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Abstract

We consider all-pay auctions in the presence of interdependent, affiliated valuations and
private budget constraints. For the sealed-bid, all-pay auction we characterize a symmetric
equilibrium in continuous strategies for the case of N bidders and we investigate its properties.
Budget constraints encourage more aggressive bidding among participants with large endow-
ments and intermediate valuations. We extend our results to the war of attrition where we
show that budget constraints lead to a uniform amplification of equilibrium bids among bid-
ders with sufficient endownments. An example shows that with both interdependent valuations
and private budget constraints, a revenue ranking between the two mechanisms is generally not
possible.

Keywords: All-Pay Auction, War of Attrition, Budget Constraints, Common Values, Private
Values, Affiliation, Contests
JEL: D44

Suppose firms are lobbying for a lucrative government contract. Clearly, the contract’s value to

each firm has an idiosyncratic component since the firms likely have different operating costs. On

the other hand, each firm also has a privately known limit on how much it is able or willing to spend

on the lobbying game. Perhaps the management of one firm is approving of small restaurant meals

with officials but expenditures or bribes beyond some threshold are morally too much to stomach.

A competitor, in contrast, may be less hampered in its lobbying strategy. How does the lobbying

game unfold when competitors differ in their valuation for the prize and in their ability or capacity

to compete for it? Would some firms spend more on lobbying believing that their competitors have

to navigate within some private constraints on actions?

In this essay we consider the class of situations like the above by analyzing all-pay auctions. In

an all-pay auction, the highest bidder is the winner of the item for sale; however, all bidders incur
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a payment equal to their bid. As a stylized model of a lobbying contest, the all-pay auction has a

long tradition in political economy (Baye et al., 1993).

Despite the frequent application of the all-pay auction to contests, most analyses fail to capture

the exogenous but private limits on actions that are relevant in many situations. We introduce

these constraints into the all-pay auction and we identify sufficient conditions for the existence

of an equilibrium in continuous strategies. Our analysis isolates a general amplification of bids

submitted by bidders with intermediate valuations. An extension of our model to the war of attrition

(the “second-price all-pay auction”) shows the generality of the bid amplification phenomenon and

allows for a comparison of the revenue potential of the two mechanisms. Generally, no revenue

ranking exists between the two formats in the presence of both budget constraints and affiliated,

interdependent values.

Although our model is phrased in the language of auctions (players are called “bidders,” etc.),

it applies to any situation where resources are irreversibly expended in pursuit of a goal or a prize.

The goal or prize can have a value that has both private and common components. The private

constraints on bids or effort that we introduce are often quite natural elements of the situation. For

example, Hickman (2011) employs a version of the all-pay auction to model students competing

for college admissions. It is clear that the return from a college degree varies across students due

to personal preferences and ability; it is also natural to assume that idiosyncratic shocks, such as

health status, family background, or school location, place an exogenous, heterogenous, and private

cap on the “effort” that a student can exert in the college admissions game. These shocks may be

orthogonal to the expected return from the degree per se.

As another example consider a patent race between competing firms. Such competition is

naturally modeled as either an all-pay auction or as a war of attrition (Leininger, 1991). The

expected value of the invention and the budget available to the research division will determine

the effort devoted to the race. However, information asymmetries or agency concerns can create a

wedge between the available budget and the research division’s assessment of the project’s value.

Moreover, a firm as a whole likely faces a hard, short-run physical resource constraint that will cap

its feasible effort level. It is natural to suppose that this resource limit is also private information.

The interaction between expected rewards and the heterogenous resource constraints will shape how

firms engage in this competition.

While we are motivated by the range of applications of all-pay auctions in modeling social and

economic situations, our study also fills a gap in the small but growing literature on auctions with

private budget constraints. Our analysis begins with the work of Krishna & Morgan (1997) who

study the all-pay auction and the war of attrition with interdependent and affiliated valuations. To

this setting we introduce private budget constraints distributed continuously on an interval. Our

environment parallels the setting of Fang & Parreiras (2002) and Kotowski (2012) who study the

second-price and the first-price auction with private budget constraints respectively. Both of these

2



studies build on Che & Gale (1998), which is the seminal paper in this strand of literature.

In light of this literature, our study contributes along several dimensions. First, by focus-

ing on all-pay mechanisms we put under scrutiny an important allocation mechanism in resource-

constrained environments. Many authors examining optimal auctions with budget-constrained par-

ticipants have resorted to mechanisms that feature “all-pay” payment schemes (Maskin, 2000; Pai

& Vohra, 2011). Our analysis therefore complements this literature but we do not attempt the

mechanism design exercise here.

Second, by developing our model in a more general setting than traditionally employed we

are able to identify additional features of the environment that affect the existence of a well-

behaved and (relatively) tractable equilibrium. Previous auction studies lodged in the affiliated

and interdependent-value paradigm, such as Fang & Parreiras (2002) and Kotowski (2012), have

focused exclusively on the two-bidder case. While some of the intuition from the two-bidder case is

relevant generally, the case of two bidders masks much of the nuance that we identify. For example,

in the all-pay auction we document how changes in the number of bidders alone directly affects the

existence of an equilibrium within the class of strategies traditionally considered by this literature.

Although we relax many assumptions, we do not study the all-pay auction’s equilibrium in its

fullest generality. Indeed, from the onset we focus on the existence of an equilibrium that is contin-

uous, symmetric, and monotone. We view this restricted scope to be a pragmatic but reasonable

choice. From a technical perspective, this restriction allows us to define equilibrium behavior as a

solution to a differential equation. This methodology offers a window on the mechanism’s economic

properties and gives precise and testable predictions concerning bidder behavior. We believe that

the set of cases covered is rich and it offers insights that would carry over to a discontinuous (but

symmetric and monotone) equilibrium. Undoubtably, continuous equilibria would receive the bulk

of attention in applications due to their relative tractability.

The remainder of the paper is organized as follows. Section 1 introduces the model and section

2 studies the symmetric equilibrium in the all-pay auction. We then consider the equilibrium’s

comparative static properties with focus on changes in the distribution of budgets, changes in

the number of bidders, and changes in the public information surrounding the contest. The final

section considers this model’s second-price analogue, the war of attrition. We explore the symmetric

equilibria of this model and we discuss the scope for a revenue ranking. Proofs and supporting

lemmas are in the appendix. An online appendix collects additional results and extensions of the

main analysis.

1 The Environment

Let N = {1, . . . , N} be the set of bidders. Each bidder i ∈ N has a two-dimensional private type

(si, wi) ∈ [0, 1] × [w, w̄]. While (si, wi) is bidder i’s private information, the auction’s ambient

environment—types’ prior distributions (defined below), the number of bidders, the auction rules,
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etc.—are assumed to be common knowledge. In the main text we assume that 0 < w < w̄. The

case of w = 0 is addressed in the online appendix and is qualitatively similar to our main analysis.

A bidder’s realized value-signal, si, is her private information about the item for purchase.

For example, in a patent race it would be an estimate of the invention’s value. In a political

lobbying contest, it may correspond to some private information about the consequences of proposed

legislation. Let s = (s1, . . . , sN ) be a profile of realized value-signals.1 We use capital letters—Si,

etc.—to refer to signals as random variables.

A bidder’s realized budget, wi, is a bound above which she cannot bid. We consider a budget

to be a hard constraint on expenditures. A budget may correspond to a bidder’s cash holdings, her

credit limit, or some other private limit on actions. Such limits may be both financial or physical,

depending on the application of interest. Alternatively, budget constraints can be modeled as

“soft” constraints acting through an increasing cost of bidding. For brevity, we do not explore this

extension. Zheng (2001), among others, is an application of this specification of budget constraints.

Bidder i’s valuation for the item can be described by a random variable: Vi = u(Si, S−i). We

assume that u : [0, 1]×[0, 1]N−1 → [0, 1] is strictly increasing in the first argument and nondecreasing

and permutation-symmetric in the last N −1 arguments. As standard, we suppose u is continuously

differentiable and normalized such that u(0, . . . , 0) = 0 and u(1, . . . , 1) = 1.

A bidding strategy is a (measurable) function βi : [0, 1] × [w, w̄] → R+. Throughout, we adopt

Bayesian-Nash equilibrium as our solution concept. An equilibrium is symmetric if all bidders follow

the same bidding strategy. We focus on symmetric equilibria and we henceforth suppress player

subscripts in our notation whenever possible.

We always assume that bidders are risk neutral. The introduction of risk aversion or more

general preferences into this model introduces complications analogous to those seen in the first-

price auction. As shown by Kotowski (2012), the interaction of a bidder’s private budget with

her risk preferences can introduces countervailing incentives rendering the existence of a monotone

equilibrium a more involved question.

Two assumptions concerning the distribution of bidders’ types define our baseline environment

and we maintain them throughout our analysis. Our initial set-up is standard and subsequent

assumptions, which are specific to the auction format considered, will impose additional structure.

Assumption A1. Value-signals have a joint density h(s1, · · · , sN ) which is continuous and strictly

positive. Moreover, h(s1, · · · , sN ) is invariant to permutations of (s1, . . . , sN ) and h(s1, · · · , sN ) is

log-supermodular. Thus, value-signals are affiliated.

Affiliated signals are a standard assumption introduced to the auction literature by Milgrom & We-

ber (1982).2 Except for budget constraints, and the specific conditions introduced below, our model

1We use standard notation: s−i = (s1, . . . , si−1, si+1, . . . , sN), s = (si, s−i), etc.
2We refer the reader to this paper for a summary of the properties of affiliated random variables.

4



closely parallels their classic environment. Although affiliation is more general than independence,

it is nonetheless a restrictive statistical property (de Castro, 2010).

Concerning the distribution of players’ budgets, we require budgets to be determined indepen-

dently of value-signals and to be identically distributed.

Assumption A2. Players’ budgets are independently and identically distributed according to the

cumulative distribution function G(w). G(w) has full support on [w, w̄] and admits a strictly positive

and continuous density g(w).

While the independence condition is strong, without it the model is not tractable. It is standard

in studies of auctions with budget constraints when there is some affiliation in players’ value-signals.

Our model naturally allows for w̄ = ∞, but for brevity we present our main discussion assuming

w̄ < ∞. A priori it is clear that the values of w and w̄ will play an important role in our analysis. In

many situations it is natural to assume that such values (if they are different from zero or infinity,

respectively) may become common knowledge. For example the parameters of the support of G

may become known via posted bonds, (not modeled) participant selection, or obligatory financial

disclosures as may occur in the context of political lobbying. In future work we intend to explore

the effects of endogenous disclosure of w or w̄ but for now we take them as given and common

knowledge.

2 A Symmetric, Continuous Equilibrium in the All-Pay Auction

The rules of the all-pay auction are well-known. Each bidder i will simultaneously submit a bid

bi. A bid must be feasible given the bidder’s budget: bi ≤ wi. If bidder i submits the highest bid

she wins the game and her payoff under the realized signal profile s = (si, s−i) is u(si, s−i) − bi;

otherwise, it is −bi. Ties among high bidders are resolved by a uniform randomization to designate

the winner.

We endeavor to identify a symmetric equilibrium where all bidders follow a strategy of the form

β(s,w) = min {b(s), w} (1)

where b(s) is strictly increasing when less than w̄, continuous, and (piecewise) differentiable. Our

focus on equilibria meeting these criteria is consistent with previous studies of auctions with private

budget constraints. Che & Gale (1998), Fang & Parreiras (2002, 2003), and Kotowski (2012)

examine equilibria that reside in this class of strategies.

To motivate the sufficient conditions for equilibrium existence that we propose below, we be-

gin with an heuristic discussion. Suppose for the moment that there is a symmetric equilibrium

β(s,w) = min {b(s), w} and consider bidder i of type (s,w). If this player bids b(x) ≤ w her bid

will defeat two categories of opponents assuming all other bidders are following the strategy β(s,w).
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First it defeats all opponents who have a value-signal s < x. Second, it defeats all opponents who

have a budget w < b(x) irrespective of value-signal. Since β(s,w) is strictly increasing, ties are

probability zero events. To account for these two possible cases and to succinctly express a bidder

i’s expected payoffs from the bid b(x) requires some new notation. We let S be the value-signal

observed by bidder i and we relabel the value-signals of the other bidders as Y1, . . . , YN−1. Let

Ȳk = max(Y1, . . . , Yk). Let fk(y|s) be the density of Ȳk|S = s. We introduce the following terms:

vk(s, y) = E[u(s, Y1, . . . , YN−1)|S = s, Ȳk = y] (2)

zk(x|s) =

∫ x

0
vk(s, y)fk(y|s)dy (3)

γk(b) =

(
N − 1

k

)

G(b)N−1−k(1 − G(b))k (4)

Adopting the convention that

z0(x|s) = v0(s, y) = E[u(s, Y1, . . . , YN−1)|S = s],

we can write the expected payoff of bidder i from the bid b(x) as

U(b(x)|s,w) =
N−1
∑

k=0

γk(b(x))zk(x|s) − b(x). (5)

The binomial terms account for the combinations of opponents who are defeated by b(x) due to

having a low value-signal or a low budget.3 We do not need to keep track of the precise identities

of these bidders due to the symmetry assumptions on their preferences and on the information

structure. Introducing asymmetries would necessitate a more detailed accounting of the different

cases. The final term in (5) is the bidder’s payment which she makes irrespective of the auction’s

outcome.

