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1 Introduction

The necessity of grappling with “big data,” and the desirability of unlocking the information

hidden within it, is a key modern development – arguably the key modern development –

in all the sciences. Time-series econometrics, particularly time-series financial econometrics,

is no exception. Big data in financial econometrics has both cross-sectional and time-series

aspects. In the cross-sectional dimension it arises from the literally hundreds of thousands

of assets that trade in global financial markets. In the time-series dimension it arises from

the similarly huge number of trades, often many per second, that are now routinely executed

for financial assets in liquid markets.

In this paper we are concerned in general with the time-series dimension, and in particular

with the durations associated with inter-trade arrivals. Those trades are facilitated by mod-

ern hardware, software and algorithms, and they are continuously recorded electronically.

The result are vast quantities of high-frequency (trade-by-trade) price data.

One might reasonably ask what, precisely, financial econometricians hope to learn from

high-frequency trading data. Interestingly, such high-frequency data emerge as largely un-

informative for some objects of interest (e.g., trend, or “drift,” in log price), but highly

informative for others (e.g., volatility), an insight traces in economics at least to Merton

(1980). In particular, although precise estimation of trend benefits greatly from a long cal-

endar span but not from high-frequency sampling, precise estimation of volatility benefits

immensely from high-frequency sampling.1 Accurate volatility estimation and forecasting,

in turn, are crucial for financial risk management, asset pricing and portfolio allocation.

In this paper we are not directly interested in volatility; rather, as mentioned above, we

are interested in inter-trade durations. However, high-frequency data is informative not only

for the properties of volatility, but also for the properties of inter-trade durations. At one

level that observation is trivial, as one obviously needs trade-by-trade data to infer properties

of inter-trade durations. But at another level the observation is quite deep, linked to the

insight that, via time-deformation arguments in the tradition of Clark (1973), properties of

calendar-time volatility and transactions-time trade arrivals should be intimately-related.

In particular, the time-deformation perspective suggests that serial correlation in calendar-

time volatility is driven by serial correlation in calendar-time trade counts. But serial cor-

1Indeed the mathematical foundation of the modern financial econometrics “realized volatility” literature
initiated by Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002)
is precisely the convergence of empirical quadratic variation to population quadratic variation as sampling
frequency increases.
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relation in calendar-time trade counts is driven by serial correlation in transactions-time

trade-arrival intensity, which is ultimately driven by serial correlation in the information

flow that drives trading. Hence the calendar-time “realized volatility” persistence revealed

by high-frequency data should have parallels in calendar-time trade count persistence and

transaction-time inter-trade duration persistence. Interestingly, the key and robust find-

ing for realized volatility dynamics is not only high volatility persistence (of course...), but

tremendously high volatility persistence, in the form of long memory.2

Against this background, in this paper we propose and evaluate a new model of inter-

trade durations, closely-linked to the pioneering “multi-fractal” return volatility model of

Mandelbrot, Fisher, and Calvet (1997), Calvet and Fisher (2001) and Calvet and Fisher

(2004) as discussed and extended in Calvet and Fisher (2008). As we will discuss subse-

quently in detail, our model’s construction and implications are quite different from existing

dynamic duration models, most notably the prominent Autoregressive Conditional Duration

(ACD) model of Engle and Russell (1998) and variants thereof. Our model, which we call

the Markov-switching multi-fractal duration (MSMD) model, captures high persistence in

duration clustering; indeed it intrinsically captures long memory while nevertheless main-

taining covariance stationarity. It also captures additional important features of observed

durations, such as over-dispersion. Finally, as we will also demonstrate, it is highly successful

empirically, largely dominating ACD.

We proceed as follows. In section 2, we review the important empirical regularities that

routinely emerge in inter-trade durations in financial markets. In section 3 we develop our

MSMD model, we characterize its properties relative to the earlier-documented empirical

regularities. We also relate the MSMD model to other models that have appeared in the

literature, such as the ACD model and the Stochastic Conditional Duration (SCD) model

of Bauwens and Veredas (2004). In section 4 we apply the MSMD model to inter-trade

duration data for a representative set of U.S. equities, evaluating its performance in both

absolute terms as well as relative to the prominent ACD model. We conclude in section 5.

2 Empirical Regularities in Inter-Trade Duration Data

Here we highlight three important regularities in financial market inter-trade durations,

illustrating them for a particular U.S. equity (Citigroup). We shall be interested subsequently

2Findings of long memory in realized volatility run consistently from the early work of Andersen, Boller-
slev, Diebold, and Labys (2001) through scores of subsequent studies, as surveyed for example in Andersen,
Bollerslev, Christoffersen, and Diebold (2013).
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Figure 1: Citigroup Duration Time Series. We show a time-series plot of inter-trade durations

between 10:00am and 4:00pm during February 1993, measured in minutes and adjusted for calendar effects.

in econometric duration models that capture those regularities.

2.1 Serially-Correlated Duration Dynamics and Self-Similar Clus-

tering

Durations are highly persistent, as is clear visually from the time-series plot of Citigroup du-

rations in Figure 1.3 The transactions-time duration clustering is matched by a correspond-

ing calendar time transactions-count clustering. Moreover, the calendar-time transactions

count clustering tends to look similar regardless of observational frequency. In Figure 2, for

example, we show Citigroup transaction counts in intervals of length 2, 5, 10 and 30 minutes

during February 1993. Such invariance of qualitative features to observational frequency is

called self-similarity and has long been emphasized in financial asset returns, particularly by

Mandelbrot (e.g., Mandelbrot (1997)).

2.2 Over-Dispersion

Another property of inter-trade durations, related to their high persistence, is over-dispersion.

Over-dispersion refers to the standard deviation exceeding the mean, in contrast to the equal-

ity that would obtain with exponential durations generated by iid trade arrivals. In Figure

3, for example, we show an exponential duration Q-Q plot for the Citigroup durations, which

clearly indicates a non-exponential duration distribution characterized by a longer right tail

than would occur under the exponential. Indeed the the sample standard deviation is 2.63

3We have adjusted the durations for calendar effects and will provide details subsequently in section 4.1.
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Figure 2: Citigroup Trasactions Counts. We show transaction counts in intervals of length 2, 5,

10 and 30 minutes between 10:00am and 4:00pm during February 1993.

and the sample mean is only 1.93. A Kolmogorov-Smirnov goodness-of-fit test rejects the

exponential null hypothesis at a marginal significance level less than 10−6.

2.3 Long Memory

We have already mentioned duration persistence and clustering, but we have saved for last

the most important aspect of that persistence: long memory. Consider again the Citigroup

duration data.4 The time-series plot in Figure 1 clearly reveals high persistence, but the slow

hyperbolic decay of the sample autocorrelation function in Figure 4 reveals significantly more.

As is well-known, covariance stationary long memory dynamics are associated with very slow

(hyperbolic) autocorrelation decay, in contrast to covariance-stationary short-memory (e.g.,

ARMA) dynamics, which are associated with very quick (exponential) autocorrelation decay.

It is interesting to note that long memory is self-similar. That is, it can be shown that

if a flow variable like transactions counts is I(d) at one observational frequency, then it is

I(d) at all other observational frequencies. Hence the observed long memory in duration

4For an extensive investigation of long memory in inter-trade durations from a model-free perspective,
see Deo, Hsieh, and Hurvich (2010).
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Figure 3: Citigroup Duration Distribution. We show an exponential QQ plot for Citigroup

inter-trade durations between 10:00am and 4:00pm during February 1993, adjusted for calendar effects.

and transaction count dynamics coheres with the earlier-mentioned observed self-similarity

in transaction-count clustering.

3 The Markov-Switching Multi-Fractal Duration Model

In this section we propose the Markov-Switching Multi-fractal Duration (MSMD) model and

study its properties, proceeding as follows. In section 3.1 we sketch its basic structure, a

mixture-of-exponentials representation with dynamics driven by a Markov-switching multi-

fractal intensity process. In section 3.2 we establish some important properties of the MSMD

model that match the earlier-documented features of inter-trade durations. In section 3.3 we

provide an illustrative simulation. In section 3.4 we explore the relationship of the MSMD

model to the general class of point processes. Finally, in section 3.5 we situate the MSMD

model within some of the broader literature in inter-trade duration modeling, comparing

and contrasting MSMD to existing approaches.

3.1 A New Model for Inter-Trade Durations

We specify our dynamic model of durations in terms of a mixture of exponential random

variables in which the intensity evolves dynamically. Working in precisely parallel fashion

to the multi-fractal stochastic volatility model of Calvet and Fisher (2008), we assume that
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Figure 4: Citigroup Duration Autocorrelations. We show the sample autocorrelation function

of Citigroup inter-trade durations between 10:00am and 4:00pm during February 1993, adjusted for calendar

effects.

the intensities are composed multiplicatively of k̄ dynamic components following two-state

Markov-switching processes with different degrees of persistence, ranging from very low to

very high. This produces the Markov-switching multi-fractal duration (MSMD) model.

Let us now introduce the model. We use di = ti − ti−1 to denote the duration between

trades (events) occurring at times ti and ti−1. The durations are distributed according to

di ∼
εi
λi
, εi ∼ iidExp(1), i = 1, . . . , n, (1)

where Exp(1) refers to an exponential distribution with intensity parameter 1. Conditional

on λi, the durations have a Exp(λi) distribution, and we refer to the λi’s as (mean) intensities.

The intensities evolve according to the following Markov-switching multi-fractal process:

λi = λ
k̄∏
k=1

Mk,i, (2)

where λ is a positive constant and the Mk,i’s are positive intensity components, independent

across k and following Markov renewal processes. That is, at time i Mk,i is either renewed

(drawn from a fixed distribution f(M)) or kept at its previous value, k ∈ {1, 2, 3, ..., k̄}. We

write

Mk,i =

{
draw from f(M) w.p. γk

Mk,i−1 w.p. 1− γk,
(3)

where the renewal distribution f(M) is identical for all k = 1, ..., k̄, with M > 0 and
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E(M) = 1. Renewal of Mk,i corresponds to a new shock of type k hitting the system at

time i, with the draw from f(M) governing the magnitude of the shock. The value of

γk determines the average lifetime and hence the persistence of an M shock. A large γk

corresponds to M shocks with short expected lifetime and low persistence, and conversely.

Consider now the renewal distribution f(M). We take it as discrete, with two equally-

likely points of support,

M =

{
m0 w.p. 1/2

2−m0 w.p. 1/2,
(4)

where m0 ∈ (0, 2]. We refer to this distribution as “binomial,” although it differs slightly

from a standard 0-1 Bernoulli trial. Note that the condition m0 ∈ (0, 2] implies M > 0

a.s. and E(M) = 1, as required. By combining (3) and (4) we obtain a two-state Markov

process for Mk,i that alternates between the states s1 = m0 and s2 = 2−m0 with transition

probabilities

P(γk) =

[
1− γk/2 γk/2

γk/2 1− γk/2

]
. (5)

Here element jl of the matrix P(γk) specifies the transition from state sj to sl. The largest

eigenvalue of P(γk) is equal to one, which implies that the Markov process has an equilibrium

distribution. The equilibrium probabilities of states s1 and s2 are 1/2 regardless of γk. The

second eigenvalue is equal to 1− γk and determines the persistence of the Markov chain.

Finally, to induce parsimony, we impose the following restriction on the sequence {γk}k̄k=1:

γk = 1− (1− γk̄)b
k−k̄

, (6)

where γk̄ ∈ (0, 1) and b ∈ (1,∞). Hence, although the renewal distribution f(Mk) is the same

for all intensity components Mk, the renewal probability, γk, differs across k, creating a variety

of intensity components ranging from low-frequency components that renew infrequently to

high-frequency components that renew frequently, despite the fact that all renewals are of

course stochastic. Small values of k relative to k̄ lead to large values of 1− γk and therefore

produce “low-frequency” or “long-run” Mk shocks with low renewal probability and hence

long expected lifetime and high persistence.

