (2009), I use dispersion in the cross-sectional distribution of the TFP growth rate at

the four-digit SIC level to approximate that at the individual level, without arguing the validity

of the approximation. Note that the desired distribution is that of the levels of TFP instead

of growth rates. The result is the lower panel of Figure 1, which illustrates the countercyclical

movement of the variance in TFP.4 The precise correlation coe¢ cients for the U.S. manufacturing

sector are documented in detail in both Bloom, Floetotto and Jaimovich (2010) and Kehrig (2011)

and are summarized in Table 1 together with my own calculations.

4I obtain data from the same sources as the aforementioned two papers, yet with more recent data up to 2005.

I get the same signi�cantly negative correlations as in those two papers if I use only the same range of data as they

do. However, if I include the updated data as shown in Figure 1, I �nd a negative correlation that is not signi�cant

and is much smaller in absolute scale, which is less than 0.11.
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Figure 1: Cyclical Indicators and Variances in TFP. The upper panel plots di¤erent cyclical

indicators, Real GDP (dotted line), Real total manufacturing output (solid line), Average TFP

across industries at the 4-digit SIC level (dashed line). The lower panel shows the cyclical behavior

of TFP dispersion measured as the variance (solid line with dots), together with Average TFP

(dashed line). All series are HP-�ltered. The shaded bars indicate o¢ cial NBER recessions. Real

GDP data are from FRED; TFP series are from MIPD, as is Manufacturing output measured as

Real Total Shipments.
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Table 1. Correlations Between Dispersion and Cyclical Indicators5

For US Manufacturing Sector GDP Growth GDP HP Res. Avg. �TFP

Kehrig (2011)

(1) Estab. TFP, Std. Dev. -0.420 -0.528 �

(Durables, HP Residual)

(2) Estab. TFP, Std. Dev. -0.172 � �

(Non-durables, HP Residual)

Bloom et. al. (2010)

(3) Estab. Output Growth, IQR -0.364 � �

(4) Estab. TFP Growth, Std. Dev. -0.273 � �

(5) Firm Sales Growth, IQR -0.265 � �

(6) Firm Stock Returns, IQR -0.339 � �

Calculated from NBER-CES MIPD

(7) Ind. TFP Growth, IQR -0.502 (0.000) -0.298 (0.021) -0.184 (0.108)

(8) Ind. TFP Growth, Std. Dev. -0.262 (0.038) -0.241 (0.051) -0.129 (0.194)

(9) Ind. TFP Growth, Var. -0.249 (0.046) -0.245 (0.048) -0.123 (0.206)

Due to the limitations of the data, I use dispersion measures for the TFP growth rate instead of

the TFP level. The corresponding cyclical indicators are then the GDP growth rate, the sectoral

output growth rate, and the average TFP growth rate. To be comparable to other works, I include

only the GDP growth rate and GDP HP residuals in Table 1.

Firm Dynamics. One important cyclical feature of �rm dynamics that motivates this paper

is that the exit rate moves countercyclically. This phenomenon is well documented in Campbell

(1998) who uses ASM data between the second quarter of 1972 and the last quarter of 1988. In

addition, Jaimovich and Floetotto (2008) assemble a new annual data set from 1956 to 1996 at

the �rm level across a broader range of industries and �nd that despite the di¤erence in numbers,

5 The �rst column of results shows the correlation coe¢ cients (p-value) for real GDP growth rate, the second

for residuals of HP-�ltered real GDP, and the last for the weighted average TFP growth rate in the manufacturing

sector. Rows (1) and (2) are taken from Tables 3 and 4 in Kehrig (2011), in which the micro-level data sources are

mainly ASM/CM/LBD, continuously covering the period of 1972-2005 at an annual frequency. Rows (3) to (6) are

from Table 1 in Bloom, Floetotto and Jaimovich (2010). Establishment-level data are also from ASM/CM/LBD,

1972-2006, while the �rm-level infomation is from Compustat at quarterly frequency, 1967:II-2008:III for sales

growth and 1969:I-2010:III for stock returns. Rows (7) to (9) are TFP dispersions across industries at the four-

digit SIC level and the NBER-CES Manufacturing Industry Productivity Database is the source, covering 1959-2005

at an annual frequency. Except for IQR, all other moments of industrial TFP growth are weighted by the real

value of total shipments. Numbers in parentheses are one-sided p-values under the null of non-negative correlation.
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the exit rates of all examined industries are countercyclical. To illustrate �rm dynamics over

time, I obtain annual data from 1977 to 2009 in Business Dynamics Statistics (BDS) at CES, a

data set that recently became publicly available. To be consistent with micro-level evidence on

countercyclical dispersion, I look only at establishments in the manufacturing sector.6

Table 2 summarizes the establishment entry and exit rates by �rm size.7 A �rm is classi�ed

as small if it has fewer than 50 registered employees. This is again not ideal, but subject to data

availability. The preferred size classi�cation is by capital stock. A more detailed illustration of

entry and exit rates by year and by establishment size can be found in the Appendix.

Table 2. Entry and Exit Rates in Manufacturing Sector8

For U.S. Manufacturing Sector 1977-2009

Total Large Small

(1) Avg. Entry Rate (%) 9.36 5.18 31.18

(2) Avg. Exit Rate (%) 9.28 6.00 30.06

(3) Std. Dev. (EntryHP ) (%) 0.52 0.64 1.85

(4) Std. Dev. (ExitHP ) (%) 0.67 0.90 1.56

(5) Corr(EntryHP , (Avg. TFP)HP ) 0.20 (0.29) 0.19 (0.33) 0.21 (0.29)

(6) Corr(ExitHP , (Avg. TFP)HP ) -0.26 (0.17) -0.17 (0.37) -0.23 (0.24)

(5�) Corr(�Entry, Avg. �TFP ) 0.22 (0.26) 0.13 (0.51) 0.31 (0.11)

(6�) Corr(�Exit, Avg. �TFP) -0.10 (0.62) 0.06 (0.76) -0.06 (0.73)

6A noteworthy issue here is how to de�ne an entering establishment and an exiting one. According to the

o¢ cial overview of the BDS data set, "An establishment opening or entrant is an establishment with positive

employment in the current year and zero employment in the prior year. An establishment closing or exit[ing]

is an establishment with zero employment in the current year and positive employment in the prior year. The

vast majority of establishment openings are true green�eld entrants. Similarly, the vast majority of establishment

closings are true establishment exits (i.e., operations ceased at this physical location). However, there are a small

number of establishments that temporarily shutdown (i.e., have a year with zero employment) and these are counted

in the establishment openings and closings." Therefore, an inevitable caveat is that although of relatively small

number, an "idling" establishment can show up in the data �rst as an exiting one, and then as an entrant, for

potentially many times. However, one clear advantage especially over �rm-level data is that mergers and acquisitions

are not reasons for disappearing units. Therefore, I can safely assume that exiting establishments su¤er from low

realizations of productivity.
7The entry and exit rates are indeed calculated using the numbers of newborn establishments, closed establish-

ments, and existing establishments. However, the size is classi�ed using the number of employees in a �rm, instead

of an establishment. One can only argue that large �rms tend to own large establishments, and therefore large

establishments exhibit similar dynamics to the ones owned by large �rms. Otherwise, it is not clear whether this

is a valid approximation.
8 The data source is still BDS. The binary grouping rule in size can be found in the caption for Figure 2. In Rows
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Figure 2: Cyclical Behavior of Entry and Exit in Manufacturing Sector by Size. A small �rm is

classi�ed as one with fewer than 50 registered employees, and a large one with at least 50. This

�gure shows the original series of entry (solid lines) and exit (dashed lines) rates by size. The two

thinner lines at the bottom are for large �rms, and the two thicker ones are for small �rms. Data

on entry and exit rates are from BDS of CES.