If b(s) < w is indeed this player’s equilibrium best response, a local first-order optimality

condition must be satisfied. Specifically,

d

dx
U(b(x)|s,w)

∣
∣
∣
∣
x=s

= 0. (6)

Adopting the notation

z′k(x|s) ≡
∂

∂x
zk(x|s) =







0 if k = 0

vk(s|x)fk(x|s) if k (= 0

3The online appendix presents a detailed derivation of this expression for expected utility.
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we can evaluate (6) to derive:

b′(s) =

∑N−1
k=0 γk(b(s))z′k(s|s)

1 −
∑N−1

k=0 γ′k(b(s))zk(s|s)
. (7)

Our subsequent discussion will identify conditions that ensure (7) has a solution which will be

consistent with equilibrium bidding.

Two initial observations are worthwhile. First, when b(s) < w, and it is understood that

G(b(s)) = 0, equation (7) reduces to

b′(s) = vN−1(s, s)fN−1(s|s),

which is the differential equation identified by Krishna & Morgan (1997) as characterizing bid-

ding behavior in the all-pay auction absent budget constraints. Therefore, our sufficient conditions

must suitably generalize their assumptions. Second, when b(s) > w, (7) accounts for the change

in marginal incentives faced by unconstrained bidders. Slight bid increases not only defeat op-

ponents with slightly higher valuations but they also defeat all opponents with sufficiently low

budgets regardless of their valuation. This second effect ameliorates the well-known winner’s curse

phenomenon in interdependent-value settings.

Regrettably the derivation of (7) was heuristic and we made many implicit assumptions. Specif-

ically, we need to ensure that the solution to (7) satisfying an appropriate boundary condition is

strictly increasing. For example, if the denominator of (7) is ever negative, then b′(s) < 0 con-

tradicting our original hypothesis that b(s) is increasing. Furthermore, we must also ensure that

first-order conditions are sufficient to determine a bidder’s optimal bid, which in general may not

be true.

To identify sufficient conditions when (7) does characterize equilibrium bidding we introduce

two additional assumptions. The first assumption will limit the degree of affiliation among bidder’s

value-signals. The second assumption will place a restriction on the joint distribution of value-signals

and budgets. Both assumptions speak to the complicated interaction among conflicting incentives

faced by bidders in the all-pay auction. We elaborate on these assumptions below.

We begin our analysis by introducing the function

α(s) =

∫ s

0
vN−1(y, y)fN−1(y|y)dy. (8)

Krishna & Morgan (1997) show that under suitable conditions α(s) defines the equilibrium bidding

strategy in the all-pay auction without private budget constraints. Let ᾱ = α(1), and assume

w < ᾱ. Otherwise, budget constraints effectively do not bind and α(s) would define a symmetric

equilibrium in our model.

The first assumption generalizes the sufficient condition proposed by Krishna & Morgan (1997)
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supporting α(s) as the equilibrium strategy in the all-pay auction without budget constraints.

Assumption A3. Let φ(x,w|s) =
∑N−1

k=1 γk(w)vk(s, x)fk(x|s). For all (x,w), φ(x,w|·) : [0, 1] → R

is nondecreasing.4

Intuitively, Assumption A3 limits the degree of correlation between value-signals relative to

the impact of a player’s own signal on her valuation. The assumption always holds if signals are

independent but it can hold in other cases as well. For example it is satisfied when there are two

bidders, u(si, sj) = (si + sj)/2 and h(si, sj) ∝ 1 + sisj.

Whereas Assumption A3 places a restriction on the correlation among value-signals, we ad-

ditionally require an assumption structuring the joint distribution of value-signals and budgets.

Assumption A4 presents this restriction. We defer interpreting this assumption until after present-

ing our main result and an example illustrating the identified equilibrium. We define the value s̃ < 1

as the unique solution to α(s̃) = w.

Assumption A4. Let ξ(x,w|s) = 1 −
∑N−1

k=0 γ′k(w)zk(x|s). Then the following conditions hold:

1. For every s ≥ s̃, there exists ws, w ≤ ws < w̄ such that w < ws =⇒ ξ(s,w|s) < 0 and

w > ws =⇒ ξ(s,w|s) > 0.

2. There exists ε > 0 such that for all s ∈ (s̃ − ε, s̃ + ε), ξ(s,w|s) > 0.

3. When x ≥ s̃, ξ(x,w|·) : [0, 1] → R is non-increasing.

Although Assumption A4 may appear as a strictly technical assumption, it has an economic

interpretation which we discuss below. We thus have the following theorem:

Theorem 1. Suppose Assumptions A1–A4 are satisfied. Then there exists a continuous, symmetric

equilibrium in the all-pay auction where all bidders follow the strategy β(s,w) = min{b(s), w}. For

all s < s̃, b(s) = α(s) =
∫ s
0 vN−1(y, y)fN−1(y|y)dy. For all s ≥ s̃, b(s) is a strictly increasing

solution to the differential equation

b′(s) =

∑N−1
k=0 γk(b(s))z′k(s|s)

1 −
∑N−1

k=0 γ′k(b(s))zk(s|s)

satisfying the initial condition b(s̃) = w.

Remark 1. In the online appendix we show how Theorem 1 obtains allowing for alternative as-

sumptions. For example, if w = 0, an alternative argument is necessary to identify the appropriate

solution for b(s). Another case which we consider is when G(w) is not smooth for all [w, w̄]. All that

is required to obtain an equilibrium in our class is that G(w) is sufficiently smooth in the relevant

4When w = w, φ(x,w|s) = vN−1(s, x)fN−1(x|s). The sufficient condition identified by Krishna & Morgan (1997)
in their model of the all-pay auction is that vN−1(·, x)fN−1(x|·) is nondecreasing.
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range of bids—specifically, when w ≤ ᾱ. The need to avoid circular reasoning, however, renders

establishing the bound b(s) ≤ ᾱ a more involved argument.

Remark 2. Both Assumptions A3 and A4(3) are satisfied if u(·, s−i)h(s−i|·) : [0, 1] → R is nonde-

creasing. See Assumption AX.3 and Lemma X.1 in the online appendix. We introduced A3 and

A4(3) separately to emphasize the parallel between the all-pay auction and the war of attrition,

which we analyze below.

The following example highlights several features of the equilibrium of the all-pay auction.

Example 1. Suppose N = 2 and that value-signals are given by Si
i.i.d.∼ U [0, 1] while budgets

Wi
i.i.d.∼ U [ 2

25 , 3
4 ]. Let u(si, sj) = (si + sj)/2.

It is readily verified that b(s) = s2/2 for s < s̃ = 2/5. Of course, α(s) = s2/2 is also the

equilibrium strategy in this model absent budget constraints. For s > 2/5, b(s) is the solution to

the differential equation

b′(s) =
25(3 − 4b(s))s

25s(3s − 2) + 42

satisfying the boundary condition b
(

2
5

)

= 2/25. The resulting equilibrium strategy is

β(s,w) =







s2

2 s ≤ 2
5

min{b(s), w} s > 2
5

Figure 1 plots the functions b(s) and α(s) = s2

2 .5 The introduction of budget constraints rendered

b(s) concave for s > s̃ while α(s) is convex. Immediately to the right of s̃ = 2/5, b(s) > α(s);

therefore, some types of bidders with intermediate value-signals bid more following the introduction

of budget constraints. The following corollary demonstrates that such an amplification is indeed a

common feature of equilibrium bidding in such environments.

Corollary 1. Under the conditions of Theorem 1, lims→s̃+ b′(s) > lims→s̃− b′(s) = lims→s̃− α
′(s).

The encouragement of more aggressive bidding by bidders with relatively large budgets and

intermediate valuations is due to a change in the marginal incentives that bidders experience in

the presence of budget constraints. The prospect of defeating additional opponents who are budget

constrained increases the marginal return of a higher bid; therefore, some types of bidders respond

to this incentive with more aggressive bidding.

Discussion and Interpretation

To interpret the sufficient conditions behind Theorem 1 it is useful to examine in detail the role

of Assumption A4. Assumption A4(1) asserts that the function ξ(s, ·|s) satisfies a single crossing

5In all examples, graphs of numerical solutions are obtained using the Runge-Kutta method.
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Figure 1: The functions b(s) and α(s) in the characterization of equilibrium bidding in Example 1.

condition and is strictly positive for w sufficiently large. Thus, the assumption ensures that the

righthand side of the differential equation (7) is eventually strictly positive. While this is Assumption

A4’s technical role, it also has an economic interpretation that we outline below.

Writing the condition ξ(s,w|s) > 0 explicitly (see Lemma A.1) gives

g(w)(N − 1)

[
N−2
∑

k=0

(
N − 2

k

)

G(w)N−2−k(1 − G(w))k(zk(s|s) − zk+1(s|s))
]

< 1. (9)

To simplify further suppose values are private and value-signals are independent draws from a

common distribution with c.d.f. H(s). In this case:

zk(s|s) − zk+1(s|s) = u(s)H(s)k(1 − H(s)).

ξ(s,w|s) > 0 now becomes

g(w)(N − 1)u(s)(1 − H(s)) (G(w) + H(s) − G(w)H(s))N−2 < 1

⇐⇒ u(s)
d

dw
[G(w) + H(s) − G(w)H(s)]N−1 < 1.

The term [G(w) + H(s) − G(w)H(s)]N−1 is the probability of all other bidders having a value-signal

less than s or a budget less than w. If b = β(s,w)—as equilibrium bidding assumes—this would
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be the probability with which bidder i wins the auction with a bid of b. We can therefore regard

Assumption A4 as imposing a limit on the rate of change in the probability of winning owing only

to defeating opponents who have a smaller budget. If this probability increases too rapidly at some

point ŵ—for instance, due to an “atom”6 in the distribution of budgets—then as b(s) crosses ŵ,

b′(s) becomes undefined or negative and the continuous strategy we are considering can no longer

be an equilibrium. At such bid levels, a bidder would have an incentive to drastically increase her

bid to take advantage of others’ budget constraints.

In an interdependent-value setting, the preceding intuition continues to apply. However, it must

be extended to incorporate the winner’s curse. Defeating low-budget opponents is generally “good

news” concerning the expected value of the item. Therefore in its fullest form, (9) additionally

incorporates a weighted average controlling for these marginal effects on an opponent-by-opponent

basis.

Since the sufficient conditions in Assumption A4 may be difficult to verify in practice, a simple

(but exceptionally conservative) alternative is that

g(w)(N − 1)E[u(1, Y1, . . . , YN−1)|S = 1] < 1 (10)

The sufficiency of this condition is easy to confirm since

N−1
∑

k=0

γ′k(w)zk(x|s) = g(w)(N − 1)

[
N−2
∑

k=0

(
N − 2

k

)

G(w)N−2−k(1 − G(w))k(zk(s|s) − zk+1(s|s))
]

≤ g(w)(N − 1)

[
N−2
∑

k=0

(
N − 2

k

)

G(w)N−2−k(1 − G(w))k
]

z0(s|s)

≤ g(w)(N − 1)E[u(1, Y1, . . . , YN−1)|S = 1].

Effectively, (10) places a uniform limit on the preponderance of budget constraints in the relevant

range of bids. Of course, this strict limit is not necessary for equilibrium existence. Example 1

presented above does not satisfy (10).

Necessity A natural question to pose is to what extent our assumptions are necessary to support

a continuous symmetric equilibrium. First, any assumptions concerning the differentiability of

relevant functions are needed to ensure that the differential approach we adopt is possible. We

consider such conditions to be economically innocuous. It is therefore more apt to examine the

extent to which Assumption A4 is necessary since it is the most unusual of the proposed conditions.

First suppose that ξ(s,w|s) < 0 in a neighborhood of s̃. In this situation, the solution b(s)

cannot be extended continuously to bids in the range above w. All solutions to the differential

6We are assuming atom-less distributions of budgets, but the intuition in the extreme case of an atom in G(w) is
illuminating. Of course, there exist examples of a similar character when G(w) admits a continuous density.
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equation (7) will be decreasing in a neighborhood immediately above w. In this regard, Assumption

A4(2) cannot be relaxed while ensuring an equilibrium in continuous strategies.

