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Abstract

We present a dynamic signaling model where wasteful education takes place over several

periods of time. Workers pay an education cost per unit of time and cannot commit to a

fixed education length. Workers face an exogenous dropout risk before graduation. Since

low-productivity workers’ cost is high, pooling with early dropouts helps them to avoid a

high education cost. In equilibrium, low-productivity workers choose to endogenously drop

out over time, so the productivity of workers in college increases along the education process.

We find that (1) wasteful education signals exist even when job offers are privately made and

the length of the period is small, (2) the maximum education length is decreasing in the prior

about a worker being highly productive, and (3) the joint dynamics of returns to education

and the dropout rate are characterized, which is consistent with previous empirical evidence.
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1 Introduction

In his seminal paper, Spence (1973) argues that people may rationally engage in unproductive

education to reveal their ability. Cho and Kreps (1987) provide a game-theoretic analysis of the

Spence model. In their model, a worker, whose productivity is either high or low, makes a one-

shot education choice to which he commits. Education is assumed to be more costly for a worker

with low productivity. When a worker finishes his education, he goes on the job market and firms

simultaneously make him offers. Many perfect Bayesian equilibria exist in their model, but only

the least costly separating equilibrium, found by Riley (1979), satisfies the intuitive criterion. In

this equilibrium, workers fully separate: the low-type worker chooses zero education and obtains a

wage equal to his productivity, and the high-type worker obtains a wage equal to his productivity

by choosing the least costly separating education duration such that a low-type worker has no

incentive to mimic him.

Even though this canonical signaling model can justify the presence of unproductive education,

it does not capture some features that are tied to the dynamic nature of the education process.

Indeed, receiving education is a time-consuming activity where decisions are sequentially made

over time. Due to the lack of commitment, one of the decisions is to remain in the education

process or leave it, that is, to drop out.1 If a separating equilibrium is supposed to be played,

when a student arrives on the first day of school, the separation has already happened, and firms

believe the student has high productivity. Hence, the student should drop out immediately. Cho

and Kreps (1987) avoid this challenge by assuming that a worker can commit to his decision

about education duration. In practice, it is hard to see where the commitment power comes from.

This suggests that we should think about students’ dropout decision in an environment without

commitment.

To capture dropping out behavior and analyze its impact on students’ education choice and

education returns, we develop a dynamic education signaling model in which students make an

education choice in each period, and both an exogenous dropout shock and an endogenous dropout

choice are considered. Particularly, in every period, a worker may have to drop out and go on

the job market with some exogenous probability. We interpret this exogenous dropout process

as random shocks faced by students, and the shocks are driven by exogenous problems such as

financial constraints, family reasons and the arrival of utility shocks. Since whether and when the

1Empirical evidence suggests that the dropout rate in US colleges is not small. In a survey paper, Bound and

Turner (2011) reports that only about half of those who begin first-level degree programs actually obtain their

degrees. A study from the Bill & Melinda Gates Foundation (2009) shows that students drop out of college for

many reasons. For example, 52% of dropouts mentioned that “I just couldn’t afford the tuition and fees,”71%

mentioned that “I needed to go to work and make money,” and so on.
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student will be forced to drop out is not known with certainty by the student at the beginning

of his education, one can expect, under these features, that students who drop out do not have

any offer when they leave college. This establishes a timing that distinguishes our work from the

literature on dynamic signal with preemptive offers: in our model, the informed party, the student,

moves first (going to the job market or not) and, consequently, conditional on being in the job

market, the uninformed agents, firms, make him offers.2

Since a high-productivity worker leaves education with positive probability, a low-productivity

worker may have incentives to mimic him by voluntarily quitting school in order to save future

education costs. Nevertheless, if in some period a low-productivity worker dropped out with prob-

ability one while the high-productivity worker stayed with positive probability, the next period’s

beliefs about the worker being a high-productivity worker would jump to one. If the corresponding

jump in wage was large enough, the low-productivity worker would have incentives not to drop out

in the current period, leading to a contradiction. On the other hand, if low-productivity workers

did not endogenously drop out at some period, then learning would be slow, which makes educa-

tion less attractive for them, incentivizing dropout in the current period. We show that, in our

benchmark model, in equilibrium, low-productivity workers will mix between dropping out and

staying in almost all periods, in order to balance these two forces. Hence, as the first main result

of our model, the joint dynamics of education signaling and the dropout rate are characterized.

We show that wasteful education signaling appears as an equilibrium phenomenon. Furthermore,

to ensure the low-type worker’s randomization, the wage increment in each period must equal the

marginal cost of education for the low-type worker. As a result, in the two-type model, the return

to education is linear. As we will show in extensions, the return to education can be concave in a

multiple-type model.

In addition, the model proposed generates an implication on the relation between maximum

equilibrium education duration and the prior about a worker being highly productive. As pointed

out by Mailath, Okuno-Funjiwara and Postlewaite (1993), one unsatisfactory property of the

prediction of the canonical signaling model is that, in the unique equilibrium that passes the

intuitive criterion, the education duration is strictly positive (significantly different from that in the

symmetric information case, which is zero) and it does not depend on the initial prior of a worker’s

type. They ask: “But is it reasonable to believe that the outcome in a game with a 1 in 1,000,000

chance of a worker of low ability will differ significantly from that in a game with no chance of

such a worker? If not, this discontinuity with respect to the probability distribution over the two

types (of workers) is disturbing.” In our model, the maximum equilibrium education duration is

2This is not the first paper to consider dynamic commitment issues in a signaling model (we discuss Weiss (1983)

and Admati and Perry (1987) and related literature in Section 5.1).
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decreasing in the prior. In particular, when the prior goes to one, no wasteful education appears

in any perfect Bayesian equilibrium. The intuition is as follows. Since the worker exogenously

drops out with a positive rate, in any equilibrium, early dropouts are on the path of play, and

the posterior about workers’ type conditional on the dropout is specified by Bayes’ rule. When

the prior about a worker being high type is close to one, the lower bound of the posterior about

workers’ type conditional on dropping out is also close to one; thus, the maximum marginal benefit

by waiting one more period is very small, but the cost is non-trivial. Hence, neither the low-type

nor the high-type worker has incentives to take one more period of education, and the game

ends immediately at no education. Consequently, the equilibrium of the asymmetric information

game converge to that of the symmetric information game, in which the worker is a high type

with probability one, as the information asymmetry vanishes. This is sharply different from the

equilibrium education duration prediction in the canonical signaling model.

To check the robustness of our equilibrium prediction, we extend our two-type model to a

finitely-many-type one and show that the properties of the equilibria are similar. In particular, in

each period, there is a marginal type who is indifferent between dropping out and receiving more

education. Workers whose cost is higher than this marginal type’s strictly prefer to drop out,

while those whose cost is lower strictly prefer to receive more education. Over time, the cutoff

type’s cost decreases, and therefore, the return to education is concave, which is consistent with

previous empirical findings.

We also relax the assumption of a homogeneous exogenous dropout rate. When the exogenous

dropout rate of the high-type worker is greater than that of the low-type worker, the set of

equilibria is identical to that in the benchmark model. When the exogenous dropout rate of the

high-type worker is smaller than that of the low-type worker, equilibria may be different from

those in the benchmark model. We show that the difference vanishes when the difference between

the exogenous dropout rates is small.

The rest of this paper is organized as follows. In the next section we present the model with a

type-independent dropout rate and characterize the set of equilibria. We consider a multiple-type

version of our model in Section 3. In Section 4 we turn to a model with a type-dependent dropout

rate. In Section 5, we review the related literature and conclude. All omitted proofs are in the

Appendix.

2 Model

Time is discrete, t = 0, 1, 2, .... There is one worker who has a type θ ∈ {H,L}, which is his

private information with a common prior p0 = Pr(θ = H) ∈ (0, 1). The productivity of type θ
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Exog. D.O. Endo. D.O. Educ. cθ
1 − λ

λ

1 − αθ
t

αθ
t

pt pt+1

sθ
t , p̂t Job Mkt

1 Introduction

We introduce switching costs as a new mechanism used to establish reputation when quality is
imperfectly observable. In our model, at every period of time, firms can choose the quality of
the product they produce. The quality is unobservable by customers, but they see a signal about
the quality in pervious periods. When, at a given period, the quality chosen differs from last
periodńs quality, the firm incurs a switching cost. This, in equilibrium, makes the quality choice
endogenously sticky even though it is not perfectly observed by customers. Therefore, ....

We understand reputation as belief that customers have about the quality of the good before
they consume it. Hence, the crucial dimension in our model is the time dimension, since both firms
and customers payoffs will primarily depend on the times when the quality switches take place. In
the past literature on endogenously switching types (see a review below) the times at which firms
(may) switch the quality are exogenously (randomly) given, independently of the firm’s willingness
to switch. In our model we fully endogenize the timing of the quality switches, allowing the firm
to make the switching decision in every period. We believe that this is a step forward towards
understanding reputations, .... .