Equations (1), (2), (3), (4), and (6) define the MSMD model. Assembling everything, we

can write it compactly as

di =
εi

λ
∏k̄

k=1 Mk,i

(7a)
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Mk,i =

{
M w.p. 1− (1− γk̄)b

k−k̄

Mk,i−1 w.p. (1− γk̄)b
k−k̄ (7b)

M =

{
m0 w.p. 1/2

2−m0 w.p. 1/2,
(7c)

where εi ∼ iid exp(1), k̄ ∈ N, λ > 0, γk̄ ∈ (0, 1), b ∈ (1,∞) and m0 ∈ (0, 2]. Conditional

on k̄ we collect the remaining parameters in the vector θk̄ = (λ, γk̄, b,m0)′. Note that

the MSMD model has a k̄-dimensional state vector Mi = (M1,i,M2,i, . . .Mk̄,i), and hence

2k̄ states, despite its great parsimony (just four parameters, regardless of k̄). Each latent

intensity component takes the value m0 in the high state and 2−m0 in the low state. The

parameter λ governs the overall intensity level; if all intensity components are in the high

state, then λi = mk̄
0 (the upper bound for intensity) and if all intensity components are in

the low state, then λi = (2 − m0)k̄ (the lower bound for intensity). The parameter γk̄ is

the renewal probability of the most frequently-renewing intensity component Mk̄. The other

renewal probabilities γ1, ..., γk̄−1 increase monotonically (and at an increasing rate) toward

γk̄, with the precise pattern governed by the parameter b.

3.2 Implied Dynamics and Distributions

Here we study some properties of MSMD processes. We begin by showing stationarity,

finite moments and ergodicity. Then we show that MSMD processes are consistent with the

earlier-documented key stylized features of inter-trade financial market durations: serially-

correlated duration dynamics and self-similar clustering, over-dispersion and long memory.

Stationarity, Ergodicity, and Finite Moments. Provided that γk > 0, the transition

probability matrix (5) implies that the process Mk,i is strictly stationary and ergodic. More-

over, because the Mk,i processes are independent across k and independent of εi, and because

the εi’s are independent across i, the vector process ξi = (εi,M1,i, . . . ,Mk̄,i) is strictly sta-

tionary and ergodic. Because the durations di are a measurable function of ξi, it follows that

the sequence of durations is strictly stationary and ergodic. Because the moments of the

Exp(1) distribution are finite and there exists an upper bound λ̄ and a lower bound λ > 0

such that λ ≤ λi ≤ λ̄ for all i, we deduce that the moments of di are finite.

Serially-Correlated Duration Dynamics and Self-Similar Clustering. The MSMD

model produces serially-correlated durations by design, due to the serial correlation in its

conditional intensity, which in turn produces serial correlation in calendar-time transaction

counts (clustering). Such clustering matches the predictions of many theoretical market
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microstructure models. Those models emphasize the simultaneous presence of informed and

uninformed traders, with informed trades occurring only when informational events occur,

which produces transaction clustering in calendar time.5

Over-Dispersion. MSMD processes also display over-dispersion. The Exp(1) distribution

of εi implies that E[εi] = 1 and E[ε2i ] = 2. Recall that di = εi/λi. Because εi and λi are

independent, we deduce from Jensen’s Inequality that

V ar(di) = 2E[λ−2
i ]− (E[λ−1

i ])2 (8)

≥ 2(E[λ−1
i ])2 − (E[λ−1

i ])2

= (E[di])
2.

The inequality is strict if the distribution of λi has a non-zero variance, which leads to the

over-dispersion property √
V ar(di) > E[di]. (9)

It is interesting to note that, in the MSMD model and in reality, the over-dispersion

of transactions-time duration distributions is induced by stochastic intensity. This is pre-

cisely analogous to the well-known fat-tails of calendar-time return distributions induced

by stochastic volatility. Just as stochastic volatility “fattens” Gaussian conditional return

distributions, so too does MSMD “over-disperse” exponential conditional duration distribu-

tions.

Long Memory. We now show that the MSMD process has long memory, by showing that

the duration autocorrelation function, ρ(h) = Corr(di, di+h), decays hyperbolically. We

begin by letting α1 < α2 denote two arbitrary numbers in the open interval (0, 1). Then the

set of integers Hk̄ = {h : α1 logb(b
k̄) ≤ logb h ≤ α2 logb(b

k̄)} contains a broad collection of

lags. Notice that as k̄ →∞ the values of h included in the set Hk̄ also tend to infinity. The

formal statement of the long-memory property is provided in the following proposition.

Proposition 1 The MSMD autocorrelation function satisfies

sup
h∈Ik̄

∣∣∣∣ ln ρ(h)

lnh−δ
− 1

∣∣∣∣→ 0 as k̄ → +∞

where δ = logbE(M̃2) − logb{[E(M̃)]2} and M̃ has a binomial distribution that takes the

values 2m−1
0 /(m−1

0 + (2−m0)−1) and 2(2−m0)−1/(m−1
0 + (2−m0)−1) with probability 1/2.

5Early work includes Admati and Pfleiderer (1988) and Easley and O’Hara (1992). Surveys include
O’Hara (1995), Hasbrouck (2007) and Vives (2008).
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Proof The proposition is a direct consequence of results in Calvet and Fisher (2008), as

follows. First note that we can define the mean-duration process

φi =
1

λi
=

1

λ

k̄∏
k=1

M−1
k,i . (10)

Because Mk,i is a two state Markov process that takes the values s1 = m0 and s2 = 2−m0

it follows that M−1
k,i is also a two state Markov process that takes the values s−1

1 and s−1
2 .

The mean of M−1
k,i is independent of k given by µ = (s−1

1 + s−1
2 )/2. Now define the mean-one

process M̃k,i = M−1
k,i /µ such that

φi =
µk̄

λ

k̄∏
k=1

M̃k,i, (11)

which highlights that φi is also a Markov-switching multi-fractal process. The autocovari-

ances of φi are not affected by the factor µk̄/λ. Thus, with this transformation the MSMD du-

ration process di = φεi has effectively the same probabilistic structure as the squared return

process r2
t in Calvet and Fisher (2008), and the long-memory property of the durations follows

from their Proposition 1. Q.E.D.

As shown in Proposition 1, the overlaid Markov-switching processes in the MSMD model

truly generate long memory in durations.6 The MSMD long memory is reminiscent of well-

known earlier results showing that long memory is obtained by aggregating short-memory

processes of differing persistence. Those results include both aggregation of simple AR(1)

processes in discrete time as in Granger (1980) and aggregation of Ornstein-Uhlenbeck pro-

cesses in continuous time as in Cox (1981).7 Moreover, although the long memory arising in

such environments is a limiting result as the number of component processes grows (k̄ →∞
in the case of MSMD), authors such as Alizadeh, Brandt, and Diebold (2002) have argued

that that the limiting result holds quickly. Hence only a few components should be needed

to approximate long memory accurately.
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Figure 5: Latent Intensity Component Renewal Probabilities. We show the renewal

probabilities (γk = 1 − (1 − γk̄)b
k−k̄

) associated with the latent intensity components (Mk), k = 3, ..., 7.

We calibrate the MSMD model with k̄ = 7, and with parameters that match our subsequently-reported

estimates for Citigroup.

3.3 An Illustrative Simulation

To build insight we provide an illustrative simulation of the MSMD model. We calibrate the

parameters to our later-obtained estimates for Citigroup (m0 = 1.23, λ = 1.17, γk̄ = 0.18,

b = 4.52), and we use k̄ = 7, which emerges as widely adequate in our subsequent empirical

work.

In Figure 5 we show the renewal probabilities γk implied by our choices of γk̄, k̄ and b

(recall that γk = 1 − (1 − γk̄)
bk−k̄

), for k = 3, ..., 7. For smaller values of k, the renewal

probabilities are very small and increasing only slowly, but they increase quickly starting

around k = 5, reaching 0.18 when k = k̄ = 7.

In Figure 6 we show time series of simulated latent intensity components M1,i, ..., M7,i,

overall latent intensities λi, and durations di. Despite the sample of length greater than

22,000 (again chosen to match our subsequent empirical work), the switching probabilities

of M1 and M2 are so low that they never switch regime. Switching begins with M3 and

increases in frequency as we approach the highest-frequency component M7, which switches

very often. The resulting overall intensity and duration series are very highly persistent,

6In this regard the MSMD environment with k̄ →∞ is very different from the simple two-state Markov-
switching environment studied by Diebold and Inoue (2001), who show in that environment how short-
memory dynamics can be mis-diagnosed as long-memory.

7See also Corsi (2009).
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Figure 6: Time-series plots of simulated M1,i, ..., M7,i, λi, and di. We show simulated

sample paths for an MSMD model with sample size (N = 22, 988) and parameters calibrated to match our

subsequently-reported estimates for Citigroup.

with episodes of clustering visually apparent in the time series plots at the bottom of Figure

6.

In Figure 7 we show an exponential QQ plot of the simulated durations. It clearly

indicates a longer right tail than exponential, consistent with overdispersion. Indeed the

exponential Kolmogorov-Smirnov statistic has a p-value less than 2.2e-16.

In Figure 8 we show the sample autocorrelation function of the simulated durations, which

makes clear that they are more than just highly-persistent but short-memory; instead, their

slow hyperbolic decay indicates long memory.

13



Figure 7: QQ Plot, Simulated Durations. We show a QQ plot for a simulated duration sam-

ple path for an MSMD model with sample size (N = 22, 988) and parameters calibrated to match our

subsequently-reported estimates for Citigroup.

3.4 MSMD, Point Process Theory, and Time Deformation

We now relate situate the MSMD approach within the broader framework of general point

process theory.8 We focus not on the Markov-switching multi-fractal process for λi, as we

have discussed it previously and will return to it subsequently. Rather, we step back for

a moment to consider the broader background associated with our parameterizing the the

conditional intensity in a mixture-of-exponentials representation.

Formally, a point process (PP) on (0,∞) is a sequence of nonnegative random variables

{Ti(ω)}i∈1,2,... defined on a probability space (Ω, F, P ), satisfying 0 < T1(ω) < T2(ω) < · · · ,
where Ti is the instant of the i-th occurrence of an event. A PP is associated with a counting

process, N(t, ω), where N(t, ω) =
∑

i≥1 1(Ti(ω) ≤ t) is the number of events up to and

including time t. Under suitable regularity conditions the PP can be characterized by a

stochastic intensity λ(t, ω). The heuristic interpretation of the process λ(t, ω) is that of a

conditional hazard function:

λ(t, ω) = lim
∆t↓0

(
1

∆t
P [N(t+ ∆t, ω)−N(t, ω) = 1 | Ft−]

)
, (12)

where Ft− is a sub-sigma field of F and can be intuitively interpreted as information available

at time t−. Conditional on Ft− information, the intensity λ(t, ω) is non-stochastic, which is

8Throughout this subsection we only provide a brief heuristic discussion. For a more rigorous and complete
treatment, see for example see Karr (1991) and Daley and Vere-Jones (2003, 2007).
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Figure 8: Sample Autocorrelation Function, Simulated Durations. We show the sample

autocorrelation function for a simulated sample path from an MSMD model with sample size (N = 22, 988)

and parameters calibrated to match our subsequently-reported estimates for Citigroup.

why we will drop the ω argument subsequently.