Comparing establishment dynamics in small �rms to those of large ones, they are of a much

larger scale, more volatile, and more cyclical. Therefore, in the quantitative model, I focus only

on the dynamics in small �rms and treat the entry and exit of large �rms mainly as exogenous,

and they happen only with small probability.

The model I build in the following sections tries to explain the negative correlation between

average productivity and cross-sectional productivity dispersion. The main mechanism emphasizes

the di¤erent behavior between small and large �rms, which leads to observed di¤erences in their

entry and exit dynamics.

3 A Simple Model

To highlight the mechanism, I start from a simpli�ed and tractable three-period version of the

full model. I remove some features of the working model that are not as crucial and focus only

on the incumbents�problem. The main idea is that the option to exit promotes risk taking of

small �rms by creating a local non-concavity in a �rm�s continuation value function, which in turn

(1) and (2), the numbers are simple time series averages. Rows (3) and (4) are time series standard deviations for

HP residuals. Rows (5) to (6) are correlations for HP residuals, and Rows (7) and (8) are for changes. Numbers in

parenthesis are p-values. I choose to compute correlation coe¢ cients in this way instead of using original entry/exit

rates because there is a declining trend in both series. This is an interesting observation for its own sake, but this

paper is silent on it.
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generates a non-degenerate dispersion in productivity. Moreover, as is shown in the comparative

statics analysis, such dispersion becomes larger in bad times, due to a larger fraction of risk-taking

�rms. The same mechanism drives the in�nite horizon model as well.

3.1 Setup

There are 3 periods, t = 0; 1; 2. There is a continuum of risk-neutral �rm owners, each of whom

owns a �rm with di¤erent levels of initial resources w0 2 [0; �w]. Assume that there is only one
�nal good and each �rm has only one plant that produces this good. The c.d.f. of owners�initial

endowment of the single good is given as G (w0). At period 0, initial wealth w0 can be divided

into investment k0 for future payo¤ and immediate consumption w0 � k0. If an owner decides to

invest k0, then she will get w1 = F (Z; k) as period 1 wealth, where

F (Z; k) = Zk�; 0 < � < 1;

and Z represents the realized productivity of the project the �rm owner chooses after the in-

vestment decision. A production project is associated with a project. Assume that production

requires full attention of the �rm�s owner and uses the full capacity of the plant; hence, a �rm

cannot undertake multiple production projects simultaneously. An owner can choose one and

only one out of two available projects: a safe one and a risky one, di¤ering in the riskiness and

realizations of productivity. For the safe project, Z = A for sure, while for the risky one, with

probability p 2 (0; 1), Z = �z > A, and with probability 1 � p, Z = z = 0. Both projects give

the same expected value of Z, that is, p�z + (1� p) 0 = A.9 The risky project has a variance in

productivity as a function of p and �z, �2 (p; �z) = p (1� p) �z2. As a result of the linearity of F (Z; k)

in Z, the expected �ow output of the risky project is the same as the safe one. Under this setup,

A corresponds to the average establishment-level productivity measured as TFP in the data and

plays the role of economic condition indicator (or cyclical indicator in the full model); the riskiness

of the risky project represents the risk at the establishment level, while its aggregated counterpart

measures the dispersion in productivity.

3.2 Analysis

At period 1, after the uncertainty in Z is realized, the agent can decide whether to close her

�rm, exit the industry and get an outside option value V 0, or stay. Conditional on staying, she

9For tractability, I assume only one type of risky technology and binary possible realization of it. In fact, a risky

technology can be represented by a random variable Z with any distribution that is a mean-preserving spread of

A.
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Figure 3: Timing of the Simple Model

makes the investment choice k1 and project choice again based on period 1 wealth w1. In the last

period, she simply consumes her �nal wealth w2. The objective of an agent with initial wealth w0
is to maximize her discounted consumption, with discount factor �:

V0 (w0) = max
0�k0�w0

f(w0 � k0) + �max fV1 (Ak�0 ) ; (1� p)V1 (0) + pV1 (�zk
�
0 )gg

where Vt (wt) is the time t value for an agent with wealth wt.

It is convenient to work backwards. At time t = 2;

V2 (w2) = w2:

At time t = 1, an agent with k1 > 0 will be indi¤erent between operating a safe project and a

risky one. Assume that all agents will perform safely in this case, which is consistent with their

choice if they were risk averse. For simplicity, I do not allow borrowing in the short model, and

the period 1 value for a staying �rm will be:

V 1
1 (w1) = max

0�k1�w1
f(w1 � k1) + �Ak�1 g :

Let k� be the optimal capital choice without borrowing constraint. The value of a �rm with wealth

level w1 at the beginning of period 1 will be given by

V1 (w1) = max
�
V 0; V 1

1 (w1)
	
:

Let w�1 be such that V
0 = V 1

1 (w
�
1) : Note that there is a kink at w

�
1 and V1 (w1) is convex in a

neighborhood of w�1: This gives a �rm with relatively low wealth level an incentive to take a risky

project before it enters period 1. At t = 0, a �rm makes the investment decision and chooses a

project:

V0 (w0) = max
0�k0�w0

f(w0 � k0) + �max fV1 (Ak�0 ) ; (1� p)V1 (0) + pV1 (�zk
�
0 )gg

= max
0�k0�w0

�
(w0 � k0) + �max

�
V 0; V 1

1 (Ak
�
0 ) ; pV

1
1 (�zk

�
0 ) + (1� p)V 0

		
:
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To explicitly characterize a �rm�s project choice, it is useful to introduce the following condition

on parameters.

Condition 1. 0 < V 0 < �
2�2

1��2 �
1+�2

1��2 �z
1

1��p
2�2

1��2 (p1+� � p2) = (1� p) :

The risky and safe continuation values intersect at most once in the region where they are both

greater than V 0. This condition ensures the existence of the intersection and makes the analysis

tractable as shown in Proposition 1. The intuition is that given (�z; p), the option value V 0 of

exiting cannot be too high; otherwise, exit becomes very appealing, and so does the risky project.

If the condition is violated, then all staying �rms strictly prefer the risky project. In particular, if

V 0 is given, this happens when A is low enough.

