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Abstract

We study an individual who faces a dynamic decision problem in which the process
of information arrival is unobserved by the analyst. We derive a sequence of repre-
sentations of preferences over menus of acts that capture the individual�s uncertainty
about his future beliefs. Using the most general representation, we characterize a no-
tion of �more preference for �exibility�via a subjective analogue of Blackwell�s (1951,
1953) comparisons of experiments. A more re�ned representation allows us to compare
individuals who expect to learn di¤erently, even if they do not agree on their prior
beliefs. The class of information structures that can support such a representation
generalizes the notion of a partition of the state space. We apply the model to study
an individual who anticipates gradual resolution of uncertainty over time. Both the
�ltration (the timing of information arrival with the sequence of partitions it induces)
and prior beliefs are uniquely identi�ed.

Key words: Resolution of uncertainty, second-order beliefs, preference for �exibility,
valuing binary bets more, generalized partition, subjective �ltration.

1. Introduction

1.1. Motivation

The study of dynamic models of decision making under uncertainty when a �ow of informa-

tion on future risks is expected over time is central in all �elds of economics. For example,

investors decide when to invest and how much to invest based on what they expect to learn

about the distribution of future cash �ows. The concepts of value of information and value of

�exibility (option value) quantify the positive e¤ects of relying on more precise information

structures.1

�First version September 2011. We thank David Ahn, Brendan Daley, Haluk Ergin, Itzhak Gilboa, Faruk
Gul, Peter Landry, Wolfgang Pesendorfer, Todd Sarver, Andrei Savochkin, and Roee Teper for useful advice.

yDepartment of Economics, University of Pennsylvania. E-mail: ddill@sas.upenn.edu
zDepartment of Economics, Duke University. E-mail: p.sadowski@duke.edu
1For a comprehensive survey of the theoretical literature, see Gollier (2001, chapters 24 and 25).
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A standard dynamic decision problem has three components: the �rst component is a

set of states of the world that capture all relevant aspects of the decision environment. The

second component is a set of feasible intermediate actions, each of which determines the

payo¤ for any realized state. The third component is a description of the uncertainty that

the decision maker faces; it consists of an information structure, which is the set of possible

signals about the states that are expected to arrive over time and the joint distribution of

signals and states.

In many situations, the analyst may be con�dent in his understanding of the relevant

state space and the relevant set of actions. He may, however, not be aware of all the relevant

uncertainties that people face. People may have access to private data which is unforeseen by

others; they may interpret data in an idiosyncratic way; or they may be selective in the data

they observe, for example by focusing their attention on speci�c signals. We collectively refer

to those situations as �subjective learning�. A natural question is whether we can rely on

only the �rst two components above and infer an individual�s subjective process of learning

solely from his observed choice behavior. If the answer is in the a¢ rmative, we ask whether

we can compare the behavior of individuals who expect to learn di¤erently and how such

comparisons relate to the comparative statics for incremental increases in informativeness

when learning is objective. These questions will be the subject of our analysis.

We consider an objective state space. Actions correspond to acts, that is, state-contingent

payo¤s, and preferences are de�ned over sets (or menus) of acts. The interpretation is that

the decision maker (henceforth DM) initially chooses among menus and subsequently chooses

an act from the menu. If the ultimate choice of an act takes place in the future, then the

DM may expect information to arrive prior to this choice. Analyzing today�s preferences

over future choice situations (menus of acts rather than the acts themselves) allows us to

capture the e¤ect of the information the DM expects to learn via his value for �exibility.

The preference relation over menus of acts is thus the only primitive of the model, leaving

the uncertainty that the DM faces, as well as his ultimate choice of an act, unmodeled.

As a concrete example, consider a DM who is currently renting an apartment on a month-

to-month lease and deliberates about buying a condominium at a nonnegotiable price. While

the physical properties of the condominium are easily assessed, its value also depends on

circumstances which are not characteristics of the condominium itself, about which the DM

is uncertain, and which we refer to as states of the world. These can be, for example,

the location of public schools or the demographic distribution of people across di¤erent

neighborhoods. Availability of the condominium can be guaranteed for thirty days. Buying

the condominium today saves the DM one month�s rent. Delaying the purchase decision

by one month allows him to conduct market research �gathering and interpreting formal

2



and informal information about the state of the world �which enables him to make a more

informed decision. The choice between buying today and delaying the purchase decision

can be thought of as a choice between a degenerate menu, where the DM purchases the

condominium and saves the monthly rent, and the menu that contains the options to buy or

not.

Section 2 outlines the most general model that captures subjective learning: the DM acts

as if he has beliefs over the possible posterior distributions over the state space that he might

face at the time of choosing from the menu. The model is parameterized by a probability

measure on the collection of all possible posterior distributions. This probability measure,

which we refer to as a second-order belief, is uniquely identi�ed from choice behavior. We

use this representation (�rst derived in Takeoka (2005)) to compare preference for �exibility

among decision makers. We say that DM1 has more preference for �exibility than DM2 if

whenever DM1 prefers to commit to a particular action rather than to maintain multiple

options, so does DM2. We show that DM1 has more preference for �exibility than DM2 if

and only if DM2�s distribution of �rst-order beliefs is a mean-preserving spread of DM1�s.

This result is analogous to Blackwell�s (1951, 1953) comparisons of experiments (in terms

of their information content) in a domain where probabilities are objective and comparisons

are made with respect to the accuracy of information structures. To rephrase our result in

the language of Blackwell, DM1 has more preference for �exibility than DM2 if and only if

DM2 would be weakly better o¤ if he could rely on the information structure induced by

the subjective beliefs of DM1. In the condominium example above, we can consider two

individuals who agree on their current evaluation of the condominium. Then one DM is

willing to pay a larger fee (for example, a higher additional monthly rent) than the other

DM to delay the decision whether or not to purchase the condominium if and only if he

expects to be better informed by the end of the month.

Individuals who disagree on their prior beliefs are not comparable in terms of their pref-

erence for �exibility. Section 3 provides a model that facilitates the behavioral comparisons

of such individuals, by describing information as an event, that is, a subset of the objective

state space. The DM has beliefs about which event he might know at the time he chooses

from the menu. For any event, he calculates his posterior beliefs by excluding all states

that are not in that event and applying Bayes� law with respect to the remaining states.

We characterize the class of information structures that admit such a representation as a

natural generalization of a set partition. The behavior of two individuals who expect to re-

ceive di¤erent information di¤ers in the value they derive from the availability of binary bets

as intermediate actions. Suppose both DM1 and DM2 are sure to receive a certain payo¤

independently of the true state of the world. Roughly speaking, DM1 �values binary bets
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more�than DM2 if for any two states s and s0, whenever DM1 prefers receiving additional

payo¤s in state s over having the option to bet on s versus s0 (in the form of an act that

pays well on s and nothing on s0), so does DM2. We show that DM1 values binary bets more

than DM2 if and only if he expects to receive more information than DM2, in the sense that

given the true state of the world, he is more likely to be able to rule out any other state (i.e.

to learn an event, which contains the true state but not the other state.)

Lastly, reconsider the condominium example, and assume that the availability of the

condominium is not guaranteed, but rather the agent is given the right of �rst refusal in case

another o¤er arrives within the next thirty days. In this situation, the information available

to the DM at any point in this time interval may become the relevant one for his purchase

decision. Section 4 provides a representation, which suggests that the DM behaves as if he

has in mind a �ltration, indexed by continuous time. Both the �ltration, which is the timing

of information arrival with the sequence of partitions it induces, and the DM�s prior beliefs

are uniquely determined from choice behavior. In this context, DM1 values binary bets more

than DM2 if and only if he expects to learn earlier in the sense that his induced partition is

�ner at any given point in time. DM1 has more preference for �exibility than DM2 if and

only if they also share the same prior beliefs.

1.2. Related literature

Several papers have explored the idea of subjective learning. As mentioned earlier, Takeoka

(2005) derives the most general model of second-order beliefs. We show that even this general

setting allows very intuitive comparative statics. Hyogo (2007) derives a representation that

features second-order beliefs on a richer domain, where the DM simultaneously chooses a

menu of acts and takes an action that might in�uence the (subjective) process of information

arrival. Dillenberger, Lleras, and Sadowski (2011) study a model in which the information

structure is partitional, that is, signals correspond to events that do not intersect. Learning

by partition is a special case of the model outlined in Section 3. It can also be viewed as a

special case of the model in Section 4, where the DM does not expect to learn gradually over

time, that is, he forms his �nal beliefs at time zero, right after he chose a menu. Takeoka

(2007) uses a di¤erent approach to study subjective temporal resolution of uncertainty. He

analyzes choice between what one might term �compound menus�(menus over menus etc.).

We compare the two di¤erent approaches in Section 5.2, while reevaluating our domain in

light of the results from Section 4.

More generally, our work is part of the preferences over menus literature initiated by

Kreps (1979). Most papers in this literature study uncertainty over future tastes (and not

over beliefs) without assuming an objective state space. Kreps (1979) studies preferences over
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menus of deterministic alternatives. Dekel, Lipman, and Rustichini (2001) extend Kreps�

domain of choice to menus of lotteries. The main axioms that lead to the most general

representation of second-order beliefs are adapted from Dekel et al.�s paper. Our proof of

the corresponding theorem relies on a sequence of geometric arguments that establish the

close connection between our domain and theirs. In the setting of preferences over menus

of lotteries, Ergin and Sarver (2010) provide an alternative to Hyogo�s (2007) approach of

modeling costly information acquisition.

1.3. A formal preview of the representation results

Let S be a �nite state space. An act is a mapping f : S ! [0; 1], where [0; 1] is interpreted as

a utility space.2 Let F be the set of all acts. Let K (F) be the set of all non-empty compact
subsets of F . Preferences are de�ned over K (F). Theorem 1 derives a (second-order beliefs)
representation, in which the value of a menu of acts F 2 K (F) is given by

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) ,

where p (�) is a unique probability measure on �(S), the space of all probability measures on
S. The axioms that are equivalent to the existence of such representation are familiar from

the literature on preferences over menus of lotteries �Ranking, vNM Continuity, Nontrivi-

ality, and Independence �adapted to our domain, in addition to Dominance, which implies

monotonicity in payo¤s, and Set Monotonicity, which captures preference for �exibility.

We then study a specialized model in which signals are subsets of the state space, that

is, elements of 2S. We impose two additional axioms, Finiteness and Context Independence.

Finiteness implies that the probability measure p in Theorem 1 has �nite support. (Finite-

ness is obviously necessary since 2S is �nite.) Context Independence captures an idea that

resembles Savage�s (1954) sure-thing principle: if f 6= g only on event I, and if g is uncon-
ditionally preferred to f , then the DM would also prefer g to f contingent upon learning I.