On can interpret a PP as a dynamic, uncountable set of independent Bernoulli trials,

one for each t. If we observe the process over the interval (0, T ] then the probability of

“successes,” i.e. observing trades in the context of our application, at times t1, . . . , tn is

given by
∏n

i=1 λ(ti). Likewise, the probability of no successes in the interval (ti−1, ti) is given

by exp[−
∫ ti
ti−1

λ(t)dt]. Combining these two expressions, we deduce that the probability of

events at and only at times t1, . . . , tn is

p(t1, . . . , tn|λ(·)) =
n∏
i=1

(
λ(ti) exp

[
−
∫ ti

ti−1

λ(t)dt

])
. (13)

Suppose that λ(t) is constant on the interval [ti−1, ti) and denote its value by λi. Moreover,

let di = ti − ti−1. Then we can rewrite the probability as

p(t1, . . . , tn|λ(·)) =
n∏
i=1

(λi exp [−λidi]) , (14)

which exactly corresponds to the mixture-of-exponentials specification (1).

Interestingly, the MSMD mixture-of-exponential representation can also be motivated

using a time-deformation argument. Provided that the stochastic intensity λ(t, ω) exists

and satisfies the condition
∫∞

0
λ(t, ω) = ∞ almost surely, meaning that one always expects

more trades in the context of our application, one can define the (stochastic) stopping time

τ(t, ω) as the (unique) solution to
∫ τ(t,ω)

0
λ(s, ω)ds = t. It turns out that the process Ñ(t, ω)

defined by Ñ(t, ω) = N(τ(t, ω), ω) is a standard Poisson process with intensity one. As a
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consequence the random variables ei(ω) =
∫ Ti(ω)

Ti−1(ω)
λ(t, ω)dt are iid Exp(1). If the intensity is

constant between events as assumed in the MSMD model, we again obtain diλi ∼ iidExp(1)

as in (1).

3.5 On the Comparative Structure of MSMD and Other Inter-

Trade Duration Models

Duration dynamics and volatility dynamics are by necessity intimately related. In particular,

we have noted the close link between the Markov-switching multi-fractal duration (MSMD)

model and the pioneering Calvet-Fisher Markov-switching multi-fractal volatility (MSMV)

model. But MSMD is not, of course, the first or only dynamic duration model, just as MSMV

is not the first or only dynamic volatility model. Here, therefore, we contrast MSMD to some

obvious competing dynamic duration models. We organize our discussion along four lines:

mean intensity vs. mean duration models, parameter-driven vs. observation-driven models,

long-memory vs. short-memory models, and “structural” vs. “reduced-form” long memory

models. Throughout, we use the popular autoregressive conditional duration (ACD) model

as an anchoring benchmark.9

Mean Intensity vs. Mean Duration. The ACD model of Engle and Russell (1998),

which is parameterized in terms of the conditional mean duration, was the key breakthrough

in modeling financial market inter-trade durations, and many varieties of ACD models now

exist. The “multiplicative error model” (MEM) originally suggested by Engle (2002) is

closely related; indeed ACD is a special case of MEM.10 ACD/MEM assumes that

di = ϕiεi, (15)

where ϕi = E(di|di−1, ..., d1) and εi ∼ iid(1, σ2), and it focuses on parameterizing the

conditional mean duration, ϕi. We have shown in section 3.2, however, that the MSMD

mean-intensity model can be easily re-written as a mean-duration model where the mean

duration follows a Markov-switching process. Hence the mean-intensity and mean-duration

approaches are evidently more similar than might appear at first glance.

Parameter-Driven vs. Observation-Driven. A key difference between ACD/MEM and

MSMD concerns “observation-driven” vs. “parameter-driven” structure. In the parlance of

9Hautsch (2012) provides a fine overview of much of the relevant literature on financial duration modeling.
10The MEM literature has also grown impressively; see, for example, Brownlees, Cipollini, and Gallo

(2012) and Hautsch (2012).
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Cox (1981), a model is observation-driven if conditional dynamics are driven by the history of

observables (as for example in traditional ARCH volatility models), whereas it is parameter-

driven if conditional dynamics are driven by the history of a latent variable (as for example

in traditional stochastic volatility models).

The ACD model, as well as the important score-driven MEM extensions emphasized

by Creal, Koopman, and Lucas (2010) and Harvey (2011), are clearly and intrinsically

observation-driven. Their construction precisely parallels the ARCH model, which is also

observation-driven. The motivating recognition is that the likelihood may always be factored

into a product of conditional densities, where the conditioning is on observed historical data,

so that if one specifies a model directly in terms of those conditional densities then likelihood

evaluation is immediate and simple.

In contrast, the MSMD model is parameter-driven, as the evolution of the mean intensity

follows a hidden Markov process. Rich MSMD duration dynamics arise from the large MSMD

state space (recall that λi can take 2k̄ distinct values). Simultaneously, however, MSMD is

parsimonious. In addition to k̄, which determines the total number of duration states,

MSMD uses only two parameters, namely b and γk̄, to determine the transition probabilities

in this high-dimensional state-space. However, as we discuss below in section 4.3, likelihood

evaluation is a bit more challenging (although still simple) for parameter-driven MSMD than

for observation-driven ACD/MEM. In particular, MSMD likelihood evaluation requires use

of a nonlinear filter as in Hamilton (1989).

The MSMD model is of course not the first parameter-driven duration model. For exam-

ple, the Stochastic Conditional Duration (SCD) model of Bauwens and Veredas (2004), spec-

ifies the log expected duration (lnϕi in the notation of (15)) as an autoregressive process.11

Hence if ACD is the duration analogue of the GARCH model, then SCD is the duration ana-

logue of the stochastic volatility model. Finally, Hautsch (2008) combines parameter-driven

and observation-driven dynamics in a so-called stochastic ACD model.

Long-Memory vs. Short-Memory. Another key difference between ACD/MEM (as

typically implemented) and MSMD concerns long memory. Before considering transactions-

time durations, first consider calendar-time volatility. The volatility literature features long

memory prominently. For example, long memory is routinely found and modeled in realized

volatility calculated using intra-day data, as for example in Andersen, Bollerslev, Diebold,

and Labys (2003). Indeed long memory features prominently even in the “conventional”

stochastic volatility literature without intra-day data, as for example in the pioneering work

11Meddahi, Renault, and Werker (1998) also propose an interesting and closely-related model.
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of Comte and Renault (1998) and Breidt, Crato, and De Lima (1998).

Now consider durations. The existing inter-trade dynamic duration modeling literature

that began with Engle and Russell (1998) is of course aware of high persistence in inter-

trade duration dynamics, and it works hard to capture that persistence. But given the close

relationship between duration dynamics and volatility dynamics (and again, the routine

finding of long memory in volatility dynamics), as well as the direct and model-free empirical

evidence of long memory in inter-trade durations presented in section 2.3, long memory has

been curiously absent from most of the duration literature. Two notable exceptions are the

fractionally integrated ACD model of Jasiak (1999) (FI-ACD) and the long memory version

of the SCD model proposed by Deo, Hsieh, and Hurvich (2010). MSMD is firmly in this

long-memory camp.

Structural vs. Reduced-Form Long Memory.

The MSMD model’s long-memory durations have an appealing structural flavor; that is,

MSMD provides a natural long-memory duration generating mechanism by overlaying simple

regime-switching processes with different degrees of persistence, potentially corresponding to

market activity of different types of informed and uninformed traders. The regime-switching

MSMD intensity components in turn parallel earlier two-state regime-switching models in

the tradition of Hamilton (1989).

The structural long memory model of MSMD contrasts to “reduced-form” long memory

model of Granger and Joyeux (1980). That approach works directly with representations of

the form (1 − L)dyt = xt, where xt is a short-memory process, and 0 < d < 1/2, with the

fractional differencing operator (1− L)d defined via the expansion

(1− L)d = 1− dL+
d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 + ...

Such a series is said to be (fractionally-) integrated of order d, and we write yt ∼ I(d).

From the reduced-form perspective, all shocks have identical hyperbolically-decaying ef-

fects. That is the case, for example, with the reduced-form long-memory duration models

of Jasiak (1999) and Deo, Hsieh, and Hurvich (2010). An attractive feature of MSMD,

however, is its decomposition of reduced-form long memory into structural short-memory

pieces coming from underlying cyclical variation at different frequencies, which again may

correspond to market activity of different groups of informed and uninformed traders.
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Symbol Company Name Symbol Company Name

AA ALCOA ABT Abbott Laboratories
AXP American Express BA Boeing
BAC Bank of America C Citigroup
CSCO Cisco Systems DELL Dell
DOW Dow Chemical F Ford Motor
GE General Electric HD Home Depot
IBM IBM INTC Intel
JNJ Johnson & Johnson KO Coca-Cola
MCD McDonald’s MRK Merck
MSFT Microsoft QCOM Qualcomm
T AT&T TXN Texas Instruments
WFC Wells Fargo WMT Wal-Mart
XRX Xerox

Table 1: Twenty-Five U.S. Equities: Ticker symbols and company names. We show
twenty-five stocks selected randomly from the U.S. S&P 100 Index, ordered alphabetically.

4 Empirical Analysis of U.S. Equities

Here we apply the MSMD model to twenty-five U.S. equities selected randomly from those

in the S&P 100 index. We study consolidated trade data extracted from the TAQ database.

The sample period covers twenty trading days, from February 1, 1993 to February 26, 1993,

10:00 - 16:00.12 Here in the main text we summarize graphically the results for all firms

collectively, and we provide details for Citigroup, whose results are typical. In the appendices

we provide details for all firms individually. We list the firms and their ticker symbols in

Table 1.

4.1 Intra-Day Calendar Effects

Just as with intra-day volatility in calendar time, durations display intra-day calendar ef-

fects. In particular, inter-trade durations tend to be shorter early and late in the day, and

longer around lunch. Although the calendar effects are mild, they are nevertheless desirably

removed prior to analysis. We do so using a simple deterministic dummv variable approach,

as in Ghysels, Gourièroux, and Jasiak (2004). We divide the trading day into half-hour

12Trading also occurs 09:30-10:00, but following standard procedure (e.g., Engle and Russell (1998)), we
delete transactions in 09:30-10:00 to remove effects of the opening auction.
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Figure 9: Intra-Day Duration Calendar Effect Profile Bundle. We plot estimated time-

of-day effects for each firm for twelve half-hour intervals, 10:00am-4:00pm. The bold profile is Citigroup.

periods, and we form the associated indicator variables,

xki =

{
1, if i ∈ k
0, otherwise,

k = 1, ..., 12. Then we estimate of the logarithmic dummy-variable regression,

log di =
12∑
k=1

akxki + εi = a′xi + εi.

The estimated coefficients are the estimated calendar effects. We graph them for all firms

in Figure 9; that is, we provide a “profile bundle” in the terminology of Gallant, Rossi, and

Tauchen (1993).13 Finally, we form the adjusted duration series as

d̂i = di exp(−â′xi).

From this point onward, we use such adjusted durations exclusively, but in slight abuse of

notation we use di instead of d̂i to refer to our observations.

13In addition, we provide numerical details in Appendix A.
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Figure 10: Firm-by-Firm Duration Distributions (Box-and-Whisker Plots). The

box bottom is the 25th percentile, the box top is the 75th percentile, and the median is in between. The

“whiskers” extend 1.5 interquartile ranges above and below the box, or to the edge of the data, whichever

comes first.