There are many decisions that firms take involve sunk costs. Technology adoption implies
deinstallation of old machinery and installation of the new one. Changing the skills of the workers
imply firing costs, posting vacancies,... Changing the ownership of the firm involves bargaining
costs, transaction costs (taxes) and costs related with the acquisition of information by the buyer.
All these decisions may be imperfectly observable by the customers .....

The incentive to choose low quality is higher when learning about the quality is slow. Indeed,
switching to low quality saves flow costs, and slow learning makes the prices less sensitive of the
quality. So, in particular, since when beliefs about current quality being high are close to one
learning is slow, firms have incentives to “eat” their reputation by lowering the quality of their
goods. When, instead, learning is fast, firms have incentives to choose high quality in order to
increase the future price. Therefore, when beliefs about the quality are moderately low, firms have
incentives to “build” reputation by producing high quality goods. As we will see, depending on
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Figure 1: Schematic representation of the timing of the model (D.O. denotes dropout).

worker (henceforth, the θ-worker) is Yθ. We normalize YH = 1 and YL = 0. In period 0 the worker

decides whether to go to school or not. In the rest of the periods, if the worker continues going

to school, he pays a type-contingent cost per unit of time, cθ, where 0 < cH < cL and cH < 1.

The worker, regardless of his type, in each period is subject to an exogenous shock that results in

the student being forced to drop out of school with probability λ ∈ (0, 1), regardless of his type.

The exogenous dropout is interpreted as financial or utility shocks. In addition to this exogenous

dropout, the worker may decide to endogenously drop out and go on the job market voluntarily.

The timing is summarized as follows. First, nature determines the type of the worker, choosing

H with probability p0. If the worker is still in school, in period t: (1) the worker exogenously drops

out with probability λ and, if he does not exogenously drop out, decides whether to endogenously

drop out or not. (2) If the worker decides not to drop out, he pays the education cost and goes to

the next period. If the worker drops out, he goes on the job market.3 (3) Two short-lived firms

enter the job market and simultaneously make private job offers to the worker who has dropped

out. (4) The worker can choose to take either offer or a zero-value outside option. Figure 1

schematically represents the timing of the model.

The utility of the θ-worker who received t periods of education and accepts a wage of w is

U(w, t) = w − cθt. The profit of a firm that employs a θ-worker at a wage w is given by Yθ − w.

When a firm hires no worker, its profit is zero.

A dropout (behavior) strategy for the θ-worker is αθ : {0, 1, ...} → [0, 1], the probability

that type θ worker chooses to drop out at t conditional on reaching its decision point. We use

sθt ≡ λ+ (1−λ)αθt to denote the total probability of dropping out in period t. Finally, Sθt denotes

the probability of reaching t, that is

Sθt ≡
t−1∏
τ=0

(1− sθτ ).

For each strategy profile, let T θ ≡ min{t|Sθt+1 = 0} ∈ {0}∪N∪∞, which is the maximum number

of education periods the type θ worker may receive under the given strategy profile.

3Note, in contrast to Swinkels (1999), firms cannot make offers to a worker in school. This will play an important

role in the existence of equilibria with education, which will be discussed below.
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Define pt to be the beliefs about a worker who reached period t, and p̂t be the beliefs about

a worker who dropped out at t. When a worker goes on the job market in period t, two firms

Bertrand-compete given their updated belief p̂t. We denote the sequence of wage offers by w. So,

they both will offer wt = p̂t. On the path of play, firms have correct beliefs about the dropout’s

type, p̂t; thus, they obtain zero expected profit. The worker will take the offer with the higher

wage if it is positive. The solution concept we employ is a perfect Bayesian equilibrium:

Definition 1. A perfect Bayesian equilibrium (PBE) is a strategy profile {(αθ)θ=L,H , w}
and two belief sequences p and p̂ such that:

1. the θ-worker chooses αθ to maximize his expected payoff given w,

2. if a worker drops out with education t, firms offer wt = p̂t,

3. when it is well defined, p̂t satisfies the Bayes’ rule

p̂t =
pts

H
t

ptsHt + (1− pt)sLt
, (1)

and,

4. when it is well defined, pt is updated following Bayes’ rule

pt+1 =
pt(1− sHt )

pt(1− sHt ) + (1− pt)(1− sLt )
. (2)

The value function of the θ-worker in period t is

V θ
t = λp̂t + (1− λ)W θ

t ,

where p̂t is his payoff when he exogenously drops out, and W θ
t ≡ max{p̂t, V θ

t+1 − cθ} is his contin-

uation value in the complementary event. The worker will decide to endogenously drop out when

p̂t > V θ
t+1− cθ, stay in school when p̂t < V θ

t+1− cθ, and potentially randomize when p̂t = V θ
t+1− cθ.

Lemma 1. In any equilibrium, in all periods t < TL,

1. there is positive voluntary dropout by the L-worker, that is αLt > 0, and

2. there is no voluntary dropout by the H-worker, that is αHt = 0.

Proof. The proof is in the appendix on page 20.
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Since, by Lemma 1, L-workers are randomizing in any PBE in every period before TL, for all

periods t < TL,

p̂t+1 − p̂t = cL, (3)

so the low-type worker is always indifferent between dropping out and staying in school except

(possibly) in his last possible period TL. This fact implies that the wage must linearly increase

before TL. In other words, except (possibly) in the last period, education has constant returns

over time. As we will show, this implication depends on the two-type assumption. When there

are more than two types, the returns to education are concave.

Lemma 2. In any equilibrium, TH ∈ {TL, TL + 1}.

Proof. The proof is in the appendix on page 20.

The intuition behind the previous lemma is as follows. On the one hand, if TH > TL + 1,

firms are convinced that the type of the worker is H (so pTL+1 = 1). Since there is (exogenous)

dropping out in period TL + 1, then p̂TL+1 = 1. Therefore, there is no reason for the H-worker to

receive any extra education after TL + 1. On the other hand, Lemma 1 tells us that the H-worker

does not endogenously drop out unless L-workers completely drop out, so TH ≥ TL.

Theorem 1. Set

p1
0 ≡

1− cH
1− (1− λ)cH

. (4)

Then, if p0 > p1
0, the only equilibrium outcome is pooling at no education.

Proof. The proof is in the appendix on page 20.

The intuition behind Theorem 1 is as follows. Given a p0, the lowest possible wage is obtained

when sL0 = 1 (the L-worker drops out for sure at t = 0) and sH0 = λ (the H-worker does not

voluntarily drop out). In this case, the wage in period 0 is λp0
λp0+1−λ . Since the maximum wage next

period is 1, an upper bound on the gain from not dropping out at period 0 is 1− λp0
λp0+1−λ . If p0 is

close to 1, the maximum gain gets close to 0. Nevertheless, the marginal cost for type θ ∈ {L,H}
is cθ > 0. Hence, when p0 is close to 1, receiving education is not attractive for both types, and

the game ends immediately with a pooling equilibrium at no education.

In the standard signaling model by Cho and Kreps (1987), wasteful signaling can be supported

even when the prior about the type being high (p0) is very close to 1. The reason is that, off the

path of play, a belief threat may be imposed by the firms, so early dropouts are punished with

low wages. In our model, since λ > 0, there is positive dropout in any period before TH . Hence,

there cannot be belief threats off the path of play for dropouts in all periods before TH .

6



When p0 = 1, i.e., when there is common knowledge that the worker is high type, the unique

equilibrium both in our model and in the standard model exhibits no wasteful education signaling.

However, in the standard model, if information is asymmetric between firms and the worker

(p0 < 1), the set of equilibria can support non-trivial wasteful signaling, which is very different

from the equilibrium education choice in the symmetric information game. What is more, for any

p0 ∈ (0, 1), by imposing some refinement concept, for example, the intuitive criterion or D1, the

equilibrium prediction of the standard signaling model is the Riley outcome, in which a non-trivial

wasteful signal is sent. In other words, a discontinuity appears as the information asymmetry,

measured by 1− p0, vanishes. Mailath, Okuno-Fujiwara and Postlewaite (1993) provide a belief-

based solution concept, undefeated equilibrium, to address this problem. In our model, without

imposing any refinement concept, there is no signaling waste when p0 → 1 in any equilibrium.

Consequently, the equilibrium education length converges to that in the symmetric information

model as p0 goes to 1.