The implication of this property in a dynamic decision problem is that if the DM prefers

the singleton menu fgg to ffg, then the DM would prefer to replace f with g on any menu

F 3 f , from which he will choose f only if he learns I. We identify through preferences a

special subset of menus, which we term saturated (De�nition 6). The properties of a satu-

rated menu F 3 f are consistent with the interpretation that the DM anticipates choosing

f from F only contingent on the event fs 2 S jf (s) > 0g : Context Independence requires
that if g (s) > 0 , f (s) > 0 and fgg is preferred over ffg, then the DM would prefer to

2This allows us to abstract from deriving the DM�s utility function over monetary prizes, which is a
standard exercise.
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replace f with g in any saturated menu F 3 f .
With these additional axioms, Theorem 3 derives a (generalized-partition) representation

in which the value of a menu F is given by

V (F ) =
P

I22�(�) max
f2F

�P
s2If (s)� (s)

�
� (I) ,

where � is a probability measure on S with support � (�), and � : 2�(�) ! [0; 1] is such that

for any s 2 � (�), �s de�ned by �s (I) =
(
� (I) if s 2 I
0 if s =2 I

is a probability measure on 2�(�).

The pair (�; �) is unique. We call the function � a generalized partition. The probability of

being in event I when the state of the world is s, �s (I), is the same for all states s 2 I.
This suggests that the DM can only infer which states were excluded. In other words, the

relative probability of any two states within an event is not updated.

We characterize all collection of events 	 � 2S for which there is a generalized partition
� with support 	. Theorem 4 shows that a necessary and su¢ cient condition is that 	 be

a uniform cover; we say that 	 � 2S is a uniform cover of a set S 0 � S if there exists k � 1
and a function � : 	! Z+ such that for all s 2 S 0,

P
I2	js2I � (I) = k. In this case we say

that S 0 is covered k times by 	. Note that the usual notion of a set partition is implied if

k = 1. The notion of uniform cover is closely related to the notion of a balanced collection

of weights, as introduced by Shapley (1967) in the context of cooperative games.

Lastly, we show that the same domain can capture the e¤ect of subjective gradual res-

olution of uncertainty. To this end, we reinterpret menus as choice situations in which the

opportunity to choose from the menu arrives randomly. We use the notion of saturated

menus to impose an additional axiom, Hierarchy, which implies that the support of � in

Theorem 3 has a hierarchical structure. This allows us to interpret information as becoming

more precise over time. Theorem 6 provides a (subjective �ltration) representation in which

the value of a menu F is given by

V (F ) =
R
[0;1]

�P
I2Pt maxf2F

�P
s2Sf (s)� (s)

��
dt,

where � is a probability measure on S and fPtg is a �ltration indexed by t 2 [0; 1]. The pair
(�; fPtg) is unique. In this context, DM1 values binary bets more than DM2 if and only if
fP1t g is �ner than fP2t g (i.e., for any t, all events in P2t are measurable in P1t ). DM1 has
more preference for �exibility than DM2 if and only if both also share the same prior beliefs

(i.e., �1 = �2).
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The remainder of the paper is organized as follows: Section 2 studies the most general

model of uncertainty about future beliefs. Section 3 studies the special case in which sig-

nals correspond to events. Section 4 further specializes the model to situations in which

uncertainty is expected to be resolved gradually over time, and the pattern of its resolution

matters. Section 5 suggests a reinterpretation and an application of the model outlined in

Section 4 to cases in which at any point in time the DM chooses an act from the menu and

derives a utility �ow from it. The section concludes by comparing our methodology to other

approaches to the study of subjective temporal resolution of uncertainty. Most proofs are

relegated to the appendix.

2. A general model of subjective learning

Let S = fs1; :::; skg be a �nite state space. An act is a mapping f : S ! [0; 1]. Let F be

the set of all acts. Let K (F) be the set of all non-empty compact subsets of F . Capital
letters denote sets, or menus, and small letters denote acts. For example, a typical menu

is F = ff; g; h; :::g 2 K (F). We interpret payo¤s in [0; 1] to be in �utils�; that is, we
assume that the cardinal utility function over outcomes is known and payo¤s are stated in

its units. An alternative interpretation is that there are two monetary prizes x > y, and

f (s) = ps (x) 2 [0; 1] is the probability of getting the greater prize in state s.
Let � be a binary relation over K (F). The symmetric and asymmetric components of

� are denoted by � and �, respectively.

2.1. Axioms and representation result

We impose the following axioms on �:

Axiom 1 (Ranking). The relation � is a weak order.

De�nition 1. Let �F+(1� �)G := f�f + (1� �) g : f 2 F; g 2 Gg, where �f+(1� �) g
is the act that yields �f (s) + (1� �) g (s) in state s.

Axiom 2 (vNM Continuity). If F � G � H then there are �; � 2 (0; 1), such that

�F + (1� �)H � G � �F + (1� �)H.

Axiom 3 (Nontriviality). There are F and G such that F � G:

The �rst three axioms play the same role here as they do in more familiar contexts.
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Axiom 4 (Independence). For all F; G; H, and � 2 [0; 1],

F � G, �F + (1� �)H � �G+ (1� �)H:

In the domain of menus of acts, Axiom 4 implies that the DM�s preferences must be

linear in payo¤s. This is plausible since we interpret payo¤s in [0; 1] directly as �utils�, as

discussed above.3

Axiom 5 (Set monotonicity). If F � G then G � F .

Axiom 5 was �rst proposed in Kreps (1979). It captures preference for �exibility, that is,

bigger sets are weakly preferred. The interpretation of f (�) as a vector of utils requires the
following payo¤-monotonicity axiom.

Axiom 6 (Domination). If f � g and f 2 F then F � F [ fgg.

Axioms 1-6 are necessary and su¢ cient for the most general representation of subjective

learning, which is derived in Takeoka (2005).4

Theorem 1 (Takeoka (2005)). The relation � satis�es Axioms 1�6 if and only if it can

be represented by:

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) ,

where p (�) is a unique probability measure on �(S), the space of all probability measures
on S.

Proof. See Appendix 6.1
The representation in Theorem 1 suggests that the DM is uncertain about which �rst-

order belief � he will have at the time he makes a choice from the menu. This uncertainty

is captured by the second-order belief p.

A related work, Dekel, Lipman, and Rustichini (2001), analyzes choice over menus of

lotteries and provides a representation that suggests uncertainty about the DM�s tastes

(a relevant corrigendum is Dekel, Lipman, Rustichini, and Sarver (2007)). Our proof of

Theorem 1 is novel and relies on a sequence of geometric arguments that establish the close

connection between our domain and theirs. The parameter p is uniquely identi�ed in the

representation above, because p and � are required to be probability measures. Such natural

normalization does not exist in Dekel et al. (2001, 2007) and, therefore, they can only jointly

identify the parameters in their representation.
3Our analysis can be easily extended to the case where, instead of [0; 1], the range of acts is a more general

vector space. In that case, Axiom 4 implies risk neutrality.
4Takeoka�s domination axiom (Axiom 2.6 in his paper) is slightly di¤erent from our Axiom 6; it states

that F � fg jf � g for some f 2 F g.
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2.2. More preference for �exibility and the theorem of Blackwell

Under the assumptions of Theorem 1, we connect a notion of preference for �exibility with

the DM�s subjective learning. In what follows, when we discuss a particular individual i, we

denote by �i his preferences and by superscript i any component of his utility representation.

De�nition 2. DM1 has more preference for �exibility than DM2 if for all f 2 F and for

all G 2 K (F),
ffg �1 G implies ffg �2 G.

Expressed in words, DM1 has more preference for �exibility than DM2 if whenever DM1

prefers to commit to a particular action rather than to retain an option to choose, so does

DM2.5

Remark 1. De�nition 2 is equivalent to the notion that if DM1 and DM2 are endowed with
the same act, then DM1 has a greater willingness to pay to acquire additional options. That

is, for all f; h 2 F with f � h and for all G 2 K (F),

ffg �1 ff � hg [G implies ffg �2 ff � hg [G;

where (f � h) (s) = f (s)� h (s). The act f is interpreted as the endowment, and the act h
is interpreted as the state-contingent cost of acquiring the options in G. De�nition 2 clearly

implies this condition. The converse follows from taking h = f .

De�nition 2, however, does not imply a greater willingness to pay to add options to

any given menu. In fact, de�ning more preference for �exibility this way results in an

empty relation. For example, suppose S = fs1; s2g and that both DM1 and DM2 think the
two states are equally likely. DM1 expects to learn the true state for sure, that is, �1 (p) =

f(1; 0) ; (0; 1)g, whereas DM2 expects to learn nothing, that is, �2 (p) = f(0:5; 0:5)g. For some
k 2 (0; 1) ; let F =

��
k; 1

4
k
�
;
�
1
4
k; k
�	
, G =

��
2
3
k; 2

3
k
�	
, and let F � c := ff � c jf 2 F g.

Then, for c 2
�
0; 1

4
k
�
; V 1 ((F � c) [G) = k � c < k = V 1 (F ), whereas V 2 ((F � c) [G) =

2
3
k > 5

8
k = V 2 (F ). At the same time, V 1 ((G� c) [ F ) = k > 2

3
k = V 1 (G), whereas

V 2 ((G� c) [ F ) = 2
3
k � c < 2

3
k = V 2 (G).6

5De�nition 2 is analogous to the notion of �more aversion to commitment�as appears in Higashi, Hyogo,
and Takeoka (2009, De�nition 4.4, p. 1031) in the context of preferences over menus of lotteries.

6More generally, suppose that �1 6=�2 and, for simplicity, that �
�
p1
�
and �

�
p2
�
are �nite. Using Theorem

1, there is a �rst-order belief �, such that p1 (�) > p2 (�). It is easy to construct a menu that generates
payo¤ k�� under belief � and payo¤ k under any other belief. DM1 then would be willing to pay more than
DM2 to add an act that yields payo¤ k under �, hence DM2 would not have more preference for �exibility
than DM1. But by a symmetric argument, DM1 would also not have more preference for �exibility than
DM2.
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The next claim shows that two DMs who are comparable in terms of their preference for

�exibility must agree on the ranking of singletons.

Claim 1. Suppose DM1 has more preference for �exibility than DM2. Then

ffg �1 fgg if and only if ffg �2 fgg :

Proof. See Appendix 6.2
We now compare subjective information structures in analogy to the notion of better

information proposed by Blackwell (1951, 1953) in the context of objective information.