4.2 Descriptive Statistics for Adjusted Durations

In Figure 10 we summarize the duration distributions for the twenty-five stocks using box-

and-whisker plots, with Citigroup labeled. All show long right tails indicative of overdisper-

sion. This is confirmed in Figure 11, in which we show a histogram of coefficients of variation

(the standard deviation relative to the mean), for all twenty-five stocks. All are greater than

one, and the distribution has a long right tail.14 In Figure 12 we focus on dynamics rather

than distributions, showing a profile bundle of sample autocorrelation functions (to displace-

ment 200) for all twenty-five firms. The slow hyperbolic decay is apparent.

4.3 Maximum Likelihood Estimation

Prior to obtaining maximum-likelihood estimates, we first discuss here the likelihood function

for a sequence of durations d1:n = {d1, . . . , dn} governed by the MSMD model. By conditional

factorization of the joint density, the likelihood is immediately

p(d1:n|θk̄) = p(d1|θk̄)
n∏
i=2

p(di|d1:i−1, θk̄). (16)

14For reference, the arrow indicates Citigroup in that histogram and all subsequent histograms.
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Figure 11: Distribution of Duration Coefficients of Variation Across Firms. We

show a histogram of coefficients of variation (the standard deviation relative to the mean), as a measure of

overdispersion relative to the exponential.

Conditional on λi, each duration di simply has an Exp(λi) distribution with density p(di|λi) =

λiexp[−λidi], so evaluation of the likelihood would be trivial if the sequence of λi’s were

known. But the λi’s are of course not known and must be replaced with estimates from

an optimal filter as in Hamilton (1989), the only difference being that the MSMD model

has 2k̄ states rather than Hamilton’s 2 state. To streamline the exposition we focus on the

case of k̄ = 2, for a total of 4 states; generalization to k̄ > 2 is obvious but notationally

tedious. Recall that we abbreviated the potential values of the states Mk,i by s1 = m0 and

s2 = 2 −m0. Using this notation, λi can take four values, λi ∈ {λs1s1, λs1s2, λs2s1, λs2s2}.
Because the states Mk,i evolve independently, the matrix of transition probabilities for the

mean intensity is simply Pλ = P(γ1)⊗ P(γ2), where ⊗ denotes the Kronecker product and

P(γk) was defined in (5). In slight abuse of notation, we characterize the distribution of

λi through densities p(λi|·). Then we evaluate the likelihood recursively. First we initialize

the hidden states with their equilibrium distribution in period i = 0. Then starting from

p(λi−1|d1:i−1, θk̄) we obtain the i’th point likelihood by evaluating conditional distribution

p(λi|d1:i−1, θk̄) (forecast of the mean intensity), then p(di|d1:i−1, θk̄) (forecast of the duration),

and then finally the desired p(λi|d1:i, θk̄) (updating).

As discussed in Section 3.1, the MSMD model is a hidden Markov model. Its parameter

vector is given by θk̄ = (λ, γk̄, b,m0)′ and the number of states is 2k̄. Hence k̄ can be

viewed as a model index, and we will use the notation Mj to denote a MSMD model with
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Figure 12: Duration Autocorrelations Function Profile Bundle. For each firm, we show

the sample autocorrelation function of inter-trade durations between 10:00am and 4:00pm during February

1993, adjusted for calendar effects. The bold profile is Citigroup.

k̄ = j. While k̄ affects the number of hidden states in the MSMD model, it does not alter

the dimensionality of the parameter vector θk̄. In this sense the MSMD model remains

parsimonious even if k̄ is large.

Models Mj and Ml, j ≤ l are essentially non-nested. For instance, consider M1 versus

M2. For model M1 the intensity can take the values λi ∈ {λ1m0,1, λ1(2 −m0,1)}, whereas

the forM2 the intensity switches among λi ∈ {λ2m
2
0,2, λ2m0,2(2−m0,2), λ2m

2
0,2}. Recall that

the sequence {γk}k̄k=1 that determines the transition probabilities P(γk) of the k’th intensity

component Mk,i is given by

γk = 1− (1− γk̄)b
k−k̄

.

This restriction ensures that M1 and M2 are only nested if either b = 1 and γk̄ = 1 or

m0 = 1. The first case is explicitly excluded from the parameter space and the second case

turned out to be empirically irrelevant.

We estimate the parameter vector θk̄ of model Mk̄ by maximizing the log likelihood

function: θ̂k̄ = argmaxθk̄∈Θ ln p(d1:n|θk̄,Mk̄) using the adjusted durations. The MSMD

model potentially suffers from the following identification problems. For γk̄ = 1 the decay

parameter b is non-identifiable. While we exclude γk̄ = 1 from the parameter space – recall

that γk̄ ∈ (0, 1) – the decay parameter becomes weakly identified near the upper bound for

γk̄. As b approaches its lower bound of one, the sequence {γk}k̄k=1 approaches a sequence

of constants. In the limit, the intensity components Mk,i become exchangeable. Finally, if
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Figure 13: m̂0, λ̂, b̂ and γ̂ k̄ Profile Bundles. For each firm, we show maximum likelihood

parameter estimates as a function of k̄, for k̄ = 3, ..., 7. The bold profiles are Citigroup.

m0 ∈ (0, 2] equals one, then the intensity components are identical across states and neither

b nor γk̄ are identifiable.

We implement the maximum-likelihood estimation in MATLAB using the fmincon func-

tion to carry out a constrained maximization. After some experimentation we selected the

interior-point option of the optimization algorithm. The empirically relevant bound on the

parameters turns out to be γk̄ < 1, which we enforce by supplying the fmincon function

with an upper bound of 0.999 for γk̄. The identification problems associated with b = 1 and

m0 = 1 did not turn out to be empirically relevant. For each estimation, we explore a grid

of starting values for the minimization routine. The computational time is increasing in 2k̄.

For instance, for k̄ = 10 the state transition matrix is a 1024 × 1024 matrix that needs to

be re-calculated for every evaluation of the likelihood function. Moreover, the filter has to

track probabilities for 1024 states. Fortunately, however, such high k̄ values are empirically

unnecessary, as we now show.

4.4 Parameter Estimates

We proceed as follows. First we discuss profile bundles for each estimated parameter (that

is, parameter estimates as a function of k̄, for each firm). Second, we discuss profile bundles

for maximized likelihoods as a function of k̄, which generally indicate that k̄ = 7 is adequate.

Third, given the general adequacy of k̄ = 7, we discuss parameter distributions across firms

conditional on k̄ = 7. In keeping with our running Citigroup example, we highlight Citigroup

results throughout. We present detailed estimation results in Appendix C.

First, consider the parameter estimate profile bundles in Figure 13. Citigroup’s m0

estimates are robust and slightly decreasing across k̄, with m̂0 = 1.33, ..., 1.23 for k̄ = 3, ..., 7,

respectively. The entire profile bundle of m0 estimates behaves similarly. Citigroup’s λ
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Figure 14: Log-Likelihood-Differential Profile Bundle. We show log-likelihood differentials

for all firms as a function of k̄, with respect to the value for k̄ = 7, which is therefore identically equal to 0.

The bold profile is Citigroup.

estimates are rather stable in k̄, but there is a noticeable increase when moving from k̄ = 6

to k̄ = 7, with λ̂0 = 0.79, 0.98, 0.88, 0.70, 1.17 for k̄ = 3, ..., 7, respectively. Most firms’

λ̂ profiles are quite stable, but a few are noticeably “bumpy.” Citigroup’s b estimates are

monotonically decreasing in k̄, with b̂ = 14.22, ..., 4.52 for k̄ = 3, ..., 7, respectively. Most

firms’ b̂ profiles are stable or slightly decreasing in k̄. Citigroup’s γk̄ are quite stable in k̄

with, for example, γ̂k̄ = 0.18, 0.18, 0.18 for k̄ = 5, 6, 7, respectively. As for the profile bundle

of γk̄ estimates, recall that γk̄ is the renewal probability of the most frequently-renewing

latent intensity component. Interestingly, the profile bundles separate rather neatly into

“high” and “low” groups.

Now we focus on profile bundles of maximized log likelihood functions ln p(d1:n|θ̂k̄,Mk̄),

which we show in Figure 14. In particular, we show log likelihood differentials with respect

to k̄ = 7, which is therefore identically equal to 0, and moreover, a profile increasing in k̄

corresponds to a likelihood increasing in k̄. Most profiles increase in k̄ and level off quickly,

around k̄ = 4; a few are basically flat in k̄. While the largest log-likelihood differential is

-85, most of the differentials are less than 10 in absolute value. Since the model complexity,

i.e. number of parameters, does not increase with k̄ the log-likelihood differentials may be

interpreted as log-posterior odds. It is rare that the log-likelihood differential is positive and

if it is the evidence in favor of k̄ < 7 tends to be small. The Citigroup profile fits the general

pattern, increasing from k̄ = 3 to k̄ = 4, and then staying roughly constant.

25



m0

C
ou

nt

1.2 1.3 1.4 1.5

0
2

4
6

8
10

12

b

C
ou

nt

0 5 10 15 20 25 30

0
2

4
6

8
10

12

λ

C
ou

nt

1 2 3 4

0
2

4
6

8
10

γk

C
ou

nt

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12
14

Figure 15: Distributions of MSMD Parameter Estimates Across Firms, k̄ = 7. We

show histograms of maximum likelihood parameter estimates across firms, obtained using k̄ = 7. The arrow

denotes Citigroup.

Given the log likelihood results, we now focus exclusively on k̄ = 7 and consider cross-

firm distributions of parameter estimates, as summarized in Figure 15. The distribution of

m0 estimates is skewed, with most estimates around roughly 1.25, but some as high as 1.4 or

even 1.5. The distribution of λ estimates is quite dispersed, with some estimates greater than

1 and some less. Most firms’ λ̂ are less than or near 1, but there is again a long right tail.

The distribution of b estimates is yet again right-skewed, with a mode in the neighborhood of

7. The distribution of γk̄ estimates, in contrast, is strongly bimodal, with a low “low mode”

(near 0) and a high “high mode” (near 1), corresponding to the earlier-discussed separation

of γk̄ profile bundles into “high” and “low” groups.

In Figure 16 we assemble the information in the various parameter estimates in an infor-

mative way. We show latent intensity component (Mk) renewal probability profile bundles,

estimated using k̄ = 7. That is, for each firm we show γk = 1 − (1 − γk̄)b
k−k̄

as a function

of k, k = 3, ..., 7, where k̄ = 7.15 Because the estimated b tends to be substantially larger

than 1 for all firms, bk−k̄ is close to zero for small values of k and all profiles have similarly

small γk’s for k ≤ 3. But as k grows, a clear bifurcation emerges, with roughly half the

profiles rising only slowly, and half rising much more quickly toward 1. Citigroup is one of

the “slowly-rising” firms, with γk rising from approximately 0 to .18 for as k goes from 3 to

7, meaning that its inter-trade durations are quite persistent.

15Recall that 1− γk corresponds to the eigenvalue of the transition probability matrix P(γk) that governs
the persistence of the intensity component Mk. Thus, firms for which γk stays close to zero have very
persistent inter-trade durations.
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Figure 16: Estimated Intensity Component Renewal Probability Profile Bundle.
The bold profile is Citigroup.

4.5 Absolute and Relative MSMD Performance

We now examine the performance of the estimated MSMD model, considering absolute fit

as well as measures of relative fit and forecasting performance. We assess absolute per-

formance of the MSMD model using White’s information matrix test, and we assess per-

formance relative to the leading ACD(1,1) competitor using Bayesian information criterion

(BIC) differentials as well as pseudo-out-of-sample root-mean-squared forecast error (RMSE)

differentials.16

White’s Information-Matrix Test for MSMD(7).

Given the mixture-of-exponentials structure of the MSMD model, we could presumably

construct specification tests based on the residual ε̂i = diλ̂i, assessing whether the residuals

are iid exponential after accounting for the fact that the residual is based on the estimate

λ̂i rather than the true λi.
17 Instead we take a different and general approach, performing

the information matrix (IM) test of White (1982), which is a generic specification test for

models estimated by MLE.