From a formal point of view Assumption A4(1) is not necessary for the existence of the equi-

librium that we identify. From a practical perspective we view it as necessary. It is the weakest

assumption that guarantees increasing solutions to (7) on the domain [s̃, 1] without referring to the

solution of (7) itself, which we view as too far removed from model primitives to be economically

meaningful. At minimum, A4(1) enjoys an economic interpretation, which we view as plausible.

Weaker statements in lieu of Assumption A4(1) would allow ξ(s, ·|s) to fail its single crossing con-

dition provided the failure did not substantively affect the desired solution to (7). We present one

such alternative statement in the online appendix.

Comparative Statics in the All-Pay Auction

To place the equilibrium in context and to foster intuition for its properties we investigate several

comparative statics. Throughout we focus on the effect of changes of the environment on changes in

individual bidder behavior. Given the indirect characterization of the equilibrium bidding strategy,

we cannot offer detailed conclusions concerning aggregate auction performance, such as expected

revenue. In this regard we do not differ from previous studies of auctions with budget constraints.

None has yet arrived at a concise description of aggregate statistics allowing for affiliated and

interdependent values. Only Fang & Parreiras (2003) are able to document the failure of the

linkage principle through an extended example.

Changes in the Distribution of Budgets Consider a change in the environment that makes

budget constraints more lax. For example, the distribution of budgets may vary exogenously with

broader economic or social conditions. In principle, this relaxation can lead to two competing

effects. On one hand, when budget constraints are relaxed, bidders may be encouraged to bid

more—constraints on competition have been removed and on the margin a bidder must bid more

to influence the auction outcome. The countervailing force, however, draws on the amelioration

of the winner’s curse associated with budget constraints. Conditional on winning, the item is of

relatively higher value when budget constraints bind since there is a good chance of having defeated

a budget-constrained opponent. Relaxing budget constraints would dampen this effect which would

tend to pull bids down. In the context of the second-price auction, Fang & Parreiras (2002) conclude

that the latter effect can dominate.

In the all-pay auction, however, there does not exist a standard and general ordering of bidder’s

strategies as we change G. This is true even under very restrictive stochastic orders. To appreciate

this conclusion, suppose N = 2 and fix a distribution of budgets G on [w, w̄]. Suppose u(·, sj)h(sj |·)
is nondecreasing. As shown in the online appendix, the equilibrium bidding strategy in this case will

be bounded above by ᾱ. Consider the family of distribution functions Ga(w) ≡ G(w)a for a ≥ 1. If
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a′ > a, then Ga′ likelihood-ratio dominates Ga. Intuitively, higher values of a imply more relaxed

budget constraints. Denote by βa(s,w) = min{ba(s), w} an equilibrium strategy parameterized by

a and meeting the conditions identified in our analysis. Suppose for a = 1, the auction admits

an equilibrium β1. Then for all a sufficiently large 1 − g(w)aG(ᾱ)a−1 > 0 for all w ∈ [w, ᾱ] since

g(w) is bounded. Therefore, for a sufficiently large, βa will define an equilibrium when budgets are

distributed according to Ga. By examining the main differential equations defining ba(s) as a → ∞,

we see that
(1 − G(b)a)v1(s, s)f1(s|s)

1 − ag(b)G(b)a−1
∫ 1
s v1(s, y)f1(y|s)dy

→ v1(s, s)f1(s|s)

uniformly for all s and b ≤ ᾱ. Therefore ba(s) →
∫ s
0 v1(y, y)f1(y|y)dy, as one would expect.

Recall however that for each a, ba(s̃ + ε) > α(s̃ + ε) while ba(1) < ᾱ. Therefore a bidder’s

strategy adjustment is not monotonic across types and in general ba(·) is neither greater nor less

than ba′(·) for a′ (= a. Thus, the same qualitative ordering that exists for the second-price auction

does not carry over to the case of the all-pay auction.

Changes in the Bidder Population How will changes in the bidder population affect the

auction’s equilibrium? While original studies of auctions with budget constraints, such as Che

& Gale (1998), allowed for variation in the number of bidders, comparative statics exploring the

sensitivity of equilibrium to changes in N were not pursued systematically. Studies by Fang &

Parreiras (2002) and Kotowski (2012) of the second-price and first-price auction did not extend

the model beyond two bidders. The main conclusion from our study is that the existence of an

equilibrium in our class is very sensitive to the number of bidders in the auction. This holds for

even independent, private-value environments.

Fix an auction environment with private values and suppose there is an equilibrium of the

form β(s,w) = min{b(s), w} for some N ≥ 2. Changing N can lead to two salient violations of

Assumption A4. First, due to a change in N at the (new) critical value s̃, the (new) expression

(9) is such that ξ(s̃, w|s̃) < 0, which violates Assumption A4(2). Second, even if A4(2) is satisfied,

following a change in the number of bidders ξ(s,w|s) may instead violate the single-crossing crossing

condition of Assumption A4(1). The violation can preclude the existence of a strictly increasing

solution to (7) for all s ≥ s̃. We illustrate both failures with an example.

Example 2. Suppose there are N bidders with private values, u(si, s−i) = si. Value-signals are

distributed uniformly and independently on the unit interval. Budgets are distributed independently

according to the distribution G(w) = 1 − exp(−4(w − w)) with support [w,∞). Choose w = 0.1.

As a function of N we can express b(s) for bids below w as

bN (s) =
N − 1

N
sN .
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The associated critical value is s̃N = N

√
Nw
N−1 . Similarly, for each N ≥ 2, we can calculate ξ(s,w|s)

to be

ξN (s,w|s) = 1 + 4(N − 1)(s − 1)se
2
5−4w

(

(s − 1)e
2
5−4w + 1

)N−2
.

Suppose N = 2, then ξ2(s,w|s) = 4(s − 1)se
2
5−4w + 1 which is strictly positive for all (s,w) ∈

[0, 1] × [w,∞) except at the point (s,w) =
(

1
2 , 1

10

)

where it is zero. Since s̃2 = 1√
5

≈ 0.447,

Assumption A4 is satisfied and a continuous equilibrium of the form min{b(s), w} exists.

Keeping the environment otherwise the same, suppose N = 3. Now s̃3 =
3
q

3
5

22/3 ≈ 0.531. At this

value, ξ3(s̃3, w|s̃3) = 11
5 − 2

(
6
5

)2/3
< 0. This is a volition of Assumption A4(2) and a continuous

extension of b(s) at s̃ into the range above w is not possible. We note that A4(1) is otherwise

satisfied.

Finally, suppose N = 10. In practical terms this would be a setting with a large number of

bidders. Now, s̃10 = 1
5√3

≈ 0.803 and ξ10(s̃10, w|s̃10) = 5 − 4 5
√

3 ≈ 0.017 > 0. Thus, Assumption

A4(2) is met. However, Assumption A4(1) fails. We illustrate this failure with Figure 2. The

figure shows the function b(s) in this case along with its solution satisfying the boundary condition

b(s̃10) = w.7 This extension of b(s) above w necessarily needs to traverse a region, illustrated in

gray, where ξ10(s,w|s) < 0. Therefore, there does not exist a strictly increasing solution b(s) for all

s > s̃10 which satisfies b(s̃10) = w.

The main implication stemming from Example 2 concerns the possibilities and opportunities

for inference in auction environments where bidders may be budget constrained. While there does

not exist a good theory of inference and identification in auctions with budget constraints (and

it is far beyond the scope of this study to develop one), changes in N are a common source of

variation exploited in empirical auction studies.8 Fully exploiting this variation in auctions with

budget constraints may be problematic (or at best challenging) due to the qualitative differences

of equilibrium bidding as the environment changes with N . For example, for some values of N

(depending on the distribution of budgets and valuations), one would not be able to employ first-

order conditions to fully characterize a bidder’s optimal bid. Much more research is required to

develop precise conclusions and restrictions accounting for such concerns.

Public Signals Suppose prior to bidding players observe the realization of some public signal S0,

which we assume is affiliated with bidders’ value-signals. We may suppose that a bidder’s payoff

depends on the value of this signal, i.e. Vi = u(S0, Si, S−i). For example, this signal may be some

piece of information released non-strategically by the auctioneer. We begin by distinguishing two

(extreme) types of public signals that the bidders may observe.

7Precisely, we plot the solution for the inverse of b(s) to accommodate the points where b′(s) = ∞.
8See Athey & Haile (2007) for a recent survey of identification in auction models. See Bajari & Hortaçsu (2005)

for an implementation.
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Figure 2: Failure of Assumption A4. The gray region denotes the set {(s,w) : ξ(s,w|s) < 0}.
Elsewhere, ξ(s,w|s) ≥ 0. ξ(s, ·|s) crosses zero multiple times at values of s slightly less than 0.8.

Definition 1. A signal S0 is said to be value-relevant if for a.e. (si, s−i), u(s0, si, s−i) is strictly

increasing in s0. S0 is said to be value-irrelevant if for all (si, s−i), u(s0, si, s−i) is constant in s0.

Definition 2. A signal S0 is said to be information-relevant if for all s̄0 (= s0 =⇒ h(·|si, s̄0) (=
h(·|si, s0) for all si.

A signal that is value-relevant conveys information about the value of the item directly; its real-

ized value is effectively a parameter of the bidder’s utility function. An information-relevant signal

is correlated with other bidders’ private information. Therefore, it conveys additional information

about others’ signals beyond the information contained already in Si. While nothing precludes a

signal from being both value- and information-relevant—indeed, we consider this to be the norm—

we will focus only on extreme cases where public signals are either value- or information-relevant,

but not both. This dichotomy allows us to characterize the competing effects of information in the

all-pay auction. Signals that are purely value-relevant encourage bidders to respond in the intuitive

manner—“good news” will encourage uniformly more aggressive bidding. In contrast, high realiza-

tions of signals that are solely information-relevant are a discouragement. Some types of bidders

place lower bids.

Theorem 2. Suppose the conditions of Theorem 1 are satisfied. Let s̄0 > s0 be realizations of a

public signal S0 observable to all bidders. Let β̄(s,w) (β(s,w)) be the equilibrium strategy in the

all-pay auction when the public signal is high (low).
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1. If the public signal is value-relevant but h(·|si, s̄0) = h(·|si, s0) for all si, then β̄(s,w) ≥ β(s,w).

2. If the public signal is value-irrelevant but h(·|si, s̄0) (= h(·|si, s0) for all si, then there exists an

ŝ > 0 such that for all 0 < s < ŝ, β̄(s,w) ≤ β(s,w).

Consider first the case of purely value-relevant information. Noting the preceding discussion,

and viewing s0 as a parameter entering u it is clear that our equilibrium characterization remains

the same with statements conditional on s0 replacing the unconditional statements. An implicit

assumption, of course, is that changes in s0 are sufficiently small to ensure that we maintain an

equilibrium of the form min{b(s), w}. The associated comparative static is intuitive.

In turning to information-relevant signals, we observe a different reaction. This conclusion is

independent of the presence of budget constraints per se but is instead a general feature of the

all-pay auction. The intuition is straightforward. Conditional on observing a high public signal s̄0

bidder i can infer that her opponent likely has a high signal and will in consequence bid high. A high

bid by the opponent decreases the probability with which bidder i wins the auction, discouraging

her from bidding aggressively (recall, in an all-pay auction she must pay her bid irrespective of the

outcome). In contrast, if the public signal also has a direct effect on a bidder’s value for the item,

the resulting boost in expected payoff may be enough to counteract this discouragement effect.

3 The War of Attrition

Given that the first-price, second-price, and all-pay auctions have symmetric equilibria of the form

β(s,w) = min{b(s), w}, a natural conjecture is that the war of attrition—the second-price, all-pay

auction—also has an equilibrium in this class. In this section we extend our baseline model to

accommodate this auction format as well. Many of the qualitative features of the all-pay auction’s

equilibrium find natural analogues in the war of attrition. The major distinction is that under a

very mild technical condition the war of attrition features a uniform amplification of bids following

the introduction of budget constraints among high-budget bidders. In the all-pay auction, such

an amplification was present generally only for a subset of types with intermediate value-signals

(see Example 1). The section concludes by noting the prospects for a revenue ranking between the

all-pay auction and the war of attrition. Generally, such a ranking is not possible if both budget

constraints and affiliated interdependent values are present.

We maintain our assumptions concerning the environment from Section 1. Again, bidders will

simultaneously submit bids and the highest bidder will be deemed the winner. The winning bidder

will make a payment equal to the second-highest bid. All losing bidders continue to incur a cost

equal to their bid. Our static treatment of the war of attrition mirrors the treatment in Krishna

& Morgan (1997). Therefore, we do not model the war of attrition as an extensive game where

bidders sequentially submit additional (incremental) bids. Leininger (1991) and Dekel et al. (2006)
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consider such models with budget limits and perfect information. Extending our analysis in this di-

rection would introduce many interesting complications such as the role of jump bidding in signaling

valuations and budget levels.