The following theorem characterizes possible education lengths in the set of all equilibria:

Theorem 2. Let T ∗ ≡ d1−cH
cL
e.4 There exists a partition of [0, 1] characterized by {pk0}T

∗+1
k=0 , with

p0
0 = 1, pk0 > pk+1

0 for all k and pT
∗+1

0 = 0, such that for all 0 ≤ k ≤ T ∗ and 0 ≤ T ≤ k, if

p0 ∈ (pk+1
0 , pk0] then

1. there exists an equilibrium with T periods of education and

2. there is no equilibrium with more than k periods of education.

Proof. The proof is in the appendix on page 21.

Theorem 2 shows that the maximum possible equilibrium education duration is finite. Fur-

thermore, the maximum duration is non-increasing in the prior p0 and goes to zero as p0 goes to

1. Finally, given p0, we have at least one equilibrium for each duration lower than the maximal

duration at this p0.

In Theorem 1 we already discussed the case where p0 is close to 1. Now, consider the case in

which p0 is not close to 1. As we have shown in Lemma 1, the low-type endogenously drops out

with positive probability and the high-type does not voluntarily drop out; thus sLt > sHt , which

means that pt is pushed up over time. The low-type indifference condition (3) implies that p̂t is

linear before TL. These two observations imply that pt and p̂t will be high enough (close to 1) after

finitely many periods. The smaller the prior p0, the more periods of education can be supported

in an equilibrium. This suggests that the upper bound of the education duration supported by

4dxe denotes the smallest integer no lower than x.
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Figure 2: (a) pt for different equilibria. (b) sLt /s
H
t in different equilibria. The dots with the same

color correspond to the same equilibrium, and they are linked with a straight line for visual clarity.

The parameter values are cH = 0.032, cL = 0.097, λ = 0.1 and p0 = 0.1.

an equilibrium is non-increasing in p0. In Figure 2, we plot some equilibrium belief sequences pt

and dropout rate ratio sequences sLt /s
H
t . In each equilibrium, the belief pt goes up over time, the

high-type worker’s dropout rate sHt = λ for all t < TH and sHt = 1 at t = TH , and the low-type

worker’s dropout rate may not be monotone.

Let’s finally make some comparative statics with respect to the parameter λ. Figure 3 plots

{pk0}T
∗

k=1 for different values of λ. As we see, when λ→ 0, pk0 for all k collapses to 1. This implies

that, when λ is low, for almost all priors the maximum length of an equilibrium is T ∗. This is

consistent with the canonical signaling model, where λ = 0. In the other limit, when λ → 1,

pk0 − pk+1
0 = cL for all k > 1. This is a consequence of the fact that when λ is close to 1, so are

sL and sH . Therefore, as we see in (1), p̂t is close to pt for all t. Since p̂t increases linearly in any

equilibrium, this imposes a nearly linear evolution for pt and therefore also to pk0 .

2.1 Refinement

Without imposing any refinement, multiple equilibria exist for most p0. The reason we do not

have equilibrium uniqueness is the arbitrariness of belief after TH off the path of play, which is

the same as that in Cho and Kreps (1987). Hence, we still have belief threats that push duration

down. Nevertheless, due to the positive exogenous dropout rate, we do not have belief threats

during the periods where education takes place. Therefore, in our model, education cannot be
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longer than the lowest individually irrational education duration of the L-worker (Riley outcome).

By imposing an appropriate criterion on beliefs off the path of play, for example, D1 defined

by Banks and Sobel (1987) or NWBR defined by Kohlberg and Mertens (1986), one can shrink

the equilibrium set. The spirit of these refinements requires that, off the path of play, firms put a

positive probability only on that type is most likely to deviate. In our model, since the marginal

cost of education of the high-type worker is strictly smaller than that of the low-type worker, any

sequence of wage off the path of play (after TH) that induces a deviation of the low-type worker

deviate must induce a deviation of the high-type worker. As a result, off the path of play, firms put

a positive belief only on the high-type worker, i.e., pt = p̂t = 1 for any t > TH . Given this belief

sequence off the path of play, we will say a PBE is eliminated by NWBR if p̂TH < 1 − cH , since

otherwise the high-type worker would have incentives to stay in college one more period. These

concepts are not enough to select a unique equilibrium, similarly to Nöldeke and van Damme

(1990). The key reason of the multiplicity is that, in our model, the education choice is an integer

instead of a real number. Consider the following case as an example.

Example 1. Suppose p0 ∈ (1 − cH , p0
1). It is easy to show that there is a PBE in which sH0 = λ

and sL0 = 1. Since, in this equilibrium, p1 = p̂1 = 1 is on the path of play, it survives the

elimination of NWBR. However, there is another PBE consisting on pooling at no education, that

is, sH0 = sL0 = 1, so p0 = p̂0 > 1− cH . Hence, pooling at no education also survives the elimination

of NWBR.

Nevertheless, as shown below, when the length of the interval is small, the D1 criterion is
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essentially unique, in the sense that the outcomes of all equilibria satisfying D1 become arbitrarily

close.

2.2 Frequent Dropout Decision

In our model, since λ > 0, both the high-type and low-type workers drop out before TH with

positive probability, and therefore, there is no fully separating equilibrium. For any positive cH , cL,

and λ > 0 such that cH < cL, when p0 ≤ p1
0 there exist equilibria with wasteful signaling. This is in

sharp contrast to the result in Swinkels (1999), who studies a dynamic education signaling model

with preemptive offers. In Swinkels (1999), the only equilibrium is pooling at no education when

the worker can adjust his education choice very frequently. In other words, wasteful education

cannot appear in any equilibrium if the length of the interval is short enough.

In our model, we assume that the time length between two consecutive periods is 1. Never-

theless, our main results do not qualitatively change when this length is ∆ ∈ (0, 1) instead of 1,

the education cost and dropout probability in each period are given by cθ ≡ c̃θ∆ and λ ≡ λ̃∆,

respectively.5 Specifically, T ∗∆ ≡ d1−∆c̃H
∆c̃L
e increases as ∆ decreases, but the real time ∆T ∗∆ is finite

and bounded away from zero, and is asymptotically equal to 1
c̃L

. The following lemma establishes

that the maximum length of an equilibrium is a non-trivial function of p0 when ∆ gets small:

Lemma 3. Consider any strictly decreasing sequence ∆n → 0, and a corresponding sequence of

models with λn ≡ λ̃∆n, cL,n ≡ c̃L∆ and cH,n ≡ c̃H∆n, for some λ̃, c̃L, c̃H ∈ R++, with c̃L > c̃H .

Fix a p0 ∈ (0, 1), and let κ(p0; ∆n) be the maximum real time length of an equilibrium when the

length of the period is ∆n. Then, κ(p0) ≡ limn→∞ κ(p0; ∆n) exists, belongs to (0, 1
cL

) and is strictly

decreasing in p0.

Proof. The proof is in the appendix on page 26.

Therefore, for a fixed p0 ∈ (0, 1) and small ∆ > 0, there are equilibria with education duration

κ(p0) +O(∆). The contrast between this result and Swinkles’ illustrates the critical role of timing

in the two models. In both models, offers are privately made. However, when firms can make

preemptive offers, they can attract the worker in school and end the game immediately. In this case,

when the time interval between two consecutive periods is small, firms can post an appropriate

wage w to (1) attract both types, and (2) obtain a non-negative profit. In our model, firms

cannot directly disturb the worker’s signaling process by making an in-school offer, and therefore,

semi-separating equilibria can survive.

5This limit corresponds to interpreting c̃θ to be the flow cost for each θ ∈ {L,H}, and interpreting λ̃ as the rate

at which students are exogenously forced to drop out.
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As noted before, D1 selects PBE where pT ∈ [1 −∆c̃L, 1]. As ∆ goes to zero, the last period

equilibrium belief converges to 1. The following lemma establishes that, when ∆ is small, only in

equilibria with a real education length close to κ(p0) (the maximum length at p0) the last period

equilibrium belief is close to 1.

Lemma 4. Consider an equilibrium sequence as in Lemma 3. Fix p0 ∈ (0, 1) and any τ ∈
(0, κ(p0)). Let pTn(∆n) be the maximum last period beliefs of an equilibrium with Tn ≡ dτ/∆ne
periods of education for ∆n. Then, limn→∞ pTn(∆n) exists and is strictly lower than 1. If, instead,

τ = κ(p0)), then limn→∞ pTn(∆n) = 1.

Proof. The proof is in the appendix on page 27.

Therefore, Lemma 4 implies that equilibria satisfying D1 have a real duration of κ(p0)+O(∆n).

Indeed, otherwise the last period’s beliefs are bounded away from 1, and hence lower than 1−∆c̃L.

In the proof of Theorem 2 (see Lemma 11) we explicitly construct for each p0 equilibria with the

last period’s beliefs belong to [1 −∆c̃L, 1]. So, for each p0 and small ∆ > 0, there are equilibria

satisfying D1, and their duration is close to κ(p0).