White (1982)’s IM test was originally developed for models with iid observations. Ex-

tensions to time series models are discussed, for instance, in White (1994). In the context of

16We consider the ACD(1,1) model because it is a widely-used benchmark in the literature. We chose the
ubiquitous (1,1) specification based on preliminary empirical investigation.

17In fact, such tests have a long tradition in the specification analysis of point process models that rely on
the time-deformation result discussed in Section 3.4 (e.g., Ogata (1988)).
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Figure 17: White Statistic p-Value Profile Bundle. The bold profile is Citigroup. For visual

reference we include a horizontal line at p=0.05.

a time series model, IM tests focus on two properties of a correctly specified model. The so-

called dynamic first-order IM tests assess whether the score process is serially uncorrelated.

Under correct specification, the score process should be a martingale difference sequence.

The so-called second-order IM tests mimic White (1982)’s test for iid data and assess the

large-sample equivalence of the Hessian and the outer product of scores.

We report p-values for a second-order IM test (see White (1994, Section 11.1). We use all

10 non-redundant elements of the information matrix to form the test statistic White. Under

the null hypothesis of correct specification the limit distribution takes the form White ∼ χ2
10.

In Figure 17 we show the profile bundle of White statistic p-values. There is rather wide

variation, but there is also a clear pattern of increase in White statistics with k̄. Indeed

for the preferred value of k̄ = 7, almost none of the twenty-five p-values are less than 0.05.

Thus the second-order IM test generally reveals little or no evidence in the data against our

preferred MSMD specification.

Bayesian Information Criterion for MSMD(7) vs. ACD(1,1). We now consider the

performance of MSMD(7) relative to the canonical ACD(1,1) model. The ACD(1,1) model

is

di = ϕiεi (17)

ϕi = ω + αdi−1 + βϕi−1

εi ∼ iidExp(1)
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Figure 18: Distribution of Differences in BIC Values Across Firms, γ k̄ = 7. We

compute differences as MSMD - ACD. We show a histogram.

The ACD(1,1) has three parameters whereas our MSMD(7) model has four parameters. We

estimate both models by maximum likelihood and use the Bayesian information criterion,

BIC = −2 lnL+ k ln(n), to adjust the maximized likelihood function for model complexity,

that is, the number of estimated parameters.18 In Figure 18 we show the distribution of BIC

differences (BICMSMD−BICACD). The differences are typically large, and the distribution

is centered around 600. For Citigroup the BIC differential is 200. To put the number into

perspective consider the following back-of-the-envelope calculation. The sample consists of

22,988 observations. Dividing the differential by the number of observations yields 0.013.

Thus, from a Bayesian perspective, on average each duration observation shifts the odds in

favor of the MSMD model by a factor of 1.013. Thus, while each individual observation

only provides weak evidence in favor of our specification, the nearly 23,000 observations in

combination provide overwhelming evidence in favor of the MSMD model.

Out-of-Sample Forecasting for MSMD(7) vs. ACD(1,1). BIC is an asymptotic

approximation of a Bayesian marginal data density, which in turn can be interpreted as

a measure of one-step-ahead predictive performance.19 We now conduct a pseudo-out-of-

18For ease of interpretation and comparability to the maximized log likelihoods reported in Appendix C
and Figure 18, we multiply the BIC by -1/2, which converts it to BIC = lnL−k ln(n)/2; that is, maximized
log likelihood less a degrees-of-freedom penalty. Hence our BIC is in “log likelihood units,” so that “bigger
is better.”

19The marginal data density is defined as p(d1:n) =
∫
p(d1:n|θ)dθ and its logarithm can be decomposed

as p(d1:n) =
∑

lnn
i=1 p(di|d1:i−1) =

∑
lnn

i=1

∫
p(di|d1:i−1, θ)p(θ|d1:i−1)dθ. Here

∫
p(di|d1:i−1, θ)p(θ|d1:i−1)dθ

can be viewed as score for a one-step-ahead forecast of di based on information about d1:i−1.
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sample forecasting experiment and directly compute RMSEs for one-step-ahead as well as

multi-step-ahead forecasts. Because our sample is large, we do not re-estimate the parameters

of the MSMD and the ACD model for each forecast origin. Instead we simply estimate the

models based on an initial sample d1:n0 and then keep the parameter estimates fixed for the

subsequent forecast origins i = n0 + 1, . . . , n. For more than half of the stocks we have more

than 11,000 inter-trade durations. In this case we choose n0 = 10, 0000. For all other stocks

we choose n0 such that n − n0 > 1, 000. Thus, the forecast evaluations are based on more

than 1,000 forecasts for all stocks. The shortest estimation sample consists of n0 = 1, 000

observations. Detailed information in n and n0 for each stock is provided in the Appendix.

Under the quadratic loss function implicit in the RMSE criterion, the best predictor

is the conditional mean. For the ACD model we simply iterate the expression for ϕi,

which represents the expected duration, forward using (17). The forecasting procedure for

the MSMD model is slightly more complicated. Using our filter, we construct a posterior

(based on the information available at the forecast origin n∗) for the intensity components:

p(M1,n0 , . . . ,Mk̄,n0
|θ̂, d1:n∗). We then use the transition matrices P(γ̂k) to forecast the inten-

sity components and compute the expected duration.

We summarize the results in Figure 19. The three panels show histograms of RMSE

differences (MSMD(7) - ACD(1,1)) at forecast horizons h = 1, h = 5, and h = 20. For each

horizon we are forecasting the duration dn∗+h, which is the duration between trade n∗+h−1

and n∗ + h (as opposed to the duration between trade n∗ and n∗ + h). For Citigroup the

RMSE differentials are −0.02, −2.50, and −2.00, respectively. Across stocks, the one-step-

ahead forecasting performances of the MSMD and ACD models are comparable, and most of

the differentials are close to zero. However, for five-step-ahead and 20-step-ahead forecasting

the MSMD model dominates the ACD model for all 25 stocks. The forecasting gain from

using MSMD is huge. For instance, for Citigroup the RMSE reduction is about 50%, clearly

illustrating the benefits of MSMD’s more-accurate approximation to longer-run dynamics.

5 Summary and Concluding Remarks

The inter-trade duration is an important and natural measure of market liquidity, and its

variability is related to liquidity risk. In this paper, we proposed a new Markov-switching

multi-fractal (MSMD) model of inter-trade durations. MSMD is a parameter-driven long-

memory model of conditional intensity dynamics, with the long memory driven by structural

markov-switching components. The popular standard ACD duration model neglects al+l of
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Figure 19: Distribution of Differences in RMSE Across Firms. Differences are computed

as MSMD - ACD.

those features. A few other notable duration models such as SCD have featured them in

isolation or in smaller assemblies, but none have featured them all. MSMD does so in a

simple and parsimonious fashion, successfully capturing the key features of financial market

inter-trade durations: long-memory dynamics and over-dispersed distributions. Both model

selection criteria and out-of-sample forecast comparisons strongly favor MSMD relative to

ACD. We leave it for future research to explore multivariate extensions and specifications

tailored to confront the massive trade counts observed in recent years.
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Ghysels, E., C. Gourièroux, and J. Jasiak (2004): “Stochastic Volatility Duration

Models,” Journal of Econometrics, 119, 413–433.

Granger, C., and R. Joyeux (1980): “An Introduction to Long-Memory Time Series

Models and Fractional Differencing,” Journal of time series analysis, 1, 15–29.

Granger, C. W. J. (1980): “Long Memory Relationships and the Aggregation of Dynamic

Models,” Journal of Econometrics, 14, 227–238.

Hamilton, J. (1989): “A New Approach to the Economic Analysis of Nonstationary Time

Series and the Business Cycle,” Econometrica, 57, 357–384.

Harvey, A. (2011): “Exponential Conditional Volatility Models,” Manuscript, University

of Cambridge.

Hasbrouck, J. (2007): Empirical Market Microstructure, Oxford University Press.

33



Hautsch, N. (2008): “Capturing Common Components in High-Frequency Financial Time

Series: A Multivariate Stochastic Multiplicative Error Model,” Journal of Economic Dy-

namics and Control, 32, 3978–4015.

Hautsch, N. (2012): Econometrics of Financial High-Frequency Data. Springer Verlag,

New York, Econometrics of Financial High-Frequency Data, Springer.

Jasiak, J. (1999): “Persistence in Intertrade Durations,” Manuscript, Department of Eco-

nomics, York University.

Karr, A. (1991): Point Processes and their Statistical Inference, Dekker.

Mandelbrot, B. (1997): Fractals and Scaling in Finance: Discontinuity, Concentration,

Risk, Springer.

Mandelbrot, B., A. Fisher, and L. Calvet (1997): “A Multifractal Model of Asset

Returns,” Cowles Foundation Discussion Paper 1164.

Meddahi, N., E. Renault, and B. Werker (1998): “Modeling High-Frequency Data

in Continuous Time,” Manuscript, University of Montreal.

Merton, R. (1980): “On Estimating the Expected Return on the Market: An Exploratory

Investigation,” Journal of Financial Economics, 8, 323–361.

Ogata, Y. (1988): “Statistical Models for Earthquake Occurrences and Residual Analysis

for Point Processes,” Journal of the American Statistical Association, 83, 9–27.

O’Hara, M. (1995): Market Microstructure Theory, Cambridge University Press.

Vives, X. (2008): Information and Learning in Markets: The Impact of Market Microstruc-

ture, Princeton University Press.

White, H. (1982): “Maximum Likelihood Estimation of Misspecified Models,” Economet-

rica, 50, 1–25.

(1994): Estimation Inference and Specification Analysis. New York: Cambridge

University Press.

34



Appendices

(For Web Publication Only)