As the derivation of the equilibrium strategy in the war of attrition parallels that from the

all-pay auction, we abbreviate our discussion accordingly. First, recall that under suitable assump-

tions Krishna & Morgan (1997) show that the war of attrition without budget constraints has a

equilibrium strategy of

ω(s) =

∫ s

0

vN−1(y, y)fN−1(y|y)

1 − FN−1(y|y)
dy. (11)

Let σ̃ be defined as the unique value where w = ω(σ̃). Since lims→1 ω(s) = ∞ and noting the

similarity with the all-pay auction, we will identify an equilibrium in the war of attrition with

budget constrains which assumes the form β(s,w) = min{b(s), w} where

b(s) =













ω(w) if s < σ̃

b̂(s) if s ∈ [σ̃, σ̂]

w̄ if s > σ̂

. (12)

b̂(s) will be defined as a solution to a differential equation while at σ̂, lims→σ̂− b̂(s) = w̄. To derive

an expression for b̂(s) we first define

Fk(x|s) =

∫ 1

0
· · ·

∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k

h(y1, . . . , yN−1|s)dy1 · · · dyN−1

and we let

Ĥ(x, b̂(x)|s) =
N−1
∑

k=0

γk(b̂(x))Fk(x|s).

If all other bidders are following a bidding strategy as defined in (12), Ĥ(x, b̂(x)|s) is the probability

that all bidders j (= i are of a type (sj , wj) such that β(sj , wj) < b̂(x). We can thus write the

expected utility to bidder i of type (s,w) from the bid b̂(x), as

U(b̂(x)|s,w) =
N−1
∑

k=0

γk(b̂(x))zk(x|s) − (1 − Ĥ(x, b̂(x)|s))b(x)

−
∫ σ̃

0
ω(y)fN−1(y|s)dy −

∫ x

σ̃
b̂(y)

d

dz
Ĥ(z, b̂(z)|s)

∣
∣
∣
∣
z=y

dy

The first term is the expected benefit of winning the auction. The second term is the payment the

bidder must make if she loses the auction. This is her own bid. The third and fourth terms account

for the payment she makes when she wins the auction. Computing d
dxU(b(x)|s,w)

∣
∣
x=s

= 0 leads to
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the following differential equation:

b̂′(s) =

∑N−1
k=0 γk(b̂(s))z′k(s|s)

1 − Ĥ(s, b̂(s)|s) −
∑N−1

k=0 γ′k(b̂(s))zk(s|s)
. (13)

Again, we propose two assumptions—alternatives for Assumptions A3 and A4—which will be suffi-

cient to ensure that (12), where b̂(s) is defined by (13), is indeed an equilibrium strategy profile. The

first assumption again places a limit on the relative degree of affiliation and generalizes a condition

proposed by Krishna & Morgan (1997). The second assumption is the analogue of (A4) and also

structures the joint distribution of value-signals and budgets.

Assumption A5. Let

Φ(x,w|s) =
N−1
∑

k=1

γk(w)(1 − Fk(x|s))
∑N−1

k′=1 γk′(w)(1 − Fk′(x|s))

(
vk(s, x)fk(x|s)
(1 − Fk(x|s))

)

(14)

Φ(x,w|·) : [0, 1] → R is nondecreasing.

Like Assumption A3, Assumption A5 is a restriction on the degree of affiliation among value-

signals. It always holds if value-signals are independent. For w < w, (14) reduces to fN−1(x|·)
1−FN−1(x|·)

being nondecreasing. A similar simplification occurs when N = 2. As with Assumption A3, we

stated A5 as a weighted average emphasizing the interaction between the number of bidders and

the limit on affiliation that needs to hold for subsets of signals.

Assumption A6. Let

Ξ(x,w|s) = 1 −
∑N−1

k=0 γ′k(w)zk(x|s)
∑N−1

k=1 γk(w)(1 − Fk(x|s))
(15)

Ξ(x,w|s) satisfies the following properties:

1. For every s ≥ σ̃, there exists ws, w ≤ ws < w̄ such that w < ws =⇒ Ξ(s,w|s) < 0 and

w ∈ (ws, w̄) =⇒ Ξ(s,w|s) > 0.

2. There exists ε > 0 such that for all s ∈ (σ̃ − ε, σ̃ + ε), Ξ(s,w|s) > 0.

3. When x ≥ σ̃, Ξ(x,w|·) : [0, 1] → R is non-increasing.

The conditions in Assumption A6 are direct adaptations of the conditions presented in Assump-

tion A4. Their interpretation and roles are also analogous. Some simplifications of Assumption A6

are possible in special cases of interest. For example, Assumption A6(3) is satisfied automatically

if value-signals are independent. A similar conclusion holds if there are only two bidders. In this
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case Assumption A1 implies Assumption A6(3). To see this, note that when N = 2,

Ξ(x,w|s) = 1 − g(w)

1 − G(w)

∫ 1
x v1(s, y)f1(y|s)dy

1 − F1(x|s)

= 1 − g(w)

1 − G(w)
E[u(s, Y1)|S = s, Y1 ≥ x].

Since (S, Y1) are affiliated, E[u(s, Y1)|S = s, Y1 ≥ x] is nondecreasing in s. Therefore, Ξ(x,w|·) is

non-increasing as needed.

Turning to the equilibrium in the war of attrition, Theorem 3 collects the preceding assumptions

and offers sufficient conditions for an equilibrium of the form min{b(s), w}. The equilibrium strategy

resembles the equilibrium of the all-pay auction. Low value-signal bidders will follow the usual no-

budget-constraints equilibrium strategy. Only for bids above w will the change in marginal incentives

introduced by budget constraints modify equilibrium behavior. Unlike the all-pay auction, bidders

with sufficiently large value-signals will desire to expend an arbitrarily large (but feasible) amount

in equilibrium. If w̄ = ∞, then the equilibrium strategy is unbounded, like in the case of no budget

constraints.

Theorem 3. Suppose Assumptions A1, A2, A5, and A6 hold. Then there exists a symmetric

equilibrium in the war of attrition where all bidders follow the strategy β(s,w) = min{b(s), w}. The

function b(s) : [0, 1) → [0, w̄] is defined as:

b(s) =













ω(s) if s < σ̃

b̂(s) if s ∈ [σ̃, σ̂]

w̄ if s > σ̂

.

where ω(s) is defined in (11), σ̃ solves w = ω(σ̃), b̂(s) is the solution to the differential equation

(13) satisfying the boundary condition b̂(σ̃) = w and σ̂ is such that lims→σ̂− b̂(s) = w̄.

The following example illustrates an equilibrium strategy in the war of attrition. In many

examples, closed-form expressions for equilibrium strategies are available.

Example 3. Suppose N = 2 and that value-signals Si
i.i.d.∼ U [0, 1]. Let u(si, sj) = (si + sj)/2

and suppose budgets follow the cumulative distribution G(w) = 1 − e−(w−w) on [w,∞). Choose

w = − 7
20 +log

(
20
13

)

≈ 0.081. With these parameters, our equilibrium strategy in the war of attrition

is β(s,w) = min{b(s), w} where

b(s) =







−s − log(1 − s) if s ≤ 7
20

∫ s
7
20

4y
3(y−1)2 dy + w if s > 7

20
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For s > 7/20, we can integrate the above expression to see that

b(s) =
1040(s − 1) log(1 − s) + 1820(s − 1) log

(
20
13

)

− 1873s + 833

780(s − 1)
.

For comparison, Figure 3 presents the functions b(s) and ω(s) = −s − log(1 − s).

w
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0.081
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1

Figure 3: The functions b(s), solid black, and −s − log(1 − s), gray, in the characterization of
equilibrium bidding in Example 3. Both functions are not bounded.

As seen in Example 3, bidders with a value-signal of only 0.65 desire to commit to a bid greater

than 1, which is the maximum possible value of the available prize. Such “overbidding” is a particular

feature of the war of attrition (Albano, 2001). The effect of budget constraints is to amplify this

phenomenon further. The following corollary formalizes this observation.

Corollary 2. Under the conditions of Theorem 3:

1. lims→σ̃+ b′(s) > lims→σ̃− b′(s) = lims→σ̃− ω′(s).

2. If fk(s|s)
1−Fk(s|s) ≥

fN−1(s|s)
1−FN−1(s|s) for all k,9 then for all s, b(s) ≥ ω(s).

The equilibrium in the war of attrition exhibits similar comparative statics to the all-pay auction.

Again, the equilibrium strategy identified here will converge to the equilibrium in an environment

9For example, this condition is satisfied when Si
i.i.d.
∼ U [0, 1].
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without budget constraints if the constraints are relaxed. Additionally, the same bidder-level com-

parative statics apply concerning information revelation. The distinction between value-relevant and

information-relevant public signals continues to be important in appreciating a bidder’s equilibrium

reaction to public information.

Theorem 4. Suppose the conditions of Theorem 3 are satisfied. Then the conclusions of Theorem

2 continue to apply in the context of the war of attrition.

3.1 Comparing of the All-Pay Auction and the War of Attrition

We conclude our investigation with a brief comparison of the two auction formats. Naturally,

we restrict attention to environments where the all-pay auction has an equilibrium of the form

βα(s,w) = min{bα(s), w} and the war of attrition has an equilibrium of the form βω(s,w) =

min{bω(s), w}. Both βα and βω are assumed to exhibit the characteristics identified in our preceding

analysis. Our first comparison considers an ordering of the bidding strategies.

Theorem 5. βω(s,w) ≥ βα(s,w) for all (s,w).

Noting Theorem 5, we can employ the arguments in Che & Gale (1998) and also outlined in

Krishna (2002) to conclude that the all-pay auction will be more efficient on average than the war

of attrition when preferences are reflective of the ordering of bidder’s value-signals.

We close with a discussion of revenue comparisons between the two formats. There does not

exist a general revenue ranking between the war of attrition and the all pay auction in the presence

of budget constraints and affiliated valuations. One can draw this conclusion by documenting the

results in extreme cases. First, suppose that budget constraints are very lax. For example, suppose

budgets are distributed according to the exponential distribution with a mean that is very large.

Since valuations are bounded the equilibrium bids submitted in both formats are essentially those

submitted in the case of a no-budget constraints situation. In this case, it is known that in the

presence of value interdependence the war of attrition will revenue-dominate the all-pay auction

(Krishna & Morgan, 1997).

When budget constraints are more meaningful, and they constrain bidders with non-vanishing

probability, the all-pay auction can generate more revenue. Consider the following case. Suppose

there are two bidders and value signals are distributed independently according to the uniform

distribution. Suppose budget constraints follow the exponential distribution G(w) = 1 − e−(w−w)

on [w,∞). Choose w = log(10
3 ) − 7

10 ≈ 0.5039. Finally, assume bidders have private values:

ui(si, sj) = si.

In this situation, budget constraints are (just) irrelevant in the case of the all-pay auction. The

equilibrium strategy is βα(s,w) = min{bα(s), w} where bα(s) = s2

2 . The expected revenue in the

all-pay auction is Rα = 1
3 .
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Since the bidding strategy in the war of attrition is not bounded, the introduced budget con-

straints will directly affect the equilibrium strategy. It is straightforward to show that the equilib-

rium bidding strategy is βω(s,w) = min{bω(s), w} where

bω(s) =







−s − log(1 − s) if s < 7
10

∫ s
7
10

y
(y−1)2 dy + log(10

3 ) − 7
10 if s ≥ 7

10

When s > 7
10 , we can write bω(s) in closed form as

bω(s) =
s
(

log
(

1000
27

)

− 10
)

+ 7 + log(27) − 3 log(10)

3(s − 1)
+ log

(
10

3
− 10

3
s

)

− 7

10
.

A direct calculation for the revenue in this case (see the online appendix) gives

Rω =
1

1500

(

527 − 270e
20
3

∫ ∞

20
3

e−x

x
dx

)

.

The terms in Rω are straightforward to approximate accurately to conclude that Rω < 0.328. In this

example the impact on revenue following the introduction of budget constraints is very slight for two

reasons. First, only a fraction of bidders in the war of attrition are somehow directly impacted by

the budget constraint. Additionally, those who are impacted adjust their bidding upward (Corollary

2) which partially ameliorates the revenue decline. This adjustment is not sufficient to preclude a

strict revenue decline.