Finally, consider again the case where the dropout rate is small, that is, when λ̃ is small. From

the equation that κ(p0) satisfies (equation (10) in the proof of Lemma 3), it is easy to see that

limλ̃→0 κ(p0) = 1
c̃L

for all p0 ∈ (0, 1). Indeed, as we see in Figure 4, as λ̃ gets small, τ(p0) converges

to 1
c̃L

for all p0 ∈ (0, 1). Hence, the length of an equilibrium satisfying D1 gets close to 1
c̃L

when

the interval gets short and λ̃ gets small. This is consistent with the finding of Cho and Kreps

(1987) that the only equilibrium that satisfies D1 is the least costly separating equilibrium, found

by Riley (1979), that requires an education length equal to 1
c̃L

.

3 Multiple Types

Now we consider the N > 2 types case in which θ ∈ {1, 2, 3, ..., N} with a prior pθ0, where∑N
θ=1 p

θ
0 = 1. Type θ worker has a cost of waiting cθ, cθ > cθ+1. The productivity of θ is Y θ,

Y θ < Y θ+1. All types exogenously drop out with probability λ.

The equilibrium concept is the same as in Definition 1 but adapted to the fact that now we

have many types. Note that firms’ offers depend only on the expected productivity and not on

other moments of the productivity distribution. This fact helps us to keep our definition simple:

Definition 2. A perfect Bayesian equilibrium (PBE) is a strategy profile {(αθ)θ=1,...,N , w},
beliefs sequences pθ and p̂θ for all θ ∈ {1, ..., N} such that:

1. θ-worker chooses αθ to maximize her expected payoff given w,

11
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Figure 4: κ(p0) as a function of p0, for different values of λ̃.

2. if a worker drops out with education t, firms offer wt =
∑N

θ=1 p̂
θ
tY

θ

3. when it is well defined, p̂θt satisfies

p̂θt =
pθts

θ
t∑N

θ′=1 p
θ′
t s

θ′
t

, (5)

and

4. when it is well defined, pθt is updated according to the Bayes’ rule

pθt+1 =
pθt (1− sθt )∑N

θ′=1 p
θ′
t (1− sθ′t )

. (6)

Let T θ be the last time the θ-worker is in school. The following theorem shows that our insight

into the binary-type model can be easily extended to a multiple-types model.

Theorem 3. Under the previous assumptions, in any equilibrium:

1. in each period t, there is at most one type, indifferent to dropping out,

2. more productive types stay longer in education, T θ ≤ T θ+1,

3. there is positive voluntary dropout in all periods, and

4. the expected productivity of dropouts, Ŷt ≡
∑N

θ=1 p̂
θ
tY

θ, is concave in t.
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Proof. The proof can be found in the appendix on page 27.

Most features in the two-type model are preserved. However, note that under many types we

have decreasing returns to education instead of linear ones, since lower types are skimmed out

before higher types in equilibria. This pattern of decreasing returns to education is consistent with

many empirical studies, for example, Frazis (2002), Habermalz (2003), Heckman et al. (2008) and

Manoli (2008). The equilibrium construction in multiple-type models is almost identical to that

in the two-type model, and thus is omitted.

4 Type-Dependent Exogenous Dropout Rate

In our model, the exogenous dropout rate is independent of the worker’s type. This assumption

may seem counterintuitive. Indeed, our intuition tells us that low-productivity workers should have

a higher probability of dropping out than high-productivity workers, which seems to conflict with

our assumption. Our intuition is based on the observed dropping-out behavior, which is driven

both by workers’ choices (that are related to their productivities) and by exogenous shocks (that

may not be related to their productivities).

In our model, even though the exogenous dropout rate is the same across types, the implied

observed dropout rate of low-type workers is higher than that of high-type workers. Since both the

posterior about a worker being high-type and the endogenous dropout rate of low-type workers

change over time, the observable dropout rate changes over time. Hence, assuming a homogeneous

exogenous dropout rate is enough to generate an endogenous partial separation and interesting

dropout rate dynamics.

Nevertheless, it is useful to know how robust our results are if we relax the assumption of an

equal exogenous dropout rate. In this section, we consider a model in which a worker’s dropout

rate is correlated with his productivity. It turns out that our predictions in Section 2 are robust.

There are three relevant cases: (1) λH > λL ≥ 0, (2) λL > λH > 0, and (3) λL ≥ λH = 0.

4.1 λH > λL ≥ 0 Case

The first case we consider is λH > λL ≥ 0, that is, the high-type worker exogenously drops out

at a higher rate than the low-type worker. The following lemma implies that the equilibrium set

in this case coincides with the base model when λ = λH :

Lemma 5. Assume λH > λL ≥ 0. Then, (αL, αH , w, p, p̂) is a PBE if and only if it is also a PBE

in the benchmark model with λ = λH .

13



Proof. The proof can be found in the appendix on page 29.

The intuition behind this lemma is that, in our original model, by Lemma 1, the endogenous

dropout rate of the low-type worker is positive in all periods before (maybe) the last. So, the

constraint sLt ≥ λ was never binding in equilibrium. Therefore, all equilibria from the base model

for λ = λH are also equilibria for the case λH > λL ≥ 0. On the other hand, for any equilibrium in

the case where λH > λL, let α̃Lt denote the low type’s strategy. It must be true that α̃Lt ≥ λH−λL.

Define α̂Lt = α̃Lt − (λH − λL) ≥ 0. One can easily verify that α̂Lt can be supported in a PBE of the

game with a symmetric exogenous dropout rate, λ = λH .

4.2 λL > λH > 0 Case

As we can see in Figure 5, sL may be non-monotone. In particular, there are some equilibria

where it is initially decreasing and then increasing and finally it goes down again. Now, sL is

restricted to be no lower than λL > λH . We may guess that this constraint will be potentially

binding in two connected regions, one for large p̂ and the other for intermediate values. In any

equilibrium, when this constraint is binding, both types strictly prefer to wait. Different from

the benchmark model, the equilibrium belief pt still goes up since λL > λH . After some periods,

the constraint may become not binding anymore, and the low-type worker starts to play a mixed

strategy again. However, the neat equilibrium characterization in the benchmark model can

not survive for some parameters. Fortunately, the following theorem shows that the equilibrium

characterization in the benchmark model still works when λL is not significantly larger than λH .

Theorem 4. For any given set of parameters (λ, cL, cH , p0) there exist ε > 0 such that if λH = λ

and λL = (λ, λ+ ε] then the set of PBE is the same.

Proof. The proof can be found in the appendix on page 29.

4.3 λL ≥ λH = 0 Case

In this case, there is no exogenous drop out by the H-worker. Consider first λL = 0. In

this case our model is equivalent to Cho and Kreps (1987), only corrected by the fact that the

education choice is restricted to be discrete. The reason is that the worker decides his education

without interacting with the firms. Once the decision to drop out has been made, the worker

cannot change the market’s belief about his type. Furthermore, early dropping out may be off

the path of play, so beliefs can be arbitrarily assigned in those events. Therefore, the equilibrium

predictions of both models share the same characteristics.

14
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Figure 5: Endogenous dropout rate of the low-type worker

Intuitively, when λL > 0, nothing essential changes. The reason is that the belief threats off

the path of play when λL = 0 are replaced by potentially exogenous dropping out by the L-worker,

so now deviations to early dropout are still punished.

Note that our main mechanism in the benchmark model is not present here. Indeed, in our

benchmark model, as is proven in Lemma 1, the L-worker uses the fact that the H-worker ex-

ogenously drops out to mimic him in order to save a high cost of education. Since the H-worker

exogenously drops out, early dropout cannot be punished too much, constraining the belief threats

by the firms. This is no longer true when λH = 0, so the set of equilibria is qualitatively different

from the λH > 0 case.

5 Related Literature and Concluding Remarks

5.1 Related Literature

This is not the first paper to consider dynamic commitment issues in a signaling model. Weiss

(1983) and Admati and Perry (1987) (henceforth WAP) pointed out the critical role of commit-

ment in the story of education signaling: when a student arrives on the first day of school, the

separation has already happened, and WAP raise the question: “why don’t firms hire individuals

immediately after they have sorted themselves?” Cho and Kreps (1987) avoid this challenge by

directly assuming that a worker can commit to his decision about education duration. Nöldeke

and van Damme (1990) formulate an explicitly dynamic game-theoretic version of the Spence
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model and try to answer WAP’s question. In their model, long-lived firms simultaneously make

public offers to the worker in each period, and the worker decides to accept an offer or continue

receiving education. They focus on equilibria that satisfy the never a weak best response (NWBR)

requirement provided by Kohlberg and Mertens (1986), and they find that equilibria outcome

converges to the Riley outcome when the time interval between two education decision points

goes to zero. Nonetheless, Swinkels (1999) argues that Nöldeke and Van Damme’s result crucially

depends on the fact that job offers are publicly made. Hence, he considers a model where two

short-lived firms enter and simultaneously make private offers to the worker in each period before

the worker decides on whether to receive further education and he provides a second answer to

WAP’s question. Swinkels finds that, when the interval between consecutive offers goes to zero,

the unique sequential equilibrium in this game is a pooling one at no education.