De�nition 3 below says that an information structure is better than another one if and

only if both structures induce the same distribution of prior probabilities, and all posterior

probabilities of the latter are a convex combination of the posterior probabilities of the

former.

De�nition 3. DM1 expects to be better informed than DM2 if and only if DM2�s distrib-
ution of �rst-order beliefs is a mean-preserving spread of DM1�s (in the space of probability

distributions). That is, there exists a nonnegative function k : � (p1) � � (p2) ! R+, satis-
fying R

�(p1)

k (�; �0) d� = 1

for all �0 2 � (p2), such that
(i)

p1 (�) =
R

�(p2)

k (�; �0) dp2 (�0)

for all � 2 � (p1); and
(ii)

�0 (s) =
R

�(p1)

� (s) k (�; �0) d�

for all �0 2 � (p2) and s 2 S.

Note that conditions (i) and (ii) imply that

R
�(p1)

� (s) dp1 (�) =
R

�(p2)

� (s) dp2 (�)

for all s 2 S, that is, the prior is the same under both p1 and p2.
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Theorem 2. If DM1 and DM2 have preferences that can be represented as in Theorem 1,

then DM1 has more preference for �exibility than DM2 if and only if DM1 expects to be

better informed than DM2.7

Proof. Blackwell (1953) establishes that DM2�s distribution of �rst-order beliefs is a

mean-preserving spread of DM1�s if and only if V 1 (G) � V 2 (G) for any G 2 K (F) (see
Kihlstrom (1984) or Gollier (2001) for an illustrative proof and discussion). At the same time,

V 1 (ffg) = V 2 (ffg) for any f 2 F . Hence, V 1 (ffg) � V 1 (G) implies V 2 (ffg) � V 2 (G).
Conversely, suppose V 2 (G) > V 1 (G) for some G 2 K (F) : Then continuity implies that
there exists f 2 F with V 2 (G) > V 2 (ffg) = V 1 (ffg) > V 1 (G).

3. Subjective learning with objectively describable signals

The model in Section 2 is the most general model that captures subjective learning. In

Theorem 2 we compare the behavior of two individuals who share the same prior beliefs but

expect to learn di¤erently. We would like to be able to perform such a comparison even if

the two individuals disagree on their prior beliefs; for example, one individual might consider

himself a better experimenter than the other, even though he holds more pessimistic beliefs

about the state of the world. A �rst step towards this goal is to compare the information the

two individuals expect to receive contingent on the true state of the world. Even contingent

on the state, however, a comparison in terms of more preference for �exibility may not be

possible, as distinct priors generically imply that the contingent priors are also di¤erent.8

In order to compare the information each DM expects to receive contingent on the true

state of the world, independently of the induced changes in beliefs, we now consider a more

parsimonious model of learning in which signals correspond to events, that is, subsets of

the objective state space. The DM�s beliefs can then be understood as uncertainty about

the event he will know at the time of choosing from the menu. Throughout this section we

maintain the assumptions of Theorem 1. Section 3.1 develops a language that allows us to

formulate a behavioral axiom, which implies that the DM cannot draw any inferences from

7The characterization of preference for �exibility via Blackwell�s comparison of information structures is
speci�c to our context, where this preference arises due to uncertainty about learning. Krishna and Sadowski
(2011) provide an analogous result in a context where preference for �exibility arises due to uncertain tastes.

8To see this, let, for i = 1; 2, �i be a vector of DMi�s prior beliefs and let ai(s js0 ) be the probability he
assigns to state s contingent on the true state being s0. Then Ai :=

�
ai(s js0 )

�
s;s0

is a stochastic matrix and

Bayes�law implies �iAi = �i, that is, �i is the stationary distribution of A. If each entry of A is strictly
positive, then A is an indecomposable matrix and the stationary distribution is unique. In that case, di¤erent
priors, �1 and �2, must correspond to di¤erent stochastic matrices, A1 and A2. But since the rows of Ai are
the state-contingent priors of DMi, there must be at least one state s, contingent on which a comparison as
in Theorem 2 is impossible.
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learning an event besides knowing that states outside that event were not realized. Section

3.2 derives the most general representation in which signals correspond to events and the

relative probability of any two states is the same across all events that contain them. Section

3.3 characterizes the class of information structures that give rise to this type of updating.

Finally, Section 3.4 compares two individuals according to the amount of information each

expects to acquire without restricting them to have the same prior beliefs.

Since there are only �nitely many distinct subsets of S, the support of the function p,

� (p), in Theorem 1 must be �nite. This restriction is captured by the following axiom, which

we also maintain throughout this section:

Axiom 7 (Finiteness). For all F 2 K (F), there is a �nite set G � F with G � F .9

The intuition for why Axiom 7 indeed implies that � (p) is �nite is clear: if for any F there

is a �nite subset G of F that is as good as F itself, then only a �nite set of �rst-order beliefs

can be relevant. The formal statement of this result is provided by Riella (2011, Theorem

2), who establishes that Axiom 7 is the appropriate relaxation of the �niteness assumption

in Dekel, Lipman, and Rustichini (2009, Axiom 11) when set monotonicity (Axiom 5 in the

current paper) is assumed.

3.1. Axiom Context independence

The axiom we propose in this section captures an idea that resembles Savage�s (1954) sure-

thing principle: if f 6= g only on event I, and if g is unconditionally preferred to f (that

is, fgg � ffg), then the DM would also prefer g to f contingent upon learning I. Since

learning is subjective, stating the axiom requires us to �rst identify how the ranking of acts

contingent on learning an event a¤ects choice over menus. To this end, we now introduce

the notion of saturated menus.

De�nition 4. Given f 2 F , let fxs be the act

fxs (s
0) =

(
f (s0) if s0 6= s
x if s0 = s

.

Note that � (f) := fs 2 S jf (s) > 0g = fs 2 S jf 0s 6= f g.

De�nition 5. A menu F 2 K (F) is fat free if for all f 2 F and for all s 2 � (f), F �
(Fn ffg) [ ff 0s g.

9We impose Axiom 7 mainly for clarity of exposition. Alternatively, it is possible to strengthen De�nition
5, De�nition 6, and Axiom 8 below to apply to situations where Finiteness may not hold. In that case,
Axiom 7 is implied.
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If a menu F is fat free, then for any act f 2 F and any state s 2 � (f), eliminating s from
� (f) reduces the value of the menu.10 In particular, removing an act f from the fat-free

menu F must make the menu strictly worse.

De�nition 6. A menu F 2 K (F) is saturated if it is fat free and satis�es
(i) for all f 2 F and s =2 � (f), there exists " > 0 such that F � F [ f "s for all " < "; and
(ii) if G * F then F [G � (F [G) n fgg for some g 2 F [G.

De�nition 6 says that if F is a saturated menu, then (i) if an act f 2 F does not yield
any payo¤ in some state, then the DM�s preferences are insensitive to slightly improving f

in that state; and, (ii) adding an act to a saturated menu implies that there is at least one

act in the new menu that is not valued by the DM. In particular, the extended menu is no

longer fat-free.

To better understand the notions of fat-free and saturated menus, consider the following

example.

Example 1. Suppose that there are two states S = fs1; s2g. If the act f yields positive
payo¤s in both states but only one of them is non-null, then ffg is not fat-free. If both states
are non-null and f does not yield positive payo¤s on one of them, then the set ffg is not
saturated according to De�nition 6 (i). If the two states are non-null and f yields positive

payo¤s in both, then ffg is fat-free, but it is not necessarily saturated. For example, if the
DM expects to learn the true state for sure, that is, �1 (p) = f(1; 0) ; (0; 1)g, then for � > 0
and g = (f (s1) + "; 0), both ff; gg � ffg and ff; gg � fgg, which means that ffg is not
saturated according to De�nition 6 (ii).

Claim 2. A saturated menu F , with f (s) < 1 for all f 2 F and all s 2 S, always exists.
Furthermore, if F is saturated, then F is �nite.

Proof. See Appendix 6.3
We now impose the central axiom of this section.

Axiom 8 (Context independence). Suppose F is saturated and f 2 F . Then for all g
with � (g) = � (f),

fgg � ffg implies (Fn ffg) [ fgg � F:
10Our notion resembles the notion of �fat-free acts� suggested by Lehrer (2012). An act f is fat-free if

when an outcome assigned by f to a state is replaced by a worse one, the resulting act is strictly inferior to
f . In our setting, a �nite fat-free set contains acts, for all of which reducing an outcome in any state in the
support results in an inferior set.
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Let F be a saturated menu with f(s) < 1 for all f 2 F and s 2 S. By De�nition

6 (i), f 2 F implies that the evaluation of F is sensitive to local changes in f (s) if and

only if s 2 � (f). We interpret this as saying that there is a collection of events I withS
I2II = � (f), such that f will be the choice from F contingent on learning any I 2 I. At

the same time, f cannot be chosen from F contingent on more than one event; otherwise, one

could �nd an act f 0 close enough to f that will be chosen from F only contingent on a strict

subset B � I.11 In that case, F [ ff 0g � F [ ff 0g n fgg for all g 2 F [ ff 0g, which would
violate De�nition 6 (ii). Summing up, from a saturated menu F 3 f , DM plans to choose

f if and only if he learns � (f). We would like to assume that fgg � ffg and � (f) = � (g)
imply that g is preferred to f contingent on � (f). Hence, (Fn ffg) [ fgg � F should hold.
This is Axiom 8.

We conclude this section by making two claims, which illustrate properties of saturated

menus in the context of the representation in Theorem 1. In all that follows, we only consider

saturated menus that consist of acts f with f (s) < 1 for all s 2 S. For ease of exposition,
we refrain from always explicitly stating this assumption.

Claim 3. If F is saturated, then F is isomorphic to the set of �rst-order beliefs.

Proof. See Appendix 6.4
Claim 3 connects the de�nition of a saturated menu with the idea that the DM might be

required to make a decision when his state of knowledge is any one of his �rst-order beliefs

from the representation of Theorem 1. Claim 3 says that any act in a saturated menu is

expected to be chosen under exactly one such belief.

The next claim demonstrates that the support of any act in a saturated menu coincides

with that of the belief under which the act is chosen. For any act f in a given saturated

menu F , let �f 2 � (p) be the belief such that f = argmax
f 02F

P
s2Sf

0 (s)�f (s). By Claim 3,

�f exists and is unique.

Claim 4. If F is saturated and f 2 F then � (f) = � (�f ).