While tractability has guided our discussion of revenues towards comparisons of extreme sce-

narios, its conclusions apply more generally. It is clear that we can modify our final example by

perturbing the distribution of budgets slightly such that it has full support on [0,∞) without chang-

ing the conclusion. Similarly, one can perturb the distribution of value-signals such that they are

strictly but “slightly” affiliated while maintaining the strict difference in expected revenues. For

example, consider the distribution h(s1, s2) ∝ K + sisj on [0, 1]2 and let K be very large. Fi-

nally, one can introduce strict value interdependence by endowing bidders with the preferences

u(si, sj) = (1−ε)si +εsj. As we have shown, the boundary of the revenue dominance of one auction

format over the other will lie somewhere in between the two extreme cases considered. We hope to

explore this boundary further, along with its implications for auction and contest design, in future

research.
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A Proofs from Section 2 (All-Pay Auction)

Lemma A.1. Let G ≡ G(w), g ≡ g(w), zk ≡ zk(x|s), and γk ≡ γk(w). Then,
∑N−1

k=0 γ′kzk =
∑N−2

k=0 g(N − 1)
(N−2

k

)

GN−2−k(1 − G)k(zk − zk+1).

Proof. Differentiating γk(w) gives

γ′k =

(
N − 1

k

)

(N − 1 − k)GN−2−kg(1 − G)k −
(

N − 1

k

)

GN−1−kgk(1 − G)k−1.

Therefore,

N−1
∑

k=0

γ′kzk =
N−2
∑

k=0

(
N − 1

k

)

(N − 1 − k)GN−2−kg(1 − G)kzk

−
N−1
∑

k=1

(
N − 1

k

)

kGN−1−kg(1 − G)k−1zk.

For k ≤ N − 2,
(N−1

k

)

(N − 1 − k) = (N−1)!
(N−1−k)!k!(N − 1 − k) = (N − 1) (N−2)!

(N−2−k)!k! = (N − 1)
(N−2

k

)

and for k ≥ 1,
(N−1

k

)

k = (N−1)!
(N−1−k)!(k−1)! = (N − 1) (N−2)!

(N−2−(k−1))!(k−1)! = (N − 1)
(N−2

k−1

)

. Shifting the

index of summation we see that

(N − 1)g
N−1
∑

k=1

(
N − 2

k − 1

)

GN−1−k(1 − G)k−1zk = (N − 1)g
N−2
∑

k=0

(
N − 2

k

)

GN−2−k(1 − G)kzk+1.

Hence,

N−1
∑

k=0

γ′kzk = g(N − 1)
N−2
∑

k=0

(
N − 2

k

)

GN−2−kg(1 − G)kzk

− g(N − 1)
N−2
∑

k=0

(
N − 2

k

)

GN−2−k(1 − G)kzk+1

=
N−1
∑

k=1

g(N − 1)

(
N − 2

k − 1

)

GN−1−k(1 − G)k−1(zk−1 − zk)

=
N−2
∑

k=0

g(N − 1)

(
N − 2

k

)

GN−2−k(1 − G)k(zk − zk+1)

which is the desired conclusion.

Lemma A.2. Let k ≥ 1 and adopt the notation y = (y1, . . . , yN−1). Then for all k ≥ 1,
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1. zk(x|s) =

∫ x

0
vk(s, x)fk(x|s)dx =

∫ 1

0
· · ·

∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k

u(s,y)h(y|s)dy1 · · · dyN−1.

2. zk(x|s) − zk+1(x|s) ≥ 0. Therefore,
∑N−1

k=0 γ′k(w)zk(x|s) ≥ 0.

Proof. To prove part 1 we work from the definition of zk(x|s):

zk(x|s) =

∫ x

0
vk(s, y)fk(y|s)dy

=

∫ x

0
E[u(S, Y1, . . . YN )|S = s, Ȳk = y]fk(y|s)dy

= Pr[Ȳk ≤ x|S = s]E[u(S, Y1, . . . YN )|S = s, Ȳk ≤ x]

=

∫ 1

0
· · ·

∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k

u(s,y)h(y|s)dy1 · · · dyN−1.

Part 2 is an immediate consequence of the above since (noting symmetry)

zk(x|s) − zk+1(x|s) =

∫ 1

x

(
∫ 1

0
· · ·

∫ 1

0
︸ ︷︷ ︸

N−1−(k+1)

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k

u(s,y)h(y|s)dy1 · · · dyN−2

)

dyN−1.

Whenever 0 < x < 1, the preceding expression is strictly positive.

Lemma A.3. The differential equation

b′(s) =

∑N−1
k=0 γk(b(s))z′k(s|s)

1 −
∑N−1

k=0 γ′k(b(s))zk(s|s)
(16)

has a strictly increasing solution b(s) : [s̃, 1] → [w, w̄] satisfying the boundary condition b(s̃) = w.

Proof. Since all of the terms in (16) are continuous, this lemma follows from a simple application of

standard results in the theory of ordinary differential equations. It is readily verified that b′(s) as

defined is strictly positive for all s ∈ [s̃, 1] due to Assumption A4. The basic intuition is presented

in Figure 4. {(s, b) : ξ(s, b|s) = 0}, denoted by dashed curves, is a set of points where b′(s) is not

defined and solutions to the differential equation (16) approach it vertically. In grey regions, all

solutions to (16) are (strictly) downward sloping while in the white region b′(s) > 0.

We need to however verify that the solution meeting the boundary condition b(s̃) = w is indeed

defined for all s ∈ [s̃, 1]. The sole alternative is that for some s̃′ < 1, lims→s̃′− b(s) = w̄. This

possibility is ruled out, however, by noting that the function b̃(s) = w̄ is a solution to (16) satisfying

the boundary condition b̃(s̃) = w̄. Thus, b(s) is bounded above by w̄ and indeed the solution b(s)

has a maximal domain of [s̃, 1] as required.

24



s

b

1

w̄

0

w
ξ(s, b|s) < 0 ξ(s, b|s) < 0

s̃

α(s)

b(s)

Figure 4: Definition of b(s) in the all-pay auction. From Assumption A4, it follows that b(s)
is contained in the white region where all solutions to the differential equation (16) are strictly
increasing.

Remark A.1. An alternative argument, contained in an earlier working paper of this study, ana-

lyzed instead the solution of the differential equation q(b) = ψ(b, q(b)) where

ψ(b, q(b)) =
1 −

∑N−1
k=0 γ′k(b)zk(q(b)|q(b))

∑N−1
k=0 γk(b)z′k(q(b)|q(b))

, q(w) = s̃.

b(s) is then defined as the inverse of q(b). Analyzing the inverse of the main differential equation in

auction models has a long history (see for example Lebrun (1999), Maskin & Riley (2003), among

others) and assuages concerns related to the set of points where ξ(s, b|s) = 0.

Proof of Theorem 1. Let U(b(x)|s,w) be the expected utility of bidder i when he has value-signal

s and places the bid b(x) ≤ w. Noting the definition of b(x), it is easily seen to be absolutely continu-

ous. Moreover, since G(·) is continuously differentiable, U(b(x)|s,w) =
∑N−1

k=0 γk(b(x))zk(x|s)−b(x)
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is absolutely continuous10 and in particular we can write

U(b(x)|s,w) = U(b(s̃)|s,w) +

∫ x

s̃

d

dt
U(b(t)|s,w)

∣
∣
∣
∣
t=y

dy. (17)

We proceed to verify that no type of bidder wishes to deviate to an alternative (feasible) bid.

1. Consider a bidder with value-signal s < s̃. When following the strategy β(s,w), this bidder

places the bid b(s) = α(s). From Krishna & Morgan (1997), we know that this bidder will

not have a profitable deviation to any bid b(x), x ∈ [0, s̃]. In particular, U(β(s,w)|s,w) ≥
U(b(s̃)|s,w).

Suppose instead that this bidder contemplates bidding b(x) for some x > s̃. The expected

payoff from this bid is given by (17). It is sufficient to verify that when s < x, d
dtU(b(t)|s,w) ≤

0. Using Assumptions A3 and A4, we can see that

d

dt
U(b(t)|s,w)

=
N−1
∑

k=0

γ′k(b(t))zk(t|s)b′(t) +
N−1
∑

k=0

γk(b(t))z
′
k(t|s) − b′(t)

=
N−1
∑

k=0

γk(b(t))z
′
k(t|s) −

N−1
∑

k=0

γk(b(t))z
′
k(t|t)

[
1 −

∑

k γ
′
k(b(t))zk(t|s)

1 −
∑

k γ
′
k(b(t))zk(t|t)

]

≤
N−1
∑

k=0

γk(b(t))z
′
k(t|t) −

N−1
∑

k=0

γk(b(t))z
′
k(t|t)

[
1 −

∑

k γ
′
k(b(t))zk(t|t)

1 −
∑

k γ
′
k(b(t))zk(t|t)

]

= 0

Hence, deviating to a bid b(x) for x > s is not profitable.

2. Consider instead a bidder with a value-signal s ≥ s̃. An argument exactly parallel to the

preceding case confirms that a bid b(x), x > s, will not be profitable. Suppose instead this

bidder bids b(x) ≤ w such that x ∈ [s̃, s). As above, we have

d

dt
U(b(t)|s,w) =

N−1
∑

k=0

γk(b(t))z
′
k(t|s) −

N−1
∑

k=0

γk(b(t))z
′
k(t|t)

[
1 −

∑

k γ
′
k(b(t))zk(t|s)

1 −
∑

k γ
′
k(b(t))zk(t|t)

]

.

By Assumption A3,
∑N−1

k=0 γk(b(t))z′k(t|s) ≥
∑N−1

k=0 γk(b(t))z′k(t|t). There are two cases:

(a) If 1 −
∑

k γ
′
k(b(t))zk(t|s) < 0, then we conclude immediately that d

dtU(b(t)|s,w) ≥ 0.

(b) Suppose 1 −
∑

k γ
′
k(b(t))zk(t|s) ≥ 0. Then by Assumption A4, 1 −

∑

k γ
′
k(b(t))zk(t|s) ≤

1 −
∑

k γ
′
k(b(t))zk(t|t) and so d

dtU(b(t)|s,w) ≥ 0.

10Generally, the composition of absolutely continuous functions need not be absolutely continuous. However, since
G(·) is continuously differentiable (hence, Lipschitz) this conclusion holds.
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Therefore, there is no profitable deviation to a bid b(x) when x ∈ [s̃, s).

Finally, consider a deviation to a bid of b(x) for x < s̃. It is sufficient to show that
d
dtU(b(t)|s,w) ≥ 0 for all t < s̃. Again, Assumption A3 gives

d

dt
U(b(t)|s,w) = vN−1(s, t)fN−1(t|s) − vN−1(t, t)fN−1(t|t)

≥ vN−1(t, t)fN−1(t|t) − vN−1(t, t)fN−1(t|t) = 0.

The above analysis is exhaustive of all the cases; thus, β(s,w) is a symmetric equilibrium strategy.

Proof of Corollary 1. By Assumption A4, 1 −
∑N−1

k=0 γ′k(w)zk(s̃|s̃) > 0. However, from Lemmas

A.1 and A.2,
∑N−1

k=0 γ′k(w)zk(s̃|s̃) > 0. Therefore,

0 < 1 −
N−1
∑

k=0

γ′k(w)zk(s̃|s̃) < 1.

Also,
∑N−1

k=0 γk(b(s))z′k(s|s) =
∑N−1

k=1 γk(b(s))vk(s, s)fk(s|s). Since γk(w) = 0 for all k (= N − 1 and

γN−1(w) = 1, we can take limits to conclude

lim
s→s̃+

b′(s) = lim
s→s̃+

∑N−1
k=0 γk(b(s))z′k(s|s)

1 −
∑N−1

k=0 γ′k(b(s))zk(s|s)

=

∑N−1
k=1 γk(w)vk(s̃, s̃)fk(s̃|s̃)

1 −
∑N−1

k=0 γ′k(w)zk(s̃|s̃)

=
vN−1(s̃, s̃)fN−1(s̃|s̃)

1 −
∑N−1

k=0 γ′k(w)zk(s̃|s̃)

> vN−1(s̃, s̃)fN−1(s̃|s̃) = lim
s→s̃−

b′(s) = lim
s→s̃−

α′(s)

The following lemma is used in the proof of Theorems 2 and 4 below.

Lemma A.4. Suppose (X,Y,Z) are affiliated random variables with a strictly positive, bounded,

continuous density f(x, y, z) defined on [0, 1]3. Define

f(x|y, z) =
f(x, y, z)

∫ 1
0 f(x, y, z)dx

.

Let z′ > z and suppose that f(·|y, z) (= f(·|y, z′) for all y. Then there exists 0 < ŷ < 1 such that:

(a) f(x|x, z′) < f(x|x, z) for all x < ŷ.
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(b) f(x|x,z′)
1−F (x|x,z′) < f(x|x,z)

1−F (x|x,z) for all x < ŷ.