Our analysis sheds light on the degree to which Swinkels’ result depends on the presence of

preemptive offers. In Cho and Kreps (1987), the Riley outcome can always be supported since,

off the path of play, a belief threat can be imposed to punish early dropouts with low wages.

However, in Swinkels (1999), firms can directly interfere with workers’ education by making private

preemptive offers. Consequently, within a period, the game between current period firms and the

worker is a screening game instead of a signaling one, and, as a by-product, the belief threat in

Cho and Kreps (1987) cannot be used. It is not clear whether the result in Swinkels (1999) results

from the non-existence of a belief threat in Cho and Kreps (1987) or other factors induced by

his screening-style timing. To eliminate the effect of a belief threat in Cho and Kreps (1987), we

assume that a worker in school faces an exogenous dropout risk, even though he does not choose

to do so, and firms can make private offers to a worker only when he has dropped out of school

and is available on the market. By doing so, we restore the existence of unproductive education

signaling even though offers are privately made and the time interval between two consecutive

offers is short enough. Note, our model should be interpreted as a complement rather than a

substitute for Swinkels (1999). In practice, both in-school offers and in-market offers take place

in many industries. Our goal is to understand how the interaction between the decision sequence

and the privacy of offers affects the equilibrium dynamics and the existence of wasteful signaling.

There is a growing literature that considers the impact of extra signaling in Swinkels’ model.

Kremer and Skrzypacz (2007) introduce an extra (noisy) signal, which is observed at a given

time, into Swinkels’ model. They interpret the extra signal as students’ grades. By doing this,

they restore the wasteful signaling and show the presence of a degree premium. Daley and Green

(2011) follow Kremer and Skrzypacz (2007) and consider a dynamic lemons market model where

the seller’s (worker) type is gradually revealed to buyers (firms). In particular, they assume that

the news follows a type-contingent diffusion process: the high type has a greater drift rate than

16



the low type. They show that the game ends in one of two ways: either enough good news arrives,

restoring confidence and a transaction happens with a high wage, or enough bad news arrives,

making the worker more pessimistic so that he accepts a low-wage offer. Our paper is different

from those in the following aspects. (1) Kremer and Skrzypacz (2007) follow Swinkels’ timing and

introduce an extra signal at the deadline of the education. Daley and Green (2011) consider a

continuous time model where a type-contingent diffusion process, as a sequence of extra signals,

is realized over time. In contrast, we do not introduce any extra signal in addition to education

length, and we adopt a different decision sequence. (2) In Daley and Green (2011), the extra signal

for informed agents with different types is generated by different processes. In our benchmark

model, both high-type and low-type workers are forced to drop out at the same exogenous rate,

and the difference in the total dropout rate is determined by the equilibrium instead of by the

exogenous assumption. Dilme (2012) considers a similar model introducing moral hazard in the

signaling process, obtaining similar results.

In addition, in our model, since an exogenous dropout rate exists, education length is a noisy

signal of the worker’s type. Some papers also consider signaling models with noisy signals.

Matthews and Mirman (1983) consider a noisy signaling model and show that the equilibrium

can be unique, which depends on prior beliefs. Bar-Isaac (2003) investigates learning and reputa-

tion in a dynamic signaling model where a privately informed monopolist faces a type-contingent

but random demand, which can be treated as a noisy signal, and decides whether to sell in each

period.

Last, our model is also related to the dynamic adverse selection literature. Janssen and Roy

(2002) study a dynamic lemons market problem and show that each equilibrium involves a sequence

of increasing prices and qualities traded over time. Trade is delayed and therefore inefficient, but

all goods are sold out in finitely many periods. In their model, the time-on-the-market of a good is

used to signal the quality of the good. Horner and Vieille (2009) study a dynamic bargaining game

in which a single seller faces a sequence of buyers and show that the observability of previously

rejected prices can cause a bargaining impasse. Kim (2011) examines the roles of different pieces of

information about sellers’ past behavior in a dynamic decentralized lemons market. He suggests

that market efficiency is not monotone in the amount of information available to buyers but

depends crucially on what information is available under what market conditions. Camargo and

Lester (2011) investigate a dynamic decentralized lemons market with one-time entry. They

demonstrate how prices and the composition of assets evolve over time given an initial fraction

of lemons. They find that the patterns of trade depend systematically on the initial fraction of

lemons, which is similar to the structure of our result. However, they focus on the dynamics of

trade and price.
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5.2 Concluding Remarks

This paper presents a new dynamic signaling model where wasteful education takes place over

several periods of time. Workers pay an education cost per unit of time and can not commit to

a pre-fixed education length. We adopt a timing that is different from that in the traditional

literature and introduce an exogenous dropout rate. By doing this, we make three contributions

to the literature. First, we highlight the importance of timing in the dynamic signaling model

without assuming perfect commitment power. If a job offer is private but not preemptive, the ed-

ucation signaling will not disappear in a model where education is not productive. The difference

between our equilibrium prediction and that in Swinkels (1999) highlights the importance of the

assumption of timing. In our model, the result is robust to the commitment assumption. Hence,

we reconcile the basic idea of Spence (1973) and WAP’s challenge. Second, in our equilibrium,

the maximum length of education is decreasing in the prior about the worker being productive,

and therefore, the equilibrium correspondence is lower hemicontinuous with respect to the infor-

mation asymmetry perturbation. Third, our model provides rich empirical implications: the joint

dynamics of education returns and the dropout rate can be derived.

Even though we present our model in an education signaling environment, our insight is also

useful to understand some other environments where sending signals is not only costly but also

time-consuming. For example, consider a firm owner trying to sell his firm. In order to signal the

type of the firm, the owner may wait some time. The opportunity cost of waiting is likely to be

low if the quality of the firm is good. Dropout may be reinterpreted as liquidity shocks that force

the owner to sell the firm early. Another example is given by central banks defending themselves

from currency attacks. In this case, the cost of defending may depend on the fundamentals of

the economy, known only by the central bank. As time passes, the posterior about the economy

being healthy increases, so the size of the attacks decreases and the attacks eventually vanish.

The exogenous shocks may be given by random events in the international markets, such as a

devaluation of the foreign currency used to defend attacks.

In our model, there is no exogenous constraint on the education length. In practice, there is

an upper bound on it. A possible extension of our paper is to consider the deadline effect on the

set of equilibria. Also, as we show, the empirical implementation of our model is interesting and

it may help to distinguish a dynamic signaling model from a human capital model empirically.

In particular, one can consider a dynamic education choice model where a worker’s productivity

depends on both his privately observed ability and on his accumulation of human capital in school.

Fang (2006) estimates a static education choice model with both human capital accumulation and

a signaling mechanism and claims that the signaling effect is at most about one-third of the actual

college wage premium. By using data on workers’ education and earnings, one can estimate our

18



model to fit the dynamic process of education returns and the dropout rate, instead of a premium,

and decompose the time-varying education returns into human capital effects and signaling effects.

We leave these questions for further research.
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A Appendix

A.1 The Proof of Lemma 1

Let’s first prove a preliminary result:

Lemma 6. (The L-worker does not beat the market) For all PBE and t, V L
t ≤ pt.

Proof of Lemma 6. Fix a PBE. Let τ be the time at which the game ends. Then,

ptV
H
t + (1− pt)V L

t ≤ Et[wτ |τ ≥ t],

and

Et[wτ |τ ≥ t] =
∞∑
τ=t

Pr(τ, t)p̂τ =
∞∑
τ=t

Pr(τ, t)
sHτ pt PrH(τ, t)

Pr(τ, t)
= pt

∞∑
τ=t

sHτ PrH(τ, t) = pt .

where Pr(τ, t) denotes the conditional probability in period t that the game ends in period τ , and

PrH(τ, t) = sHτ
τ−1∏
t′=t

(1− sHt′ ) is further conditioning on the dropout being type H. The last equality

holds because the high type has strictly positive dropout rate and therefore he drops out in finite

time with probability one. Since V H
t ≥ V L

t (the H-worker can mimic the L-worker at a cheaper

price) the result holds.

Suppose there is no endogenous dropout by the L-worker in period t, then pt+1 ≤ pt ≤ p̂t.

But, p̂t ≤ WL
t = V L

t+1 − cL due to the fact that the L-worker does not voluntarily drop out. By

Lemma 6, V L
t+1 ≤ pt+1 ≤ p̂t; thus p̂t ≤ p̂t − cL, which is a clear contradiction. So (1) is true.