Proof. If f (s) > 0 and �f (s) = 0, then F � (Fn ffg) [ ff 0s g, which is a contradiction to
F being fat-free (and, therefore, saturated.) If f (s) = 0 and �f (s) > 0, then for any " > 0,

F � F [ ff "sg, which is a contradiction to F being saturated.
11The explicit construction of such f 0 is given in the proof of Claim 3 below.
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3.2. Generalized-partition representation

De�nition 7. A function � : 2S
0 ! [0; 1] is a generalized partition of S 0 � S if for any

s 2 S 0, �s de�ned by �s (I) =
(
� (I) if s 2 I
0 if s =2 I

is a probability measure on 2S
0
.

The special case of a set partition corresponds to � taking only two values, zero and one.

In that case, for every s 2 S 0 there exists a unique Is 2 2S
0
with s 2 Is and �s (Is) = 1.

Furthermore, s0 2 Is implies that Is = Is0, that is, �s0 (Is) = 1 for all s0 2 Is.12

De�nition 8. The pair (�; �) is a generalized-partition representation if (i) � : S ! [0; 1] is

a probability measure; (ii) � : 2�(�) ! [0; 1] is a generalized partition of � (�); and (iii)

V (F ) =
P

I22�(�) max
f2F

�P
s2If (s)� (s)

�
� (I)

represents �.

We interpret �s (I) as the probability the DM assigns to learning event I contingent on

the state being s. The fact that �s (I) is independent of s (conditional on s 2 I) re�ects the
idea that the DM cannot draw any inferences from learning an event other than that states

outside that event were not realized. Indeed, Bayes�law implies that for any s; s0 2 I,

Pr (s jI )
Pr (s0 jI ) =

�s (I)� (s) =� (I)

�s0 (I)� (s0) =� (I)
=
� (s)

� (s0)
(1)

independent of I.

Theorem 3. The relation � satis�es Axioms 1�8 if and only if it has a generalized-partition
representation, (�; �). Furthermore, the pair (�; �) is unique.

Proof. See Appendix 6.5
In contrast to the representation in Theorem 1, the representation in Theorem 3 suggests

that S is large enough to capture the subjective resolution of uncertainty. To say this di¤er-

ently, consider a subjective state space that includes all (possibly only privately observable)

random variables the DM might consider informative about the objective state s 2 S. This
subjective state space might be larger than S. The representation suggests that any event

in the larger subjective state space that the DM considers informative is measurable in S.

12If � is partitional, then it is uniquely identi�ed via its support, � (�). Throughout the paper, we use �
and � (�) interchangeably when referring to a set partition.
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3.3. A characterization of generalized partitions

De�nition 8 implies that (�; �) is a generalized-partition representation if and only if � is a

generalized partition of � (�). Using equation (1) of the previous section, we observe that � is

a generalized partition of � (�) if and only if for any two states s; s0 2 I, their conditional (on
I) relative probability is the same as their prior relative probability. It is worth noting that

the notion of generalized partition is meaningful also in the context of objective learning,

that is, when the function � is exogenously given.

Any information structure on S 0 � S, which involves only objectively describable signals,
can be described as a collection of probability measures (�s)s2S0 on 2

S0, with the property

that �s (fI � S 0 js 2 I g) = 1. We can classify these information structures by the events they
support as possible signals, that is, fI � S 0 j�s (I) > 0 for some s 2 I g. In this section, we
ask which classes of information structures can be accommodated by generalized partitions.

In other words, we characterize the setn
	 � 2S0

���there is a generalized partition � : 2S0 ! [0; 1] with � (�) = 	
o
:

De�nition 9. A set S 0 � S is covered k times by a collection of events 	 � 2S if there is a
function � : 	! Z+, such that for all s 2 S 0,

P
I2	js2I � (I) = k.

De�nition 10. A collection of events 	 � 2S is a uniform cover of a set S 0 � S, if (i)

S 0 =
S
I2	I; and (ii) there exists k � 1, such that S 0 is covered k times by 	.

In the context of cooperative games, Shapley (1967) introduces the notion of a balanced

collection of weights. Denote by C the set of all coalitions (subsets of the set N of players).

The collection (
L)L2C of numbers in [0; 1] is a balanced collection of weights if for every

player i 2 N , the sum of 
L over all the coalitions that contain i is 1. Suppose 	 � 2S

is a uniform cover of a set S 0 � S. Then there exists k � 1 such that for all s 2 S 0,P
I2	js2I

�(I)
k
= 1. In the terminology of Shapley, the collection

�
�(I)
k

�
I2	

of numbers in

[0; 1] is, thus, a balanced collection of weights.

To better understand the notion of uniform cover, consider the following example.

Example 2. Suppose S = fs1; s2; s3g. Any partition of S, for example ffs1g ; fs2; s3gg, is
a uniform cover of S (with k = 1). A set that consists of multiple partitions, for example

ffs1g ; fs2; s3g ; fs1; s2; s3gg, is a uniform cover of S (in this example with k = 2). The set

	 = ffs2; s3g ; fs1; s2; s3gg is not a uniform cover of S, because
P

Ijs12I � (I) <
P

Ijs22I � (I)

for any � : 	 ! Z+. The set ffs2; s3g ; fs1g ; fs2g ; fs3gg, however, is a uniform cover of S
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with

� (I) =

(
2 if I = fs1g
1 otherwise

:

Lastly, the set ffs1; s2g ; fs2; s3g ; fs1; s3gg is a uniform cover of S (with k = 2), even though
it does not contain a partition.

An empirical situation that gives rise to a uniform cover consisting of two partitions is an

experiment that reveals the state of the world if it succeeds, and is completely uninformative

otherwise. For a concrete example that gives rise to a uniform cover that does not contain a

partition, consider the sequential elimination of n candidates, say during a recruiting process.

If k candidates are to be eliminated in the �rst stage, then the resulting uniform cover is the

set of all (n� k)-tuples.

Theorem 4. A collection of events 	 is a uniform cover of S 0 � S if and only if there is a
generalized partition � : 2S

0 ! [0; 1] with � (�) = 	.

Proof. See Appendix 6.6
To illustrate Theorem 4, let us consider a speci�c example. An oil company is trying

to learn whether there is oil in a particular location. Suppose the company can perform

a test-drill to determine accurately whether there is oil, s = 1, or not, s = 0. In that

case, the company learns the partition ff0g ; f1gg, and � (f0g) = � (f1g) = 1 provides a

generalized-partition representation given the �rm�s prior beliefs � on S = f0; 1g.
Now suppose that there is a positive probability that the test may not be completed

(for some exogenous reason, which is not indicative of whether there is oil or not). The

company will either face the trivial partition ff0; 1gg, or the partition ff0g ; f1gg, and
hence 	 = ff0; 1g ; f0g ; f1gg. Suppose the company believes that the experiment will

succeed with probability q. Then � (f0; 1g) = 1 � q and � (f0g) = � (f1g) = q provides a

generalized-partition representation given the company�s prior beliefs � on S = f0; 1g.
Finally, suppose the company is trying to assess the size of an oil �eld by drilling in l

proximate locations and hence the state space is f0; 1gl. As before, any test may not be
completed, independently of the other tests. This is an example of a situation where the

state consists of l di¤erent attributes (i.e., the state space is a product space), and the DM

may learn independently about any of them. Such learning about attributes also gives rise

to a uniform cover that consists of multiple partitions and can be accommodated.

To �nd a generalized-partition representation based on (i) a uniform cover 	 of a state

space S, for which there is a collection � of partitions whose union is 	; (ii) a probability

distribution q on �; and (iii) a measure � on S, one can set � (I) =
P

P2�jI2P q (P). We
refer to the pair (q;�) as a random partition.
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Remark 2. If the state space is de�ned via the value of all random variables the DM

might observe, then it gives rise to an information structure that is a partition. Conversely,

any information structure can always be described via a partition, if the state space is

made su¢ ciently large. To attain a state space that is surely large enough, one could

follow Savage (1954) and postulate the existence of a grand state space that describes all

conceivable sources of uncertainty. Identi�cation of beliefs on a larger state space, however,

generally requires a much larger collection of acts, which poses a serious conceptual problem,

as in many applications the domain of choice (the available acts) is given. In that sense,

acts should be part of the primitives of the model.13 Our approach instead identi�es a

behavioral criterion for checking whether a given state space (e.g. the one acts are naturally

de�ned on in a particular application) is large enough: behavior satis�es Axiom 8 if and only

if the resolution of any subjective uncertainty corresponds to an event in the state space.

Theorem 4 demonstrates that this does not require a state space on which learning generates

a partition. To emphasize our point, reconsider the drilling example, with S = f0; 1g and
a probability q for the test to be completed successfully. This is a random partition with

Pr (f0g ; f1g) = q and Pr (f0; 1g) = 1� q. Suppose we enlarge the state space to be S �X,
where X = fsuccess, failureg. While on this state space the DM�s learning is described by
a partition, acts that condition on X may not be available: it is plausible that the payo¤

of drilling rights does not depend on the success or failure of the test drill, but only on the

presence of oil. Under our assumptions, the domain of acts that are de�ned on S is su¢ cient

to allow the description of expected information as events.

Remark 3. Our assumptions imply that S has a natural extension, bS := S�2S, on which we
can express any generalized-partition representation (De�nition 8) as learning by partition.

That is, if for any act f on S we de�ne the corresponding act bf on bS by bf (s; I) := f (s) for
all I 2 2S, and for any menu F we let bF := nbf jf 2 F o, then there are a unique measure b�
on bS and a unique partition bP of � (b�), such that

V (F ) =
X
I2 bP

maxbf2 bF
 X
bs2I

bf (bs) b� (bs)!
13Gilboa, Postlewaite, and Schmeidler (2009a, 2009b) point out the problems involved in using an analytical

construction, according to which states are de�ned as functions from acts to outcomes, to generate a state
space that captures all conceivable sources of uncertainty. First, since all possible acts on this new state
space should be considered, the new state space must be extended yet again, and this iterative procedure
does not converge. Second, the constructed state space may include events that are never revealed to the
DM, and hence some of the comparisons between acts may not even be potentially observable. (A related
discussion appears in Gilboa (2009, Section 11.1.)
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represents �. The measure b� on bS satis�es
b� (s; I) = ( � (s) � (I) if s 2 I

0 otherwise
.

Put di¤erently, Axioms 1�8 do not require S itself to be large enough to generate learning

by partition based on a unique measure, but rather that S has a natural extension with this

property.

3.4. Comparing valuations of binary bets

Under the assumptions of Theorem 3, we compare the behavior of two individuals in terms

of the amount of information each expects to acquire, without restricting them to have the

same prior beliefs.

Fix k 2 (0; 1� c) such that fcg �i ffg for i = 1; 2, where

f (bs) =
8><>:
c+ k if bs = s
0 if bs = s0
c otherwise

:

Let

f 0 (bs) = ( c+ k0 if bs = s
c otherwise

:

Relative to the certain payo¤ c, the act f is a bet with payo¤s k in state s and �c in state
s0. The act f 0 yields extra payo¤ k0 in state s.