Proposition 1. At t = 0, if Condition 1 holds, then the continuation value functions associated
with risky and safe projects intersect only once, and 9kI0 and kII0 such that 0 < kI0 < kII0 < k�, and

the decision rule of a �rm�s owner with initial wealth w0 will be one of the following:

1. If 0 < w0 � kI0, she consumes all w0 in period 0 and exits in period 1 for sure;

2. If kI0 < w0 < kII0 , she invests all w0 in a risky project in period 0, then with probability p,

w1 = �zk
�
0 , she in turn invests all w1 in period 1; with probability 1� p, w1 = 0, she exits in

period 1;

3. If kII0 � w0 � kA0 , she invests all w0 in a safe project in period 0, then invests all w1 = Ak�0
in period 1;

4. If kA0 < w0 � k�, she invests all w0 in a safe project in period 0, then invests k� and consumes

the rest in period 1;

5. If w0 > k�, she invests k� and consumes the rest in both periods.

The interesting region, or the "risky region," is the interval
�
kI0; k

II
0

�
. The exiting option forms

a lower bound in value function that is higher than in the case without exiting. This new lower

bound alters the shape of the continuation value function, in particular, the continuation value

function has a local convexity if safe project is chosen. This non-concavity region is roughly the

same as the interval
�
kI0; k

II
0

�
, in which �rms have a limited amount of capital stock. Firms that

fall into this region have the incentive to smooth out such convexity by entering a lottery and

randomizing over possible outcomes, which is exactly the role that risky project plays in this

model. The fraction of risk-taking �rms will then be determined given the initial distribution

12



Figure 4: Continuation Values as Functions of Control Variable, k0. The horizontal axis is k0,

and the vertical axis is the continuation value for each level of k0. The solid curve is the safe

continuation value V1 (Ak�0 ), and the dashed curve is the risky continuation value (1� p)V1 (0) +

pV1 (�zk
�
0 ). The horizontal line is V

0.
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G (w0), and each of these �rms bears the same risk in terms of the randomness of productivity.10

As can be seen below, a change in A drives the changes in the risky region and the fraction of

risk-taking �rms and leads to a di¤erent productivity dispersion.

Suppose that with probability p the risky project is realized to have high productivity. The

cross-sectional variance in realized productivity in period 0, denoted as � (p; �z), is a function of p,

the probability of good realization of the risky project, and �z, the good realization of productivity.

� (p; �z) = Ew0;Z
�
Z2
�
� [Ew0;Z (Z)]

2

= �2 (p; �z) � (p; �z) ;

where Z represents the productivity of the project a �rm chooses, and � (p; �z) :=
G(kII0 )�G(kI0)

1�G(kI0)
in

which kI0 and k
II
0 are functions of p and �z as well. �2 (p; �z) is simply the variance of the Bernoulli

distributed productivity of the risky project, while � (p; �z) represents the measure of �rms in the

risky region. � (p; �z) is ex ante variance and coincides with realized dispersion in productivity,

assuming a form of law of large numbers holds. At the same time, the aggregate or average output

in period 0, O (p; �z), is:

O (p; �z) = Ew0;Z (F (Z; k0))

= p�z

Z k�

kI0

w�0 dG (w0jk0 > 0) + p�z (k�)
� 1�G (k�)

1�G (kI0)
:

3.3 Comparative Statics

The nature of the simple model does not permit cyclical features. Therefore, I will instead

analyze the comparative statics mimicking di¤erent times of business cycles. In particular, I use

A, the average productivity, as the economic condition indicator, which corresponds to the average

TFP in the data. In the model, a change in A can result from either a change in p, or in �z, or

in both. Provided that the bad outcome of the risky project is normalized to be zero, �z then

determines the range, the variance of the Bernoulli productivity �2 (p; �z), and the measure of the

risky region � (p; �z). At the same time, �2 (p; �z) and � (p; �z) are also nontrivial functions of p.

When A, p, and/or �z changes, the resulting change in the riskiness of a risky project, that is,

variance �2 (p; �z) or range �z, is called the "riskiness e¤ect," as such change directly a¤ects the

10Once again, the same risk results from the assumption that only one way of randomization is permitted in

the model for simplicity. To relax this restriction, one can assume that each �rm can choose any distribution on

productivity so long as the expectation remains A, which results in a risky region larger than
�
kI0 ; k

III
0

�
. However,

while making the model much more complicated, this will not alter the result qualitatively, and neither will it

provide more insight into the model.
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riskiness of available project; and the change in the measure of �rms in the risky region, � (p; �z),

is the "mean e¤ect," as the change in mean A determines the slope of continuation functions,

which in turn a¤ects the width of the risky region. The interesting one is the mean e¤ect, which

highlights the novel mechanism of the model; therefore, I consider a particular change in A, such

that �z is held unchanged and p is controlled for in a certain way to fully eliminate the riskiness

e¤ect, and I examine the resulting mean e¤ect.

Proposition 2. Let V 0 and �z remain unchanged and assume Condition 1 always holds. Let

A 2
�
AH ; AL

	
=
�
pH �z; pL�z

	
, pH and pL be such that pH > pL > 0. Suppose the distribution of

initial wealth G (�) is Pareto or uniform and the lower bound of its support is below kI0 when the

good outcome of the risky project is w.p. pH . Then:

1. O
�
pH ; �z

�
> O

�
pL; �z

�
;

2. �
�
pH ; �z

�
< �

�
pL; �z

�
:

To control the riskiness e¤ect, assume pH + pL = 1, then:

3. �2
�
pH ; �z

�
= �2

�
pL; �z

�
= �z2pHpL;

4. �
�
pH ; �z

�
< �

�
pL; �z

�
:

According to this proposition, given �z �xed, A (or p) summarizes the aggregate state; higher

A then means good times. When the aggregate state is good, the total output is high, and this is

always the case whether the riskiness e¤ect is controlled for or not. Meanwhile, the risky region

is smaller in good times, which in turn leads to a smaller fraction of risk-taking �rms, regardless

of the riskiness e¤ect. The assumption on Pareto or uniform distribution is not very restrictive.

In fact, it can be any distribution that results in the same pattern of change in the fraction of

risky �rms. I choose Pareto distribution to mimic the actually observed size distribution of �rms,

which is only a su¢ cient but not necessary condition for the desired change in risky fraction.

When the riskiness e¤ect is controlled for, the riskiness of a risky project remains unchanged;

therefore it is the change in the fraction of risk-taking �rms that drives the change in resulting

productivity dispersion, or the average riskiness that �rms choose to take, measured as the variance

in productivity.

If �z is not �xed or p is not controlled for in such a way, then it is impossible to disentangle the

mean e¤ect from the riskiness e¤ect, and these two e¤ects jointly determine the resulting change

in the cross-sectional dispersion in productivity. In fact, in the calibrated quantitative model, it
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Figure 5: Comparative Statistics.

turns out that the riskiness e¤ect is too small to a generate signi�cant di¤erence in simulated

results.

Figure 5 illustrates what happens to the model if A decreases, as described in Proposition 2.