A Firm-by-Firm Intraday Calendar Effects

Ticker Name â1 â2 â3 â4 â5 â6 â7 â8 â9 â10 â11 â12

AA Alcoa 3.61 3.58 3.64 3.91 4.22 3.90 4.41 4.24 4.02 4.21 4.06 3.70
ABT Abbott Labs 2.38 2.29 2.51 2.51 2.68 2.75 2.56 2.82 2.75 2.65 2.56 2.44
AXP Amex 2.45 2.63 2.79 2.84 2.99 3.10 2.99 3.00 2.93 2.99 3.02 2.82
BA Boeing 2.37 2.43 2.60 2.53 2.59 2.67 2.81 2.85 2.58 2.60 2.60 2.41
BAC B of A 3.11 3.15 3.30 3.38 3.40 3.41 3.34 3.40 3.32 3.12 3.16 3.15
C Citigroup 1.89 1.92 2.02 2.27 2.40 2.37 2.39 2.54 2.40 2.29 2.32 2.13
CSCO Cisco 2.03 1.98 2.39 2.23 2.41 2.54 2.53 2.64 2.59 2.36 2.19 2.31
DELL Dell 1.67 1.79 1.93 1.97 2.23 2.28 2.36 2.28 2.26 2.01 2.13 2.03
DOW Dow 3.20 3.23 3.37 3.34 3.49 3.79 3.61 3.54 3.52 3.43 3.25 3.27
F Ford 2.32 2.32 2.48 2.56 2.62 2.62 2.67 2.66 2.33 2.52 2.49 2.39
GE GE 2.40 2.42 2.59 2.54 2.68 2.79 2.76 2.84 2.85 2.60 2.54 2.47
HD Home Depot 1.80 1.85 1.92 2.08 2.15 2.44 2.15 2.32 2.30 2.32 2.22 2.05
IBM IBM 1.84 1.82 1.88 1.96 2.08 1.95 2.14 2.03 2.16 2.14 2.06 1.96
INTC Intel 1.39 1.41 1.57 1.64 1.75 1.86 1.87 1.89 1.91 1.80 1.85 1.54
JNJ J & J 2.15 2.16 2.20 2.24 2.33 2.45 2.46 2.49 2.43 2.34 2.17 2.13
KO Coca-Cola 2.54 2.50 2.50 2.63 2.78 2.78 2.89 2.93 2.84 2.71 2.61 2.51
MCD McDonald’s 3.26 3.22 3.35 3.41 3.43 3.58 3.52 3.68 3.40 3.34 3.15 3.01
MRK Merck 1.40 1.37 1.40 1.46 1.65 1.65 1.67 1.74 1.65 1.64 1.61 1.43
MSFT Microsoft 1.79 1.89 1.90 1.80 1.94 2.19 2.04 2.19 2.09 1.91 1.97 1.72
QCOM Qualcomm 3.35 3.60 3.64 3.91 3.61 2.26 3.32 3.73 3.97 3.64 3.94 3.25
T AT&T 2.24 2.25 2.20 2.31 2.50 2.43 2.58 2.55 2.55 2.41 2.35 2.28
TXN Texas Inst. 3.42 3.58 3.47 3.57 3.95 3.94 4.04 3.85 3.69 3.67 3.27 3.34
WFC Wells Fargo 3.30 3.55 3.41 3.62 3.78 3.78 3.98 3.90 4.04 4.09 3.75 3.54
WMT Wal-Mart 1.66 1.73 1.82 1.87 1.96 1.98 2.14 2.13 2.05 2.01 1.98 1.85
XRX Xerox 3.89 3.80 3.87 4.06 4.06 4.07 4.14 4.35 4.12 3.98 4.02 3.85

Table 2: Estimated Intraday Calendar Effects, Twenty-Five Firms Randomly Se-
lected From S&P 100. We show estimated coefficients on time-of-day dummies, for half-hour intervals

from 10 AM to 4 PM, for February 1993. We order firms across rows alphabetically.
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B Firm-by-Firm Descriptive Statistics

Ticker Name Mean Med Max Min Std Skew Kurt OD n n0

AA Alcoa 2.66 1.28 39.58 0.01 3.77 3.07 17.09 1.42 2,989 1,000
ABT Abbott Labs 1.86 1.11 26.30 0.06 2.21 2.84 15.89 1.19 16,929 10,000
AXP Amex 2.22 1.17 42.33 0.05 2.93 3.13 19.35 1.32 10,531 9,000
BA Boeing 1.82 1.13 25.00 0.06 2.03 2.50 12.94 1.12 17,111 10,000
BAC B of A 1.97 1.12 27.14 0.03 2.44 2.90 15.69 1.24 7,939 6,000
C Citigroup 1.93 1.01 32.67 0.08 2.63 3.59 22.46 1.36 22,988 1,0000
CSCO Cisco 2.22 1.01 56.30 0.07 3.52 4.53 36.29 1.59 17,963 10,000
DELL Dell 2.13 1.02 76.83 0.09 3.40 5.15 48.30 1.60 24,610 10,000
DOW Dow Chemical 1.96 1.11 37.59 0.02 2.49 3.60 28.03 1.27 6,902 5,000
F Ford 2.18 0.99 49.25 0.07 3.13 3.50 22.48 1.44 15,562 10,000
GE GE 2.03 1.10 27.13 0.06 2.56 2.72 13.85 1.26 14,798 10,000
HD Home Depot 1.97 1.00 38.62 0.09 2.65 3.47 22.28 1.35 25,113 10,000
IBM IBM 1.75 1.06 35.87 0.12 2.03 3.01 19.16 1.16 31,895 10,000
INTC Intel 1.81 1.00 50.38 0.15 2.41 4.17 34.57 1.33 41,957 10,000
JNJ J & J 1.72 1.03 29.56 0.08 2.01 3.10 19.10 1.17 24,208 10,000
KO Coca-Cola 1.82 1.14 26.31 0.05 2.06 2.49 12.47 1.13 15,542 10,000
MCD McDonald’s 1.93 1.15 22.17 0.03 2.26 2.58 12.77 1.17 7,441 6,000
MRK Merck 1.61 0.98 24.66 0.18 1.78 2.95 17.31 1.11 54,242 10,000
MSFT Microsoft 2.01 1.01 53.68 0.11 2.94 4.43 37.43 1.46 29,191 10,000
QCOM Qualcomm 3.09 1.09 201.25 0.02 6.81 10.00 202.57 2.20 4,416 3,000
T AT&T 1.79 1.05 22.78 0.08 2.09 2.62 13.26 1.16 21145 10,000
TXN Texas Inst. 2.56 1.15 55.41 0.02 3.70 3.39 23.54 1.44 4,235 3,000
WFC Wells Fargo 2.47 1.08 78.65 0.02 4.05 5.18 54.37 1.64 4,047 3,000
WMT Wal-Mart 1.77 0.99 31.92 0.12 2.11 2.88 16.23 1.19 33,899 10,000
XRX Xerox 2.50 1.18 31.80 0.01 3.42 2.83 14.62 1.37 2,933 1,000

Table 3: Descriptive Statistics, Twenty-Five Firms Randomly Selected From S&P
100. We show sample mean, median, standard deviation, skewness, kurtosis, over-dispersion (Std/Mean),

sample size n (number of inter-trade durations), and size of estimation sample for pseudo-out-of-sample

forecasting exercise (n0) for inter-trade durations between 10 AM and 4 PM during February 1993. We

order firms across rows alphabetically.
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C Firm-by-Firm Estimation and Forecasting

k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.47 1.47 1.47 1.47 1.47

(0.02) (0.08) (0.02) (0.02) (0.02)

λ̂ 0.83 0.65 1.23 2.35 4.47

(0.06) (0.43) (0.24) (0.40) (0.81)

γ̂k̄ 0.99 0.99 0.99 0.99 0.99

(0.00) (0.00) (0.00) (0.00) (0.00)

b̂ 7.68 13.85 14.72 14.96 15.07

(2.09) (16.68) (4.70) (2.85) (1.34)

lnL -5595.32 -5599.27 -5599.68 -5600.08 -5600.54

White 117.71 25.66 13.76 7.80 8.24

(p=0.00) (p= 0.00) (p= 0.18) (p= 0.65) (p= 0.61)

BIC – – – – 11233.09

1-step RMSE – – – – 4.26

5-step RMSE – – – – 4.33

20-step RMSE – – – – 4.45

ACD Comparison: – – – – –

lnL – – – – -5783.64

BIC – – – – 11591.29

1-step RMSE – – – – 4.05

5-step RMSE – – – – 6.43

20-step RMSE – – – – 5.03

Table 4: Model Estimation and Forecasting: AA. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.29 1.25 1.24 1.21 1.21

(0.01) (0.01) (0.01) (0.01) (0.01)

λ̂ 0.80 0.85 1.08 0.95 0.53

(0.14) (0.07) (0.04) (0.04) (0.02)

γ̂k̄ 0.07 0.13 0.13 0.18 0.17

(0.01) (0.01) (0.02) (0.03) (0.02)

b̂ 13.89 8.53 7.28 4.81 5.24

(1.09) (1.56) (0.72) (0.53) (0.22)

lnL -26342.34 -26329.71 -26326.88 -26324.39 -26328.48

White 39.00 16.39 15.01 21.18 17.70

(p= 0.00) (p= 0.09) (p= 0.13) (p= 0.02) (p= 0.06)

BIC – – – – 52695.91

1-step RMSE – – – – 1.46

5-step RMSE – – – – 1.46

20-step RMSE – – – – 1.48

ACD Comparison: – – – – –

lnL – – – – -26434.75

BIC – – – – 52898.71

1-step RMSE – – – – 1.46

5-step RMSE – – – – 3.10

20-step RMSE – – – – 1.68

Table 5: Model Estimation and Forecasting: ABT. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.38 1.34 1.30 1.31 1.27

(0.48) (0.02) (0.01) (0.01) (0.01)

λ̂ 0.76 0.95 0.87 1.61 0.81

(1.12) (0.26) (0.07) (0.15) (0.04)

γ̂k̄ 0.79 0.94 0.99 0.95 0.99

(0.10) (0.28) (0.00) (0.01) (0.00)

b̂ 30.70 29.10 12.69 20.68 10.24

(0.59) (4.69) (1.62) (0.18) (1.08)

lnL -17888.32 -17844.68 -17835.35 -17843.72 -17829.99

White 29.73 28.11 7.64 19.56 10.16

(p= 0.00) (p= 0.00) (p= 0.66) (p= 0.03) (p= 0.43)

BIC – – – – 35697.03

1-step RMSE – – – – 4.18

5-step RMSE – – – – 4.23

20-step RMSE – – – – 4.31

ACD Comparison: – – – – –

lnL – – – – -18042.24

BIC – – – – 36112.27

1-step RMSE – – – – 4.07

5-step RMSE – – – – 8.00

20-step RMSE – – – – 7.83

Table 6: Model Estimation and Forecasting: AXP. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.30 1.25 1.26 1.24 1.22

(0.05) (0.01) (0.02) (0.01) (0.02)

λ̂ 1.17 1.06 1.63 0.74 0.82

(0.25) (0.05) (0.17) (0.03) (0.09)

γ̂k̄ 0.10 0.28 0.10 0.22 0.26

(0.04) (0.01) (0.03) (0.07) (0.06)

b̂ 26.21 11.86 9.70 10.44 6.77

(26.69) (2.62) (1.47) (1.35) (1.31)

lnL -26717.54 -26712.29 -26714.19 -26705.30 -26703.08

White 26.55 26.13 20.41 18.28 12.83

(p= 0.00) (p= 0.00) (p= 0.03) (p= 0.05) (p= 0.23)

BIC – – – – 53445.15

1-step RMSE – – – – 1.79

5-step RMSE – – – – 1.80

20-step RMSE – – – – 1.83

ACD Comparison: – – – – –

lnL – – – – -26802.11

BIC – – – – 53633.4

1-step RMSE – – – – 1.78

5-step RMSE – – – – 3.69

20-step RMSE – – – – 3.34

Table 7: Model Estimation and Forecasting: BA. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.36 1.31 1.27 1.25 1.23

(0.01) (0.01) (0.01) (0.01) (0.01)

λ̂ 1.16 1.09 1.02 0.93 0.89

(0.06) (0.05) (0.03) (0.05) (0.11)

γ̂k̄ 0.42 0.86 0.99 0.98 0.99

(0.06) (0.25) (0.00) (0.02) (0.00)

b̂ 20.43 11.58 7.76 4.91 3.80

(0.24) (2.07) (0.43) (0.68) (0.33)

lnL -12917.76 -12910.83 -12910.44 -12910.30 -12909.57

White 20.09 11.32 13.26 8.07 11.33

(p=0.03) (p=0.33) (p=0.21) (p=0.62) (p=0.33)

BIC – – – – 25856.52

1-step RMSE – – – – 2.84

5-step RMSE – – – – 2.86

20-step RMSE – – – – 2.87

ACD Comparison: – – – – –

lnL – – – – -13073.60

BIC – – – – 26174.14

1-step RMSE – – – – 2.82

5-step RMSE – – – – 4.97

20-step RMSE – – – – 4.04

Table 8: Model Estimation and Forecasting: BAC. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.33 1.30 1.26 1.26 1.23

(0.02) (0.01) (0.01) (0.01) (0.01)

λ̂ 0.79 0.98 0.88 0.70 1.17

(0.08) (0.03) (0.05) (0.27) (0.10)