Proof. Let z′ > z and fix y. Since (y, z′) ≥ (y, z), by the properties of affiliated random variables

(see Milgrom & Weber (1982) or Krishna (2002)) the function

f(·|y, z′)

f(·|y, z)
: [0, 1] → R

is nondecreasing. It is also continuous and strictly positive.

Suppose f(0|y, z′) ≥ f(0|y, z). Then f(x|y, z′) ≥ f(x|y, z) for all x ∈ [0, 1]. Since f(·|y, z) (=
f(·|y, z′) there exist an open set X ⊂ [0, 1] such that for all x ∈ X , f(x|y, z) > f(x|y, z′). But

this implies 1 =
∫ 1
0 f(x|y, z)dx <

∫ 1
0 f(x|y, z′)dx which is a contradiction. Therefore f(0|y, z′) <

f(0|y, z). Specifically, the above conclusion holds when y = 0: f(0|0, z′) < f(0|0, z). Noting that

f(·|·, z′) and f(·|·, z) are continuous functions, there exists ŷ > 0 such that for all 0 < x < ŷ,

f(x|x, z′) < f(x|x, z) as desired.

To derive the second conclusion, let x < ŷ. Then for all x̃ ≤ x,

1 ≥ f(x|x, z′)

f(x|x, z)
≥ f(x̃|x, z′)

f(x̃|x, z)
.

Thus, F (x|x, z′) =
∫ x
0 f(x̃|x, z′)dx̃ ≤

∫ x
0 f(x̃|x, z)dx̃ = F (x|x, z). Hence,

1

1 − F (x|x, z′)
≤ 1

1 − F (x|x, z)
.

Combining this observation with the first conclusion gives the second result.

Proof of Theorem 2. Let β̄(s,w) = min{b̄(s), w} and β(s,w) = min{b(s), w} be the equilibrium

bidding strategies conditional on the realized public signal. (An implicit assumption is that equilibria

in this class of strategies obtain for both signal realizations.) To prove part (1) it is sufficient to

verify that b̄(s) ≥ b(s). Since the value-signal is only value-relevant we can let ū (u) be a bidder’s

utility function when the public signals is high (low). The values z̄k, v̄k, zk, and vk are defined in the

obvious way. Since ū > u a.e., it follows that v̄k > vk and z̄k > zk. Moreover, z̄k − z̄k+1 ≥ zk−zk+1,

and thus
∑N−1

k=0 γ′k(w)z̄k(s|s) ≥
∑N−1

k=0 γ′k(w)zk(s|s).
Thus, when b̄(s) ≤ w, we have

ᾱ(s) = b̄(s) =

∫ s

0
v̄N−1(y, y)fk(y|y)dy >

∫ s

0
vN−1(y, y)fk(y|y)dy = b(s) = α(s)

Thus, if ᾱ(˜̄s) = w, there exists s∗ > ˜̄s such that for all s ≤ s∗, b̄(s) ≥ b(s). Suppose that at s∗,

b̄(s∗) = b(s∗) = b∗ and for all ε > 0 sufficiently small, b̄(s∗ + ε) < b(s∗). Since b̄′(s) and b′(s) are
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both continuous functions, we see that

b′(s∗) =

∑N−1
k=1 γk(b∗)vk(s

∗, s∗)fk(s∗|s∗)
1 −

∑N−1
k=0 γ′k(b

∗)zk(s∗|s∗)

<

∑N−1
k=1 γk(b∗)v̄k(s∗, s∗)fk(s∗|s∗)
1 −

∑N−1
k=0 γ′k(b

∗)z̄k(s∗|s∗)
= b̄′(s∗),

implying a contradiction. Therefore b̄(s) ≥ b(s) for all s.

Turning to part (2), we know that given the public signal s0, b(s) =
∫ s
0 vN−1(y, y)fN−1(y|y, s0)dy

for all s > 0 sufficiently small. Lemma A.4 implies that if s̄0 > s0, then fN−1(y|y, s̄0) < fN−1(y|y, s0)

for all 0 < y sufficiently small. Therefore, b(s) ≥ b̄(s) for all s > 0 sufficiently small.

B Proofs from Section 3 (War of Attrition)

Lemmas B.1 and B.2 are used to prove Theorem 3.

Lemma B.1. Let

Fk(x|s) =

∫ 1

0
· · ·

∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k

h(y1, . . . , yN−1|s)dy1 · · · dyN−1

and let fk(x|s) = d
dxFk(x|s) be the associated density. Then for all k ≥ 1, fk(s|s)

1−Fk(s|s) ≥
(

k
k+1

)
fk+1(s|s)

1−Fk+1(s|s) .

Proof. We note that Fk(x|s) ≥ Fk+1(x|s). Using the symmetry of h(·), we can compute fk(x|s) to

conclude

fk(x|s)
1 − Fk(x|s) =

k

N−1−k
︷ ︸︸ ︷
∫ 1

0
· · ·

∫ 1

0

k−1
︷ ︸︸ ︷
∫ x

0
· · ·

∫ x

0
h(y1, . . . , yN−2, x|s)dy1 . . . dyN−2

1 − Fk(x|s)

≥
k

k+1(k + 1)

N−2−k
︷ ︸︸ ︷
∫ 1

0
· · ·

∫ 1

0

k
︷ ︸︸ ︷
∫ x

0
· · ·

∫ x

0
h(y1, . . . , yN−2, x|s)dy1 . . . dyN−2

1 − Fk+1(x|s)

=

(
k

k + 1

)
fk+1(x|s)

1 − Fk+1(x|s)
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Lemma B.2. The differential equation

b̂′(s) =

∑N−1
k=0 γk(b̂(s))z′k(s|s)

1 − Ĥ(s, b̂(s)|s) −
∑N−1

k=0 γ′k(b̂(s))zk(s|s)
(18)

has a strictly increasing solution b̂(s) satisfying the boundary condition b(σ̃) = w. Moreover, there

exists σ̂ ≤ 1 such that lims→σ̂− b̂(s) = w̄.

Proof. The existence of a strictly increasing solution follows from the same reasoning as presented in

the case of the all-pay auction. In particular, Assumption A6 ensures that b̂′(s) > 0 in the relevant

range of values. We therefore focus on showing the final claim that b̂(s) tends to w̄.

Applying Lemma B.1 multiple times lets us conclude that

fk(x|s)
1 − Fk(x|s)

≥
(

k

N − 1

)
fN−1(x|s)

1 − FN−1(x|s)
≥

(
1

N − 1

)
fN−1(x|s)

1 − FN−1(x|s)
.

Also, noting Lemma A.1,
∑N−1

k=0 γ′k(b̂(s))zk(s|s) ≥ 0. Thus,

b̂′(s) =

∑N−1
k=0 γk(b̂(s))z′k(s|s)

1 − Ĥ(s, b̂(s)|s) −
∑N−1

k=0 γ′k(b̂(s))zk(s|s)

≥
∑N−1

k=0 γk(b̂(s))z′k(s|s)
1 − Ĥ(s, b̂(s)|s)

=

∑N−1
k=1 γk(b̂(s))vk(s, s)fk(s|s)

∑N−1
k=1 γ(b̂(s))(1 − Fk(s|s))

≥ vN−1(s, s)

∑N−1
k=1 γk(b̂(s))fk(s|s)

∑N−1
k=1 γ(b̂(s))(1 − Fk(s|s))

= vN−1(s, s)
N−1
∑

k=1

γk(b̂(s))(1 − Fk(s|s))
∑N−1

k=1 γk(b̂(s))(1 − Fk(s|s))
fk(s|s)

1 − Fk(s|s)

≥ vN−1(s, s)
N−1
∑

k=1

γk(b̂(s))(1 − Fk(s|s))
∑N−1

k=1 γk(b̂(s))(1 − Fk(s|s))

(
1

N − 1

)
fN−1(s|s)

1 − FN−1(s|s)

=
1

N − 1

vN−1(s, s)fN−1(s|s)
1 − FN−1(s|s)

=
ω′(s)

N − 1

Since b̂(σ̃) = ω(σ̃) = w, we have that for s ≥ σ̃, b̂(s) = w +
∫ s
σ̃ b̂′(x)dx ≥ w + 1

N−1

∫ s
σ̃ ω

′(x)dx =

w + 1
N−1 (ω(s) − w). From Krishna & Morgan (1997), lims→1 ω(s) = ∞. Thus, since b̂(s) is

continuous and strictly increasing, for some σ̂ ≤ 1, lims→σ̂− b̂(s) = w̄.

Proof of Theorem 3. Noting Lemma B.2 here we only verify that the proposed strategy is

indeed an equilibrium. The argument proceeds similarly to the case of the all-pay auction. If

β(s,w) = min{b(s), w} is the proposed equilibrium strategy, the range of β equals the range of b(s);
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therefore, we need to rule out deviations only to alternative bids b(x) for some x ≤ σ̂ taking as

given all other bidders following β(s,w). As in the case of the all-pay auction, we can write the

expected payoff from the bid b(x) as

U(b(x)|s,w) = U(b(σ̃)|s,w) +

∫ x

σ̃

d

dt
U(b(t)|s,w)

∣
∣
∣
∣
t=y

dy

1. Consider a bidder with a value-signal s < σ̃. When following the strategy β(s,w), this bidder

places the bid b(s) = ω(s). From Krishna & Morgan (1997), we known that this bidder will not

have a profitable deviation to any bid b(x), x ∈ [0, σ̃]. Notably, U(β(s,w)|s,w) ≥ U(b(σ̃)|s,w).

Suppose instead that this bidder contemplates bidding b(x) for some x > σ̃. To confirm

this alternative is inferior, it is sufficient to verify that d
dtU(b(t)|s,w) ≤ 0 for a.e. t ∈ [σ̃, x].

Differentiating and simplifying as needed we see that

d

dt
U(b(t)|s,w)

=
N−1
∑

k=1

γk(b(t))vk(s, t)fk(t|s) − b′(t)

(
N−1
∑

k=1

γk(b(t))(1 − Fk(t|s)) −
N−1
∑

k=0

γ′k(b(t))zk(t|s)
)

=

[
N−1
∑

k=1

γk(b(t))(1 − Fk(t|s))
]

(

Φ(t, b(t)|s) − b′(t)Ξ(t, b(t)|s)
)

≤
[

N−1
∑

k=1

γk(b(t))(1 − Fk(t|s))
]

(

Φ(t, b(t)|t) − b′(t)Ξ(t, b(t)|t)
)

= 0

The inequality follows from Assumptions A5 and A6. The final equality follow from the

observation that for t > σ̃, b′(t) = Φ(t, b(t)|t)/Ξ(t, b(t)|t). Thus, the bid b(x), x > σ̃ ≥ s is

not profitable.

2. Consider a bidder with a value-signal s > s̃. The preceding argument continues to apply and

this bidder will not have a profitable deviation to any bid b(x) ≤ w such that x ≥ s. Suppose

instead x ∈ [σ̃, s]. To rule out such a deviation, it is sufficient to show that d
dtU(b(t)|s,w) ≥ 0

for a.e. t ∈ [x, s]. By Assumption A5, we know that

d

dt
U(b(t)|s,w) =

[
N−1
∑

k=1

γk(b(t))(1 − Fk(t|s))
]

(

Φ(t, b(t)|s) − b′(t)Ξ(t, b(t)|s)
)

≥
[

N−1
∑

k=1

γk(b(t))(1 − Fk(t|s))
]

(

Φ(t, b(t)|t) − b′(t)Ξ(t, b(t)|s)
)

If Ξ(t, b(t)|s) ≤ 0, then it follows d
dtU(b(t)|s,w) ≥ 0. If instead Ξ(t, b(t)|s) ≥ 0, then from

Assumption A6, Ξ(t, b(t)|s) ≤ Ξ(t, b(t)|t). Thus, d
dtU(b(t)|s,w) ≥ 0 as required.
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Finally, consider a deviation to a bid b(x), x ≤ σ̃. It is sufficient to show that d
dtU(b(t)|s,w) ≥ 0

for t ∈ [x, σ̃]. Differentiating and simplifying the resulting expression, along with an applica-

tion of Assumption A6, gives

d

dt
U(b(t)|s,w) = vN−1(s, t)

fN−1(t|s)
1 − FN−1(t|s)

− vN−1(t, t)
fN−1(t|t)

1 − FN−1(t|t)

≥ vN−1(t, t)
fN−1(t|t)

1 − FN−1(t|t)
− vN−1(t, t)

fN−1(t|t)
1 − FN−1(t|t)

= 0

Since the above analysis is exhaustive of all possible cases, we conclude that β(s,w) is an equilib-

rium.