When A is low, the exiting threshold increases and more �rms exit. At the same time, low A

also leads to a larger risky region and a greater fraction of risk-taking �rms; so now there are

more �rms that strictly prefer the risky project. As a result, if the change in A is controlled for

as speci�ed before, the average risk that �rms choose to take is also larger and so is the realized

productivity dispersion. To summarize, the key step for the model to generate a countercyclical

productivity dispersion is the change in the risky region as the aggregate state changes. And it

is mainly an enlarged fraction of risk-taking �rms that causes a larger productivity dispersion in

bad times. This mechanism remains in the quantitative model with in�nite horizon. In fact, if the

aggregate state follows a Markov process with only two possible outcomes of AH and AL controlled

for in a similar way, then without introducing other features, the negative correlation between the

aggregate state and productivity dispersion is still almost perfect.

4 Quantitative Model

The simple three-period model illustrates the main mechanism in a tractable setting. However,

it is only feasible to look at the comparative statics in an essentially static model with three stages.
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Therefore, a richer model with in�nite horizon is built in this section to include more realistic

business cycle features and to examine the quantitative performance of the mechanism.

4.1 Setup

Time is discrete, with in�nite horizon. The �rms that have survived at least one period are

called incumbents. There is a constant massM > 0 of potential entrant �rms every period, each of

which draws its initial capital k0 from a distribution G0 (k0). G0 (�) determines the number and size
distribution of newly born �rms. Once it has entered, an entrant acts as an incumbent thereafter as

long as this �rm stays. The production function is the same as in the simple model, F (Z; k) = Zk�,

with 0 < � < 1 and Z being the realized productivity depending on project choice.11 At the

beginning of each period, all �rms observe average productivity A. An incumbent �rm owner

makes the choice between staying and exiting; meanwhile, all �rms also face an exogenous exiting

probability � > 0. I allow additional exogenous exiting to generate the death of large �rms, which

always choose the safe project, as in the simple model. If an incumbent exits, the owner closes

her �rm and sells all capital stock. Once exiting, the �rm cannot re-open for business again in

the future. A staying �rm then decides the amount of the next period�s working capital k0 and

whether to adopt the safe project or the risky one. Again, assume the full attention of a �rm�s

owner and complete utilization of plant capacity as a prerequisite of production. After production,

capital depreciates at rate �.

Under these settings, �rms in this economy are heterogeneous in realized productivity, capital

stock, and depreciation rate in each period; provided a realization of the aggregate state, project

choice, investment, and depreciation jointly determine the incumbent�s next period disposable

11In fact, F (Z; k) = Zk� can be interpreted as a �rm�s pro�t function, that is, the revenue net of the cost

for variable factors, for example, labor and materials. Speci�cally, assume that a plant faces an inverse demand

function P (y) = By�b, and therefore its revenue becomes R (y) = By1�b. Suppose the actual production function

is y = ~Ak~�l
~�, and the price for other factors is !. Then after optimization of l, the revenue function becomes

R =
�
B ~A1�b

�1=(~�(1�b)) h
~� (1� b) =!

i~�(1�b)=(~�(1�b)�1)
k~�(1�b)=(

~�(1�b)�1);

and pro�t function

� =
�
1� ~� (1� b)

�
R:

Rede�ning variables gives the form of Zk�. Therefore, Z in the model is more appropriately interpreted as measured

revenue total factor productivity that includes information from the demand side, instead of the actual production

technology. For the same reason, parameter A, shown later in the model, will also be interpreted as the aggregate

state of the model economy, and a change in A is more than just a "technology shock." Under this speci�cation, it

is easier to link the model to the data because only TFPR (TFP calculated using revenue data) is required for this

model, but not TFPQ (actual TFP). Admittedly, TFPR is much easier to compute.
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resource.

The aggregate state for the model economyA evolves as a Markov chain withA 2 A = fA1; :::; ANAg,
and transition probability �ij = Pr (AjjAi). In particular, this Markov chain is a discretized
AR(1) process, such that lnAt = �A lnAt�1 + �uut, where �A 2 (0; 1) is the serial correlation,
and ut � N (0; 1) is white noise. Following conventional real business cycles models, I assume

time-invariant volatility in A, in terms of constant �u. This implies that the driving force of this

modelled economy is the traditional "technology shocks," that is, the change in the "�rst mo-

ment". This is di¤erent from Bloom (2009) and Bloom et al. (2010), who use time-varying higher

moments as the pure source of aggregate �uctuation. Meanwhile, this is also distinct from, for

example, Bachmann and Bayer (2011) and Chugh (2010), who allow time-varying higher moments

in addition to the usual �rst moment movement to account for the countercyclical dispersion ob-

served in the data. I do not allow �u to change over time based on the following considerations:

(1) �u is time series volatility, which is not the same as the observed cross-sectional dispersion, (2)

this model emphasizes a mechanism through which time-varying A generates realized productivity

dispersion, and there is no need to introduce additional variation, and (3) �xed �u implies �xed

unconditional mean of A.

Production is costly. In each period, a staying and active �rm needs to pay a �xed operating

cost, and if the �rm needs to increase or decrease its capital stock, it pays a capital adjustment

cost as well. Mainly following Cooper and Haltiwanger (2006) and Bloom (2009), I assume the

capital adjustment cost consists of two parts: (1) a non-convex cost, and (2) a transaction cost.

The non-convex cost represents the opportunity cost when a �rm is under capital adjustment.

Speci�cally, this �rm forgoes a fraction ck of its production if there is capital adjustment in a

given period. The transaction cost represents the partial irreversibility. When a �rm needs to

increase capital, the price paid for every unit of new capital is normalized to be one, where the

price is interpreted as how many units of output are needed to get one unit of capital. However,

if a �rm wants to reduce capital, the selling price for each unit of capital is � < 1.

Each time period has several stages, which resembles period 1 in the simple three-period model.

� Stage 1: Observation of state variables. Aggregate state A is realized. An incumbent �rm
observes A and enters this period with remaining capital after depreciation, (1� �) k, and

together with last period�s production F (Z�1; k), where Z�1 is the realization of last period�s

productivity of this �rm. A potential entrant draws k0 and observes A.

� Stage 2: Entry and exit. An entrant with (k0; A) enters if there is positive expected pro�t.
An incumbent exits either voluntarily based on continuation values or exogenously with

probability �.
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Figure 6: Timing of the Quantitative Model

� Stage 3: Investment and project decision. Both staying incumbents and newborn �rms
decide how much to invest and then choose between safe and risky projects. At the same

time, the operating cost and capital adjustment cost are paid.

� Stage 4: Production. Production takes place in the form F (Z; k0), where k0 is the new

working capital, and Z is productivity. If a �rm chooses the safe project, then productivity

is deterministic, Z = A. Otherwise, with probability p (A), the risky project turns out to be

a success, Z = �z, and with probability 1� p (A), it fails, and Z = 0.