De�nition 11. DM1 values binary bets more than DM2 if for all s; s0 2 S and k0 2 [0; k],
(i) ff 0g �1 fcg , ff 0g �2 fcg; and
(ii) ff 0g �1 ff; cg ) ff 0g �2 ff; cg.

Condition (i) says that the two DMs agree on whether or not payo¤s in state s are

valuable. Condition (ii) says that DM1 is willing to pay more in state s to have the bet f

available. The notion of valuing binary bets more weakens the notion of more preference

for �exibility (De�nition 2); Condition (ii) is implied by De�nition 2 and Condition (i) is

implied by Claim 1.

A natural measure of the amount of information that a DM expects to receive is how

likely he expects to be able to distinguish any state s from any other state s0 whenever s is

indeed the true state. Observe that Pr (fI js 2 I, s0 =2 I g js) =
P

Ijs2I,s0 =2I � (I).
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Theorem 5. If DM1 and DM2 have preferences that can be represented as in Theorem 3,

then DM1 values binary bets more than DM2 if and only if � (�1) = � (�2) and

P
Ijs2I,s0 =2I �

1 (I) �
P

Ijs2I,s0 =2I �
2 (I)

for all s; s0 2 � (�1) :

Proof. See Appendix 6.7
Theorem 5 compares the behavior of two individuals who expect to learn di¤erently,

without requiring that they share the same prior beliefs; instead, the only requirement is

that their prior beliefs have the same support. In contrast, Theorem 2 requires agreement

on the prior beliefs. Suppose, for example, that both � (�1) and � (�2) form a partition of S.

Then it is easy to verify that DM1 has more preference for �exibility than DM2 if and only

if DM1�s partition is �ner and both share the same prior beliefs. In this example, the weaker

comparison of �valuing binary bets more�corresponds exactly to dropping the requirement

that the prior beliefs are the same.14

4. Subjective temporal resolution of uncertainty

Suppose that the DM anticipates uncertainty to resolve gradually over time. The pattern

of resolution might be relevant if, for example, the time at which the DM has to choose an

alternative from the menu is random and continuously distributed over some interval, say

[0; 1]. An alternative interpretation is that at any given point in time t 2 [0; 1] the DM
chooses one act from the menu. At time 1, the true state of the world becomes objectively

known. The DM is then paid the convex combination of the payo¤s speci�ed by all acts

on the menu, where the weight assigned to each act is simply the amount of time the DM

held it. That is, the DM derives a utility �ow from holding a particular act, where the

state-dependent �ow is determined ex-post, at the point when payments are made. In both

cases, the information available to the DM at any point in time t might be relevant for his

choice. This section is phrased in terms of random timing of second-stage choice. Section

5.1 discusses the utility �ow interpretation in more detail.

In a context where the �ow of information over time is objectively given, it is common to

describe it as a �ltered probability space, that is, a probability space with a �ltration on its

sigma algebra. We would like to replicate this description in the context of subjective learn-

ing. To that end, we now re�ne the generalized-partition representation (�; �) in Theorem 3,

such that it can be interpreted as follows: the DM holds beliefs over the states of the world

14We do not provide a formal proof of this assertion at this point, as it is a corollary of Theorem 7 below.
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and has in mind a �ltration indexed by continuous time. Using Bayes�law, the �ltration and

prior beliefs jointly generate a subjective temporal lottery. We achieve this re�nement by

imposing an additional axiom on �, which uses the notion of saturated menus to imply that
the support of � has a hierarchical structure. Our domain is rich enough to allow both the

�ltration, that is the timing of information arrival and the sequence of partitions induced by

it, and the beliefs to be uniquely identi�ed from choice behavior.

4.1. Subjective �ltration

De�nition 12. An act f contains act g if � (g) ( � (f).

De�nition 13. Acts f and g do not intersect if � (g) \ � (f) = ;.

Axiom 9 (Hierarchy). If F is saturated and f; g 2 F then either f and g do not intersect
or one contains the other.

In order to interpret two distinct events that contain state s as being relevant for the

DM at di¤erent points in time, they must be ordered by set inclusion. Using Claim 4, this

is the content of Axiom 9.

De�nition 14. The pair (�; fPtg) is a subjective �ltration representation if (i) � is a prob-
ability measure on S; (ii) fPtg is a �ltration on � (�) indexed by t 2 [0; 1];15 and

V (F ) =
R
[0;1]

�P
I2Pt maxf2F

�P
s2If (s)� (s)

��
dt:

represents �.

Note that there can only be a �nite number of times at which the �ltration fPtg becomes
strictly �ner. The de�nition does not require P0 = f� (�)g.

Theorem 6. The relation � satis�es Axioms 1�9 if and only if it has a subjective �ltration
representation, (�; fPtg). Furthermore, the pair (�; fPtg) is unique.

Proof. See Appendix 6.8
If the DM faces an (exogenously given) random stopping time that is uniformly distrib-

uted on [0; 1],16 then Theorem 6 implies that he behaves as if he holds prior beliefs � and

expects to learn over time as described by the �ltration fPtg.
15Slightly abusing notation, we identify a �ltration with a right-continuous and nondecreasing function

from [0; 1] to 2�(�).
16It is straightforward to accommodate any other exogenous distribution of stopping times. An alternative

interpretation is that the distribution of stopping times is not uniform because of an external constraint,
but because the DM subscribes to the principle of insu¢ cient reason, by which he assumes that all points
in time are equally likely to be relevant for choice.
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We now brie�y sketch the proof of Theorem 6. Given a generalized-partition represen-

tation (�; �) as in Theorem 3, Axiom 9 allows us to construct a random partition (q;�) as

de�ned at the end of Section 3.3, where the partitions in � can be ordered by increasing

�neness. If the DM faces a random stopping time that is uniformly distributed on [0; 1],

then it is natural to interpret q (P) as the time for which the DM expects partition P 2 � to
be relevant. This interpretation is captured in the time dependency of fPtg. The construc-
tion of (q;�) is recursive. First, for each state s 2 S, we �nd the largest set in � (�) that
includes s. The collection of those sets constitutes P1. The probability q (P1) corresponds
to the smallest weight any of those sets is assigned by �, that is, q (P1) = minI2P1 (� (I)).

To begin the next step, we calculate adjusted weights, �1, as follows: for any set I 2 P1,
let �1 (I) = � (I) � q (P1). For any set I 2 � (�) nP1, let �1 (I) = � (I). The set � (�1) then
consists of all sets I 2 P1 with � (I) > q (P1) and all sets in � (�) nP1. Recursively, construct
Pn according to �n�1. By Theorem 3,

P
I22S js2I � (I) = 1 for all s 2 � (�), which guarantees

that the inductive procedure is well de�ned. It must terminate in a �nite number of steps

due to the �niteness of 2S.

Remark 4. At the time of menu choice, the DM holds beliefs over all possible states of the

world. If he expects additional information to arrive before time-zero (at which point his

beliefs commence to be relevant for choice from the menu), then time-zero information is

described by a non-trivial partition of � (�), that is, P0 6= f� (�)g. If one wants to assume
that the (subjective) �ow of information cannot start before time-zero, then the following

additional axiom is required:

Axiom 10 (Initial node). If F is saturated, then there exists f 2 F such that f contains
g for all g 2 F with g 6= f .

Under the assumptions of Theorem 6, if � also satis�es Axiom 10, then P0 = f� (�)g. That
is, the tree (�; fPtg) has a unique initial node (see Claim 14 in Appendix 6.8).

4.2. Revisiting the behavioral comparisons

Under the assumptions of Theorem 6, we can characterize the notion of preference for �exi-

bility and the value of binary bets via the DM�s subjective �ltration.

De�nition 15. DM1 learns earlier than DM2 if fP1t g is weakly �ner than fP2t g :
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Theorem 7. If DM1 and DM2 have preferences that can be represented as in Theorem 6,

then:

(i) DM1 values binary bets more than DM2 if and only if DM1 learns earlier than DM2;

(ii) DM1 has more preference for �exibility than DM2 if and only if DM1 learns earlier

than DM2 and they have the same prior beliefs, �1 = �2.

Proof. See Appendix 6.9
Theorem 7 shows that under the assumptions of Theorem 6, the characterization of �more

preference for �exibility�di¤ers from that of the weaker notion of �valuing binary bets more�

solely by requiring that the prior beliefs are the same.

5. Discussion

5.1. A di¤erent interpretation: utility �ow

In Section 4 we suggest that situations in which the DM derives a utility �ow from choosing

an act at any point in time can be accommodated in our setting. We now elaborate on this

interpretation. Consider a company that produces laptop computers and is preparing the

scheduled release of a new model. At any point in time prior to the launch, the company

can choose one of many development strategies, each of which speci�es how to allocate de-

velopment e¤ort among di¤erent features of the product. For example, one development

strategy might divide the time equally between improving the screen and expanding the

memory. Another might focus exclusively on enlarging the keyboard. The value of the

di¤erent collections of features at the time of launch depends on consumers�tastes and com-

peting products, as summarized by the state of the world, and on the e¤ort spent developing

them. As the launch approaches, the company may become more informed about the un-

derlying state of the world and may adjust its development strategy accordingly. Suppose

that, given the state of the world, the value generated by the development process is the

sum of the values added by the di¤erent strategies the company pursued prior to launch.

The added value from any particular strategy is simply the value it would have generated

had it been pursued consistently, weighted by the amount of time it was pursued. Formally,

given a collection of possible development strategies F , let a : [0; 1] ! F be a development

process, or a particular path of strategy choices, that is, a (t) is the strategy f 2 F that DM
chooses at time t. Given the state of the world s 2 S, the payo¤ from the process a is

R
[0;1]

a (t) (s) dt:
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In light of this separability of payo¤s over time, Theorem 6 provides an intuitive repre-

sentation of choice between sets of development strategies. The representation suggests that

given a set of strategies F , at every point in time the company chooses the strategy that

performs best under its current beliefs: if its information at time t is I, then its strategy

choice, a (t), will satisfy

a (t) 2 argmax
f2F

�P
s2If (s)� (s)

�
:

Take Apple as an example of a company that many perceive as standing out from their

competitors; it is generally accepted that Apple has �vision,�the ability to identify the next

big thing before its competitors. According to our behavioral comparison, Apple should

derive more value from �exibility than the competition. At the same time, as explained in

Remark 1, �vision�has no immediate implications for the number of development options

a �rm chooses to maintain. One can think of research expenditures as a proxy for this

number: the more a company spends on research, the more development options it has. Our

predictions are then in line with the observation that Microsoft vastly outspends Apple on

research to less e¤ect, Apple gets more �bang for their research buck.�17

5.2. Reevaluation of our domain

In this paper we study preferences over sets of feasible intermediate actions, or menus of

acts. For the �rst two representation theorems (Theorems 1 and 3), we adopt the usual

interpretation that the DM has to choose an alternative from a menu at some prespeci�ed

future point in time. While this interpretation of the domain allows preferences to be a¤ected

by the DM�s expectations regarding the resolution of uncertainty, preferences are insensitive

to the timing of resolution as long as all resolution happens before the choice of an alternative.