Therefore (2) is also true, since WH
t ≥ V H

t+1 − cH ≥ p̂t+1 − cH by definition of WH
t and V H

t , and

p̂t+1 − cH = p̂t + cL − cH > p̂t by the indifferent condition of the L-worker. Q.E.D.

A.2 The Proof of Lemma 2

Assume first TH > TL + 1. In this case, pTL+1 = 1. Using equation (1) we know p̂TL+1 = 1.

Since the payoff of the worker is bounded by 1, and waiting to next period is costly, the worker is

better off dropping out at TL + 1. This is a contradiction.

Lemma 1 implies that SHTL > 0, and therefore TH ≥ TL. Q.E.D.

A.3 The Proof of Theorem 1

The wage in period t = 1 is bounded above by 1. This implies that for the H-worker to be

(weakly) willing to receive one period education, it must be the case that w0 ≤ 1 − cH . This
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implies that

1− cH ≥ p̂0 =
p0s

H
0

p0sH0 + (1− p0)sL0
≥ p0λ

p0λ+ 1− p0

.

Solving for p0 under the equality, we get that the threshold for the existence of an equilibrium

with non zero education satisfies equation (4). Q.E.D.

A.4 The Proof of Theorem 2

The proof of Theorem 2 is divided in several steps. To make the proof clear to the reader, we

clarify that we will be following this road map:

1. We begin defining and proving some properties of the “pull-back functions”, which will be

used to construct equilibria in the rest of the proof (lemmas 7 and 8).

2. In subsection A.4.1 we define some putative values for pk0, denoted p̃k0, and we prove by

induction that, if p0 ∈ (p̃k+1
0 , p̃k0], then there is no equilibrium with more than k periods of

education.

3. Then, in subsection A.4.2 we show that, if p0 ∈ (p̃k+1
0 , p̃k0], there exists an equilibrium where

the L-worker is indifferent on dropping out or not for all periods except (maybe) the last for

all T ∈ {0, ..., k − 1}.
4. Finally, in subsection A.4.3 we show that, if p0 ∈ (p̃k+1

0 , p̃k0], there exists an equilibrium with

length k. Therefore, pk0 = p̃k0.

We begin this proof by stating and proving two results that will simplify the rest of the proof

and the proofs of other results in our paper. The first one defined and states two properties of the

“pull-back functions” µτ (·, ·) and µ̂τ (·):

Lemma 7. For any τ ∈ N, let µτ : [0, 1]2 → [0, 1] and µ̂τ : [0, 1]→ R be the functions defined by

µτ (p, p̂) ≡
µτ−1(p, p̂)µ̂τ (p̂)

µ̂τ (p̂)(1− λ) + µτ−1(p, p̂)λ
, (7)

µ̂τ (p̂) ≡ p̂− τcL , (8)

and µ0(p, p̂) ≡ p and µ̂0(p̂) = p̂. Then, for any τ > 0, µτ (·, ·) is continuous and strictly increasing

in both arguments.

Proof of Lemma 7. It is obvious when τ = 1, and it holds when τ > 1 by induction argument.
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The meaning of the pull-back functions is the following. Assume that, for a given equilibrium,

the L-worker is indifferent on dropping out or not in period t > 0. Then, for all τ ∈ {0, ..., t},
we have pt−τ = µτ (pt, p̂t) and p̂t−τ = µ̂τ (p̂t). So, since by Lemma 1 the L-worker is indifferent

on dropping out or not in all periods except their last period, the pull-back functions give us the

values of the beliefs sequences p and p̂ for all periods prior to a given period. They are obtained

using equations (1) and (2). The following lemma formalizes this intuition:

Lemma 8. For any equilibrium with T > 1 periods of education and any T > τ ≥ τ ′ ≥ 0 we have

pτ ′ = µτ−τ ′(pτ , p̂τ ) and p̂τ ′ = µ̂τ−τ ′(p̂τ ) .

Proof of Lemma 8. Note that, by Lemma 1, in all periods t < T − 1, the L-worker is indifferent

on dropping out or not and sHt = λ. This implies that if t < T − 1, p̂t−1 = p̂t − cL. Combining

equations (1) and (2) with sHt = λ, we have

pt ≡
pt+1p̂t

p̂t(1− λ) + pt+1λ
=

pt+1(p̂t+1 − cL)

(p̂t+1 − cL)(1− λ) + pt+1λ
= µ1(pt+1, p̂t+1) .

Using this formula recursively and the fact that µτ (p, p̂) = µτ−1(µ1(p, p̂), µ̂1(p̂)) we obtain the

desired result.

A.4.1 Constructing the Upper Bound on the Length

Define the sequence p̃k0 ≡ µk−1(p1
0, 1− cH), where p1

0 is defined in (4). Our goal is to show that

p̃k0 has the same properties that pk0 (stated in the statement of the theorem), so pk0 = p̃k0. We are

going to prove first, by induction, that if p0 ∈ (p̃k+1
0 , p̃k0] then there is no equilibrium with more

than k periods of education:

Step 1 (induction hypothesis): If p0 ∈ (p̃k+1
0 , p̃k0] there is no equilibrium with more than k

periods of education. If an equilibrium has k periods of education, then p̂0 ≤ p̂k0 ≡ µ̂k−1(1− cH).6

Step 2 (proof for k = 0 periods of education): By Theorem 1 there is no equilibrium

with education for p0 > p1
0. Also, in the same proof, it is shown that all equilibria in this region,

p̂0 = p0 ≥ p1
0 > 1− cH = µ̂0(1− cH).

Step 3 (proof for k = 1 period of education): Assume that p0 is such that there is an

equilibrium with 1 period of education. Then, p̂0 ≤ p̂1
0 ≡ 1− cH (at least the H-worker has to be

willing to wait). Using Bayes’ update (equations (1) and (2)) we can express p̂0 ≡ p̂0(p0, s
L
0 , s

H
0 )

6The second induction hypothesis is included in order to make the argument simple in the induction argument

(step 4).
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Figure 6: p̃T0 (black filled dots), p̂T0 (gray square dots) and maximum length of equilibria (black).

and p1 = p1(p0, s
L
0 , s

H
0 ). Therefore, using these equations, we can write p0 in terms of p̂0, p1 and

sH0 in the following way:

p0 = p−1(p1, p̂0, s
H
0 ) ≡ p1p̂0

p̂0(1− sH0 ) + p1sH0
.

The RHS of the previous expression is maximized when sH0 = λ. Therefore, if an equilibrium ends

with length of two periods, the initial prior is at most p1
0 ≡ 1−cH

1−cH(1−λ)
.

Step 4 (induction argument for k > 1): Assume the induction hypothesis is true for k−1,

for k > 1. We need to verify whether it is true for k.

Assume that p0 is such that there exists some equilibrium with k periods of education. Denote

the beliefs sequences for this equilibrium p and p̂. Note that, by the induction hypothesis, p1 ≤ pk−1
0

and p̂1 ≤ p̂k−1
0 , since the continuation play after 1 is itself an equilibrium with initial prior p1.

Since k > 2, by Lemma 1, the H-worker is strictly willing to wait in period 0, so sH0 = λ, and the

L-worker randomizes in period 0. Then, p̂0 = p̂1 − cL ≤ p̂k−1
0 − cL = p̂k0. Therefore, by Lemma 8,

p0 = µ1(p1, p̂1), and that this is increasing in both arguments. So, the maximum value it can take

is p̃k0 ≡ µ1(p̃k−1
0 , p̂k−1

0 ).

Step 5 (T ∗ is the limit): Note that T ∗ is such that

p̂T
∗+1

0 ≤ 0 < p̂T
∗

0 .

Then, since p̂T
∗+1

0 ≤ 0, there is no equilibrium longer than T ∗ periods of education.

A graphical intuition of the proof can be found in Figure 6. It graphically represents both p̃T0
and p̂T0 used in the proof.
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A.4.2 Constructing L-equilibria

Now, we prove a result related to the set of equilibria where the L-worker is indifferent in all

periods, which is similar to Theorem 2 itself. For each p0 ∈ (0, 1), we use T̃L(p0) to denote the

maximum number of education periods of an equilibrium where the L-worker is indifferent to drop

out in all periods except (maybe) the last. We name these equilibria L-equilibria. The following

lemma shows that, for any p0 ∈ (0, 1), there is a finite integer k such that, for each T = 0, 1, ..., k

there is an L-equilibrium that lasts for T periods of education, and no L-equilibrium with length

more than k.