γ̂k̄ 0.08 0.10 0.18 0.18 0.18

(0.03) (0.01) (0.02) (0.01) (0.06)

b̂ 14.33 11.06 6.14 6.16 4.52

(11.23) (0.39) (0.55) (2.29) (1.61)

lnL -34872.83 -34844.23 -34850.18 -34850.67 -34845.03

White 25.01 22.89 11.81 13.63 9.12

(p= 0.01) (p= 0.01) (p= 0.30) (p= 0.19) (p= 0.52)

BIC – – – – 69730.23

1-step RMSE – – – – 2.41

5-step RMSE – – – – 2.44

20-step RMSE – – – – 2.50

ACD Comparison: – – – – –

lnL – – – – -35055.65

BIC – – – – 70141.43

1-step RMSE – – – – 2.43

5-step RMSE – – – – 4.94

20-step RMSE – – – – 4.50

Table 9: MSMD Model Estimation and Forecasting: C. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.42 1.37 1.34 1.40 1.29

(0.00) (0.01) (0.08) (0.01) (0.02)

λ̂ 0.73 0.82 0.84 2.74 0.83

(0.03) (0.04) (2.77) (0.17) (0.04)

γ̂k̄ 0.14 0.17 0.19 0.18 0.20

(0.01) (0.02) (0.50) (0.00) (0.02)

b̂ 2.65 2.47 2.02 3.73 1.68

(0.80) (0.34) (1.88) (0.32) (0.08)

lnL -28592.08 -28588.80 -28595.00 -28608.54 -28600.31

White 45.80 43.11 47.90 33.29 36.75

(p=0.00) (p=0.00) (p=0.00) (p=0.00) (p=0.00)

BIC – – – – 57239.8

1-step RMSE – – – – 1.77

5-step RMSE – – – – 1.81

20-step RMSE – – – – 1.86

ACD Comparison: – – – – –

lnL – – – – -29098.61

BIC – – – – 58226.61

1-step RMSE – – – – 1.81

5-step RMSE – – – – 3.24

20-step RMSE – – – – 1.93

Table 10: Model Estimation and Forecasting: CSCO. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.40 1.36 1.37 1.32 1.32

(0.01) (0.01) (0.01) (0.01) (0.02)

λ̂ 0.67 0.80 1.26 1.18 0.91

(0.02) (0.04) (0.09) (0.04) (0.07)

γ̂k̄ 0.08 0.09 0.10 0.11 0.10

(0.02) (0.01) (0.01) (0.01) (0.01)

b̂ 4.18 3.45 3.80 2.75 2.59

(0.98) (0.66) (0.55) (0.15) (0.30)

lnL -37957.67 -37903.42 -37909.02 -37899.56 -37898.92

White 63.21 35.57 35.94 11.09 7.37

(p= 0.00) (p= 0.00) (p=0.00) (p=0.35) (p=0.69)

BIC – – – – 75838.28

1-step RMSE – – – – 2.58

5-step RMSE – – – – 2.65

20-step RMSE – – – – 2.71

ACD Comparison: – – – – –

lnL – – – – -38240.47

BIC – – – – 76511.27

1-step RMSE – – – – 2.65

5-step RMSE – – – – 4.71

20-step RMSE – – – – 3.88

Table 11: Model Estimation and Forecasting: DELL. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.29 1.28 1.25 1.25 1.22

(0.01) (0.01) (0.01) (0.01) (0.01)

λ̂ 0.72 0.64 0.64 0.51 0.90

(0.03) (0.02) (0.02) (0.02) (0.07)

γ̂k̄ 0.59 0.87 0.99 0.99 0.99

(0.10) (0.05) (0.00) (0.00) (0.00)

b̂ 16.52 15.47 9.26 9.38 6.89

(0.41) (0.44) (1.37) (1.18) (0.27)

lnL -11159.40 -11149.76 -11146.89 -11147.64 -11145.02

White 13.80 10.04 3.01 4.40 5.92

(p= 0.18) (p= 0.44) (p= 0.98) (p= 0.93) (p= 0.82)

BIC – – – – 22325.4

1-step RMSE – – – – 3.19

5-step RMSE – – – – 3.24

20-step RMSE – – – – 3.27

ACD Comparison: – – – – –

lnL – – – – -11238.01

BIC – – – – 22502.54

1-step RMSE – – – – 3.16

5-step RMSE – – – – 5.57

20-step RMSE – – – – 4.93

Table 12: Model Estimation and Forecasting: DOW. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.43 1.37 1.35 1.32 1.30

(0.01) (0.01) (0.04) (0.01) (0.01)

λ̂ 1.00 1.00 0.94 0.91 1.12

(0.09) (0.32) (1.16) (0.06) (0.02)

γ̂k̄ 0.76 0.99 0.99 0.99 0.99

(0.03) (0.02) (0.00) (0.00) (0.00)

b̂ 19.68 13.82 14.82 8.55 6.85

(2.07) (2.68) (2.69) (1.00) (0.33)

lnL -25684.19 -25673.06 -25650.57 -25640.26 -25638.54

White 55.32 16.75 22.23 11.29 15.59

(p= 0.00) (p= 0.08) (p= 0.01) (p= 0.34) (p= 0.11)

BIC – – – – 51315.69

1-step RMSE – – – – 2.64

5-step RMSE – – – – 2.70

20-step RMSE – – – – 2.75

ACD Comparison: – – – – –

lnL – – – – -26227.00

BIC – – – – 52482.96

1-step RMSE – – – – 2.57

5-step RMSE – – – – 5.05

20-step RMSE – – – – 4.65

Table 13: Model Estimation and Forecasting: F. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.36 1.30 1.27 1.30 1.27

(0.02) (0.01) (0.01) (0.01) (0.01)

λ̂ 0.90 0.85 0.80 1.75 0.51

(0.09) (0.03) (0.50) (0.10) (0.03)

γ̂k̄ 0.99 0.99 0.99 0.99 0.99

(0.00) (0.00) (0.00) (0.00) (0.00)

b̂ 30.54 8.94 5.61 9.66 6.56

(3.12) (0.54) (0.41) (0.65) (0.46)

lnL -24406.93 -24404.04 -24406.14 -24409.90 -24410.93

White 56.46 41.13 26.16 22.58 9.20

(p= 0.00) (p= 0.00) (p= 0.00) (p= 0.01) (p= 0.51)

BIC – – – – 48860.27

1-step RMSE – – – – 2.39

5-step RMSE – – – – 2.43

20-step RMSE – – – – 2.48

ACD Comparison: – – – – –

lnL – – – – -24766.13

BIC – – – – 49561.07

1-step RMSE – – – – 2.37

5-step RMSE – – – – 4.53

20-step RMSE – – – – 3.91

Table 14: Model Estimation and Forecasting: GE. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.

47



k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.31 1.28 1.22 1.20 1.20

(0.01) (0.10) (0.01) (0.01) (0.01)

λ̂ 0.76 0.90 0.71 0.80 0.67

(0.01) (0.02) (0.02) (0.02) (0.03)

γ̂k̄ 0.05 0.06 0.06 0.09 0.09

(0.01) (0.01) (0.05) (0.01) (0.02)

b̂ 23.46 20.34 7.53 6.99 6.94

(4.73) (3.10) (6.60) (0.85) (1.28)

lnL -38439.49 -38402.59 -38378.43 -38370.54 -38371.06

White 51.38 30.45 12.69 8.96 8.61

(p= 0.00) (p= 0.00) (p= 0.24) (p= 0.54) (p= 0.57)

BIC – – – – 76782.64

1-step RMSE – – – – 0.95

5-step RMSE – – – – 0.95

20-step RMSE – – – – 0.96

ACD Comparison: – – – – –

lnL – – – – -38474.64

BIC – – – – 76979.67

1-step RMSE – – – – 0.95

5-step RMSE – – – – 2.15

20-step RMSE – – – – 2.03

Table 15: Model Estimation and Forecasting: HD. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.27 1.24 1.21 1.21 1.18

(0.01) (0.01) (0.03) (0.12) (0.01)

λ̂ 0.82 0.87 0.84 1.06 0.77

(0.02) (0.03) (0.29) (0.33) (0.03)

γ̂k̄ 0.05 0.05 0.05 0.05 0.06

(0.00) (0.00) (0.01) (0.04) (0.02)

b̂ 10.12 5.93 3.90 4.00 2.85

(0.99) (0.56) (1.91) (3.64) (0.31)

lnL -47744.73 -47710.78 -47696.20 -47697.22 -47695.07

White 40.16 16.37 5.86 9.93 3.42

(p=0.00) (p= 0.09) (p= 0.83) (p= 0.45) (p= 0.97)

BIC – – – – 95431.62

1-step RMSE – – – – 1.68

5-step RMSE – – – – 1.67

20-step RMSE – – – – 1.69

ACD Comparison: – – – – –

lnL – – – – -47794.69

BIC – – – – 95620.49

1-step RMSE – – – – 1.68

5-step RMSE – – – – 3.57

20-step RMSE – – – – 2.84

Table 16: Model Estimation and Forecasting: IBM. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.32 1.29 1.30 1.24 1.22

(0.00) (0.01) (0.01) (0.01) (0.00)

λ̂ 0.76 0.71 1.00 0.74 0.76

(0.02) (0.01) (0.03) (0.04) (0.04)

γ̂k̄ 0.07 0.08 0.09 0.09 0.10

(0.01) (0.01) (0.00) (0.01) (0.01)

b̂ 3.86 3.42 3.97 2.21 1.92

(0.48) (0.27) (0.37) (0.19) (0.06)

lnL -61934.00 -61888.79 -61895.91 -61891.47 -61893.35

White 76.93 83.01 83.32 64.88 67.82

(p=0.00) (p= 0.00) (p= 0.00) (p= 0.00) (p= 0.00)

BIC – – – – 123829.3

1-step RMSE – – – – 2.72

5-step RMSE – – – – 2.79

20-step RMSE – – – – 2.92

ACD Comparison: – – – – –

lnL – – – – -62030.70

BIC – – – – 124093.3

1-step RMSE – – – – 2.75

5-step RMSE – – – – 5.08

20-step RMSE – – – – 3.84

Table 17: Model Estimation and Forecasting: INTC. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.23 1.18 1.18 1.18 1.18

(0.00) (0.01) (0.01) (0.01) (0.03)

λ̂ 0.75 0.71 0.60 0.51 0.90

(0.01) (0.02) (0.01) (0.01) (0.04)

γ̂k̄ 0.08 0.12 0.12 0.12 0.12

(0.02) (0.03) (0.01) (0.04) (0.00)

b̂ 21.23 10.25 10.25 10.24 10.33

(2.34) (1.01) (0.40) (1.64) (0.83)

lnL -35902.36 -35890.60 -35891.17 -35891.85 -35891.62

White 9.45 17.73 11.24 11.02 9.75

(p= 0.49) (p= 0.06) (p= 0.34) (p= 0.36) (p= 0.46)

BIC – – – – 71823.62

1-step RMSE – – – – 1.79

5-step RMSE – – – – 1.79

20-step RMSE – – – – 1.78

ACD Comparison: – – – – –

lnL – – – – -35961.84

BIC – – – – 71953.96

1-step RMSE – – – – 1.82

5-step RMSE – – – – 3.75

20-step RMSE – – – – 3.01

Table 18: Model Estimation and Forecasting: JNJ. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.24 1.21 1.20 1.21 1.18

(0.01) (0.52) (0.01) (0.34) (0.01)

λ̂ 0.78 0.76 0.66 0.55 0.56

(0.02) (3.80) (0.02) (0.35) (0.09)