Proof of Corollary 2. The proof of part (1) is analogous to the proof of Corollary 1. Additionally,

we note that Ĥ(σ̃, w|σ̃) = FN−1(σ̃|σ̃). Thus,

lim
s→σ̃+

b′(s) =
vN−1(σ̃, σ̃)fN−1(σ̃|σ̃)

1 − FN−1(σ̃|σ̃) −
∑N−1

k=0 γ′k(w)zk(σ̃|σ̃)

>
vN−1(σ̃, σ̃)fN−1(σ̃|σ̃)

1 − FN−1(σ̃|σ̃)

= lim
s→σ̃−

b′(s) = lim
s→σ̃−

ω′(s).

For part (2) it is sufficient to verify that b′(s) ≥ ω′(s).

b′(s) =

∑N−1
k=0 γk(b(s))z′k(s|s)

1 − Ĥb̂(s|s) −
∑N−1

k=0 γ′k(b(s))zk(s|s)

=

N−1
∑

k=1

[

γk(b(s))(1 − Fk(s|s))
∑N−1

k′=1 γk′(b(s))(1 − Fk′(s|s))

]

vk(s, s)fk(s|s)
1 − Fk(s|s)

1 −
PN−1

k=0 γ′
k(b(s))zk(s|s)

PN−1
k′=1

γk′ (b(s))(1−Fk′ (s|s))

≥
N−1
∑

k=1

[

γk(b(s))(1 − Fk(s|s))
∑N−1

k′=1 γk′(b(s))(1 − Fk′(s|s))

]

vk(s, s)fk(s|s)
1 − Fk(s|s)

≥ vN−1(s, s)fN−1(s|s)
1 − FN−1(s|s)

= ω′(s).

Proof of Theorem 4. The argument is analogous to that presented in the proof of Theorem 2.

Note that Lemma A.4 also accomodates the bidding strategy from the war of attrition.

Proof of Theorem 5. Since vN−1(s, s)fN−1(s|s) < vN−1(s, s)
fN−1(s|s)

1−FN−1(s|s) , bω(s) > bα(s) for all
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s ∈ (0, s̃]. Noting the reasoning in the proof of Theorem 2 it is sufficient to verify that if there exists

a (s∗, b∗) such that b∗ = bω(s∗) = bα(s∗), then b′ω(s∗) > b′α(s∗) which will imply a contradiction.

This however is straightforward since

b′ω(s∗) =

∑N−1
k=0 γk(b∗)z′k(s

∗|s∗)
1 − Ĥ(s∗, b∗|s∗) −

∑N−1
k=0 γ′k(b

∗)zk(s∗|s∗)

>

∑N−1
k=0 γk(b∗)z′k(s

∗|s∗)
1 −

∑N−1
k=0 γ′k(b

∗)zk(s∗|s∗)
= b′α(s∗).
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X Online Appendix

In this appendix we collect additional and supporting results.

X.1 Derivation of Expected Payoffs in the All-Pay Auction

Suppose all bidders other than i are following the strategy β(s,w) = min{b(s), w} where b(s) is
strictly increasing. A bid of b(x) will defeat two classes of opponents. k of these opponents will have
a budget greater than b(x) and N − 1− k of these opponents will have a budget less than b(x). The
probability of this event is γk(b(x)) =

(N−1
k

)

G(b(x))N−1−k(1 − G(b(x)))k . The value-signal of the
opponents who have a budget less than b(x) can be arbitrary. The value-signal of the opponents
who have a budget greater than b(x) must have a value-signal less than x. Thus, then contribution
to expected utility from this event is

γk(b(x))

∫ 1

0
· · ·

∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k

u(s, y1, . . . , yN−1)h(y1, . . . , yN−1|s)dy1 · · · dyN−1

Owing to symmetry, we have assumed without loss of generality that opponents 1, . . . , k are in the
first group while the remain opponents are in the latter. We can simplify the above expression as
follows:

γk(b(x))

∫ 1

0
· · ·

∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k

u(s, y1, . . . , yN−1)h(y1, . . . , yN−1|s)dy1 · · · dyN−1

= γk(b(x)) Pr[Ȳk ≤ x|S = s]E[u(S, Y1, . . . YN−1)|S = s, Ȳk ≤ x]

= γk(b(x))

∫ x

0
E[u(S, Y1, . . . YN−1)|S = s, Ȳk = y]fk(y|s)dy

= γk(b(x))

∫ x

0
vk(s, y)fk(y|s)dy

= γk(b(x))zk(x|s)

Recalling that we defined z0(x|s) = v0(s, y) = E[u(s, Y1, . . . , YN−1)|S = s], we can sum over k to
arrive at

U(b(x)|s,w) =
N−1
∑

k=0

γk(b(x))zk(x|s) − b(x).

Note that if b(x) < w, then for all k = 0, . . . , N − 2, γk(b(x)) = 0 and γN−1(b(x)) = 1. Thus, the
above expression reduces to

U(b(x)|s,w) =

∫ x

0
vN−1(s, y)fN−1(y|s)dy − b(x).
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X.2 Alternative Assumptions for the All-Pay Auction and a Bound on the
Maximal Bid

In this appendix we present results which weaken several imposed assumptions in our analysis of
the all-pay auction. Specifically we replace Assumptions A2, A3, and A4 with alternatives that are
sufficient for an equilibrium of the form β(s,w) = min{b(s), w)} when the distribution of budgets
is only sufficiently smooth on the interval [w, ᾱ + ε] ⊂ [w, w̄]. A corollary of this analysis is that
under the assumptions identified below, the maximal bid placed in an all-pay auction with budget
constraints is less than the maximal bid placed in the same model absent budget constraints.

Recall that ᾱ = α(1) =
∫ 1
0 vN−1(y, y)fN−1(y|y)dy is the maximal bid placed in an all-pay

auction without budget constraints and s̃ solves w = α(s̃).

Assumption AX.2. Players’ budgets are independently and identically distributed according to the
cumulative distribution function G : [w, w̄] → [0, 1]. Furthermore,

1. 0 < w < ᾱ < w̄ and 0 < G(ᾱ) < 1.

2. For all w ∈ [w, ᾱ], G(w) admits a strictly positive and continuously differentiable density g(w).

Assumption AX.3. u(·, s−i)h(s−i|·) is nondecreasing and absolutely continuous.

Assumption AX.4. Let ξ(x,w|s) = 1 −
∑N−1

k=0 γ′k(w)zk(x|s). Then the following conditions hold:

1. For all s ≥ s̃, ∃ws ∈ [w, ᾱ) such that w ∈ [w,ws) =⇒ ξ(s,w|s) < 0 and w ∈ (ws, ᾱ] =⇒
ξ(s,w|s) > 0.

2. There exists ε > 0 such that for all s ∈ (s̃ − ε, s̃ + ε), ξ(s,w|s) > 0.

Notably, Assumption AX.4 places a weaker restriction on the single-crossing condition that ξ
must satisfy. With these assumption, we prove the following:

Theorem X.1. Under assumptions A1, AX.2, AX.3, and AX.4, the conclusions of Theorem 1
continue to apply.

An immediate corollary, which we prove en route, is the following.

Corollary X.1. Under the conditions of Theorem X.1, if β(s,w) = min{b(s), w} is an equilibrium
of the all-pay auction, then b(s) ≤ ᾱ.

To prove Theorem X.1 requires several steps:

1. Given the distribution of budgets G(w) satisfying assumption AX.2, we define an alternative
distribution of budgets, G̃(w), which equals G(w) for w ≤ ᾱ and in addition satisfies As-
sumptions A2 from the main text. Moreover G̃(w) will ensure that assumption A4 is also
satisfied.

2. We apply Theorem 1 to show that there exists an equilibrium in the auction when the budget
distribution is G̃. We denote this equilibrium by β̃(s,w) = min{b̃(s), w}.

3. We show that b̃(s) is bounded above by ᾱ. Therefore, β̃(s,w) remains an equilibrium strategy
when G̃ is replaced by the original distribution G since G(w) = G̃(w) for all w ≤ b̃(1).
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Unless noted otherwise, in the following we suppose that Assumption A1 is always satisfied. The
first lemma records some consequences of Assumption AX.3.

Lemma X.1. Suppose Assumption AX.3 holds. Then,

1. For all k ≥ 1, vk(·, y)fk(y|·) is nondecreasing. Therefore, φ(x,w|·) =
∑N−1

k=1 vk(·, x)fk(x|·) is
nondecreasing.

2. For all k ∈ {0, . . . , N − 2}, zk(x|·) − zk+1(x|·) is nondecreasing. Therefore, when x ≥ σ̃,
ξ(x,w|·) : [0, 1] → R is non-increasing.

3. For all k ∈ {0, . . . , N − 1}, ∂
∂szk(x|s) ≥ ∂

∂szk+1(x|s). Therefore,
∫ x
0

∂
∂s [vk(s, y)fk(y|s)] dy ≥

∫ x
0

∂
∂s [vk+1(s, y)fk+1(y|s)] dy.

Proof. For notation, we let y = (y1, . . . , yN−1).

1. From Lemma A.2,

zk(x|s) =

∫ 1

0
· · ·

∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k

u(s,y)h(y|s)dy1 · · · dyN−1.

Thus, zk(x|s) is nondecreasing in s. Thus, zk(x|s)− zk(x|s′) ≥ 0 when s > s′. Moreover since
u(s, s−i)h(s−i|s)− u(s′, s−i)h(s−i|s′) ≥ 0, we have zk(x|s)− zk(x|s′) ≥ zk(x′|s)− zk(x′|s′) for
x > x′. Thus,

lim
x′→x

1

x − x′

∫ x

x′

vk(s, y)fk(y|s)dy ≥ lim
x′→x

1

x − x′

∫ x

x′

vk(s
′, y)fk(y|s′)dy

=⇒ vk(s, x)fk(x|s) ≥ vk(s
′, x)fk(x|s′).

2. Similarly, from Lemma A.2,

zk(x|s) − zk+1(x|s) =

∫ 1

x

(
∫ 1

0
· · ·

∫ 1

0
︸ ︷︷ ︸

N−1−(k+1)

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k

u(s,y)h(y|s)dy1 · · · dyN−2

)

dyN−1,

which is also nondecreasing in s.

3. To show the final statement, note that

∂

∂s
zk(x|s) =

∫ 1

0
· · ·

∫ 1

0

∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k

∂

∂s
[u(s,y)h(y|s)] dy1 · · · dyN−1

≥
∫ 1

0
· · ·

∫ 1

0
︸ ︷︷ ︸

N−2−k

∫ x

0

∫ x

0
· · ·

∫ x

0
︸ ︷︷ ︸

k+1

∂

∂s
[u(s,y)h(y|s)] dy1 · · · dyN−1

=
∂

∂s
zk+1(x|s)
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Lemma X.2. Suppose AX.2, AX.3, and AX.4 hold. Additionally, suppose

1. For all [w, w̄], G(w) admits a strictly positive and continuous density, g(w).

2. For all w ∈ [ᾱ, w̄), G(w) satisfies the bound

g(w)

g(ᾱ)
≤

sups∈[s̃,1]

∑N−2
k=0

(N−2
k

)

G(ᾱ)N−2−k(1 − G(ᾱ))k [zk(s|s) − zk+1(s|s)]
sups∈[s̃,1]

∑N−2
k=0

(N−2
k

)

G(w)N−2−k(1 − G(w))k [zk(s|s) − zk+1(s|s)]
. (X1)

Then the function ξ(x,w|s) is well-defined and continuous for all w ∈ [w, w̄]. Moreover, for all
s ≥ s̃, ∃ws ∈ [w, ᾱ) such that w < ws =⇒ ξ(s,w|s) < 0 and w ∈ (ws, w̄] =⇒ ξ(s,w|s) > 0.

Proof. We only verify the single crossing condition since the other claims are follow from the as-
sumptions above. Since G(w) satisfies Assumption AX.4, it is sufficient to verify that ξ(s,w|s) > 0
for w > ᾱ.

Writing ∆zk(s) = zk(s|s) − zk+1(s|s) and using Lemma A.1, we can derive the following impli-
cations:

∀s ∈ [s̃, 1], ξ(s, ᾱ|s) > 0

=⇒ ∀s ∈ [s̃, 1], g(ᾱ)
N−2
∑

k=0

(
N − 2

k

)

G(ᾱ)N−2−k(1 − G(ᾱ))k∆zk(s) <
1

N − 1

=⇒ g(ᾱ) sup
s∈[s̃,1]

N−2
∑

k=0

(
N − 2

k

)

G(ᾱ)N−2−k(1 − G(ᾱ))k∆zk(s) <
1

N − 1

=⇒ g(w) sup
s∈[s̃,1]

N−2
∑

k=0

(
N − 2

k

)

G(w)N−2−k(1 − G(w))k∆zk(s) <
1

N − 1
, ∀w > ᾱ

=⇒ ∀s ∈ [s̃, 1], g(w)
N−2
∑

k=0

(
N − 2

k

)

G(w)N−2−k(1 − G(w))k∆zk(s) <
1

N − 1
, ∀w > ᾱ

Rearranging this final expression proves the lemma’s claim.