Lemma 9. Let’s define T ∗∗ ≡ d1−cL
cL
e, pL,k0 ≡ µk(1, 1) for k = 0, ..., T ∗∗ and pL,T

∗∗+1
0 ≡ 0. Then, if

p0 ∈ (pL,k+1
0 , pL,k0 ] for some k = 0, ..., T ∗∗, we have T̃L(p0) = k. Furthermore, for each T ≤ T̃L(p0),

there is a unique L-equilibrium with T periods of education.

Proof of Lemma 9. Fix some p0 ∈ (0, 1). If p0 > µk(1, 1) for some k ≤ T ∗∗ there is no L-

equilibrium with k periods of education. Indeed, if there was one (ending at pk = p̂k), then

p0 = µk(pk, pk). But since µk(pk, pk) is strictly increasing in pk and p0 > µT (1, 1), then p0 > µk(p, p)

for all p ∈ [0, 1]. This is clearly a contradiciton. Note also that, in an L-equilibrium with T periods

of education, p̂T − p̂0 = TcL ≤ 1. Since (T ∗∗ + 1)cL > 1, we have T̃ (p0) < T ∗∗ + 1,.

Fix k < T ∗∗, p0 ∈ (pL,k+1
0 , pL,k0 ] and T ≤ k. Note that µT (p, p) is continuous and strictly

increasing when p > TcL for any T ≤ T ∗∗ and limp↘TcL µT (p, p) = 0.7 So, since p0 ≤ µk(1, 1) ≤
µT (1, 1), there exists a unique pT ∈ (TcL, 1) such that p0 = µT (pT , pT ). Furthermore, there is an

equilibrium with length T with pt = µT−t(pT , pT ) and p̂t = µ̂T−t(pT ). The argument for k = T ∗∗

is analogous.

Lemma 10. For any k ≤ T ∗∗, we have pL,k0 ∈ (p̃k+1
0 , p̃k0).

Proof of Lemma 10. Note first that

p10︷ ︸︸ ︷
1− cH

1− (1− λ)cH
>

p1,L0︷ ︸︸ ︷
1− cL

1− (1− λ)cL
= µ1(1, 1) > µ1(p1

0, 1− cH)

By definition, for k > 1, pk0 = µk−1(p1
0, 1− cH) = µ1(pk−1

0 , µ̂k−2(1− cH)) and pk,L0 = µk−1(p1,L
0 , 1−

cL) = µ1(pk−1
0 , µ̂k−2(1− cL)). Also, note that µ̂k(1− cH) > µ̂k(1− cL) > µ̂k+1(1− cH). Therefore,

since µ1(·, ·) is strictly increasing in both arguments, we have pL,k0 ∈ (p̃k+1
0 , p̃k0).

7Note that, if T ≤ T ∗∗ then TcL < 1, and, by definition, µ̂T (TcL) = 0. Using the definition of µτ (·, ·), we have

that µT (cLT, cLT ) = 0.
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A.4.3 Constructing H-equilibria

Lemma 9 implies that for any p0 ∈ (0, 1), an L-equilibrium lasting for at most k periods can be

constructed, where k satisfies that p0 ∈ (pL,k+1
0 , pL,k0 ]. However, Lemma 10 shows that pL,k0 < p̃k0.

For p0 ∈ (pL,k0 , p̃k0], there is no L-equilibrium lasting for k periods. The question is now whether

any other equilibrium which lasts for k periods in this last region. Lemma 11 shows that the

answer to this question is yes.

An equilibrium which lasts for T > 0 periods of education is an H-equilibrium if and only if,

in equilibrium, the L-worker strictly prefers dropping out in period T − 1. In other words, in an

H-equilibrium pT = 1. Note each equilibrium is either L-equilibrium or H-equilibrium, and never

both.

Lemma 11. If p0 ∈ (pL,k0 , p̃k0], there exists an H-equilibrium of length k, for k ∈ {1, ..., T ∗∗}. If

p0 ∈ (p̃k+1
0 , pL,k0 ], there exists an L-equilibrium of length k, for k ∈ {1, ..., T ∗ − 1}.

Proof of Lemma 11. For p0 ∈ (p̃k+1
0 , pL,k0 ] the proof of the previous lemma tells us that there

exists an L-equilibrium of length k. To prove the case p0 ∈ (pL,k0 , p̃k0], we define the function

p̂ : (p1,L
0 , p1

0]→ (1− cL, 1− cH ] as follows

p̂(p) ≡ λp

λp+ 1− p .

Then for all p0 ∈ (pL,k0 , pk0] there exists a unique f(p0) ∈ (p1,L
0 , p1

0] such that p0 ≡ µk−1(f(p0), p̂(f(p0))).

Indeed, we have that limp↘p1,L0
p̂(p) = 1− cL and p̂(p1

0) = 1− cH . So, we have

lim
p↘pL,10

µk−1(p, p̂(p)) = pL,k1 and µk−1(p1
0, p̂(p

1
0)) = p̃k0 .

Since p̂(·) is continuous and strictly increasing, µk−1(·, ·) is continuous in both arguments and

strictly increasing, then there exists such f(p0), and is unique.

Let’s construct one equilibrium with k education periods when p0 ∈ (pL,k0 , p̃k0], for k ≤ T ∗ − 1.

Our claim is that it can be defined by pk = p̂k = 1, pt = µt−1(f(p0), p̂(f(p0))) and p̂t = p̂(f(p0))−
cL(k − t − 1), for t ∈ {0, ..., k − 1}. To prove that we show that the corresponding strategies are

well defined. Note that, if the L-worker is indifferent in period 0, we have

sLt =
1

1 + (1−λ)(1−pt)p̂t
λpt(1−p̂t)

=
λ

1− (1−λ)(pt−p̂t)
pt(1−p̂t)

.

The first equality shows that sLt < 1. The second equality shows that, if p1
t > p̂t, then sLt > λ,

what is equivalent to p2
0 < p1

0, which is true as long as p̂t > 0. Since, when k < T ∗, p̂0 =

p̂(f(p0))− cL(k − 1) > 0, the result holds in this case.
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Figure 7: partition construction

Finally, there are two possible cases. If T ∗∗ = T ∗, we know from the previous lemma that

there exists an L-equilibrium in with length T ∗∗ in (0, pL,T
∗

0 ). If T ∗∗ = T ∗ − 1 then there exists

some p ∈ (p1,L
0 , p1

0] such that p̂(p) = T ∗∗cL. Indeed, in this case 1 ≤ T ∗cL < 1 − cH + cL, so

T ∗∗cL ∈ (1 − cH , 1 − cL]. Therefore, we can use the same argument as for p0 ∈ (pL,k0 , p̃k0], for

k ≤ T ∗ − 1. The idea of the partition construction can be summarized in Figure 7.

Finally, note that the set {p̃k0}T
∗+1

k=0 is such that p̃k0 > p̃k+1
0 for all k. Furthermore, for all

0 ≤ k ≤ T ∗ and 0 ≤ T ≤ k, if p0 ∈ (p̃k+1
0 , p̃k0] then there exists an equilibrium with T periods of

education and no equilibrium with length larger than k. So, pk0 ≡ p̃k0, for k = 0, ..., T ∗ + 1, satisfy

the statement of Theorem 2, and therefore its proof is complete. Q.E.D.

A.5 The Proof of Lemma 3

We will do the proof first fixing the maximum real time and solving for the corresponding

p0, and then showing that for all p0 there exists a unique limit for the maximum real time. Fix

κ̄ ∈ (0, 1
c̃L

). In order to save notation, consider a strictly decreasing sequence ∆n such that κ̄
∆n
∈ N

for all n ∈ N. Using the Bayes’ rule, we have the following equation relating p
κ̄/∆n,L
0 and p

κ̄/∆n−1,L
0 :8

1

p
κ̄/∆n,L
0

=
λ̃∆n

1− c̃Lκ̄
+

1− λ̃∆n

p
κ̄/∆n−1,L
0

=

κ̄/∆n∑
m=0

λ̃∆n(1− λ̃∆n)m

1− c̃L(κ̄−m∆n)
+ (1− λ̃∆n)κ̄/∆n . (9)

When ∆n is small, each term of the sum can be approximated as follows

λ̃∆n(1− λ̃∆n)m

1− c̃L(κ̄−m∆n)
=

λ̃e−λ̃s

1− c̃L(κ̄− s)∆n +O(∆2
n)

where s ≡ m∆n. The last term of the RHS of equation (9) is approximated by e−λ̃κ̄ + O(∆n).

Since this each term in the sum is a bounded function (note that s ranges from 0 to κ̄) multiplied

by ∆n, at the limit ∆n ↘ 0 the sum converges to the integral, so we have

1

p̃0(κ̄)
≡ lim

n→∞

1

p
κ̄/∆n,L
0

= e−λ̃κ̄ +

∫ κ̄

0

e−λ̃sλ̃

1− c̃Ls
ds .