γ̂k̄ 0.33 0.65 0.72 0.75 0.85

(0.05) (0.49) (0.09) (0.57) (0.02)

b̂ 12.02 7.21 6.78 7.17 4.69

(2.21) (2.89) (1.11) (8.03) (0.64)

lnL -24426.66 -24423.53 -24422.53 -24423.63 -24424.36

White 25.44 23.20 12.45 12.75 13.51

(p=0.00) (p= 0.01) (p= 0.26) (p= 0.24) (p= 0.20)

BIC – – – – 48887.33

1-step RMSE – – – – 1.74

5-step RMSE – – – – 1.74

20-step RMSE – – – – 1.76

ACD Comparison: – – – – –

lnL – – – – -24534.83

BIC – – – – 49098.61

1-step RMSE – – – – 1.74

5-step RMSE – – – – 3.37

20-step RMSE – – – – 2.57

Table 19: Model Estimation and Forecasting: KO. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.29 1.29 1.24 1.24 1.24

(0.01) (0.01) (0.01) (0.01) (0.01)

λ̂ 0.79 0.61 0.62 0.50 1.08

(0.03) (0.02) (0.01) (0.01) (0.03)

γ̂k̄ 0.99 0.99 0.99 0.99 0.99

(0.00) (0.00) (0.00) (0.00) (0.00)

b̂ 34.56 35.43 10.32 10.37 10.46

(5.50) (5.54) (0.53) (0.45) (0.91)

lnL -12094.83 -12095.83 -12097.68 -12098.48 -12098.37

White 17.27 12.02 16.77 14.35 17.55

(p= 0.07) (p= 0.28) (p= 0.08) (p= 0.16) (p= 0.06)

BIC – – – – 24232.4

1-step RMSE – – – – 2.48

5-step RMSE – – – – 2.51

20-step RMSE – – – – 2.51

ACD Comparison: – – – – –

lnL – – – – -12201.87

BIC – – – – 24430.48

1-step RMSE – – – – 2.47

5-step RMSE – – – – 4.54

20-step RMSE – – – – 3.59

Table 20: Model Estimation and Forecasting: MCD. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.22 1.20 1.17 1.17 1.17

(0.04) (0.01) (0.00) (0.00) (0.00)

λ̂ 0.71 0.83 0.75 0.64 0.78

(0.10) (0.05) (0.01) (0.01) (0.01)

γ̂k̄ 0.03 0.03 0.04 0.04 0.04

(0.04) (0.00) (0.01) (0.00) (0.01)

b̂ 16.59 8.12 5.97 5.94 5.96

(1.32) (0.21) (0.83) (0.67) (0.66)

lnL -77426.73 -77402.21 -77374.72 -77375.22 -77375.26

White 29.02 16.47 14.41 15.28 7.02

(p=0.00) (p= 0.09) (p= 0.16) (p= 0.12) (p= 0.72)

BIC – – – – 154794.1

1-step RMSE – – – – 0.95

5-step RMSE – – – – 0.96

20-step RMSE – – – – 0.95

ACD Comparison: – – – – –

lnL – – – – -77449.99

BIC – – – – 154932.7

1-step RMSE – – – – 0.96

5-step RMSE – – – – 2.13

20-step RMSE – – – – 1.69

Table 21: Model Estimation and Forecasting: MRK. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.38 1.34 1.32 1.29 1.30

(0.03) (0.01) (0.03) (0.00) (0.01)

λ̂ 0.78 0.85 0.72 0.85 0.68

(0.16) (0.02) (0.02) (0.07) (0.03)

γ̂k̄ 0.09 0.10 0.11 0.12 0.12

(0.02) (0.01) (0.01) (0.02) (0.01)

b̂ 4.29 3.18 3.04 2.54 2.70

(0.20) (0.23) (0.28) (0.17) (0.16)

lnL -44695.91 -44641.79 -44635.38 -44630.75 -44633.69

White 60.03 12.87 15.57 6.39 7.04

(p=0.00) (p=0.23) (p=0.11) (p=0.78) (p= 0.72)

BIC – – – – 89308.51

1-step RMSE – – – – 3.13

5-step RMSE – – – – 3.22

20-step RMSE – – – – 3.29

ACD Comparison: – – – – –

lnL – – – – -44978.82

BIC – – – – 89988.48

1-step RMSE – – – – 3.20

5-step RMSE – – – – 6.07

20-step RMSE – – – – 5.51

Table 22: Model Estimation and Forecasting: MSFT. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.58 1.51 1.45 1.43 1.44

(0.01) (0.01) (0.01) (0.02) (0.01)

λ̂ 1.14 1.06 1.11 0.89 0.63

(0.10) (0.07) (0.10) (0.07) (0.13)

γ̂k̄ 0.18 0.21 0.22 0.21 0.23

(0.03) (0.02) (0.03) (0.03) (0.16)

b̂ 4.30 3.44 2.45 2.24 2.43

(1.01) (0.38) (0.28) (0.29) (0.73)

lnL -7597.95 -7568.28 -7564.41 -7562.45 -7564.50

White 41.27 15.36 12.69 6.32 5.08

(p= 0.00) (p= 0.12) (p= 0.24) (p= 0.79) (p= 0.89)

BIC – – – – 15162.57

1-step RMSE – – – – 5.58

5-step RMSE – – – – 6.36

20-step RMSE – – – – 6.91

ACD Comparison: – – – – –

lnL – – – – -7871.92

BIC – – – – 15769.02

1-step RMSE – – – – 5.92

5-step RMSE – – – – 10.63

20-step RMSE – – – – 10.80

Table 23: Model Estimation and Forecasting: QCOM. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.27 1.25 1.25 1.25 1.22

(0.01) (0.04) (0.07) (0.54) (0.01)

λ̂ 0.80 0.88 0.71 0.56 0.56

(0.04) (0.04) (0.35) (1.65) (0.03)

γ̂k̄ 0.29 0.48 0.48 0.48 0.73

(0.15) (0.05) (0.76) (0.10) (0.04)

b̂ 13.55 10.42 10.65 10.68 6.61

(4.05) (0.97) (1.73) (1.68) (1.18)

lnL -32707.60 -32684.19 -32685.15 -32685.87 -32685.19

White 49.12 29.23 17.68 15.33 19.86

(p=0.00) (p= 0.00) (p= 0.06) (p= 0.12) (p= 0.03)

BIC – – – – 65410.22

1-step RMSE – – – – 1.23

5-step RMSE – – – – 1.24

20-step RMSE – – – – 1.24

ACD Comparison: – – – – –

lnL – – – – -32886.98

BIC – – – – 65803.84

1-step RMSE – – – – 1.28

5-step RMSE – – – – 2.49

20-step RMSE – – – – 1.52

Table 24: Model Estimation and Forecasting: T. We report estimation results for

the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.48 1.42 1.45 1.44 1.45

(0.01) (0.01) (0.02) (0.02) (0.02)

λ̂ 0.83 0.86 1.89 2.60 2.36

(0.05) (0.04) (0.27) (0.51) (0.32)

γ̂k̄ 0.99 0.99 0.99 0.99 0.99

(0.00) (0.00) (0.00) (0.00) (0.00)

b̂ 8.23 4.75 8.53 8.70 8.63

(0.79) (0.55) (1.04) (1.22) (1.77)

lnL -7689.50 -7688.41 -7693.84 -7695.12 -7694.20

White 22.17 98.37 12.57 38.89 8.54

(p=0.01) (p= 0.00) (p= 0.25) (p= 0.00) (p= 0.58)

BIC – – – – 15421.8

1-step RMSE – – – – 3.51

5-step RMSE – – – – 3.57

20-step RMSE – – – – 3.66

ACD Comparison: – – – – –

lnL – – – – -7974.67

BIC – – – – 15974.39

1-step RMSE – – – – 3.34

5-step RMSE – – – – 5.35

20-step RMSE – – – – 3.92

Table 25: Model Estimation and Forecasting: TXN. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.46 1.41 1.36 1.36 1.36

(0.01) (0.01) (0.01) (0.01) (0.01)

λ̂ 0.81 0.72 0.74 1.15 0.86

(0.07) (0.06) (0.06) (0.10) (0.02)

γ̂k̄ 0.94 0.99 0.99 0.99 0.99

(0.05) (0.00) (0.00) (0.00) (0.00)

b̂ 14.25 9.86 5.64 5.77 5.88

(0.96) (0.91) (0.51) (0.31) (0.69)

lnL -7059.32 -7053.53 -7049.78 -7051.41 -7051.57

White 21.49 12.04 4.17 2.99 2.86

(p= 0.02) (p= 0.28) (p= 0.94) (p= 0.98) (p= 0.98)

BIC – – – – 14136.36

1-step RMSE – – – – 1.77

5-step RMSE – – – – 1.78

20-step RMSE – – – – 1.78

ACD Comparison: – – – – –

lnL – – – – -7291.16

BIC – – – – 14607.24

1-step RMSE – – – – 2.92

5-step RMSE – – – – 4.89

20-step RMSE – – – – 3.64

Table 26: Model Estimation and Forecasting: WFC. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.26 1.22 1.20 1.17 1.16

(0.03) (0.00) (0.00) (0.00) (0.01)

λ̂ 0.75 0.83 0.83 0.80 0.81

(0.37) (0.02) (0.01) (0.02) (0.03)

γ̂k̄ 0.03 0.06 0.21 0.13 0.22

(0.01) (0.04) (0.05) (0.03) (0.11)

b̂ 10.97 18.38 10.48 6.80 5.76

(1.33) (11.31) (1.52) (0.93) (1.07)

lnL -50726.70 -50654.46 -50648.08 -50643.79 -50639.69

White 94.54 20.87 22.78 5.54 8.80

(p= 0.00) (p= 0.02) (p= 0.01) (p= 0.85) (p= 0.55)

BIC – – – – 101321.1

1-step RMSE – – – – 2.99

5-step RMSE – – – – 3.01

20-step RMSE – – – – 3.03

ACD Comparison: – – – – –

lnL – – – – -50774.41

BIC – – – – 101580.1

1-step RMSE – – – – 3.02

5-step RMSE – – – – 5.33

20-step RMSE – – – – 4.16

Table 27: Model Estimation and Forecasting: WMT. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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k̄ = 3 k̄ = 4 k̄ = 5 k̄ = 6 k̄ = 7

m̂0 1.52 1.52 1.53 1.52 1.52

(0.02) (0.02) (0.10) (0.02) (0.03)

λ̂ 1.53 3.23 0.76 4.43 2.93

(0.19) (0.47) (0.35) (0.94) (1.12)

γ̂k̄ 0.99 0.99 0.99 0.99 0.99

(0.00) (0.00) (0.00) (0.00) (0.00)

b̂ 25.91 27.43 34.11 27.48 27.58

(6.18) (2.91) (37.63) (6.93) (1.58)

lnL -5360.69 -5361.73 -5362.07 -5361.97 -5361.94

White 30.32 8.34 31.07 28.50 29.34

(p= 0.00) (p= 0.60) (p= 0.00) (p= 0.00) (p= 0.00)

BIC – – – – 10755.82

1-step RMSE – – – – 3.65

5-step RMSE – – – – 3.69

20-step RMSE – – – – 3.71

ACD Comparison: – – – – –

lnL – – – – -5552.51

BIC – – – – 11128.97

1-step RMSE – – – – 3.43

5-step RMSE – – – – 5.37

20-step RMSE – – – – 4.04

Table 28: Model Estimation and Forecasting: XRX. We report estimation results

for the MSMD model with k̄ intensity components. Standard errors appear in parentheses

beneath estimated parameters. White is White’s omnibus information matrix test of model

specification adequacy, with marginal significance levels in parentheses. See text for details.
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