4.2 Individual Decision

An Incumbent�s Problem. At the beginning of each period, an incumbent �rm is characterized

by (Z�1; k; A), where Z�1 2 fA�1; 0; �zg is the realized productivity in the last period for a speci�c
�rm, which can be the safe productivity A�1, the bad realization 0, or the good realization �z; k is

the total amount of capital that was used in the previous period, and A represents the economic

conditions of the current period.12

The �rst choice an incumbent �rm owner makes is between continuing to operate and closing

the �rm and leaving.

V (Z�1; k; A) = max (1� �)V 1 (Z�1; k; A) + �V 0 (Z�1; k; A) ;

where � 2 f�; 1g is the exiting choice, and � is the exogenous exiting hazard. If a �rm with

(Z�1; k; A) chooses to exit, the value is:

V 0 (Z�1; k; A) = � (A) (Z�1k
� + (1� �) k) ;

12The distribution of �rms is not a state variable in this model, because it has an essentially partial equilibrium

setup, and agents do not need to forecast future prices using information on distribution.
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where � (A) < 1 is the fraction of resources a �rm owner can take away when exiting, which is

actually a resale price and is potentially a function of A. If this �rm chooses to stay, the owner

must then decide on investment, i, and a project choice, safe or risky. The capital stock evolves

as follows

k0 = (1� �) k + i;

such that k0 � kmin > 0, where kmin is a very small positive number providing a lower bound of

capital stock. The operating cost C (i;Z�1; k; A) of a �rm consists of a �xed cost cf and a capital

adjustment cost:

C (i;Z�1; k; A) = cf + ckF (Z�1; k) 1fi6=0g + (1� � (A)) (�i) 1fi<0g:

Apart from the �xed operating cost, there are two forms of capital adjustment costs: a non-convex

adjustment cost and partial irreversibility. Actively adjusting capital stock and choosing i 6= 0

costs a �rm ck fraction of its revenue from the last period�s production. In addition, if a �rm

reduces its scale, it can only sell its current capital possession at price � (A) < 1. The �xed

operating cost is to generate endogenous exiting behavior, and therefore, it creates a non-concave

portion in the lower end of a �rm�s value function. The adjustment cost plays a double role: one

is to capture the observed inaction in investment and slow down the change in �rm size, and the

other is to dampen �rms�reaction to changes in aggregate states so that the correlation between

productivity dispersion and the aggregate state is not too close to -1. Combining these pieces

gives the �ow pro�t of this �rm D (k0;Z�1; k; A) ; and

P (i;Z�1; k; A) = F (Z�1; k)� i� C (i;Z�1; k; A) � 0:

I enforce non-negative pro�t as a constraint. The �rm also has to choose between a safe and a

risky project. A safe project produces F (A; k0) for sure; a risky project results in productivity at

�z with probability p (A) and 0 with 1� p (A). If the safe one is chosen, the �rm gets:

V 1
safe (i; k;A) = EA0;�0 [V (A; k0; A0) jA] ;

and likewise,

V 1
risky (i; k;A) = p (A)EA0 [V (�z; k0; A0) jA] + (1� p (A))EA0 [V (0; k0; A0) jA] :

Therefore, conditional on staying, an incumbent �rm solves the following maximization problem:

V 1 (Z�1; k; A) = max
i

�
P (i;Z�1; k; A) + �max

�
V 1
safe (k

0;Z�1; k; A) ; V
1
risky (k

0;Z�1; k; A)
		

:

Denote the state variables of an incumbent as  = (Z�1; k; A) 2 	, with 	 being the set of all

possible states. The solution to an incumbent�s question with state  is a list of policy functions
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f� ( ) ; � ( ) ; � ( )g such that (1) � ( ) is the exiting choice, � : 	 ! f�; 1g; and conditional on
surviving, (2) � ( ) is the project choice, � : f 2 	 : � ( ) = �g ! f0; 1g, where 0 represents the
safe project and 1 the risky one, and (3) � ( ) is the investment level, � : f 2 	 : � ( ) = �g ! R.
A Potential Entrant�s Problem. A potential entrant draws initial capital holding k0 from a

invariant Pareto distribution G0 (k0) with parameter �. The value of staying outside the market is

V 0
0 (k0; A) = � (A) k0:

To start up a business, one must pay a setup cost ce from initial capital, and thereafter acts as

an incumbent with state (Z�1; k; A) being  0 = (0; (k0 � ce) = (1� �) ; A). Hence, the payo¤ of

opening a �rm will be:

V 1
0 (k0; A) = V 1 (0; (k0 � ce) = (1� �) ; A) :

A new �rm will be born if

V 1
0 (k0; A) > V 0

0 (k0; A) :

The solution to this problem is a binomial entry choice " : 	0 � 	 ! f0; 1g, where 	0 contains
all possible  0, and " ( 0) = 1 if an entrant enters and 0 otherwise.

4.3 Aggregate Dynamics

Given the solutions to the individual problems described before, f� (�) ; � (�) ; � (�) ; " (�)g, it is
straightforward to write down the transition dynamics for the distribution over  = (Z�1; k; A) :

For an arbitrary  2 	, either  2 	0 or  can only be the state of an incumbent. I denote � ( )
as the measure or density of point  = (Z�1; k; A) at Stage 1 of a typical period with aggregate

state A, before entry and exit takes place. If � ( ) = 1, then a �rm with this state exits for sure,

and no other transition can happen. If � ( ) = �, then with probability � this �rm exogenously

exits, and with a complementary probability, it stays. Conditional on staying, if the �rm chooses

the safe project, � ( ) = 0, then its individual state becomes (A; (k + � ( ))). On the other hand,

if the �rm chooses the risky project, � ( ) = 1, then with probability p (A) its individual state

becomes (�z; (k + � ( ))), and with probability (1� p (A)) it becomes (0; (k + � ( ))). Now turn

to the newborns. Denote g0 ( 0) as the entrant�s measure or density at point  0 determined by

G0 (�). A newborn with  0 enters if " ( 0) = 1. After entering, this �rm acts exactly the same

as a surviving incumbent with  =  0. Finally, the aggregate state becomes A
0 with probability

Pr (A0jA), A0 2 A. Formally, suppose the aggregate state at Stage 1 of a period is A0 = Aj, and

that of the last period is A = Ai, meaning that the realized productivity Z is one of fAi; �z; 0g.
Every state not on the realization path has zero measure, or

�0 (A; k0; A0) = 0 if A 6= Ai or A0 6= Aj;
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where primed variables are ones realized in the same period as A0. The rest of the states can then

be divided into three groups by realization of Z, all of which come from both incumbents and

newborns. For Z = Ai,

�0 (Ai; k
0; Aj) =

Z
(1� � ( )) (1� � ( ))1f :k0=(1��)k+�( )g� (d )

+M

Z
" ( 0) (1� � ( 0))1f 0:k0=(1��)k0+�( 0)gg

0 (d 0) ;

where variables with no prime are the ones observed one period back, with  = (Z�1; k; Ai) and