8We use pκ̄,L0 defined in Lemma 9 instead of pκ̄,L0 for simplicity. Lemma 10 and the fact that p
κ̄/∆n,L
0 −pt/∆n−1,L

0 =

O(∆n) guarantees that p
κ̄/∆n,L
0 and p

κ̄/∆n,L
0 will be asymptotically equal.
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Note that the RHS of the previous expression is equal to 1 when κ̄ = 0. Differentiating it with

respect to κ̄ we find

d

dκ̄

1

p̃0(κ̄)
= −λ̃e−λ̃κ̄ +

e−λ̃κ̄λ̃

1− c̃Lκ̄
=
e−λ̃κ̄λ̃c̃Lκ̄

1− c̃Lκ̄
≥ 0 .

Therefore, pκ̄0 ∈ (0, 1) when κ̄ ∈ (0, 1
c̃L

).

Note that, for each p0 ∈ (0, 1), there exist a unique κ̄ such that p̃0(κ̄) = p0. Indeed,

limκ̄→0 p̃0(κ̄) = 1, limκ̄→1/c̃L p̃0(κ̄) = 0 and p̃0(·) is strictly increasing in (0, 1
c̃L

). Therefore, for

each p0 there exists a unique κ(p0) ≡ p̃−1
0 (p0) such that satisfies the conditions of the lemma. It is

given by the solution of

1

p0

= e−λ̃κ(p0) +

∫ κ(p0)

0

e−λ̃sλ̃

1− c̃Ls
ds . (10)

Q.E.D.

A.6 The Proof of Lemma 4

Proceeding similarly as in the proof of Lemma 3, we have that

1

p0

=
e−λ̃τ

pTn(∆n)
+

∫ τ

0

e−λ̃sλ̃

pTn(∆n)− c̃Ls
ds+O(∆n) .

Note that the RHS of the previous equation is decreasing in pTn(∆n). Furthermore, the RHS

is lower than 1
p0

when pTn(∆n) = 1, since it would be equal if τ = κ(p0), but, by assumption,

τ < κ(p0). Also, when pTn(∆n) = p0, the RHS is larger than p0. Indeed, it would be equal to

p0 if τ = 0 but, τ > 0 and, as it is shown in the proof of Lemma 3, the RHS is increasing in τ .

Therefore, there exists a unique limit of pTn(∆n), and is strictly lower than 1. Q.E.D.

A.7 The Proof of Theorem 3

1. Assume that, in period t, there are two types θ1, θ2 ∈ Θ, with cθ1 < cθ2 , both indifferent on

dropping out or not. Let τ1 and τ2 denote, respectively, the stopping times of the continuation

strategies that make players indifferent on dropping out or not.9 Then, we have

Ŷt = E[wτθ2 − c
θ2τθ2 ] ≥ E[wτθ1 − c

θ2τθ1 ] > E[wτθ1 − c
θ1τθ1 ] = Ŷt .

9For this proof, for a given strategy, it is convenient to use the random variable τ , which gives the duration of

the game.
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The first (weak) inequality is from the optimality of the θ2-worker. The strong inequality

is because E[τθ1 ] > 0 and cθ1 < cθ2 . The equalities come from the fact that i-workers, with

i ∈ {1, 2} are indifferent on taking on dropping out (and getting Ŷt) or staying and following

τi. Therefore, we have a contradiction.

2. Assume otherwise, so there exist θ1, θ2 ∈ Θ such that θ1 < θ2 and T θ1 > T θ2 . Let τθ1 be the

stopping time of the continuation strategy after T θ2 , given by the strategy of θ1. Then, note

that

ŶT θ2 ≥ E[wτθ1 − c
θ2τθ1 ] > E[wτθ1 − c

θ1τθ1 ] ≥ ŶT θ2 .

This is clearly a contradiction. The first inequality comes from the optimality of the θ2-

worker choosing to drop out at T θ2 (since they could deviate to mimic the θ1-worker). The

second inequality is given by the fact that since θ1 < θ2, cθ2 < cθ1 and since T θ1 > T θ2 ,

E[τθ1 ] > 0. The last inequality comes from the optimality of the θ1-worker choosing to drop

out at T θ1 > T θ2 (since they could deviate to mimic the θ2-worker).

3. Define Θt = {θ|T θ ≥ t} and θt = min{Θt}. We proceed as in the proof of Lemma 6. Now

we have

Et[wτ |τ ≥ t] =
∞∑
τ=t

Pr(τ, t)Ŷτ =
∞∑
τ=t

Pr(τ, t)

∑
θ Y

θsθτp
θ
t Pr θ(τ, t)

Pr(τ, t)

=
∑
θ

pθtY
θ

∞∑
τ=t

sθτ Pr θ(τ, t) =
∑
θ

pθtY
θ = Yt ,

where Pr(τ, t) and Pr θ(τ, t) = sθτ
τ−1∏
t′=t

(1− sθt′) are defined as in the proof of Lemma 6.

Note that, by the previous result,

N∑
θ=θt

pθtV
θ
t = Et[wτ |τ ≥ t]−

N∑
θ=θt

pθt c
θτ θ(t) < Et[wτ |τ ≥ t] ,

where τ θ(t) is the stopping time for the θ-worker conditional on reaching t. Since V θ
t ≤ V θ+1

t

(since the (θ+ 1)-worker can mimic the θ-worker at a lower cost), and
∑N

θ=θt
pθt = 1 we have

that V θt
t < Yt.

Assume that in period t there is no voluntary dropout. In this case, Ŷt = Yt. Since we just

showed Vθt < Yt, the θt-worker is willing to drop out, which is a contradiction.

4. Note that, by part 3 of this theorem, we have that Ŷt+1−cθt ≤ Ŷt. Furthermore, Ŷt+1−cθt+1 ≥
Ŷt. This implies that Ŷt+1 − Ŷt+1 ∈ [cθt+1 , cθt ]. Since cθ is decreasing in θ and, by part 2 of

this theorem, the θt-worker is (weakly) increasing in t, Ŷt is concave in t.
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Q.E.D.

A.8 The Proof of Lemma 5

We first prove that Lemma 1 (that holds when λH = λL) is still valid when λH ≥ λL. Consider

T as the maximum periods lower than TL where sLt ≤ sHt . In this case

pT+1 ≤ pT ≤ p̂T .

Furthermore, since the L-worker is voluntarily dropping out at time T + 1, this implies p̂T ≤
p̂T+1 − cL. Nevertheless, since sLT+1 ≥ sHT+1, we have p̂T+1 ≥ pT+1, which is a contradiction, since

p̂T+1 ≤ pT+1 ≤ pT ≤ p̂T ≤ p̂T+1 − cL .

So, when λH ≥ λL, it is still true that sLt > sHt in all periods of all equilibria before TL.

Therefore, the relaxation of the constraint λL = λH = λ to λL ≤ λH = λ does not introduce new

equilibria. Trivially, it does not destroy any equilibria, since in the model λL = λH = λ, in all

equilibria, sLt > λ for all equilibria and period t ≤ TL. Q.E.D.

A.9 The Proof of Theorem 4

Note that Lemma 6 still holds (the H-worker can imitate the strategy of the L-worker). Now

we try to prove a result analogous to Lemma 1. Assume that the L-worker is not voluntarily

dropping out in period t, so his dropout rate is λ + ε. First assume that the dropout rate of the

H-worker is larger than λ+ ε. In this case, we can apply the exact same argument as in the proof

of Lemma 1, so we obtain again a contradiction. Assume now that sH ∈ [λ, λ + ε). In this case

pt+1 = pt + O(ε) and p̂t = pt + O(ε), so p̂t − pt+1 = O(ε). Then, using the same logic as in the

proof of Lemma 1 we have

p̂t ≤ WL
t ≤ V L

t+1 − cL ≤ pt+1 − cL .

Therefore, p̂t − pt+1 ≤ −cL. But this is inconsistent with p̂t − pt+1 = O(ε). That proves that, if

ε > 0 is small enough, the model with λH = λ and λL = λ+ ε does not have more equilibria than

for the case ε = 0.

Let’s prove the reverse. Assume that there exists a sequence {εn > 0}n∈N such that limn→∞ εn =

0 and, for each n, there exists an equilibrium in our original model and tn reached with positive

probability on the path of play under this equilibrium such that sLtn ∈ [λ, λ + εn). This implies
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ptn+1 = ptn +O(εn) and p̂tn = ptn +O(εn), so p̂tn − ptn+1 = O(εn).10 So,

p̂tn = WL
tn = V L

tn+1 − cL ≤ ptn+1 − cL .

This, again, is a contradiction. Q.E.D.

10Using some abuse of notation, ptn and p̂tn denote the corresponding posteriors in the n-th equilibrium of the

sequence.
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