Lemma X.3. Suppose AX.2, AX.3, and AX.4 hold. Then there exists a cumulative distribution
function G̃(w) : [w, w̃] → [0, 1], w̃ > ᾱ, such that G̃ meets the conditions of Lemma X.2 and for all
w ≤ ᾱ, G̃(w) = G(w).

Proof. Let G(w) be as defined in the lemma’s statement. For any cumulative distribution function
F : [0,∞) → [0, 1] define the functional

δ(F,w) = sup
s∈[s̃,1]

N−2
∑

k=0

(
N − 2

k

)

F (w)N−2−k(1 − F (w))N−2−k [zk(s|s) − zk+1(s|s)] . (X2)

Note that for any F , δ(F,w) ≤ sups∈[s̃,1] z0(s|s) ≤ 1 and δ(F,w) ≥ mink sups∈[s̃,1] zk(s|s) −
zk+1(s|s) = D > 0.
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Let K be the set of all continuous, nondecreasing functions F : [ᾱ,∞) → [0, 1] such that F (ᾱ) =

G(ᾱ), F (w) = 1 for all w > ᾱ + 1−G(ᾱ)
g(ᾱ)δ(G,ᾱ) , and |F (w) − F (w′)| ≤ g(ᾱ)δ(G,ᾱ)

D |w − w′|. The set K is
equicontinuous and uniformly bounded; hence, compact. It is also convex.

Consider the mapping F0
Λ−→ F1 defined by

F1(w) = Λ(F0) ≡ min

(

1, G(ᾱ) +

∫ w

ᾱ
g(ᾱ)

δ(G, ᾱ)

δ(F0, t)
dt

)

We record two facts about Λ.

1. Λ(K) ⊂ K. To see this conclusion note that Λ(F0) = F1(w) is nondecreasing, continuous and
when w > ᾱ and F (w) < 1, then

F1(w) = G(ᾱ) +

∫ w

ᾱ
g(ᾱ)

δ(G, ᾱ)

δ(F0, t)
dt

≥ G(ᾱ) +

∫ w

ᾱ
g(ᾱ)δ(G, ᾱ)dt

= G(ᾱ) + (w − ᾱ)g(ᾱ)δ(G, ᾱ)

Since F1 is bounded above by 1, F1(w) = 1 when w > ᾱ + 1−G(ᾱ)
g(ᾱ)δ(G,ᾱ) . To verify the Lipschitz

condition, note that g(ᾱ) δ(G,ᾱ)
δ(F0,t) ≤ g(ᾱ)δ(G,ᾱ)

D .

2. Λ is continuous. Let ε > 0. Define M = maxk supw∈[G(ᾱ),1]| d
dw (wN−2−k(1 − w)k)|. Then,

M < ∞. Taking F0, F1 ∈ K such that |F0(w) − F1(w)| < ε
sups∈[0,1] z0(s|s)(N−1)M we can

conclude
∣
∣
∣
∣

g(ᾱ)δ(G, ᾱ)

δ(F0, w)
− g(ᾱ)δ(G, ᾱ)

δ(F1, w)

∣
∣
∣
∣

≤ g(ᾱ)δ(G, ᾱ)

D2
|δ(F0, w) − δ(F1, w)|

≤ sup
s∈[0,1]

z0(s|s)
N−2
∑

k=0

(
N − 2

k

)
[

F0(w)N−2−k(1 − F0(w))k − F1(w)N−2−k(1 − F1(w))k
]

≤ sup
s∈[0,1]

z0(s|s)(N − 1)M |F0(w) − F1(w)| < ε.

Since Λ is a continuous self-map acting on a compact, convex set, it has a fixed point, say F̃ = Λ(F̃ ).
With this function define the distribution function G̃(w) as follows:

G̃(w) =

{

G(w) if w ≤ ᾱ

F̃ (w) if w > ᾱ

It is simple to verify that G̃ has the properties claimed by the Lemma. In particular, its density
function g̃(w) is continuous and it satisfies the required bound with equality for w ∈ [ᾱ, w̃].

Lemma X.4. Let G be the distribution of budget constraints and suppose Assumptions AX.2, AX.3,
and AX.4 are satisfied. Then there exists an equilibrium in the all-pay auction when the distribution
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of budgets is given by G̃, as defined in Lemma X.3. Moreover, if β̃(s,w) = min{b̃(s), w} is the
resulting equilibrium bidding strategy, b̃(s) ≤ ᾱ.

Proof. It follows from Lemmas X.1, X.2, and X.3 that the auction satisfies the conditions of the
Theorem 1. Therefore, there exists an equilibrium, β̃(s,w) = min{b̃(s), w}.

Let Uβ̃(s) =
∑N−1

k=0 γk(b̃(s))zk(s|s)− b̃(s) be the equilibrium expected utility of a bidder placing

the bid b̃(s). Noting that for k ≥ 1,

d

ds
zk(s|s) = vk(s, s)fk(s|s) +

∫ s

0

∂

∂s
vk(s, y)fk(y|s)dz = vk(s, s)fk(s|s) +

∂

∂x
zk(s|x)

∣
∣
∣
∣
x=s

,

while for k = 0,
d

ds
z0(s|s) =

∂

∂x
z0(s|x)

∣
∣
∣
∣
x=s

we can write for s > s̃,

U ′
β̃
(s) =

N−1
∑

k=0

γk(b̃(s))
∂

∂x
zk(s|x)

∣
∣
∣
∣
x=s

.

We have cancelled terms using the definition of b̃′(s).
Similarly, let α(s) =

∫ s
0 vN−1(y, y)fN−1(y|y)dy and Uα(s) =

∫ s
0 v(s, y)fN−1(y|s)dy − α(s). By

an analogous argument, we can show that

U ′
α(s) =

∂

∂x
zN−1(s|x)

∣
∣
∣
∣
x=s

That is, U ′
α(s) =

∫ s
0

∂
∂s [vN−1(s, y)fN−1(y|s)] dy. Therefore,

U ′
β̃
(s) − U ′

α(s) =
N−1
∑

k=0

γk(b̃(s))

[
∂

∂x
zk(s|x)

∣
∣
∣
∣
x=s

− ∂

∂x
zN−1(s|x)

∣
∣
∣
∣
x=s

]

.

By Lemma X.1, ∂
∂xzk(s|x)

∣
∣
x=s

≥ ∂
∂xzN−1(s|x)

∣
∣
x=s

. Thus for a.e. s, U ′
β(s) ≥ U ′

α(s). But then,

Uβ̃(s) = Uβ̃(s̃) +

∫ s

s̃
U ′

β(x)dx ≥ Uα(s̃) +

∫ s

s̃
U ′

α(x)dx = Uα(s).

Taking s → 1 and noting that zk(1|1) = zN−1(1|1) for all k, this implies

Uβ̃(1) =
N−1
∑

k=0

γk(b̃(1))zk(1|1) − b̃(1) = zN−1(1|1) − b̃(1) ≥ Uα(1) = zN−1(1|1) − α(1).

Thus, ᾱ = α(1) ≥ b(1). Since b̃(s) is nondecreasing, b(s) ≤ ᾱ for all s.

Since b̃(s) is bounded above by ᾱ it remains a solution to the main differential equation defining
equilibrium bidding when the distribution of budgets is G(w), rather than G̃(w). Therefore, β̃(s,w)
is an equilibrium under this (original) distribution of budgets.
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X.3 Defining b(s) when w = 0

When w = 0, the all-pay auction will admit an equilibrium in continuous strategies; however, b(s)
requires an alternative specification. We provide an heuristic description of this construction. Fang
& Parreiras (2002) provide a rigorous argument in application to the second-price auction and we
follow their reasoning. We define b(s) as the solution to the differential equation

b′(s) =

∑N−1
k=0 γk(b(s))z′k(s|s)

1 −
∑N−1

k=0 γ′k(b(s))zk(s|s)
. (X3)

satisfying the boundary condition b(0) = w0. Recall that w0 is defined as the value at which
ξ(0, w0|0) = 0. At this point b′(s) as stated in (X3) is not defined since both numerator and
denominator are zero.

s

b

1

w̄

0

ξ(s, b|s) < 0

b(s)

w0

x1

x2

s1

Figure X.1: Definition of b(s) in the all-pay auction when w = 0.

In the set {(s, b) : ξ(s, b|s) > 0}, we can identify strictly increasing solutions to (X3). This is
the white region in Figure X.1. In particular, some solutions will not be defined for all s ∈ [0, 1]
and instead will “exit” the white region (vertically) at some point where ξ(s, b|s) = 0. For example
the solution in Figure X3 satisfying the boundary condition x1 is defined for only (s1, 1]. Other
solutions, such as the solution satisfying the condition x2 will be defined for all [0, 1]. (We know
that such solutions exist since the constant function w̄ is a solution to (X3).) Taking x0 → x1, and
noting that solutions of the differential equation vary continuously with initial conditions, we can
identify a solution curve, which can be extended continuously to the boundary of the space such
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that lims→0 b(s) = w0. If there are multiple such solutions, we can define b(s) to be any of them.

Lemma X.5. Suppose Assumptions A1–A4 hold, w = 0 and b(s) is defined as above. Then
β(s,w) = min{b(s), w} defines a symmetric equilibrium of the all-pay auction.

Proof. In light of the proof of Theorem 1, it is sufficient to show that no bidder with a budget greater
than b(0) is willing to deviate to a bid below b(0) and that all bidders with a budget w < b(0) are
at a constrained optimum when they bid β(s,w) = w. If U(b|s,w) is the expected utility a bidder
receives from the bid b, to verify both claims it is sufficient to show that d

dbU(b|s,w) ≥ 0.

Suppose b̂ ∈ [0, b(0)). A bidder who submits this bid receives an expected payoff of U(b̂|s,w) =
G(b̂)N−1z0(s|s) − b̂. Since G(·) is differentiable in this range of values,

d

db̂
U(b̂|s,w) = (N − 1)g(b̂)G(b̂)N−2z0(s|s) − 1.

This expression is nondecreasing in s. To establish that d
db̂

U(b̂|s,w) ≥ 0, it is sufficient to establish

that d
db̂

U(b̂|0, w) ≥ 0. We know however that,

ξ(0, b̂|0) = 1 −
N−1
∑

k=0

γ′k(b̂)zk(0|0) = 1 − (N − 1)g(b̂)G(b̂)N−2z0(0|0).

Given Assumption A4, ξ(0, w|0) crosses zero once from below at some w0. But this occurs at
b(0) ≥ b̂. Thus ξ(0, b̂|0) ≤ 0 and therefore d

db̂
U(b̂|s,w) ≥ 0.

X.4 Calculation of Expected Revenue in the War of Attrition

In comparing revenues between auction formats we present a calculated value for the expected
revenue in the war of attrition. Here we present the associated arithmetic for the example. The
procedure is similar to methods proposed by Che & Gale (1998) and Che & Gale (2006), but adapted
to our auction format and application.

The equilibrium bidding strategy is βω(s,w) = min{bω(s), w} where

bω(s) =

{

−s − log(1 − s) if s < 7
10

∫ s
7
10

y
(y−1)2 dy + log(10

3 ) − 7
10 if s ≥ 7

10

When s > 7
10 , we can write bω(s) in closed form as

bω(s) =
s
(

log
(

1000
27

)

− 10
)

+ 7 + log(27) − 3 log(10)

3(s − 1)
+ log

(
10

3
− 10

3
s

)

− 7

10
.

We first derive a distribution of “synthetic” types x, denoted F̂ (x), such that when a bidder’s
(now one-dimensional) type is distributed according to F̂ (x) and he bids according to bω(x) the
resulting distribution of bids is identical to the distribution of bids in the original auction. In our
application,

F̂ (ŝ) =

{

x if x ≤ 7
10

x + (1 − x)G(bω(x)) if x > 7
10

X8



With our parameters, this becomes

F̂ (ŝ) =

{

x if x ≤ 7
10

1 − 3
10e

1
x−1+ 10

3 if x > 7
10

In the war of attrition with two bidders, the expected revenue will be twice the expected lowest bid,
which will be placed by the lowest type drawn according to F̂ . Letting F̂II(x) = F̂ (x)2 +2F̂ (x)(1−
F̂ (x)) and denoting the associated density function by f̂II(x) we see that

f̂II(x) =







2 − 2x if x ≤ 7
10

9e
2

s−1 +20
3

50(s−1)2 if x > 7
10

.

A final calculation leads to expected revenues:

Rω = 2

∫ 1

0
bω(x)f̂II(x)dx =

1

1500

(

527 − 270e
20
3

∫ ∞

20
3

e−x

x
dx

)

.
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