 0 = (0; (k0 � ce) = (1� �) ; Ai). For Z = �z or 0,

�0 (f�z; 0g ; k0; Aj) =

Z
(1� � ( )) � ( )1f :k0=(1��)k+�( )g� (d )

+M

Z
" ( 0) � ( 0)1f 0:k0=(1��)k0+�( 0)gg

0 (d 0) :

By independence, a fraction p (Ai) has Z = �z, and the rest gets Z = 0, that is,

�0 (�z; k0; Aj) = p (Ai)�
0 (f�z; 0g ; k0; Aj) ;

�0 (0; k0; Aj) = (1� p (Ai))�
0 (f�z; 0g ; k0; Aj) :

Given the distribution measure � and �0, the cross-sectional variance in productivity can be

written as

� (A; �) /
Z
�z2�0 (�z; dk0; dA0) +

Z
A2�0 (A; dk0; dA0)�

�Z
�z�0 (�z; dk0; dA0) +

Z
A�0 (A; dk0; dA0)

�2
= �z2p (A) (1� p (A))

Z
�0 (f�z; 0g ; dk0; dA0) = �2 (A) � (A; �) :

The expression of the cross-sectional variance can be simpli�ed in this way due to the linearity of

productivity in production function.

4.4 Calibration

Before I describe the calibration procedure, it is worth noting that the mass of potential

entrants M a¤ects only the scale of the economy once other parameters are determined. Since

the absolute scale is not of interest, the choice of M is irrelevant. For a quantitative exercise,

the number of potential entrants is �xed at 50,000 each period. Furthermore, without aggregate

�uctuation, starting from zero incumbents, the economy always converges to a stationary state

in the sense that the exit rate and the entry rate are equal and the scale is neither expanding
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nor shrinking, as long as there is positive measure of entrants at the beginning. And this is the

case with or without agents expecting the aggregate state to be varying over time. The reason

is simple. Since there is no aggregate �uctuation, the measure of entrants (in�ow) is �xed each

period. The measure of exiting �rms (out�ow) is a fraction of the remaining ones (stock). The

out�ow gradually increases to the same level as the in�ow, and it is at this point that the scale

of stock stops changing. Consequently, the entry and exit rates are the same. Because of this

stationarity feature, the parameters that need to be internally determined are selected such that

the statistics generated by the model at its stationary state match their empirical targets.

The setup of the model is very close to that of the standard model; therefore some of the

parameter values are directly taken from the literature. One period is chosen to be one year. The

discount factor is set as � = 0:938 to match the long-run average for the U.S. �rm-level discount

rate, as in Bloom (2009). According to the same paper, capital depreciates at rate � = 0:1. The

production function, F (Z; k) = Zk�; is the same as the pro�t function in Cooper and Haltiwanger

(2006), so I follow their estimation and set � to be 0.592. Taken from the same work, the standard

deviation of the aggregate process �A is 0.08, and the serial autocorrelation �A is assumed to

be 0.8, which is within the range of the autocorrelation of a common shock 0.76 and that of an

idiosyncratic shock 0.885 estimated in that paper.

The good productivity realization is predetermined as �z = 2 so that the probability of getting

�z is always around a half. This is to minimize the riskiness e¤ect by controlling for the uncertainty

associated with the binary-outcome risky project. The exogenous exiting hazard � that a¤ects

all �rms alike is set to be 2%, which is in line with the exiting rate of large plants found by,

for example, Lee and Mukoyama (2008). On the entrant side, it has been mentioned that the

choice of M is not important. The distribution of the initial endowment G0 is Pareto such that,

with slight abuse of notation, G0 (k0) = 1 � (kmin=k0)� with � > 0. Clearly, � governs the shape

of the initial endowment distribution and it in turn determines the model-generated �rm size

distribution. Ideally, this generated distribution will also have a shape close to Pareto; however,

the assumption of one common productivity shock and no idiosyncratic shocks makes this task

infeasible. This can be corrected by introducing heterogeneous productivity, yet this practice will

not provide more economic insight into this model. Therefore, for the numerical results, I set

� = 1:

The remaining parameters to be internally calibrated are capital resale price �, capital adjust-

ment cost as a fraction of pro�t ck, �xed operating cost cf , and entry cost ce. The model suggests

that I shall look at the statistics of �rm dynamics and the investment rate distribution, and the

remaining parameters (�; ck; cf ; ce) are selected via simulated method of moments. The targets

regarding �rm dynamics are taken from Lee and Mukoyama (2008), and those on investment rate
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distribution are from Cooper and Haltiwanger (2006). I also compute from the model the average

�ve-year transition rates between di¤erent size classes, and I compare the generated numbers to

the actual rates found by Acemoglu, Akcigit, Bloom, and Kerr (2011) using census data. The pa-

rameters are calibrated without aggregate �uctuation, and the aggregate state sequence, fAtg, is
set to be constant at its mean, but the �rms still expect the future states to be changing according

to the transition probability of A, �ij.

Table 3. Parameter Values and Rationale13

Parameters Description Notes

Aggregate Fluctuation

�z = 2 Good productivity realization. Predetermined. Normalization.

�A = 0:8 Autocorrelation. Cooper and Haltiwanger (2006)

�u = 0:048 Var. of innovation s.t. �A = 0:08: Cooper and Haltiwanger (2006)

Production

� = 0:592 Production function parameter. Cooper and Haltiwanger (2006)

� = 0:938 Discount factor. Bloom (2009)

� = 0:1 Capital depreciation rate. Bloom (2009)

� = 0:02 Exogenous exiting probability. Lee and Mukoyama (2008)

� = 0:84 Capital resale price. Internally determined.

cf = 1:62 Fixed operating cost. Internally determined.

ck = 0:165 Capital adjustment cost. Internally determined.

Entrants

ce = 0:1 Entry cost. Internally determined.

� = 1 Shape of G0. Predetermined.

Calibrated parameter values are summarized in Table 3, and simulated moments are compared

with their empirical counterparts in Table 4. Cooper and Haltiwanger (2006) compute a thorough

set of investment moments using a balanced panel from the LRD from 1972 to 1988. The model-

generated moments are close to their target with expected exceptions. The standard deviation in

13 I also tried several other sets of parameters. The negative sign of the correlations between aggregate state

and dispersion measures is robust, which is not surprising because the mechanism works under mild restrictions of

parameter space. However, it is true that the fraction of risky �rms is sensitive to the shape of the value function.

In particular, when � is high, future pro�t �ows are important, and the risky fraction declines and so does the

exit rate. The realizations of � are set to be f0:05; 0:1; 0:2; 0:5; 1g with probabilities f0:69; 0:155; 0:1; 0:05; 0:005g,
respectively.
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investment rates is much lower than in the data, because when the aggregate �uctuations are shut

down, there is no idiosyncratic uncertainty other than the amount of risk a �rm chooses to take.

With a constant aggregate state and no growth, the model-generated mean level of the investment

rate, together with the fraction of large and positive investment rates, is below the target as well.