An illustrative example is provided in Takeoka (2007), who proceeds to derive a subjective

two-stage compound lottery by specifying the sets of feasible intermediate actions at di¤erent

points in time, that is, by analyzing choice between what one might term �compound menus�

(menus over menus etc.). The domain of compound menus provides a way to talk about

compound uncertainty (without objective probabilities). It has the advantage that it can

capture situations where the DM faces intertemporal trade-o¤s, for example if today�s action

may limit tomorrow�s choices. However, while only the initial choice is modeled explicitly,

the interpretation of choice on this domain now involves multiple stages, say 0, 1=2, and 1,

at which the DM must make a decision. That is, the pattern of information arrival (or, at

least, the collection of times at which an outside observer can detect changes in the DM�s

17See http://gizmodo.com/#!5486798/research-and-development-apple-vs-microsoft-vs-sony (available as
of February 17, 2012).
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beliefs) is objectively given. In that sense, the domain only partially captures subjective

temporal resolution of uncertainty. Furthermore, the domain of compound menus becomes

increasingly complicated, as the resolution of uncertainty becomes �ner.18

In Section 4 we take a di¤erent approach to study subjective temporal resolution of

uncertainty: we specify a single set of feasible intermediate actions, which is the relevant

constraint on choice at all points in time. At the �rst stage, the DM chooses a menu of acts

and only this choice is modeled explicitly. The innovation lies in our interpretation of choice

from the menu. Whether we think of an exogenous distribution for the stopping time or of

a model where the DM derives a utility �ow (as suggested in Section 5.1), the information

that the DM has at any point in time might be relevant for his ultimate choice from a menu.

Our domain has the obvious disadvantage that it does not accommodate choice situations

where the set of feasible actions may change over time. That said, our approach allows us (as

we argue in the text) to uniquely pin down the timing of information arrival in continuous

time, the sequence of induced partitions, and the DM�s prior beliefs from the familiar and

analytically tractable domain of menus of acts.

6. Appendix

6.1. Proof of Theorem 1

It is easily veri�ed that any preferences with a second-order beliefs representation as in

Theorem 1 satisfy the axioms. We proceed to show the su¢ ciency of the axioms.

We can identify F with the set of all k�dimensional vectors, where each entry is in [0; 1].
For reasons that will become clear below, we now introduce an arti�cial state, sk+1. Let

F 0 :=
n
f 0 2 [0; 1]k � [0; k]

���Pk+1
i=1 f

0 (si) = k
o
:

Note that the k + 1 component in f 0 equals k �
Pk

i=1f
0 (si). For f 0 2 F 0, denote by

f 0k 2 F the vector that agrees with the �rst k components of f 0. Since F and F 0 are

isomorphic, we can look at preferences on K (F 0), ��, de�ned by: F 0 �� G0 , F � G, where
F :=

�
f 2 F

��f = f 0k for some f 0 2 F 0	 and analogously for G.
Claim 5. The relation �� satis�es the independence axiom.

Proof. Using the de�nition of �� and Axiom 4, we have, for all F 0; G0, and H 0 in K (F 0)

18Note that the set of menus over acts is in�nitely dimensional. Hence, even the three-stage model considers
menus that are subsets of an in�nite dimensional space.

25



and for all � 2 [0; 1],

F 0 �� G0 , F � G, �F + (1� �)H � �G+ (1� �)H ,
(�F + (1� �)H)0 �� (�G+ (1� �)H)0 , �F 0 + (1� �)H 0 �� �G0 + (1� �)H 0:

Let

F 00 :=
n
f 0 2 [0; k]k+1

���Pk+1
i=1 f

0 (si) = k
o
:

Let F k+1 :=
��

k
k+1
; :::; k

k+1

�	
2 K (F 0). Observe that for F 00 2 F 00 and " < 1

k2
, "F 00 +

(1� ")F k+1 2 K (F 0). De�ne ��� on K (F 00) by F 00 ��� G00 , "F 00 + (1� ")F k+1 ��
"G00 + (1� ")F k+1 for all " < 1

k2
.

Claim 6. The relation ��� is the unique extension of �� to K (F 00) that satis�es the inde-

pendence axiom.

Proof. Note that the (k + 1)-dimensional vector
�

k
k+1
; :::; k

k+1

�
2 intF 0 � F 00, hence F k+1 �

intF 0 � F 00. We now show that ��� satis�es independence. For any F 00; G00; H 00 2 K (F 00)

and � 2 [0; 1],

F 00 ��� G00 , "F 00 + (1� ")F k+1 �� "G00 + (1� ")F k+1 ,
�
�
"F 00 + (1� ")F k+1

�
+ (1� �)

�
"H 00 + (1� ")F k+1

�
= " (�F 00 + (1� �)H 00) + (1� ")F k+1 ��
�
�
"G00 + (1� ")F k+1

�
+ (1� �)

�
"H 00 + (1� ")F k+1

�
= " (�G00 + (1� �)H 00) + (1� ")F k+1 , �F 00 + (1� �)H 00 ��� �G00 + (1� �)H 00:

The �rst and third , is by the de�nition of ���. The second , is by Claim 5.19

This argument shows that a linear extension exists. To show uniqueness, let b� be any

preference relation over K (F 00), which satis�es the independence axiom. By independence,

F 00 b� G00 , "F 00+ (1� ")F k+1 b� "G00+ (1� ")F k+1. Since b� extends ��, they must agree
19The (=) sign in the third and in �fth lines are due to the fact that F k+1 is a singleton menu. For a

singleton menu ffg and � 2 (0; 1) ;
� ffg+ (1� �) ffg = ffg

while, for example,

� ff; gg+ (1� �) ff; gg = ff; g; �f + (1� �) g; �g + (1� �) fg ;

is not generally equal to ff; gg :
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on K (F 0). Therefore,

"F 00 + (1� ")F k+1 b� "G00 + (1� ")F k+1 , "F 00 + (1� ")F k+1 �� "G00 + (1� ")F k+1:

By combining the two equivalences above, we conclude that de�ning b� by F 00 b� G00 ,
"F 00 + (1� ")F k+1 �� "G00 + (1� ")F k+1 is the only admissible extension of ��.
The domain K (F 00) is formally equivalent to that of Dekel, Lipman, Rustichini, and

Sarver (2007, henceforth DLRS) with k+1 prizes. (The unit simplex is obtained by rescaling
all elements of F 00 by 1=k, that is, by rede�ning F 00 as

n
f 0 2 [0; 1]k+1 :

Pk+1
i=1 f

0 (si) = 1
o
.)

Applying Theorem 2 in DLRS,20 one obtains the following representation of ���:

bV (F 00) = R
M(S)

max
f 002F 00

�P
s2S[fsk+1gf

00 (s) b� (s)� dbp (b�) ;
where M (S) :=

nb� ���Ps2S[fsk+1gb� (s) = 0 andPs2S[fsk+1g (b� (s))2 = 1o. Given the nor-
malization of b� 2M (S), bp (�) is a unique probability measure. Note that bV also represents
�� when restricted to its domain, K (F 0).

We aim for a representation of � of the form

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) ,

where f (�) is a vector of utils and p (�) is a unique probability measure on �(S), the space
of all probability measures on S.

We now explore the additional constraint imposed on bV by Axiom 6 and the de�nition

of ��.

Claim 7. b� (sk+1) � b� (s) for all s 2 S, bp�almost surely.
Proof. Suppose there exists some event E �M (S) with bp (E) > 0 and b� (sk+1) > b� (s) for
some s 2 S and all b� 2 E: Let f 0 = (0; 0; :::; 0; "; 0; :::; k � ") ; where " is received in state s
and k� " is received in state sk+1. Let g0 = (0; 0; ::0; 0; 0; :::; k). Then ff 0; g0g �� ff 0g. Take
F 0 = ff 0g (so that F 0 [ fg0g �� F 0). But note that Axiom 6 and the de�nition of �� imply
that F 0 �� F 0 [ fg0g, which is a contradiction.
Given our construction of bV , there are two natural normalizations that allow us to replace

the measure bp onM (S) with a unique probability measure p on �(S).

20DLRS provide a supplemental appendix which shows that, for the purpose of the theorem, their stronger
continuity assumption can be relaxed to the weaker notion of vNM continuity used in the present paper.
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First, since sk+1 is an arti�cial state, the representation should satisfy � (sk+1) = 0,

p�almost surely. For all s 2 S and for all b�, de�ne � (b� (s)) := b� (s) � b� (sk+1). SincePk+1
i=1 f

0 (si) = k and � simply adds a constant to every b�,
argmax
f 002F 00

�P
s2S[fsk+1gf

00 (s) � (b� (s))� = argmax
f 002F 00

�P
s2S[fsk+1gf

00 (s) b� (s)�
for all b� 2 � (bp). Furthermore, by Claim 7, � (b� (s)) � 0 for all s 2 S, bp�almost surely.
Second, we would like to transform � � b� into a probability measure �. Let

� (s) := � (b� (s)) = �Ps02S� (b� (s0))� :
(recall that � (b� (sk+1)) = 0). Since this transformation a¤ects the relative weight given to
event E � M (S) in the representation, we need p to be a probability measure on E that

o¤sets this e¤ect. The identi�cation result in DLRS implies that this p is unique and can be

calculated via the Radon-Nikodym derivative

dp (�)

dbp (b�) =
P

s2S� (b� (s))R
M(S)

�P
s2S� (b� (s))� dbp (b�) :

Therefore, � is represented by

V (F ) =
R

�(S)

max
f2F

�P
s2Sf (s)� (s)

�
dp (�) ;

and the measure p is unique.

6.2. Proof of Claim 1

Let G = fgg for some g 2 F . Applying De�nition 2 implies that if ffg �1 fgg then
ffg �2 fgg. That is, any indi¤erence set of the restriction of �1 to singletons is a subset of
some indi¤erence set of the restriction of �2 to singletons. The linearity (in probabilities)
of the restriction of V i (�) to singletons implies that these indi¤erence sets are planes that
separate any n�dimensional unit simplex, for n � (jSj � 1). Therefore, the indi¤erence sets
of the restriction of �1 and �2 to singletons must coincide. Since the restrictions of �1 and
of �2 to singletons share the same indi¤erence sets and since both relations are monotone,
they must agree on all upper and lower contour sets. In particular, ffg �1 fgg if and only
if ffg �2 fgg.