The other set of targets concerns the entry and exit dynamics of �rms, which are taken from Lee

and Mukoyama (2008). They use the ASM portion of the LRD from 1972 to 1997 to analyze the

behavior of plants. At the same time, I look at the �ve-year transition rates between di¤erent

size classes obtained by Acemoglu et al. (2011) using the CM portion. Firms are divided into two

size classes, small and large, by median shipments, and the third class is "not-in-business." For

example, the transition rate from the small class to the large class is computed as the fraction

of originally small �rms that became large ones in the next census. Since the census data are

only available every �ve years, I let the model produce the same transition rates for every �ve

periods. Due to di¤erent sources of data, I choose to hit a number within the range of empirically

computed entry and exit rates. The model failed to reproduce the eight transition rates, although

it managed to capture the fact that small �rms have higher exiting rates than large ones. Without

assuming idiosyncratic shocks, the model cannot generate a highly right-skewed size distribution

with a relatively small median; therefore, the simulated exit rate is lower. At the same time, no

further heterogeneity causes the large transition rates between large and small classes.
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Table 4. Moments Generated from Model and Targets

Model Data

Investment

Mean of investment rate 0.097 0.122

Std. Dev. of investment rate 0.157 0.337

Fraction of inaction 0.059 0.081

Fraction w. positive investment 0.889 0.815

Fraction w. positive investment burst 0.064 0.186

Fraction w. negative investment burst 0.033 0.018

Data Source: Cooper and Haltiwanger (2006)

Entry and Exit

Mean entry rate 0.070 0.062

Mean exit rate 0.070 0.055

Relative size, entering 0.75 0.60

Relative size, exiting 0.58 0.49

Data Source: Lee and Mukoyama (2008)14

4.5 Quantitative Results

The mechanism explained in the illustrative three-period model remains at work in the quan-

titative model with in�nite horizon. The option to exit forms a lower bound for an incumbent�s

continuation value function, and in a conventional model without the additional choice of risky

project, this lower bound in turn creates a non-concave portion on the continuation value at the

lower end with low capital levels. When the choice of risky project is allowed as in this model,

�rms with capital levels in this portion have an incentive to smooth out the non-concavity by

taking the risk. Of course, anticipating the future option of the risky project, the continuation

value function associated with the safe one becomes less convex compared to the conventional

case.

The business cycle features can now be introduced in a more realistic fashion than compara-

tive statics. Without recalibrating, I add the aggregate �uctuation by simulating a sequence of

realizations of productivity level A, and let the model evolve accordingly. As the aggregate state

changes, the reaction of �rms is still very similar to the comparative statics in the simple model.

14 Lee and Mukoyama (2008) calculate the relative sizes of entering and exiting �rms based on the number of

employees.
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If A drops, the slopes of both risky and safe continuation value functions decrease, which forms a

larger portion where the risky project is strictly better. Consequently, a larger fraction of �rms

opt to take the risk, which results in a larger cross-sectional standard deviation in productivity.

The opposite happens when A increases. Nonetheless, given the frictions and the law of motion

of the aggregate state, the magnitude of the changes in the fraction of risk taking �rms and in the

resulting standard deviation in productivity is history dependent.

The main goal of this numerical exercise is to show that changes in the level of At alone can

generate countercyclical �rm-level productivity dispersion as a result of a �rm�s risk-taking behav-

ior, without introducing any time-varying volatility in the driving force, At. The �uctuation in

productivity A follows the Markov process speci�ed in Table 3, and not surprisingly, it is positively

correlated with total output with correlation coe¢ cient 0:4030 (p-value = 0.0000). Therefore, the

cross-sectionally averaged productivity can serve as an alternative cyclical indicator. The mea-

sures for productivity dispersion are chosen to be (1) the standard deviation of cross-sectional

distribution of realized Z, productivity, (2) the fraction of �rms that prefer the risky project, and

(3) the 95% to 5% interpercentile range of realized Z, which is the value of Z at the 95th percentile

minus the value of Z at the 5th percentile.

Table 5. Generated Cyclicality

Cyclicality: Correlations (p-value) with Cyclical Indicators

Cyclical Indicators

Variables of Interests Avg. Productivity, A Total Output, O

Productivity Dispersion std:dev: (Z) -0.4450 (0.0000) -0.6969 (0.0000)

Frac. of Risky Firms � -0.4544 (0.0000) -0.6063 (0.0000)

Interpercentile Range 95%-5% IPR955 -0.2089 (0.0000) -0.6860 (0.0000)

Entry Rate rEN 0.0314 (0.4830) -0.7679 (0.0000)

Exit Rate rEX -0.4774 (0.0000) -0.5649 (0.0000)

Table 5 shows that the correlation coe¢ cients between productivity dispersion and cyclical

indicators are signi�cantly negative, and the absolute values are in line with the data counterparts.

In fact, the correlation between productivity dispersion and total output is even larger in scale.

Moreover, the cyclicality of productivity dispersion measured is on a scale comparable to that of

the fraction of �rms that choose the risky project, and the movements show patterns very similar

to those seen in Figure 8. This illustrates the mechanism that it is the change in the fraction of

risk-taking �rms that drives the cyclical movement of productivity dispersion. In bad times, more
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Figure 7: Simulated Sequences of Entry and Exit Rates. The solid line represents exit rates, and

the dashed line records entry rates. Grey bars indicate the value of A as in the previous �gure.

�rms are willing to take the risk and randomize their future values. Consequently, the resulting

dispersion, measured as the standard deviation of cross-sectional productivity distribution, is

larger and so is the interpercentile range.15 The assumed binomial outcome of a risky project has

the potential to impact the behavior of the dispersion; however, such impact is controlled for at a

much smaller scale by the choice of �A and �z and does not alter the main pattern. A somewhat

unusual result is the signi�cantly negative correlation between total output and entry rates. This

is a result of modelling technique. The entry decision of potential entrants depends largely on the

discounted and expected future payo¤, so the impact of the current aggregate state is minimal.

At the same time, entry rates increase when the number of existing �rms is smaller. However,

the total output is not only a function of the current state A, but it also positively depends on

the number of existing �rms. These two forces drive the entry rate series to move in the opposite

direction to total output.

Figure 7 plots the truncated series of entry and exit rates from the model simulation. The

sequence of exit rates remains mostly in a reasonable scale between 3% and 12%. On the contrary,

there are quite a few episodes in which exit rates are really high. Extraordinarily high exit

rates happen after a succession of bad realizations of the aggregate state A, when the number of

15Due to the model assumption, cross-sectional IPR in productivity can only be either �z, �z�At, or At, and does
not have very interesting dynamics, although it is still countercyclical. This can be overcome by allowing a richer

set of productivity lotteries and keeping the expected productivity to be A. For example, in addition to (p (A) ; �z),

�rms can also choose any (p; �zA) pair with binary outcomes such that p�zA = A. Intuitively, the IPR measure in

this case will again be negatively correlated with At because smaller �rms have the incentive to take even more

risk in bad times than in the original case. Therefore, the range of realized productivities is wider, and potentially

the IPR is larger and has more possible values.
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Figure 8: Simulated Sequences. The �gure shows simulated sequences of (1) cross-sectional pro-

ductivity dispersion measured as the standard deviation of realized productivity Z (solid line, left

axis), and (2) the fraction of �rms that choose the risky technology (dotted line, right axis, in

%). The grey bars indicate the economic conditions as a value of A. In particular, darker bars

represent lower values of A.

remaining �rms is small. This is not surprising under the model assumptions that (1) all �rms

share the same serially correlated A with no idiosyncratic shocks, and (2) given each realization

of A, there is only one alternative risky project allowed. Figure 8 shows the truncated sequences

of the countercyclical cross-sectional standard deviation in productivity and the fraction of risk-

taking �rms in each period. The realized standard deviation in productivity mostly ranges from

0.25 to 0.65, and the fraction of �rms choosing the risky project is mostly between 10% and 55%.

The peaks of productivity dispersion and the risky fraction are associated with excessive exit rates,

as the mechanism suggests.

Figure 9 shows how the productivity dispersion and fraction of risk-taking �rms will react to

a drop in A from its mean level. Originally, the model is simulated in the same way as it is for

calibration: the aggregate �uctuation is shut down by �xing A at its mean level �A, while the

�rms behave under the belief that A evolves according to �ij. Then, the value of A suddenly

and permanently switches to one standard deviation lower, �A� �A, and the �rms�belief remains
unchanged. The risky fraction and productivity dispersion increase immediately upon impulse,

then oscillate with an ascending trend, and eventually settle at a higher level. The two paths

may seem unusual at �rst glance, but it is the joint work of (1) project choice and (2) capital

adjustment costs. Upon the bad shock, as the result of a higher entering threshold, the number
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Figure 9: Impulse Responses. The �gure shows impluse responses to a permanent (and expected)

one-standard-deviation drop in the aggregate state. The left panel is the response of cross-sectional

productivity dispersion, measured as the standard deviation in realized productivity. The right

panel plots the response of the fraction of �rms choosing the risky technology.

of entrants immediately drops to a lower level and then remains constant, and the scale of the

economy, measured as the total number of remaining �rms, decreases gradually to a new stable

level. If capital adjustment costs are shut down, then both the absolute number and the fraction

of risk-taking �rms jump up upon impulse and drop in the following period. The reason for this

sudden jump and drop is that the risky project becomes more appealing to �rms with a wider range

of capital stock when the shock hits, even though there is a higher probability of bad outcome.

Consequently, a large number of �rms exit due to their choice of the risky project, which leaves

fewer �rms remaining in the risky region and this causes the following drop. The absolute number

of risky �rms then gradually decreases while the fraction increases to a higher level because of

the decreasing scale. This up-and-down trend is in line with what is shown in Figure 9, which is

driven by the project choice. On the other hand, the oscillation is due to the capital adjustment

costs, which create �rms� inaction in investment and prevent �rms from freely changing their

capital stocks. Therefore, �rms that should be in the risky region in the free adjustment case may

now be outside, and vice versa. Note that the fraction of risky �rms is around 14% when A is

kept at its mean, corresponding to the standard deviation in productivity at about 0.37. Cooper

and Haltiwanger (2006) �nd that the plant-speci�c idiosyncratic shock has a standard deviation

of 0.64. Without assuming idiosyncratic risk, the calibrated stationary version of this model is

capable of reproducing at least half of the micro-level standard deviation.
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4.6 Discussions

The comparison between the model-generated moments and their empirical counterparts sug-

gests that this is not the whole story and that there are some possible extensions for future work.

The additional moments in Table 6 indicate that the shape of the �rm size distribution generated

from the model is considerably di¤erent from the true one. Without altering the mechanism, in-

troducing further heterogeneity in productivity can at least partly overcome this issue. In addition

to that, adding more shocks, such as micro-level idiosyncratic shocks, and allowing for a richer

set of risky projects can improve the �t of calibration targets, especially the standard deviation

in investment rates. This can also help reduce the extraordinarily high exit rate under aggregate

�uctuation. Again, these extensions will not alter the mechanism at work.

Table 6. Additional Moments: Transition Rates

5-Year Transition Rates Model Data

Small ! Exit 0.3491 0.5032

Small ! Small 0.2900 0.4203

Small ! Large 0.3609 0.0764

Large ! Exit 0.2755 0.1803

Large ! Small 0.3228 0.0564

Large ! Large 0.4017 0.7633

Entry ! Small 0.5070 0.7483

Entry ! Large 0.4930 0.2517

Data Source: Acemoglu et al. (2011)

A potentially more interesting extension is to generalize the model in a general equilibrium

framework. One way to do so is to endogenize the capital market in which exiting �rms and

shrinking �rm can sell their capital holdings to growing ones. In this way, there is an endogenous

series of capital prices �t, instead of a �xed capital resale price �. Naturally, �t is lower in bad times

as more �rms reduce their capital stocks, and it is higher in good times as more �rms expand. But

assuming that �rms can employ a one-to-one capital production technique, �t will not exceed 1.

As a robustness check, I let �t be a linear and increasing function of the aggregate state At such

that �t = �+ b� (At � �A) with b� = 0:5
16. The results are presented in Table 7. The similarity to

the main result is not surprising, because the mechanism remains unchanged.

16I also tried b� = 1; 1:5; 2 with �t constrained to be no higher than 1. The results are very similar.
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Table 7. Robustness Check: Time Varying �t
Cyclicality: Correlations (p-value) with Cyclical Indicators

Cyclical Indicators

Variables of Interests Avg. Productivity, A Total Output, O

Productivity Dispersion std:dev: (Z) -0.4154 (0.0000) -0.7622 (0.0000)

Frac. of Risky Firms � -0.4296 (0.0000) -0.6992 (0.0000)

Interpercentile Range 95%-5% IPR955 -0.2483 (0.0000) -0.7424 (0.0000)

Entry Rate rEN -0.0581 (0.1943) -0.8128 (0.0000)

Exit Rate rEX -0.4679 (0.0000) -0.6606 (0.0000)

5 Conclusion

Productivity dispersion tends to be larger during recessions. The prevailing view is that in-

creased uncertainty causes a decline in aggregate economic activities. However, although uncer-

tainty matters, this story seems to contradict the observation that recessions lead an increase in

productivity dispersion. To complement existing theories, I explore a simple mechanism through

which aggregate �uctuations due to standard "technology shocks" can endogenously generate

countercyclical dispersion in plant/�rm-level productivity. I alter the standard industry dynamics

model with business cycle features by incorporating project choice as part of the individual deci-

sion problem. By this feature, a �rm in this model can then decide the riskiness of its production.

The resulting productivity distribution is non-degenerate even if no other heterogeneity is mod-

eled. The model provides the following predictions: small �rms are more likely to take risks and

have lower survival rates, but conditional on surviving, they exhibit higher productivity; a larger

fraction of �rms become risky in bad times, which also leads to higher exit rates; and realized

micro-level productivity dispersion is larger in recessions.
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