28



6.3. Proof of Claim 2

We will construct a menu that satis�es De�nition 6 with f (s) < 1 for all f 2 F and all

s 2 S. Let F�(S) := ff 2 F : kfk2 = 1g be the positive segment of the k � 1 dimensional
unit sphere. There is an isomorphism between �(S) and F�(S) with the mapping � !
argmax
f2F�(S)

�P
s2Sf (s)� (s)

�
. For L � �(S) let FL � F�(S) be the image of L under this map-

ping. Finiteness of � (p) implies that F�(p) is �nite. Let f�(p);� := argmax
f2F�(p)

�P
s2Sf (s)� (s)

�
and (implicitly) de�ne ��(p);f by f = argmax

f2F�(p)

�P
s2Sf (s)��(p);f (s)

�
. Because F�(S) is the

positive segment of a sphere, � (s) > 0 for � 2 � (p) if and only if f�(p);� (s) > 0. This

implies that F�(p) � F�(p)n ffg [ ff 0s g for all f 2 F�(p) and s 2 S with f (s) > 0.

Hence, F�(p) is fat-free (De�nition 5). We claim that F�(p) is a saturated menu. Con-

sider condition (i) in De�nition 6. If f (s) = 0, then ��(p);f (s) = 0. Hence, there ex-

ists " > 0 such that F�(p) � F�(p) [
n
f
f(s)+"
s

o
for all " < ". Finally, consider condition

(ii) in De�nition 6. Let G * F�(p). If F�(p) [ G � F�(p) then the condition is triv-

ially satis�ed. Suppose F�(p) [ G � F�(p). Then, there exist � 2 � (p) and g 2 G withP
s2Sg (s)� (s) >

P
s2Sf�(p);� (s)� (s). Then F�(p) [G �

�
F�(p) [G

�
n
�
f�(p);�

	
.

6.4. Proof of Claim 3

If F is saturated and f 2 F , then there exists � such that f = argmax
�P

s2Sf (s)� (s)
�
(if

not, then F � Fn ffg). We should show that if f = argmax
�P

s2Sf (s)� (s)
�
, then for all

�0 6= �, f =2 argmax
�P

s2Sf (s)�
0 (s)

�
. Suppose to the contrary that there exist � 6= �0 such

that f = argmax
�P

s2Sf (s)� (s)
�
and f 2 argmax

�P
s2Sf (s)�

0 (s)
�
. Then f (s) > 0 for

all s 2 � (�) [ � (�0) by De�nition 6 (i). We construct an act f 0, which does better than f
with respect to belief �0 and does not change the argmax with respect to any other belief in

which f was not initially the best. Since � 6= �0, there exist two states, s and s0, such that
�0 (s) > � (s) and �0 (s0) < � (s0). Let

f 0 (bs) =
8><>:
f (bs) if bs =2 fs; s0g
f (bs) + " if bs = s
f (bs)� � if bs = s0 ;

where "; � > 0 are such that:

(1) "�0 (s)� ��0 (s0) > 0, and
(2) "� (s)� �� (s0) < 0.
The two conditions can be summarized as "

�
2
�
�0(s0)
�0(s) ;

�(s0)
�(s)

�
� (0;1). Note that one can

make " and � su¢ ciently small (while maintaining their ratio �xed) so that, by continuity,
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f 0 does not change the argmax with respect to any other belief in which f was not initially

the best. Hence f 0 =2 F and F [ f 0 � F [ f 0n fgg for all g 2 F [ f 0, which is a contradiction
to F being saturated.

6.5. Proof of Theorem 3

To show that the axioms are necessary for the representation, we only verify that the rep-

resentation implies Axiom 8. The other axioms are satis�ed, as Theorem 3 is a special case

of Theorem 1. Suppose then that F is saturated with f 2 F , and let g satisfy � (g) = � (f)
and fgg � ffg, which implies that

V (fgg)� V (ffg) =
P

I22�(�)
P

s2I [g (s)� f (s)]� (s) � (I) (2)

=
P

s2S
P

I22�(�)js2I [g (s)� f (s)]� (s) � (I)

=
P

s2S [g (s)� f (s)]� (s)
P

I22�(�)js2I � (I)

=
P

s2S [g (s)� f (s)]� (s) � 0:

Since F is saturated, Claim 3 and Claim 4 imply that there exists If 2 � (�) such that

V (F ) =
hP

s2Iff (s)� (s)
i
� (If ) +

P
I22�(�)=If max

f 02F=ffg

�P
s2If (s)� (s)

�
� (I)

�
hP

s2Ifg (s)� (s)
i
� (If ) +

P
I22�(�)=If max

f 02F=ffg

�P
s2If (s)� (s)

�
� (I)

� V ((Fn ffg) [ fgg) ,

where the �rst inequality uses Equation (2) and the second inequality is because the addition

of the act g might increase the value of the second component. Therefore, (Fn ffg)[fgg � F .
The su¢ ciency part of Theorem 3 is proved using the following claims:

Claim 8. Suppose F is saturated and f 2 F . Then for all g with � (g) = � (f),

fgg � ffg implies (Fn ffg) [ fgg � F:

Proof. For " > 0 small enough, let

h (s) =

(
f (s) + " if s 2 � (f)

0 if s =2 � (f)
:
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Then fgg � fhg and � (h) = � (g). Theorem 1 implies that F [ fhg � F . Let

F 0 :=

(
argmax
f 02F[fhg

�P
s2Sf

0 (s)� (s)
������ � 2 � (p)

)
:

Then F 0 � F [ fhg and F 0 is saturated. By Axiom 8,

F 0n fhg [ fgg � F 0:

Furthermore, F 0n fhg � Fn ffg and, by Axiom 5 (Set Monotonicity), Fn ffg [ fgg �
F 0n fhg [ fgg. Collecting all the preference statements established above completes the
proof:

Fn ffg [ fgg � F 0n fhg [ fgg � F 0 � F [ fhg � F:

Claim 9. If �; �0 2 � (p) and � 6= �0 then � (�) 6= � (�0)

Proof. Suppose there are �; �0 2 � (p), � 6= �0, but � (�) = � (�0). Let FM be the saturated

menu constructed in Claim 2. Then there are f; g 2 FM with f 6= g but � (f) = � (g).

Without loss of generality, suppose that fgg � ffg. For " > 0 small enough, let

h (s) =

(
g (s) + " if s 2 � (f)

0 if s =2 � (f)

and let

F :=

�
arg max

f2FM[fhg

�P
s2Sf (s)� (s)

�
j� 2 � (p)

�
:

F is a saturated menu with F � FM [ fhg. For " > 0 small enough, f; h 2 F . Furthermore,
fhg � fgg � ffg. Then, by Claim 8 Fn ffg = (Fn ffg) [ fhg � F , which contradicts

Axiom 5.

The measure p over�(S) in the representation of Theorem 1 is unique. Consequently the

prior, � (s) =
R
�(S)

� (s) dp, is also unique. By Claim 9, we can index each element � 2 � (p)
by its support � (�) 2 2S and denote a typical element by � (� jI ), where � (s jI ) = 0 if

s =2 I 2 2S. This allows us to replace the integral over �(S) with a summation over 2S

according to a unique measure bp,
V (F ) =

P
I22S max

f2F

�P
s2Sf (s)� (s jI )

� bp (I) ; (3)

and to write � (s) =
P

Ijs2I � (s jI ) bp (I).
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Claim 10. For all s; s0 2 I 2 � (bp),
� (s jI )
� (s0 jI ) =

� (s)

� (s0)
:

Proof. Suppose to the contrary that there are s; s0 2 I 2 � (bp) such that
� (s jI )
� (s0 jI ) <

� (s)

� (s0)
:

Given a saturated menu F , let fI := argmax
f2F

Pbs2S f (bs)� (bs jI ). By continuity, and since
fI (s

0) > 0, there exists an act h with

h (bs) =
8><>:
fI (bs) if bs =2 fs; s0g
fI (bs) + " if bs = s
fI (bs)� � if bs = s0 ;

where "; � > 0 are such that:

(1) "� (s)� �� (s0) > 0, and
(2) "� (s jI )� �� (s0 jI ) < 0:
Note that using Claim 3 and Claim 4 one can make " and � su¢ ciently small (while

maintaining their ratio �xed), so that, by continuity and �niteness of � (bp), h does not
change the argmax with respect to any other belief in � (bp). Then fhg � ffIg, but F �
Fn ffIg [ fhg, which contradicts Axiom 8.

Claim 11. For all s 2 I 2 � (bp), � (s jI ) = �(s)
�(I)
.

Proof. Using Claim 10,

� (I) :=
P

s02I� (s
0) =

� (s)

� (s jI )
P

s02I� (s
0 jI ) = � (s)

� (s jI )

) � (s jI ) = � (s)

� (I)
:

De�ne � (I) := bp(I)
�(I)
. Using Claim 11, we can substitute � (s) � (I) for � (s jI ) bp (I) in (3).

Consistency with Bayes�law implies that �s (I) =

(
� (I) if s 2 I
0 if s =2 I

.
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6.6. Proof of Theorem 4

(if) Let 	 be a uniform cover of S 0. Let k � 1 be the smallest number of times that S 0 is
covered by 	. Set � (I) = �(I)

k
for all I 2 	.

(only if) Suppose that � : 2S0 ! [0; 1] is a generalized partition, with � (�) = 	. In addition

to � (I) = 0 for I =2 	, the conditions that � should satisfy can be written as A�	 = 1, where

A is a jS 0j � j	j matrix with entries ai;j =
(
1 s 2 I
0 s =2 I

�����, �	 is a j	j-dimensional vector with
entries (� (I))I2	, and 1 is a jS 0j-dimensional vector of ones.
Suppose �rst that � (I) 2 Q\ (0; 1] for all I 2 	. Rewrite the vector �	 by expressing all

entries using the smallest common denominator, � 2 N+. Then 	 is a generalized partition
of size �. To see this, let � (I) := ��(I) for all I 2 	. Then

P
I2	js2I � (I) =

P
I2	js2I �� (I) = �

for all s 2 S 0.
It is thus left to show that if �	 2 (0; 1]j	j solves A�	 = 1, then there is also �0	 2

[Q \ (0; 1]]j	j such that A�0	 = 1.
Let bP be the set of solutions for the system A�	 = 1. Then, there exists X 2 Rk (with

k � j	j) and an a¢ ne function f : X ! Rj	j such that c�	 2 bP implies c�	 = f (x) for some
x 2 X. We �rst make the following two observations:
(i) there exists f as above, such that x 2 Qk implies f (x) 2 Qj	j

;

(ii) there exists an open set eX � Rk such that f (x) 2 bP for all x 2 eX
To show (i), apply the Gauss elimination procedure to get f and X as above. Using the

assumption thatA has only rational entries, the Gauss elimination procedure (which involves

a sequence of elementary operations on A) guarantees that x 2 Qk
implies f (x) 2 Qj	j

.

To show (ii), suppose �rst that �� 2 bP \ (0; 1)j	j and ��	 =2 Qj	j. By construction,
��	 = f (x�), for some x� 2 X. Since ��	 2 (0; 1)

j	j and f is a¢ ne, there exists an open

ball B" (x�) � Rk such that f (x) 2 bP \ (0; 1)j	j for all x 2 B" (x
�), and in particular

for x0 2 B" (x
�) \ Qk

(6= �). Then �0	 = f (x0) 2 [Q \ (0; 1]]j	j. Lastly, suppose that

��	 2 bP \ (0; 1]j	j and that there are 0 � l � j	j sets I 2 	, for which � (I) is uniquely
determined to be 1. Then set those l values to 1 and repeat the above procedure for the

remaining system of j	j �l linear equations.

6.7. Proof of Theorem 5

Let � be represented as in Theorem 3. Consider the menu fc; fg. We make the following
two observations: �rst, ff 0g � fcg if and only if s =2 � (�). Second, since conditional on any
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I 3 s; s0
Pr (s jI )
Pr (s0 jI ) =

� (s)

� (s0)

and since fcg � ffg,
Pbs2I f (bs)� (bs) > cPbs2I � (bs) if and only if s 2 I but s0 =2 I. These

are the only events in which DM expects to choose f from fc; fg. Note that

V (fc; fg) = c+ � (s) k
P

Ijs2I, s0 =2I � (I)

and that

V (ff 0g) = c+ � (s) k0:

Therefore, ff 0g � fc; fg if and only if
P

Ijs2I, s0 =2I � (I) � k0

k
.

By the �rst observation, De�nition 11 (i) is equivalent to the condition � (�1) = � (�2).

By the second observation, De�nition 11 (ii) is equivalent to the condition

P
Ijs2I, s0 =2I �

1 (I) � k0

k
)
P

Ijs2I, s0 =2I �
2 (I) � k0

k

for all k0 2 [0; k], or, P
Ijs2I, s0 =2I �

1 (I) �
P

Ijs2I, s0 =2I �
2 (I) .

6.8. Proof of Theorem 6

It is easy to check that any preferences with a subjective �ltration representation as in

Theorem 6 satisfy Axiom 9. The rest of the axioms are satis�ed since Theorem 6 is a special

case of Theorem 3.

To show su¢ ciency, �rst observe that by Axiom 9 and Claim 3, I,I 0 2 � (�) implies that
either I � I 0, or I 0 � I, or I \ I 0 = ;. This guarantees that for anyM � � (�) and s 2 � (�),
argmax
I2M

fjIj js 2 I g is unique if it exists.

For any state s 2 � (�), let Is1 = argmax
I2�(�)

fjIj js 2 I g. De�ne T1 := fIs1 js 2 � (�)g. Let

�1 = min
I2T 1

(� (I)). Set

�1 (I) =

(
� (I)� �1 if I 2 T1
� (I) if I =2 T1

:

Let �n : � (�) ! [0; 1] for n 2 N. Inductively, if for all s 2 � (�) there exists I 2 � (�n)
such that s 2 I, then for any s 2 � (�) let Isn+1 = argmax

I2�(�n)
fjIj js 2 I g. De�ne Tn+1 :=
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�
Isn+1 js 2 � (�)

	
. Let �n+1 = min

I2Tn+1
(�n (I)). Set

�n+1 (I) =

(
�n (I)� �n+1 if I 2 Tn+1

�n (I) if I =2 Tn+1
:

Let N + 1 be the �rst iteration in which there exists s 2 � (�) which is not included in
any I 2 � (�N). Axiom 7 implies that N is �nite and that (T n)n=1;::;N is a sequence of

increasingly �ner partitions, that is, for m > n, Ism � Isn for all s, with strict inclusion for

some s.

Claim 12. � (I) =
P

n�N jI2Tn �n for all I 2 � (�).

Proof. First note that by the de�nition of N , � (I) �
P

n�N jI2Tn �n for all I 2 � (�). If
the claim were not true, then there would exist I 0 2 � (�) such that � (I 0) >

P
n�N jI02Tn �n.

Pick s0 2 I 0. At the same time, by the de�nition of N , there exists s00 2 � (�) such that if
s00 2 I 2 � (�) then � (I) =

P
n�N jI2Tn �n. We have,

� (s00) =
P

I2�(�) Pr (s
00 jI ) � (I)� (I) =

P
I2�(�) Pr (s

00 jI )� (I)
P

n�N jI2Tn �n

=
P

n�N Pr
�
s00
���Is00n ���Is00n � �n = � (s00)Pn�N�n;

where the last equality follows from Claim 11. Therefore,
P

n�N�n = 1. At the same time

� (s0) =
P

I2�(�) Pr (s
0 jI ) � (I)� (I) >

P
I2�(�) Pr (s

0 jI )� (I)
P

n�N jI2Tn �n

=
P

n�N Pr
�
s0
���Is0n ���Is0n � �n = � (s0)Pn�N�n = � (s

0) ;

which is a contradiction.

Claim 12 implies that � (�N+1) = ;. Let �m := 0 and for t 2 [0; 1) de�ne the �ltration
fPtg by

Pt := Tn, for n such that
Pn�1

m=0�m � t <
Pn

m=0�m.

The pair (�; fPtg) is thus a subjective �ltration. The next claim establishes that (�; fPtg)
is unique.

Claim 13. If
�b�;n bPto� induces a representation as in Theorem 6, then

�b�;n bPto� =

(�; fPtg).

Proof. � and � are unique according to Theorem 3. We already observed that I \ bI = ;,bI � I, or I � bI for any I,bI 2 � (�) : Suppose that fPtg 6= n bPto. Then there exist t 2 (0; 1)
35



and I 2 � (�), such that I 2 Pt and I =2 bPt. Fix s 2 I. There is bI 2 bPt with s 2 bI and,
therefore, either bI � I or I � bI. Assume, without loss of generality, that bI � I. Let M =

fI 0 2 � (�) : I � I 0g. Let � (M) :=
P

I�M� (I) and � (M) =
P

I�M� (I) =
P

I�M
P

s2I� (s).

Then according to (�; fPtg), � (M)� (M) � t, while according to
�b�;n bPto�, � (M)� (M) <

t, which is a contradiction to the uniqueness of (�; �) in Theorem 3.

The last claim formalizes the observation in Remark 4.

Claim 14. If � also satis�es Axiom 10, then P0 = f� (�)g :

Proof. Suppose to the contrary, that there are fI; I 0g � P0 such that I \ I 0 = ; and
I [ I 0 � � (�). Then, any saturated F includes some act h with � (h) � I and another act g
with � (g) � I 0, but it does not include an act that contains both h and g, which contradicts
Axiom 10.

6.9. Proof of Theorem 7

(i) DM1 does not learn earlier than DM2 ,
there exists t such that P1t is not �ner than P2t ,
there exists two states s; s0, such that s; s0 2 I for some I 2 P1t , but s; s0 =2 I 0 for any

I 0 2 P2t ,
Pr2 (fI js 2 I, s0 =2 I g js) =

P
Ijs2I,s0 =2I �

2 (I) � 1 � t, but Pr1 (fI js 2 I, s0 =2 I g js) =P
Ijs2I,s0 =2I �

1 (I) < 1� t ,
DM1 does not value binary bets more than DM2.

(ii) (if) Suppose fP1t g is weakly �ner than fP2t g and that �1 = �2 = �. Fix a time t. Any I 2
P2t is measurable in P1t , that is, there is a collection of sets Ik � P1t such that I = [

k
Ik. Since

the max operator is convex,
P

Ik
maxf2F

�P
s2Ikf (s)� (s)

�
� maxf2F

�P
s2If (s)� (s)

�
.

Since t was arbitrary, we have

V 1 (F ) =
R
[0;1]

�P
I2P1t

max
f2F

�P
s2If (s)� (s)

��
dt

�
R
[0;1]

�P
I2P2t

max
f2F

�P
s2If (s)� (s)

��
dt = V 2 (F ) :

By Claim 1, for any f 2 F , V 1 (ffg) = V 2 (ffg). Therefore, V 2 (F ) � V 2 (ffg) implies
V 1 (F ) � V 1 (ffg).
(only if) By Theorem 2, �1 = �2. It is left to show that having more preference for �exibility
implies learning earlier. For i = 1; 2, let

ti (I) = min
�
t
��I is measurable in P it 	
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if de�ned, otherwise let ti (I) = 1. Let,

�i (I) = max
�
t
��I 2 P it 	�min�t ��I 2 P it 	

if de�ned, otherwise let �i (I) = 0. We make the following intermediate claim.

Claim 15. DM1 has more preference for �exibility than DM2 implies that for all I 2 2�(�)

P
I0�I�

1 (I 0)� (I 0) �
P

I0�I�
2 (I 0)� (I 0) :

Proof. Suppose that there is I 2 2S with
P

I0�I �
2 (I 0)� (I 0) >

P
I0�I �

1 (I 0)� (I 0). Obvi-

ously I  � (�). De�ne the act

f :=

(
� > 0 if s 2 I
0 if s =2 I

:

Let c denote the constant act that gives c > 0 in every state, such that � > c > �(I)
�(I00)� for

all I 00 2 2�(�) with I  I 00. Then Vi (ff; cg) = c+ (� � c)
P

I0�I �
i (I 0)� (I 0). Finally, pick c0

such that

(� � c)
P

I0�I�
2 (I 0)� (I 0) > c0 � c > (� � c)

P
I0�I�

1 (I 0)� (I 0) ;

to �nd ff; cg �2 fc0g but fc0g �1 ff; cg, and hence DM1 cannot have more preference for
�exibility than DM2.

Under the assumptions of Theorem 6,

P
I0�I�

i (I 0)�i (I 0) = �i (I)
�
1� ti (I)

�
:

By Claim 15, DM1 has more preference for �exibility than DM2 implies that t1 (I) � t2 (I)
for all I, which is equivalent to fP1t g being weakly �ner than fP2t g.
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